]> git.proxmox.com Git - mirror_zfs.git/blob - module/os/linux/zfs/zpl_file.c
Extending FreeBSD UIO Struct
[mirror_zfs.git] / module / os / linux / zfs / zpl_file.c
1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright (c) 2011, Lawrence Livermore National Security, LLC.
23 * Copyright (c) 2015 by Chunwei Chen. All rights reserved.
24 */
25
26
27 #ifdef CONFIG_COMPAT
28 #include <linux/compat.h>
29 #endif
30 #include <sys/file.h>
31 #include <sys/dmu_objset.h>
32 #include <sys/zfs_znode.h>
33 #include <sys/zfs_vfsops.h>
34 #include <sys/zfs_vnops.h>
35 #include <sys/zfs_project.h>
36
37 /*
38 * When using fallocate(2) to preallocate space, inflate the requested
39 * capacity check by 10% to account for the required metadata blocks.
40 */
41 unsigned int zfs_fallocate_reserve_percent = 110;
42
43 static int
44 zpl_open(struct inode *ip, struct file *filp)
45 {
46 cred_t *cr = CRED();
47 int error;
48 fstrans_cookie_t cookie;
49
50 error = generic_file_open(ip, filp);
51 if (error)
52 return (error);
53
54 crhold(cr);
55 cookie = spl_fstrans_mark();
56 error = -zfs_open(ip, filp->f_mode, filp->f_flags, cr);
57 spl_fstrans_unmark(cookie);
58 crfree(cr);
59 ASSERT3S(error, <=, 0);
60
61 return (error);
62 }
63
64 static int
65 zpl_release(struct inode *ip, struct file *filp)
66 {
67 cred_t *cr = CRED();
68 int error;
69 fstrans_cookie_t cookie;
70
71 cookie = spl_fstrans_mark();
72 if (ITOZ(ip)->z_atime_dirty)
73 zfs_mark_inode_dirty(ip);
74
75 crhold(cr);
76 error = -zfs_close(ip, filp->f_flags, cr);
77 spl_fstrans_unmark(cookie);
78 crfree(cr);
79 ASSERT3S(error, <=, 0);
80
81 return (error);
82 }
83
84 static int
85 zpl_iterate(struct file *filp, zpl_dir_context_t *ctx)
86 {
87 cred_t *cr = CRED();
88 int error;
89 fstrans_cookie_t cookie;
90
91 crhold(cr);
92 cookie = spl_fstrans_mark();
93 error = -zfs_readdir(file_inode(filp), ctx, cr);
94 spl_fstrans_unmark(cookie);
95 crfree(cr);
96 ASSERT3S(error, <=, 0);
97
98 return (error);
99 }
100
101 #if !defined(HAVE_VFS_ITERATE) && !defined(HAVE_VFS_ITERATE_SHARED)
102 static int
103 zpl_readdir(struct file *filp, void *dirent, filldir_t filldir)
104 {
105 zpl_dir_context_t ctx =
106 ZPL_DIR_CONTEXT_INIT(dirent, filldir, filp->f_pos);
107 int error;
108
109 error = zpl_iterate(filp, &ctx);
110 filp->f_pos = ctx.pos;
111
112 return (error);
113 }
114 #endif /* !HAVE_VFS_ITERATE && !HAVE_VFS_ITERATE_SHARED */
115
116 #if defined(HAVE_FSYNC_WITHOUT_DENTRY)
117 /*
118 * Linux 2.6.35 - 3.0 API,
119 * As of 2.6.35 the dentry argument to the fops->fsync() hook was deemed
120 * redundant. The dentry is still accessible via filp->f_path.dentry,
121 * and we are guaranteed that filp will never be NULL.
122 */
123 static int
124 zpl_fsync(struct file *filp, int datasync)
125 {
126 struct inode *inode = filp->f_mapping->host;
127 cred_t *cr = CRED();
128 int error;
129 fstrans_cookie_t cookie;
130
131 crhold(cr);
132 cookie = spl_fstrans_mark();
133 error = -zfs_fsync(ITOZ(inode), datasync, cr);
134 spl_fstrans_unmark(cookie);
135 crfree(cr);
136 ASSERT3S(error, <=, 0);
137
138 return (error);
139 }
140
141 #ifdef HAVE_FILE_AIO_FSYNC
142 static int
143 zpl_aio_fsync(struct kiocb *kiocb, int datasync)
144 {
145 return (zpl_fsync(kiocb->ki_filp, datasync));
146 }
147 #endif
148
149 #elif defined(HAVE_FSYNC_RANGE)
150 /*
151 * Linux 3.1 - 3.x API,
152 * As of 3.1 the responsibility to call filemap_write_and_wait_range() has
153 * been pushed down in to the .fsync() vfs hook. Additionally, the i_mutex
154 * lock is no longer held by the caller, for zfs we don't require the lock
155 * to be held so we don't acquire it.
156 */
157 static int
158 zpl_fsync(struct file *filp, loff_t start, loff_t end, int datasync)
159 {
160 struct inode *inode = filp->f_mapping->host;
161 cred_t *cr = CRED();
162 int error;
163 fstrans_cookie_t cookie;
164
165 error = filemap_write_and_wait_range(inode->i_mapping, start, end);
166 if (error)
167 return (error);
168
169 crhold(cr);
170 cookie = spl_fstrans_mark();
171 error = -zfs_fsync(ITOZ(inode), datasync, cr);
172 spl_fstrans_unmark(cookie);
173 crfree(cr);
174 ASSERT3S(error, <=, 0);
175
176 return (error);
177 }
178
179 #ifdef HAVE_FILE_AIO_FSYNC
180 static int
181 zpl_aio_fsync(struct kiocb *kiocb, int datasync)
182 {
183 return (zpl_fsync(kiocb->ki_filp, kiocb->ki_pos, -1, datasync));
184 }
185 #endif
186
187 #else
188 #error "Unsupported fops->fsync() implementation"
189 #endif
190
191 static inline int
192 zfs_io_flags(struct kiocb *kiocb)
193 {
194 int flags = 0;
195
196 #if defined(IOCB_DSYNC)
197 if (kiocb->ki_flags & IOCB_DSYNC)
198 flags |= O_DSYNC;
199 #endif
200 #if defined(IOCB_SYNC)
201 if (kiocb->ki_flags & IOCB_SYNC)
202 flags |= O_SYNC;
203 #endif
204 #if defined(IOCB_APPEND)
205 if (kiocb->ki_flags & IOCB_APPEND)
206 flags |= O_APPEND;
207 #endif
208 #if defined(IOCB_DIRECT)
209 if (kiocb->ki_flags & IOCB_DIRECT)
210 flags |= O_DIRECT;
211 #endif
212 return (flags);
213 }
214
215 /*
216 * If relatime is enabled, call file_accessed() if zfs_relatime_need_update()
217 * is true. This is needed since datasets with inherited "relatime" property
218 * aren't necessarily mounted with the MNT_RELATIME flag (e.g. after
219 * `zfs set relatime=...`), which is what relatime test in VFS by
220 * relatime_need_update() is based on.
221 */
222 static inline void
223 zpl_file_accessed(struct file *filp)
224 {
225 struct inode *ip = filp->f_mapping->host;
226
227 if (!IS_NOATIME(ip) && ITOZSB(ip)->z_relatime) {
228 if (zfs_relatime_need_update(ip))
229 file_accessed(filp);
230 } else {
231 file_accessed(filp);
232 }
233 }
234
235 #if defined(HAVE_VFS_RW_ITERATE)
236
237 /*
238 * When HAVE_VFS_IOV_ITER is defined the iov_iter structure supports
239 * iovecs, kvevs, bvecs and pipes, plus all the required interfaces to
240 * manipulate the iov_iter are available. In which case the full iov_iter
241 * can be attached to the uio and correctly handled in the lower layers.
242 * Otherwise, for older kernels extract the iovec and pass it instead.
243 */
244 static void
245 zpl_uio_init(zfs_uio_t *uio, struct kiocb *kiocb, struct iov_iter *to,
246 loff_t pos, ssize_t count, size_t skip)
247 {
248 #if defined(HAVE_VFS_IOV_ITER)
249 zfs_uio_iov_iter_init(uio, to, pos, count, skip);
250 #else
251 zfs_uio_iovec_init(uio, to->iov, to->nr_segs, pos,
252 to->type & ITER_KVEC ? UIO_SYSSPACE : UIO_USERSPACE,
253 count, skip);
254 #endif
255 }
256
257 static ssize_t
258 zpl_iter_read(struct kiocb *kiocb, struct iov_iter *to)
259 {
260 cred_t *cr = CRED();
261 fstrans_cookie_t cookie;
262 struct file *filp = kiocb->ki_filp;
263 ssize_t count = iov_iter_count(to);
264 zfs_uio_t uio;
265
266 zpl_uio_init(&uio, kiocb, to, kiocb->ki_pos, count, 0);
267
268 crhold(cr);
269 cookie = spl_fstrans_mark();
270
271 int error = -zfs_read(ITOZ(filp->f_mapping->host), &uio,
272 filp->f_flags | zfs_io_flags(kiocb), cr);
273
274 spl_fstrans_unmark(cookie);
275 crfree(cr);
276
277 if (error < 0)
278 return (error);
279
280 ssize_t read = count - uio.uio_resid;
281 kiocb->ki_pos += read;
282
283 zpl_file_accessed(filp);
284
285 return (read);
286 }
287
288 static inline ssize_t
289 zpl_generic_write_checks(struct kiocb *kiocb, struct iov_iter *from,
290 size_t *countp)
291 {
292 #ifdef HAVE_GENERIC_WRITE_CHECKS_KIOCB
293 ssize_t ret = generic_write_checks(kiocb, from);
294 if (ret <= 0)
295 return (ret);
296
297 *countp = ret;
298 #else
299 struct file *file = kiocb->ki_filp;
300 struct address_space *mapping = file->f_mapping;
301 struct inode *ip = mapping->host;
302 int isblk = S_ISBLK(ip->i_mode);
303
304 *countp = iov_iter_count(from);
305 ssize_t ret = generic_write_checks(file, &kiocb->ki_pos, countp, isblk);
306 if (ret)
307 return (ret);
308 #endif
309
310 return (0);
311 }
312
313 static ssize_t
314 zpl_iter_write(struct kiocb *kiocb, struct iov_iter *from)
315 {
316 cred_t *cr = CRED();
317 fstrans_cookie_t cookie;
318 struct file *filp = kiocb->ki_filp;
319 struct inode *ip = filp->f_mapping->host;
320 zfs_uio_t uio;
321 size_t count = 0;
322 ssize_t ret;
323
324 ret = zpl_generic_write_checks(kiocb, from, &count);
325 if (ret)
326 return (ret);
327
328 zpl_uio_init(&uio, kiocb, from, kiocb->ki_pos, count, from->iov_offset);
329
330 crhold(cr);
331 cookie = spl_fstrans_mark();
332
333 int error = -zfs_write(ITOZ(ip), &uio,
334 filp->f_flags | zfs_io_flags(kiocb), cr);
335
336 spl_fstrans_unmark(cookie);
337 crfree(cr);
338
339 if (error < 0)
340 return (error);
341
342 ssize_t wrote = count - uio.uio_resid;
343 kiocb->ki_pos += wrote;
344
345 if (wrote > 0)
346 iov_iter_advance(from, wrote);
347
348 return (wrote);
349 }
350
351 #else /* !HAVE_VFS_RW_ITERATE */
352
353 static ssize_t
354 zpl_aio_read(struct kiocb *kiocb, const struct iovec *iov,
355 unsigned long nr_segs, loff_t pos)
356 {
357 cred_t *cr = CRED();
358 fstrans_cookie_t cookie;
359 struct file *filp = kiocb->ki_filp;
360 size_t count;
361 ssize_t ret;
362
363 ret = generic_segment_checks(iov, &nr_segs, &count, VERIFY_WRITE);
364 if (ret)
365 return (ret);
366
367 zfs_uio_t uio;
368 zfs_uio_iovec_init(&uio, iov, nr_segs, kiocb->ki_pos, UIO_USERSPACE,
369 count, 0);
370
371 crhold(cr);
372 cookie = spl_fstrans_mark();
373
374 int error = -zfs_read(ITOZ(filp->f_mapping->host), &uio,
375 filp->f_flags | zfs_io_flags(kiocb), cr);
376
377 spl_fstrans_unmark(cookie);
378 crfree(cr);
379
380 if (error < 0)
381 return (error);
382
383 ssize_t read = count - uio.uio_resid;
384 kiocb->ki_pos += read;
385
386 zpl_file_accessed(filp);
387
388 return (read);
389 }
390
391 static ssize_t
392 zpl_aio_write(struct kiocb *kiocb, const struct iovec *iov,
393 unsigned long nr_segs, loff_t pos)
394 {
395 cred_t *cr = CRED();
396 fstrans_cookie_t cookie;
397 struct file *filp = kiocb->ki_filp;
398 struct inode *ip = filp->f_mapping->host;
399 size_t count;
400 ssize_t ret;
401
402 ret = generic_segment_checks(iov, &nr_segs, &count, VERIFY_READ);
403 if (ret)
404 return (ret);
405
406 ret = generic_write_checks(filp, &pos, &count, S_ISBLK(ip->i_mode));
407 if (ret)
408 return (ret);
409
410 zfs_uio_t uio;
411 zfs_uio_iovec_init(&uio, iov, nr_segs, kiocb->ki_pos, UIO_USERSPACE,
412 count, 0);
413
414 crhold(cr);
415 cookie = spl_fstrans_mark();
416
417 int error = -zfs_write(ITOZ(ip), &uio,
418 filp->f_flags | zfs_io_flags(kiocb), cr);
419
420 spl_fstrans_unmark(cookie);
421 crfree(cr);
422
423 if (error < 0)
424 return (error);
425
426 ssize_t wrote = count - uio.uio_resid;
427 kiocb->ki_pos += wrote;
428
429 return (wrote);
430 }
431 #endif /* HAVE_VFS_RW_ITERATE */
432
433 #if defined(HAVE_VFS_RW_ITERATE)
434 static ssize_t
435 zpl_direct_IO_impl(int rw, struct kiocb *kiocb, struct iov_iter *iter)
436 {
437 if (rw == WRITE)
438 return (zpl_iter_write(kiocb, iter));
439 else
440 return (zpl_iter_read(kiocb, iter));
441 }
442 #if defined(HAVE_VFS_DIRECT_IO_ITER)
443 static ssize_t
444 zpl_direct_IO(struct kiocb *kiocb, struct iov_iter *iter)
445 {
446 return (zpl_direct_IO_impl(iov_iter_rw(iter), kiocb, iter));
447 }
448 #elif defined(HAVE_VFS_DIRECT_IO_ITER_OFFSET)
449 static ssize_t
450 zpl_direct_IO(struct kiocb *kiocb, struct iov_iter *iter, loff_t pos)
451 {
452 ASSERT3S(pos, ==, kiocb->ki_pos);
453 return (zpl_direct_IO_impl(iov_iter_rw(iter), kiocb, iter));
454 }
455 #elif defined(HAVE_VFS_DIRECT_IO_ITER_RW_OFFSET)
456 static ssize_t
457 zpl_direct_IO(int rw, struct kiocb *kiocb, struct iov_iter *iter, loff_t pos)
458 {
459 ASSERT3S(pos, ==, kiocb->ki_pos);
460 return (zpl_direct_IO_impl(rw, kiocb, iter));
461 }
462 #else
463 #error "Unknown direct IO interface"
464 #endif
465
466 #else /* HAVE_VFS_RW_ITERATE */
467
468 #if defined(HAVE_VFS_DIRECT_IO_IOVEC)
469 static ssize_t
470 zpl_direct_IO(int rw, struct kiocb *kiocb, const struct iovec *iov,
471 loff_t pos, unsigned long nr_segs)
472 {
473 if (rw == WRITE)
474 return (zpl_aio_write(kiocb, iov, nr_segs, pos));
475 else
476 return (zpl_aio_read(kiocb, iov, nr_segs, pos));
477 }
478 #elif defined(HAVE_VFS_DIRECT_IO_ITER_RW_OFFSET)
479 static ssize_t
480 zpl_direct_IO(int rw, struct kiocb *kiocb, struct iov_iter *iter, loff_t pos)
481 {
482 const struct iovec *iovp = iov_iter_iovec(iter);
483 unsigned long nr_segs = iter->nr_segs;
484
485 ASSERT3S(pos, ==, kiocb->ki_pos);
486 if (rw == WRITE)
487 return (zpl_aio_write(kiocb, iovp, nr_segs, pos));
488 else
489 return (zpl_aio_read(kiocb, iovp, nr_segs, pos));
490 }
491 #else
492 #error "Unknown direct IO interface"
493 #endif
494
495 #endif /* HAVE_VFS_RW_ITERATE */
496
497 static loff_t
498 zpl_llseek(struct file *filp, loff_t offset, int whence)
499 {
500 #if defined(SEEK_HOLE) && defined(SEEK_DATA)
501 fstrans_cookie_t cookie;
502
503 if (whence == SEEK_DATA || whence == SEEK_HOLE) {
504 struct inode *ip = filp->f_mapping->host;
505 loff_t maxbytes = ip->i_sb->s_maxbytes;
506 loff_t error;
507
508 spl_inode_lock_shared(ip);
509 cookie = spl_fstrans_mark();
510 error = -zfs_holey(ITOZ(ip), whence, &offset);
511 spl_fstrans_unmark(cookie);
512 if (error == 0)
513 error = lseek_execute(filp, ip, offset, maxbytes);
514 spl_inode_unlock_shared(ip);
515
516 return (error);
517 }
518 #endif /* SEEK_HOLE && SEEK_DATA */
519
520 return (generic_file_llseek(filp, offset, whence));
521 }
522
523 /*
524 * It's worth taking a moment to describe how mmap is implemented
525 * for zfs because it differs considerably from other Linux filesystems.
526 * However, this issue is handled the same way under OpenSolaris.
527 *
528 * The issue is that by design zfs bypasses the Linux page cache and
529 * leaves all caching up to the ARC. This has been shown to work
530 * well for the common read(2)/write(2) case. However, mmap(2)
531 * is problem because it relies on being tightly integrated with the
532 * page cache. To handle this we cache mmap'ed files twice, once in
533 * the ARC and a second time in the page cache. The code is careful
534 * to keep both copies synchronized.
535 *
536 * When a file with an mmap'ed region is written to using write(2)
537 * both the data in the ARC and existing pages in the page cache
538 * are updated. For a read(2) data will be read first from the page
539 * cache then the ARC if needed. Neither a write(2) or read(2) will
540 * will ever result in new pages being added to the page cache.
541 *
542 * New pages are added to the page cache only via .readpage() which
543 * is called when the vfs needs to read a page off disk to back the
544 * virtual memory region. These pages may be modified without
545 * notifying the ARC and will be written out periodically via
546 * .writepage(). This will occur due to either a sync or the usual
547 * page aging behavior. Note because a read(2) of a mmap'ed file
548 * will always check the page cache first even when the ARC is out
549 * of date correct data will still be returned.
550 *
551 * While this implementation ensures correct behavior it does have
552 * have some drawbacks. The most obvious of which is that it
553 * increases the required memory footprint when access mmap'ed
554 * files. It also adds additional complexity to the code keeping
555 * both caches synchronized.
556 *
557 * Longer term it may be possible to cleanly resolve this wart by
558 * mapping page cache pages directly on to the ARC buffers. The
559 * Linux address space operations are flexible enough to allow
560 * selection of which pages back a particular index. The trick
561 * would be working out the details of which subsystem is in
562 * charge, the ARC, the page cache, or both. It may also prove
563 * helpful to move the ARC buffers to a scatter-gather lists
564 * rather than a vmalloc'ed region.
565 */
566 static int
567 zpl_mmap(struct file *filp, struct vm_area_struct *vma)
568 {
569 struct inode *ip = filp->f_mapping->host;
570 znode_t *zp = ITOZ(ip);
571 int error;
572 fstrans_cookie_t cookie;
573
574 cookie = spl_fstrans_mark();
575 error = -zfs_map(ip, vma->vm_pgoff, (caddr_t *)vma->vm_start,
576 (size_t)(vma->vm_end - vma->vm_start), vma->vm_flags);
577 spl_fstrans_unmark(cookie);
578 if (error)
579 return (error);
580
581 error = generic_file_mmap(filp, vma);
582 if (error)
583 return (error);
584
585 mutex_enter(&zp->z_lock);
586 zp->z_is_mapped = B_TRUE;
587 mutex_exit(&zp->z_lock);
588
589 return (error);
590 }
591
592 /*
593 * Populate a page with data for the Linux page cache. This function is
594 * only used to support mmap(2). There will be an identical copy of the
595 * data in the ARC which is kept up to date via .write() and .writepage().
596 */
597 static int
598 zpl_readpage(struct file *filp, struct page *pp)
599 {
600 struct inode *ip;
601 struct page *pl[1];
602 int error = 0;
603 fstrans_cookie_t cookie;
604
605 ASSERT(PageLocked(pp));
606 ip = pp->mapping->host;
607 pl[0] = pp;
608
609 cookie = spl_fstrans_mark();
610 error = -zfs_getpage(ip, pl, 1);
611 spl_fstrans_unmark(cookie);
612
613 if (error) {
614 SetPageError(pp);
615 ClearPageUptodate(pp);
616 } else {
617 ClearPageError(pp);
618 SetPageUptodate(pp);
619 flush_dcache_page(pp);
620 }
621
622 unlock_page(pp);
623 return (error);
624 }
625
626 /*
627 * Populate a set of pages with data for the Linux page cache. This
628 * function will only be called for read ahead and never for demand
629 * paging. For simplicity, the code relies on read_cache_pages() to
630 * correctly lock each page for IO and call zpl_readpage().
631 */
632 static int
633 zpl_readpages(struct file *filp, struct address_space *mapping,
634 struct list_head *pages, unsigned nr_pages)
635 {
636 return (read_cache_pages(mapping, pages,
637 (filler_t *)zpl_readpage, filp));
638 }
639
640 static int
641 zpl_putpage(struct page *pp, struct writeback_control *wbc, void *data)
642 {
643 struct address_space *mapping = data;
644 fstrans_cookie_t cookie;
645
646 ASSERT(PageLocked(pp));
647 ASSERT(!PageWriteback(pp));
648
649 cookie = spl_fstrans_mark();
650 (void) zfs_putpage(mapping->host, pp, wbc);
651 spl_fstrans_unmark(cookie);
652
653 return (0);
654 }
655
656 static int
657 zpl_writepages(struct address_space *mapping, struct writeback_control *wbc)
658 {
659 znode_t *zp = ITOZ(mapping->host);
660 zfsvfs_t *zfsvfs = ITOZSB(mapping->host);
661 enum writeback_sync_modes sync_mode;
662 int result;
663
664 ZPL_ENTER(zfsvfs);
665 if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
666 wbc->sync_mode = WB_SYNC_ALL;
667 ZPL_EXIT(zfsvfs);
668 sync_mode = wbc->sync_mode;
669
670 /*
671 * We don't want to run write_cache_pages() in SYNC mode here, because
672 * that would make putpage() wait for a single page to be committed to
673 * disk every single time, resulting in atrocious performance. Instead
674 * we run it once in non-SYNC mode so that the ZIL gets all the data,
675 * and then we commit it all in one go.
676 */
677 wbc->sync_mode = WB_SYNC_NONE;
678 result = write_cache_pages(mapping, wbc, zpl_putpage, mapping);
679 if (sync_mode != wbc->sync_mode) {
680 ZPL_ENTER(zfsvfs);
681 ZPL_VERIFY_ZP(zp);
682 if (zfsvfs->z_log != NULL)
683 zil_commit(zfsvfs->z_log, zp->z_id);
684 ZPL_EXIT(zfsvfs);
685
686 /*
687 * We need to call write_cache_pages() again (we can't just
688 * return after the commit) because the previous call in
689 * non-SYNC mode does not guarantee that we got all the dirty
690 * pages (see the implementation of write_cache_pages() for
691 * details). That being said, this is a no-op in most cases.
692 */
693 wbc->sync_mode = sync_mode;
694 result = write_cache_pages(mapping, wbc, zpl_putpage, mapping);
695 }
696 return (result);
697 }
698
699 /*
700 * Write out dirty pages to the ARC, this function is only required to
701 * support mmap(2). Mapped pages may be dirtied by memory operations
702 * which never call .write(). These dirty pages are kept in sync with
703 * the ARC buffers via this hook.
704 */
705 static int
706 zpl_writepage(struct page *pp, struct writeback_control *wbc)
707 {
708 if (ITOZSB(pp->mapping->host)->z_os->os_sync == ZFS_SYNC_ALWAYS)
709 wbc->sync_mode = WB_SYNC_ALL;
710
711 return (zpl_putpage(pp, wbc, pp->mapping));
712 }
713
714 /*
715 * The flag combination which matches the behavior of zfs_space() is
716 * FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE. The FALLOC_FL_PUNCH_HOLE
717 * flag was introduced in the 2.6.38 kernel.
718 *
719 * The original mode=0 (allocate space) behavior can be reasonably emulated
720 * by checking if enough space exists and creating a sparse file, as real
721 * persistent space reservation is not possible due to COW, snapshots, etc.
722 */
723 static long
724 zpl_fallocate_common(struct inode *ip, int mode, loff_t offset, loff_t len)
725 {
726 cred_t *cr = CRED();
727 loff_t olen;
728 fstrans_cookie_t cookie;
729 int error = 0;
730
731 if ((mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE)) != 0)
732 return (-EOPNOTSUPP);
733
734 if (offset < 0 || len <= 0)
735 return (-EINVAL);
736
737 spl_inode_lock(ip);
738 olen = i_size_read(ip);
739
740 crhold(cr);
741 cookie = spl_fstrans_mark();
742 if (mode & FALLOC_FL_PUNCH_HOLE) {
743 flock64_t bf;
744
745 if (offset > olen)
746 goto out_unmark;
747
748 if (offset + len > olen)
749 len = olen - offset;
750 bf.l_type = F_WRLCK;
751 bf.l_whence = SEEK_SET;
752 bf.l_start = offset;
753 bf.l_len = len;
754 bf.l_pid = 0;
755
756 error = -zfs_space(ITOZ(ip), F_FREESP, &bf, O_RDWR, offset, cr);
757 } else if ((mode & ~FALLOC_FL_KEEP_SIZE) == 0) {
758 unsigned int percent = zfs_fallocate_reserve_percent;
759 struct kstatfs statfs;
760
761 /* Legacy mode, disable fallocate compatibility. */
762 if (percent == 0) {
763 error = -EOPNOTSUPP;
764 goto out_unmark;
765 }
766
767 /*
768 * Use zfs_statvfs() instead of dmu_objset_space() since it
769 * also checks project quota limits, which are relevant here.
770 */
771 error = zfs_statvfs(ip, &statfs);
772 if (error)
773 goto out_unmark;
774
775 /*
776 * Shrink available space a bit to account for overhead/races.
777 * We know the product previously fit into availbytes from
778 * dmu_objset_space(), so the smaller product will also fit.
779 */
780 if (len > statfs.f_bavail * (statfs.f_bsize * 100 / percent)) {
781 error = -ENOSPC;
782 goto out_unmark;
783 }
784 if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > olen)
785 error = zfs_freesp(ITOZ(ip), offset + len, 0, 0, FALSE);
786 }
787 out_unmark:
788 spl_fstrans_unmark(cookie);
789 spl_inode_unlock(ip);
790
791 crfree(cr);
792
793 return (error);
794 }
795
796 static long
797 zpl_fallocate(struct file *filp, int mode, loff_t offset, loff_t len)
798 {
799 return zpl_fallocate_common(file_inode(filp),
800 mode, offset, len);
801 }
802
803 #define ZFS_FL_USER_VISIBLE (FS_FL_USER_VISIBLE | ZFS_PROJINHERIT_FL)
804 #define ZFS_FL_USER_MODIFIABLE (FS_FL_USER_MODIFIABLE | ZFS_PROJINHERIT_FL)
805
806 static uint32_t
807 __zpl_ioctl_getflags(struct inode *ip)
808 {
809 uint64_t zfs_flags = ITOZ(ip)->z_pflags;
810 uint32_t ioctl_flags = 0;
811
812 if (zfs_flags & ZFS_IMMUTABLE)
813 ioctl_flags |= FS_IMMUTABLE_FL;
814
815 if (zfs_flags & ZFS_APPENDONLY)
816 ioctl_flags |= FS_APPEND_FL;
817
818 if (zfs_flags & ZFS_NODUMP)
819 ioctl_flags |= FS_NODUMP_FL;
820
821 if (zfs_flags & ZFS_PROJINHERIT)
822 ioctl_flags |= ZFS_PROJINHERIT_FL;
823
824 return (ioctl_flags & ZFS_FL_USER_VISIBLE);
825 }
826
827 /*
828 * Map zfs file z_pflags (xvattr_t) to linux file attributes. Only file
829 * attributes common to both Linux and Solaris are mapped.
830 */
831 static int
832 zpl_ioctl_getflags(struct file *filp, void __user *arg)
833 {
834 uint32_t flags;
835 int err;
836
837 flags = __zpl_ioctl_getflags(file_inode(filp));
838 err = copy_to_user(arg, &flags, sizeof (flags));
839
840 return (err);
841 }
842
843 /*
844 * fchange() is a helper macro to detect if we have been asked to change a
845 * flag. This is ugly, but the requirement that we do this is a consequence of
846 * how the Linux file attribute interface was designed. Another consequence is
847 * that concurrent modification of files suffers from a TOCTOU race. Neither
848 * are things we can fix without modifying the kernel-userland interface, which
849 * is outside of our jurisdiction.
850 */
851
852 #define fchange(f0, f1, b0, b1) (!((f0) & (b0)) != !((f1) & (b1)))
853
854 static int
855 __zpl_ioctl_setflags(struct inode *ip, uint32_t ioctl_flags, xvattr_t *xva)
856 {
857 uint64_t zfs_flags = ITOZ(ip)->z_pflags;
858 xoptattr_t *xoap;
859
860 if (ioctl_flags & ~(FS_IMMUTABLE_FL | FS_APPEND_FL | FS_NODUMP_FL |
861 ZFS_PROJINHERIT_FL))
862 return (-EOPNOTSUPP);
863
864 if (ioctl_flags & ~ZFS_FL_USER_MODIFIABLE)
865 return (-EACCES);
866
867 if ((fchange(ioctl_flags, zfs_flags, FS_IMMUTABLE_FL, ZFS_IMMUTABLE) ||
868 fchange(ioctl_flags, zfs_flags, FS_APPEND_FL, ZFS_APPENDONLY)) &&
869 !capable(CAP_LINUX_IMMUTABLE))
870 return (-EACCES);
871
872 if (!inode_owner_or_capable(ip))
873 return (-EACCES);
874
875 xva_init(xva);
876 xoap = xva_getxoptattr(xva);
877
878 XVA_SET_REQ(xva, XAT_IMMUTABLE);
879 if (ioctl_flags & FS_IMMUTABLE_FL)
880 xoap->xoa_immutable = B_TRUE;
881
882 XVA_SET_REQ(xva, XAT_APPENDONLY);
883 if (ioctl_flags & FS_APPEND_FL)
884 xoap->xoa_appendonly = B_TRUE;
885
886 XVA_SET_REQ(xva, XAT_NODUMP);
887 if (ioctl_flags & FS_NODUMP_FL)
888 xoap->xoa_nodump = B_TRUE;
889
890 XVA_SET_REQ(xva, XAT_PROJINHERIT);
891 if (ioctl_flags & ZFS_PROJINHERIT_FL)
892 xoap->xoa_projinherit = B_TRUE;
893
894 return (0);
895 }
896
897 static int
898 zpl_ioctl_setflags(struct file *filp, void __user *arg)
899 {
900 struct inode *ip = file_inode(filp);
901 uint32_t flags;
902 cred_t *cr = CRED();
903 xvattr_t xva;
904 int err;
905 fstrans_cookie_t cookie;
906
907 if (copy_from_user(&flags, arg, sizeof (flags)))
908 return (-EFAULT);
909
910 err = __zpl_ioctl_setflags(ip, flags, &xva);
911 if (err)
912 return (err);
913
914 crhold(cr);
915 cookie = spl_fstrans_mark();
916 err = -zfs_setattr(ITOZ(ip), (vattr_t *)&xva, 0, cr);
917 spl_fstrans_unmark(cookie);
918 crfree(cr);
919
920 return (err);
921 }
922
923 static int
924 zpl_ioctl_getxattr(struct file *filp, void __user *arg)
925 {
926 zfsxattr_t fsx = { 0 };
927 struct inode *ip = file_inode(filp);
928 int err;
929
930 fsx.fsx_xflags = __zpl_ioctl_getflags(ip);
931 fsx.fsx_projid = ITOZ(ip)->z_projid;
932 err = copy_to_user(arg, &fsx, sizeof (fsx));
933
934 return (err);
935 }
936
937 static int
938 zpl_ioctl_setxattr(struct file *filp, void __user *arg)
939 {
940 struct inode *ip = file_inode(filp);
941 zfsxattr_t fsx;
942 cred_t *cr = CRED();
943 xvattr_t xva;
944 xoptattr_t *xoap;
945 int err;
946 fstrans_cookie_t cookie;
947
948 if (copy_from_user(&fsx, arg, sizeof (fsx)))
949 return (-EFAULT);
950
951 if (!zpl_is_valid_projid(fsx.fsx_projid))
952 return (-EINVAL);
953
954 err = __zpl_ioctl_setflags(ip, fsx.fsx_xflags, &xva);
955 if (err)
956 return (err);
957
958 xoap = xva_getxoptattr(&xva);
959 XVA_SET_REQ(&xva, XAT_PROJID);
960 xoap->xoa_projid = fsx.fsx_projid;
961
962 crhold(cr);
963 cookie = spl_fstrans_mark();
964 err = -zfs_setattr(ITOZ(ip), (vattr_t *)&xva, 0, cr);
965 spl_fstrans_unmark(cookie);
966 crfree(cr);
967
968 return (err);
969 }
970
971 static long
972 zpl_ioctl(struct file *filp, unsigned int cmd, unsigned long arg)
973 {
974 switch (cmd) {
975 case FS_IOC_GETFLAGS:
976 return (zpl_ioctl_getflags(filp, (void *)arg));
977 case FS_IOC_SETFLAGS:
978 return (zpl_ioctl_setflags(filp, (void *)arg));
979 case ZFS_IOC_FSGETXATTR:
980 return (zpl_ioctl_getxattr(filp, (void *)arg));
981 case ZFS_IOC_FSSETXATTR:
982 return (zpl_ioctl_setxattr(filp, (void *)arg));
983 default:
984 return (-ENOTTY);
985 }
986 }
987
988 #ifdef CONFIG_COMPAT
989 static long
990 zpl_compat_ioctl(struct file *filp, unsigned int cmd, unsigned long arg)
991 {
992 switch (cmd) {
993 case FS_IOC32_GETFLAGS:
994 cmd = FS_IOC_GETFLAGS;
995 break;
996 case FS_IOC32_SETFLAGS:
997 cmd = FS_IOC_SETFLAGS;
998 break;
999 default:
1000 return (-ENOTTY);
1001 }
1002 return (zpl_ioctl(filp, cmd, (unsigned long)compat_ptr(arg)));
1003 }
1004 #endif /* CONFIG_COMPAT */
1005
1006
1007 const struct address_space_operations zpl_address_space_operations = {
1008 .readpages = zpl_readpages,
1009 .readpage = zpl_readpage,
1010 .writepage = zpl_writepage,
1011 .writepages = zpl_writepages,
1012 .direct_IO = zpl_direct_IO,
1013 };
1014
1015 const struct file_operations zpl_file_operations = {
1016 .open = zpl_open,
1017 .release = zpl_release,
1018 .llseek = zpl_llseek,
1019 #ifdef HAVE_VFS_RW_ITERATE
1020 #ifdef HAVE_NEW_SYNC_READ
1021 .read = new_sync_read,
1022 .write = new_sync_write,
1023 #endif
1024 .read_iter = zpl_iter_read,
1025 .write_iter = zpl_iter_write,
1026 #ifdef HAVE_VFS_IOV_ITER
1027 .splice_read = generic_file_splice_read,
1028 .splice_write = iter_file_splice_write,
1029 #endif
1030 #else
1031 .read = do_sync_read,
1032 .write = do_sync_write,
1033 .aio_read = zpl_aio_read,
1034 .aio_write = zpl_aio_write,
1035 #endif
1036 .mmap = zpl_mmap,
1037 .fsync = zpl_fsync,
1038 #ifdef HAVE_FILE_AIO_FSYNC
1039 .aio_fsync = zpl_aio_fsync,
1040 #endif
1041 .fallocate = zpl_fallocate,
1042 .unlocked_ioctl = zpl_ioctl,
1043 #ifdef CONFIG_COMPAT
1044 .compat_ioctl = zpl_compat_ioctl,
1045 #endif
1046 };
1047
1048 const struct file_operations zpl_dir_file_operations = {
1049 .llseek = generic_file_llseek,
1050 .read = generic_read_dir,
1051 #if defined(HAVE_VFS_ITERATE_SHARED)
1052 .iterate_shared = zpl_iterate,
1053 #elif defined(HAVE_VFS_ITERATE)
1054 .iterate = zpl_iterate,
1055 #else
1056 .readdir = zpl_readdir,
1057 #endif
1058 .fsync = zpl_fsync,
1059 .unlocked_ioctl = zpl_ioctl,
1060 #ifdef CONFIG_COMPAT
1061 .compat_ioctl = zpl_compat_ioctl,
1062 #endif
1063 };
1064
1065 /* BEGIN CSTYLED */
1066 module_param(zfs_fallocate_reserve_percent, uint, 0644);
1067 MODULE_PARM_DESC(zfs_fallocate_reserve_percent,
1068 "Percentage of length to use for the available capacity check");
1069 /* END CSTYLED */