]> git.proxmox.com Git - mirror_spl-debian.git/blob - module/spl/spl-mutex.c
Mutex tests updated to use task queues instead of work queues.
[mirror_spl-debian.git] / module / spl / spl-mutex.c
1 /*
2 * This file is part of the SPL: Solaris Porting Layer.
3 *
4 * Copyright (c) 2008 Lawrence Livermore National Security, LLC.
5 * Produced at Lawrence Livermore National Laboratory
6 * Written by:
7 * Brian Behlendorf <behlendorf1@llnl.gov>,
8 * Herb Wartens <wartens2@llnl.gov>,
9 * Jim Garlick <garlick@llnl.gov>
10 * UCRL-CODE-235197
11 *
12 * This is free software; you can redistribute it and/or modify it
13 * under the terms of the GNU General Public License as published by
14 * the Free Software Foundation; either version 2 of the License, or
15 * (at your option) any later version.
16 *
17 * This is distributed in the hope that it will be useful, but WITHOUT
18 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
19 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
20 * for more details.
21 *
22 * You should have received a copy of the GNU General Public License along
23 * with this program; if not, write to the Free Software Foundation, Inc.,
24 * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
25 */
26
27 #include <sys/mutex.h>
28
29 #ifdef DEBUG_SUBSYSTEM
30 #undef DEBUG_SUBSYSTEM
31 #endif
32
33 #define DEBUG_SUBSYSTEM S_MUTEX
34
35 /* Mutex implementation based on those found in Solaris. This means
36 * they the MUTEX_DEFAULT type is an adaptive mutex. When calling
37 * mutex_enter() your process will spin waiting for the lock if it's
38 * likely the lock will be free'd shortly. If it looks like the
39 * lock will be held for a longer time we schedule and sleep waiting
40 * for it. This determination is made by checking if the holder of
41 * the lock is currently running on cpu or sleeping waiting to be
42 * scheduled. If the holder is currently running it's likely the
43 * lock will be shortly dropped.
44 *
45 * XXX: This is basically a rough implementation to see if this
46 * helps our performance. If it does a more careful implementation
47 * should be done, perhaps in assembly.
48 */
49
50 /* 0: Never spin when trying to aquire lock
51 * -1: Spin until aquired or holder yeilds without dropping lock
52 * 1-MAX_INT: Spin for N attempts before sleeping for lock
53 */
54 int mutex_spin_max = 0;
55
56 #ifdef DEBUG_MUTEX
57 int mutex_stats[MUTEX_STATS_SIZE] = { 0 };
58 spinlock_t mutex_stats_lock;
59 struct list_head mutex_stats_list;
60 #endif
61
62 int
63 __spl_mutex_init(kmutex_t *mp, char *name, int type, void *ibc)
64 {
65 int flags = KM_SLEEP;
66
67 ASSERT(mp);
68 ASSERT(name);
69 ASSERT(ibc == NULL);
70
71 mp->km_name = NULL;
72 mp->km_name_size = strlen(name) + 1;
73
74 switch (type) {
75 case MUTEX_DEFAULT:
76 mp->km_type = MUTEX_ADAPTIVE;
77 break;
78 case MUTEX_SPIN:
79 case MUTEX_ADAPTIVE:
80 mp->km_type = type;
81 break;
82 default:
83 SBUG();
84 }
85
86 /* We may be called when there is a non-zero preempt_count or
87 * interrupts are disabled is which case we must not sleep.
88 */
89 if (current_thread_info()->preempt_count || irqs_disabled())
90 flags = KM_NOSLEEP;
91
92 /* Semaphore kmem_alloc'ed to keep struct size down (<64b) */
93 mp->km_sem = kmem_alloc(sizeof(struct semaphore), flags);
94 if (mp->km_sem == NULL)
95 return -ENOMEM;
96
97 mp->km_name = kmem_alloc(mp->km_name_size, flags);
98 if (mp->km_name == NULL) {
99 kmem_free(mp->km_sem, sizeof(struct semaphore));
100 return -ENOMEM;
101 }
102
103 sema_init(mp->km_sem, 1);
104 strncpy(mp->km_name, name, mp->km_name_size);
105
106 #ifdef DEBUG_MUTEX
107 mp->km_stats = kmem_zalloc(sizeof(int) * MUTEX_STATS_SIZE, flags);
108 if (mp->km_stats == NULL) {
109 kmem_free(mp->km_name, mp->km_name_size);
110 kmem_free(mp->km_sem, sizeof(struct semaphore));
111 return -ENOMEM;
112 }
113
114 /* XXX - This appears to be a much more contended lock than I
115 * would have expected. To run with this debugging enabled and
116 * get reasonable performance we may need to be more clever and
117 * do something like hash the mutex ptr on to one of several
118 * lists to ease this single point of contention.
119 */
120 spin_lock(&mutex_stats_lock);
121 list_add_tail(&mp->km_list, &mutex_stats_list);
122 spin_unlock(&mutex_stats_lock);
123 #endif
124 mp->km_magic = KM_MAGIC;
125 mp->km_owner = NULL;
126
127 return 0;
128 }
129 EXPORT_SYMBOL(__spl_mutex_init);
130
131 void
132 __spl_mutex_destroy(kmutex_t *mp)
133 {
134 ASSERT(mp);
135 ASSERT(mp->km_magic == KM_MAGIC);
136
137 #ifdef DEBUG_MUTEX
138 spin_lock(&mutex_stats_lock);
139 list_del_init(&mp->km_list);
140 spin_unlock(&mutex_stats_lock);
141
142 kmem_free(mp->km_stats, sizeof(int) * MUTEX_STATS_SIZE);
143 #endif
144 kmem_free(mp->km_name, mp->km_name_size);
145 kmem_free(mp->km_sem, sizeof(struct semaphore));
146
147 memset(mp, KM_POISON, sizeof(*mp));
148 }
149 EXPORT_SYMBOL(__spl_mutex_destroy);
150
151 /* Return 1 if we acquired the mutex, else zero. */
152 int
153 __mutex_tryenter(kmutex_t *mp)
154 {
155 int rc;
156 ENTRY;
157
158 ASSERT(mp);
159 ASSERT(mp->km_magic == KM_MAGIC);
160 MUTEX_STAT_INC(mutex_stats, MUTEX_TRYENTER_TOTAL);
161 MUTEX_STAT_INC(mp->km_stats, MUTEX_TRYENTER_TOTAL);
162
163 rc = down_trylock(mp->km_sem);
164 if (rc == 0) {
165 ASSERT(mp->km_owner == NULL);
166 mp->km_owner = current;
167 MUTEX_STAT_INC(mutex_stats, MUTEX_TRYENTER_NOT_HELD);
168 MUTEX_STAT_INC(mp->km_stats, MUTEX_TRYENTER_NOT_HELD);
169 }
170
171 RETURN(!rc);
172 }
173 EXPORT_SYMBOL(__mutex_tryenter);
174
175 #ifndef HAVE_TASK_CURR
176 #define task_curr(owner) 0
177 #endif
178
179
180 static void
181 mutex_enter_adaptive(kmutex_t *mp)
182 {
183 struct task_struct *owner;
184 int count = 0;
185
186 /* Lock is not held so we expect to aquire the lock */
187 if ((owner = mp->km_owner) == NULL) {
188 down(mp->km_sem);
189 MUTEX_STAT_INC(mutex_stats, MUTEX_ENTER_NOT_HELD);
190 MUTEX_STAT_INC(mp->km_stats, MUTEX_ENTER_NOT_HELD);
191 } else {
192 /* The lock is held by a currently running task which
193 * we expect will drop the lock before leaving the
194 * head of the runqueue. So the ideal thing to do
195 * is spin until we aquire the lock and avoid a
196 * context switch. However it is also possible the
197 * task holding the lock yields the processor with
198 * out dropping lock. In which case, we know it's
199 * going to be a while so we stop spinning and go
200 * to sleep waiting for the lock to be available.
201 * This should strike the optimum balance between
202 * spinning and sleeping waiting for a lock.
203 */
204 while (task_curr(owner) && (count <= mutex_spin_max)) {
205 if (down_trylock(mp->km_sem) == 0) {
206 MUTEX_STAT_INC(mutex_stats, MUTEX_ENTER_SPIN);
207 MUTEX_STAT_INC(mp->km_stats, MUTEX_ENTER_SPIN);
208 GOTO(out, count);
209 }
210 count++;
211 }
212
213 /* The lock is held by a sleeping task so it's going to
214 * cost us minimally one context switch. We might as
215 * well sleep and yield the processor to other tasks.
216 */
217 down(mp->km_sem);
218 MUTEX_STAT_INC(mutex_stats, MUTEX_ENTER_SLEEP);
219 MUTEX_STAT_INC(mp->km_stats, MUTEX_ENTER_SLEEP);
220 }
221 out:
222 MUTEX_STAT_INC(mutex_stats, MUTEX_ENTER_TOTAL);
223 MUTEX_STAT_INC(mp->km_stats, MUTEX_ENTER_TOTAL);
224 }
225
226 void
227 __mutex_enter(kmutex_t *mp)
228 {
229 ENTRY;
230 ASSERT(mp);
231 ASSERT(mp->km_magic == KM_MAGIC);
232
233 switch (mp->km_type) {
234 case MUTEX_SPIN:
235 while (down_trylock(mp->km_sem));
236 MUTEX_STAT_INC(mutex_stats, MUTEX_ENTER_SPIN);
237 MUTEX_STAT_INC(mp->km_stats, MUTEX_ENTER_SPIN);
238 break;
239 case MUTEX_ADAPTIVE:
240 mutex_enter_adaptive(mp);
241 break;
242 }
243
244 ASSERT(mp->km_owner == NULL);
245 mp->km_owner = current;
246
247 EXIT;
248 }
249 EXPORT_SYMBOL(__mutex_enter);
250
251 void
252 __mutex_exit(kmutex_t *mp)
253 {
254 ENTRY;
255 ASSERT(mp);
256 ASSERT(mp->km_magic == KM_MAGIC);
257 ASSERT(mp->km_owner == current);
258 mp->km_owner = NULL;
259 up(mp->km_sem);
260 EXIT;
261 }
262 EXPORT_SYMBOL(__mutex_exit);
263
264 /* Return 1 if mutex is held by current process, else zero. */
265 int
266 __mutex_owned(kmutex_t *mp)
267 {
268 ENTRY;
269 ASSERT(mp);
270 ASSERT(mp->km_magic == KM_MAGIC);
271 RETURN(mp->km_owner == current);
272 }
273 EXPORT_SYMBOL(__mutex_owned);
274
275 /* Return owner if mutex is owned, else NULL. */
276 kthread_t *
277 __spl_mutex_owner(kmutex_t *mp)
278 {
279 ENTRY;
280 ASSERT(mp);
281 ASSERT(mp->km_magic == KM_MAGIC);
282 RETURN(mp->km_owner);
283 }
284 EXPORT_SYMBOL(__spl_mutex_owner);
285
286 int
287 spl_mutex_init(void)
288 {
289 ENTRY;
290 #ifdef DEBUG_MUTEX
291 spin_lock_init(&mutex_stats_lock);
292 INIT_LIST_HEAD(&mutex_stats_list);
293 #endif
294 RETURN(0);
295 }
296
297 void
298 spl_mutex_fini(void)
299 {
300 ENTRY;
301 #ifdef DEBUG_MUTEX
302 ASSERT(list_empty(&mutex_stats_list));
303 #endif
304 EXIT;
305 }
306
307 module_param(mutex_spin_max, int, 0644);
308 MODULE_PARM_DESC(mutex_spin_max, "Spin a maximum of N times to aquire lock");