]> git.proxmox.com Git - mirror_zfs.git/blob - module/spl/spl-taskq.c
Store copy of tqent_flags prior to servicing task
[mirror_zfs.git] / module / spl / spl-taskq.c
1 /*****************************************************************************\
2 * Copyright (C) 2007-2010 Lawrence Livermore National Security, LLC.
3 * Copyright (C) 2007 The Regents of the University of California.
4 * Produced at Lawrence Livermore National Laboratory (cf, DISCLAIMER).
5 * Written by Brian Behlendorf <behlendorf1@llnl.gov>.
6 * UCRL-CODE-235197
7 *
8 * This file is part of the SPL, Solaris Porting Layer.
9 * For details, see <http://github.com/behlendorf/spl/>.
10 *
11 * The SPL is free software; you can redistribute it and/or modify it
12 * under the terms of the GNU General Public License as published by the
13 * Free Software Foundation; either version 2 of the License, or (at your
14 * option) any later version.
15 *
16 * The SPL is distributed in the hope that it will be useful, but WITHOUT
17 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
18 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
19 * for more details.
20 *
21 * You should have received a copy of the GNU General Public License along
22 * with the SPL. If not, see <http://www.gnu.org/licenses/>.
23 *****************************************************************************
24 * Solaris Porting Layer (SPL) Task Queue Implementation.
25 \*****************************************************************************/
26
27 #include <sys/taskq.h>
28 #include <sys/kmem.h>
29 #include <spl-debug.h>
30
31 #ifdef SS_DEBUG_SUBSYS
32 #undef SS_DEBUG_SUBSYS
33 #endif
34
35 #define SS_DEBUG_SUBSYS SS_TASKQ
36
37 /* Global system-wide dynamic task queue available for all consumers */
38 taskq_t *system_taskq;
39 EXPORT_SYMBOL(system_taskq);
40
41 /*
42 * NOTE: Must be called with tq->tq_lock held, returns a list_t which
43 * is not attached to the free, work, or pending taskq lists.
44 */
45 static taskq_ent_t *
46 task_alloc(taskq_t *tq, uint_t flags)
47 {
48 taskq_ent_t *t;
49 int count = 0;
50 SENTRY;
51
52 ASSERT(tq);
53 ASSERT(flags & (TQ_SLEEP | TQ_NOSLEEP)); /* One set */
54 ASSERT(!((flags & TQ_SLEEP) && (flags & TQ_NOSLEEP))); /* Not both */
55 ASSERT(spin_is_locked(&tq->tq_lock));
56 retry:
57 /* Acquire taskq_ent_t's from free list if available */
58 if (!list_empty(&tq->tq_free_list) && !(flags & TQ_NEW)) {
59 t = list_entry(tq->tq_free_list.next, taskq_ent_t, tqent_list);
60
61 ASSERT(!(t->tqent_flags & TQENT_FLAG_PREALLOC));
62
63 list_del_init(&t->tqent_list);
64 SRETURN(t);
65 }
66
67 /* Free list is empty and memory allocations are prohibited */
68 if (flags & TQ_NOALLOC)
69 SRETURN(NULL);
70
71 /* Hit maximum taskq_ent_t pool size */
72 if (tq->tq_nalloc >= tq->tq_maxalloc) {
73 if (flags & TQ_NOSLEEP)
74 SRETURN(NULL);
75
76 /*
77 * Sleep periodically polling the free list for an available
78 * taskq_ent_t. Dispatching with TQ_SLEEP should always succeed
79 * but we cannot block forever waiting for an taskq_entq_t to
80 * show up in the free list, otherwise a deadlock can happen.
81 *
82 * Therefore, we need to allocate a new task even if the number
83 * of allocated tasks is above tq->tq_maxalloc, but we still
84 * end up delaying the task allocation by one second, thereby
85 * throttling the task dispatch rate.
86 */
87 spin_unlock_irqrestore(&tq->tq_lock, tq->tq_lock_flags);
88 schedule_timeout(HZ / 100);
89 spin_lock_irqsave(&tq->tq_lock, tq->tq_lock_flags);
90 if (count < 100)
91 SGOTO(retry, count++);
92 }
93
94 spin_unlock_irqrestore(&tq->tq_lock, tq->tq_lock_flags);
95 t = kmem_alloc(sizeof(taskq_ent_t), flags & (TQ_SLEEP | TQ_NOSLEEP));
96 spin_lock_irqsave(&tq->tq_lock, tq->tq_lock_flags);
97
98 if (t) {
99 taskq_init_ent(t);
100 tq->tq_nalloc++;
101 }
102
103 SRETURN(t);
104 }
105
106 /*
107 * NOTE: Must be called with tq->tq_lock held, expects the taskq_ent_t
108 * to already be removed from the free, work, or pending taskq lists.
109 */
110 static void
111 task_free(taskq_t *tq, taskq_ent_t *t)
112 {
113 SENTRY;
114
115 ASSERT(tq);
116 ASSERT(t);
117 ASSERT(spin_is_locked(&tq->tq_lock));
118 ASSERT(list_empty(&t->tqent_list));
119
120 kmem_free(t, sizeof(taskq_ent_t));
121 tq->tq_nalloc--;
122
123 SEXIT;
124 }
125
126 /*
127 * NOTE: Must be called with tq->tq_lock held, either destroys the
128 * taskq_ent_t if too many exist or moves it to the free list for later use.
129 */
130 static void
131 task_done(taskq_t *tq, taskq_ent_t *t)
132 {
133 SENTRY;
134 ASSERT(tq);
135 ASSERT(t);
136 ASSERT(spin_is_locked(&tq->tq_lock));
137
138 list_del_init(&t->tqent_list);
139
140 if (tq->tq_nalloc <= tq->tq_minalloc) {
141 t->tqent_id = 0;
142 t->tqent_func = NULL;
143 t->tqent_arg = NULL;
144 t->tqent_flags = 0;
145
146 list_add_tail(&t->tqent_list, &tq->tq_free_list);
147 } else {
148 task_free(tq, t);
149 }
150
151 SEXIT;
152 }
153
154 /*
155 * As tasks are submitted to the task queue they are assigned a
156 * monotonically increasing taskqid and added to the tail of the pending
157 * list. As worker threads become available the tasks are removed from
158 * the head of the pending or priority list, giving preference to the
159 * priority list. The tasks are then added to the work list, preserving
160 * the ordering by taskqid. Finally, as tasks complete they are removed
161 * from the work list. This means that the pending and work lists are
162 * always kept sorted by taskqid. Thus the lowest outstanding
163 * incomplete taskqid can be determined simply by checking the min
164 * taskqid for each head item on the pending, priority, and work list.
165 * This value is stored in tq->tq_lowest_id and only updated to the new
166 * lowest id when the previous lowest id completes. All taskqids lower
167 * than tq->tq_lowest_id must have completed. It is also possible
168 * larger taskqid's have completed because they may be processed in
169 * parallel by several worker threads. However, this is not a problem
170 * because the behavior of taskq_wait_id() is to block until all
171 * previously submitted taskqid's have completed.
172 *
173 * XXX: Taskqid_t wrapping is not handled. However, taskqid_t's are
174 * 64-bit values so even if a taskq is processing 2^24 (16,777,216)
175 * taskqid_ts per second it will still take 2^40 seconds, 34,865 years,
176 * before the wrap occurs. I can live with that for now.
177 */
178 static int
179 taskq_wait_check(taskq_t *tq, taskqid_t id)
180 {
181 int rc;
182
183 spin_lock_irqsave(&tq->tq_lock, tq->tq_lock_flags);
184 rc = (id < tq->tq_lowest_id);
185 spin_unlock_irqrestore(&tq->tq_lock, tq->tq_lock_flags);
186
187 SRETURN(rc);
188 }
189
190 void
191 __taskq_wait_id(taskq_t *tq, taskqid_t id)
192 {
193 SENTRY;
194 ASSERT(tq);
195
196 wait_event(tq->tq_wait_waitq, taskq_wait_check(tq, id));
197
198 SEXIT;
199 }
200 EXPORT_SYMBOL(__taskq_wait_id);
201
202 void
203 __taskq_wait(taskq_t *tq)
204 {
205 taskqid_t id;
206 SENTRY;
207 ASSERT(tq);
208
209 /* Wait for the largest outstanding taskqid */
210 spin_lock_irqsave(&tq->tq_lock, tq->tq_lock_flags);
211 id = tq->tq_next_id - 1;
212 spin_unlock_irqrestore(&tq->tq_lock, tq->tq_lock_flags);
213
214 __taskq_wait_id(tq, id);
215
216 SEXIT;
217
218 }
219 EXPORT_SYMBOL(__taskq_wait);
220
221 int
222 __taskq_member(taskq_t *tq, void *t)
223 {
224 struct list_head *l;
225 taskq_thread_t *tqt;
226 SENTRY;
227
228 ASSERT(tq);
229 ASSERT(t);
230
231 list_for_each(l, &tq->tq_thread_list) {
232 tqt = list_entry(l, taskq_thread_t, tqt_thread_list);
233 if (tqt->tqt_thread == (struct task_struct *)t)
234 SRETURN(1);
235 }
236
237 SRETURN(0);
238 }
239 EXPORT_SYMBOL(__taskq_member);
240
241 taskqid_t
242 __taskq_dispatch(taskq_t *tq, task_func_t func, void *arg, uint_t flags)
243 {
244 taskq_ent_t *t;
245 taskqid_t rc = 0;
246 SENTRY;
247
248 ASSERT(tq);
249 ASSERT(func);
250
251 /* Solaris assumes TQ_SLEEP if not passed explicitly */
252 if (!(flags & (TQ_SLEEP | TQ_NOSLEEP)))
253 flags |= TQ_SLEEP;
254
255 if (unlikely(in_atomic() && (flags & TQ_SLEEP)))
256 PANIC("May schedule while atomic: %s/0x%08x/%d\n",
257 current->comm, preempt_count(), current->pid);
258
259 spin_lock_irqsave(&tq->tq_lock, tq->tq_lock_flags);
260
261 /* Taskq being destroyed and all tasks drained */
262 if (!(tq->tq_flags & TQ_ACTIVE))
263 SGOTO(out, rc = 0);
264
265 /* Do not queue the task unless there is idle thread for it */
266 ASSERT(tq->tq_nactive <= tq->tq_nthreads);
267 if ((flags & TQ_NOQUEUE) && (tq->tq_nactive == tq->tq_nthreads))
268 SGOTO(out, rc = 0);
269
270 if ((t = task_alloc(tq, flags)) == NULL)
271 SGOTO(out, rc = 0);
272
273 spin_lock(&t->tqent_lock);
274
275 /* Queue to the priority list instead of the pending list */
276 if (flags & TQ_FRONT)
277 list_add_tail(&t->tqent_list, &tq->tq_prio_list);
278 else
279 list_add_tail(&t->tqent_list, &tq->tq_pend_list);
280
281 t->tqent_id = rc = tq->tq_next_id;
282 tq->tq_next_id++;
283 t->tqent_func = func;
284 t->tqent_arg = arg;
285
286 ASSERT(!(t->tqent_flags & TQENT_FLAG_PREALLOC));
287
288 spin_unlock(&t->tqent_lock);
289
290 wake_up(&tq->tq_work_waitq);
291 out:
292 spin_unlock_irqrestore(&tq->tq_lock, tq->tq_lock_flags);
293 SRETURN(rc);
294 }
295 EXPORT_SYMBOL(__taskq_dispatch);
296
297 void
298 __taskq_dispatch_ent(taskq_t *tq, task_func_t func, void *arg, uint_t flags,
299 taskq_ent_t *t)
300 {
301 SENTRY;
302
303 ASSERT(tq);
304 ASSERT(func);
305 ASSERT(!(tq->tq_flags & TASKQ_DYNAMIC));
306
307 spin_lock_irqsave(&tq->tq_lock, tq->tq_lock_flags);
308
309 /* Taskq being destroyed and all tasks drained */
310 if (!(tq->tq_flags & TQ_ACTIVE)) {
311 t->tqent_id = 0;
312 goto out;
313 }
314
315 spin_lock(&t->tqent_lock);
316
317 /*
318 * Mark it as a prealloc'd task. This is important
319 * to ensure that we don't free it later.
320 */
321 t->tqent_flags |= TQENT_FLAG_PREALLOC;
322
323 /* Queue to the priority list instead of the pending list */
324 if (flags & TQ_FRONT)
325 list_add_tail(&t->tqent_list, &tq->tq_prio_list);
326 else
327 list_add_tail(&t->tqent_list, &tq->tq_pend_list);
328
329 t->tqent_id = tq->tq_next_id;
330 tq->tq_next_id++;
331 t->tqent_func = func;
332 t->tqent_arg = arg;
333
334 spin_unlock(&t->tqent_lock);
335
336 wake_up(&tq->tq_work_waitq);
337 out:
338 spin_unlock_irqrestore(&tq->tq_lock, tq->tq_lock_flags);
339 SEXIT;
340 }
341 EXPORT_SYMBOL(__taskq_dispatch_ent);
342
343 int
344 __taskq_empty_ent(taskq_ent_t *t)
345 {
346 return list_empty(&t->tqent_list);
347 }
348 EXPORT_SYMBOL(__taskq_empty_ent);
349
350 void
351 __taskq_init_ent(taskq_ent_t *t)
352 {
353 spin_lock_init(&t->tqent_lock);
354 INIT_LIST_HEAD(&t->tqent_list);
355 t->tqent_id = 0;
356 t->tqent_func = NULL;
357 t->tqent_arg = NULL;
358 t->tqent_flags = 0;
359 }
360 EXPORT_SYMBOL(__taskq_init_ent);
361
362 /*
363 * Returns the lowest incomplete taskqid_t. The taskqid_t may
364 * be queued on the pending list, on the priority list, or on
365 * the work list currently being handled, but it is not 100%
366 * complete yet.
367 */
368 static taskqid_t
369 taskq_lowest_id(taskq_t *tq)
370 {
371 taskqid_t lowest_id = tq->tq_next_id;
372 taskq_ent_t *t;
373 taskq_thread_t *tqt;
374 SENTRY;
375
376 ASSERT(tq);
377 ASSERT(spin_is_locked(&tq->tq_lock));
378
379 if (!list_empty(&tq->tq_pend_list)) {
380 t = list_entry(tq->tq_pend_list.next, taskq_ent_t, tqent_list);
381 lowest_id = MIN(lowest_id, t->tqent_id);
382 }
383
384 if (!list_empty(&tq->tq_prio_list)) {
385 t = list_entry(tq->tq_prio_list.next, taskq_ent_t, tqent_list);
386 lowest_id = MIN(lowest_id, t->tqent_id);
387 }
388
389 if (!list_empty(&tq->tq_active_list)) {
390 tqt = list_entry(tq->tq_active_list.next, taskq_thread_t,
391 tqt_active_list);
392 ASSERT(tqt->tqt_id != 0);
393 lowest_id = MIN(lowest_id, tqt->tqt_id);
394 }
395
396 SRETURN(lowest_id);
397 }
398
399 /*
400 * Insert a task into a list keeping the list sorted by increasing
401 * taskqid.
402 */
403 static void
404 taskq_insert_in_order(taskq_t *tq, taskq_thread_t *tqt)
405 {
406 taskq_thread_t *w;
407 struct list_head *l;
408
409 SENTRY;
410 ASSERT(tq);
411 ASSERT(tqt);
412 ASSERT(spin_is_locked(&tq->tq_lock));
413
414 list_for_each_prev(l, &tq->tq_active_list) {
415 w = list_entry(l, taskq_thread_t, tqt_active_list);
416 if (w->tqt_id < tqt->tqt_id) {
417 list_add(&tqt->tqt_active_list, l);
418 break;
419 }
420 }
421 if (l == &tq->tq_active_list)
422 list_add(&tqt->tqt_active_list, &tq->tq_active_list);
423
424 SEXIT;
425 }
426
427 static int
428 taskq_thread(void *args)
429 {
430 DECLARE_WAITQUEUE(wait, current);
431 sigset_t blocked;
432 taskq_thread_t *tqt = args;
433 taskq_t *tq;
434 taskq_ent_t *t;
435 struct list_head *pend_list;
436 SENTRY;
437
438 ASSERT(tqt);
439 tq = tqt->tqt_tq;
440 current->flags |= PF_NOFREEZE;
441
442 /* Disable the direct memory reclaim path */
443 if (tq->tq_flags & TASKQ_NORECLAIM)
444 current->flags |= PF_MEMALLOC;
445
446 sigfillset(&blocked);
447 sigprocmask(SIG_BLOCK, &blocked, NULL);
448 flush_signals(current);
449
450 spin_lock_irqsave(&tq->tq_lock, tq->tq_lock_flags);
451 tq->tq_nthreads++;
452 wake_up(&tq->tq_wait_waitq);
453 set_current_state(TASK_INTERRUPTIBLE);
454
455 while (!kthread_should_stop()) {
456
457 add_wait_queue(&tq->tq_work_waitq, &wait);
458 if (list_empty(&tq->tq_pend_list) &&
459 list_empty(&tq->tq_prio_list)) {
460 spin_unlock_irqrestore(&tq->tq_lock, tq->tq_lock_flags);
461 schedule();
462 spin_lock_irqsave(&tq->tq_lock, tq->tq_lock_flags);
463 } else {
464 __set_current_state(TASK_RUNNING);
465 }
466
467 remove_wait_queue(&tq->tq_work_waitq, &wait);
468
469 if (!list_empty(&tq->tq_prio_list))
470 pend_list = &tq->tq_prio_list;
471 else if (!list_empty(&tq->tq_pend_list))
472 pend_list = &tq->tq_pend_list;
473 else
474 pend_list = NULL;
475
476 if (pend_list) {
477 t = list_entry(pend_list->next, taskq_ent_t, tqent_list);
478 list_del_init(&t->tqent_list);
479
480 /* In order to support recursively dispatching a
481 * preallocated taskq_ent_t, tqent_id must be
482 * stored prior to executing tqent_func. */
483 tqt->tqt_id = t->tqent_id;
484
485 /* We must store a copy of the flags prior to
486 * servicing the task (servicing a prealloc'd task
487 * returns the ownership of the tqent back to
488 * the caller of taskq_dispatch). Thus,
489 * tqent_flags _may_ change within the call. */
490 tqt->tqt_flags = t->tqent_flags;
491
492 taskq_insert_in_order(tq, tqt);
493 tq->tq_nactive++;
494 spin_unlock_irqrestore(&tq->tq_lock, tq->tq_lock_flags);
495
496 /* Perform the requested task */
497 t->tqent_func(t->tqent_arg);
498
499 spin_lock_irqsave(&tq->tq_lock, tq->tq_lock_flags);
500 tq->tq_nactive--;
501 list_del_init(&tqt->tqt_active_list);
502
503 /* For prealloc'd tasks, we don't free anything. */
504 if ((tq->tq_flags & TASKQ_DYNAMIC) ||
505 !(tqt->tqt_flags & TQENT_FLAG_PREALLOC))
506 task_done(tq, t);
507
508 /* When the current lowest outstanding taskqid is
509 * done calculate the new lowest outstanding id */
510 if (tq->tq_lowest_id == tqt->tqt_id) {
511 tq->tq_lowest_id = taskq_lowest_id(tq);
512 ASSERT3S(tq->tq_lowest_id, >, tqt->tqt_id);
513 }
514
515 tqt->tqt_id = 0;
516 tqt->tqt_flags = 0;
517 wake_up_all(&tq->tq_wait_waitq);
518 }
519
520 set_current_state(TASK_INTERRUPTIBLE);
521
522 }
523
524 __set_current_state(TASK_RUNNING);
525 tq->tq_nthreads--;
526 list_del_init(&tqt->tqt_thread_list);
527 kmem_free(tqt, sizeof(taskq_thread_t));
528
529 spin_unlock_irqrestore(&tq->tq_lock, tq->tq_lock_flags);
530
531 SRETURN(0);
532 }
533
534 taskq_t *
535 __taskq_create(const char *name, int nthreads, pri_t pri,
536 int minalloc, int maxalloc, uint_t flags)
537 {
538 taskq_t *tq;
539 taskq_thread_t *tqt;
540 int rc = 0, i, j = 0;
541 SENTRY;
542
543 ASSERT(name != NULL);
544 ASSERT(pri <= maxclsyspri);
545 ASSERT(minalloc >= 0);
546 ASSERT(maxalloc <= INT_MAX);
547 ASSERT(!(flags & (TASKQ_CPR_SAFE | TASKQ_DYNAMIC))); /* Unsupported */
548
549 /* Scale the number of threads using nthreads as a percentage */
550 if (flags & TASKQ_THREADS_CPU_PCT) {
551 ASSERT(nthreads <= 100);
552 ASSERT(nthreads >= 0);
553 nthreads = MIN(nthreads, 100);
554 nthreads = MAX(nthreads, 0);
555 nthreads = MAX((num_online_cpus() * nthreads) / 100, 1);
556 }
557
558 tq = kmem_alloc(sizeof(*tq), KM_SLEEP);
559 if (tq == NULL)
560 SRETURN(NULL);
561
562 spin_lock_init(&tq->tq_lock);
563 spin_lock_irqsave(&tq->tq_lock, tq->tq_lock_flags);
564 INIT_LIST_HEAD(&tq->tq_thread_list);
565 INIT_LIST_HEAD(&tq->tq_active_list);
566 tq->tq_name = name;
567 tq->tq_nactive = 0;
568 tq->tq_nthreads = 0;
569 tq->tq_pri = pri;
570 tq->tq_minalloc = minalloc;
571 tq->tq_maxalloc = maxalloc;
572 tq->tq_nalloc = 0;
573 tq->tq_flags = (flags | TQ_ACTIVE);
574 tq->tq_next_id = 1;
575 tq->tq_lowest_id = 1;
576 INIT_LIST_HEAD(&tq->tq_free_list);
577 INIT_LIST_HEAD(&tq->tq_pend_list);
578 INIT_LIST_HEAD(&tq->tq_prio_list);
579 init_waitqueue_head(&tq->tq_work_waitq);
580 init_waitqueue_head(&tq->tq_wait_waitq);
581
582 if (flags & TASKQ_PREPOPULATE)
583 for (i = 0; i < minalloc; i++)
584 task_done(tq, task_alloc(tq, TQ_SLEEP | TQ_NEW));
585
586 spin_unlock_irqrestore(&tq->tq_lock, tq->tq_lock_flags);
587
588 for (i = 0; i < nthreads; i++) {
589 tqt = kmem_alloc(sizeof(*tqt), KM_SLEEP);
590 INIT_LIST_HEAD(&tqt->tqt_thread_list);
591 INIT_LIST_HEAD(&tqt->tqt_active_list);
592 tqt->tqt_tq = tq;
593 tqt->tqt_id = 0;
594
595 tqt->tqt_thread = kthread_create(taskq_thread, tqt,
596 "%s/%d", name, i);
597 if (tqt->tqt_thread) {
598 list_add(&tqt->tqt_thread_list, &tq->tq_thread_list);
599 kthread_bind(tqt->tqt_thread, i % num_online_cpus());
600 set_user_nice(tqt->tqt_thread, PRIO_TO_NICE(pri));
601 wake_up_process(tqt->tqt_thread);
602 j++;
603 } else {
604 kmem_free(tqt, sizeof(taskq_thread_t));
605 rc = 1;
606 }
607 }
608
609 /* Wait for all threads to be started before potential destroy */
610 wait_event(tq->tq_wait_waitq, tq->tq_nthreads == j);
611
612 if (rc) {
613 __taskq_destroy(tq);
614 tq = NULL;
615 }
616
617 SRETURN(tq);
618 }
619 EXPORT_SYMBOL(__taskq_create);
620
621 void
622 __taskq_destroy(taskq_t *tq)
623 {
624 struct task_struct *thread;
625 taskq_thread_t *tqt;
626 taskq_ent_t *t;
627 SENTRY;
628
629 ASSERT(tq);
630 spin_lock_irqsave(&tq->tq_lock, tq->tq_lock_flags);
631 tq->tq_flags &= ~TQ_ACTIVE;
632 spin_unlock_irqrestore(&tq->tq_lock, tq->tq_lock_flags);
633
634 /* TQ_ACTIVE cleared prevents new tasks being added to pending */
635 __taskq_wait(tq);
636
637 spin_lock_irqsave(&tq->tq_lock, tq->tq_lock_flags);
638
639 /*
640 * Signal each thread to exit and block until it does. Each thread
641 * is responsible for removing itself from the list and freeing its
642 * taskq_thread_t. This allows for idle threads to opt to remove
643 * themselves from the taskq. They can be recreated as needed.
644 */
645 while (!list_empty(&tq->tq_thread_list)) {
646 tqt = list_entry(tq->tq_thread_list.next,
647 taskq_thread_t, tqt_thread_list);
648 thread = tqt->tqt_thread;
649 spin_unlock_irqrestore(&tq->tq_lock, tq->tq_lock_flags);
650
651 kthread_stop(thread);
652
653 spin_lock_irqsave(&tq->tq_lock, tq->tq_lock_flags);
654 }
655
656 while (!list_empty(&tq->tq_free_list)) {
657 t = list_entry(tq->tq_free_list.next, taskq_ent_t, tqent_list);
658
659 ASSERT(!(t->tqent_flags & TQENT_FLAG_PREALLOC));
660
661 list_del_init(&t->tqent_list);
662 task_free(tq, t);
663 }
664
665 ASSERT(tq->tq_nthreads == 0);
666 ASSERT(tq->tq_nalloc == 0);
667 ASSERT(list_empty(&tq->tq_thread_list));
668 ASSERT(list_empty(&tq->tq_active_list));
669 ASSERT(list_empty(&tq->tq_free_list));
670 ASSERT(list_empty(&tq->tq_pend_list));
671 ASSERT(list_empty(&tq->tq_prio_list));
672
673 spin_unlock_irqrestore(&tq->tq_lock, tq->tq_lock_flags);
674
675 kmem_free(tq, sizeof(taskq_t));
676
677 SEXIT;
678 }
679 EXPORT_SYMBOL(__taskq_destroy);
680
681 int
682 spl_taskq_init(void)
683 {
684 SENTRY;
685
686 /* Solaris creates a dynamic taskq of up to 64 threads, however in
687 * a Linux environment 1 thread per-core is usually about right */
688 system_taskq = taskq_create("spl_system_taskq", num_online_cpus(),
689 minclsyspri, 4, 512, TASKQ_PREPOPULATE);
690 if (system_taskq == NULL)
691 SRETURN(1);
692
693 SRETURN(0);
694 }
695
696 void
697 spl_taskq_fini(void)
698 {
699 SENTRY;
700 taskq_destroy(system_taskq);
701 SEXIT;
702 }