]> git.proxmox.com Git - mirror_zfs.git/blob - module/zfs/dbuf.c
Few microoptimizations to dbuf layer
[mirror_zfs.git] / module / zfs / dbuf.c
1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright 2011 Nexenta Systems, Inc. All rights reserved.
24 * Copyright (c) 2012, 2019 by Delphix. All rights reserved.
25 * Copyright (c) 2013 by Saso Kiselkov. All rights reserved.
26 * Copyright (c) 2014 Spectra Logic Corporation, All rights reserved.
27 */
28
29 #include <sys/zfs_context.h>
30 #include <sys/arc.h>
31 #include <sys/dmu.h>
32 #include <sys/dmu_send.h>
33 #include <sys/dmu_impl.h>
34 #include <sys/dbuf.h>
35 #include <sys/dmu_objset.h>
36 #include <sys/dsl_dataset.h>
37 #include <sys/dsl_dir.h>
38 #include <sys/dmu_tx.h>
39 #include <sys/spa.h>
40 #include <sys/zio.h>
41 #include <sys/dmu_zfetch.h>
42 #include <sys/sa.h>
43 #include <sys/sa_impl.h>
44 #include <sys/zfeature.h>
45 #include <sys/blkptr.h>
46 #include <sys/range_tree.h>
47 #include <sys/trace_zfs.h>
48 #include <sys/callb.h>
49 #include <sys/abd.h>
50 #include <sys/vdev.h>
51 #include <sys/cityhash.h>
52 #include <sys/spa_impl.h>
53
54 kstat_t *dbuf_ksp;
55
56 typedef struct dbuf_stats {
57 /*
58 * Various statistics about the size of the dbuf cache.
59 */
60 kstat_named_t cache_count;
61 kstat_named_t cache_size_bytes;
62 kstat_named_t cache_size_bytes_max;
63 /*
64 * Statistics regarding the bounds on the dbuf cache size.
65 */
66 kstat_named_t cache_target_bytes;
67 kstat_named_t cache_lowater_bytes;
68 kstat_named_t cache_hiwater_bytes;
69 /*
70 * Total number of dbuf cache evictions that have occurred.
71 */
72 kstat_named_t cache_total_evicts;
73 /*
74 * The distribution of dbuf levels in the dbuf cache and
75 * the total size of all dbufs at each level.
76 */
77 kstat_named_t cache_levels[DN_MAX_LEVELS];
78 kstat_named_t cache_levels_bytes[DN_MAX_LEVELS];
79 /*
80 * Statistics about the dbuf hash table.
81 */
82 kstat_named_t hash_hits;
83 kstat_named_t hash_misses;
84 kstat_named_t hash_collisions;
85 kstat_named_t hash_elements;
86 kstat_named_t hash_elements_max;
87 /*
88 * Number of sublists containing more than one dbuf in the dbuf
89 * hash table. Keep track of the longest hash chain.
90 */
91 kstat_named_t hash_chains;
92 kstat_named_t hash_chain_max;
93 /*
94 * Number of times a dbuf_create() discovers that a dbuf was
95 * already created and in the dbuf hash table.
96 */
97 kstat_named_t hash_insert_race;
98 /*
99 * Statistics about the size of the metadata dbuf cache.
100 */
101 kstat_named_t metadata_cache_count;
102 kstat_named_t metadata_cache_size_bytes;
103 kstat_named_t metadata_cache_size_bytes_max;
104 /*
105 * For diagnostic purposes, this is incremented whenever we can't add
106 * something to the metadata cache because it's full, and instead put
107 * the data in the regular dbuf cache.
108 */
109 kstat_named_t metadata_cache_overflow;
110 } dbuf_stats_t;
111
112 dbuf_stats_t dbuf_stats = {
113 { "cache_count", KSTAT_DATA_UINT64 },
114 { "cache_size_bytes", KSTAT_DATA_UINT64 },
115 { "cache_size_bytes_max", KSTAT_DATA_UINT64 },
116 { "cache_target_bytes", KSTAT_DATA_UINT64 },
117 { "cache_lowater_bytes", KSTAT_DATA_UINT64 },
118 { "cache_hiwater_bytes", KSTAT_DATA_UINT64 },
119 { "cache_total_evicts", KSTAT_DATA_UINT64 },
120 { { "cache_levels_N", KSTAT_DATA_UINT64 } },
121 { { "cache_levels_bytes_N", KSTAT_DATA_UINT64 } },
122 { "hash_hits", KSTAT_DATA_UINT64 },
123 { "hash_misses", KSTAT_DATA_UINT64 },
124 { "hash_collisions", KSTAT_DATA_UINT64 },
125 { "hash_elements", KSTAT_DATA_UINT64 },
126 { "hash_elements_max", KSTAT_DATA_UINT64 },
127 { "hash_chains", KSTAT_DATA_UINT64 },
128 { "hash_chain_max", KSTAT_DATA_UINT64 },
129 { "hash_insert_race", KSTAT_DATA_UINT64 },
130 { "metadata_cache_count", KSTAT_DATA_UINT64 },
131 { "metadata_cache_size_bytes", KSTAT_DATA_UINT64 },
132 { "metadata_cache_size_bytes_max", KSTAT_DATA_UINT64 },
133 { "metadata_cache_overflow", KSTAT_DATA_UINT64 }
134 };
135
136 #define DBUF_STAT_INCR(stat, val) \
137 atomic_add_64(&dbuf_stats.stat.value.ui64, (val));
138 #define DBUF_STAT_DECR(stat, val) \
139 DBUF_STAT_INCR(stat, -(val));
140 #define DBUF_STAT_BUMP(stat) \
141 DBUF_STAT_INCR(stat, 1);
142 #define DBUF_STAT_BUMPDOWN(stat) \
143 DBUF_STAT_INCR(stat, -1);
144 #define DBUF_STAT_MAX(stat, v) { \
145 uint64_t _m; \
146 while ((v) > (_m = dbuf_stats.stat.value.ui64) && \
147 (_m != atomic_cas_64(&dbuf_stats.stat.value.ui64, _m, (v))))\
148 continue; \
149 }
150
151 static boolean_t dbuf_undirty(dmu_buf_impl_t *db, dmu_tx_t *tx);
152 static void dbuf_write(dbuf_dirty_record_t *dr, arc_buf_t *data, dmu_tx_t *tx);
153
154 extern inline void dmu_buf_init_user(dmu_buf_user_t *dbu,
155 dmu_buf_evict_func_t *evict_func_sync,
156 dmu_buf_evict_func_t *evict_func_async,
157 dmu_buf_t **clear_on_evict_dbufp);
158
159 /*
160 * Global data structures and functions for the dbuf cache.
161 */
162 static kmem_cache_t *dbuf_kmem_cache;
163 static taskq_t *dbu_evict_taskq;
164
165 static kthread_t *dbuf_cache_evict_thread;
166 static kmutex_t dbuf_evict_lock;
167 static kcondvar_t dbuf_evict_cv;
168 static boolean_t dbuf_evict_thread_exit;
169
170 /*
171 * There are two dbuf caches; each dbuf can only be in one of them at a time.
172 *
173 * 1. Cache of metadata dbufs, to help make read-heavy administrative commands
174 * from /sbin/zfs run faster. The "metadata cache" specifically stores dbufs
175 * that represent the metadata that describes filesystems/snapshots/
176 * bookmarks/properties/etc. We only evict from this cache when we export a
177 * pool, to short-circuit as much I/O as possible for all administrative
178 * commands that need the metadata. There is no eviction policy for this
179 * cache, because we try to only include types in it which would occupy a
180 * very small amount of space per object but create a large impact on the
181 * performance of these commands. Instead, after it reaches a maximum size
182 * (which should only happen on very small memory systems with a very large
183 * number of filesystem objects), we stop taking new dbufs into the
184 * metadata cache, instead putting them in the normal dbuf cache.
185 *
186 * 2. LRU cache of dbufs. The dbuf cache maintains a list of dbufs that
187 * are not currently held but have been recently released. These dbufs
188 * are not eligible for arc eviction until they are aged out of the cache.
189 * Dbufs that are aged out of the cache will be immediately destroyed and
190 * become eligible for arc eviction.
191 *
192 * Dbufs are added to these caches once the last hold is released. If a dbuf is
193 * later accessed and still exists in the dbuf cache, then it will be removed
194 * from the cache and later re-added to the head of the cache.
195 *
196 * If a given dbuf meets the requirements for the metadata cache, it will go
197 * there, otherwise it will be considered for the generic LRU dbuf cache. The
198 * caches and the refcounts tracking their sizes are stored in an array indexed
199 * by those caches' matching enum values (from dbuf_cached_state_t).
200 */
201 typedef struct dbuf_cache {
202 multilist_t *cache;
203 zfs_refcount_t size;
204 } dbuf_cache_t;
205 dbuf_cache_t dbuf_caches[DB_CACHE_MAX];
206
207 /* Size limits for the caches */
208 unsigned long dbuf_cache_max_bytes = 0;
209 unsigned long dbuf_metadata_cache_max_bytes = 0;
210 /* Set the default sizes of the caches to log2 fraction of arc size */
211 int dbuf_cache_shift = 5;
212 int dbuf_metadata_cache_shift = 6;
213
214 /*
215 * The LRU dbuf cache uses a three-stage eviction policy:
216 * - A low water marker designates when the dbuf eviction thread
217 * should stop evicting from the dbuf cache.
218 * - When we reach the maximum size (aka mid water mark), we
219 * signal the eviction thread to run.
220 * - The high water mark indicates when the eviction thread
221 * is unable to keep up with the incoming load and eviction must
222 * happen in the context of the calling thread.
223 *
224 * The dbuf cache:
225 * (max size)
226 * low water mid water hi water
227 * +----------------------------------------+----------+----------+
228 * | | | |
229 * | | | |
230 * | | | |
231 * | | | |
232 * +----------------------------------------+----------+----------+
233 * stop signal evict
234 * evicting eviction directly
235 * thread
236 *
237 * The high and low water marks indicate the operating range for the eviction
238 * thread. The low water mark is, by default, 90% of the total size of the
239 * cache and the high water mark is at 110% (both of these percentages can be
240 * changed by setting dbuf_cache_lowater_pct and dbuf_cache_hiwater_pct,
241 * respectively). The eviction thread will try to ensure that the cache remains
242 * within this range by waking up every second and checking if the cache is
243 * above the low water mark. The thread can also be woken up by callers adding
244 * elements into the cache if the cache is larger than the mid water (i.e max
245 * cache size). Once the eviction thread is woken up and eviction is required,
246 * it will continue evicting buffers until it's able to reduce the cache size
247 * to the low water mark. If the cache size continues to grow and hits the high
248 * water mark, then callers adding elements to the cache will begin to evict
249 * directly from the cache until the cache is no longer above the high water
250 * mark.
251 */
252
253 /*
254 * The percentage above and below the maximum cache size.
255 */
256 uint_t dbuf_cache_hiwater_pct = 10;
257 uint_t dbuf_cache_lowater_pct = 10;
258
259 /* ARGSUSED */
260 static int
261 dbuf_cons(void *vdb, void *unused, int kmflag)
262 {
263 dmu_buf_impl_t *db = vdb;
264 bzero(db, sizeof (dmu_buf_impl_t));
265
266 mutex_init(&db->db_mtx, NULL, MUTEX_DEFAULT, NULL);
267 rw_init(&db->db_rwlock, NULL, RW_DEFAULT, NULL);
268 cv_init(&db->db_changed, NULL, CV_DEFAULT, NULL);
269 multilist_link_init(&db->db_cache_link);
270 zfs_refcount_create(&db->db_holds);
271
272 return (0);
273 }
274
275 /* ARGSUSED */
276 static void
277 dbuf_dest(void *vdb, void *unused)
278 {
279 dmu_buf_impl_t *db = vdb;
280 mutex_destroy(&db->db_mtx);
281 rw_destroy(&db->db_rwlock);
282 cv_destroy(&db->db_changed);
283 ASSERT(!multilist_link_active(&db->db_cache_link));
284 zfs_refcount_destroy(&db->db_holds);
285 }
286
287 /*
288 * dbuf hash table routines
289 */
290 static dbuf_hash_table_t dbuf_hash_table;
291
292 static uint64_t dbuf_hash_count;
293
294 /*
295 * We use Cityhash for this. It's fast, and has good hash properties without
296 * requiring any large static buffers.
297 */
298 static uint64_t
299 dbuf_hash(void *os, uint64_t obj, uint8_t lvl, uint64_t blkid)
300 {
301 return (cityhash4((uintptr_t)os, obj, (uint64_t)lvl, blkid));
302 }
303
304 #define DBUF_EQUAL(dbuf, os, obj, level, blkid) \
305 ((dbuf)->db.db_object == (obj) && \
306 (dbuf)->db_objset == (os) && \
307 (dbuf)->db_level == (level) && \
308 (dbuf)->db_blkid == (blkid))
309
310 dmu_buf_impl_t *
311 dbuf_find(objset_t *os, uint64_t obj, uint8_t level, uint64_t blkid)
312 {
313 dbuf_hash_table_t *h = &dbuf_hash_table;
314 uint64_t hv;
315 uint64_t idx;
316 dmu_buf_impl_t *db;
317
318 hv = dbuf_hash(os, obj, level, blkid);
319 idx = hv & h->hash_table_mask;
320
321 mutex_enter(DBUF_HASH_MUTEX(h, idx));
322 for (db = h->hash_table[idx]; db != NULL; db = db->db_hash_next) {
323 if (DBUF_EQUAL(db, os, obj, level, blkid)) {
324 mutex_enter(&db->db_mtx);
325 if (db->db_state != DB_EVICTING) {
326 mutex_exit(DBUF_HASH_MUTEX(h, idx));
327 return (db);
328 }
329 mutex_exit(&db->db_mtx);
330 }
331 }
332 mutex_exit(DBUF_HASH_MUTEX(h, idx));
333 return (NULL);
334 }
335
336 static dmu_buf_impl_t *
337 dbuf_find_bonus(objset_t *os, uint64_t object)
338 {
339 dnode_t *dn;
340 dmu_buf_impl_t *db = NULL;
341
342 if (dnode_hold(os, object, FTAG, &dn) == 0) {
343 rw_enter(&dn->dn_struct_rwlock, RW_READER);
344 if (dn->dn_bonus != NULL) {
345 db = dn->dn_bonus;
346 mutex_enter(&db->db_mtx);
347 }
348 rw_exit(&dn->dn_struct_rwlock);
349 dnode_rele(dn, FTAG);
350 }
351 return (db);
352 }
353
354 /*
355 * Insert an entry into the hash table. If there is already an element
356 * equal to elem in the hash table, then the already existing element
357 * will be returned and the new element will not be inserted.
358 * Otherwise returns NULL.
359 */
360 static dmu_buf_impl_t *
361 dbuf_hash_insert(dmu_buf_impl_t *db)
362 {
363 dbuf_hash_table_t *h = &dbuf_hash_table;
364 objset_t *os = db->db_objset;
365 uint64_t obj = db->db.db_object;
366 int level = db->db_level;
367 uint64_t blkid, hv, idx;
368 dmu_buf_impl_t *dbf;
369 uint32_t i;
370
371 blkid = db->db_blkid;
372 hv = dbuf_hash(os, obj, level, blkid);
373 idx = hv & h->hash_table_mask;
374
375 mutex_enter(DBUF_HASH_MUTEX(h, idx));
376 for (dbf = h->hash_table[idx], i = 0; dbf != NULL;
377 dbf = dbf->db_hash_next, i++) {
378 if (DBUF_EQUAL(dbf, os, obj, level, blkid)) {
379 mutex_enter(&dbf->db_mtx);
380 if (dbf->db_state != DB_EVICTING) {
381 mutex_exit(DBUF_HASH_MUTEX(h, idx));
382 return (dbf);
383 }
384 mutex_exit(&dbf->db_mtx);
385 }
386 }
387
388 if (i > 0) {
389 DBUF_STAT_BUMP(hash_collisions);
390 if (i == 1)
391 DBUF_STAT_BUMP(hash_chains);
392
393 DBUF_STAT_MAX(hash_chain_max, i);
394 }
395
396 mutex_enter(&db->db_mtx);
397 db->db_hash_next = h->hash_table[idx];
398 h->hash_table[idx] = db;
399 mutex_exit(DBUF_HASH_MUTEX(h, idx));
400 atomic_inc_64(&dbuf_hash_count);
401 DBUF_STAT_MAX(hash_elements_max, dbuf_hash_count);
402
403 return (NULL);
404 }
405
406 /*
407 * This returns whether this dbuf should be stored in the metadata cache, which
408 * is based on whether it's from one of the dnode types that store data related
409 * to traversing dataset hierarchies.
410 */
411 static boolean_t
412 dbuf_include_in_metadata_cache(dmu_buf_impl_t *db)
413 {
414 DB_DNODE_ENTER(db);
415 dmu_object_type_t type = DB_DNODE(db)->dn_type;
416 DB_DNODE_EXIT(db);
417
418 /* Check if this dbuf is one of the types we care about */
419 if (DMU_OT_IS_METADATA_CACHED(type)) {
420 /* If we hit this, then we set something up wrong in dmu_ot */
421 ASSERT(DMU_OT_IS_METADATA(type));
422
423 /*
424 * Sanity check for small-memory systems: don't allocate too
425 * much memory for this purpose.
426 */
427 if (zfs_refcount_count(
428 &dbuf_caches[DB_DBUF_METADATA_CACHE].size) >
429 dbuf_metadata_cache_max_bytes) {
430 DBUF_STAT_BUMP(metadata_cache_overflow);
431 return (B_FALSE);
432 }
433
434 return (B_TRUE);
435 }
436
437 return (B_FALSE);
438 }
439
440 /*
441 * Remove an entry from the hash table. It must be in the EVICTING state.
442 */
443 static void
444 dbuf_hash_remove(dmu_buf_impl_t *db)
445 {
446 dbuf_hash_table_t *h = &dbuf_hash_table;
447 uint64_t hv, idx;
448 dmu_buf_impl_t *dbf, **dbp;
449
450 hv = dbuf_hash(db->db_objset, db->db.db_object,
451 db->db_level, db->db_blkid);
452 idx = hv & h->hash_table_mask;
453
454 /*
455 * We mustn't hold db_mtx to maintain lock ordering:
456 * DBUF_HASH_MUTEX > db_mtx.
457 */
458 ASSERT(zfs_refcount_is_zero(&db->db_holds));
459 ASSERT(db->db_state == DB_EVICTING);
460 ASSERT(!MUTEX_HELD(&db->db_mtx));
461
462 mutex_enter(DBUF_HASH_MUTEX(h, idx));
463 dbp = &h->hash_table[idx];
464 while ((dbf = *dbp) != db) {
465 dbp = &dbf->db_hash_next;
466 ASSERT(dbf != NULL);
467 }
468 *dbp = db->db_hash_next;
469 db->db_hash_next = NULL;
470 if (h->hash_table[idx] &&
471 h->hash_table[idx]->db_hash_next == NULL)
472 DBUF_STAT_BUMPDOWN(hash_chains);
473 mutex_exit(DBUF_HASH_MUTEX(h, idx));
474 atomic_dec_64(&dbuf_hash_count);
475 }
476
477 typedef enum {
478 DBVU_EVICTING,
479 DBVU_NOT_EVICTING
480 } dbvu_verify_type_t;
481
482 static void
483 dbuf_verify_user(dmu_buf_impl_t *db, dbvu_verify_type_t verify_type)
484 {
485 #ifdef ZFS_DEBUG
486 int64_t holds;
487
488 if (db->db_user == NULL)
489 return;
490
491 /* Only data blocks support the attachment of user data. */
492 ASSERT(db->db_level == 0);
493
494 /* Clients must resolve a dbuf before attaching user data. */
495 ASSERT(db->db.db_data != NULL);
496 ASSERT3U(db->db_state, ==, DB_CACHED);
497
498 holds = zfs_refcount_count(&db->db_holds);
499 if (verify_type == DBVU_EVICTING) {
500 /*
501 * Immediate eviction occurs when holds == dirtycnt.
502 * For normal eviction buffers, holds is zero on
503 * eviction, except when dbuf_fix_old_data() calls
504 * dbuf_clear_data(). However, the hold count can grow
505 * during eviction even though db_mtx is held (see
506 * dmu_bonus_hold() for an example), so we can only
507 * test the generic invariant that holds >= dirtycnt.
508 */
509 ASSERT3U(holds, >=, db->db_dirtycnt);
510 } else {
511 if (db->db_user_immediate_evict == TRUE)
512 ASSERT3U(holds, >=, db->db_dirtycnt);
513 else
514 ASSERT3U(holds, >, 0);
515 }
516 #endif
517 }
518
519 static void
520 dbuf_evict_user(dmu_buf_impl_t *db)
521 {
522 dmu_buf_user_t *dbu = db->db_user;
523
524 ASSERT(MUTEX_HELD(&db->db_mtx));
525
526 if (dbu == NULL)
527 return;
528
529 dbuf_verify_user(db, DBVU_EVICTING);
530 db->db_user = NULL;
531
532 #ifdef ZFS_DEBUG
533 if (dbu->dbu_clear_on_evict_dbufp != NULL)
534 *dbu->dbu_clear_on_evict_dbufp = NULL;
535 #endif
536
537 /*
538 * There are two eviction callbacks - one that we call synchronously
539 * and one that we invoke via a taskq. The async one is useful for
540 * avoiding lock order reversals and limiting stack depth.
541 *
542 * Note that if we have a sync callback but no async callback,
543 * it's likely that the sync callback will free the structure
544 * containing the dbu. In that case we need to take care to not
545 * dereference dbu after calling the sync evict func.
546 */
547 boolean_t has_async = (dbu->dbu_evict_func_async != NULL);
548
549 if (dbu->dbu_evict_func_sync != NULL)
550 dbu->dbu_evict_func_sync(dbu);
551
552 if (has_async) {
553 taskq_dispatch_ent(dbu_evict_taskq, dbu->dbu_evict_func_async,
554 dbu, 0, &dbu->dbu_tqent);
555 }
556 }
557
558 boolean_t
559 dbuf_is_metadata(dmu_buf_impl_t *db)
560 {
561 /*
562 * Consider indirect blocks and spill blocks to be meta data.
563 */
564 if (db->db_level > 0 || db->db_blkid == DMU_SPILL_BLKID) {
565 return (B_TRUE);
566 } else {
567 boolean_t is_metadata;
568
569 DB_DNODE_ENTER(db);
570 is_metadata = DMU_OT_IS_METADATA(DB_DNODE(db)->dn_type);
571 DB_DNODE_EXIT(db);
572
573 return (is_metadata);
574 }
575 }
576
577
578 /*
579 * This function *must* return indices evenly distributed between all
580 * sublists of the multilist. This is needed due to how the dbuf eviction
581 * code is laid out; dbuf_evict_thread() assumes dbufs are evenly
582 * distributed between all sublists and uses this assumption when
583 * deciding which sublist to evict from and how much to evict from it.
584 */
585 unsigned int
586 dbuf_cache_multilist_index_func(multilist_t *ml, void *obj)
587 {
588 dmu_buf_impl_t *db = obj;
589
590 /*
591 * The assumption here, is the hash value for a given
592 * dmu_buf_impl_t will remain constant throughout it's lifetime
593 * (i.e. it's objset, object, level and blkid fields don't change).
594 * Thus, we don't need to store the dbuf's sublist index
595 * on insertion, as this index can be recalculated on removal.
596 *
597 * Also, the low order bits of the hash value are thought to be
598 * distributed evenly. Otherwise, in the case that the multilist
599 * has a power of two number of sublists, each sublists' usage
600 * would not be evenly distributed.
601 */
602 return (dbuf_hash(db->db_objset, db->db.db_object,
603 db->db_level, db->db_blkid) %
604 multilist_get_num_sublists(ml));
605 }
606
607 static inline unsigned long
608 dbuf_cache_target_bytes(void)
609 {
610 return MIN(dbuf_cache_max_bytes,
611 arc_target_bytes() >> dbuf_cache_shift);
612 }
613
614 static inline uint64_t
615 dbuf_cache_hiwater_bytes(void)
616 {
617 uint64_t dbuf_cache_target = dbuf_cache_target_bytes();
618 return (dbuf_cache_target +
619 (dbuf_cache_target * dbuf_cache_hiwater_pct) / 100);
620 }
621
622 static inline uint64_t
623 dbuf_cache_lowater_bytes(void)
624 {
625 uint64_t dbuf_cache_target = dbuf_cache_target_bytes();
626 return (dbuf_cache_target -
627 (dbuf_cache_target * dbuf_cache_lowater_pct) / 100);
628 }
629
630 static inline boolean_t
631 dbuf_cache_above_lowater(void)
632 {
633 return (zfs_refcount_count(&dbuf_caches[DB_DBUF_CACHE].size) >
634 dbuf_cache_lowater_bytes());
635 }
636
637 /*
638 * Evict the oldest eligible dbuf from the dbuf cache.
639 */
640 static void
641 dbuf_evict_one(void)
642 {
643 int idx = multilist_get_random_index(dbuf_caches[DB_DBUF_CACHE].cache);
644 multilist_sublist_t *mls = multilist_sublist_lock(
645 dbuf_caches[DB_DBUF_CACHE].cache, idx);
646
647 ASSERT(!MUTEX_HELD(&dbuf_evict_lock));
648
649 dmu_buf_impl_t *db = multilist_sublist_tail(mls);
650 while (db != NULL && mutex_tryenter(&db->db_mtx) == 0) {
651 db = multilist_sublist_prev(mls, db);
652 }
653
654 DTRACE_PROBE2(dbuf__evict__one, dmu_buf_impl_t *, db,
655 multilist_sublist_t *, mls);
656
657 if (db != NULL) {
658 multilist_sublist_remove(mls, db);
659 multilist_sublist_unlock(mls);
660 (void) zfs_refcount_remove_many(
661 &dbuf_caches[DB_DBUF_CACHE].size, db->db.db_size, db);
662 DBUF_STAT_BUMPDOWN(cache_levels[db->db_level]);
663 DBUF_STAT_BUMPDOWN(cache_count);
664 DBUF_STAT_DECR(cache_levels_bytes[db->db_level],
665 db->db.db_size);
666 ASSERT3U(db->db_caching_status, ==, DB_DBUF_CACHE);
667 db->db_caching_status = DB_NO_CACHE;
668 dbuf_destroy(db);
669 DBUF_STAT_BUMP(cache_total_evicts);
670 } else {
671 multilist_sublist_unlock(mls);
672 }
673 }
674
675 /*
676 * The dbuf evict thread is responsible for aging out dbufs from the
677 * cache. Once the cache has reached it's maximum size, dbufs are removed
678 * and destroyed. The eviction thread will continue running until the size
679 * of the dbuf cache is at or below the maximum size. Once the dbuf is aged
680 * out of the cache it is destroyed and becomes eligible for arc eviction.
681 */
682 /* ARGSUSED */
683 static void
684 dbuf_evict_thread(void *unused)
685 {
686 callb_cpr_t cpr;
687
688 CALLB_CPR_INIT(&cpr, &dbuf_evict_lock, callb_generic_cpr, FTAG);
689
690 mutex_enter(&dbuf_evict_lock);
691 while (!dbuf_evict_thread_exit) {
692 while (!dbuf_cache_above_lowater() && !dbuf_evict_thread_exit) {
693 CALLB_CPR_SAFE_BEGIN(&cpr);
694 (void) cv_timedwait_sig_hires(&dbuf_evict_cv,
695 &dbuf_evict_lock, SEC2NSEC(1), MSEC2NSEC(1), 0);
696 CALLB_CPR_SAFE_END(&cpr, &dbuf_evict_lock);
697 }
698 mutex_exit(&dbuf_evict_lock);
699
700 /*
701 * Keep evicting as long as we're above the low water mark
702 * for the cache. We do this without holding the locks to
703 * minimize lock contention.
704 */
705 while (dbuf_cache_above_lowater() && !dbuf_evict_thread_exit) {
706 dbuf_evict_one();
707 }
708
709 mutex_enter(&dbuf_evict_lock);
710 }
711
712 dbuf_evict_thread_exit = B_FALSE;
713 cv_broadcast(&dbuf_evict_cv);
714 CALLB_CPR_EXIT(&cpr); /* drops dbuf_evict_lock */
715 thread_exit();
716 }
717
718 /*
719 * Wake up the dbuf eviction thread if the dbuf cache is at its max size.
720 * If the dbuf cache is at its high water mark, then evict a dbuf from the
721 * dbuf cache using the callers context.
722 */
723 static void
724 dbuf_evict_notify(uint64_t size)
725 {
726 /*
727 * We check if we should evict without holding the dbuf_evict_lock,
728 * because it's OK to occasionally make the wrong decision here,
729 * and grabbing the lock results in massive lock contention.
730 */
731 if (size > dbuf_cache_target_bytes()) {
732 if (size > dbuf_cache_hiwater_bytes())
733 dbuf_evict_one();
734 cv_signal(&dbuf_evict_cv);
735 }
736 }
737
738 static int
739 dbuf_kstat_update(kstat_t *ksp, int rw)
740 {
741 dbuf_stats_t *ds = ksp->ks_data;
742
743 if (rw == KSTAT_WRITE) {
744 return (SET_ERROR(EACCES));
745 } else {
746 ds->metadata_cache_size_bytes.value.ui64 = zfs_refcount_count(
747 &dbuf_caches[DB_DBUF_METADATA_CACHE].size);
748 ds->cache_size_bytes.value.ui64 =
749 zfs_refcount_count(&dbuf_caches[DB_DBUF_CACHE].size);
750 ds->cache_target_bytes.value.ui64 = dbuf_cache_target_bytes();
751 ds->cache_hiwater_bytes.value.ui64 = dbuf_cache_hiwater_bytes();
752 ds->cache_lowater_bytes.value.ui64 = dbuf_cache_lowater_bytes();
753 ds->hash_elements.value.ui64 = dbuf_hash_count;
754 }
755
756 return (0);
757 }
758
759 void
760 dbuf_init(void)
761 {
762 uint64_t hsize = 1ULL << 16;
763 dbuf_hash_table_t *h = &dbuf_hash_table;
764 int i;
765
766 /*
767 * The hash table is big enough to fill all of physical memory
768 * with an average block size of zfs_arc_average_blocksize (default 8K).
769 * By default, the table will take up
770 * totalmem * sizeof(void*) / 8K (1MB per GB with 8-byte pointers).
771 */
772 while (hsize * zfs_arc_average_blocksize < physmem * PAGESIZE)
773 hsize <<= 1;
774
775 retry:
776 h->hash_table_mask = hsize - 1;
777 #if defined(_KERNEL)
778 /*
779 * Large allocations which do not require contiguous pages
780 * should be using vmem_alloc() in the linux kernel
781 */
782 h->hash_table = vmem_zalloc(hsize * sizeof (void *), KM_SLEEP);
783 #else
784 h->hash_table = kmem_zalloc(hsize * sizeof (void *), KM_NOSLEEP);
785 #endif
786 if (h->hash_table == NULL) {
787 /* XXX - we should really return an error instead of assert */
788 ASSERT(hsize > (1ULL << 10));
789 hsize >>= 1;
790 goto retry;
791 }
792
793 dbuf_kmem_cache = kmem_cache_create("dmu_buf_impl_t",
794 sizeof (dmu_buf_impl_t),
795 0, dbuf_cons, dbuf_dest, NULL, NULL, NULL, 0);
796
797 for (i = 0; i < DBUF_MUTEXES; i++)
798 mutex_init(&h->hash_mutexes[i], NULL, MUTEX_DEFAULT, NULL);
799
800 dbuf_stats_init(h);
801
802 /*
803 * Setup the parameters for the dbuf caches. We set the sizes of the
804 * dbuf cache and the metadata cache to 1/32nd and 1/16th (default)
805 * of the target size of the ARC. If the values has been specified as
806 * a module option and they're not greater than the target size of the
807 * ARC, then we honor that value.
808 */
809 if (dbuf_cache_max_bytes == 0 ||
810 dbuf_cache_max_bytes >= arc_target_bytes()) {
811 dbuf_cache_max_bytes = arc_target_bytes() >> dbuf_cache_shift;
812 }
813 if (dbuf_metadata_cache_max_bytes == 0 ||
814 dbuf_metadata_cache_max_bytes >= arc_target_bytes()) {
815 dbuf_metadata_cache_max_bytes =
816 arc_target_bytes() >> dbuf_metadata_cache_shift;
817 }
818
819 /*
820 * All entries are queued via taskq_dispatch_ent(), so min/maxalloc
821 * configuration is not required.
822 */
823 dbu_evict_taskq = taskq_create("dbu_evict", 1, defclsyspri, 0, 0, 0);
824
825 for (dbuf_cached_state_t dcs = 0; dcs < DB_CACHE_MAX; dcs++) {
826 dbuf_caches[dcs].cache =
827 multilist_create(sizeof (dmu_buf_impl_t),
828 offsetof(dmu_buf_impl_t, db_cache_link),
829 dbuf_cache_multilist_index_func);
830 zfs_refcount_create(&dbuf_caches[dcs].size);
831 }
832
833 dbuf_evict_thread_exit = B_FALSE;
834 mutex_init(&dbuf_evict_lock, NULL, MUTEX_DEFAULT, NULL);
835 cv_init(&dbuf_evict_cv, NULL, CV_DEFAULT, NULL);
836 dbuf_cache_evict_thread = thread_create(NULL, 0, dbuf_evict_thread,
837 NULL, 0, &p0, TS_RUN, minclsyspri);
838
839 dbuf_ksp = kstat_create("zfs", 0, "dbufstats", "misc",
840 KSTAT_TYPE_NAMED, sizeof (dbuf_stats) / sizeof (kstat_named_t),
841 KSTAT_FLAG_VIRTUAL);
842 if (dbuf_ksp != NULL) {
843 for (i = 0; i < DN_MAX_LEVELS; i++) {
844 snprintf(dbuf_stats.cache_levels[i].name,
845 KSTAT_STRLEN, "cache_level_%d", i);
846 dbuf_stats.cache_levels[i].data_type =
847 KSTAT_DATA_UINT64;
848 snprintf(dbuf_stats.cache_levels_bytes[i].name,
849 KSTAT_STRLEN, "cache_level_%d_bytes", i);
850 dbuf_stats.cache_levels_bytes[i].data_type =
851 KSTAT_DATA_UINT64;
852 }
853 dbuf_ksp->ks_data = &dbuf_stats;
854 dbuf_ksp->ks_update = dbuf_kstat_update;
855 kstat_install(dbuf_ksp);
856 }
857 }
858
859 void
860 dbuf_fini(void)
861 {
862 dbuf_hash_table_t *h = &dbuf_hash_table;
863 int i;
864
865 dbuf_stats_destroy();
866
867 for (i = 0; i < DBUF_MUTEXES; i++)
868 mutex_destroy(&h->hash_mutexes[i]);
869 #if defined(_KERNEL)
870 /*
871 * Large allocations which do not require contiguous pages
872 * should be using vmem_free() in the linux kernel
873 */
874 vmem_free(h->hash_table, (h->hash_table_mask + 1) * sizeof (void *));
875 #else
876 kmem_free(h->hash_table, (h->hash_table_mask + 1) * sizeof (void *));
877 #endif
878 kmem_cache_destroy(dbuf_kmem_cache);
879 taskq_destroy(dbu_evict_taskq);
880
881 mutex_enter(&dbuf_evict_lock);
882 dbuf_evict_thread_exit = B_TRUE;
883 while (dbuf_evict_thread_exit) {
884 cv_signal(&dbuf_evict_cv);
885 cv_wait(&dbuf_evict_cv, &dbuf_evict_lock);
886 }
887 mutex_exit(&dbuf_evict_lock);
888
889 mutex_destroy(&dbuf_evict_lock);
890 cv_destroy(&dbuf_evict_cv);
891
892 for (dbuf_cached_state_t dcs = 0; dcs < DB_CACHE_MAX; dcs++) {
893 zfs_refcount_destroy(&dbuf_caches[dcs].size);
894 multilist_destroy(dbuf_caches[dcs].cache);
895 }
896
897 if (dbuf_ksp != NULL) {
898 kstat_delete(dbuf_ksp);
899 dbuf_ksp = NULL;
900 }
901 }
902
903 /*
904 * Other stuff.
905 */
906
907 #ifdef ZFS_DEBUG
908 static void
909 dbuf_verify(dmu_buf_impl_t *db)
910 {
911 dnode_t *dn;
912 dbuf_dirty_record_t *dr;
913 uint32_t txg_prev;
914
915 ASSERT(MUTEX_HELD(&db->db_mtx));
916
917 if (!(zfs_flags & ZFS_DEBUG_DBUF_VERIFY))
918 return;
919
920 ASSERT(db->db_objset != NULL);
921 DB_DNODE_ENTER(db);
922 dn = DB_DNODE(db);
923 if (dn == NULL) {
924 ASSERT(db->db_parent == NULL);
925 ASSERT(db->db_blkptr == NULL);
926 } else {
927 ASSERT3U(db->db.db_object, ==, dn->dn_object);
928 ASSERT3P(db->db_objset, ==, dn->dn_objset);
929 ASSERT3U(db->db_level, <, dn->dn_nlevels);
930 ASSERT(db->db_blkid == DMU_BONUS_BLKID ||
931 db->db_blkid == DMU_SPILL_BLKID ||
932 !avl_is_empty(&dn->dn_dbufs));
933 }
934 if (db->db_blkid == DMU_BONUS_BLKID) {
935 ASSERT(dn != NULL);
936 ASSERT3U(db->db.db_size, >=, dn->dn_bonuslen);
937 ASSERT3U(db->db.db_offset, ==, DMU_BONUS_BLKID);
938 } else if (db->db_blkid == DMU_SPILL_BLKID) {
939 ASSERT(dn != NULL);
940 ASSERT0(db->db.db_offset);
941 } else {
942 ASSERT3U(db->db.db_offset, ==, db->db_blkid * db->db.db_size);
943 }
944
945 if ((dr = list_head(&db->db_dirty_records)) != NULL) {
946 ASSERT(dr->dr_dbuf == db);
947 txg_prev = dr->dr_txg;
948 for (dr = list_next(&db->db_dirty_records, dr); dr != NULL;
949 dr = list_next(&db->db_dirty_records, dr)) {
950 ASSERT(dr->dr_dbuf == db);
951 ASSERT(txg_prev > dr->dr_txg);
952 txg_prev = dr->dr_txg;
953 }
954 }
955
956 /*
957 * We can't assert that db_size matches dn_datablksz because it
958 * can be momentarily different when another thread is doing
959 * dnode_set_blksz().
960 */
961 if (db->db_level == 0 && db->db.db_object == DMU_META_DNODE_OBJECT) {
962 dr = db->db_data_pending;
963 /*
964 * It should only be modified in syncing context, so
965 * make sure we only have one copy of the data.
966 */
967 ASSERT(dr == NULL || dr->dt.dl.dr_data == db->db_buf);
968 }
969
970 /* verify db->db_blkptr */
971 if (db->db_blkptr) {
972 if (db->db_parent == dn->dn_dbuf) {
973 /* db is pointed to by the dnode */
974 /* ASSERT3U(db->db_blkid, <, dn->dn_nblkptr); */
975 if (DMU_OBJECT_IS_SPECIAL(db->db.db_object))
976 ASSERT(db->db_parent == NULL);
977 else
978 ASSERT(db->db_parent != NULL);
979 if (db->db_blkid != DMU_SPILL_BLKID)
980 ASSERT3P(db->db_blkptr, ==,
981 &dn->dn_phys->dn_blkptr[db->db_blkid]);
982 } else {
983 /* db is pointed to by an indirect block */
984 int epb __maybe_unused = db->db_parent->db.db_size >>
985 SPA_BLKPTRSHIFT;
986 ASSERT3U(db->db_parent->db_level, ==, db->db_level+1);
987 ASSERT3U(db->db_parent->db.db_object, ==,
988 db->db.db_object);
989 /*
990 * dnode_grow_indblksz() can make this fail if we don't
991 * have the parent's rwlock. XXX indblksz no longer
992 * grows. safe to do this now?
993 */
994 if (RW_LOCK_HELD(&db->db_parent->db_rwlock)) {
995 ASSERT3P(db->db_blkptr, ==,
996 ((blkptr_t *)db->db_parent->db.db_data +
997 db->db_blkid % epb));
998 }
999 }
1000 }
1001 if ((db->db_blkptr == NULL || BP_IS_HOLE(db->db_blkptr)) &&
1002 (db->db_buf == NULL || db->db_buf->b_data) &&
1003 db->db.db_data && db->db_blkid != DMU_BONUS_BLKID &&
1004 db->db_state != DB_FILL && !dn->dn_free_txg) {
1005 /*
1006 * If the blkptr isn't set but they have nonzero data,
1007 * it had better be dirty, otherwise we'll lose that
1008 * data when we evict this buffer.
1009 *
1010 * There is an exception to this rule for indirect blocks; in
1011 * this case, if the indirect block is a hole, we fill in a few
1012 * fields on each of the child blocks (importantly, birth time)
1013 * to prevent hole birth times from being lost when you
1014 * partially fill in a hole.
1015 */
1016 if (db->db_dirtycnt == 0) {
1017 if (db->db_level == 0) {
1018 uint64_t *buf = db->db.db_data;
1019 int i;
1020
1021 for (i = 0; i < db->db.db_size >> 3; i++) {
1022 ASSERT(buf[i] == 0);
1023 }
1024 } else {
1025 blkptr_t *bps = db->db.db_data;
1026 ASSERT3U(1 << DB_DNODE(db)->dn_indblkshift, ==,
1027 db->db.db_size);
1028 /*
1029 * We want to verify that all the blkptrs in the
1030 * indirect block are holes, but we may have
1031 * automatically set up a few fields for them.
1032 * We iterate through each blkptr and verify
1033 * they only have those fields set.
1034 */
1035 for (int i = 0;
1036 i < db->db.db_size / sizeof (blkptr_t);
1037 i++) {
1038 blkptr_t *bp = &bps[i];
1039 ASSERT(ZIO_CHECKSUM_IS_ZERO(
1040 &bp->blk_cksum));
1041 ASSERT(
1042 DVA_IS_EMPTY(&bp->blk_dva[0]) &&
1043 DVA_IS_EMPTY(&bp->blk_dva[1]) &&
1044 DVA_IS_EMPTY(&bp->blk_dva[2]));
1045 ASSERT0(bp->blk_fill);
1046 ASSERT0(bp->blk_pad[0]);
1047 ASSERT0(bp->blk_pad[1]);
1048 ASSERT(!BP_IS_EMBEDDED(bp));
1049 ASSERT(BP_IS_HOLE(bp));
1050 ASSERT0(bp->blk_phys_birth);
1051 }
1052 }
1053 }
1054 }
1055 DB_DNODE_EXIT(db);
1056 }
1057 #endif
1058
1059 static void
1060 dbuf_clear_data(dmu_buf_impl_t *db)
1061 {
1062 ASSERT(MUTEX_HELD(&db->db_mtx));
1063 dbuf_evict_user(db);
1064 ASSERT3P(db->db_buf, ==, NULL);
1065 db->db.db_data = NULL;
1066 if (db->db_state != DB_NOFILL)
1067 db->db_state = DB_UNCACHED;
1068 }
1069
1070 static void
1071 dbuf_set_data(dmu_buf_impl_t *db, arc_buf_t *buf)
1072 {
1073 ASSERT(MUTEX_HELD(&db->db_mtx));
1074 ASSERT(buf != NULL);
1075
1076 db->db_buf = buf;
1077 ASSERT(buf->b_data != NULL);
1078 db->db.db_data = buf->b_data;
1079 }
1080
1081 /*
1082 * Loan out an arc_buf for read. Return the loaned arc_buf.
1083 */
1084 arc_buf_t *
1085 dbuf_loan_arcbuf(dmu_buf_impl_t *db)
1086 {
1087 arc_buf_t *abuf;
1088
1089 ASSERT(db->db_blkid != DMU_BONUS_BLKID);
1090 mutex_enter(&db->db_mtx);
1091 if (arc_released(db->db_buf) || zfs_refcount_count(&db->db_holds) > 1) {
1092 int blksz = db->db.db_size;
1093 spa_t *spa = db->db_objset->os_spa;
1094
1095 mutex_exit(&db->db_mtx);
1096 abuf = arc_loan_buf(spa, B_FALSE, blksz);
1097 bcopy(db->db.db_data, abuf->b_data, blksz);
1098 } else {
1099 abuf = db->db_buf;
1100 arc_loan_inuse_buf(abuf, db);
1101 db->db_buf = NULL;
1102 dbuf_clear_data(db);
1103 mutex_exit(&db->db_mtx);
1104 }
1105 return (abuf);
1106 }
1107
1108 /*
1109 * Calculate which level n block references the data at the level 0 offset
1110 * provided.
1111 */
1112 uint64_t
1113 dbuf_whichblock(const dnode_t *dn, const int64_t level, const uint64_t offset)
1114 {
1115 if (dn->dn_datablkshift != 0 && dn->dn_indblkshift != 0) {
1116 /*
1117 * The level n blkid is equal to the level 0 blkid divided by
1118 * the number of level 0s in a level n block.
1119 *
1120 * The level 0 blkid is offset >> datablkshift =
1121 * offset / 2^datablkshift.
1122 *
1123 * The number of level 0s in a level n is the number of block
1124 * pointers in an indirect block, raised to the power of level.
1125 * This is 2^(indblkshift - SPA_BLKPTRSHIFT)^level =
1126 * 2^(level*(indblkshift - SPA_BLKPTRSHIFT)).
1127 *
1128 * Thus, the level n blkid is: offset /
1129 * ((2^datablkshift)*(2^(level*(indblkshift-SPA_BLKPTRSHIFT))))
1130 * = offset / 2^(datablkshift + level *
1131 * (indblkshift - SPA_BLKPTRSHIFT))
1132 * = offset >> (datablkshift + level *
1133 * (indblkshift - SPA_BLKPTRSHIFT))
1134 */
1135
1136 const unsigned exp = dn->dn_datablkshift +
1137 level * (dn->dn_indblkshift - SPA_BLKPTRSHIFT);
1138
1139 if (exp >= 8 * sizeof (offset)) {
1140 /* This only happens on the highest indirection level */
1141 ASSERT3U(level, ==, dn->dn_nlevels - 1);
1142 return (0);
1143 }
1144
1145 ASSERT3U(exp, <, 8 * sizeof (offset));
1146
1147 return (offset >> exp);
1148 } else {
1149 ASSERT3U(offset, <, dn->dn_datablksz);
1150 return (0);
1151 }
1152 }
1153
1154 /*
1155 * This function is used to lock the parent of the provided dbuf. This should be
1156 * used when modifying or reading db_blkptr.
1157 */
1158 db_lock_type_t
1159 dmu_buf_lock_parent(dmu_buf_impl_t *db, krw_t rw, void *tag)
1160 {
1161 enum db_lock_type ret = DLT_NONE;
1162 if (db->db_parent != NULL) {
1163 rw_enter(&db->db_parent->db_rwlock, rw);
1164 ret = DLT_PARENT;
1165 } else if (dmu_objset_ds(db->db_objset) != NULL) {
1166 rrw_enter(&dmu_objset_ds(db->db_objset)->ds_bp_rwlock, rw,
1167 tag);
1168 ret = DLT_OBJSET;
1169 }
1170 /*
1171 * We only return a DLT_NONE lock when it's the top-most indirect block
1172 * of the meta-dnode of the MOS.
1173 */
1174 return (ret);
1175 }
1176
1177 /*
1178 * We need to pass the lock type in because it's possible that the block will
1179 * move from being the topmost indirect block in a dnode (and thus, have no
1180 * parent) to not the top-most via an indirection increase. This would cause a
1181 * panic if we didn't pass the lock type in.
1182 */
1183 void
1184 dmu_buf_unlock_parent(dmu_buf_impl_t *db, db_lock_type_t type, void *tag)
1185 {
1186 if (type == DLT_PARENT)
1187 rw_exit(&db->db_parent->db_rwlock);
1188 else if (type == DLT_OBJSET)
1189 rrw_exit(&dmu_objset_ds(db->db_objset)->ds_bp_rwlock, tag);
1190 }
1191
1192 static void
1193 dbuf_read_done(zio_t *zio, const zbookmark_phys_t *zb, const blkptr_t *bp,
1194 arc_buf_t *buf, void *vdb)
1195 {
1196 dmu_buf_impl_t *db = vdb;
1197
1198 mutex_enter(&db->db_mtx);
1199 ASSERT3U(db->db_state, ==, DB_READ);
1200 /*
1201 * All reads are synchronous, so we must have a hold on the dbuf
1202 */
1203 ASSERT(zfs_refcount_count(&db->db_holds) > 0);
1204 ASSERT(db->db_buf == NULL);
1205 ASSERT(db->db.db_data == NULL);
1206 if (buf == NULL) {
1207 /* i/o error */
1208 ASSERT(zio == NULL || zio->io_error != 0);
1209 ASSERT(db->db_blkid != DMU_BONUS_BLKID);
1210 ASSERT3P(db->db_buf, ==, NULL);
1211 db->db_state = DB_UNCACHED;
1212 } else if (db->db_level == 0 && db->db_freed_in_flight) {
1213 /* freed in flight */
1214 ASSERT(zio == NULL || zio->io_error == 0);
1215 arc_release(buf, db);
1216 bzero(buf->b_data, db->db.db_size);
1217 arc_buf_freeze(buf);
1218 db->db_freed_in_flight = FALSE;
1219 dbuf_set_data(db, buf);
1220 db->db_state = DB_CACHED;
1221 } else {
1222 /* success */
1223 ASSERT(zio == NULL || zio->io_error == 0);
1224 dbuf_set_data(db, buf);
1225 db->db_state = DB_CACHED;
1226 }
1227 cv_broadcast(&db->db_changed);
1228 dbuf_rele_and_unlock(db, NULL, B_FALSE);
1229 }
1230
1231
1232 /*
1233 * This function ensures that, when doing a decrypting read of a block,
1234 * we make sure we have decrypted the dnode associated with it. We must do
1235 * this so that we ensure we are fully authenticating the checksum-of-MACs
1236 * tree from the root of the objset down to this block. Indirect blocks are
1237 * always verified against their secure checksum-of-MACs assuming that the
1238 * dnode containing them is correct. Now that we are doing a decrypting read,
1239 * we can be sure that the key is loaded and verify that assumption. This is
1240 * especially important considering that we always read encrypted dnode
1241 * blocks as raw data (without verifying their MACs) to start, and
1242 * decrypt / authenticate them when we need to read an encrypted bonus buffer.
1243 */
1244 static int
1245 dbuf_read_verify_dnode_crypt(dmu_buf_impl_t *db, uint32_t flags)
1246 {
1247 int err = 0;
1248 objset_t *os = db->db_objset;
1249 arc_buf_t *dnode_abuf;
1250 dnode_t *dn;
1251 zbookmark_phys_t zb;
1252
1253 ASSERT(MUTEX_HELD(&db->db_mtx));
1254
1255 if (!os->os_encrypted || os->os_raw_receive ||
1256 (flags & DB_RF_NO_DECRYPT) != 0)
1257 return (0);
1258
1259 DB_DNODE_ENTER(db);
1260 dn = DB_DNODE(db);
1261 dnode_abuf = (dn->dn_dbuf != NULL) ? dn->dn_dbuf->db_buf : NULL;
1262
1263 if (dnode_abuf == NULL || !arc_is_encrypted(dnode_abuf)) {
1264 DB_DNODE_EXIT(db);
1265 return (0);
1266 }
1267
1268 SET_BOOKMARK(&zb, dmu_objset_id(os),
1269 DMU_META_DNODE_OBJECT, 0, dn->dn_dbuf->db_blkid);
1270 err = arc_untransform(dnode_abuf, os->os_spa, &zb, B_TRUE);
1271
1272 /*
1273 * An error code of EACCES tells us that the key is still not
1274 * available. This is ok if we are only reading authenticated
1275 * (and therefore non-encrypted) blocks.
1276 */
1277 if (err == EACCES && ((db->db_blkid != DMU_BONUS_BLKID &&
1278 !DMU_OT_IS_ENCRYPTED(dn->dn_type)) ||
1279 (db->db_blkid == DMU_BONUS_BLKID &&
1280 !DMU_OT_IS_ENCRYPTED(dn->dn_bonustype))))
1281 err = 0;
1282
1283 DB_DNODE_EXIT(db);
1284
1285 return (err);
1286 }
1287
1288 /*
1289 * Drops db_mtx and the parent lock specified by dblt and tag before
1290 * returning.
1291 */
1292 static int
1293 dbuf_read_impl(dmu_buf_impl_t *db, zio_t *zio, uint32_t flags,
1294 db_lock_type_t dblt, void *tag)
1295 {
1296 dnode_t *dn;
1297 zbookmark_phys_t zb;
1298 uint32_t aflags = ARC_FLAG_NOWAIT;
1299 int err, zio_flags = 0;
1300
1301 DB_DNODE_ENTER(db);
1302 dn = DB_DNODE(db);
1303 ASSERT(!zfs_refcount_is_zero(&db->db_holds));
1304 ASSERT(MUTEX_HELD(&db->db_mtx));
1305 ASSERT(db->db_state == DB_UNCACHED);
1306 ASSERT(db->db_buf == NULL);
1307 ASSERT(db->db_parent == NULL ||
1308 RW_LOCK_HELD(&db->db_parent->db_rwlock));
1309
1310 if (db->db_blkid == DMU_BONUS_BLKID) {
1311 /*
1312 * The bonus length stored in the dnode may be less than
1313 * the maximum available space in the bonus buffer.
1314 */
1315 int bonuslen = MIN(dn->dn_bonuslen, dn->dn_phys->dn_bonuslen);
1316 int max_bonuslen = DN_SLOTS_TO_BONUSLEN(dn->dn_num_slots);
1317
1318 /* if the underlying dnode block is encrypted, decrypt it */
1319 err = dbuf_read_verify_dnode_crypt(db, flags);
1320 if (err != 0) {
1321 DB_DNODE_EXIT(db);
1322 mutex_exit(&db->db_mtx);
1323 return (err);
1324 }
1325
1326 ASSERT3U(bonuslen, <=, db->db.db_size);
1327 db->db.db_data = kmem_alloc(max_bonuslen, KM_SLEEP);
1328 arc_space_consume(max_bonuslen, ARC_SPACE_BONUS);
1329 if (bonuslen < max_bonuslen)
1330 bzero(db->db.db_data, max_bonuslen);
1331 if (bonuslen)
1332 bcopy(DN_BONUS(dn->dn_phys), db->db.db_data, bonuslen);
1333 DB_DNODE_EXIT(db);
1334 db->db_state = DB_CACHED;
1335 mutex_exit(&db->db_mtx);
1336 dmu_buf_unlock_parent(db, dblt, tag);
1337 return (0);
1338 }
1339
1340 /*
1341 * Recheck BP_IS_HOLE() after dnode_block_freed() in case dnode_sync()
1342 * processes the delete record and clears the bp while we are waiting
1343 * for the dn_mtx (resulting in a "no" from block_freed).
1344 */
1345 if (db->db_blkptr == NULL || BP_IS_HOLE(db->db_blkptr) ||
1346 (db->db_level == 0 && (dnode_block_freed(dn, db->db_blkid) ||
1347 BP_IS_HOLE(db->db_blkptr)))) {
1348 arc_buf_contents_t type = DBUF_GET_BUFC_TYPE(db);
1349
1350 dbuf_set_data(db, arc_alloc_buf(db->db_objset->os_spa, db, type,
1351 db->db.db_size));
1352 bzero(db->db.db_data, db->db.db_size);
1353
1354 if (db->db_blkptr != NULL && db->db_level > 0 &&
1355 BP_IS_HOLE(db->db_blkptr) &&
1356 db->db_blkptr->blk_birth != 0) {
1357 blkptr_t *bps = db->db.db_data;
1358 for (int i = 0; i < ((1 <<
1359 DB_DNODE(db)->dn_indblkshift) / sizeof (blkptr_t));
1360 i++) {
1361 blkptr_t *bp = &bps[i];
1362 ASSERT3U(BP_GET_LSIZE(db->db_blkptr), ==,
1363 1 << dn->dn_indblkshift);
1364 BP_SET_LSIZE(bp,
1365 BP_GET_LEVEL(db->db_blkptr) == 1 ?
1366 dn->dn_datablksz :
1367 BP_GET_LSIZE(db->db_blkptr));
1368 BP_SET_TYPE(bp, BP_GET_TYPE(db->db_blkptr));
1369 BP_SET_LEVEL(bp,
1370 BP_GET_LEVEL(db->db_blkptr) - 1);
1371 BP_SET_BIRTH(bp, db->db_blkptr->blk_birth, 0);
1372 }
1373 }
1374 DB_DNODE_EXIT(db);
1375 db->db_state = DB_CACHED;
1376 mutex_exit(&db->db_mtx);
1377 dmu_buf_unlock_parent(db, dblt, tag);
1378 return (0);
1379 }
1380
1381 /*
1382 * Any attempt to read a redacted block should result in an error. This
1383 * will never happen under normal conditions, but can be useful for
1384 * debugging purposes.
1385 */
1386 if (BP_IS_REDACTED(db->db_blkptr)) {
1387 ASSERT(dsl_dataset_feature_is_active(
1388 db->db_objset->os_dsl_dataset,
1389 SPA_FEATURE_REDACTED_DATASETS));
1390 DB_DNODE_EXIT(db);
1391 mutex_exit(&db->db_mtx);
1392 return (SET_ERROR(EIO));
1393 }
1394
1395
1396 SET_BOOKMARK(&zb, dmu_objset_id(db->db_objset),
1397 db->db.db_object, db->db_level, db->db_blkid);
1398
1399 /*
1400 * All bps of an encrypted os should have the encryption bit set.
1401 * If this is not true it indicates tampering and we report an error.
1402 */
1403 if (db->db_objset->os_encrypted && !BP_USES_CRYPT(db->db_blkptr)) {
1404 spa_log_error(db->db_objset->os_spa, &zb);
1405 zfs_panic_recover("unencrypted block in encrypted "
1406 "object set %llu", dmu_objset_id(db->db_objset));
1407 DB_DNODE_EXIT(db);
1408 mutex_exit(&db->db_mtx);
1409 dmu_buf_unlock_parent(db, dblt, tag);
1410 return (SET_ERROR(EIO));
1411 }
1412
1413 err = dbuf_read_verify_dnode_crypt(db, flags);
1414 if (err != 0) {
1415 DB_DNODE_EXIT(db);
1416 dmu_buf_unlock_parent(db, dblt, tag);
1417 mutex_exit(&db->db_mtx);
1418 return (err);
1419 }
1420
1421 DB_DNODE_EXIT(db);
1422
1423 db->db_state = DB_READ;
1424 mutex_exit(&db->db_mtx);
1425
1426 if (DBUF_IS_L2CACHEABLE(db))
1427 aflags |= ARC_FLAG_L2CACHE;
1428
1429 dbuf_add_ref(db, NULL);
1430
1431 zio_flags = (flags & DB_RF_CANFAIL) ?
1432 ZIO_FLAG_CANFAIL : ZIO_FLAG_MUSTSUCCEED;
1433
1434 if ((flags & DB_RF_NO_DECRYPT) && BP_IS_PROTECTED(db->db_blkptr))
1435 zio_flags |= ZIO_FLAG_RAW;
1436 /*
1437 * The zio layer will copy the provided blkptr later, but we need to
1438 * do this now so that we can release the parent's rwlock. We have to
1439 * do that now so that if dbuf_read_done is called synchronously (on
1440 * an l1 cache hit) we don't acquire the db_mtx while holding the
1441 * parent's rwlock, which would be a lock ordering violation.
1442 */
1443 blkptr_t bp = *db->db_blkptr;
1444 dmu_buf_unlock_parent(db, dblt, tag);
1445 (void) arc_read(zio, db->db_objset->os_spa, &bp,
1446 dbuf_read_done, db, ZIO_PRIORITY_SYNC_READ, zio_flags,
1447 &aflags, &zb);
1448 return (err);
1449 }
1450
1451 /*
1452 * This is our just-in-time copy function. It makes a copy of buffers that
1453 * have been modified in a previous transaction group before we access them in
1454 * the current active group.
1455 *
1456 * This function is used in three places: when we are dirtying a buffer for the
1457 * first time in a txg, when we are freeing a range in a dnode that includes
1458 * this buffer, and when we are accessing a buffer which was received compressed
1459 * and later referenced in a WRITE_BYREF record.
1460 *
1461 * Note that when we are called from dbuf_free_range() we do not put a hold on
1462 * the buffer, we just traverse the active dbuf list for the dnode.
1463 */
1464 static void
1465 dbuf_fix_old_data(dmu_buf_impl_t *db, uint64_t txg)
1466 {
1467 dbuf_dirty_record_t *dr = list_head(&db->db_dirty_records);
1468
1469 ASSERT(MUTEX_HELD(&db->db_mtx));
1470 ASSERT(db->db.db_data != NULL);
1471 ASSERT(db->db_level == 0);
1472 ASSERT(db->db.db_object != DMU_META_DNODE_OBJECT);
1473
1474 if (dr == NULL ||
1475 (dr->dt.dl.dr_data !=
1476 ((db->db_blkid == DMU_BONUS_BLKID) ? db->db.db_data : db->db_buf)))
1477 return;
1478
1479 /*
1480 * If the last dirty record for this dbuf has not yet synced
1481 * and its referencing the dbuf data, either:
1482 * reset the reference to point to a new copy,
1483 * or (if there a no active holders)
1484 * just null out the current db_data pointer.
1485 */
1486 ASSERT3U(dr->dr_txg, >=, txg - 2);
1487 if (db->db_blkid == DMU_BONUS_BLKID) {
1488 dnode_t *dn = DB_DNODE(db);
1489 int bonuslen = DN_SLOTS_TO_BONUSLEN(dn->dn_num_slots);
1490 dr->dt.dl.dr_data = kmem_alloc(bonuslen, KM_SLEEP);
1491 arc_space_consume(bonuslen, ARC_SPACE_BONUS);
1492 bcopy(db->db.db_data, dr->dt.dl.dr_data, bonuslen);
1493 } else if (zfs_refcount_count(&db->db_holds) > db->db_dirtycnt) {
1494 dnode_t *dn = DB_DNODE(db);
1495 int size = arc_buf_size(db->db_buf);
1496 arc_buf_contents_t type = DBUF_GET_BUFC_TYPE(db);
1497 spa_t *spa = db->db_objset->os_spa;
1498 enum zio_compress compress_type =
1499 arc_get_compression(db->db_buf);
1500
1501 if (arc_is_encrypted(db->db_buf)) {
1502 boolean_t byteorder;
1503 uint8_t salt[ZIO_DATA_SALT_LEN];
1504 uint8_t iv[ZIO_DATA_IV_LEN];
1505 uint8_t mac[ZIO_DATA_MAC_LEN];
1506
1507 arc_get_raw_params(db->db_buf, &byteorder, salt,
1508 iv, mac);
1509 dr->dt.dl.dr_data = arc_alloc_raw_buf(spa, db,
1510 dmu_objset_id(dn->dn_objset), byteorder, salt, iv,
1511 mac, dn->dn_type, size, arc_buf_lsize(db->db_buf),
1512 compress_type);
1513 } else if (compress_type != ZIO_COMPRESS_OFF) {
1514 ASSERT3U(type, ==, ARC_BUFC_DATA);
1515 dr->dt.dl.dr_data = arc_alloc_compressed_buf(spa, db,
1516 size, arc_buf_lsize(db->db_buf), compress_type);
1517 } else {
1518 dr->dt.dl.dr_data = arc_alloc_buf(spa, db, type, size);
1519 }
1520 bcopy(db->db.db_data, dr->dt.dl.dr_data->b_data, size);
1521 } else {
1522 db->db_buf = NULL;
1523 dbuf_clear_data(db);
1524 }
1525 }
1526
1527 int
1528 dbuf_read(dmu_buf_impl_t *db, zio_t *zio, uint32_t flags)
1529 {
1530 int err = 0;
1531 boolean_t prefetch;
1532 dnode_t *dn;
1533
1534 /*
1535 * We don't have to hold the mutex to check db_state because it
1536 * can't be freed while we have a hold on the buffer.
1537 */
1538 ASSERT(!zfs_refcount_is_zero(&db->db_holds));
1539
1540 if (db->db_state == DB_NOFILL)
1541 return (SET_ERROR(EIO));
1542
1543 DB_DNODE_ENTER(db);
1544 dn = DB_DNODE(db);
1545
1546 prefetch = db->db_level == 0 && db->db_blkid != DMU_BONUS_BLKID &&
1547 (flags & DB_RF_NOPREFETCH) == 0 && dn != NULL &&
1548 DBUF_IS_CACHEABLE(db);
1549
1550 mutex_enter(&db->db_mtx);
1551 if (db->db_state == DB_CACHED) {
1552 spa_t *spa = dn->dn_objset->os_spa;
1553
1554 /*
1555 * Ensure that this block's dnode has been decrypted if
1556 * the caller has requested decrypted data.
1557 */
1558 err = dbuf_read_verify_dnode_crypt(db, flags);
1559
1560 /*
1561 * If the arc buf is compressed or encrypted and the caller
1562 * requested uncompressed data, we need to untransform it
1563 * before returning. We also call arc_untransform() on any
1564 * unauthenticated blocks, which will verify their MAC if
1565 * the key is now available.
1566 */
1567 if (err == 0 && db->db_buf != NULL &&
1568 (flags & DB_RF_NO_DECRYPT) == 0 &&
1569 (arc_is_encrypted(db->db_buf) ||
1570 arc_is_unauthenticated(db->db_buf) ||
1571 arc_get_compression(db->db_buf) != ZIO_COMPRESS_OFF)) {
1572 zbookmark_phys_t zb;
1573
1574 SET_BOOKMARK(&zb, dmu_objset_id(db->db_objset),
1575 db->db.db_object, db->db_level, db->db_blkid);
1576 dbuf_fix_old_data(db, spa_syncing_txg(spa));
1577 err = arc_untransform(db->db_buf, spa, &zb, B_FALSE);
1578 dbuf_set_data(db, db->db_buf);
1579 }
1580 mutex_exit(&db->db_mtx);
1581 if (err == 0 && prefetch) {
1582 dmu_zfetch(&dn->dn_zfetch, db->db_blkid, 1, B_TRUE,
1583 flags & DB_RF_HAVESTRUCT);
1584 }
1585 DB_DNODE_EXIT(db);
1586 DBUF_STAT_BUMP(hash_hits);
1587 } else if (db->db_state == DB_UNCACHED) {
1588 spa_t *spa = dn->dn_objset->os_spa;
1589 boolean_t need_wait = B_FALSE;
1590
1591 db_lock_type_t dblt = dmu_buf_lock_parent(db, RW_READER, FTAG);
1592
1593 if (zio == NULL &&
1594 db->db_blkptr != NULL && !BP_IS_HOLE(db->db_blkptr)) {
1595 zio = zio_root(spa, NULL, NULL, ZIO_FLAG_CANFAIL);
1596 need_wait = B_TRUE;
1597 }
1598 err = dbuf_read_impl(db, zio, flags, dblt, FTAG);
1599 /*
1600 * dbuf_read_impl has dropped db_mtx and our parent's rwlock
1601 * for us
1602 */
1603 if (!err && prefetch) {
1604 dmu_zfetch(&dn->dn_zfetch, db->db_blkid, 1, B_TRUE,
1605 flags & DB_RF_HAVESTRUCT);
1606 }
1607
1608 DB_DNODE_EXIT(db);
1609 DBUF_STAT_BUMP(hash_misses);
1610
1611 /*
1612 * If we created a zio_root we must execute it to avoid
1613 * leaking it, even if it isn't attached to any work due
1614 * to an error in dbuf_read_impl().
1615 */
1616 if (need_wait) {
1617 if (err == 0)
1618 err = zio_wait(zio);
1619 else
1620 VERIFY0(zio_wait(zio));
1621 }
1622 } else {
1623 /*
1624 * Another reader came in while the dbuf was in flight
1625 * between UNCACHED and CACHED. Either a writer will finish
1626 * writing the buffer (sending the dbuf to CACHED) or the
1627 * first reader's request will reach the read_done callback
1628 * and send the dbuf to CACHED. Otherwise, a failure
1629 * occurred and the dbuf went to UNCACHED.
1630 */
1631 mutex_exit(&db->db_mtx);
1632 if (prefetch) {
1633 dmu_zfetch(&dn->dn_zfetch, db->db_blkid, 1, B_TRUE,
1634 flags & DB_RF_HAVESTRUCT);
1635 }
1636 DB_DNODE_EXIT(db);
1637 DBUF_STAT_BUMP(hash_misses);
1638
1639 /* Skip the wait per the caller's request. */
1640 mutex_enter(&db->db_mtx);
1641 if ((flags & DB_RF_NEVERWAIT) == 0) {
1642 while (db->db_state == DB_READ ||
1643 db->db_state == DB_FILL) {
1644 ASSERT(db->db_state == DB_READ ||
1645 (flags & DB_RF_HAVESTRUCT) == 0);
1646 DTRACE_PROBE2(blocked__read, dmu_buf_impl_t *,
1647 db, zio_t *, zio);
1648 cv_wait(&db->db_changed, &db->db_mtx);
1649 }
1650 if (db->db_state == DB_UNCACHED)
1651 err = SET_ERROR(EIO);
1652 }
1653 mutex_exit(&db->db_mtx);
1654 }
1655
1656 return (err);
1657 }
1658
1659 static void
1660 dbuf_noread(dmu_buf_impl_t *db)
1661 {
1662 ASSERT(!zfs_refcount_is_zero(&db->db_holds));
1663 ASSERT(db->db_blkid != DMU_BONUS_BLKID);
1664 mutex_enter(&db->db_mtx);
1665 while (db->db_state == DB_READ || db->db_state == DB_FILL)
1666 cv_wait(&db->db_changed, &db->db_mtx);
1667 if (db->db_state == DB_UNCACHED) {
1668 arc_buf_contents_t type = DBUF_GET_BUFC_TYPE(db);
1669 spa_t *spa = db->db_objset->os_spa;
1670
1671 ASSERT(db->db_buf == NULL);
1672 ASSERT(db->db.db_data == NULL);
1673 dbuf_set_data(db, arc_alloc_buf(spa, db, type, db->db.db_size));
1674 db->db_state = DB_FILL;
1675 } else if (db->db_state == DB_NOFILL) {
1676 dbuf_clear_data(db);
1677 } else {
1678 ASSERT3U(db->db_state, ==, DB_CACHED);
1679 }
1680 mutex_exit(&db->db_mtx);
1681 }
1682
1683 void
1684 dbuf_unoverride(dbuf_dirty_record_t *dr)
1685 {
1686 dmu_buf_impl_t *db = dr->dr_dbuf;
1687 blkptr_t *bp = &dr->dt.dl.dr_overridden_by;
1688 uint64_t txg = dr->dr_txg;
1689
1690 ASSERT(MUTEX_HELD(&db->db_mtx));
1691 /*
1692 * This assert is valid because dmu_sync() expects to be called by
1693 * a zilog's get_data while holding a range lock. This call only
1694 * comes from dbuf_dirty() callers who must also hold a range lock.
1695 */
1696 ASSERT(dr->dt.dl.dr_override_state != DR_IN_DMU_SYNC);
1697 ASSERT(db->db_level == 0);
1698
1699 if (db->db_blkid == DMU_BONUS_BLKID ||
1700 dr->dt.dl.dr_override_state == DR_NOT_OVERRIDDEN)
1701 return;
1702
1703 ASSERT(db->db_data_pending != dr);
1704
1705 /* free this block */
1706 if (!BP_IS_HOLE(bp) && !dr->dt.dl.dr_nopwrite)
1707 zio_free(db->db_objset->os_spa, txg, bp);
1708
1709 dr->dt.dl.dr_override_state = DR_NOT_OVERRIDDEN;
1710 dr->dt.dl.dr_nopwrite = B_FALSE;
1711 dr->dt.dl.dr_has_raw_params = B_FALSE;
1712
1713 /*
1714 * Release the already-written buffer, so we leave it in
1715 * a consistent dirty state. Note that all callers are
1716 * modifying the buffer, so they will immediately do
1717 * another (redundant) arc_release(). Therefore, leave
1718 * the buf thawed to save the effort of freezing &
1719 * immediately re-thawing it.
1720 */
1721 arc_release(dr->dt.dl.dr_data, db);
1722 }
1723
1724 /*
1725 * Evict (if its unreferenced) or clear (if its referenced) any level-0
1726 * data blocks in the free range, so that any future readers will find
1727 * empty blocks.
1728 */
1729 void
1730 dbuf_free_range(dnode_t *dn, uint64_t start_blkid, uint64_t end_blkid,
1731 dmu_tx_t *tx)
1732 {
1733 dmu_buf_impl_t *db_search;
1734 dmu_buf_impl_t *db, *db_next;
1735 uint64_t txg = tx->tx_txg;
1736 avl_index_t where;
1737
1738 if (end_blkid > dn->dn_maxblkid &&
1739 !(start_blkid == DMU_SPILL_BLKID || end_blkid == DMU_SPILL_BLKID))
1740 end_blkid = dn->dn_maxblkid;
1741 dprintf_dnode(dn, "start=%llu end=%llu\n", start_blkid, end_blkid);
1742
1743 db_search = kmem_alloc(sizeof (dmu_buf_impl_t), KM_SLEEP);
1744 db_search->db_level = 0;
1745 db_search->db_blkid = start_blkid;
1746 db_search->db_state = DB_SEARCH;
1747
1748 mutex_enter(&dn->dn_dbufs_mtx);
1749 db = avl_find(&dn->dn_dbufs, db_search, &where);
1750 ASSERT3P(db, ==, NULL);
1751
1752 db = avl_nearest(&dn->dn_dbufs, where, AVL_AFTER);
1753
1754 for (; db != NULL; db = db_next) {
1755 db_next = AVL_NEXT(&dn->dn_dbufs, db);
1756 ASSERT(db->db_blkid != DMU_BONUS_BLKID);
1757
1758 if (db->db_level != 0 || db->db_blkid > end_blkid) {
1759 break;
1760 }
1761 ASSERT3U(db->db_blkid, >=, start_blkid);
1762
1763 /* found a level 0 buffer in the range */
1764 mutex_enter(&db->db_mtx);
1765 if (dbuf_undirty(db, tx)) {
1766 /* mutex has been dropped and dbuf destroyed */
1767 continue;
1768 }
1769
1770 if (db->db_state == DB_UNCACHED ||
1771 db->db_state == DB_NOFILL ||
1772 db->db_state == DB_EVICTING) {
1773 ASSERT(db->db.db_data == NULL);
1774 mutex_exit(&db->db_mtx);
1775 continue;
1776 }
1777 if (db->db_state == DB_READ || db->db_state == DB_FILL) {
1778 /* will be handled in dbuf_read_done or dbuf_rele */
1779 db->db_freed_in_flight = TRUE;
1780 mutex_exit(&db->db_mtx);
1781 continue;
1782 }
1783 if (zfs_refcount_count(&db->db_holds) == 0) {
1784 ASSERT(db->db_buf);
1785 dbuf_destroy(db);
1786 continue;
1787 }
1788 /* The dbuf is referenced */
1789
1790 if (!list_is_empty(&db->db_dirty_records)) {
1791 dbuf_dirty_record_t *dr;
1792
1793 dr = list_head(&db->db_dirty_records);
1794 if (dr->dr_txg == txg) {
1795 /*
1796 * This buffer is "in-use", re-adjust the file
1797 * size to reflect that this buffer may
1798 * contain new data when we sync.
1799 */
1800 if (db->db_blkid != DMU_SPILL_BLKID &&
1801 db->db_blkid > dn->dn_maxblkid)
1802 dn->dn_maxblkid = db->db_blkid;
1803 dbuf_unoverride(dr);
1804 } else {
1805 /*
1806 * This dbuf is not dirty in the open context.
1807 * Either uncache it (if its not referenced in
1808 * the open context) or reset its contents to
1809 * empty.
1810 */
1811 dbuf_fix_old_data(db, txg);
1812 }
1813 }
1814 /* clear the contents if its cached */
1815 if (db->db_state == DB_CACHED) {
1816 ASSERT(db->db.db_data != NULL);
1817 arc_release(db->db_buf, db);
1818 rw_enter(&db->db_rwlock, RW_WRITER);
1819 bzero(db->db.db_data, db->db.db_size);
1820 rw_exit(&db->db_rwlock);
1821 arc_buf_freeze(db->db_buf);
1822 }
1823
1824 mutex_exit(&db->db_mtx);
1825 }
1826
1827 kmem_free(db_search, sizeof (dmu_buf_impl_t));
1828 mutex_exit(&dn->dn_dbufs_mtx);
1829 }
1830
1831 void
1832 dbuf_new_size(dmu_buf_impl_t *db, int size, dmu_tx_t *tx)
1833 {
1834 arc_buf_t *buf, *obuf;
1835 dbuf_dirty_record_t *dr;
1836 int osize = db->db.db_size;
1837 arc_buf_contents_t type = DBUF_GET_BUFC_TYPE(db);
1838 dnode_t *dn;
1839
1840 ASSERT(db->db_blkid != DMU_BONUS_BLKID);
1841
1842 DB_DNODE_ENTER(db);
1843 dn = DB_DNODE(db);
1844
1845 /*
1846 * XXX we should be doing a dbuf_read, checking the return
1847 * value and returning that up to our callers
1848 */
1849 dmu_buf_will_dirty(&db->db, tx);
1850
1851 /* create the data buffer for the new block */
1852 buf = arc_alloc_buf(dn->dn_objset->os_spa, db, type, size);
1853
1854 /* copy old block data to the new block */
1855 obuf = db->db_buf;
1856 bcopy(obuf->b_data, buf->b_data, MIN(osize, size));
1857 /* zero the remainder */
1858 if (size > osize)
1859 bzero((uint8_t *)buf->b_data + osize, size - osize);
1860
1861 mutex_enter(&db->db_mtx);
1862 dbuf_set_data(db, buf);
1863 arc_buf_destroy(obuf, db);
1864 db->db.db_size = size;
1865
1866 dr = list_head(&db->db_dirty_records);
1867 if (db->db_level == 0)
1868 dr->dt.dl.dr_data = buf;
1869 ASSERT3U(dr->dr_txg, ==, tx->tx_txg);
1870 ASSERT3U(dr->dr_accounted, ==, osize);
1871 dr->dr_accounted = size;
1872 mutex_exit(&db->db_mtx);
1873
1874 dmu_objset_willuse_space(dn->dn_objset, size - osize, tx);
1875 DB_DNODE_EXIT(db);
1876 }
1877
1878 void
1879 dbuf_release_bp(dmu_buf_impl_t *db)
1880 {
1881 objset_t *os __maybe_unused = db->db_objset;
1882
1883 ASSERT(dsl_pool_sync_context(dmu_objset_pool(os)));
1884 ASSERT(arc_released(os->os_phys_buf) ||
1885 list_link_active(&os->os_dsl_dataset->ds_synced_link));
1886 ASSERT(db->db_parent == NULL || arc_released(db->db_parent->db_buf));
1887
1888 (void) arc_release(db->db_buf, db);
1889 }
1890
1891 /*
1892 * We already have a dirty record for this TXG, and we are being
1893 * dirtied again.
1894 */
1895 static void
1896 dbuf_redirty(dbuf_dirty_record_t *dr)
1897 {
1898 dmu_buf_impl_t *db = dr->dr_dbuf;
1899
1900 ASSERT(MUTEX_HELD(&db->db_mtx));
1901
1902 if (db->db_level == 0 && db->db_blkid != DMU_BONUS_BLKID) {
1903 /*
1904 * If this buffer has already been written out,
1905 * we now need to reset its state.
1906 */
1907 dbuf_unoverride(dr);
1908 if (db->db.db_object != DMU_META_DNODE_OBJECT &&
1909 db->db_state != DB_NOFILL) {
1910 /* Already released on initial dirty, so just thaw. */
1911 ASSERT(arc_released(db->db_buf));
1912 arc_buf_thaw(db->db_buf);
1913 }
1914 }
1915 }
1916
1917 dbuf_dirty_record_t *
1918 dbuf_dirty(dmu_buf_impl_t *db, dmu_tx_t *tx)
1919 {
1920 dnode_t *dn;
1921 objset_t *os;
1922 dbuf_dirty_record_t *dr, *dr_next, *dr_head;
1923 int txgoff = tx->tx_txg & TXG_MASK;
1924 boolean_t drop_struct_rwlock = B_FALSE;
1925
1926 ASSERT(tx->tx_txg != 0);
1927 ASSERT(!zfs_refcount_is_zero(&db->db_holds));
1928 DMU_TX_DIRTY_BUF(tx, db);
1929
1930 DB_DNODE_ENTER(db);
1931 dn = DB_DNODE(db);
1932 /*
1933 * Shouldn't dirty a regular buffer in syncing context. Private
1934 * objects may be dirtied in syncing context, but only if they
1935 * were already pre-dirtied in open context.
1936 */
1937 #ifdef DEBUG
1938 if (dn->dn_objset->os_dsl_dataset != NULL) {
1939 rrw_enter(&dn->dn_objset->os_dsl_dataset->ds_bp_rwlock,
1940 RW_READER, FTAG);
1941 }
1942 ASSERT(!dmu_tx_is_syncing(tx) ||
1943 BP_IS_HOLE(dn->dn_objset->os_rootbp) ||
1944 DMU_OBJECT_IS_SPECIAL(dn->dn_object) ||
1945 dn->dn_objset->os_dsl_dataset == NULL);
1946 if (dn->dn_objset->os_dsl_dataset != NULL)
1947 rrw_exit(&dn->dn_objset->os_dsl_dataset->ds_bp_rwlock, FTAG);
1948 #endif
1949 /*
1950 * We make this assert for private objects as well, but after we
1951 * check if we're already dirty. They are allowed to re-dirty
1952 * in syncing context.
1953 */
1954 ASSERT(dn->dn_object == DMU_META_DNODE_OBJECT ||
1955 dn->dn_dirtyctx == DN_UNDIRTIED || dn->dn_dirtyctx ==
1956 (dmu_tx_is_syncing(tx) ? DN_DIRTY_SYNC : DN_DIRTY_OPEN));
1957
1958 mutex_enter(&db->db_mtx);
1959 /*
1960 * XXX make this true for indirects too? The problem is that
1961 * transactions created with dmu_tx_create_assigned() from
1962 * syncing context don't bother holding ahead.
1963 */
1964 ASSERT(db->db_level != 0 ||
1965 db->db_state == DB_CACHED || db->db_state == DB_FILL ||
1966 db->db_state == DB_NOFILL);
1967
1968 mutex_enter(&dn->dn_mtx);
1969 /*
1970 * Don't set dirtyctx to SYNC if we're just modifying this as we
1971 * initialize the objset.
1972 */
1973 if (dn->dn_dirtyctx == DN_UNDIRTIED) {
1974 if (dn->dn_objset->os_dsl_dataset != NULL) {
1975 rrw_enter(&dn->dn_objset->os_dsl_dataset->ds_bp_rwlock,
1976 RW_READER, FTAG);
1977 }
1978 if (!BP_IS_HOLE(dn->dn_objset->os_rootbp)) {
1979 dn->dn_dirtyctx = (dmu_tx_is_syncing(tx) ?
1980 DN_DIRTY_SYNC : DN_DIRTY_OPEN);
1981 ASSERT(dn->dn_dirtyctx_firstset == NULL);
1982 dn->dn_dirtyctx_firstset = kmem_alloc(1, KM_SLEEP);
1983 }
1984 if (dn->dn_objset->os_dsl_dataset != NULL) {
1985 rrw_exit(&dn->dn_objset->os_dsl_dataset->ds_bp_rwlock,
1986 FTAG);
1987 }
1988 }
1989
1990 if (tx->tx_txg > dn->dn_dirty_txg)
1991 dn->dn_dirty_txg = tx->tx_txg;
1992 mutex_exit(&dn->dn_mtx);
1993
1994 if (db->db_blkid == DMU_SPILL_BLKID)
1995 dn->dn_have_spill = B_TRUE;
1996
1997 /*
1998 * If this buffer is already dirty, we're done.
1999 */
2000 dr_head = list_head(&db->db_dirty_records);
2001 ASSERT(dr_head == NULL || dr_head->dr_txg <= tx->tx_txg ||
2002 db->db.db_object == DMU_META_DNODE_OBJECT);
2003 dr_next = dbuf_find_dirty_lte(db, tx->tx_txg);
2004 if (dr_next && dr_next->dr_txg == tx->tx_txg) {
2005 DB_DNODE_EXIT(db);
2006
2007 dbuf_redirty(dr_next);
2008 mutex_exit(&db->db_mtx);
2009 return (dr_next);
2010 }
2011
2012 /*
2013 * Only valid if not already dirty.
2014 */
2015 ASSERT(dn->dn_object == 0 ||
2016 dn->dn_dirtyctx == DN_UNDIRTIED || dn->dn_dirtyctx ==
2017 (dmu_tx_is_syncing(tx) ? DN_DIRTY_SYNC : DN_DIRTY_OPEN));
2018
2019 ASSERT3U(dn->dn_nlevels, >, db->db_level);
2020
2021 /*
2022 * We should only be dirtying in syncing context if it's the
2023 * mos or we're initializing the os or it's a special object.
2024 * However, we are allowed to dirty in syncing context provided
2025 * we already dirtied it in open context. Hence we must make
2026 * this assertion only if we're not already dirty.
2027 */
2028 os = dn->dn_objset;
2029 VERIFY3U(tx->tx_txg, <=, spa_final_dirty_txg(os->os_spa));
2030 #ifdef DEBUG
2031 if (dn->dn_objset->os_dsl_dataset != NULL)
2032 rrw_enter(&os->os_dsl_dataset->ds_bp_rwlock, RW_READER, FTAG);
2033 ASSERT(!dmu_tx_is_syncing(tx) || DMU_OBJECT_IS_SPECIAL(dn->dn_object) ||
2034 os->os_dsl_dataset == NULL || BP_IS_HOLE(os->os_rootbp));
2035 if (dn->dn_objset->os_dsl_dataset != NULL)
2036 rrw_exit(&os->os_dsl_dataset->ds_bp_rwlock, FTAG);
2037 #endif
2038 ASSERT(db->db.db_size != 0);
2039
2040 dprintf_dbuf(db, "size=%llx\n", (u_longlong_t)db->db.db_size);
2041
2042 if (db->db_blkid != DMU_BONUS_BLKID) {
2043 dmu_objset_willuse_space(os, db->db.db_size, tx);
2044 }
2045
2046 /*
2047 * If this buffer is dirty in an old transaction group we need
2048 * to make a copy of it so that the changes we make in this
2049 * transaction group won't leak out when we sync the older txg.
2050 */
2051 dr = kmem_zalloc(sizeof (dbuf_dirty_record_t), KM_SLEEP);
2052 list_link_init(&dr->dr_dirty_node);
2053 list_link_init(&dr->dr_dbuf_node);
2054 if (db->db_level == 0) {
2055 void *data_old = db->db_buf;
2056
2057 if (db->db_state != DB_NOFILL) {
2058 if (db->db_blkid == DMU_BONUS_BLKID) {
2059 dbuf_fix_old_data(db, tx->tx_txg);
2060 data_old = db->db.db_data;
2061 } else if (db->db.db_object != DMU_META_DNODE_OBJECT) {
2062 /*
2063 * Release the data buffer from the cache so
2064 * that we can modify it without impacting
2065 * possible other users of this cached data
2066 * block. Note that indirect blocks and
2067 * private objects are not released until the
2068 * syncing state (since they are only modified
2069 * then).
2070 */
2071 arc_release(db->db_buf, db);
2072 dbuf_fix_old_data(db, tx->tx_txg);
2073 data_old = db->db_buf;
2074 }
2075 ASSERT(data_old != NULL);
2076 }
2077 dr->dt.dl.dr_data = data_old;
2078 } else {
2079 mutex_init(&dr->dt.di.dr_mtx, NULL, MUTEX_NOLOCKDEP, NULL);
2080 list_create(&dr->dt.di.dr_children,
2081 sizeof (dbuf_dirty_record_t),
2082 offsetof(dbuf_dirty_record_t, dr_dirty_node));
2083 }
2084 if (db->db_blkid != DMU_BONUS_BLKID)
2085 dr->dr_accounted = db->db.db_size;
2086 dr->dr_dbuf = db;
2087 dr->dr_txg = tx->tx_txg;
2088 list_insert_before(&db->db_dirty_records, dr_next, dr);
2089
2090 /*
2091 * We could have been freed_in_flight between the dbuf_noread
2092 * and dbuf_dirty. We win, as though the dbuf_noread() had
2093 * happened after the free.
2094 */
2095 if (db->db_level == 0 && db->db_blkid != DMU_BONUS_BLKID &&
2096 db->db_blkid != DMU_SPILL_BLKID) {
2097 mutex_enter(&dn->dn_mtx);
2098 if (dn->dn_free_ranges[txgoff] != NULL) {
2099 range_tree_clear(dn->dn_free_ranges[txgoff],
2100 db->db_blkid, 1);
2101 }
2102 mutex_exit(&dn->dn_mtx);
2103 db->db_freed_in_flight = FALSE;
2104 }
2105
2106 /*
2107 * This buffer is now part of this txg
2108 */
2109 dbuf_add_ref(db, (void *)(uintptr_t)tx->tx_txg);
2110 db->db_dirtycnt += 1;
2111 ASSERT3U(db->db_dirtycnt, <=, 3);
2112
2113 mutex_exit(&db->db_mtx);
2114
2115 if (db->db_blkid == DMU_BONUS_BLKID ||
2116 db->db_blkid == DMU_SPILL_BLKID) {
2117 mutex_enter(&dn->dn_mtx);
2118 ASSERT(!list_link_active(&dr->dr_dirty_node));
2119 list_insert_tail(&dn->dn_dirty_records[txgoff], dr);
2120 mutex_exit(&dn->dn_mtx);
2121 dnode_setdirty(dn, tx);
2122 DB_DNODE_EXIT(db);
2123 return (dr);
2124 }
2125
2126 if (!RW_WRITE_HELD(&dn->dn_struct_rwlock)) {
2127 rw_enter(&dn->dn_struct_rwlock, RW_READER);
2128 drop_struct_rwlock = B_TRUE;
2129 }
2130
2131 /*
2132 * If we are overwriting a dedup BP, then unless it is snapshotted,
2133 * when we get to syncing context we will need to decrement its
2134 * refcount in the DDT. Prefetch the relevant DDT block so that
2135 * syncing context won't have to wait for the i/o.
2136 */
2137 if (db->db_blkptr != NULL) {
2138 db_lock_type_t dblt = dmu_buf_lock_parent(db, RW_READER, FTAG);
2139 ddt_prefetch(os->os_spa, db->db_blkptr);
2140 dmu_buf_unlock_parent(db, dblt, FTAG);
2141 }
2142
2143 /*
2144 * We need to hold the dn_struct_rwlock to make this assertion,
2145 * because it protects dn_phys / dn_next_nlevels from changing.
2146 */
2147 ASSERT((dn->dn_phys->dn_nlevels == 0 && db->db_level == 0) ||
2148 dn->dn_phys->dn_nlevels > db->db_level ||
2149 dn->dn_next_nlevels[txgoff] > db->db_level ||
2150 dn->dn_next_nlevels[(tx->tx_txg-1) & TXG_MASK] > db->db_level ||
2151 dn->dn_next_nlevels[(tx->tx_txg-2) & TXG_MASK] > db->db_level);
2152
2153
2154 if (db->db_level == 0) {
2155 ASSERT(!db->db_objset->os_raw_receive ||
2156 dn->dn_maxblkid >= db->db_blkid);
2157 dnode_new_blkid(dn, db->db_blkid, tx,
2158 drop_struct_rwlock, B_FALSE);
2159 ASSERT(dn->dn_maxblkid >= db->db_blkid);
2160 }
2161
2162 if (db->db_level+1 < dn->dn_nlevels) {
2163 dmu_buf_impl_t *parent = db->db_parent;
2164 dbuf_dirty_record_t *di;
2165 int parent_held = FALSE;
2166
2167 if (db->db_parent == NULL || db->db_parent == dn->dn_dbuf) {
2168 int epbs = dn->dn_indblkshift - SPA_BLKPTRSHIFT;
2169 parent = dbuf_hold_level(dn, db->db_level + 1,
2170 db->db_blkid >> epbs, FTAG);
2171 ASSERT(parent != NULL);
2172 parent_held = TRUE;
2173 }
2174 if (drop_struct_rwlock)
2175 rw_exit(&dn->dn_struct_rwlock);
2176 ASSERT3U(db->db_level + 1, ==, parent->db_level);
2177 di = dbuf_dirty(parent, tx);
2178 if (parent_held)
2179 dbuf_rele(parent, FTAG);
2180
2181 mutex_enter(&db->db_mtx);
2182 /*
2183 * Since we've dropped the mutex, it's possible that
2184 * dbuf_undirty() might have changed this out from under us.
2185 */
2186 if (list_head(&db->db_dirty_records) == dr ||
2187 dn->dn_object == DMU_META_DNODE_OBJECT) {
2188 mutex_enter(&di->dt.di.dr_mtx);
2189 ASSERT3U(di->dr_txg, ==, tx->tx_txg);
2190 ASSERT(!list_link_active(&dr->dr_dirty_node));
2191 list_insert_tail(&di->dt.di.dr_children, dr);
2192 mutex_exit(&di->dt.di.dr_mtx);
2193 dr->dr_parent = di;
2194 }
2195 mutex_exit(&db->db_mtx);
2196 } else {
2197 ASSERT(db->db_level + 1 == dn->dn_nlevels);
2198 ASSERT(db->db_blkid < dn->dn_nblkptr);
2199 ASSERT(db->db_parent == NULL || db->db_parent == dn->dn_dbuf);
2200 mutex_enter(&dn->dn_mtx);
2201 ASSERT(!list_link_active(&dr->dr_dirty_node));
2202 list_insert_tail(&dn->dn_dirty_records[txgoff], dr);
2203 mutex_exit(&dn->dn_mtx);
2204 if (drop_struct_rwlock)
2205 rw_exit(&dn->dn_struct_rwlock);
2206 }
2207
2208 dnode_setdirty(dn, tx);
2209 DB_DNODE_EXIT(db);
2210 return (dr);
2211 }
2212
2213 /*
2214 * Undirty a buffer in the transaction group referenced by the given
2215 * transaction. Return whether this evicted the dbuf.
2216 */
2217 static boolean_t
2218 dbuf_undirty(dmu_buf_impl_t *db, dmu_tx_t *tx)
2219 {
2220 dnode_t *dn;
2221 uint64_t txg = tx->tx_txg;
2222 dbuf_dirty_record_t *dr;
2223
2224 ASSERT(txg != 0);
2225
2226 /*
2227 * Due to our use of dn_nlevels below, this can only be called
2228 * in open context, unless we are operating on the MOS.
2229 * From syncing context, dn_nlevels may be different from the
2230 * dn_nlevels used when dbuf was dirtied.
2231 */
2232 ASSERT(db->db_objset ==
2233 dmu_objset_pool(db->db_objset)->dp_meta_objset ||
2234 txg != spa_syncing_txg(dmu_objset_spa(db->db_objset)));
2235 ASSERT(db->db_blkid != DMU_BONUS_BLKID);
2236 ASSERT0(db->db_level);
2237 ASSERT(MUTEX_HELD(&db->db_mtx));
2238
2239 /*
2240 * If this buffer is not dirty, we're done.
2241 */
2242 dr = dbuf_find_dirty_eq(db, txg);
2243 if (dr == NULL)
2244 return (B_FALSE);
2245 ASSERT(dr->dr_dbuf == db);
2246
2247 DB_DNODE_ENTER(db);
2248 dn = DB_DNODE(db);
2249
2250 dprintf_dbuf(db, "size=%llx\n", (u_longlong_t)db->db.db_size);
2251
2252 ASSERT(db->db.db_size != 0);
2253
2254 dsl_pool_undirty_space(dmu_objset_pool(dn->dn_objset),
2255 dr->dr_accounted, txg);
2256
2257 list_remove(&db->db_dirty_records, dr);
2258
2259 /*
2260 * Note that there are three places in dbuf_dirty()
2261 * where this dirty record may be put on a list.
2262 * Make sure to do a list_remove corresponding to
2263 * every one of those list_insert calls.
2264 */
2265 if (dr->dr_parent) {
2266 mutex_enter(&dr->dr_parent->dt.di.dr_mtx);
2267 list_remove(&dr->dr_parent->dt.di.dr_children, dr);
2268 mutex_exit(&dr->dr_parent->dt.di.dr_mtx);
2269 } else if (db->db_blkid == DMU_SPILL_BLKID ||
2270 db->db_level + 1 == dn->dn_nlevels) {
2271 ASSERT(db->db_blkptr == NULL || db->db_parent == dn->dn_dbuf);
2272 mutex_enter(&dn->dn_mtx);
2273 list_remove(&dn->dn_dirty_records[txg & TXG_MASK], dr);
2274 mutex_exit(&dn->dn_mtx);
2275 }
2276 DB_DNODE_EXIT(db);
2277
2278 if (db->db_state != DB_NOFILL) {
2279 dbuf_unoverride(dr);
2280
2281 ASSERT(db->db_buf != NULL);
2282 ASSERT(dr->dt.dl.dr_data != NULL);
2283 if (dr->dt.dl.dr_data != db->db_buf)
2284 arc_buf_destroy(dr->dt.dl.dr_data, db);
2285 }
2286
2287 kmem_free(dr, sizeof (dbuf_dirty_record_t));
2288
2289 ASSERT(db->db_dirtycnt > 0);
2290 db->db_dirtycnt -= 1;
2291
2292 if (zfs_refcount_remove(&db->db_holds, (void *)(uintptr_t)txg) == 0) {
2293 ASSERT(db->db_state == DB_NOFILL || arc_released(db->db_buf));
2294 dbuf_destroy(db);
2295 return (B_TRUE);
2296 }
2297
2298 return (B_FALSE);
2299 }
2300
2301 static void
2302 dmu_buf_will_dirty_impl(dmu_buf_t *db_fake, int flags, dmu_tx_t *tx)
2303 {
2304 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
2305
2306 ASSERT(tx->tx_txg != 0);
2307 ASSERT(!zfs_refcount_is_zero(&db->db_holds));
2308
2309 /*
2310 * Quick check for dirtiness. For already dirty blocks, this
2311 * reduces runtime of this function by >90%, and overall performance
2312 * by 50% for some workloads (e.g. file deletion with indirect blocks
2313 * cached).
2314 */
2315 mutex_enter(&db->db_mtx);
2316
2317 if (db->db_state == DB_CACHED) {
2318 dbuf_dirty_record_t *dr = dbuf_find_dirty_eq(db, tx->tx_txg);
2319 /*
2320 * It's possible that it is already dirty but not cached,
2321 * because there are some calls to dbuf_dirty() that don't
2322 * go through dmu_buf_will_dirty().
2323 */
2324 if (dr != NULL) {
2325 /* This dbuf is already dirty and cached. */
2326 dbuf_redirty(dr);
2327 mutex_exit(&db->db_mtx);
2328 return;
2329 }
2330 }
2331 mutex_exit(&db->db_mtx);
2332
2333 DB_DNODE_ENTER(db);
2334 if (RW_WRITE_HELD(&DB_DNODE(db)->dn_struct_rwlock))
2335 flags |= DB_RF_HAVESTRUCT;
2336 DB_DNODE_EXIT(db);
2337 (void) dbuf_read(db, NULL, flags);
2338 (void) dbuf_dirty(db, tx);
2339 }
2340
2341 void
2342 dmu_buf_will_dirty(dmu_buf_t *db_fake, dmu_tx_t *tx)
2343 {
2344 dmu_buf_will_dirty_impl(db_fake,
2345 DB_RF_MUST_SUCCEED | DB_RF_NOPREFETCH, tx);
2346 }
2347
2348 boolean_t
2349 dmu_buf_is_dirty(dmu_buf_t *db_fake, dmu_tx_t *tx)
2350 {
2351 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
2352 dbuf_dirty_record_t *dr;
2353
2354 mutex_enter(&db->db_mtx);
2355 dr = dbuf_find_dirty_eq(db, tx->tx_txg);
2356 mutex_exit(&db->db_mtx);
2357 return (dr != NULL);
2358 }
2359
2360 void
2361 dmu_buf_will_not_fill(dmu_buf_t *db_fake, dmu_tx_t *tx)
2362 {
2363 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
2364
2365 db->db_state = DB_NOFILL;
2366
2367 dmu_buf_will_fill(db_fake, tx);
2368 }
2369
2370 void
2371 dmu_buf_will_fill(dmu_buf_t *db_fake, dmu_tx_t *tx)
2372 {
2373 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
2374
2375 ASSERT(db->db_blkid != DMU_BONUS_BLKID);
2376 ASSERT(tx->tx_txg != 0);
2377 ASSERT(db->db_level == 0);
2378 ASSERT(!zfs_refcount_is_zero(&db->db_holds));
2379
2380 ASSERT(db->db.db_object != DMU_META_DNODE_OBJECT ||
2381 dmu_tx_private_ok(tx));
2382
2383 dbuf_noread(db);
2384 (void) dbuf_dirty(db, tx);
2385 }
2386
2387 /*
2388 * This function is effectively the same as dmu_buf_will_dirty(), but
2389 * indicates the caller expects raw encrypted data in the db, and provides
2390 * the crypt params (byteorder, salt, iv, mac) which should be stored in the
2391 * blkptr_t when this dbuf is written. This is only used for blocks of
2392 * dnodes, during raw receive.
2393 */
2394 void
2395 dmu_buf_set_crypt_params(dmu_buf_t *db_fake, boolean_t byteorder,
2396 const uint8_t *salt, const uint8_t *iv, const uint8_t *mac, dmu_tx_t *tx)
2397 {
2398 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
2399 dbuf_dirty_record_t *dr;
2400
2401 /*
2402 * dr_has_raw_params is only processed for blocks of dnodes
2403 * (see dbuf_sync_dnode_leaf_crypt()).
2404 */
2405 ASSERT3U(db->db.db_object, ==, DMU_META_DNODE_OBJECT);
2406 ASSERT3U(db->db_level, ==, 0);
2407 ASSERT(db->db_objset->os_raw_receive);
2408
2409 dmu_buf_will_dirty_impl(db_fake,
2410 DB_RF_MUST_SUCCEED | DB_RF_NOPREFETCH | DB_RF_NO_DECRYPT, tx);
2411
2412 dr = dbuf_find_dirty_eq(db, tx->tx_txg);
2413
2414 ASSERT3P(dr, !=, NULL);
2415
2416 dr->dt.dl.dr_has_raw_params = B_TRUE;
2417 dr->dt.dl.dr_byteorder = byteorder;
2418 bcopy(salt, dr->dt.dl.dr_salt, ZIO_DATA_SALT_LEN);
2419 bcopy(iv, dr->dt.dl.dr_iv, ZIO_DATA_IV_LEN);
2420 bcopy(mac, dr->dt.dl.dr_mac, ZIO_DATA_MAC_LEN);
2421 }
2422
2423 static void
2424 dbuf_override_impl(dmu_buf_impl_t *db, const blkptr_t *bp, dmu_tx_t *tx)
2425 {
2426 struct dirty_leaf *dl;
2427 dbuf_dirty_record_t *dr;
2428
2429 dr = list_head(&db->db_dirty_records);
2430 ASSERT3U(dr->dr_txg, ==, tx->tx_txg);
2431 dl = &dr->dt.dl;
2432 dl->dr_overridden_by = *bp;
2433 dl->dr_override_state = DR_OVERRIDDEN;
2434 dl->dr_overridden_by.blk_birth = dr->dr_txg;
2435 }
2436
2437 /* ARGSUSED */
2438 void
2439 dmu_buf_fill_done(dmu_buf_t *dbuf, dmu_tx_t *tx)
2440 {
2441 dmu_buf_impl_t *db = (dmu_buf_impl_t *)dbuf;
2442 mutex_enter(&db->db_mtx);
2443 DBUF_VERIFY(db);
2444
2445 if (db->db_state == DB_FILL) {
2446 if (db->db_level == 0 && db->db_freed_in_flight) {
2447 ASSERT(db->db_blkid != DMU_BONUS_BLKID);
2448 /* we were freed while filling */
2449 /* XXX dbuf_undirty? */
2450 bzero(db->db.db_data, db->db.db_size);
2451 db->db_freed_in_flight = FALSE;
2452 }
2453 db->db_state = DB_CACHED;
2454 cv_broadcast(&db->db_changed);
2455 }
2456 mutex_exit(&db->db_mtx);
2457 }
2458
2459 void
2460 dmu_buf_write_embedded(dmu_buf_t *dbuf, void *data,
2461 bp_embedded_type_t etype, enum zio_compress comp,
2462 int uncompressed_size, int compressed_size, int byteorder,
2463 dmu_tx_t *tx)
2464 {
2465 dmu_buf_impl_t *db = (dmu_buf_impl_t *)dbuf;
2466 struct dirty_leaf *dl;
2467 dmu_object_type_t type;
2468 dbuf_dirty_record_t *dr;
2469
2470 if (etype == BP_EMBEDDED_TYPE_DATA) {
2471 ASSERT(spa_feature_is_active(dmu_objset_spa(db->db_objset),
2472 SPA_FEATURE_EMBEDDED_DATA));
2473 }
2474
2475 DB_DNODE_ENTER(db);
2476 type = DB_DNODE(db)->dn_type;
2477 DB_DNODE_EXIT(db);
2478
2479 ASSERT0(db->db_level);
2480 ASSERT(db->db_blkid != DMU_BONUS_BLKID);
2481
2482 dmu_buf_will_not_fill(dbuf, tx);
2483
2484 dr = list_head(&db->db_dirty_records);
2485 ASSERT3U(dr->dr_txg, ==, tx->tx_txg);
2486 dl = &dr->dt.dl;
2487 encode_embedded_bp_compressed(&dl->dr_overridden_by,
2488 data, comp, uncompressed_size, compressed_size);
2489 BPE_SET_ETYPE(&dl->dr_overridden_by, etype);
2490 BP_SET_TYPE(&dl->dr_overridden_by, type);
2491 BP_SET_LEVEL(&dl->dr_overridden_by, 0);
2492 BP_SET_BYTEORDER(&dl->dr_overridden_by, byteorder);
2493
2494 dl->dr_override_state = DR_OVERRIDDEN;
2495 dl->dr_overridden_by.blk_birth = dr->dr_txg;
2496 }
2497
2498 void
2499 dmu_buf_redact(dmu_buf_t *dbuf, dmu_tx_t *tx)
2500 {
2501 dmu_buf_impl_t *db = (dmu_buf_impl_t *)dbuf;
2502 dmu_object_type_t type;
2503 ASSERT(dsl_dataset_feature_is_active(db->db_objset->os_dsl_dataset,
2504 SPA_FEATURE_REDACTED_DATASETS));
2505
2506 DB_DNODE_ENTER(db);
2507 type = DB_DNODE(db)->dn_type;
2508 DB_DNODE_EXIT(db);
2509
2510 ASSERT0(db->db_level);
2511 dmu_buf_will_not_fill(dbuf, tx);
2512
2513 blkptr_t bp = { { { {0} } } };
2514 BP_SET_TYPE(&bp, type);
2515 BP_SET_LEVEL(&bp, 0);
2516 BP_SET_BIRTH(&bp, tx->tx_txg, 0);
2517 BP_SET_REDACTED(&bp);
2518 BPE_SET_LSIZE(&bp, dbuf->db_size);
2519
2520 dbuf_override_impl(db, &bp, tx);
2521 }
2522
2523 /*
2524 * Directly assign a provided arc buf to a given dbuf if it's not referenced
2525 * by anybody except our caller. Otherwise copy arcbuf's contents to dbuf.
2526 */
2527 void
2528 dbuf_assign_arcbuf(dmu_buf_impl_t *db, arc_buf_t *buf, dmu_tx_t *tx)
2529 {
2530 ASSERT(!zfs_refcount_is_zero(&db->db_holds));
2531 ASSERT(db->db_blkid != DMU_BONUS_BLKID);
2532 ASSERT(db->db_level == 0);
2533 ASSERT3U(dbuf_is_metadata(db), ==, arc_is_metadata(buf));
2534 ASSERT(buf != NULL);
2535 ASSERT3U(arc_buf_lsize(buf), ==, db->db.db_size);
2536 ASSERT(tx->tx_txg != 0);
2537
2538 arc_return_buf(buf, db);
2539 ASSERT(arc_released(buf));
2540
2541 mutex_enter(&db->db_mtx);
2542
2543 while (db->db_state == DB_READ || db->db_state == DB_FILL)
2544 cv_wait(&db->db_changed, &db->db_mtx);
2545
2546 ASSERT(db->db_state == DB_CACHED || db->db_state == DB_UNCACHED);
2547
2548 if (db->db_state == DB_CACHED &&
2549 zfs_refcount_count(&db->db_holds) - 1 > db->db_dirtycnt) {
2550 /*
2551 * In practice, we will never have a case where we have an
2552 * encrypted arc buffer while additional holds exist on the
2553 * dbuf. We don't handle this here so we simply assert that
2554 * fact instead.
2555 */
2556 ASSERT(!arc_is_encrypted(buf));
2557 mutex_exit(&db->db_mtx);
2558 (void) dbuf_dirty(db, tx);
2559 bcopy(buf->b_data, db->db.db_data, db->db.db_size);
2560 arc_buf_destroy(buf, db);
2561 xuio_stat_wbuf_copied();
2562 return;
2563 }
2564
2565 xuio_stat_wbuf_nocopy();
2566 if (db->db_state == DB_CACHED) {
2567 dbuf_dirty_record_t *dr = list_head(&db->db_dirty_records);
2568
2569 ASSERT(db->db_buf != NULL);
2570 if (dr != NULL && dr->dr_txg == tx->tx_txg) {
2571 ASSERT(dr->dt.dl.dr_data == db->db_buf);
2572
2573 if (!arc_released(db->db_buf)) {
2574 ASSERT(dr->dt.dl.dr_override_state ==
2575 DR_OVERRIDDEN);
2576 arc_release(db->db_buf, db);
2577 }
2578 dr->dt.dl.dr_data = buf;
2579 arc_buf_destroy(db->db_buf, db);
2580 } else if (dr == NULL || dr->dt.dl.dr_data != db->db_buf) {
2581 arc_release(db->db_buf, db);
2582 arc_buf_destroy(db->db_buf, db);
2583 }
2584 db->db_buf = NULL;
2585 }
2586 ASSERT(db->db_buf == NULL);
2587 dbuf_set_data(db, buf);
2588 db->db_state = DB_FILL;
2589 mutex_exit(&db->db_mtx);
2590 (void) dbuf_dirty(db, tx);
2591 dmu_buf_fill_done(&db->db, tx);
2592 }
2593
2594 void
2595 dbuf_destroy(dmu_buf_impl_t *db)
2596 {
2597 dnode_t *dn;
2598 dmu_buf_impl_t *parent = db->db_parent;
2599 dmu_buf_impl_t *dndb;
2600
2601 ASSERT(MUTEX_HELD(&db->db_mtx));
2602 ASSERT(zfs_refcount_is_zero(&db->db_holds));
2603
2604 if (db->db_buf != NULL) {
2605 arc_buf_destroy(db->db_buf, db);
2606 db->db_buf = NULL;
2607 }
2608
2609 if (db->db_blkid == DMU_BONUS_BLKID) {
2610 int slots = DB_DNODE(db)->dn_num_slots;
2611 int bonuslen = DN_SLOTS_TO_BONUSLEN(slots);
2612 if (db->db.db_data != NULL) {
2613 kmem_free(db->db.db_data, bonuslen);
2614 arc_space_return(bonuslen, ARC_SPACE_BONUS);
2615 db->db_state = DB_UNCACHED;
2616 }
2617 }
2618
2619 dbuf_clear_data(db);
2620
2621 if (multilist_link_active(&db->db_cache_link)) {
2622 ASSERT(db->db_caching_status == DB_DBUF_CACHE ||
2623 db->db_caching_status == DB_DBUF_METADATA_CACHE);
2624
2625 multilist_remove(dbuf_caches[db->db_caching_status].cache, db);
2626 (void) zfs_refcount_remove_many(
2627 &dbuf_caches[db->db_caching_status].size,
2628 db->db.db_size, db);
2629
2630 if (db->db_caching_status == DB_DBUF_METADATA_CACHE) {
2631 DBUF_STAT_BUMPDOWN(metadata_cache_count);
2632 } else {
2633 DBUF_STAT_BUMPDOWN(cache_levels[db->db_level]);
2634 DBUF_STAT_BUMPDOWN(cache_count);
2635 DBUF_STAT_DECR(cache_levels_bytes[db->db_level],
2636 db->db.db_size);
2637 }
2638 db->db_caching_status = DB_NO_CACHE;
2639 }
2640
2641 ASSERT(db->db_state == DB_UNCACHED || db->db_state == DB_NOFILL);
2642 ASSERT(db->db_data_pending == NULL);
2643
2644 db->db_state = DB_EVICTING;
2645 db->db_blkptr = NULL;
2646
2647 /*
2648 * Now that db_state is DB_EVICTING, nobody else can find this via
2649 * the hash table. We can now drop db_mtx, which allows us to
2650 * acquire the dn_dbufs_mtx.
2651 */
2652 mutex_exit(&db->db_mtx);
2653
2654 DB_DNODE_ENTER(db);
2655 dn = DB_DNODE(db);
2656 dndb = dn->dn_dbuf;
2657 if (db->db_blkid != DMU_BONUS_BLKID) {
2658 boolean_t needlock = !MUTEX_HELD(&dn->dn_dbufs_mtx);
2659 if (needlock)
2660 mutex_enter_nested(&dn->dn_dbufs_mtx,
2661 NESTED_SINGLE);
2662 avl_remove(&dn->dn_dbufs, db);
2663 atomic_dec_32(&dn->dn_dbufs_count);
2664 membar_producer();
2665 DB_DNODE_EXIT(db);
2666 if (needlock)
2667 mutex_exit(&dn->dn_dbufs_mtx);
2668 /*
2669 * Decrementing the dbuf count means that the hold corresponding
2670 * to the removed dbuf is no longer discounted in dnode_move(),
2671 * so the dnode cannot be moved until after we release the hold.
2672 * The membar_producer() ensures visibility of the decremented
2673 * value in dnode_move(), since DB_DNODE_EXIT doesn't actually
2674 * release any lock.
2675 */
2676 mutex_enter(&dn->dn_mtx);
2677 dnode_rele_and_unlock(dn, db, B_TRUE);
2678 db->db_dnode_handle = NULL;
2679
2680 dbuf_hash_remove(db);
2681 } else {
2682 DB_DNODE_EXIT(db);
2683 }
2684
2685 ASSERT(zfs_refcount_is_zero(&db->db_holds));
2686
2687 db->db_parent = NULL;
2688
2689 ASSERT(db->db_buf == NULL);
2690 ASSERT(db->db.db_data == NULL);
2691 ASSERT(db->db_hash_next == NULL);
2692 ASSERT(db->db_blkptr == NULL);
2693 ASSERT(db->db_data_pending == NULL);
2694 ASSERT3U(db->db_caching_status, ==, DB_NO_CACHE);
2695 ASSERT(!multilist_link_active(&db->db_cache_link));
2696
2697 kmem_cache_free(dbuf_kmem_cache, db);
2698 arc_space_return(sizeof (dmu_buf_impl_t), ARC_SPACE_DBUF);
2699
2700 /*
2701 * If this dbuf is referenced from an indirect dbuf,
2702 * decrement the ref count on the indirect dbuf.
2703 */
2704 if (parent && parent != dndb) {
2705 mutex_enter(&parent->db_mtx);
2706 dbuf_rele_and_unlock(parent, db, B_TRUE);
2707 }
2708 }
2709
2710 /*
2711 * Note: While bpp will always be updated if the function returns success,
2712 * parentp will not be updated if the dnode does not have dn_dbuf filled in;
2713 * this happens when the dnode is the meta-dnode, or {user|group|project}used
2714 * object.
2715 */
2716 __attribute__((always_inline))
2717 static inline int
2718 dbuf_findbp(dnode_t *dn, int level, uint64_t blkid, int fail_sparse,
2719 dmu_buf_impl_t **parentp, blkptr_t **bpp)
2720 {
2721 *parentp = NULL;
2722 *bpp = NULL;
2723
2724 ASSERT(blkid != DMU_BONUS_BLKID);
2725
2726 if (blkid == DMU_SPILL_BLKID) {
2727 mutex_enter(&dn->dn_mtx);
2728 if (dn->dn_have_spill &&
2729 (dn->dn_phys->dn_flags & DNODE_FLAG_SPILL_BLKPTR))
2730 *bpp = DN_SPILL_BLKPTR(dn->dn_phys);
2731 else
2732 *bpp = NULL;
2733 dbuf_add_ref(dn->dn_dbuf, NULL);
2734 *parentp = dn->dn_dbuf;
2735 mutex_exit(&dn->dn_mtx);
2736 return (0);
2737 }
2738
2739 int nlevels =
2740 (dn->dn_phys->dn_nlevels == 0) ? 1 : dn->dn_phys->dn_nlevels;
2741 int epbs = dn->dn_indblkshift - SPA_BLKPTRSHIFT;
2742
2743 ASSERT3U(level * epbs, <, 64);
2744 ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock));
2745 /*
2746 * This assertion shouldn't trip as long as the max indirect block size
2747 * is less than 1M. The reason for this is that up to that point,
2748 * the number of levels required to address an entire object with blocks
2749 * of size SPA_MINBLOCKSIZE satisfies nlevels * epbs + 1 <= 64. In
2750 * other words, if N * epbs + 1 > 64, then if (N-1) * epbs + 1 > 55
2751 * (i.e. we can address the entire object), objects will all use at most
2752 * N-1 levels and the assertion won't overflow. However, once epbs is
2753 * 13, 4 * 13 + 1 = 53, but 5 * 13 + 1 = 66. Then, 4 levels will not be
2754 * enough to address an entire object, so objects will have 5 levels,
2755 * but then this assertion will overflow.
2756 *
2757 * All this is to say that if we ever increase DN_MAX_INDBLKSHIFT, we
2758 * need to redo this logic to handle overflows.
2759 */
2760 ASSERT(level >= nlevels ||
2761 ((nlevels - level - 1) * epbs) +
2762 highbit64(dn->dn_phys->dn_nblkptr) <= 64);
2763 if (level >= nlevels ||
2764 blkid >= ((uint64_t)dn->dn_phys->dn_nblkptr <<
2765 ((nlevels - level - 1) * epbs)) ||
2766 (fail_sparse &&
2767 blkid > (dn->dn_phys->dn_maxblkid >> (level * epbs)))) {
2768 /* the buffer has no parent yet */
2769 return (SET_ERROR(ENOENT));
2770 } else if (level < nlevels-1) {
2771 /* this block is referenced from an indirect block */
2772 int err;
2773
2774 err = dbuf_hold_impl(dn, level + 1,
2775 blkid >> epbs, fail_sparse, FALSE, NULL, parentp);
2776
2777 if (err)
2778 return (err);
2779 err = dbuf_read(*parentp, NULL,
2780 (DB_RF_HAVESTRUCT | DB_RF_NOPREFETCH | DB_RF_CANFAIL));
2781 if (err) {
2782 dbuf_rele(*parentp, NULL);
2783 *parentp = NULL;
2784 return (err);
2785 }
2786 rw_enter(&(*parentp)->db_rwlock, RW_READER);
2787 *bpp = ((blkptr_t *)(*parentp)->db.db_data) +
2788 (blkid & ((1ULL << epbs) - 1));
2789 if (blkid > (dn->dn_phys->dn_maxblkid >> (level * epbs)))
2790 ASSERT(BP_IS_HOLE(*bpp));
2791 rw_exit(&(*parentp)->db_rwlock);
2792 return (0);
2793 } else {
2794 /* the block is referenced from the dnode */
2795 ASSERT3U(level, ==, nlevels-1);
2796 ASSERT(dn->dn_phys->dn_nblkptr == 0 ||
2797 blkid < dn->dn_phys->dn_nblkptr);
2798 if (dn->dn_dbuf) {
2799 dbuf_add_ref(dn->dn_dbuf, NULL);
2800 *parentp = dn->dn_dbuf;
2801 }
2802 *bpp = &dn->dn_phys->dn_blkptr[blkid];
2803 return (0);
2804 }
2805 }
2806
2807 static dmu_buf_impl_t *
2808 dbuf_create(dnode_t *dn, uint8_t level, uint64_t blkid,
2809 dmu_buf_impl_t *parent, blkptr_t *blkptr)
2810 {
2811 objset_t *os = dn->dn_objset;
2812 dmu_buf_impl_t *db, *odb;
2813
2814 ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock));
2815 ASSERT(dn->dn_type != DMU_OT_NONE);
2816
2817 db = kmem_cache_alloc(dbuf_kmem_cache, KM_SLEEP);
2818
2819 list_create(&db->db_dirty_records, sizeof (dbuf_dirty_record_t),
2820 offsetof(dbuf_dirty_record_t, dr_dbuf_node));
2821
2822 db->db_objset = os;
2823 db->db.db_object = dn->dn_object;
2824 db->db_level = level;
2825 db->db_blkid = blkid;
2826 db->db_dirtycnt = 0;
2827 db->db_dnode_handle = dn->dn_handle;
2828 db->db_parent = parent;
2829 db->db_blkptr = blkptr;
2830
2831 db->db_user = NULL;
2832 db->db_user_immediate_evict = FALSE;
2833 db->db_freed_in_flight = FALSE;
2834 db->db_pending_evict = FALSE;
2835
2836 if (blkid == DMU_BONUS_BLKID) {
2837 ASSERT3P(parent, ==, dn->dn_dbuf);
2838 db->db.db_size = DN_SLOTS_TO_BONUSLEN(dn->dn_num_slots) -
2839 (dn->dn_nblkptr-1) * sizeof (blkptr_t);
2840 ASSERT3U(db->db.db_size, >=, dn->dn_bonuslen);
2841 db->db.db_offset = DMU_BONUS_BLKID;
2842 db->db_state = DB_UNCACHED;
2843 db->db_caching_status = DB_NO_CACHE;
2844 /* the bonus dbuf is not placed in the hash table */
2845 arc_space_consume(sizeof (dmu_buf_impl_t), ARC_SPACE_DBUF);
2846 return (db);
2847 } else if (blkid == DMU_SPILL_BLKID) {
2848 db->db.db_size = (blkptr != NULL) ?
2849 BP_GET_LSIZE(blkptr) : SPA_MINBLOCKSIZE;
2850 db->db.db_offset = 0;
2851 } else {
2852 int blocksize =
2853 db->db_level ? 1 << dn->dn_indblkshift : dn->dn_datablksz;
2854 db->db.db_size = blocksize;
2855 db->db.db_offset = db->db_blkid * blocksize;
2856 }
2857
2858 /*
2859 * Hold the dn_dbufs_mtx while we get the new dbuf
2860 * in the hash table *and* added to the dbufs list.
2861 * This prevents a possible deadlock with someone
2862 * trying to look up this dbuf before it's added to the
2863 * dn_dbufs list.
2864 */
2865 mutex_enter(&dn->dn_dbufs_mtx);
2866 db->db_state = DB_EVICTING;
2867 if ((odb = dbuf_hash_insert(db)) != NULL) {
2868 /* someone else inserted it first */
2869 kmem_cache_free(dbuf_kmem_cache, db);
2870 mutex_exit(&dn->dn_dbufs_mtx);
2871 DBUF_STAT_BUMP(hash_insert_race);
2872 return (odb);
2873 }
2874 avl_add(&dn->dn_dbufs, db);
2875
2876 db->db_state = DB_UNCACHED;
2877 db->db_caching_status = DB_NO_CACHE;
2878 mutex_exit(&dn->dn_dbufs_mtx);
2879 arc_space_consume(sizeof (dmu_buf_impl_t), ARC_SPACE_DBUF);
2880
2881 if (parent && parent != dn->dn_dbuf)
2882 dbuf_add_ref(parent, db);
2883
2884 ASSERT(dn->dn_object == DMU_META_DNODE_OBJECT ||
2885 zfs_refcount_count(&dn->dn_holds) > 0);
2886 (void) zfs_refcount_add(&dn->dn_holds, db);
2887 atomic_inc_32(&dn->dn_dbufs_count);
2888
2889 dprintf_dbuf(db, "db=%p\n", db);
2890
2891 return (db);
2892 }
2893
2894 /*
2895 * This function returns a block pointer and information about the object,
2896 * given a dnode and a block. This is a publicly accessible version of
2897 * dbuf_findbp that only returns some information, rather than the
2898 * dbuf. Note that the dnode passed in must be held, and the dn_struct_rwlock
2899 * should be locked as (at least) a reader.
2900 */
2901 int
2902 dbuf_dnode_findbp(dnode_t *dn, uint64_t level, uint64_t blkid,
2903 blkptr_t *bp, uint16_t *datablkszsec, uint8_t *indblkshift)
2904 {
2905 dmu_buf_impl_t *dbp = NULL;
2906 blkptr_t *bp2;
2907 int err = 0;
2908 ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock));
2909
2910 err = dbuf_findbp(dn, level, blkid, B_FALSE, &dbp, &bp2);
2911 if (err == 0) {
2912 *bp = *bp2;
2913 if (dbp != NULL)
2914 dbuf_rele(dbp, NULL);
2915 if (datablkszsec != NULL)
2916 *datablkszsec = dn->dn_phys->dn_datablkszsec;
2917 if (indblkshift != NULL)
2918 *indblkshift = dn->dn_phys->dn_indblkshift;
2919 }
2920
2921 return (err);
2922 }
2923
2924 typedef struct dbuf_prefetch_arg {
2925 spa_t *dpa_spa; /* The spa to issue the prefetch in. */
2926 zbookmark_phys_t dpa_zb; /* The target block to prefetch. */
2927 int dpa_epbs; /* Entries (blkptr_t's) Per Block Shift. */
2928 int dpa_curlevel; /* The current level that we're reading */
2929 dnode_t *dpa_dnode; /* The dnode associated with the prefetch */
2930 zio_priority_t dpa_prio; /* The priority I/Os should be issued at. */
2931 zio_t *dpa_zio; /* The parent zio_t for all prefetches. */
2932 arc_flags_t dpa_aflags; /* Flags to pass to the final prefetch. */
2933 } dbuf_prefetch_arg_t;
2934
2935 /*
2936 * Actually issue the prefetch read for the block given.
2937 */
2938 static void
2939 dbuf_issue_final_prefetch(dbuf_prefetch_arg_t *dpa, blkptr_t *bp)
2940 {
2941 ASSERT(!BP_IS_REDACTED(bp) ||
2942 dsl_dataset_feature_is_active(
2943 dpa->dpa_dnode->dn_objset->os_dsl_dataset,
2944 SPA_FEATURE_REDACTED_DATASETS));
2945
2946 if (BP_IS_HOLE(bp) || BP_IS_EMBEDDED(bp) || BP_IS_REDACTED(bp))
2947 return;
2948
2949 int zio_flags = ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE;
2950 arc_flags_t aflags =
2951 dpa->dpa_aflags | ARC_FLAG_NOWAIT | ARC_FLAG_PREFETCH;
2952
2953 /* dnodes are always read as raw and then converted later */
2954 if (BP_GET_TYPE(bp) == DMU_OT_DNODE && BP_IS_PROTECTED(bp) &&
2955 dpa->dpa_curlevel == 0)
2956 zio_flags |= ZIO_FLAG_RAW;
2957
2958 ASSERT3U(dpa->dpa_curlevel, ==, BP_GET_LEVEL(bp));
2959 ASSERT3U(dpa->dpa_curlevel, ==, dpa->dpa_zb.zb_level);
2960 ASSERT(dpa->dpa_zio != NULL);
2961 (void) arc_read(dpa->dpa_zio, dpa->dpa_spa, bp, NULL, NULL,
2962 dpa->dpa_prio, zio_flags, &aflags, &dpa->dpa_zb);
2963 }
2964
2965 /*
2966 * Called when an indirect block above our prefetch target is read in. This
2967 * will either read in the next indirect block down the tree or issue the actual
2968 * prefetch if the next block down is our target.
2969 */
2970 static void
2971 dbuf_prefetch_indirect_done(zio_t *zio, const zbookmark_phys_t *zb,
2972 const blkptr_t *iobp, arc_buf_t *abuf, void *private)
2973 {
2974 dbuf_prefetch_arg_t *dpa = private;
2975
2976 ASSERT3S(dpa->dpa_zb.zb_level, <, dpa->dpa_curlevel);
2977 ASSERT3S(dpa->dpa_curlevel, >, 0);
2978
2979 if (abuf == NULL) {
2980 ASSERT(zio == NULL || zio->io_error != 0);
2981 kmem_free(dpa, sizeof (*dpa));
2982 return;
2983 }
2984 ASSERT(zio == NULL || zio->io_error == 0);
2985
2986 /*
2987 * The dpa_dnode is only valid if we are called with a NULL
2988 * zio. This indicates that the arc_read() returned without
2989 * first calling zio_read() to issue a physical read. Once
2990 * a physical read is made the dpa_dnode must be invalidated
2991 * as the locks guarding it may have been dropped. If the
2992 * dpa_dnode is still valid, then we want to add it to the dbuf
2993 * cache. To do so, we must hold the dbuf associated with the block
2994 * we just prefetched, read its contents so that we associate it
2995 * with an arc_buf_t, and then release it.
2996 */
2997 if (zio != NULL) {
2998 ASSERT3S(BP_GET_LEVEL(zio->io_bp), ==, dpa->dpa_curlevel);
2999 if (zio->io_flags & ZIO_FLAG_RAW_COMPRESS) {
3000 ASSERT3U(BP_GET_PSIZE(zio->io_bp), ==, zio->io_size);
3001 } else {
3002 ASSERT3U(BP_GET_LSIZE(zio->io_bp), ==, zio->io_size);
3003 }
3004 ASSERT3P(zio->io_spa, ==, dpa->dpa_spa);
3005
3006 dpa->dpa_dnode = NULL;
3007 } else if (dpa->dpa_dnode != NULL) {
3008 uint64_t curblkid = dpa->dpa_zb.zb_blkid >>
3009 (dpa->dpa_epbs * (dpa->dpa_curlevel -
3010 dpa->dpa_zb.zb_level));
3011 dmu_buf_impl_t *db = dbuf_hold_level(dpa->dpa_dnode,
3012 dpa->dpa_curlevel, curblkid, FTAG);
3013 if (db == NULL) {
3014 kmem_free(dpa, sizeof (*dpa));
3015 arc_buf_destroy(abuf, private);
3016 return;
3017 }
3018
3019 (void) dbuf_read(db, NULL,
3020 DB_RF_MUST_SUCCEED | DB_RF_NOPREFETCH | DB_RF_HAVESTRUCT);
3021 dbuf_rele(db, FTAG);
3022 }
3023
3024 dpa->dpa_curlevel--;
3025 uint64_t nextblkid = dpa->dpa_zb.zb_blkid >>
3026 (dpa->dpa_epbs * (dpa->dpa_curlevel - dpa->dpa_zb.zb_level));
3027 blkptr_t *bp = ((blkptr_t *)abuf->b_data) +
3028 P2PHASE(nextblkid, 1ULL << dpa->dpa_epbs);
3029
3030 ASSERT(!BP_IS_REDACTED(bp) ||
3031 dsl_dataset_feature_is_active(
3032 dpa->dpa_dnode->dn_objset->os_dsl_dataset,
3033 SPA_FEATURE_REDACTED_DATASETS));
3034 if (BP_IS_HOLE(bp) || BP_IS_REDACTED(bp)) {
3035 kmem_free(dpa, sizeof (*dpa));
3036 } else if (dpa->dpa_curlevel == dpa->dpa_zb.zb_level) {
3037 ASSERT3U(nextblkid, ==, dpa->dpa_zb.zb_blkid);
3038 dbuf_issue_final_prefetch(dpa, bp);
3039 kmem_free(dpa, sizeof (*dpa));
3040 } else {
3041 arc_flags_t iter_aflags = ARC_FLAG_NOWAIT;
3042 zbookmark_phys_t zb;
3043
3044 /* flag if L2ARC eligible, l2arc_noprefetch then decides */
3045 if (dpa->dpa_aflags & ARC_FLAG_L2CACHE)
3046 iter_aflags |= ARC_FLAG_L2CACHE;
3047
3048 ASSERT3U(dpa->dpa_curlevel, ==, BP_GET_LEVEL(bp));
3049
3050 SET_BOOKMARK(&zb, dpa->dpa_zb.zb_objset,
3051 dpa->dpa_zb.zb_object, dpa->dpa_curlevel, nextblkid);
3052
3053 (void) arc_read(dpa->dpa_zio, dpa->dpa_spa,
3054 bp, dbuf_prefetch_indirect_done, dpa, dpa->dpa_prio,
3055 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE,
3056 &iter_aflags, &zb);
3057 }
3058
3059 arc_buf_destroy(abuf, private);
3060 }
3061
3062 /*
3063 * Issue prefetch reads for the given block on the given level. If the indirect
3064 * blocks above that block are not in memory, we will read them in
3065 * asynchronously. As a result, this call never blocks waiting for a read to
3066 * complete. Note that the prefetch might fail if the dataset is encrypted and
3067 * the encryption key is unmapped before the IO completes.
3068 */
3069 void
3070 dbuf_prefetch(dnode_t *dn, int64_t level, uint64_t blkid, zio_priority_t prio,
3071 arc_flags_t aflags)
3072 {
3073 blkptr_t bp;
3074 int epbs, nlevels, curlevel;
3075 uint64_t curblkid;
3076
3077 ASSERT(blkid != DMU_BONUS_BLKID);
3078 ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock));
3079
3080 if (blkid > dn->dn_maxblkid)
3081 return;
3082
3083 if (level == 0 && dnode_block_freed(dn, blkid))
3084 return;
3085
3086 /*
3087 * This dnode hasn't been written to disk yet, so there's nothing to
3088 * prefetch.
3089 */
3090 nlevels = dn->dn_phys->dn_nlevels;
3091 if (level >= nlevels || dn->dn_phys->dn_nblkptr == 0)
3092 return;
3093
3094 epbs = dn->dn_phys->dn_indblkshift - SPA_BLKPTRSHIFT;
3095 if (dn->dn_phys->dn_maxblkid < blkid << (epbs * level))
3096 return;
3097
3098 dmu_buf_impl_t *db = dbuf_find(dn->dn_objset, dn->dn_object,
3099 level, blkid);
3100 if (db != NULL) {
3101 mutex_exit(&db->db_mtx);
3102 /*
3103 * This dbuf already exists. It is either CACHED, or
3104 * (we assume) about to be read or filled.
3105 */
3106 return;
3107 }
3108
3109 /*
3110 * Find the closest ancestor (indirect block) of the target block
3111 * that is present in the cache. In this indirect block, we will
3112 * find the bp that is at curlevel, curblkid.
3113 */
3114 curlevel = level;
3115 curblkid = blkid;
3116 while (curlevel < nlevels - 1) {
3117 int parent_level = curlevel + 1;
3118 uint64_t parent_blkid = curblkid >> epbs;
3119 dmu_buf_impl_t *db;
3120
3121 if (dbuf_hold_impl(dn, parent_level, parent_blkid,
3122 FALSE, TRUE, FTAG, &db) == 0) {
3123 blkptr_t *bpp = db->db_buf->b_data;
3124 bp = bpp[P2PHASE(curblkid, 1 << epbs)];
3125 dbuf_rele(db, FTAG);
3126 break;
3127 }
3128
3129 curlevel = parent_level;
3130 curblkid = parent_blkid;
3131 }
3132
3133 if (curlevel == nlevels - 1) {
3134 /* No cached indirect blocks found. */
3135 ASSERT3U(curblkid, <, dn->dn_phys->dn_nblkptr);
3136 bp = dn->dn_phys->dn_blkptr[curblkid];
3137 }
3138 ASSERT(!BP_IS_REDACTED(&bp) ||
3139 dsl_dataset_feature_is_active(dn->dn_objset->os_dsl_dataset,
3140 SPA_FEATURE_REDACTED_DATASETS));
3141 if (BP_IS_HOLE(&bp) || BP_IS_REDACTED(&bp))
3142 return;
3143
3144 ASSERT3U(curlevel, ==, BP_GET_LEVEL(&bp));
3145
3146 zio_t *pio = zio_root(dmu_objset_spa(dn->dn_objset), NULL, NULL,
3147 ZIO_FLAG_CANFAIL);
3148
3149 dbuf_prefetch_arg_t *dpa = kmem_zalloc(sizeof (*dpa), KM_SLEEP);
3150 dsl_dataset_t *ds = dn->dn_objset->os_dsl_dataset;
3151 SET_BOOKMARK(&dpa->dpa_zb, ds != NULL ? ds->ds_object : DMU_META_OBJSET,
3152 dn->dn_object, level, blkid);
3153 dpa->dpa_curlevel = curlevel;
3154 dpa->dpa_prio = prio;
3155 dpa->dpa_aflags = aflags;
3156 dpa->dpa_spa = dn->dn_objset->os_spa;
3157 dpa->dpa_dnode = dn;
3158 dpa->dpa_epbs = epbs;
3159 dpa->dpa_zio = pio;
3160
3161 /* flag if L2ARC eligible, l2arc_noprefetch then decides */
3162 if (DNODE_LEVEL_IS_L2CACHEABLE(dn, level))
3163 dpa->dpa_aflags |= ARC_FLAG_L2CACHE;
3164
3165 /*
3166 * If we have the indirect just above us, no need to do the asynchronous
3167 * prefetch chain; we'll just run the last step ourselves. If we're at
3168 * a higher level, though, we want to issue the prefetches for all the
3169 * indirect blocks asynchronously, so we can go on with whatever we were
3170 * doing.
3171 */
3172 if (curlevel == level) {
3173 ASSERT3U(curblkid, ==, blkid);
3174 dbuf_issue_final_prefetch(dpa, &bp);
3175 kmem_free(dpa, sizeof (*dpa));
3176 } else {
3177 arc_flags_t iter_aflags = ARC_FLAG_NOWAIT;
3178 zbookmark_phys_t zb;
3179
3180 /* flag if L2ARC eligible, l2arc_noprefetch then decides */
3181 if (DNODE_LEVEL_IS_L2CACHEABLE(dn, level))
3182 iter_aflags |= ARC_FLAG_L2CACHE;
3183
3184 SET_BOOKMARK(&zb, ds != NULL ? ds->ds_object : DMU_META_OBJSET,
3185 dn->dn_object, curlevel, curblkid);
3186 (void) arc_read(dpa->dpa_zio, dpa->dpa_spa,
3187 &bp, dbuf_prefetch_indirect_done, dpa, prio,
3188 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE,
3189 &iter_aflags, &zb);
3190 }
3191 /*
3192 * We use pio here instead of dpa_zio since it's possible that
3193 * dpa may have already been freed.
3194 */
3195 zio_nowait(pio);
3196 }
3197
3198 /*
3199 * Helper function for dbuf_hold_impl() to copy a buffer. Handles
3200 * the case of encrypted, compressed and uncompressed buffers by
3201 * allocating the new buffer, respectively, with arc_alloc_raw_buf(),
3202 * arc_alloc_compressed_buf() or arc_alloc_buf().*
3203 *
3204 * NOTE: Declared noinline to avoid stack bloat in dbuf_hold_impl().
3205 */
3206 noinline static void
3207 dbuf_hold_copy(dnode_t *dn, dmu_buf_impl_t *db)
3208 {
3209 dbuf_dirty_record_t *dr = db->db_data_pending;
3210 arc_buf_t *data = dr->dt.dl.dr_data;
3211 enum zio_compress compress_type = arc_get_compression(data);
3212
3213 if (arc_is_encrypted(data)) {
3214 boolean_t byteorder;
3215 uint8_t salt[ZIO_DATA_SALT_LEN];
3216 uint8_t iv[ZIO_DATA_IV_LEN];
3217 uint8_t mac[ZIO_DATA_MAC_LEN];
3218
3219 arc_get_raw_params(data, &byteorder, salt, iv, mac);
3220 dbuf_set_data(db, arc_alloc_raw_buf(dn->dn_objset->os_spa, db,
3221 dmu_objset_id(dn->dn_objset), byteorder, salt, iv, mac,
3222 dn->dn_type, arc_buf_size(data), arc_buf_lsize(data),
3223 compress_type));
3224 } else if (compress_type != ZIO_COMPRESS_OFF) {
3225 dbuf_set_data(db, arc_alloc_compressed_buf(
3226 dn->dn_objset->os_spa, db, arc_buf_size(data),
3227 arc_buf_lsize(data), compress_type));
3228 } else {
3229 dbuf_set_data(db, arc_alloc_buf(dn->dn_objset->os_spa, db,
3230 DBUF_GET_BUFC_TYPE(db), db->db.db_size));
3231 }
3232
3233 rw_enter(&db->db_rwlock, RW_WRITER);
3234 bcopy(data->b_data, db->db.db_data, arc_buf_size(data));
3235 rw_exit(&db->db_rwlock);
3236 }
3237
3238 /*
3239 * Returns with db_holds incremented, and db_mtx not held.
3240 * Note: dn_struct_rwlock must be held.
3241 */
3242 int
3243 dbuf_hold_impl(dnode_t *dn, uint8_t level, uint64_t blkid,
3244 boolean_t fail_sparse, boolean_t fail_uncached,
3245 void *tag, dmu_buf_impl_t **dbp)
3246 {
3247 dmu_buf_impl_t *db, *parent = NULL;
3248
3249 /* If the pool has been created, verify the tx_sync_lock is not held */
3250 spa_t *spa = dn->dn_objset->os_spa;
3251 dsl_pool_t *dp = spa->spa_dsl_pool;
3252 if (dp != NULL) {
3253 ASSERT(!MUTEX_HELD(&dp->dp_tx.tx_sync_lock));
3254 }
3255
3256 ASSERT(blkid != DMU_BONUS_BLKID);
3257 ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock));
3258 ASSERT3U(dn->dn_nlevels, >, level);
3259
3260 *dbp = NULL;
3261
3262 /* dbuf_find() returns with db_mtx held */
3263 db = dbuf_find(dn->dn_objset, dn->dn_object, level, blkid);
3264
3265 if (db == NULL) {
3266 blkptr_t *bp = NULL;
3267 int err;
3268
3269 if (fail_uncached)
3270 return (SET_ERROR(ENOENT));
3271
3272 ASSERT3P(parent, ==, NULL);
3273 err = dbuf_findbp(dn, level, blkid, fail_sparse, &parent, &bp);
3274 if (fail_sparse) {
3275 if (err == 0 && bp && BP_IS_HOLE(bp))
3276 err = SET_ERROR(ENOENT);
3277 if (err) {
3278 if (parent)
3279 dbuf_rele(parent, NULL);
3280 return (err);
3281 }
3282 }
3283 if (err && err != ENOENT)
3284 return (err);
3285 db = dbuf_create(dn, level, blkid, parent, bp);
3286 }
3287
3288 if (fail_uncached && db->db_state != DB_CACHED) {
3289 mutex_exit(&db->db_mtx);
3290 return (SET_ERROR(ENOENT));
3291 }
3292
3293 if (db->db_buf != NULL) {
3294 arc_buf_access(db->db_buf);
3295 ASSERT3P(db->db.db_data, ==, db->db_buf->b_data);
3296 }
3297
3298 ASSERT(db->db_buf == NULL || arc_referenced(db->db_buf));
3299
3300 /*
3301 * If this buffer is currently syncing out, and we are
3302 * still referencing it from db_data, we need to make a copy
3303 * of it in case we decide we want to dirty it again in this txg.
3304 */
3305 if (db->db_level == 0 && db->db_blkid != DMU_BONUS_BLKID &&
3306 dn->dn_object != DMU_META_DNODE_OBJECT &&
3307 db->db_state == DB_CACHED && db->db_data_pending) {
3308 dbuf_dirty_record_t *dr = db->db_data_pending;
3309 if (dr->dt.dl.dr_data == db->db_buf)
3310 dbuf_hold_copy(dn, db);
3311 }
3312
3313 if (multilist_link_active(&db->db_cache_link)) {
3314 ASSERT(zfs_refcount_is_zero(&db->db_holds));
3315 ASSERT(db->db_caching_status == DB_DBUF_CACHE ||
3316 db->db_caching_status == DB_DBUF_METADATA_CACHE);
3317
3318 multilist_remove(dbuf_caches[db->db_caching_status].cache, db);
3319 (void) zfs_refcount_remove_many(
3320 &dbuf_caches[db->db_caching_status].size,
3321 db->db.db_size, db);
3322
3323 if (db->db_caching_status == DB_DBUF_METADATA_CACHE) {
3324 DBUF_STAT_BUMPDOWN(metadata_cache_count);
3325 } else {
3326 DBUF_STAT_BUMPDOWN(cache_levels[db->db_level]);
3327 DBUF_STAT_BUMPDOWN(cache_count);
3328 DBUF_STAT_DECR(cache_levels_bytes[db->db_level],
3329 db->db.db_size);
3330 }
3331 db->db_caching_status = DB_NO_CACHE;
3332 }
3333 (void) zfs_refcount_add(&db->db_holds, tag);
3334 DBUF_VERIFY(db);
3335 mutex_exit(&db->db_mtx);
3336
3337 /* NOTE: we can't rele the parent until after we drop the db_mtx */
3338 if (parent)
3339 dbuf_rele(parent, NULL);
3340
3341 ASSERT3P(DB_DNODE(db), ==, dn);
3342 ASSERT3U(db->db_blkid, ==, blkid);
3343 ASSERT3U(db->db_level, ==, level);
3344 *dbp = db;
3345
3346 return (0);
3347 }
3348
3349 dmu_buf_impl_t *
3350 dbuf_hold(dnode_t *dn, uint64_t blkid, void *tag)
3351 {
3352 return (dbuf_hold_level(dn, 0, blkid, tag));
3353 }
3354
3355 dmu_buf_impl_t *
3356 dbuf_hold_level(dnode_t *dn, int level, uint64_t blkid, void *tag)
3357 {
3358 dmu_buf_impl_t *db;
3359 int err = dbuf_hold_impl(dn, level, blkid, FALSE, FALSE, tag, &db);
3360 return (err ? NULL : db);
3361 }
3362
3363 void
3364 dbuf_create_bonus(dnode_t *dn)
3365 {
3366 ASSERT(RW_WRITE_HELD(&dn->dn_struct_rwlock));
3367
3368 ASSERT(dn->dn_bonus == NULL);
3369 dn->dn_bonus = dbuf_create(dn, 0, DMU_BONUS_BLKID, dn->dn_dbuf, NULL);
3370 }
3371
3372 int
3373 dbuf_spill_set_blksz(dmu_buf_t *db_fake, uint64_t blksz, dmu_tx_t *tx)
3374 {
3375 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
3376
3377 if (db->db_blkid != DMU_SPILL_BLKID)
3378 return (SET_ERROR(ENOTSUP));
3379 if (blksz == 0)
3380 blksz = SPA_MINBLOCKSIZE;
3381 ASSERT3U(blksz, <=, spa_maxblocksize(dmu_objset_spa(db->db_objset)));
3382 blksz = P2ROUNDUP(blksz, SPA_MINBLOCKSIZE);
3383
3384 dbuf_new_size(db, blksz, tx);
3385
3386 return (0);
3387 }
3388
3389 void
3390 dbuf_rm_spill(dnode_t *dn, dmu_tx_t *tx)
3391 {
3392 dbuf_free_range(dn, DMU_SPILL_BLKID, DMU_SPILL_BLKID, tx);
3393 }
3394
3395 #pragma weak dmu_buf_add_ref = dbuf_add_ref
3396 void
3397 dbuf_add_ref(dmu_buf_impl_t *db, void *tag)
3398 {
3399 int64_t holds = zfs_refcount_add(&db->db_holds, tag);
3400 VERIFY3S(holds, >, 1);
3401 }
3402
3403 #pragma weak dmu_buf_try_add_ref = dbuf_try_add_ref
3404 boolean_t
3405 dbuf_try_add_ref(dmu_buf_t *db_fake, objset_t *os, uint64_t obj, uint64_t blkid,
3406 void *tag)
3407 {
3408 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
3409 dmu_buf_impl_t *found_db;
3410 boolean_t result = B_FALSE;
3411
3412 if (blkid == DMU_BONUS_BLKID)
3413 found_db = dbuf_find_bonus(os, obj);
3414 else
3415 found_db = dbuf_find(os, obj, 0, blkid);
3416
3417 if (found_db != NULL) {
3418 if (db == found_db && dbuf_refcount(db) > db->db_dirtycnt) {
3419 (void) zfs_refcount_add(&db->db_holds, tag);
3420 result = B_TRUE;
3421 }
3422 mutex_exit(&found_db->db_mtx);
3423 }
3424 return (result);
3425 }
3426
3427 /*
3428 * If you call dbuf_rele() you had better not be referencing the dnode handle
3429 * unless you have some other direct or indirect hold on the dnode. (An indirect
3430 * hold is a hold on one of the dnode's dbufs, including the bonus buffer.)
3431 * Without that, the dbuf_rele() could lead to a dnode_rele() followed by the
3432 * dnode's parent dbuf evicting its dnode handles.
3433 */
3434 void
3435 dbuf_rele(dmu_buf_impl_t *db, void *tag)
3436 {
3437 mutex_enter(&db->db_mtx);
3438 dbuf_rele_and_unlock(db, tag, B_FALSE);
3439 }
3440
3441 void
3442 dmu_buf_rele(dmu_buf_t *db, void *tag)
3443 {
3444 dbuf_rele((dmu_buf_impl_t *)db, tag);
3445 }
3446
3447 /*
3448 * dbuf_rele() for an already-locked dbuf. This is necessary to allow
3449 * db_dirtycnt and db_holds to be updated atomically. The 'evicting'
3450 * argument should be set if we are already in the dbuf-evicting code
3451 * path, in which case we don't want to recursively evict. This allows us to
3452 * avoid deeply nested stacks that would have a call flow similar to this:
3453 *
3454 * dbuf_rele()-->dbuf_rele_and_unlock()-->dbuf_evict_notify()
3455 * ^ |
3456 * | |
3457 * +-----dbuf_destroy()<--dbuf_evict_one()<--------+
3458 *
3459 */
3460 void
3461 dbuf_rele_and_unlock(dmu_buf_impl_t *db, void *tag, boolean_t evicting)
3462 {
3463 int64_t holds;
3464 uint64_t size;
3465
3466 ASSERT(MUTEX_HELD(&db->db_mtx));
3467 DBUF_VERIFY(db);
3468
3469 /*
3470 * Remove the reference to the dbuf before removing its hold on the
3471 * dnode so we can guarantee in dnode_move() that a referenced bonus
3472 * buffer has a corresponding dnode hold.
3473 */
3474 holds = zfs_refcount_remove(&db->db_holds, tag);
3475 ASSERT(holds >= 0);
3476
3477 /*
3478 * We can't freeze indirects if there is a possibility that they
3479 * may be modified in the current syncing context.
3480 */
3481 if (db->db_buf != NULL &&
3482 holds == (db->db_level == 0 ? db->db_dirtycnt : 0)) {
3483 arc_buf_freeze(db->db_buf);
3484 }
3485
3486 if (holds == db->db_dirtycnt &&
3487 db->db_level == 0 && db->db_user_immediate_evict)
3488 dbuf_evict_user(db);
3489
3490 if (holds == 0) {
3491 if (db->db_blkid == DMU_BONUS_BLKID) {
3492 dnode_t *dn;
3493 boolean_t evict_dbuf = db->db_pending_evict;
3494
3495 /*
3496 * If the dnode moves here, we cannot cross this
3497 * barrier until the move completes.
3498 */
3499 DB_DNODE_ENTER(db);
3500
3501 dn = DB_DNODE(db);
3502 atomic_dec_32(&dn->dn_dbufs_count);
3503
3504 /*
3505 * Decrementing the dbuf count means that the bonus
3506 * buffer's dnode hold is no longer discounted in
3507 * dnode_move(). The dnode cannot move until after
3508 * the dnode_rele() below.
3509 */
3510 DB_DNODE_EXIT(db);
3511
3512 /*
3513 * Do not reference db after its lock is dropped.
3514 * Another thread may evict it.
3515 */
3516 mutex_exit(&db->db_mtx);
3517
3518 if (evict_dbuf)
3519 dnode_evict_bonus(dn);
3520
3521 dnode_rele(dn, db);
3522 } else if (db->db_buf == NULL) {
3523 /*
3524 * This is a special case: we never associated this
3525 * dbuf with any data allocated from the ARC.
3526 */
3527 ASSERT(db->db_state == DB_UNCACHED ||
3528 db->db_state == DB_NOFILL);
3529 dbuf_destroy(db);
3530 } else if (arc_released(db->db_buf)) {
3531 /*
3532 * This dbuf has anonymous data associated with it.
3533 */
3534 dbuf_destroy(db);
3535 } else {
3536 boolean_t do_arc_evict = B_FALSE;
3537 blkptr_t bp;
3538 spa_t *spa = dmu_objset_spa(db->db_objset);
3539
3540 if (!DBUF_IS_CACHEABLE(db) &&
3541 db->db_blkptr != NULL &&
3542 !BP_IS_HOLE(db->db_blkptr) &&
3543 !BP_IS_EMBEDDED(db->db_blkptr)) {
3544 do_arc_evict = B_TRUE;
3545 bp = *db->db_blkptr;
3546 }
3547
3548 if (!DBUF_IS_CACHEABLE(db) ||
3549 db->db_pending_evict) {
3550 dbuf_destroy(db);
3551 } else if (!multilist_link_active(&db->db_cache_link)) {
3552 ASSERT3U(db->db_caching_status, ==,
3553 DB_NO_CACHE);
3554
3555 dbuf_cached_state_t dcs =
3556 dbuf_include_in_metadata_cache(db) ?
3557 DB_DBUF_METADATA_CACHE : DB_DBUF_CACHE;
3558 db->db_caching_status = dcs;
3559
3560 multilist_insert(dbuf_caches[dcs].cache, db);
3561 size = zfs_refcount_add_many(
3562 &dbuf_caches[dcs].size,
3563 db->db.db_size, db);
3564
3565 if (dcs == DB_DBUF_METADATA_CACHE) {
3566 DBUF_STAT_BUMP(metadata_cache_count);
3567 DBUF_STAT_MAX(
3568 metadata_cache_size_bytes_max,
3569 size);
3570 } else {
3571 DBUF_STAT_BUMP(
3572 cache_levels[db->db_level]);
3573 DBUF_STAT_BUMP(cache_count);
3574 DBUF_STAT_INCR(
3575 cache_levels_bytes[db->db_level],
3576 db->db.db_size);
3577 DBUF_STAT_MAX(cache_size_bytes_max,
3578 size);
3579 }
3580 mutex_exit(&db->db_mtx);
3581
3582 if (dcs == DB_DBUF_CACHE && !evicting)
3583 dbuf_evict_notify(size);
3584 }
3585
3586 if (do_arc_evict)
3587 arc_freed(spa, &bp);
3588 }
3589 } else {
3590 mutex_exit(&db->db_mtx);
3591 }
3592
3593 }
3594
3595 #pragma weak dmu_buf_refcount = dbuf_refcount
3596 uint64_t
3597 dbuf_refcount(dmu_buf_impl_t *db)
3598 {
3599 return (zfs_refcount_count(&db->db_holds));
3600 }
3601
3602 uint64_t
3603 dmu_buf_user_refcount(dmu_buf_t *db_fake)
3604 {
3605 uint64_t holds;
3606 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
3607
3608 mutex_enter(&db->db_mtx);
3609 ASSERT3U(zfs_refcount_count(&db->db_holds), >=, db->db_dirtycnt);
3610 holds = zfs_refcount_count(&db->db_holds) - db->db_dirtycnt;
3611 mutex_exit(&db->db_mtx);
3612
3613 return (holds);
3614 }
3615
3616 void *
3617 dmu_buf_replace_user(dmu_buf_t *db_fake, dmu_buf_user_t *old_user,
3618 dmu_buf_user_t *new_user)
3619 {
3620 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
3621
3622 mutex_enter(&db->db_mtx);
3623 dbuf_verify_user(db, DBVU_NOT_EVICTING);
3624 if (db->db_user == old_user)
3625 db->db_user = new_user;
3626 else
3627 old_user = db->db_user;
3628 dbuf_verify_user(db, DBVU_NOT_EVICTING);
3629 mutex_exit(&db->db_mtx);
3630
3631 return (old_user);
3632 }
3633
3634 void *
3635 dmu_buf_set_user(dmu_buf_t *db_fake, dmu_buf_user_t *user)
3636 {
3637 return (dmu_buf_replace_user(db_fake, NULL, user));
3638 }
3639
3640 void *
3641 dmu_buf_set_user_ie(dmu_buf_t *db_fake, dmu_buf_user_t *user)
3642 {
3643 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
3644
3645 db->db_user_immediate_evict = TRUE;
3646 return (dmu_buf_set_user(db_fake, user));
3647 }
3648
3649 void *
3650 dmu_buf_remove_user(dmu_buf_t *db_fake, dmu_buf_user_t *user)
3651 {
3652 return (dmu_buf_replace_user(db_fake, user, NULL));
3653 }
3654
3655 void *
3656 dmu_buf_get_user(dmu_buf_t *db_fake)
3657 {
3658 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
3659
3660 dbuf_verify_user(db, DBVU_NOT_EVICTING);
3661 return (db->db_user);
3662 }
3663
3664 void
3665 dmu_buf_user_evict_wait()
3666 {
3667 taskq_wait(dbu_evict_taskq);
3668 }
3669
3670 blkptr_t *
3671 dmu_buf_get_blkptr(dmu_buf_t *db)
3672 {
3673 dmu_buf_impl_t *dbi = (dmu_buf_impl_t *)db;
3674 return (dbi->db_blkptr);
3675 }
3676
3677 objset_t *
3678 dmu_buf_get_objset(dmu_buf_t *db)
3679 {
3680 dmu_buf_impl_t *dbi = (dmu_buf_impl_t *)db;
3681 return (dbi->db_objset);
3682 }
3683
3684 dnode_t *
3685 dmu_buf_dnode_enter(dmu_buf_t *db)
3686 {
3687 dmu_buf_impl_t *dbi = (dmu_buf_impl_t *)db;
3688 DB_DNODE_ENTER(dbi);
3689 return (DB_DNODE(dbi));
3690 }
3691
3692 void
3693 dmu_buf_dnode_exit(dmu_buf_t *db)
3694 {
3695 dmu_buf_impl_t *dbi = (dmu_buf_impl_t *)db;
3696 DB_DNODE_EXIT(dbi);
3697 }
3698
3699 static void
3700 dbuf_check_blkptr(dnode_t *dn, dmu_buf_impl_t *db)
3701 {
3702 /* ASSERT(dmu_tx_is_syncing(tx) */
3703 ASSERT(MUTEX_HELD(&db->db_mtx));
3704
3705 if (db->db_blkptr != NULL)
3706 return;
3707
3708 if (db->db_blkid == DMU_SPILL_BLKID) {
3709 db->db_blkptr = DN_SPILL_BLKPTR(dn->dn_phys);
3710 BP_ZERO(db->db_blkptr);
3711 return;
3712 }
3713 if (db->db_level == dn->dn_phys->dn_nlevels-1) {
3714 /*
3715 * This buffer was allocated at a time when there was
3716 * no available blkptrs from the dnode, or it was
3717 * inappropriate to hook it in (i.e., nlevels mismatch).
3718 */
3719 ASSERT(db->db_blkid < dn->dn_phys->dn_nblkptr);
3720 ASSERT(db->db_parent == NULL);
3721 db->db_parent = dn->dn_dbuf;
3722 db->db_blkptr = &dn->dn_phys->dn_blkptr[db->db_blkid];
3723 DBUF_VERIFY(db);
3724 } else {
3725 dmu_buf_impl_t *parent = db->db_parent;
3726 int epbs = dn->dn_phys->dn_indblkshift - SPA_BLKPTRSHIFT;
3727
3728 ASSERT(dn->dn_phys->dn_nlevels > 1);
3729 if (parent == NULL) {
3730 mutex_exit(&db->db_mtx);
3731 rw_enter(&dn->dn_struct_rwlock, RW_READER);
3732 parent = dbuf_hold_level(dn, db->db_level + 1,
3733 db->db_blkid >> epbs, db);
3734 rw_exit(&dn->dn_struct_rwlock);
3735 mutex_enter(&db->db_mtx);
3736 db->db_parent = parent;
3737 }
3738 db->db_blkptr = (blkptr_t *)parent->db.db_data +
3739 (db->db_blkid & ((1ULL << epbs) - 1));
3740 DBUF_VERIFY(db);
3741 }
3742 }
3743
3744 /*
3745 * When syncing out a blocks of dnodes, adjust the block to deal with
3746 * encryption. Normally, we make sure the block is decrypted before writing
3747 * it. If we have crypt params, then we are writing a raw (encrypted) block,
3748 * from a raw receive. In this case, set the ARC buf's crypt params so
3749 * that the BP will be filled with the correct byteorder, salt, iv, and mac.
3750 */
3751 static void
3752 dbuf_prepare_encrypted_dnode_leaf(dbuf_dirty_record_t *dr)
3753 {
3754 int err;
3755 dmu_buf_impl_t *db = dr->dr_dbuf;
3756
3757 ASSERT(MUTEX_HELD(&db->db_mtx));
3758 ASSERT3U(db->db.db_object, ==, DMU_META_DNODE_OBJECT);
3759 ASSERT3U(db->db_level, ==, 0);
3760
3761 if (!db->db_objset->os_raw_receive && arc_is_encrypted(db->db_buf)) {
3762 zbookmark_phys_t zb;
3763
3764 /*
3765 * Unfortunately, there is currently no mechanism for
3766 * syncing context to handle decryption errors. An error
3767 * here is only possible if an attacker maliciously
3768 * changed a dnode block and updated the associated
3769 * checksums going up the block tree.
3770 */
3771 SET_BOOKMARK(&zb, dmu_objset_id(db->db_objset),
3772 db->db.db_object, db->db_level, db->db_blkid);
3773 err = arc_untransform(db->db_buf, db->db_objset->os_spa,
3774 &zb, B_TRUE);
3775 if (err)
3776 panic("Invalid dnode block MAC");
3777 } else if (dr->dt.dl.dr_has_raw_params) {
3778 (void) arc_release(dr->dt.dl.dr_data, db);
3779 arc_convert_to_raw(dr->dt.dl.dr_data,
3780 dmu_objset_id(db->db_objset),
3781 dr->dt.dl.dr_byteorder, DMU_OT_DNODE,
3782 dr->dt.dl.dr_salt, dr->dt.dl.dr_iv, dr->dt.dl.dr_mac);
3783 }
3784 }
3785
3786 /*
3787 * dbuf_sync_indirect() is called recursively from dbuf_sync_list() so it
3788 * is critical the we not allow the compiler to inline this function in to
3789 * dbuf_sync_list() thereby drastically bloating the stack usage.
3790 */
3791 noinline static void
3792 dbuf_sync_indirect(dbuf_dirty_record_t *dr, dmu_tx_t *tx)
3793 {
3794 dmu_buf_impl_t *db = dr->dr_dbuf;
3795 dnode_t *dn;
3796 zio_t *zio;
3797
3798 ASSERT(dmu_tx_is_syncing(tx));
3799
3800 dprintf_dbuf_bp(db, db->db_blkptr, "blkptr=%p", db->db_blkptr);
3801
3802 mutex_enter(&db->db_mtx);
3803
3804 ASSERT(db->db_level > 0);
3805 DBUF_VERIFY(db);
3806
3807 /* Read the block if it hasn't been read yet. */
3808 if (db->db_buf == NULL) {
3809 mutex_exit(&db->db_mtx);
3810 (void) dbuf_read(db, NULL, DB_RF_MUST_SUCCEED);
3811 mutex_enter(&db->db_mtx);
3812 }
3813 ASSERT3U(db->db_state, ==, DB_CACHED);
3814 ASSERT(db->db_buf != NULL);
3815
3816 DB_DNODE_ENTER(db);
3817 dn = DB_DNODE(db);
3818 /* Indirect block size must match what the dnode thinks it is. */
3819 ASSERT3U(db->db.db_size, ==, 1<<dn->dn_phys->dn_indblkshift);
3820 dbuf_check_blkptr(dn, db);
3821 DB_DNODE_EXIT(db);
3822
3823 /* Provide the pending dirty record to child dbufs */
3824 db->db_data_pending = dr;
3825
3826 mutex_exit(&db->db_mtx);
3827
3828 dbuf_write(dr, db->db_buf, tx);
3829
3830 zio = dr->dr_zio;
3831 mutex_enter(&dr->dt.di.dr_mtx);
3832 dbuf_sync_list(&dr->dt.di.dr_children, db->db_level - 1, tx);
3833 ASSERT(list_head(&dr->dt.di.dr_children) == NULL);
3834 mutex_exit(&dr->dt.di.dr_mtx);
3835 zio_nowait(zio);
3836 }
3837
3838 #ifdef ZFS_DEBUG
3839 /*
3840 * Verify that the size of the data in our bonus buffer does not exceed
3841 * its recorded size.
3842 *
3843 * The purpose of this verification is to catch any cases in development
3844 * where the size of a phys structure (i.e space_map_phys_t) grows and,
3845 * due to incorrect feature management, older pools expect to read more
3846 * data even though they didn't actually write it to begin with.
3847 *
3848 * For a example, this would catch an error in the feature logic where we
3849 * open an older pool and we expect to write the space map histogram of
3850 * a space map with size SPACE_MAP_SIZE_V0.
3851 */
3852 static void
3853 dbuf_sync_leaf_verify_bonus_dnode(dbuf_dirty_record_t *dr)
3854 {
3855 dnode_t *dn = DB_DNODE(dr->dr_dbuf);
3856
3857 /*
3858 * Encrypted bonus buffers can have data past their bonuslen.
3859 * Skip the verification of these blocks.
3860 */
3861 if (DMU_OT_IS_ENCRYPTED(dn->dn_bonustype))
3862 return;
3863
3864 uint16_t bonuslen = dn->dn_phys->dn_bonuslen;
3865 uint16_t maxbonuslen = DN_SLOTS_TO_BONUSLEN(dn->dn_num_slots);
3866 ASSERT3U(bonuslen, <=, maxbonuslen);
3867
3868 arc_buf_t *datap = dr->dt.dl.dr_data;
3869 char *datap_end = ((char *)datap) + bonuslen;
3870 char *datap_max = ((char *)datap) + maxbonuslen;
3871
3872 /* ensure that everything is zero after our data */
3873 for (; datap_end < datap_max; datap_end++)
3874 ASSERT(*datap_end == 0);
3875 }
3876 #endif
3877
3878 /*
3879 * dbuf_sync_leaf() is called recursively from dbuf_sync_list() so it is
3880 * critical the we not allow the compiler to inline this function in to
3881 * dbuf_sync_list() thereby drastically bloating the stack usage.
3882 */
3883 noinline static void
3884 dbuf_sync_leaf(dbuf_dirty_record_t *dr, dmu_tx_t *tx)
3885 {
3886 arc_buf_t **datap = &dr->dt.dl.dr_data;
3887 dmu_buf_impl_t *db = dr->dr_dbuf;
3888 dnode_t *dn;
3889 objset_t *os;
3890 uint64_t txg = tx->tx_txg;
3891
3892 ASSERT(dmu_tx_is_syncing(tx));
3893
3894 dprintf_dbuf_bp(db, db->db_blkptr, "blkptr=%p", db->db_blkptr);
3895
3896 mutex_enter(&db->db_mtx);
3897 /*
3898 * To be synced, we must be dirtied. But we
3899 * might have been freed after the dirty.
3900 */
3901 if (db->db_state == DB_UNCACHED) {
3902 /* This buffer has been freed since it was dirtied */
3903 ASSERT(db->db.db_data == NULL);
3904 } else if (db->db_state == DB_FILL) {
3905 /* This buffer was freed and is now being re-filled */
3906 ASSERT(db->db.db_data != dr->dt.dl.dr_data);
3907 } else {
3908 ASSERT(db->db_state == DB_CACHED || db->db_state == DB_NOFILL);
3909 }
3910 DBUF_VERIFY(db);
3911
3912 DB_DNODE_ENTER(db);
3913 dn = DB_DNODE(db);
3914
3915 if (db->db_blkid == DMU_SPILL_BLKID) {
3916 mutex_enter(&dn->dn_mtx);
3917 if (!(dn->dn_phys->dn_flags & DNODE_FLAG_SPILL_BLKPTR)) {
3918 /*
3919 * In the previous transaction group, the bonus buffer
3920 * was entirely used to store the attributes for the
3921 * dnode which overrode the dn_spill field. However,
3922 * when adding more attributes to the file a spill
3923 * block was required to hold the extra attributes.
3924 *
3925 * Make sure to clear the garbage left in the dn_spill
3926 * field from the previous attributes in the bonus
3927 * buffer. Otherwise, after writing out the spill
3928 * block to the new allocated dva, it will free
3929 * the old block pointed to by the invalid dn_spill.
3930 */
3931 db->db_blkptr = NULL;
3932 }
3933 dn->dn_phys->dn_flags |= DNODE_FLAG_SPILL_BLKPTR;
3934 mutex_exit(&dn->dn_mtx);
3935 }
3936
3937 /*
3938 * If this is a bonus buffer, simply copy the bonus data into the
3939 * dnode. It will be written out when the dnode is synced (and it
3940 * will be synced, since it must have been dirty for dbuf_sync to
3941 * be called).
3942 */
3943 if (db->db_blkid == DMU_BONUS_BLKID) {
3944 ASSERT(*datap != NULL);
3945 ASSERT0(db->db_level);
3946 ASSERT3U(DN_MAX_BONUS_LEN(dn->dn_phys), <=,
3947 DN_SLOTS_TO_BONUSLEN(dn->dn_phys->dn_extra_slots + 1));
3948 bcopy(*datap, DN_BONUS(dn->dn_phys),
3949 DN_MAX_BONUS_LEN(dn->dn_phys));
3950 DB_DNODE_EXIT(db);
3951
3952 #ifdef ZFS_DEBUG
3953 dbuf_sync_leaf_verify_bonus_dnode(dr);
3954 #endif
3955
3956 if (*datap != db->db.db_data) {
3957 int slots = DB_DNODE(db)->dn_num_slots;
3958 int bonuslen = DN_SLOTS_TO_BONUSLEN(slots);
3959 kmem_free(*datap, bonuslen);
3960 arc_space_return(bonuslen, ARC_SPACE_BONUS);
3961 }
3962 db->db_data_pending = NULL;
3963 ASSERT(list_next(&db->db_dirty_records, dr) == NULL);
3964 ASSERT(dr->dr_dbuf == db);
3965 list_remove(&db->db_dirty_records, dr);
3966 if (dr->dr_dbuf->db_level != 0) {
3967 mutex_destroy(&dr->dt.di.dr_mtx);
3968 list_destroy(&dr->dt.di.dr_children);
3969 }
3970 kmem_free(dr, sizeof (dbuf_dirty_record_t));
3971 ASSERT(db->db_dirtycnt > 0);
3972 db->db_dirtycnt -= 1;
3973 dbuf_rele_and_unlock(db, (void *)(uintptr_t)txg, B_FALSE);
3974 return;
3975 }
3976
3977 os = dn->dn_objset;
3978
3979 /*
3980 * This function may have dropped the db_mtx lock allowing a dmu_sync
3981 * operation to sneak in. As a result, we need to ensure that we
3982 * don't check the dr_override_state until we have returned from
3983 * dbuf_check_blkptr.
3984 */
3985 dbuf_check_blkptr(dn, db);
3986
3987 /*
3988 * If this buffer is in the middle of an immediate write,
3989 * wait for the synchronous IO to complete.
3990 */
3991 while (dr->dt.dl.dr_override_state == DR_IN_DMU_SYNC) {
3992 ASSERT(dn->dn_object != DMU_META_DNODE_OBJECT);
3993 cv_wait(&db->db_changed, &db->db_mtx);
3994 ASSERT(dr->dt.dl.dr_override_state != DR_NOT_OVERRIDDEN);
3995 }
3996
3997 /*
3998 * If this is a dnode block, ensure it is appropriately encrypted
3999 * or decrypted, depending on what we are writing to it this txg.
4000 */
4001 if (os->os_encrypted && dn->dn_object == DMU_META_DNODE_OBJECT)
4002 dbuf_prepare_encrypted_dnode_leaf(dr);
4003
4004 if (db->db_state != DB_NOFILL &&
4005 dn->dn_object != DMU_META_DNODE_OBJECT &&
4006 zfs_refcount_count(&db->db_holds) > 1 &&
4007 dr->dt.dl.dr_override_state != DR_OVERRIDDEN &&
4008 *datap == db->db_buf) {
4009 /*
4010 * If this buffer is currently "in use" (i.e., there
4011 * are active holds and db_data still references it),
4012 * then make a copy before we start the write so that
4013 * any modifications from the open txg will not leak
4014 * into this write.
4015 *
4016 * NOTE: this copy does not need to be made for
4017 * objects only modified in the syncing context (e.g.
4018 * DNONE_DNODE blocks).
4019 */
4020 int psize = arc_buf_size(*datap);
4021 int lsize = arc_buf_lsize(*datap);
4022 arc_buf_contents_t type = DBUF_GET_BUFC_TYPE(db);
4023 enum zio_compress compress_type = arc_get_compression(*datap);
4024
4025 if (arc_is_encrypted(*datap)) {
4026 boolean_t byteorder;
4027 uint8_t salt[ZIO_DATA_SALT_LEN];
4028 uint8_t iv[ZIO_DATA_IV_LEN];
4029 uint8_t mac[ZIO_DATA_MAC_LEN];
4030
4031 arc_get_raw_params(*datap, &byteorder, salt, iv, mac);
4032 *datap = arc_alloc_raw_buf(os->os_spa, db,
4033 dmu_objset_id(os), byteorder, salt, iv, mac,
4034 dn->dn_type, psize, lsize, compress_type);
4035 } else if (compress_type != ZIO_COMPRESS_OFF) {
4036 ASSERT3U(type, ==, ARC_BUFC_DATA);
4037 *datap = arc_alloc_compressed_buf(os->os_spa, db,
4038 psize, lsize, compress_type);
4039 } else {
4040 *datap = arc_alloc_buf(os->os_spa, db, type, psize);
4041 }
4042 bcopy(db->db.db_data, (*datap)->b_data, psize);
4043 }
4044 db->db_data_pending = dr;
4045
4046 mutex_exit(&db->db_mtx);
4047
4048 dbuf_write(dr, *datap, tx);
4049
4050 ASSERT(!list_link_active(&dr->dr_dirty_node));
4051 if (dn->dn_object == DMU_META_DNODE_OBJECT) {
4052 list_insert_tail(&dn->dn_dirty_records[txg & TXG_MASK], dr);
4053 DB_DNODE_EXIT(db);
4054 } else {
4055 /*
4056 * Although zio_nowait() does not "wait for an IO", it does
4057 * initiate the IO. If this is an empty write it seems plausible
4058 * that the IO could actually be completed before the nowait
4059 * returns. We need to DB_DNODE_EXIT() first in case
4060 * zio_nowait() invalidates the dbuf.
4061 */
4062 DB_DNODE_EXIT(db);
4063 zio_nowait(dr->dr_zio);
4064 }
4065 }
4066
4067 void
4068 dbuf_sync_list(list_t *list, int level, dmu_tx_t *tx)
4069 {
4070 dbuf_dirty_record_t *dr;
4071
4072 while ((dr = list_head(list))) {
4073 if (dr->dr_zio != NULL) {
4074 /*
4075 * If we find an already initialized zio then we
4076 * are processing the meta-dnode, and we have finished.
4077 * The dbufs for all dnodes are put back on the list
4078 * during processing, so that we can zio_wait()
4079 * these IOs after initiating all child IOs.
4080 */
4081 ASSERT3U(dr->dr_dbuf->db.db_object, ==,
4082 DMU_META_DNODE_OBJECT);
4083 break;
4084 }
4085 if (dr->dr_dbuf->db_blkid != DMU_BONUS_BLKID &&
4086 dr->dr_dbuf->db_blkid != DMU_SPILL_BLKID) {
4087 VERIFY3U(dr->dr_dbuf->db_level, ==, level);
4088 }
4089 list_remove(list, dr);
4090 if (dr->dr_dbuf->db_level > 0)
4091 dbuf_sync_indirect(dr, tx);
4092 else
4093 dbuf_sync_leaf(dr, tx);
4094 }
4095 }
4096
4097 /* ARGSUSED */
4098 static void
4099 dbuf_write_ready(zio_t *zio, arc_buf_t *buf, void *vdb)
4100 {
4101 dmu_buf_impl_t *db = vdb;
4102 dnode_t *dn;
4103 blkptr_t *bp = zio->io_bp;
4104 blkptr_t *bp_orig = &zio->io_bp_orig;
4105 spa_t *spa = zio->io_spa;
4106 int64_t delta;
4107 uint64_t fill = 0;
4108 int i;
4109
4110 ASSERT3P(db->db_blkptr, !=, NULL);
4111 ASSERT3P(&db->db_data_pending->dr_bp_copy, ==, bp);
4112
4113 DB_DNODE_ENTER(db);
4114 dn = DB_DNODE(db);
4115 delta = bp_get_dsize_sync(spa, bp) - bp_get_dsize_sync(spa, bp_orig);
4116 dnode_diduse_space(dn, delta - zio->io_prev_space_delta);
4117 zio->io_prev_space_delta = delta;
4118
4119 if (bp->blk_birth != 0) {
4120 ASSERT((db->db_blkid != DMU_SPILL_BLKID &&
4121 BP_GET_TYPE(bp) == dn->dn_type) ||
4122 (db->db_blkid == DMU_SPILL_BLKID &&
4123 BP_GET_TYPE(bp) == dn->dn_bonustype) ||
4124 BP_IS_EMBEDDED(bp));
4125 ASSERT(BP_GET_LEVEL(bp) == db->db_level);
4126 }
4127
4128 mutex_enter(&db->db_mtx);
4129
4130 #ifdef ZFS_DEBUG
4131 if (db->db_blkid == DMU_SPILL_BLKID) {
4132 ASSERT(dn->dn_phys->dn_flags & DNODE_FLAG_SPILL_BLKPTR);
4133 ASSERT(!(BP_IS_HOLE(bp)) &&
4134 db->db_blkptr == DN_SPILL_BLKPTR(dn->dn_phys));
4135 }
4136 #endif
4137
4138 if (db->db_level == 0) {
4139 mutex_enter(&dn->dn_mtx);
4140 if (db->db_blkid > dn->dn_phys->dn_maxblkid &&
4141 db->db_blkid != DMU_SPILL_BLKID) {
4142 ASSERT0(db->db_objset->os_raw_receive);
4143 dn->dn_phys->dn_maxblkid = db->db_blkid;
4144 }
4145 mutex_exit(&dn->dn_mtx);
4146
4147 if (dn->dn_type == DMU_OT_DNODE) {
4148 i = 0;
4149 while (i < db->db.db_size) {
4150 dnode_phys_t *dnp =
4151 (void *)(((char *)db->db.db_data) + i);
4152
4153 i += DNODE_MIN_SIZE;
4154 if (dnp->dn_type != DMU_OT_NONE) {
4155 fill++;
4156 i += dnp->dn_extra_slots *
4157 DNODE_MIN_SIZE;
4158 }
4159 }
4160 } else {
4161 if (BP_IS_HOLE(bp)) {
4162 fill = 0;
4163 } else {
4164 fill = 1;
4165 }
4166 }
4167 } else {
4168 blkptr_t *ibp = db->db.db_data;
4169 ASSERT3U(db->db.db_size, ==, 1<<dn->dn_phys->dn_indblkshift);
4170 for (i = db->db.db_size >> SPA_BLKPTRSHIFT; i > 0; i--, ibp++) {
4171 if (BP_IS_HOLE(ibp))
4172 continue;
4173 fill += BP_GET_FILL(ibp);
4174 }
4175 }
4176 DB_DNODE_EXIT(db);
4177
4178 if (!BP_IS_EMBEDDED(bp))
4179 BP_SET_FILL(bp, fill);
4180
4181 mutex_exit(&db->db_mtx);
4182
4183 db_lock_type_t dblt = dmu_buf_lock_parent(db, RW_WRITER, FTAG);
4184 *db->db_blkptr = *bp;
4185 dmu_buf_unlock_parent(db, dblt, FTAG);
4186 }
4187
4188 /* ARGSUSED */
4189 /*
4190 * This function gets called just prior to running through the compression
4191 * stage of the zio pipeline. If we're an indirect block comprised of only
4192 * holes, then we want this indirect to be compressed away to a hole. In
4193 * order to do that we must zero out any information about the holes that
4194 * this indirect points to prior to before we try to compress it.
4195 */
4196 static void
4197 dbuf_write_children_ready(zio_t *zio, arc_buf_t *buf, void *vdb)
4198 {
4199 dmu_buf_impl_t *db = vdb;
4200 dnode_t *dn;
4201 blkptr_t *bp;
4202 unsigned int epbs, i;
4203
4204 ASSERT3U(db->db_level, >, 0);
4205 DB_DNODE_ENTER(db);
4206 dn = DB_DNODE(db);
4207 epbs = dn->dn_phys->dn_indblkshift - SPA_BLKPTRSHIFT;
4208 ASSERT3U(epbs, <, 31);
4209
4210 /* Determine if all our children are holes */
4211 for (i = 0, bp = db->db.db_data; i < 1ULL << epbs; i++, bp++) {
4212 if (!BP_IS_HOLE(bp))
4213 break;
4214 }
4215
4216 /*
4217 * If all the children are holes, then zero them all out so that
4218 * we may get compressed away.
4219 */
4220 if (i == 1ULL << epbs) {
4221 /*
4222 * We only found holes. Grab the rwlock to prevent
4223 * anybody from reading the blocks we're about to
4224 * zero out.
4225 */
4226 rw_enter(&db->db_rwlock, RW_WRITER);
4227 bzero(db->db.db_data, db->db.db_size);
4228 rw_exit(&db->db_rwlock);
4229 }
4230 DB_DNODE_EXIT(db);
4231 }
4232
4233 /*
4234 * The SPA will call this callback several times for each zio - once
4235 * for every physical child i/o (zio->io_phys_children times). This
4236 * allows the DMU to monitor the progress of each logical i/o. For example,
4237 * there may be 2 copies of an indirect block, or many fragments of a RAID-Z
4238 * block. There may be a long delay before all copies/fragments are completed,
4239 * so this callback allows us to retire dirty space gradually, as the physical
4240 * i/os complete.
4241 */
4242 /* ARGSUSED */
4243 static void
4244 dbuf_write_physdone(zio_t *zio, arc_buf_t *buf, void *arg)
4245 {
4246 dmu_buf_impl_t *db = arg;
4247 objset_t *os = db->db_objset;
4248 dsl_pool_t *dp = dmu_objset_pool(os);
4249 dbuf_dirty_record_t *dr;
4250 int delta = 0;
4251
4252 dr = db->db_data_pending;
4253 ASSERT3U(dr->dr_txg, ==, zio->io_txg);
4254
4255 /*
4256 * The callback will be called io_phys_children times. Retire one
4257 * portion of our dirty space each time we are called. Any rounding
4258 * error will be cleaned up by dbuf_write_done().
4259 */
4260 delta = dr->dr_accounted / zio->io_phys_children;
4261 dsl_pool_undirty_space(dp, delta, zio->io_txg);
4262 }
4263
4264 /* ARGSUSED */
4265 static void
4266 dbuf_write_done(zio_t *zio, arc_buf_t *buf, void *vdb)
4267 {
4268 dmu_buf_impl_t *db = vdb;
4269 blkptr_t *bp_orig = &zio->io_bp_orig;
4270 blkptr_t *bp = db->db_blkptr;
4271 objset_t *os = db->db_objset;
4272 dmu_tx_t *tx = os->os_synctx;
4273 dbuf_dirty_record_t *dr;
4274
4275 ASSERT0(zio->io_error);
4276 ASSERT(db->db_blkptr == bp);
4277
4278 /*
4279 * For nopwrites and rewrites we ensure that the bp matches our
4280 * original and bypass all the accounting.
4281 */
4282 if (zio->io_flags & (ZIO_FLAG_IO_REWRITE | ZIO_FLAG_NOPWRITE)) {
4283 ASSERT(BP_EQUAL(bp, bp_orig));
4284 } else {
4285 dsl_dataset_t *ds = os->os_dsl_dataset;
4286 (void) dsl_dataset_block_kill(ds, bp_orig, tx, B_TRUE);
4287 dsl_dataset_block_born(ds, bp, tx);
4288 }
4289
4290 mutex_enter(&db->db_mtx);
4291
4292 DBUF_VERIFY(db);
4293
4294 dr = db->db_data_pending;
4295 ASSERT(!list_link_active(&dr->dr_dirty_node));
4296 ASSERT(dr->dr_dbuf == db);
4297 ASSERT(list_next(&db->db_dirty_records, dr) == NULL);
4298 list_remove(&db->db_dirty_records, dr);
4299
4300 #ifdef ZFS_DEBUG
4301 if (db->db_blkid == DMU_SPILL_BLKID) {
4302 dnode_t *dn;
4303
4304 DB_DNODE_ENTER(db);
4305 dn = DB_DNODE(db);
4306 ASSERT(dn->dn_phys->dn_flags & DNODE_FLAG_SPILL_BLKPTR);
4307 ASSERT(!(BP_IS_HOLE(db->db_blkptr)) &&
4308 db->db_blkptr == DN_SPILL_BLKPTR(dn->dn_phys));
4309 DB_DNODE_EXIT(db);
4310 }
4311 #endif
4312
4313 if (db->db_level == 0) {
4314 ASSERT(db->db_blkid != DMU_BONUS_BLKID);
4315 ASSERT(dr->dt.dl.dr_override_state == DR_NOT_OVERRIDDEN);
4316 if (db->db_state != DB_NOFILL) {
4317 if (dr->dt.dl.dr_data != db->db_buf)
4318 arc_buf_destroy(dr->dt.dl.dr_data, db);
4319 }
4320 } else {
4321 dnode_t *dn;
4322
4323 DB_DNODE_ENTER(db);
4324 dn = DB_DNODE(db);
4325 ASSERT(list_head(&dr->dt.di.dr_children) == NULL);
4326 ASSERT3U(db->db.db_size, ==, 1 << dn->dn_phys->dn_indblkshift);
4327 if (!BP_IS_HOLE(db->db_blkptr)) {
4328 int epbs __maybe_unused = dn->dn_phys->dn_indblkshift -
4329 SPA_BLKPTRSHIFT;
4330 ASSERT3U(db->db_blkid, <=,
4331 dn->dn_phys->dn_maxblkid >> (db->db_level * epbs));
4332 ASSERT3U(BP_GET_LSIZE(db->db_blkptr), ==,
4333 db->db.db_size);
4334 }
4335 DB_DNODE_EXIT(db);
4336 mutex_destroy(&dr->dt.di.dr_mtx);
4337 list_destroy(&dr->dt.di.dr_children);
4338 }
4339
4340 cv_broadcast(&db->db_changed);
4341 ASSERT(db->db_dirtycnt > 0);
4342 db->db_dirtycnt -= 1;
4343 db->db_data_pending = NULL;
4344 dbuf_rele_and_unlock(db, (void *)(uintptr_t)tx->tx_txg, B_FALSE);
4345
4346 /*
4347 * If we didn't do a physical write in this ZIO and we
4348 * still ended up here, it means that the space of the
4349 * dbuf that we just released (and undirtied) above hasn't
4350 * been marked as undirtied in the pool's accounting.
4351 *
4352 * Thus, we undirty that space in the pool's view of the
4353 * world here. For physical writes this type of update
4354 * happens in dbuf_write_physdone().
4355 *
4356 * If we did a physical write, cleanup any rounding errors
4357 * that came up due to writing multiple copies of a block
4358 * on disk [see dbuf_write_physdone()].
4359 */
4360 if (zio->io_phys_children == 0) {
4361 dsl_pool_undirty_space(dmu_objset_pool(os),
4362 dr->dr_accounted, zio->io_txg);
4363 } else {
4364 dsl_pool_undirty_space(dmu_objset_pool(os),
4365 dr->dr_accounted % zio->io_phys_children, zio->io_txg);
4366 }
4367
4368 kmem_free(dr, sizeof (dbuf_dirty_record_t));
4369 }
4370
4371 static void
4372 dbuf_write_nofill_ready(zio_t *zio)
4373 {
4374 dbuf_write_ready(zio, NULL, zio->io_private);
4375 }
4376
4377 static void
4378 dbuf_write_nofill_done(zio_t *zio)
4379 {
4380 dbuf_write_done(zio, NULL, zio->io_private);
4381 }
4382
4383 static void
4384 dbuf_write_override_ready(zio_t *zio)
4385 {
4386 dbuf_dirty_record_t *dr = zio->io_private;
4387 dmu_buf_impl_t *db = dr->dr_dbuf;
4388
4389 dbuf_write_ready(zio, NULL, db);
4390 }
4391
4392 static void
4393 dbuf_write_override_done(zio_t *zio)
4394 {
4395 dbuf_dirty_record_t *dr = zio->io_private;
4396 dmu_buf_impl_t *db = dr->dr_dbuf;
4397 blkptr_t *obp = &dr->dt.dl.dr_overridden_by;
4398
4399 mutex_enter(&db->db_mtx);
4400 if (!BP_EQUAL(zio->io_bp, obp)) {
4401 if (!BP_IS_HOLE(obp))
4402 dsl_free(spa_get_dsl(zio->io_spa), zio->io_txg, obp);
4403 arc_release(dr->dt.dl.dr_data, db);
4404 }
4405 mutex_exit(&db->db_mtx);
4406
4407 dbuf_write_done(zio, NULL, db);
4408
4409 if (zio->io_abd != NULL)
4410 abd_put(zio->io_abd);
4411 }
4412
4413 typedef struct dbuf_remap_impl_callback_arg {
4414 objset_t *drica_os;
4415 uint64_t drica_blk_birth;
4416 dmu_tx_t *drica_tx;
4417 } dbuf_remap_impl_callback_arg_t;
4418
4419 static void
4420 dbuf_remap_impl_callback(uint64_t vdev, uint64_t offset, uint64_t size,
4421 void *arg)
4422 {
4423 dbuf_remap_impl_callback_arg_t *drica = arg;
4424 objset_t *os = drica->drica_os;
4425 spa_t *spa = dmu_objset_spa(os);
4426 dmu_tx_t *tx = drica->drica_tx;
4427
4428 ASSERT(dsl_pool_sync_context(spa_get_dsl(spa)));
4429
4430 if (os == spa_meta_objset(spa)) {
4431 spa_vdev_indirect_mark_obsolete(spa, vdev, offset, size, tx);
4432 } else {
4433 dsl_dataset_block_remapped(dmu_objset_ds(os), vdev, offset,
4434 size, drica->drica_blk_birth, tx);
4435 }
4436 }
4437
4438 static void
4439 dbuf_remap_impl(dnode_t *dn, blkptr_t *bp, krwlock_t *rw, dmu_tx_t *tx)
4440 {
4441 blkptr_t bp_copy = *bp;
4442 spa_t *spa = dmu_objset_spa(dn->dn_objset);
4443 dbuf_remap_impl_callback_arg_t drica;
4444
4445 ASSERT(dsl_pool_sync_context(spa_get_dsl(spa)));
4446
4447 drica.drica_os = dn->dn_objset;
4448 drica.drica_blk_birth = bp->blk_birth;
4449 drica.drica_tx = tx;
4450 if (spa_remap_blkptr(spa, &bp_copy, dbuf_remap_impl_callback,
4451 &drica)) {
4452 /*
4453 * If the blkptr being remapped is tracked by a livelist,
4454 * then we need to make sure the livelist reflects the update.
4455 * First, cancel out the old blkptr by appending a 'FREE'
4456 * entry. Next, add an 'ALLOC' to track the new version. This
4457 * way we avoid trying to free an inaccurate blkptr at delete.
4458 * Note that embedded blkptrs are not tracked in livelists.
4459 */
4460 if (dn->dn_objset != spa_meta_objset(spa)) {
4461 dsl_dataset_t *ds = dmu_objset_ds(dn->dn_objset);
4462 if (dsl_deadlist_is_open(&ds->ds_dir->dd_livelist) &&
4463 bp->blk_birth > ds->ds_dir->dd_origin_txg) {
4464 ASSERT(!BP_IS_EMBEDDED(bp));
4465 ASSERT(dsl_dir_is_clone(ds->ds_dir));
4466 ASSERT(spa_feature_is_enabled(spa,
4467 SPA_FEATURE_LIVELIST));
4468 bplist_append(&ds->ds_dir->dd_pending_frees,
4469 bp);
4470 bplist_append(&ds->ds_dir->dd_pending_allocs,
4471 &bp_copy);
4472 }
4473 }
4474
4475 /*
4476 * The db_rwlock prevents dbuf_read_impl() from
4477 * dereferencing the BP while we are changing it. To
4478 * avoid lock contention, only grab it when we are actually
4479 * changing the BP.
4480 */
4481 if (rw != NULL)
4482 rw_enter(rw, RW_WRITER);
4483 *bp = bp_copy;
4484 if (rw != NULL)
4485 rw_exit(rw);
4486 }
4487 }
4488
4489 /*
4490 * Remap any existing BP's to concrete vdevs, if possible.
4491 */
4492 static void
4493 dbuf_remap(dnode_t *dn, dmu_buf_impl_t *db, dmu_tx_t *tx)
4494 {
4495 spa_t *spa = dmu_objset_spa(db->db_objset);
4496 ASSERT(dsl_pool_sync_context(spa_get_dsl(spa)));
4497
4498 if (!spa_feature_is_active(spa, SPA_FEATURE_DEVICE_REMOVAL))
4499 return;
4500
4501 if (db->db_level > 0) {
4502 blkptr_t *bp = db->db.db_data;
4503 for (int i = 0; i < db->db.db_size >> SPA_BLKPTRSHIFT; i++) {
4504 dbuf_remap_impl(dn, &bp[i], &db->db_rwlock, tx);
4505 }
4506 } else if (db->db.db_object == DMU_META_DNODE_OBJECT) {
4507 dnode_phys_t *dnp = db->db.db_data;
4508 ASSERT3U(db->db_dnode_handle->dnh_dnode->dn_type, ==,
4509 DMU_OT_DNODE);
4510 for (int i = 0; i < db->db.db_size >> DNODE_SHIFT;
4511 i += dnp[i].dn_extra_slots + 1) {
4512 for (int j = 0; j < dnp[i].dn_nblkptr; j++) {
4513 krwlock_t *lock = (dn->dn_dbuf == NULL ? NULL :
4514 &dn->dn_dbuf->db_rwlock);
4515 dbuf_remap_impl(dn, &dnp[i].dn_blkptr[j], lock,
4516 tx);
4517 }
4518 }
4519 }
4520 }
4521
4522
4523 /* Issue I/O to commit a dirty buffer to disk. */
4524 static void
4525 dbuf_write(dbuf_dirty_record_t *dr, arc_buf_t *data, dmu_tx_t *tx)
4526 {
4527 dmu_buf_impl_t *db = dr->dr_dbuf;
4528 dnode_t *dn;
4529 objset_t *os;
4530 dmu_buf_impl_t *parent = db->db_parent;
4531 uint64_t txg = tx->tx_txg;
4532 zbookmark_phys_t zb;
4533 zio_prop_t zp;
4534 zio_t *zio;
4535 int wp_flag = 0;
4536
4537 ASSERT(dmu_tx_is_syncing(tx));
4538
4539 DB_DNODE_ENTER(db);
4540 dn = DB_DNODE(db);
4541 os = dn->dn_objset;
4542
4543 if (db->db_state != DB_NOFILL) {
4544 if (db->db_level > 0 || dn->dn_type == DMU_OT_DNODE) {
4545 /*
4546 * Private object buffers are released here rather
4547 * than in dbuf_dirty() since they are only modified
4548 * in the syncing context and we don't want the
4549 * overhead of making multiple copies of the data.
4550 */
4551 if (BP_IS_HOLE(db->db_blkptr)) {
4552 arc_buf_thaw(data);
4553 } else {
4554 dbuf_release_bp(db);
4555 }
4556 dbuf_remap(dn, db, tx);
4557 }
4558 }
4559
4560 if (parent != dn->dn_dbuf) {
4561 /* Our parent is an indirect block. */
4562 /* We have a dirty parent that has been scheduled for write. */
4563 ASSERT(parent && parent->db_data_pending);
4564 /* Our parent's buffer is one level closer to the dnode. */
4565 ASSERT(db->db_level == parent->db_level-1);
4566 /*
4567 * We're about to modify our parent's db_data by modifying
4568 * our block pointer, so the parent must be released.
4569 */
4570 ASSERT(arc_released(parent->db_buf));
4571 zio = parent->db_data_pending->dr_zio;
4572 } else {
4573 /* Our parent is the dnode itself. */
4574 ASSERT((db->db_level == dn->dn_phys->dn_nlevels-1 &&
4575 db->db_blkid != DMU_SPILL_BLKID) ||
4576 (db->db_blkid == DMU_SPILL_BLKID && db->db_level == 0));
4577 if (db->db_blkid != DMU_SPILL_BLKID)
4578 ASSERT3P(db->db_blkptr, ==,
4579 &dn->dn_phys->dn_blkptr[db->db_blkid]);
4580 zio = dn->dn_zio;
4581 }
4582
4583 ASSERT(db->db_level == 0 || data == db->db_buf);
4584 ASSERT3U(db->db_blkptr->blk_birth, <=, txg);
4585 ASSERT(zio);
4586
4587 SET_BOOKMARK(&zb, os->os_dsl_dataset ?
4588 os->os_dsl_dataset->ds_object : DMU_META_OBJSET,
4589 db->db.db_object, db->db_level, db->db_blkid);
4590
4591 if (db->db_blkid == DMU_SPILL_BLKID)
4592 wp_flag = WP_SPILL;
4593 wp_flag |= (db->db_state == DB_NOFILL) ? WP_NOFILL : 0;
4594
4595 dmu_write_policy(os, dn, db->db_level, wp_flag, &zp);
4596 DB_DNODE_EXIT(db);
4597
4598 /*
4599 * We copy the blkptr now (rather than when we instantiate the dirty
4600 * record), because its value can change between open context and
4601 * syncing context. We do not need to hold dn_struct_rwlock to read
4602 * db_blkptr because we are in syncing context.
4603 */
4604 dr->dr_bp_copy = *db->db_blkptr;
4605
4606 if (db->db_level == 0 &&
4607 dr->dt.dl.dr_override_state == DR_OVERRIDDEN) {
4608 /*
4609 * The BP for this block has been provided by open context
4610 * (by dmu_sync() or dmu_buf_write_embedded()).
4611 */
4612 abd_t *contents = (data != NULL) ?
4613 abd_get_from_buf(data->b_data, arc_buf_size(data)) : NULL;
4614
4615 dr->dr_zio = zio_write(zio, os->os_spa, txg,
4616 &dr->dr_bp_copy, contents, db->db.db_size, db->db.db_size,
4617 &zp, dbuf_write_override_ready, NULL, NULL,
4618 dbuf_write_override_done,
4619 dr, ZIO_PRIORITY_ASYNC_WRITE, ZIO_FLAG_MUSTSUCCEED, &zb);
4620 mutex_enter(&db->db_mtx);
4621 dr->dt.dl.dr_override_state = DR_NOT_OVERRIDDEN;
4622 zio_write_override(dr->dr_zio, &dr->dt.dl.dr_overridden_by,
4623 dr->dt.dl.dr_copies, dr->dt.dl.dr_nopwrite);
4624 mutex_exit(&db->db_mtx);
4625 } else if (db->db_state == DB_NOFILL) {
4626 ASSERT(zp.zp_checksum == ZIO_CHECKSUM_OFF ||
4627 zp.zp_checksum == ZIO_CHECKSUM_NOPARITY);
4628 dr->dr_zio = zio_write(zio, os->os_spa, txg,
4629 &dr->dr_bp_copy, NULL, db->db.db_size, db->db.db_size, &zp,
4630 dbuf_write_nofill_ready, NULL, NULL,
4631 dbuf_write_nofill_done, db,
4632 ZIO_PRIORITY_ASYNC_WRITE,
4633 ZIO_FLAG_MUSTSUCCEED | ZIO_FLAG_NODATA, &zb);
4634 } else {
4635 ASSERT(arc_released(data));
4636
4637 /*
4638 * For indirect blocks, we want to setup the children
4639 * ready callback so that we can properly handle an indirect
4640 * block that only contains holes.
4641 */
4642 arc_write_done_func_t *children_ready_cb = NULL;
4643 if (db->db_level != 0)
4644 children_ready_cb = dbuf_write_children_ready;
4645
4646 dr->dr_zio = arc_write(zio, os->os_spa, txg,
4647 &dr->dr_bp_copy, data, DBUF_IS_L2CACHEABLE(db),
4648 &zp, dbuf_write_ready,
4649 children_ready_cb, dbuf_write_physdone,
4650 dbuf_write_done, db, ZIO_PRIORITY_ASYNC_WRITE,
4651 ZIO_FLAG_MUSTSUCCEED, &zb);
4652 }
4653 }
4654
4655 EXPORT_SYMBOL(dbuf_find);
4656 EXPORT_SYMBOL(dbuf_is_metadata);
4657 EXPORT_SYMBOL(dbuf_destroy);
4658 EXPORT_SYMBOL(dbuf_loan_arcbuf);
4659 EXPORT_SYMBOL(dbuf_whichblock);
4660 EXPORT_SYMBOL(dbuf_read);
4661 EXPORT_SYMBOL(dbuf_unoverride);
4662 EXPORT_SYMBOL(dbuf_free_range);
4663 EXPORT_SYMBOL(dbuf_new_size);
4664 EXPORT_SYMBOL(dbuf_release_bp);
4665 EXPORT_SYMBOL(dbuf_dirty);
4666 EXPORT_SYMBOL(dmu_buf_set_crypt_params);
4667 EXPORT_SYMBOL(dmu_buf_will_dirty);
4668 EXPORT_SYMBOL(dmu_buf_is_dirty);
4669 EXPORT_SYMBOL(dmu_buf_will_not_fill);
4670 EXPORT_SYMBOL(dmu_buf_will_fill);
4671 EXPORT_SYMBOL(dmu_buf_fill_done);
4672 EXPORT_SYMBOL(dmu_buf_rele);
4673 EXPORT_SYMBOL(dbuf_assign_arcbuf);
4674 EXPORT_SYMBOL(dbuf_prefetch);
4675 EXPORT_SYMBOL(dbuf_hold_impl);
4676 EXPORT_SYMBOL(dbuf_hold);
4677 EXPORT_SYMBOL(dbuf_hold_level);
4678 EXPORT_SYMBOL(dbuf_create_bonus);
4679 EXPORT_SYMBOL(dbuf_spill_set_blksz);
4680 EXPORT_SYMBOL(dbuf_rm_spill);
4681 EXPORT_SYMBOL(dbuf_add_ref);
4682 EXPORT_SYMBOL(dbuf_rele);
4683 EXPORT_SYMBOL(dbuf_rele_and_unlock);
4684 EXPORT_SYMBOL(dbuf_refcount);
4685 EXPORT_SYMBOL(dbuf_sync_list);
4686 EXPORT_SYMBOL(dmu_buf_set_user);
4687 EXPORT_SYMBOL(dmu_buf_set_user_ie);
4688 EXPORT_SYMBOL(dmu_buf_get_user);
4689 EXPORT_SYMBOL(dmu_buf_get_blkptr);
4690
4691 /* BEGIN CSTYLED */
4692 ZFS_MODULE_PARAM(zfs_dbuf_cache, dbuf_cache_, max_bytes, ULONG, ZMOD_RW,
4693 "Maximum size in bytes of the dbuf cache.");
4694
4695 ZFS_MODULE_PARAM(zfs_dbuf_cache, dbuf_cache_, hiwater_pct, UINT, ZMOD_RW,
4696 "Percentage over dbuf_cache_max_bytes when dbufs must be evicted "
4697 "directly.");
4698
4699 ZFS_MODULE_PARAM(zfs_dbuf_cache, dbuf_cache_, lowater_pct, UINT, ZMOD_RW,
4700 "Percentage below dbuf_cache_max_bytes when the evict thread stops "
4701 "evicting dbufs.");
4702
4703 ZFS_MODULE_PARAM(zfs_dbuf, dbuf_, metadata_cache_max_bytes, ULONG, ZMOD_RW,
4704 "Maximum size in bytes of the dbuf metadata cache.");
4705
4706 ZFS_MODULE_PARAM(zfs_dbuf, dbuf_, cache_shift, INT, ZMOD_RW,
4707 "Set the size of the dbuf cache to a log2 fraction of arc size.");
4708
4709 ZFS_MODULE_PARAM(zfs_dbuf, dbuf_, metadata_cache_shift, INT, ZMOD_RW,
4710 "Set the size of the dbuf metadata cache to a log2 fraction of arc "
4711 "size.");
4712 /* END CSTYLED */