]> git.proxmox.com Git - mirror_zfs.git/blob - module/zfs/dmu_recv.c
module/*.ko: prune .data, global .rodata
[mirror_zfs.git] / module / zfs / dmu_recv.c
1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright 2011 Nexenta Systems, Inc. All rights reserved.
24 * Copyright (c) 2011, 2020 by Delphix. All rights reserved.
25 * Copyright (c) 2014, Joyent, Inc. All rights reserved.
26 * Copyright 2014 HybridCluster. All rights reserved.
27 * Copyright (c) 2018, loli10K <ezomori.nozomu@gmail.com>. All rights reserved.
28 * Copyright (c) 2019, Klara Inc.
29 * Copyright (c) 2019, Allan Jude
30 */
31
32 #include <sys/dmu.h>
33 #include <sys/dmu_impl.h>
34 #include <sys/dmu_send.h>
35 #include <sys/dmu_recv.h>
36 #include <sys/dmu_tx.h>
37 #include <sys/dbuf.h>
38 #include <sys/dnode.h>
39 #include <sys/zfs_context.h>
40 #include <sys/dmu_objset.h>
41 #include <sys/dmu_traverse.h>
42 #include <sys/dsl_dataset.h>
43 #include <sys/dsl_dir.h>
44 #include <sys/dsl_prop.h>
45 #include <sys/dsl_pool.h>
46 #include <sys/dsl_synctask.h>
47 #include <sys/zfs_ioctl.h>
48 #include <sys/zap.h>
49 #include <sys/zvol.h>
50 #include <sys/zio_checksum.h>
51 #include <sys/zfs_znode.h>
52 #include <zfs_fletcher.h>
53 #include <sys/avl.h>
54 #include <sys/ddt.h>
55 #include <sys/zfs_onexit.h>
56 #include <sys/dsl_destroy.h>
57 #include <sys/blkptr.h>
58 #include <sys/dsl_bookmark.h>
59 #include <sys/zfeature.h>
60 #include <sys/bqueue.h>
61 #include <sys/objlist.h>
62 #ifdef _KERNEL
63 #include <sys/zfs_vfsops.h>
64 #endif
65 #include <sys/zfs_file.h>
66
67 static int zfs_recv_queue_length = SPA_MAXBLOCKSIZE;
68 static int zfs_recv_queue_ff = 20;
69 static int zfs_recv_write_batch_size = 1024 * 1024;
70
71 static void *const dmu_recv_tag = "dmu_recv_tag";
72 const char *const recv_clone_name = "%recv";
73
74 static int receive_read_payload_and_next_header(dmu_recv_cookie_t *ra, int len,
75 void *buf);
76
77 struct receive_record_arg {
78 dmu_replay_record_t header;
79 void *payload; /* Pointer to a buffer containing the payload */
80 /*
81 * If the record is a WRITE or SPILL, pointer to the abd containing the
82 * payload.
83 */
84 abd_t *abd;
85 int payload_size;
86 uint64_t bytes_read; /* bytes read from stream when record created */
87 boolean_t eos_marker; /* Marks the end of the stream */
88 bqueue_node_t node;
89 };
90
91 struct receive_writer_arg {
92 objset_t *os;
93 boolean_t byteswap;
94 bqueue_t q;
95
96 /*
97 * These three members are used to signal to the main thread when
98 * we're done.
99 */
100 kmutex_t mutex;
101 kcondvar_t cv;
102 boolean_t done;
103
104 int err;
105 boolean_t resumable;
106 boolean_t raw; /* DMU_BACKUP_FEATURE_RAW set */
107 boolean_t spill; /* DRR_FLAG_SPILL_BLOCK set */
108 boolean_t full; /* this is a full send stream */
109 uint64_t last_object;
110 uint64_t last_offset;
111 uint64_t max_object; /* highest object ID referenced in stream */
112 uint64_t bytes_read; /* bytes read when current record created */
113
114 list_t write_batch;
115
116 /* Encryption parameters for the last received DRR_OBJECT_RANGE */
117 boolean_t or_crypt_params_present;
118 uint64_t or_firstobj;
119 uint64_t or_numslots;
120 uint8_t or_salt[ZIO_DATA_SALT_LEN];
121 uint8_t or_iv[ZIO_DATA_IV_LEN];
122 uint8_t or_mac[ZIO_DATA_MAC_LEN];
123 boolean_t or_byteorder;
124 };
125
126 typedef struct dmu_recv_begin_arg {
127 const char *drba_origin;
128 dmu_recv_cookie_t *drba_cookie;
129 cred_t *drba_cred;
130 proc_t *drba_proc;
131 dsl_crypto_params_t *drba_dcp;
132 } dmu_recv_begin_arg_t;
133
134 static void
135 byteswap_record(dmu_replay_record_t *drr)
136 {
137 #define DO64(X) (drr->drr_u.X = BSWAP_64(drr->drr_u.X))
138 #define DO32(X) (drr->drr_u.X = BSWAP_32(drr->drr_u.X))
139 drr->drr_type = BSWAP_32(drr->drr_type);
140 drr->drr_payloadlen = BSWAP_32(drr->drr_payloadlen);
141
142 switch (drr->drr_type) {
143 case DRR_BEGIN:
144 DO64(drr_begin.drr_magic);
145 DO64(drr_begin.drr_versioninfo);
146 DO64(drr_begin.drr_creation_time);
147 DO32(drr_begin.drr_type);
148 DO32(drr_begin.drr_flags);
149 DO64(drr_begin.drr_toguid);
150 DO64(drr_begin.drr_fromguid);
151 break;
152 case DRR_OBJECT:
153 DO64(drr_object.drr_object);
154 DO32(drr_object.drr_type);
155 DO32(drr_object.drr_bonustype);
156 DO32(drr_object.drr_blksz);
157 DO32(drr_object.drr_bonuslen);
158 DO32(drr_object.drr_raw_bonuslen);
159 DO64(drr_object.drr_toguid);
160 DO64(drr_object.drr_maxblkid);
161 break;
162 case DRR_FREEOBJECTS:
163 DO64(drr_freeobjects.drr_firstobj);
164 DO64(drr_freeobjects.drr_numobjs);
165 DO64(drr_freeobjects.drr_toguid);
166 break;
167 case DRR_WRITE:
168 DO64(drr_write.drr_object);
169 DO32(drr_write.drr_type);
170 DO64(drr_write.drr_offset);
171 DO64(drr_write.drr_logical_size);
172 DO64(drr_write.drr_toguid);
173 ZIO_CHECKSUM_BSWAP(&drr->drr_u.drr_write.drr_key.ddk_cksum);
174 DO64(drr_write.drr_key.ddk_prop);
175 DO64(drr_write.drr_compressed_size);
176 break;
177 case DRR_WRITE_EMBEDDED:
178 DO64(drr_write_embedded.drr_object);
179 DO64(drr_write_embedded.drr_offset);
180 DO64(drr_write_embedded.drr_length);
181 DO64(drr_write_embedded.drr_toguid);
182 DO32(drr_write_embedded.drr_lsize);
183 DO32(drr_write_embedded.drr_psize);
184 break;
185 case DRR_FREE:
186 DO64(drr_free.drr_object);
187 DO64(drr_free.drr_offset);
188 DO64(drr_free.drr_length);
189 DO64(drr_free.drr_toguid);
190 break;
191 case DRR_SPILL:
192 DO64(drr_spill.drr_object);
193 DO64(drr_spill.drr_length);
194 DO64(drr_spill.drr_toguid);
195 DO64(drr_spill.drr_compressed_size);
196 DO32(drr_spill.drr_type);
197 break;
198 case DRR_OBJECT_RANGE:
199 DO64(drr_object_range.drr_firstobj);
200 DO64(drr_object_range.drr_numslots);
201 DO64(drr_object_range.drr_toguid);
202 break;
203 case DRR_REDACT:
204 DO64(drr_redact.drr_object);
205 DO64(drr_redact.drr_offset);
206 DO64(drr_redact.drr_length);
207 DO64(drr_redact.drr_toguid);
208 break;
209 case DRR_END:
210 DO64(drr_end.drr_toguid);
211 ZIO_CHECKSUM_BSWAP(&drr->drr_u.drr_end.drr_checksum);
212 break;
213 default:
214 break;
215 }
216
217 if (drr->drr_type != DRR_BEGIN) {
218 ZIO_CHECKSUM_BSWAP(&drr->drr_u.drr_checksum.drr_checksum);
219 }
220
221 #undef DO64
222 #undef DO32
223 }
224
225 static boolean_t
226 redact_snaps_contains(uint64_t *snaps, uint64_t num_snaps, uint64_t guid)
227 {
228 for (int i = 0; i < num_snaps; i++) {
229 if (snaps[i] == guid)
230 return (B_TRUE);
231 }
232 return (B_FALSE);
233 }
234
235 /*
236 * Check that the new stream we're trying to receive is redacted with respect to
237 * a subset of the snapshots that the origin was redacted with respect to. For
238 * the reasons behind this, see the man page on redacted zfs sends and receives.
239 */
240 static boolean_t
241 compatible_redact_snaps(uint64_t *origin_snaps, uint64_t origin_num_snaps,
242 uint64_t *redact_snaps, uint64_t num_redact_snaps)
243 {
244 /*
245 * Short circuit the comparison; if we are redacted with respect to
246 * more snapshots than the origin, we can't be redacted with respect
247 * to a subset.
248 */
249 if (num_redact_snaps > origin_num_snaps) {
250 return (B_FALSE);
251 }
252
253 for (int i = 0; i < num_redact_snaps; i++) {
254 if (!redact_snaps_contains(origin_snaps, origin_num_snaps,
255 redact_snaps[i])) {
256 return (B_FALSE);
257 }
258 }
259 return (B_TRUE);
260 }
261
262 static boolean_t
263 redact_check(dmu_recv_begin_arg_t *drba, dsl_dataset_t *origin)
264 {
265 uint64_t *origin_snaps;
266 uint64_t origin_num_snaps;
267 dmu_recv_cookie_t *drc = drba->drba_cookie;
268 struct drr_begin *drrb = drc->drc_drrb;
269 int featureflags = DMU_GET_FEATUREFLAGS(drrb->drr_versioninfo);
270 int err = 0;
271 boolean_t ret = B_TRUE;
272 uint64_t *redact_snaps;
273 uint_t numredactsnaps;
274
275 /*
276 * If this is a full send stream, we're safe no matter what.
277 */
278 if (drrb->drr_fromguid == 0)
279 return (ret);
280
281 VERIFY(dsl_dataset_get_uint64_array_feature(origin,
282 SPA_FEATURE_REDACTED_DATASETS, &origin_num_snaps, &origin_snaps));
283
284 if (nvlist_lookup_uint64_array(drc->drc_begin_nvl,
285 BEGINNV_REDACT_FROM_SNAPS, &redact_snaps, &numredactsnaps) ==
286 0) {
287 /*
288 * If the send stream was sent from the redaction bookmark or
289 * the redacted version of the dataset, then we're safe. Verify
290 * that this is from the a compatible redaction bookmark or
291 * redacted dataset.
292 */
293 if (!compatible_redact_snaps(origin_snaps, origin_num_snaps,
294 redact_snaps, numredactsnaps)) {
295 err = EINVAL;
296 }
297 } else if (featureflags & DMU_BACKUP_FEATURE_REDACTED) {
298 /*
299 * If the stream is redacted, it must be redacted with respect
300 * to a subset of what the origin is redacted with respect to.
301 * See case number 2 in the zfs man page section on redacted zfs
302 * send.
303 */
304 err = nvlist_lookup_uint64_array(drc->drc_begin_nvl,
305 BEGINNV_REDACT_SNAPS, &redact_snaps, &numredactsnaps);
306
307 if (err != 0 || !compatible_redact_snaps(origin_snaps,
308 origin_num_snaps, redact_snaps, numredactsnaps)) {
309 err = EINVAL;
310 }
311 } else if (!redact_snaps_contains(origin_snaps, origin_num_snaps,
312 drrb->drr_toguid)) {
313 /*
314 * If the stream isn't redacted but the origin is, this must be
315 * one of the snapshots the origin is redacted with respect to.
316 * See case number 1 in the zfs man page section on redacted zfs
317 * send.
318 */
319 err = EINVAL;
320 }
321
322 if (err != 0)
323 ret = B_FALSE;
324 return (ret);
325 }
326
327 /*
328 * If we previously received a stream with --large-block, we don't support
329 * receiving an incremental on top of it without --large-block. This avoids
330 * forcing a read-modify-write or trying to re-aggregate a string of WRITE
331 * records.
332 */
333 static int
334 recv_check_large_blocks(dsl_dataset_t *ds, uint64_t featureflags)
335 {
336 if (dsl_dataset_feature_is_active(ds, SPA_FEATURE_LARGE_BLOCKS) &&
337 !(featureflags & DMU_BACKUP_FEATURE_LARGE_BLOCKS))
338 return (SET_ERROR(ZFS_ERR_STREAM_LARGE_BLOCK_MISMATCH));
339 return (0);
340 }
341
342 static int
343 recv_begin_check_existing_impl(dmu_recv_begin_arg_t *drba, dsl_dataset_t *ds,
344 uint64_t fromguid, uint64_t featureflags)
345 {
346 uint64_t val;
347 uint64_t children;
348 int error;
349 dsl_pool_t *dp = ds->ds_dir->dd_pool;
350 boolean_t encrypted = ds->ds_dir->dd_crypto_obj != 0;
351 boolean_t raw = (featureflags & DMU_BACKUP_FEATURE_RAW) != 0;
352 boolean_t embed = (featureflags & DMU_BACKUP_FEATURE_EMBED_DATA) != 0;
353
354 /* Temporary clone name must not exist. */
355 error = zap_lookup(dp->dp_meta_objset,
356 dsl_dir_phys(ds->ds_dir)->dd_child_dir_zapobj, recv_clone_name,
357 8, 1, &val);
358 if (error != ENOENT)
359 return (error == 0 ? SET_ERROR(EBUSY) : error);
360
361 /* Resume state must not be set. */
362 if (dsl_dataset_has_resume_receive_state(ds))
363 return (SET_ERROR(EBUSY));
364
365 /* New snapshot name must not exist. */
366 error = zap_lookup(dp->dp_meta_objset,
367 dsl_dataset_phys(ds)->ds_snapnames_zapobj,
368 drba->drba_cookie->drc_tosnap, 8, 1, &val);
369 if (error != ENOENT)
370 return (error == 0 ? SET_ERROR(EEXIST) : error);
371
372 /* Must not have children if receiving a ZVOL. */
373 error = zap_count(dp->dp_meta_objset,
374 dsl_dir_phys(ds->ds_dir)->dd_child_dir_zapobj, &children);
375 if (error != 0)
376 return (error);
377 if (drba->drba_cookie->drc_drrb->drr_type != DMU_OST_ZFS &&
378 children > 0)
379 return (SET_ERROR(ZFS_ERR_WRONG_PARENT));
380
381 /*
382 * Check snapshot limit before receiving. We'll recheck again at the
383 * end, but might as well abort before receiving if we're already over
384 * the limit.
385 *
386 * Note that we do not check the file system limit with
387 * dsl_dir_fscount_check because the temporary %clones don't count
388 * against that limit.
389 */
390 error = dsl_fs_ss_limit_check(ds->ds_dir, 1, ZFS_PROP_SNAPSHOT_LIMIT,
391 NULL, drba->drba_cred, drba->drba_proc);
392 if (error != 0)
393 return (error);
394
395 if (fromguid != 0) {
396 dsl_dataset_t *snap;
397 uint64_t obj = dsl_dataset_phys(ds)->ds_prev_snap_obj;
398
399 /* Can't perform a raw receive on top of a non-raw receive */
400 if (!encrypted && raw)
401 return (SET_ERROR(EINVAL));
402
403 /* Encryption is incompatible with embedded data */
404 if (encrypted && embed)
405 return (SET_ERROR(EINVAL));
406
407 /* Find snapshot in this dir that matches fromguid. */
408 while (obj != 0) {
409 error = dsl_dataset_hold_obj(dp, obj, FTAG,
410 &snap);
411 if (error != 0)
412 return (SET_ERROR(ENODEV));
413 if (snap->ds_dir != ds->ds_dir) {
414 dsl_dataset_rele(snap, FTAG);
415 return (SET_ERROR(ENODEV));
416 }
417 if (dsl_dataset_phys(snap)->ds_guid == fromguid)
418 break;
419 obj = dsl_dataset_phys(snap)->ds_prev_snap_obj;
420 dsl_dataset_rele(snap, FTAG);
421 }
422 if (obj == 0)
423 return (SET_ERROR(ENODEV));
424
425 if (drba->drba_cookie->drc_force) {
426 drba->drba_cookie->drc_fromsnapobj = obj;
427 } else {
428 /*
429 * If we are not forcing, there must be no
430 * changes since fromsnap. Raw sends have an
431 * additional constraint that requires that
432 * no "noop" snapshots exist between fromsnap
433 * and tosnap for the IVset checking code to
434 * work properly.
435 */
436 if (dsl_dataset_modified_since_snap(ds, snap) ||
437 (raw &&
438 dsl_dataset_phys(ds)->ds_prev_snap_obj !=
439 snap->ds_object)) {
440 dsl_dataset_rele(snap, FTAG);
441 return (SET_ERROR(ETXTBSY));
442 }
443 drba->drba_cookie->drc_fromsnapobj =
444 ds->ds_prev->ds_object;
445 }
446
447 if (dsl_dataset_feature_is_active(snap,
448 SPA_FEATURE_REDACTED_DATASETS) && !redact_check(drba,
449 snap)) {
450 dsl_dataset_rele(snap, FTAG);
451 return (SET_ERROR(EINVAL));
452 }
453
454 error = recv_check_large_blocks(snap, featureflags);
455 if (error != 0) {
456 dsl_dataset_rele(snap, FTAG);
457 return (error);
458 }
459
460 dsl_dataset_rele(snap, FTAG);
461 } else {
462 /* if full, then must be forced */
463 if (!drba->drba_cookie->drc_force)
464 return (SET_ERROR(EEXIST));
465
466 /*
467 * We don't support using zfs recv -F to blow away
468 * encrypted filesystems. This would require the
469 * dsl dir to point to the old encryption key and
470 * the new one at the same time during the receive.
471 */
472 if ((!encrypted && raw) || encrypted)
473 return (SET_ERROR(EINVAL));
474
475 /*
476 * Perform the same encryption checks we would if
477 * we were creating a new dataset from scratch.
478 */
479 if (!raw) {
480 boolean_t will_encrypt;
481
482 error = dmu_objset_create_crypt_check(
483 ds->ds_dir->dd_parent, drba->drba_dcp,
484 &will_encrypt);
485 if (error != 0)
486 return (error);
487
488 if (will_encrypt && embed)
489 return (SET_ERROR(EINVAL));
490 }
491 }
492
493 return (0);
494 }
495
496 /*
497 * Check that any feature flags used in the data stream we're receiving are
498 * supported by the pool we are receiving into.
499 *
500 * Note that some of the features we explicitly check here have additional
501 * (implicit) features they depend on, but those dependencies are enforced
502 * through the zfeature_register() calls declaring the features that we
503 * explicitly check.
504 */
505 static int
506 recv_begin_check_feature_flags_impl(uint64_t featureflags, spa_t *spa)
507 {
508 /*
509 * Check if there are any unsupported feature flags.
510 */
511 if (!DMU_STREAM_SUPPORTED(featureflags)) {
512 return (SET_ERROR(ZFS_ERR_UNKNOWN_SEND_STREAM_FEATURE));
513 }
514
515 /* Verify pool version supports SA if SA_SPILL feature set */
516 if ((featureflags & DMU_BACKUP_FEATURE_SA_SPILL) &&
517 spa_version(spa) < SPA_VERSION_SA)
518 return (SET_ERROR(ENOTSUP));
519
520 /*
521 * LZ4 compressed, ZSTD compressed, embedded, mooched, large blocks,
522 * and large_dnodes in the stream can only be used if those pool
523 * features are enabled because we don't attempt to decompress /
524 * un-embed / un-mooch / split up the blocks / dnodes during the
525 * receive process.
526 */
527 if ((featureflags & DMU_BACKUP_FEATURE_LZ4) &&
528 !spa_feature_is_enabled(spa, SPA_FEATURE_LZ4_COMPRESS))
529 return (SET_ERROR(ENOTSUP));
530 if ((featureflags & DMU_BACKUP_FEATURE_ZSTD) &&
531 !spa_feature_is_enabled(spa, SPA_FEATURE_ZSTD_COMPRESS))
532 return (SET_ERROR(ENOTSUP));
533 if ((featureflags & DMU_BACKUP_FEATURE_EMBED_DATA) &&
534 !spa_feature_is_enabled(spa, SPA_FEATURE_EMBEDDED_DATA))
535 return (SET_ERROR(ENOTSUP));
536 if ((featureflags & DMU_BACKUP_FEATURE_LARGE_BLOCKS) &&
537 !spa_feature_is_enabled(spa, SPA_FEATURE_LARGE_BLOCKS))
538 return (SET_ERROR(ENOTSUP));
539 if ((featureflags & DMU_BACKUP_FEATURE_LARGE_DNODE) &&
540 !spa_feature_is_enabled(spa, SPA_FEATURE_LARGE_DNODE))
541 return (SET_ERROR(ENOTSUP));
542
543 /*
544 * Receiving redacted streams requires that redacted datasets are
545 * enabled.
546 */
547 if ((featureflags & DMU_BACKUP_FEATURE_REDACTED) &&
548 !spa_feature_is_enabled(spa, SPA_FEATURE_REDACTED_DATASETS))
549 return (SET_ERROR(ENOTSUP));
550
551 return (0);
552 }
553
554 static int
555 dmu_recv_begin_check(void *arg, dmu_tx_t *tx)
556 {
557 dmu_recv_begin_arg_t *drba = arg;
558 dsl_pool_t *dp = dmu_tx_pool(tx);
559 struct drr_begin *drrb = drba->drba_cookie->drc_drrb;
560 uint64_t fromguid = drrb->drr_fromguid;
561 int flags = drrb->drr_flags;
562 ds_hold_flags_t dsflags = DS_HOLD_FLAG_NONE;
563 int error;
564 uint64_t featureflags = drba->drba_cookie->drc_featureflags;
565 dsl_dataset_t *ds;
566 const char *tofs = drba->drba_cookie->drc_tofs;
567
568 /* already checked */
569 ASSERT3U(drrb->drr_magic, ==, DMU_BACKUP_MAGIC);
570 ASSERT(!(featureflags & DMU_BACKUP_FEATURE_RESUMING));
571
572 if (DMU_GET_STREAM_HDRTYPE(drrb->drr_versioninfo) ==
573 DMU_COMPOUNDSTREAM ||
574 drrb->drr_type >= DMU_OST_NUMTYPES ||
575 ((flags & DRR_FLAG_CLONE) && drba->drba_origin == NULL))
576 return (SET_ERROR(EINVAL));
577
578 error = recv_begin_check_feature_flags_impl(featureflags, dp->dp_spa);
579 if (error != 0)
580 return (error);
581
582 /* Resumable receives require extensible datasets */
583 if (drba->drba_cookie->drc_resumable &&
584 !spa_feature_is_enabled(dp->dp_spa, SPA_FEATURE_EXTENSIBLE_DATASET))
585 return (SET_ERROR(ENOTSUP));
586
587 if (featureflags & DMU_BACKUP_FEATURE_RAW) {
588 /* raw receives require the encryption feature */
589 if (!spa_feature_is_enabled(dp->dp_spa, SPA_FEATURE_ENCRYPTION))
590 return (SET_ERROR(ENOTSUP));
591
592 /* embedded data is incompatible with encryption and raw recv */
593 if (featureflags & DMU_BACKUP_FEATURE_EMBED_DATA)
594 return (SET_ERROR(EINVAL));
595
596 /* raw receives require spill block allocation flag */
597 if (!(flags & DRR_FLAG_SPILL_BLOCK))
598 return (SET_ERROR(ZFS_ERR_SPILL_BLOCK_FLAG_MISSING));
599 } else {
600 dsflags |= DS_HOLD_FLAG_DECRYPT;
601 }
602
603 error = dsl_dataset_hold_flags(dp, tofs, dsflags, FTAG, &ds);
604 if (error == 0) {
605 /* target fs already exists; recv into temp clone */
606
607 /* Can't recv a clone into an existing fs */
608 if (flags & DRR_FLAG_CLONE || drba->drba_origin) {
609 dsl_dataset_rele_flags(ds, dsflags, FTAG);
610 return (SET_ERROR(EINVAL));
611 }
612
613 error = recv_begin_check_existing_impl(drba, ds, fromguid,
614 featureflags);
615 dsl_dataset_rele_flags(ds, dsflags, FTAG);
616 } else if (error == ENOENT) {
617 /* target fs does not exist; must be a full backup or clone */
618 char buf[ZFS_MAX_DATASET_NAME_LEN];
619 objset_t *os;
620
621 /*
622 * If it's a non-clone incremental, we are missing the
623 * target fs, so fail the recv.
624 */
625 if (fromguid != 0 && !((flags & DRR_FLAG_CLONE) ||
626 drba->drba_origin))
627 return (SET_ERROR(ENOENT));
628
629 /*
630 * If we're receiving a full send as a clone, and it doesn't
631 * contain all the necessary free records and freeobject
632 * records, reject it.
633 */
634 if (fromguid == 0 && drba->drba_origin != NULL &&
635 !(flags & DRR_FLAG_FREERECORDS))
636 return (SET_ERROR(EINVAL));
637
638 /* Open the parent of tofs */
639 ASSERT3U(strlen(tofs), <, sizeof (buf));
640 (void) strlcpy(buf, tofs, strrchr(tofs, '/') - tofs + 1);
641 error = dsl_dataset_hold(dp, buf, FTAG, &ds);
642 if (error != 0)
643 return (error);
644
645 if ((featureflags & DMU_BACKUP_FEATURE_RAW) == 0 &&
646 drba->drba_origin == NULL) {
647 boolean_t will_encrypt;
648
649 /*
650 * Check that we aren't breaking any encryption rules
651 * and that we have all the parameters we need to
652 * create an encrypted dataset if necessary. If we are
653 * making an encrypted dataset the stream can't have
654 * embedded data.
655 */
656 error = dmu_objset_create_crypt_check(ds->ds_dir,
657 drba->drba_dcp, &will_encrypt);
658 if (error != 0) {
659 dsl_dataset_rele(ds, FTAG);
660 return (error);
661 }
662
663 if (will_encrypt &&
664 (featureflags & DMU_BACKUP_FEATURE_EMBED_DATA)) {
665 dsl_dataset_rele(ds, FTAG);
666 return (SET_ERROR(EINVAL));
667 }
668 }
669
670 /*
671 * Check filesystem and snapshot limits before receiving. We'll
672 * recheck snapshot limits again at the end (we create the
673 * filesystems and increment those counts during begin_sync).
674 */
675 error = dsl_fs_ss_limit_check(ds->ds_dir, 1,
676 ZFS_PROP_FILESYSTEM_LIMIT, NULL,
677 drba->drba_cred, drba->drba_proc);
678 if (error != 0) {
679 dsl_dataset_rele(ds, FTAG);
680 return (error);
681 }
682
683 error = dsl_fs_ss_limit_check(ds->ds_dir, 1,
684 ZFS_PROP_SNAPSHOT_LIMIT, NULL,
685 drba->drba_cred, drba->drba_proc);
686 if (error != 0) {
687 dsl_dataset_rele(ds, FTAG);
688 return (error);
689 }
690
691 /* can't recv below anything but filesystems (eg. no ZVOLs) */
692 error = dmu_objset_from_ds(ds, &os);
693 if (error != 0) {
694 dsl_dataset_rele(ds, FTAG);
695 return (error);
696 }
697 if (dmu_objset_type(os) != DMU_OST_ZFS) {
698 dsl_dataset_rele(ds, FTAG);
699 return (SET_ERROR(ZFS_ERR_WRONG_PARENT));
700 }
701
702 if (drba->drba_origin != NULL) {
703 dsl_dataset_t *origin;
704 error = dsl_dataset_hold_flags(dp, drba->drba_origin,
705 dsflags, FTAG, &origin);
706 if (error != 0) {
707 dsl_dataset_rele(ds, FTAG);
708 return (error);
709 }
710 if (!origin->ds_is_snapshot) {
711 dsl_dataset_rele_flags(origin, dsflags, FTAG);
712 dsl_dataset_rele(ds, FTAG);
713 return (SET_ERROR(EINVAL));
714 }
715 if (dsl_dataset_phys(origin)->ds_guid != fromguid &&
716 fromguid != 0) {
717 dsl_dataset_rele_flags(origin, dsflags, FTAG);
718 dsl_dataset_rele(ds, FTAG);
719 return (SET_ERROR(ENODEV));
720 }
721
722 if (origin->ds_dir->dd_crypto_obj != 0 &&
723 (featureflags & DMU_BACKUP_FEATURE_EMBED_DATA)) {
724 dsl_dataset_rele_flags(origin, dsflags, FTAG);
725 dsl_dataset_rele(ds, FTAG);
726 return (SET_ERROR(EINVAL));
727 }
728
729 /*
730 * If the origin is redacted we need to verify that this
731 * send stream can safely be received on top of the
732 * origin.
733 */
734 if (dsl_dataset_feature_is_active(origin,
735 SPA_FEATURE_REDACTED_DATASETS)) {
736 if (!redact_check(drba, origin)) {
737 dsl_dataset_rele_flags(origin, dsflags,
738 FTAG);
739 dsl_dataset_rele_flags(ds, dsflags,
740 FTAG);
741 return (SET_ERROR(EINVAL));
742 }
743 }
744
745 error = recv_check_large_blocks(ds, featureflags);
746 if (error != 0) {
747 dsl_dataset_rele_flags(origin, dsflags, FTAG);
748 dsl_dataset_rele_flags(ds, dsflags, FTAG);
749 return (error);
750 }
751
752 dsl_dataset_rele_flags(origin, dsflags, FTAG);
753 }
754
755 dsl_dataset_rele(ds, FTAG);
756 error = 0;
757 }
758 return (error);
759 }
760
761 static void
762 dmu_recv_begin_sync(void *arg, dmu_tx_t *tx)
763 {
764 dmu_recv_begin_arg_t *drba = arg;
765 dsl_pool_t *dp = dmu_tx_pool(tx);
766 objset_t *mos = dp->dp_meta_objset;
767 dmu_recv_cookie_t *drc = drba->drba_cookie;
768 struct drr_begin *drrb = drc->drc_drrb;
769 const char *tofs = drc->drc_tofs;
770 uint64_t featureflags = drc->drc_featureflags;
771 dsl_dataset_t *ds, *newds;
772 objset_t *os;
773 uint64_t dsobj;
774 ds_hold_flags_t dsflags = DS_HOLD_FLAG_NONE;
775 int error;
776 uint64_t crflags = 0;
777 dsl_crypto_params_t dummy_dcp = { 0 };
778 dsl_crypto_params_t *dcp = drba->drba_dcp;
779
780 if (drrb->drr_flags & DRR_FLAG_CI_DATA)
781 crflags |= DS_FLAG_CI_DATASET;
782
783 if ((featureflags & DMU_BACKUP_FEATURE_RAW) == 0)
784 dsflags |= DS_HOLD_FLAG_DECRYPT;
785
786 /*
787 * Raw, non-incremental recvs always use a dummy dcp with
788 * the raw cmd set. Raw incremental recvs do not use a dcp
789 * since the encryption parameters are already set in stone.
790 */
791 if (dcp == NULL && drrb->drr_fromguid == 0 &&
792 drba->drba_origin == NULL) {
793 ASSERT3P(dcp, ==, NULL);
794 dcp = &dummy_dcp;
795
796 if (featureflags & DMU_BACKUP_FEATURE_RAW)
797 dcp->cp_cmd = DCP_CMD_RAW_RECV;
798 }
799
800 error = dsl_dataset_hold_flags(dp, tofs, dsflags, FTAG, &ds);
801 if (error == 0) {
802 /* create temporary clone */
803 dsl_dataset_t *snap = NULL;
804
805 if (drba->drba_cookie->drc_fromsnapobj != 0) {
806 VERIFY0(dsl_dataset_hold_obj(dp,
807 drba->drba_cookie->drc_fromsnapobj, FTAG, &snap));
808 ASSERT3P(dcp, ==, NULL);
809 }
810 dsobj = dsl_dataset_create_sync(ds->ds_dir, recv_clone_name,
811 snap, crflags, drba->drba_cred, dcp, tx);
812 if (drba->drba_cookie->drc_fromsnapobj != 0)
813 dsl_dataset_rele(snap, FTAG);
814 dsl_dataset_rele_flags(ds, dsflags, FTAG);
815 } else {
816 dsl_dir_t *dd;
817 const char *tail;
818 dsl_dataset_t *origin = NULL;
819
820 VERIFY0(dsl_dir_hold(dp, tofs, FTAG, &dd, &tail));
821
822 if (drba->drba_origin != NULL) {
823 VERIFY0(dsl_dataset_hold(dp, drba->drba_origin,
824 FTAG, &origin));
825 ASSERT3P(dcp, ==, NULL);
826 }
827
828 /* Create new dataset. */
829 dsobj = dsl_dataset_create_sync(dd, strrchr(tofs, '/') + 1,
830 origin, crflags, drba->drba_cred, dcp, tx);
831 if (origin != NULL)
832 dsl_dataset_rele(origin, FTAG);
833 dsl_dir_rele(dd, FTAG);
834 drc->drc_newfs = B_TRUE;
835 }
836 VERIFY0(dsl_dataset_own_obj_force(dp, dsobj, dsflags, dmu_recv_tag,
837 &newds));
838 if (dsl_dataset_feature_is_active(newds,
839 SPA_FEATURE_REDACTED_DATASETS)) {
840 /*
841 * If the origin dataset is redacted, the child will be redacted
842 * when we create it. We clear the new dataset's
843 * redaction info; if it should be redacted, we'll fill
844 * in its information later.
845 */
846 dsl_dataset_deactivate_feature(newds,
847 SPA_FEATURE_REDACTED_DATASETS, tx);
848 }
849 VERIFY0(dmu_objset_from_ds(newds, &os));
850
851 if (drc->drc_resumable) {
852 dsl_dataset_zapify(newds, tx);
853 if (drrb->drr_fromguid != 0) {
854 VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_FROMGUID,
855 8, 1, &drrb->drr_fromguid, tx));
856 }
857 VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_TOGUID,
858 8, 1, &drrb->drr_toguid, tx));
859 VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_TONAME,
860 1, strlen(drrb->drr_toname) + 1, drrb->drr_toname, tx));
861 uint64_t one = 1;
862 uint64_t zero = 0;
863 VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_OBJECT,
864 8, 1, &one, tx));
865 VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_OFFSET,
866 8, 1, &zero, tx));
867 VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_BYTES,
868 8, 1, &zero, tx));
869 if (featureflags & DMU_BACKUP_FEATURE_LARGE_BLOCKS) {
870 VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_LARGEBLOCK,
871 8, 1, &one, tx));
872 }
873 if (featureflags & DMU_BACKUP_FEATURE_EMBED_DATA) {
874 VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_EMBEDOK,
875 8, 1, &one, tx));
876 }
877 if (featureflags & DMU_BACKUP_FEATURE_COMPRESSED) {
878 VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_COMPRESSOK,
879 8, 1, &one, tx));
880 }
881 if (featureflags & DMU_BACKUP_FEATURE_RAW) {
882 VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_RAWOK,
883 8, 1, &one, tx));
884 }
885
886 uint64_t *redact_snaps;
887 uint_t numredactsnaps;
888 if (nvlist_lookup_uint64_array(drc->drc_begin_nvl,
889 BEGINNV_REDACT_FROM_SNAPS, &redact_snaps,
890 &numredactsnaps) == 0) {
891 VERIFY0(zap_add(mos, dsobj,
892 DS_FIELD_RESUME_REDACT_BOOKMARK_SNAPS,
893 sizeof (*redact_snaps), numredactsnaps,
894 redact_snaps, tx));
895 }
896 }
897
898 /*
899 * Usually the os->os_encrypted value is tied to the presence of a
900 * DSL Crypto Key object in the dd. However, that will not be received
901 * until dmu_recv_stream(), so we set the value manually for now.
902 */
903 if (featureflags & DMU_BACKUP_FEATURE_RAW) {
904 os->os_encrypted = B_TRUE;
905 drba->drba_cookie->drc_raw = B_TRUE;
906 }
907
908 if (featureflags & DMU_BACKUP_FEATURE_REDACTED) {
909 uint64_t *redact_snaps;
910 uint_t numredactsnaps;
911 VERIFY0(nvlist_lookup_uint64_array(drc->drc_begin_nvl,
912 BEGINNV_REDACT_SNAPS, &redact_snaps, &numredactsnaps));
913 dsl_dataset_activate_redaction(newds, redact_snaps,
914 numredactsnaps, tx);
915 }
916
917 dmu_buf_will_dirty(newds->ds_dbuf, tx);
918 dsl_dataset_phys(newds)->ds_flags |= DS_FLAG_INCONSISTENT;
919
920 /*
921 * If we actually created a non-clone, we need to create the objset
922 * in our new dataset. If this is a raw send we postpone this until
923 * dmu_recv_stream() so that we can allocate the metadnode with the
924 * properties from the DRR_BEGIN payload.
925 */
926 rrw_enter(&newds->ds_bp_rwlock, RW_READER, FTAG);
927 if (BP_IS_HOLE(dsl_dataset_get_blkptr(newds)) &&
928 (featureflags & DMU_BACKUP_FEATURE_RAW) == 0) {
929 (void) dmu_objset_create_impl(dp->dp_spa,
930 newds, dsl_dataset_get_blkptr(newds), drrb->drr_type, tx);
931 }
932 rrw_exit(&newds->ds_bp_rwlock, FTAG);
933
934 drba->drba_cookie->drc_ds = newds;
935 drba->drba_cookie->drc_os = os;
936
937 spa_history_log_internal_ds(newds, "receive", tx, " ");
938 }
939
940 static int
941 dmu_recv_resume_begin_check(void *arg, dmu_tx_t *tx)
942 {
943 dmu_recv_begin_arg_t *drba = arg;
944 dmu_recv_cookie_t *drc = drba->drba_cookie;
945 dsl_pool_t *dp = dmu_tx_pool(tx);
946 struct drr_begin *drrb = drc->drc_drrb;
947 int error;
948 ds_hold_flags_t dsflags = DS_HOLD_FLAG_NONE;
949 dsl_dataset_t *ds;
950 const char *tofs = drc->drc_tofs;
951
952 /* already checked */
953 ASSERT3U(drrb->drr_magic, ==, DMU_BACKUP_MAGIC);
954 ASSERT(drc->drc_featureflags & DMU_BACKUP_FEATURE_RESUMING);
955
956 if (DMU_GET_STREAM_HDRTYPE(drrb->drr_versioninfo) ==
957 DMU_COMPOUNDSTREAM ||
958 drrb->drr_type >= DMU_OST_NUMTYPES)
959 return (SET_ERROR(EINVAL));
960
961 /*
962 * This is mostly a sanity check since we should have already done these
963 * checks during a previous attempt to receive the data.
964 */
965 error = recv_begin_check_feature_flags_impl(drc->drc_featureflags,
966 dp->dp_spa);
967 if (error != 0)
968 return (error);
969
970 /* 6 extra bytes for /%recv */
971 char recvname[ZFS_MAX_DATASET_NAME_LEN + 6];
972
973 (void) snprintf(recvname, sizeof (recvname), "%s/%s",
974 tofs, recv_clone_name);
975
976 if (drc->drc_featureflags & DMU_BACKUP_FEATURE_RAW) {
977 /* raw receives require spill block allocation flag */
978 if (!(drrb->drr_flags & DRR_FLAG_SPILL_BLOCK))
979 return (SET_ERROR(ZFS_ERR_SPILL_BLOCK_FLAG_MISSING));
980 } else {
981 dsflags |= DS_HOLD_FLAG_DECRYPT;
982 }
983
984 if (dsl_dataset_hold_flags(dp, recvname, dsflags, FTAG, &ds) != 0) {
985 /* %recv does not exist; continue in tofs */
986 error = dsl_dataset_hold_flags(dp, tofs, dsflags, FTAG, &ds);
987 if (error != 0)
988 return (error);
989 }
990
991 /* check that ds is marked inconsistent */
992 if (!DS_IS_INCONSISTENT(ds)) {
993 dsl_dataset_rele_flags(ds, dsflags, FTAG);
994 return (SET_ERROR(EINVAL));
995 }
996
997 /* check that there is resuming data, and that the toguid matches */
998 if (!dsl_dataset_is_zapified(ds)) {
999 dsl_dataset_rele_flags(ds, dsflags, FTAG);
1000 return (SET_ERROR(EINVAL));
1001 }
1002 uint64_t val;
1003 error = zap_lookup(dp->dp_meta_objset, ds->ds_object,
1004 DS_FIELD_RESUME_TOGUID, sizeof (val), 1, &val);
1005 if (error != 0 || drrb->drr_toguid != val) {
1006 dsl_dataset_rele_flags(ds, dsflags, FTAG);
1007 return (SET_ERROR(EINVAL));
1008 }
1009
1010 /*
1011 * Check if the receive is still running. If so, it will be owned.
1012 * Note that nothing else can own the dataset (e.g. after the receive
1013 * fails) because it will be marked inconsistent.
1014 */
1015 if (dsl_dataset_has_owner(ds)) {
1016 dsl_dataset_rele_flags(ds, dsflags, FTAG);
1017 return (SET_ERROR(EBUSY));
1018 }
1019
1020 /* There should not be any snapshots of this fs yet. */
1021 if (ds->ds_prev != NULL && ds->ds_prev->ds_dir == ds->ds_dir) {
1022 dsl_dataset_rele_flags(ds, dsflags, FTAG);
1023 return (SET_ERROR(EINVAL));
1024 }
1025
1026 /*
1027 * Note: resume point will be checked when we process the first WRITE
1028 * record.
1029 */
1030
1031 /* check that the origin matches */
1032 val = 0;
1033 (void) zap_lookup(dp->dp_meta_objset, ds->ds_object,
1034 DS_FIELD_RESUME_FROMGUID, sizeof (val), 1, &val);
1035 if (drrb->drr_fromguid != val) {
1036 dsl_dataset_rele_flags(ds, dsflags, FTAG);
1037 return (SET_ERROR(EINVAL));
1038 }
1039
1040 if (ds->ds_prev != NULL && drrb->drr_fromguid != 0)
1041 drc->drc_fromsnapobj = ds->ds_prev->ds_object;
1042
1043 /*
1044 * If we're resuming, and the send is redacted, then the original send
1045 * must have been redacted, and must have been redacted with respect to
1046 * the same snapshots.
1047 */
1048 if (drc->drc_featureflags & DMU_BACKUP_FEATURE_REDACTED) {
1049 uint64_t num_ds_redact_snaps;
1050 uint64_t *ds_redact_snaps;
1051
1052 uint_t num_stream_redact_snaps;
1053 uint64_t *stream_redact_snaps;
1054
1055 if (nvlist_lookup_uint64_array(drc->drc_begin_nvl,
1056 BEGINNV_REDACT_SNAPS, &stream_redact_snaps,
1057 &num_stream_redact_snaps) != 0) {
1058 dsl_dataset_rele_flags(ds, dsflags, FTAG);
1059 return (SET_ERROR(EINVAL));
1060 }
1061
1062 if (!dsl_dataset_get_uint64_array_feature(ds,
1063 SPA_FEATURE_REDACTED_DATASETS, &num_ds_redact_snaps,
1064 &ds_redact_snaps)) {
1065 dsl_dataset_rele_flags(ds, dsflags, FTAG);
1066 return (SET_ERROR(EINVAL));
1067 }
1068
1069 for (int i = 0; i < num_ds_redact_snaps; i++) {
1070 if (!redact_snaps_contains(ds_redact_snaps,
1071 num_ds_redact_snaps, stream_redact_snaps[i])) {
1072 dsl_dataset_rele_flags(ds, dsflags, FTAG);
1073 return (SET_ERROR(EINVAL));
1074 }
1075 }
1076 }
1077
1078 error = recv_check_large_blocks(ds, drc->drc_featureflags);
1079 if (error != 0) {
1080 dsl_dataset_rele_flags(ds, dsflags, FTAG);
1081 return (error);
1082 }
1083
1084 dsl_dataset_rele_flags(ds, dsflags, FTAG);
1085 return (0);
1086 }
1087
1088 static void
1089 dmu_recv_resume_begin_sync(void *arg, dmu_tx_t *tx)
1090 {
1091 dmu_recv_begin_arg_t *drba = arg;
1092 dsl_pool_t *dp = dmu_tx_pool(tx);
1093 const char *tofs = drba->drba_cookie->drc_tofs;
1094 uint64_t featureflags = drba->drba_cookie->drc_featureflags;
1095 dsl_dataset_t *ds;
1096 ds_hold_flags_t dsflags = DS_HOLD_FLAG_NONE;
1097 /* 6 extra bytes for /%recv */
1098 char recvname[ZFS_MAX_DATASET_NAME_LEN + 6];
1099
1100 (void) snprintf(recvname, sizeof (recvname), "%s/%s", tofs,
1101 recv_clone_name);
1102
1103 if (featureflags & DMU_BACKUP_FEATURE_RAW) {
1104 drba->drba_cookie->drc_raw = B_TRUE;
1105 } else {
1106 dsflags |= DS_HOLD_FLAG_DECRYPT;
1107 }
1108
1109 if (dsl_dataset_own_force(dp, recvname, dsflags, dmu_recv_tag, &ds)
1110 != 0) {
1111 /* %recv does not exist; continue in tofs */
1112 VERIFY0(dsl_dataset_own_force(dp, tofs, dsflags, dmu_recv_tag,
1113 &ds));
1114 drba->drba_cookie->drc_newfs = B_TRUE;
1115 }
1116
1117 ASSERT(DS_IS_INCONSISTENT(ds));
1118 rrw_enter(&ds->ds_bp_rwlock, RW_READER, FTAG);
1119 ASSERT(!BP_IS_HOLE(dsl_dataset_get_blkptr(ds)) ||
1120 drba->drba_cookie->drc_raw);
1121 rrw_exit(&ds->ds_bp_rwlock, FTAG);
1122
1123 drba->drba_cookie->drc_ds = ds;
1124 VERIFY0(dmu_objset_from_ds(ds, &drba->drba_cookie->drc_os));
1125 drba->drba_cookie->drc_should_save = B_TRUE;
1126
1127 spa_history_log_internal_ds(ds, "resume receive", tx, " ");
1128 }
1129
1130 /*
1131 * NB: callers *MUST* call dmu_recv_stream() if dmu_recv_begin()
1132 * succeeds; otherwise we will leak the holds on the datasets.
1133 */
1134 int
1135 dmu_recv_begin(char *tofs, char *tosnap, dmu_replay_record_t *drr_begin,
1136 boolean_t force, boolean_t resumable, nvlist_t *localprops,
1137 nvlist_t *hidden_args, char *origin, dmu_recv_cookie_t *drc,
1138 zfs_file_t *fp, offset_t *voffp)
1139 {
1140 dmu_recv_begin_arg_t drba = { 0 };
1141 int err;
1142
1143 bzero(drc, sizeof (dmu_recv_cookie_t));
1144 drc->drc_drr_begin = drr_begin;
1145 drc->drc_drrb = &drr_begin->drr_u.drr_begin;
1146 drc->drc_tosnap = tosnap;
1147 drc->drc_tofs = tofs;
1148 drc->drc_force = force;
1149 drc->drc_resumable = resumable;
1150 drc->drc_cred = CRED();
1151 drc->drc_proc = curproc;
1152 drc->drc_clone = (origin != NULL);
1153
1154 if (drc->drc_drrb->drr_magic == BSWAP_64(DMU_BACKUP_MAGIC)) {
1155 drc->drc_byteswap = B_TRUE;
1156 (void) fletcher_4_incremental_byteswap(drr_begin,
1157 sizeof (dmu_replay_record_t), &drc->drc_cksum);
1158 byteswap_record(drr_begin);
1159 } else if (drc->drc_drrb->drr_magic == DMU_BACKUP_MAGIC) {
1160 (void) fletcher_4_incremental_native(drr_begin,
1161 sizeof (dmu_replay_record_t), &drc->drc_cksum);
1162 } else {
1163 return (SET_ERROR(EINVAL));
1164 }
1165
1166 drc->drc_fp = fp;
1167 drc->drc_voff = *voffp;
1168 drc->drc_featureflags =
1169 DMU_GET_FEATUREFLAGS(drc->drc_drrb->drr_versioninfo);
1170
1171 uint32_t payloadlen = drc->drc_drr_begin->drr_payloadlen;
1172 void *payload = NULL;
1173 if (payloadlen != 0)
1174 payload = kmem_alloc(payloadlen, KM_SLEEP);
1175
1176 err = receive_read_payload_and_next_header(drc, payloadlen,
1177 payload);
1178 if (err != 0) {
1179 kmem_free(payload, payloadlen);
1180 return (err);
1181 }
1182 if (payloadlen != 0) {
1183 err = nvlist_unpack(payload, payloadlen, &drc->drc_begin_nvl,
1184 KM_SLEEP);
1185 kmem_free(payload, payloadlen);
1186 if (err != 0) {
1187 kmem_free(drc->drc_next_rrd,
1188 sizeof (*drc->drc_next_rrd));
1189 return (err);
1190 }
1191 }
1192
1193 if (drc->drc_drrb->drr_flags & DRR_FLAG_SPILL_BLOCK)
1194 drc->drc_spill = B_TRUE;
1195
1196 drba.drba_origin = origin;
1197 drba.drba_cookie = drc;
1198 drba.drba_cred = CRED();
1199 drba.drba_proc = curproc;
1200
1201 if (drc->drc_featureflags & DMU_BACKUP_FEATURE_RESUMING) {
1202 err = dsl_sync_task(tofs,
1203 dmu_recv_resume_begin_check, dmu_recv_resume_begin_sync,
1204 &drba, 5, ZFS_SPACE_CHECK_NORMAL);
1205 } else {
1206
1207 /*
1208 * For non-raw, non-incremental, non-resuming receives the
1209 * user can specify encryption parameters on the command line
1210 * with "zfs recv -o". For these receives we create a dcp and
1211 * pass it to the sync task. Creating the dcp will implicitly
1212 * remove the encryption params from the localprops nvlist,
1213 * which avoids errors when trying to set these normally
1214 * read-only properties. Any other kind of receive that
1215 * attempts to set these properties will fail as a result.
1216 */
1217 if ((DMU_GET_FEATUREFLAGS(drc->drc_drrb->drr_versioninfo) &
1218 DMU_BACKUP_FEATURE_RAW) == 0 &&
1219 origin == NULL && drc->drc_drrb->drr_fromguid == 0) {
1220 err = dsl_crypto_params_create_nvlist(DCP_CMD_NONE,
1221 localprops, hidden_args, &drba.drba_dcp);
1222 }
1223
1224 if (err == 0) {
1225 err = dsl_sync_task(tofs,
1226 dmu_recv_begin_check, dmu_recv_begin_sync,
1227 &drba, 5, ZFS_SPACE_CHECK_NORMAL);
1228 dsl_crypto_params_free(drba.drba_dcp, !!err);
1229 }
1230 }
1231
1232 if (err != 0) {
1233 kmem_free(drc->drc_next_rrd, sizeof (*drc->drc_next_rrd));
1234 nvlist_free(drc->drc_begin_nvl);
1235 }
1236 return (err);
1237 }
1238
1239 static int
1240 receive_read(dmu_recv_cookie_t *drc, int len, void *buf)
1241 {
1242 int done = 0;
1243
1244 /*
1245 * The code doesn't rely on this (lengths being multiples of 8). See
1246 * comment in dump_bytes.
1247 */
1248 ASSERT(len % 8 == 0 ||
1249 (drc->drc_featureflags & DMU_BACKUP_FEATURE_RAW) != 0);
1250
1251 while (done < len) {
1252 ssize_t resid;
1253 zfs_file_t *fp = drc->drc_fp;
1254 int err = zfs_file_read(fp, (char *)buf + done,
1255 len - done, &resid);
1256 if (resid == len - done) {
1257 /*
1258 * Note: ECKSUM or ZFS_ERR_STREAM_TRUNCATED indicates
1259 * that the receive was interrupted and can
1260 * potentially be resumed.
1261 */
1262 err = SET_ERROR(ZFS_ERR_STREAM_TRUNCATED);
1263 }
1264 drc->drc_voff += len - done - resid;
1265 done = len - resid;
1266 if (err != 0)
1267 return (err);
1268 }
1269
1270 drc->drc_bytes_read += len;
1271
1272 ASSERT3U(done, ==, len);
1273 return (0);
1274 }
1275
1276 static inline uint8_t
1277 deduce_nblkptr(dmu_object_type_t bonus_type, uint64_t bonus_size)
1278 {
1279 if (bonus_type == DMU_OT_SA) {
1280 return (1);
1281 } else {
1282 return (1 +
1283 ((DN_OLD_MAX_BONUSLEN -
1284 MIN(DN_OLD_MAX_BONUSLEN, bonus_size)) >> SPA_BLKPTRSHIFT));
1285 }
1286 }
1287
1288 static void
1289 save_resume_state(struct receive_writer_arg *rwa,
1290 uint64_t object, uint64_t offset, dmu_tx_t *tx)
1291 {
1292 int txgoff = dmu_tx_get_txg(tx) & TXG_MASK;
1293
1294 if (!rwa->resumable)
1295 return;
1296
1297 /*
1298 * We use ds_resume_bytes[] != 0 to indicate that we need to
1299 * update this on disk, so it must not be 0.
1300 */
1301 ASSERT(rwa->bytes_read != 0);
1302
1303 /*
1304 * We only resume from write records, which have a valid
1305 * (non-meta-dnode) object number.
1306 */
1307 ASSERT(object != 0);
1308
1309 /*
1310 * For resuming to work correctly, we must receive records in order,
1311 * sorted by object,offset. This is checked by the callers, but
1312 * assert it here for good measure.
1313 */
1314 ASSERT3U(object, >=, rwa->os->os_dsl_dataset->ds_resume_object[txgoff]);
1315 ASSERT(object != rwa->os->os_dsl_dataset->ds_resume_object[txgoff] ||
1316 offset >= rwa->os->os_dsl_dataset->ds_resume_offset[txgoff]);
1317 ASSERT3U(rwa->bytes_read, >=,
1318 rwa->os->os_dsl_dataset->ds_resume_bytes[txgoff]);
1319
1320 rwa->os->os_dsl_dataset->ds_resume_object[txgoff] = object;
1321 rwa->os->os_dsl_dataset->ds_resume_offset[txgoff] = offset;
1322 rwa->os->os_dsl_dataset->ds_resume_bytes[txgoff] = rwa->bytes_read;
1323 }
1324
1325 static int
1326 receive_object_is_same_generation(objset_t *os, uint64_t object,
1327 dmu_object_type_t old_bonus_type, dmu_object_type_t new_bonus_type,
1328 const void *new_bonus, boolean_t *samegenp)
1329 {
1330 zfs_file_info_t zoi;
1331 int err;
1332
1333 dmu_buf_t *old_bonus_dbuf;
1334 err = dmu_bonus_hold(os, object, FTAG, &old_bonus_dbuf);
1335 if (err != 0)
1336 return (err);
1337 err = dmu_get_file_info(os, old_bonus_type, old_bonus_dbuf->db_data,
1338 &zoi);
1339 dmu_buf_rele(old_bonus_dbuf, FTAG);
1340 if (err != 0)
1341 return (err);
1342 uint64_t old_gen = zoi.zfi_generation;
1343
1344 err = dmu_get_file_info(os, new_bonus_type, new_bonus, &zoi);
1345 if (err != 0)
1346 return (err);
1347 uint64_t new_gen = zoi.zfi_generation;
1348
1349 *samegenp = (old_gen == new_gen);
1350 return (0);
1351 }
1352
1353 static int
1354 receive_handle_existing_object(const struct receive_writer_arg *rwa,
1355 const struct drr_object *drro, const dmu_object_info_t *doi,
1356 const void *bonus_data,
1357 uint64_t *object_to_hold, uint32_t *new_blksz)
1358 {
1359 uint32_t indblksz = drro->drr_indblkshift ?
1360 1ULL << drro->drr_indblkshift : 0;
1361 int nblkptr = deduce_nblkptr(drro->drr_bonustype,
1362 drro->drr_bonuslen);
1363 uint8_t dn_slots = drro->drr_dn_slots != 0 ?
1364 drro->drr_dn_slots : DNODE_MIN_SLOTS;
1365 boolean_t do_free_range = B_FALSE;
1366 int err;
1367
1368 *object_to_hold = drro->drr_object;
1369
1370 /* nblkptr should be bounded by the bonus size and type */
1371 if (rwa->raw && nblkptr != drro->drr_nblkptr)
1372 return (SET_ERROR(EINVAL));
1373
1374 /*
1375 * After the previous send stream, the sending system may
1376 * have freed this object, and then happened to re-allocate
1377 * this object number in a later txg. In this case, we are
1378 * receiving a different logical file, and the block size may
1379 * appear to be different. i.e. we may have a different
1380 * block size for this object than what the send stream says.
1381 * In this case we need to remove the object's contents,
1382 * so that its structure can be changed and then its contents
1383 * entirely replaced by subsequent WRITE records.
1384 *
1385 * If this is a -L (--large-block) incremental stream, and
1386 * the previous stream was not -L, the block size may appear
1387 * to increase. i.e. we may have a smaller block size for
1388 * this object than what the send stream says. In this case
1389 * we need to keep the object's contents and block size
1390 * intact, so that we don't lose parts of the object's
1391 * contents that are not changed by this incremental send
1392 * stream.
1393 *
1394 * We can distinguish between the two above cases by using
1395 * the ZPL's generation number (see
1396 * receive_object_is_same_generation()). However, we only
1397 * want to rely on the generation number when absolutely
1398 * necessary, because with raw receives, the generation is
1399 * encrypted. We also want to minimize dependence on the
1400 * ZPL, so that other types of datasets can also be received
1401 * (e.g. ZVOLs, although note that ZVOLS currently do not
1402 * reallocate their objects or change their structure).
1403 * Therefore, we check a number of different cases where we
1404 * know it is safe to discard the object's contents, before
1405 * using the ZPL's generation number to make the above
1406 * distinction.
1407 */
1408 if (drro->drr_blksz != doi->doi_data_block_size) {
1409 if (rwa->raw) {
1410 /*
1411 * RAW streams always have large blocks, so
1412 * we are sure that the data is not needed
1413 * due to changing --large-block to be on.
1414 * Which is fortunate since the bonus buffer
1415 * (which contains the ZPL generation) is
1416 * encrypted, and the key might not be
1417 * loaded.
1418 */
1419 do_free_range = B_TRUE;
1420 } else if (rwa->full) {
1421 /*
1422 * This is a full send stream, so it always
1423 * replaces what we have. Even if the
1424 * generation numbers happen to match, this
1425 * can not actually be the same logical file.
1426 * This is relevant when receiving a full
1427 * send as a clone.
1428 */
1429 do_free_range = B_TRUE;
1430 } else if (drro->drr_type !=
1431 DMU_OT_PLAIN_FILE_CONTENTS ||
1432 doi->doi_type != DMU_OT_PLAIN_FILE_CONTENTS) {
1433 /*
1434 * PLAIN_FILE_CONTENTS are the only type of
1435 * objects that have ever been stored with
1436 * large blocks, so we don't need the special
1437 * logic below. ZAP blocks can shrink (when
1438 * there's only one block), so we don't want
1439 * to hit the error below about block size
1440 * only increasing.
1441 */
1442 do_free_range = B_TRUE;
1443 } else if (doi->doi_max_offset <=
1444 doi->doi_data_block_size) {
1445 /*
1446 * There is only one block. We can free it,
1447 * because its contents will be replaced by a
1448 * WRITE record. This can not be the no-L ->
1449 * -L case, because the no-L case would have
1450 * resulted in multiple blocks. If we
1451 * supported -L -> no-L, it would not be safe
1452 * to free the file's contents. Fortunately,
1453 * that is not allowed (see
1454 * recv_check_large_blocks()).
1455 */
1456 do_free_range = B_TRUE;
1457 } else {
1458 boolean_t is_same_gen;
1459 err = receive_object_is_same_generation(rwa->os,
1460 drro->drr_object, doi->doi_bonus_type,
1461 drro->drr_bonustype, bonus_data, &is_same_gen);
1462 if (err != 0)
1463 return (SET_ERROR(EINVAL));
1464
1465 if (is_same_gen) {
1466 /*
1467 * This is the same logical file, and
1468 * the block size must be increasing.
1469 * It could only decrease if
1470 * --large-block was changed to be
1471 * off, which is checked in
1472 * recv_check_large_blocks().
1473 */
1474 if (drro->drr_blksz <=
1475 doi->doi_data_block_size)
1476 return (SET_ERROR(EINVAL));
1477 /*
1478 * We keep the existing blocksize and
1479 * contents.
1480 */
1481 *new_blksz =
1482 doi->doi_data_block_size;
1483 } else {
1484 do_free_range = B_TRUE;
1485 }
1486 }
1487 }
1488
1489 /* nblkptr can only decrease if the object was reallocated */
1490 if (nblkptr < doi->doi_nblkptr)
1491 do_free_range = B_TRUE;
1492
1493 /* number of slots can only change on reallocation */
1494 if (dn_slots != doi->doi_dnodesize >> DNODE_SHIFT)
1495 do_free_range = B_TRUE;
1496
1497 /*
1498 * For raw sends we also check a few other fields to
1499 * ensure we are preserving the objset structure exactly
1500 * as it was on the receive side:
1501 * - A changed indirect block size
1502 * - A smaller nlevels
1503 */
1504 if (rwa->raw) {
1505 if (indblksz != doi->doi_metadata_block_size)
1506 do_free_range = B_TRUE;
1507 if (drro->drr_nlevels < doi->doi_indirection)
1508 do_free_range = B_TRUE;
1509 }
1510
1511 if (do_free_range) {
1512 err = dmu_free_long_range(rwa->os, drro->drr_object,
1513 0, DMU_OBJECT_END);
1514 if (err != 0)
1515 return (SET_ERROR(EINVAL));
1516 }
1517
1518 /*
1519 * The dmu does not currently support decreasing nlevels
1520 * or changing the number of dnode slots on an object. For
1521 * non-raw sends, this does not matter and the new object
1522 * can just use the previous one's nlevels. For raw sends,
1523 * however, the structure of the received dnode (including
1524 * nlevels and dnode slots) must match that of the send
1525 * side. Therefore, instead of using dmu_object_reclaim(),
1526 * we must free the object completely and call
1527 * dmu_object_claim_dnsize() instead.
1528 */
1529 if ((rwa->raw && drro->drr_nlevels < doi->doi_indirection) ||
1530 dn_slots != doi->doi_dnodesize >> DNODE_SHIFT) {
1531 err = dmu_free_long_object(rwa->os, drro->drr_object);
1532 if (err != 0)
1533 return (SET_ERROR(EINVAL));
1534
1535 txg_wait_synced(dmu_objset_pool(rwa->os), 0);
1536 *object_to_hold = DMU_NEW_OBJECT;
1537 }
1538
1539 /*
1540 * For raw receives, free everything beyond the new incoming
1541 * maxblkid. Normally this would be done with a DRR_FREE
1542 * record that would come after this DRR_OBJECT record is
1543 * processed. However, for raw receives we manually set the
1544 * maxblkid from the drr_maxblkid and so we must first free
1545 * everything above that blkid to ensure the DMU is always
1546 * consistent with itself. We will never free the first block
1547 * of the object here because a maxblkid of 0 could indicate
1548 * an object with a single block or one with no blocks. This
1549 * free may be skipped when dmu_free_long_range() was called
1550 * above since it covers the entire object's contents.
1551 */
1552 if (rwa->raw && *object_to_hold != DMU_NEW_OBJECT && !do_free_range) {
1553 err = dmu_free_long_range(rwa->os, drro->drr_object,
1554 (drro->drr_maxblkid + 1) * doi->doi_data_block_size,
1555 DMU_OBJECT_END);
1556 if (err != 0)
1557 return (SET_ERROR(EINVAL));
1558 }
1559 return (0);
1560 }
1561
1562 noinline static int
1563 receive_object(struct receive_writer_arg *rwa, struct drr_object *drro,
1564 void *data)
1565 {
1566 dmu_object_info_t doi;
1567 dmu_tx_t *tx;
1568 int err;
1569 uint32_t new_blksz = drro->drr_blksz;
1570 uint8_t dn_slots = drro->drr_dn_slots != 0 ?
1571 drro->drr_dn_slots : DNODE_MIN_SLOTS;
1572
1573 if (drro->drr_type == DMU_OT_NONE ||
1574 !DMU_OT_IS_VALID(drro->drr_type) ||
1575 !DMU_OT_IS_VALID(drro->drr_bonustype) ||
1576 drro->drr_checksumtype >= ZIO_CHECKSUM_FUNCTIONS ||
1577 drro->drr_compress >= ZIO_COMPRESS_FUNCTIONS ||
1578 P2PHASE(drro->drr_blksz, SPA_MINBLOCKSIZE) ||
1579 drro->drr_blksz < SPA_MINBLOCKSIZE ||
1580 drro->drr_blksz > spa_maxblocksize(dmu_objset_spa(rwa->os)) ||
1581 drro->drr_bonuslen >
1582 DN_BONUS_SIZE(spa_maxdnodesize(dmu_objset_spa(rwa->os))) ||
1583 dn_slots >
1584 (spa_maxdnodesize(dmu_objset_spa(rwa->os)) >> DNODE_SHIFT)) {
1585 return (SET_ERROR(EINVAL));
1586 }
1587
1588 if (rwa->raw) {
1589 /*
1590 * We should have received a DRR_OBJECT_RANGE record
1591 * containing this block and stored it in rwa.
1592 */
1593 if (drro->drr_object < rwa->or_firstobj ||
1594 drro->drr_object >= rwa->or_firstobj + rwa->or_numslots ||
1595 drro->drr_raw_bonuslen < drro->drr_bonuslen ||
1596 drro->drr_indblkshift > SPA_MAXBLOCKSHIFT ||
1597 drro->drr_nlevels > DN_MAX_LEVELS ||
1598 drro->drr_nblkptr > DN_MAX_NBLKPTR ||
1599 DN_SLOTS_TO_BONUSLEN(dn_slots) <
1600 drro->drr_raw_bonuslen)
1601 return (SET_ERROR(EINVAL));
1602 } else {
1603 /*
1604 * The DRR_OBJECT_SPILL flag is valid when the DRR_BEGIN
1605 * record indicates this by setting DRR_FLAG_SPILL_BLOCK.
1606 */
1607 if (((drro->drr_flags & ~(DRR_OBJECT_SPILL))) ||
1608 (!rwa->spill && DRR_OBJECT_HAS_SPILL(drro->drr_flags))) {
1609 return (SET_ERROR(EINVAL));
1610 }
1611
1612 if (drro->drr_raw_bonuslen != 0 || drro->drr_nblkptr != 0 ||
1613 drro->drr_indblkshift != 0 || drro->drr_nlevels != 0) {
1614 return (SET_ERROR(EINVAL));
1615 }
1616 }
1617
1618 err = dmu_object_info(rwa->os, drro->drr_object, &doi);
1619
1620 if (err != 0 && err != ENOENT && err != EEXIST)
1621 return (SET_ERROR(EINVAL));
1622
1623 if (drro->drr_object > rwa->max_object)
1624 rwa->max_object = drro->drr_object;
1625
1626 /*
1627 * If we are losing blkptrs or changing the block size this must
1628 * be a new file instance. We must clear out the previous file
1629 * contents before we can change this type of metadata in the dnode.
1630 * Raw receives will also check that the indirect structure of the
1631 * dnode hasn't changed.
1632 */
1633 uint64_t object_to_hold;
1634 if (err == 0) {
1635 err = receive_handle_existing_object(rwa, drro, &doi, data,
1636 &object_to_hold, &new_blksz);
1637 } else if (err == EEXIST) {
1638 /*
1639 * The object requested is currently an interior slot of a
1640 * multi-slot dnode. This will be resolved when the next txg
1641 * is synced out, since the send stream will have told us
1642 * to free this slot when we freed the associated dnode
1643 * earlier in the stream.
1644 */
1645 txg_wait_synced(dmu_objset_pool(rwa->os), 0);
1646
1647 if (dmu_object_info(rwa->os, drro->drr_object, NULL) != ENOENT)
1648 return (SET_ERROR(EINVAL));
1649
1650 /* object was freed and we are about to allocate a new one */
1651 object_to_hold = DMU_NEW_OBJECT;
1652 } else {
1653 /* object is free and we are about to allocate a new one */
1654 object_to_hold = DMU_NEW_OBJECT;
1655 }
1656
1657 /*
1658 * If this is a multi-slot dnode there is a chance that this
1659 * object will expand into a slot that is already used by
1660 * another object from the previous snapshot. We must free
1661 * these objects before we attempt to allocate the new dnode.
1662 */
1663 if (dn_slots > 1) {
1664 boolean_t need_sync = B_FALSE;
1665
1666 for (uint64_t slot = drro->drr_object + 1;
1667 slot < drro->drr_object + dn_slots;
1668 slot++) {
1669 dmu_object_info_t slot_doi;
1670
1671 err = dmu_object_info(rwa->os, slot, &slot_doi);
1672 if (err == ENOENT || err == EEXIST)
1673 continue;
1674 else if (err != 0)
1675 return (err);
1676
1677 err = dmu_free_long_object(rwa->os, slot);
1678 if (err != 0)
1679 return (err);
1680
1681 need_sync = B_TRUE;
1682 }
1683
1684 if (need_sync)
1685 txg_wait_synced(dmu_objset_pool(rwa->os), 0);
1686 }
1687
1688 tx = dmu_tx_create(rwa->os);
1689 dmu_tx_hold_bonus(tx, object_to_hold);
1690 dmu_tx_hold_write(tx, object_to_hold, 0, 0);
1691 err = dmu_tx_assign(tx, TXG_WAIT);
1692 if (err != 0) {
1693 dmu_tx_abort(tx);
1694 return (err);
1695 }
1696
1697 if (object_to_hold == DMU_NEW_OBJECT) {
1698 /* Currently free, wants to be allocated */
1699 err = dmu_object_claim_dnsize(rwa->os, drro->drr_object,
1700 drro->drr_type, new_blksz,
1701 drro->drr_bonustype, drro->drr_bonuslen,
1702 dn_slots << DNODE_SHIFT, tx);
1703 } else if (drro->drr_type != doi.doi_type ||
1704 new_blksz != doi.doi_data_block_size ||
1705 drro->drr_bonustype != doi.doi_bonus_type ||
1706 drro->drr_bonuslen != doi.doi_bonus_size) {
1707 /* Currently allocated, but with different properties */
1708 err = dmu_object_reclaim_dnsize(rwa->os, drro->drr_object,
1709 drro->drr_type, new_blksz,
1710 drro->drr_bonustype, drro->drr_bonuslen,
1711 dn_slots << DNODE_SHIFT, rwa->spill ?
1712 DRR_OBJECT_HAS_SPILL(drro->drr_flags) : B_FALSE, tx);
1713 } else if (rwa->spill && !DRR_OBJECT_HAS_SPILL(drro->drr_flags)) {
1714 /*
1715 * Currently allocated, the existing version of this object
1716 * may reference a spill block that is no longer allocated
1717 * at the source and needs to be freed.
1718 */
1719 err = dmu_object_rm_spill(rwa->os, drro->drr_object, tx);
1720 }
1721
1722 if (err != 0) {
1723 dmu_tx_commit(tx);
1724 return (SET_ERROR(EINVAL));
1725 }
1726
1727 if (rwa->or_crypt_params_present) {
1728 /*
1729 * Set the crypt params for the buffer associated with this
1730 * range of dnodes. This causes the blkptr_t to have the
1731 * same crypt params (byteorder, salt, iv, mac) as on the
1732 * sending side.
1733 *
1734 * Since we are committing this tx now, it is possible for
1735 * the dnode block to end up on-disk with the incorrect MAC,
1736 * if subsequent objects in this block are received in a
1737 * different txg. However, since the dataset is marked as
1738 * inconsistent, no code paths will do a non-raw read (or
1739 * decrypt the block / verify the MAC). The receive code and
1740 * scrub code can safely do raw reads and verify the
1741 * checksum. They don't need to verify the MAC.
1742 */
1743 dmu_buf_t *db = NULL;
1744 uint64_t offset = rwa->or_firstobj * DNODE_MIN_SIZE;
1745
1746 err = dmu_buf_hold_by_dnode(DMU_META_DNODE(rwa->os),
1747 offset, FTAG, &db, DMU_READ_PREFETCH | DMU_READ_NO_DECRYPT);
1748 if (err != 0) {
1749 dmu_tx_commit(tx);
1750 return (SET_ERROR(EINVAL));
1751 }
1752
1753 dmu_buf_set_crypt_params(db, rwa->or_byteorder,
1754 rwa->or_salt, rwa->or_iv, rwa->or_mac, tx);
1755
1756 dmu_buf_rele(db, FTAG);
1757
1758 rwa->or_crypt_params_present = B_FALSE;
1759 }
1760
1761 dmu_object_set_checksum(rwa->os, drro->drr_object,
1762 drro->drr_checksumtype, tx);
1763 dmu_object_set_compress(rwa->os, drro->drr_object,
1764 drro->drr_compress, tx);
1765
1766 /* handle more restrictive dnode structuring for raw recvs */
1767 if (rwa->raw) {
1768 /*
1769 * Set the indirect block size, block shift, nlevels.
1770 * This will not fail because we ensured all of the
1771 * blocks were freed earlier if this is a new object.
1772 * For non-new objects block size and indirect block
1773 * shift cannot change and nlevels can only increase.
1774 */
1775 ASSERT3U(new_blksz, ==, drro->drr_blksz);
1776 VERIFY0(dmu_object_set_blocksize(rwa->os, drro->drr_object,
1777 drro->drr_blksz, drro->drr_indblkshift, tx));
1778 VERIFY0(dmu_object_set_nlevels(rwa->os, drro->drr_object,
1779 drro->drr_nlevels, tx));
1780
1781 /*
1782 * Set the maxblkid. This will always succeed because
1783 * we freed all blocks beyond the new maxblkid above.
1784 */
1785 VERIFY0(dmu_object_set_maxblkid(rwa->os, drro->drr_object,
1786 drro->drr_maxblkid, tx));
1787 }
1788
1789 if (data != NULL) {
1790 dmu_buf_t *db;
1791 dnode_t *dn;
1792 uint32_t flags = DMU_READ_NO_PREFETCH;
1793
1794 if (rwa->raw)
1795 flags |= DMU_READ_NO_DECRYPT;
1796
1797 VERIFY0(dnode_hold(rwa->os, drro->drr_object, FTAG, &dn));
1798 VERIFY0(dmu_bonus_hold_by_dnode(dn, FTAG, &db, flags));
1799
1800 dmu_buf_will_dirty(db, tx);
1801
1802 ASSERT3U(db->db_size, >=, drro->drr_bonuslen);
1803 bcopy(data, db->db_data, DRR_OBJECT_PAYLOAD_SIZE(drro));
1804
1805 /*
1806 * Raw bonus buffers have their byteorder determined by the
1807 * DRR_OBJECT_RANGE record.
1808 */
1809 if (rwa->byteswap && !rwa->raw) {
1810 dmu_object_byteswap_t byteswap =
1811 DMU_OT_BYTESWAP(drro->drr_bonustype);
1812 dmu_ot_byteswap[byteswap].ob_func(db->db_data,
1813 DRR_OBJECT_PAYLOAD_SIZE(drro));
1814 }
1815 dmu_buf_rele(db, FTAG);
1816 dnode_rele(dn, FTAG);
1817 }
1818 dmu_tx_commit(tx);
1819
1820 return (0);
1821 }
1822
1823 /* ARGSUSED */
1824 noinline static int
1825 receive_freeobjects(struct receive_writer_arg *rwa,
1826 struct drr_freeobjects *drrfo)
1827 {
1828 uint64_t obj;
1829 int next_err = 0;
1830
1831 if (drrfo->drr_firstobj + drrfo->drr_numobjs < drrfo->drr_firstobj)
1832 return (SET_ERROR(EINVAL));
1833
1834 for (obj = drrfo->drr_firstobj == 0 ? 1 : drrfo->drr_firstobj;
1835 obj < drrfo->drr_firstobj + drrfo->drr_numobjs &&
1836 obj < DN_MAX_OBJECT && next_err == 0;
1837 next_err = dmu_object_next(rwa->os, &obj, FALSE, 0)) {
1838 dmu_object_info_t doi;
1839 int err;
1840
1841 err = dmu_object_info(rwa->os, obj, &doi);
1842 if (err == ENOENT)
1843 continue;
1844 else if (err != 0)
1845 return (err);
1846
1847 err = dmu_free_long_object(rwa->os, obj);
1848
1849 if (err != 0)
1850 return (err);
1851 }
1852 if (next_err != ESRCH)
1853 return (next_err);
1854 return (0);
1855 }
1856
1857 /*
1858 * Note: if this fails, the caller will clean up any records left on the
1859 * rwa->write_batch list.
1860 */
1861 static int
1862 flush_write_batch_impl(struct receive_writer_arg *rwa)
1863 {
1864 dnode_t *dn;
1865 int err;
1866
1867 if (dnode_hold(rwa->os, rwa->last_object, FTAG, &dn) != 0)
1868 return (SET_ERROR(EINVAL));
1869
1870 struct receive_record_arg *last_rrd = list_tail(&rwa->write_batch);
1871 struct drr_write *last_drrw = &last_rrd->header.drr_u.drr_write;
1872
1873 struct receive_record_arg *first_rrd = list_head(&rwa->write_batch);
1874 struct drr_write *first_drrw = &first_rrd->header.drr_u.drr_write;
1875
1876 ASSERT3U(rwa->last_object, ==, last_drrw->drr_object);
1877 ASSERT3U(rwa->last_offset, ==, last_drrw->drr_offset);
1878
1879 dmu_tx_t *tx = dmu_tx_create(rwa->os);
1880 dmu_tx_hold_write_by_dnode(tx, dn, first_drrw->drr_offset,
1881 last_drrw->drr_offset - first_drrw->drr_offset +
1882 last_drrw->drr_logical_size);
1883 err = dmu_tx_assign(tx, TXG_WAIT);
1884 if (err != 0) {
1885 dmu_tx_abort(tx);
1886 dnode_rele(dn, FTAG);
1887 return (err);
1888 }
1889
1890 struct receive_record_arg *rrd;
1891 while ((rrd = list_head(&rwa->write_batch)) != NULL) {
1892 struct drr_write *drrw = &rrd->header.drr_u.drr_write;
1893 abd_t *abd = rrd->abd;
1894
1895 ASSERT3U(drrw->drr_object, ==, rwa->last_object);
1896
1897 if (drrw->drr_logical_size != dn->dn_datablksz) {
1898 /*
1899 * The WRITE record is larger than the object's block
1900 * size. We must be receiving an incremental
1901 * large-block stream into a dataset that previously did
1902 * a non-large-block receive. Lightweight writes must
1903 * be exactly one block, so we need to decompress the
1904 * data (if compressed) and do a normal dmu_write().
1905 */
1906 ASSERT3U(drrw->drr_logical_size, >, dn->dn_datablksz);
1907 if (DRR_WRITE_COMPRESSED(drrw)) {
1908 abd_t *decomp_abd =
1909 abd_alloc_linear(drrw->drr_logical_size,
1910 B_FALSE);
1911
1912 err = zio_decompress_data(
1913 drrw->drr_compressiontype,
1914 abd, abd_to_buf(decomp_abd),
1915 abd_get_size(abd),
1916 abd_get_size(decomp_abd), NULL);
1917
1918 if (err == 0) {
1919 dmu_write_by_dnode(dn,
1920 drrw->drr_offset,
1921 drrw->drr_logical_size,
1922 abd_to_buf(decomp_abd), tx);
1923 }
1924 abd_free(decomp_abd);
1925 } else {
1926 dmu_write_by_dnode(dn,
1927 drrw->drr_offset,
1928 drrw->drr_logical_size,
1929 abd_to_buf(abd), tx);
1930 }
1931 if (err == 0)
1932 abd_free(abd);
1933 } else {
1934 zio_prop_t zp;
1935 dmu_write_policy(rwa->os, dn, 0, 0, &zp);
1936
1937 enum zio_flag zio_flags = 0;
1938
1939 if (rwa->raw) {
1940 zp.zp_encrypt = B_TRUE;
1941 zp.zp_compress = drrw->drr_compressiontype;
1942 zp.zp_byteorder = ZFS_HOST_BYTEORDER ^
1943 !!DRR_IS_RAW_BYTESWAPPED(drrw->drr_flags) ^
1944 rwa->byteswap;
1945 bcopy(drrw->drr_salt, zp.zp_salt,
1946 ZIO_DATA_SALT_LEN);
1947 bcopy(drrw->drr_iv, zp.zp_iv,
1948 ZIO_DATA_IV_LEN);
1949 bcopy(drrw->drr_mac, zp.zp_mac,
1950 ZIO_DATA_MAC_LEN);
1951 if (DMU_OT_IS_ENCRYPTED(zp.zp_type)) {
1952 zp.zp_nopwrite = B_FALSE;
1953 zp.zp_copies = MIN(zp.zp_copies,
1954 SPA_DVAS_PER_BP - 1);
1955 }
1956 zio_flags |= ZIO_FLAG_RAW;
1957 } else if (DRR_WRITE_COMPRESSED(drrw)) {
1958 ASSERT3U(drrw->drr_compressed_size, >, 0);
1959 ASSERT3U(drrw->drr_logical_size, >=,
1960 drrw->drr_compressed_size);
1961 zp.zp_compress = drrw->drr_compressiontype;
1962 zio_flags |= ZIO_FLAG_RAW_COMPRESS;
1963 } else if (rwa->byteswap) {
1964 /*
1965 * Note: compressed blocks never need to be
1966 * byteswapped, because WRITE records for
1967 * metadata blocks are never compressed. The
1968 * exception is raw streams, which are written
1969 * in the original byteorder, and the byteorder
1970 * bit is preserved in the BP by setting
1971 * zp_byteorder above.
1972 */
1973 dmu_object_byteswap_t byteswap =
1974 DMU_OT_BYTESWAP(drrw->drr_type);
1975 dmu_ot_byteswap[byteswap].ob_func(
1976 abd_to_buf(abd),
1977 DRR_WRITE_PAYLOAD_SIZE(drrw));
1978 }
1979
1980 /*
1981 * Since this data can't be read until the receive
1982 * completes, we can do a "lightweight" write for
1983 * improved performance.
1984 */
1985 err = dmu_lightweight_write_by_dnode(dn,
1986 drrw->drr_offset, abd, &zp, zio_flags, tx);
1987 }
1988
1989 if (err != 0) {
1990 /*
1991 * This rrd is left on the list, so the caller will
1992 * free it (and the abd).
1993 */
1994 break;
1995 }
1996
1997 /*
1998 * Note: If the receive fails, we want the resume stream to
1999 * start with the same record that we last successfully
2000 * received (as opposed to the next record), so that we can
2001 * verify that we are resuming from the correct location.
2002 */
2003 save_resume_state(rwa, drrw->drr_object, drrw->drr_offset, tx);
2004
2005 list_remove(&rwa->write_batch, rrd);
2006 kmem_free(rrd, sizeof (*rrd));
2007 }
2008
2009 dmu_tx_commit(tx);
2010 dnode_rele(dn, FTAG);
2011 return (err);
2012 }
2013
2014 noinline static int
2015 flush_write_batch(struct receive_writer_arg *rwa)
2016 {
2017 if (list_is_empty(&rwa->write_batch))
2018 return (0);
2019 int err = rwa->err;
2020 if (err == 0)
2021 err = flush_write_batch_impl(rwa);
2022 if (err != 0) {
2023 struct receive_record_arg *rrd;
2024 while ((rrd = list_remove_head(&rwa->write_batch)) != NULL) {
2025 abd_free(rrd->abd);
2026 kmem_free(rrd, sizeof (*rrd));
2027 }
2028 }
2029 ASSERT(list_is_empty(&rwa->write_batch));
2030 return (err);
2031 }
2032
2033 noinline static int
2034 receive_process_write_record(struct receive_writer_arg *rwa,
2035 struct receive_record_arg *rrd)
2036 {
2037 int err = 0;
2038
2039 ASSERT3U(rrd->header.drr_type, ==, DRR_WRITE);
2040 struct drr_write *drrw = &rrd->header.drr_u.drr_write;
2041
2042 if (drrw->drr_offset + drrw->drr_logical_size < drrw->drr_offset ||
2043 !DMU_OT_IS_VALID(drrw->drr_type))
2044 return (SET_ERROR(EINVAL));
2045
2046 /*
2047 * For resuming to work, records must be in increasing order
2048 * by (object, offset).
2049 */
2050 if (drrw->drr_object < rwa->last_object ||
2051 (drrw->drr_object == rwa->last_object &&
2052 drrw->drr_offset < rwa->last_offset)) {
2053 return (SET_ERROR(EINVAL));
2054 }
2055
2056 struct receive_record_arg *first_rrd = list_head(&rwa->write_batch);
2057 struct drr_write *first_drrw = &first_rrd->header.drr_u.drr_write;
2058 uint64_t batch_size =
2059 MIN(zfs_recv_write_batch_size, DMU_MAX_ACCESS / 2);
2060 if (first_rrd != NULL &&
2061 (drrw->drr_object != first_drrw->drr_object ||
2062 drrw->drr_offset >= first_drrw->drr_offset + batch_size)) {
2063 err = flush_write_batch(rwa);
2064 if (err != 0)
2065 return (err);
2066 }
2067
2068 rwa->last_object = drrw->drr_object;
2069 rwa->last_offset = drrw->drr_offset;
2070
2071 if (rwa->last_object > rwa->max_object)
2072 rwa->max_object = rwa->last_object;
2073
2074 list_insert_tail(&rwa->write_batch, rrd);
2075 /*
2076 * Return EAGAIN to indicate that we will use this rrd again,
2077 * so the caller should not free it
2078 */
2079 return (EAGAIN);
2080 }
2081
2082 static int
2083 receive_write_embedded(struct receive_writer_arg *rwa,
2084 struct drr_write_embedded *drrwe, void *data)
2085 {
2086 dmu_tx_t *tx;
2087 int err;
2088
2089 if (drrwe->drr_offset + drrwe->drr_length < drrwe->drr_offset)
2090 return (SET_ERROR(EINVAL));
2091
2092 if (drrwe->drr_psize > BPE_PAYLOAD_SIZE)
2093 return (SET_ERROR(EINVAL));
2094
2095 if (drrwe->drr_etype >= NUM_BP_EMBEDDED_TYPES)
2096 return (SET_ERROR(EINVAL));
2097 if (drrwe->drr_compression >= ZIO_COMPRESS_FUNCTIONS)
2098 return (SET_ERROR(EINVAL));
2099 if (rwa->raw)
2100 return (SET_ERROR(EINVAL));
2101
2102 if (drrwe->drr_object > rwa->max_object)
2103 rwa->max_object = drrwe->drr_object;
2104
2105 tx = dmu_tx_create(rwa->os);
2106
2107 dmu_tx_hold_write(tx, drrwe->drr_object,
2108 drrwe->drr_offset, drrwe->drr_length);
2109 err = dmu_tx_assign(tx, TXG_WAIT);
2110 if (err != 0) {
2111 dmu_tx_abort(tx);
2112 return (err);
2113 }
2114
2115 dmu_write_embedded(rwa->os, drrwe->drr_object,
2116 drrwe->drr_offset, data, drrwe->drr_etype,
2117 drrwe->drr_compression, drrwe->drr_lsize, drrwe->drr_psize,
2118 rwa->byteswap ^ ZFS_HOST_BYTEORDER, tx);
2119
2120 /* See comment in restore_write. */
2121 save_resume_state(rwa, drrwe->drr_object, drrwe->drr_offset, tx);
2122 dmu_tx_commit(tx);
2123 return (0);
2124 }
2125
2126 static int
2127 receive_spill(struct receive_writer_arg *rwa, struct drr_spill *drrs,
2128 abd_t *abd)
2129 {
2130 dmu_buf_t *db, *db_spill;
2131 int err;
2132
2133 if (drrs->drr_length < SPA_MINBLOCKSIZE ||
2134 drrs->drr_length > spa_maxblocksize(dmu_objset_spa(rwa->os)))
2135 return (SET_ERROR(EINVAL));
2136
2137 /*
2138 * This is an unmodified spill block which was added to the stream
2139 * to resolve an issue with incorrectly removing spill blocks. It
2140 * should be ignored by current versions of the code which support
2141 * the DRR_FLAG_SPILL_BLOCK flag.
2142 */
2143 if (rwa->spill && DRR_SPILL_IS_UNMODIFIED(drrs->drr_flags)) {
2144 abd_free(abd);
2145 return (0);
2146 }
2147
2148 if (rwa->raw) {
2149 if (!DMU_OT_IS_VALID(drrs->drr_type) ||
2150 drrs->drr_compressiontype >= ZIO_COMPRESS_FUNCTIONS ||
2151 drrs->drr_compressed_size == 0)
2152 return (SET_ERROR(EINVAL));
2153 }
2154
2155 if (dmu_object_info(rwa->os, drrs->drr_object, NULL) != 0)
2156 return (SET_ERROR(EINVAL));
2157
2158 if (drrs->drr_object > rwa->max_object)
2159 rwa->max_object = drrs->drr_object;
2160
2161 VERIFY0(dmu_bonus_hold(rwa->os, drrs->drr_object, FTAG, &db));
2162 if ((err = dmu_spill_hold_by_bonus(db, DMU_READ_NO_DECRYPT, FTAG,
2163 &db_spill)) != 0) {
2164 dmu_buf_rele(db, FTAG);
2165 return (err);
2166 }
2167
2168 dmu_tx_t *tx = dmu_tx_create(rwa->os);
2169
2170 dmu_tx_hold_spill(tx, db->db_object);
2171
2172 err = dmu_tx_assign(tx, TXG_WAIT);
2173 if (err != 0) {
2174 dmu_buf_rele(db, FTAG);
2175 dmu_buf_rele(db_spill, FTAG);
2176 dmu_tx_abort(tx);
2177 return (err);
2178 }
2179
2180 /*
2181 * Spill blocks may both grow and shrink. When a change in size
2182 * occurs any existing dbuf must be updated to match the logical
2183 * size of the provided arc_buf_t.
2184 */
2185 if (db_spill->db_size != drrs->drr_length) {
2186 dmu_buf_will_fill(db_spill, tx);
2187 VERIFY0(dbuf_spill_set_blksz(db_spill,
2188 drrs->drr_length, tx));
2189 }
2190
2191 arc_buf_t *abuf;
2192 if (rwa->raw) {
2193 boolean_t byteorder = ZFS_HOST_BYTEORDER ^
2194 !!DRR_IS_RAW_BYTESWAPPED(drrs->drr_flags) ^
2195 rwa->byteswap;
2196
2197 abuf = arc_loan_raw_buf(dmu_objset_spa(rwa->os),
2198 drrs->drr_object, byteorder, drrs->drr_salt,
2199 drrs->drr_iv, drrs->drr_mac, drrs->drr_type,
2200 drrs->drr_compressed_size, drrs->drr_length,
2201 drrs->drr_compressiontype, 0);
2202 } else {
2203 abuf = arc_loan_buf(dmu_objset_spa(rwa->os),
2204 DMU_OT_IS_METADATA(drrs->drr_type),
2205 drrs->drr_length);
2206 if (rwa->byteswap) {
2207 dmu_object_byteswap_t byteswap =
2208 DMU_OT_BYTESWAP(drrs->drr_type);
2209 dmu_ot_byteswap[byteswap].ob_func(abd_to_buf(abd),
2210 DRR_SPILL_PAYLOAD_SIZE(drrs));
2211 }
2212 }
2213
2214 bcopy(abd_to_buf(abd), abuf->b_data, DRR_SPILL_PAYLOAD_SIZE(drrs));
2215 abd_free(abd);
2216 dbuf_assign_arcbuf((dmu_buf_impl_t *)db_spill, abuf, tx);
2217
2218 dmu_buf_rele(db, FTAG);
2219 dmu_buf_rele(db_spill, FTAG);
2220
2221 dmu_tx_commit(tx);
2222 return (0);
2223 }
2224
2225 /* ARGSUSED */
2226 noinline static int
2227 receive_free(struct receive_writer_arg *rwa, struct drr_free *drrf)
2228 {
2229 int err;
2230
2231 if (drrf->drr_length != -1ULL &&
2232 drrf->drr_offset + drrf->drr_length < drrf->drr_offset)
2233 return (SET_ERROR(EINVAL));
2234
2235 if (dmu_object_info(rwa->os, drrf->drr_object, NULL) != 0)
2236 return (SET_ERROR(EINVAL));
2237
2238 if (drrf->drr_object > rwa->max_object)
2239 rwa->max_object = drrf->drr_object;
2240
2241 err = dmu_free_long_range(rwa->os, drrf->drr_object,
2242 drrf->drr_offset, drrf->drr_length);
2243
2244 return (err);
2245 }
2246
2247 static int
2248 receive_object_range(struct receive_writer_arg *rwa,
2249 struct drr_object_range *drror)
2250 {
2251 /*
2252 * By default, we assume this block is in our native format
2253 * (ZFS_HOST_BYTEORDER). We then take into account whether
2254 * the send stream is byteswapped (rwa->byteswap). Finally,
2255 * we need to byteswap again if this particular block was
2256 * in non-native format on the send side.
2257 */
2258 boolean_t byteorder = ZFS_HOST_BYTEORDER ^ rwa->byteswap ^
2259 !!DRR_IS_RAW_BYTESWAPPED(drror->drr_flags);
2260
2261 /*
2262 * Since dnode block sizes are constant, we should not need to worry
2263 * about making sure that the dnode block size is the same on the
2264 * sending and receiving sides for the time being. For non-raw sends,
2265 * this does not matter (and in fact we do not send a DRR_OBJECT_RANGE
2266 * record at all). Raw sends require this record type because the
2267 * encryption parameters are used to protect an entire block of bonus
2268 * buffers. If the size of dnode blocks ever becomes variable,
2269 * handling will need to be added to ensure that dnode block sizes
2270 * match on the sending and receiving side.
2271 */
2272 if (drror->drr_numslots != DNODES_PER_BLOCK ||
2273 P2PHASE(drror->drr_firstobj, DNODES_PER_BLOCK) != 0 ||
2274 !rwa->raw)
2275 return (SET_ERROR(EINVAL));
2276
2277 if (drror->drr_firstobj > rwa->max_object)
2278 rwa->max_object = drror->drr_firstobj;
2279
2280 /*
2281 * The DRR_OBJECT_RANGE handling must be deferred to receive_object()
2282 * so that the block of dnodes is not written out when it's empty,
2283 * and converted to a HOLE BP.
2284 */
2285 rwa->or_crypt_params_present = B_TRUE;
2286 rwa->or_firstobj = drror->drr_firstobj;
2287 rwa->or_numslots = drror->drr_numslots;
2288 bcopy(drror->drr_salt, rwa->or_salt, ZIO_DATA_SALT_LEN);
2289 bcopy(drror->drr_iv, rwa->or_iv, ZIO_DATA_IV_LEN);
2290 bcopy(drror->drr_mac, rwa->or_mac, ZIO_DATA_MAC_LEN);
2291 rwa->or_byteorder = byteorder;
2292
2293 return (0);
2294 }
2295
2296 /*
2297 * Until we have the ability to redact large ranges of data efficiently, we
2298 * process these records as frees.
2299 */
2300 /* ARGSUSED */
2301 noinline static int
2302 receive_redact(struct receive_writer_arg *rwa, struct drr_redact *drrr)
2303 {
2304 struct drr_free drrf = {0};
2305 drrf.drr_length = drrr->drr_length;
2306 drrf.drr_object = drrr->drr_object;
2307 drrf.drr_offset = drrr->drr_offset;
2308 drrf.drr_toguid = drrr->drr_toguid;
2309 return (receive_free(rwa, &drrf));
2310 }
2311
2312 /* used to destroy the drc_ds on error */
2313 static void
2314 dmu_recv_cleanup_ds(dmu_recv_cookie_t *drc)
2315 {
2316 dsl_dataset_t *ds = drc->drc_ds;
2317 ds_hold_flags_t dsflags;
2318
2319 dsflags = (drc->drc_raw) ? DS_HOLD_FLAG_NONE : DS_HOLD_FLAG_DECRYPT;
2320 /*
2321 * Wait for the txg sync before cleaning up the receive. For
2322 * resumable receives, this ensures that our resume state has
2323 * been written out to disk. For raw receives, this ensures
2324 * that the user accounting code will not attempt to do anything
2325 * after we stopped receiving the dataset.
2326 */
2327 txg_wait_synced(ds->ds_dir->dd_pool, 0);
2328 ds->ds_objset->os_raw_receive = B_FALSE;
2329
2330 rrw_enter(&ds->ds_bp_rwlock, RW_READER, FTAG);
2331 if (drc->drc_resumable && drc->drc_should_save &&
2332 !BP_IS_HOLE(dsl_dataset_get_blkptr(ds))) {
2333 rrw_exit(&ds->ds_bp_rwlock, FTAG);
2334 dsl_dataset_disown(ds, dsflags, dmu_recv_tag);
2335 } else {
2336 char name[ZFS_MAX_DATASET_NAME_LEN];
2337 rrw_exit(&ds->ds_bp_rwlock, FTAG);
2338 dsl_dataset_name(ds, name);
2339 dsl_dataset_disown(ds, dsflags, dmu_recv_tag);
2340 (void) dsl_destroy_head(name);
2341 }
2342 }
2343
2344 static void
2345 receive_cksum(dmu_recv_cookie_t *drc, int len, void *buf)
2346 {
2347 if (drc->drc_byteswap) {
2348 (void) fletcher_4_incremental_byteswap(buf, len,
2349 &drc->drc_cksum);
2350 } else {
2351 (void) fletcher_4_incremental_native(buf, len, &drc->drc_cksum);
2352 }
2353 }
2354
2355 /*
2356 * Read the payload into a buffer of size len, and update the current record's
2357 * payload field.
2358 * Allocate drc->drc_next_rrd and read the next record's header into
2359 * drc->drc_next_rrd->header.
2360 * Verify checksum of payload and next record.
2361 */
2362 static int
2363 receive_read_payload_and_next_header(dmu_recv_cookie_t *drc, int len, void *buf)
2364 {
2365 int err;
2366
2367 if (len != 0) {
2368 ASSERT3U(len, <=, SPA_MAXBLOCKSIZE);
2369 err = receive_read(drc, len, buf);
2370 if (err != 0)
2371 return (err);
2372 receive_cksum(drc, len, buf);
2373
2374 /* note: rrd is NULL when reading the begin record's payload */
2375 if (drc->drc_rrd != NULL) {
2376 drc->drc_rrd->payload = buf;
2377 drc->drc_rrd->payload_size = len;
2378 drc->drc_rrd->bytes_read = drc->drc_bytes_read;
2379 }
2380 } else {
2381 ASSERT3P(buf, ==, NULL);
2382 }
2383
2384 drc->drc_prev_cksum = drc->drc_cksum;
2385
2386 drc->drc_next_rrd = kmem_zalloc(sizeof (*drc->drc_next_rrd), KM_SLEEP);
2387 err = receive_read(drc, sizeof (drc->drc_next_rrd->header),
2388 &drc->drc_next_rrd->header);
2389 drc->drc_next_rrd->bytes_read = drc->drc_bytes_read;
2390
2391 if (err != 0) {
2392 kmem_free(drc->drc_next_rrd, sizeof (*drc->drc_next_rrd));
2393 drc->drc_next_rrd = NULL;
2394 return (err);
2395 }
2396 if (drc->drc_next_rrd->header.drr_type == DRR_BEGIN) {
2397 kmem_free(drc->drc_next_rrd, sizeof (*drc->drc_next_rrd));
2398 drc->drc_next_rrd = NULL;
2399 return (SET_ERROR(EINVAL));
2400 }
2401
2402 /*
2403 * Note: checksum is of everything up to but not including the
2404 * checksum itself.
2405 */
2406 ASSERT3U(offsetof(dmu_replay_record_t, drr_u.drr_checksum.drr_checksum),
2407 ==, sizeof (dmu_replay_record_t) - sizeof (zio_cksum_t));
2408 receive_cksum(drc,
2409 offsetof(dmu_replay_record_t, drr_u.drr_checksum.drr_checksum),
2410 &drc->drc_next_rrd->header);
2411
2412 zio_cksum_t cksum_orig =
2413 drc->drc_next_rrd->header.drr_u.drr_checksum.drr_checksum;
2414 zio_cksum_t *cksump =
2415 &drc->drc_next_rrd->header.drr_u.drr_checksum.drr_checksum;
2416
2417 if (drc->drc_byteswap)
2418 byteswap_record(&drc->drc_next_rrd->header);
2419
2420 if ((!ZIO_CHECKSUM_IS_ZERO(cksump)) &&
2421 !ZIO_CHECKSUM_EQUAL(drc->drc_cksum, *cksump)) {
2422 kmem_free(drc->drc_next_rrd, sizeof (*drc->drc_next_rrd));
2423 drc->drc_next_rrd = NULL;
2424 return (SET_ERROR(ECKSUM));
2425 }
2426
2427 receive_cksum(drc, sizeof (cksum_orig), &cksum_orig);
2428
2429 return (0);
2430 }
2431
2432 /*
2433 * Issue the prefetch reads for any necessary indirect blocks.
2434 *
2435 * We use the object ignore list to tell us whether or not to issue prefetches
2436 * for a given object. We do this for both correctness (in case the blocksize
2437 * of an object has changed) and performance (if the object doesn't exist, don't
2438 * needlessly try to issue prefetches). We also trim the list as we go through
2439 * the stream to prevent it from growing to an unbounded size.
2440 *
2441 * The object numbers within will always be in sorted order, and any write
2442 * records we see will also be in sorted order, but they're not sorted with
2443 * respect to each other (i.e. we can get several object records before
2444 * receiving each object's write records). As a result, once we've reached a
2445 * given object number, we can safely remove any reference to lower object
2446 * numbers in the ignore list. In practice, we receive up to 32 object records
2447 * before receiving write records, so the list can have up to 32 nodes in it.
2448 */
2449 /* ARGSUSED */
2450 static void
2451 receive_read_prefetch(dmu_recv_cookie_t *drc, uint64_t object, uint64_t offset,
2452 uint64_t length)
2453 {
2454 if (!objlist_exists(drc->drc_ignore_objlist, object)) {
2455 dmu_prefetch(drc->drc_os, object, 1, offset, length,
2456 ZIO_PRIORITY_SYNC_READ);
2457 }
2458 }
2459
2460 /*
2461 * Read records off the stream, issuing any necessary prefetches.
2462 */
2463 static int
2464 receive_read_record(dmu_recv_cookie_t *drc)
2465 {
2466 int err;
2467
2468 switch (drc->drc_rrd->header.drr_type) {
2469 case DRR_OBJECT:
2470 {
2471 struct drr_object *drro =
2472 &drc->drc_rrd->header.drr_u.drr_object;
2473 uint32_t size = DRR_OBJECT_PAYLOAD_SIZE(drro);
2474 void *buf = NULL;
2475 dmu_object_info_t doi;
2476
2477 if (size != 0)
2478 buf = kmem_zalloc(size, KM_SLEEP);
2479
2480 err = receive_read_payload_and_next_header(drc, size, buf);
2481 if (err != 0) {
2482 kmem_free(buf, size);
2483 return (err);
2484 }
2485 err = dmu_object_info(drc->drc_os, drro->drr_object, &doi);
2486 /*
2487 * See receive_read_prefetch for an explanation why we're
2488 * storing this object in the ignore_obj_list.
2489 */
2490 if (err == ENOENT || err == EEXIST ||
2491 (err == 0 && doi.doi_data_block_size != drro->drr_blksz)) {
2492 objlist_insert(drc->drc_ignore_objlist,
2493 drro->drr_object);
2494 err = 0;
2495 }
2496 return (err);
2497 }
2498 case DRR_FREEOBJECTS:
2499 {
2500 err = receive_read_payload_and_next_header(drc, 0, NULL);
2501 return (err);
2502 }
2503 case DRR_WRITE:
2504 {
2505 struct drr_write *drrw = &drc->drc_rrd->header.drr_u.drr_write;
2506 int size = DRR_WRITE_PAYLOAD_SIZE(drrw);
2507 abd_t *abd = abd_alloc_linear(size, B_FALSE);
2508 err = receive_read_payload_and_next_header(drc, size,
2509 abd_to_buf(abd));
2510 if (err != 0) {
2511 abd_free(abd);
2512 return (err);
2513 }
2514 drc->drc_rrd->abd = abd;
2515 receive_read_prefetch(drc, drrw->drr_object, drrw->drr_offset,
2516 drrw->drr_logical_size);
2517 return (err);
2518 }
2519 case DRR_WRITE_EMBEDDED:
2520 {
2521 struct drr_write_embedded *drrwe =
2522 &drc->drc_rrd->header.drr_u.drr_write_embedded;
2523 uint32_t size = P2ROUNDUP(drrwe->drr_psize, 8);
2524 void *buf = kmem_zalloc(size, KM_SLEEP);
2525
2526 err = receive_read_payload_and_next_header(drc, size, buf);
2527 if (err != 0) {
2528 kmem_free(buf, size);
2529 return (err);
2530 }
2531
2532 receive_read_prefetch(drc, drrwe->drr_object, drrwe->drr_offset,
2533 drrwe->drr_length);
2534 return (err);
2535 }
2536 case DRR_FREE:
2537 case DRR_REDACT:
2538 {
2539 /*
2540 * It might be beneficial to prefetch indirect blocks here, but
2541 * we don't really have the data to decide for sure.
2542 */
2543 err = receive_read_payload_and_next_header(drc, 0, NULL);
2544 return (err);
2545 }
2546 case DRR_END:
2547 {
2548 struct drr_end *drre = &drc->drc_rrd->header.drr_u.drr_end;
2549 if (!ZIO_CHECKSUM_EQUAL(drc->drc_prev_cksum,
2550 drre->drr_checksum))
2551 return (SET_ERROR(ECKSUM));
2552 return (0);
2553 }
2554 case DRR_SPILL:
2555 {
2556 struct drr_spill *drrs = &drc->drc_rrd->header.drr_u.drr_spill;
2557 int size = DRR_SPILL_PAYLOAD_SIZE(drrs);
2558 abd_t *abd = abd_alloc_linear(size, B_FALSE);
2559 err = receive_read_payload_and_next_header(drc, size,
2560 abd_to_buf(abd));
2561 if (err != 0)
2562 abd_free(abd);
2563 else
2564 drc->drc_rrd->abd = abd;
2565 return (err);
2566 }
2567 case DRR_OBJECT_RANGE:
2568 {
2569 err = receive_read_payload_and_next_header(drc, 0, NULL);
2570 return (err);
2571
2572 }
2573 default:
2574 return (SET_ERROR(EINVAL));
2575 }
2576 }
2577
2578
2579
2580 static void
2581 dprintf_drr(struct receive_record_arg *rrd, int err)
2582 {
2583 #ifdef ZFS_DEBUG
2584 switch (rrd->header.drr_type) {
2585 case DRR_OBJECT:
2586 {
2587 struct drr_object *drro = &rrd->header.drr_u.drr_object;
2588 dprintf("drr_type = OBJECT obj = %llu type = %u "
2589 "bonustype = %u blksz = %u bonuslen = %u cksumtype = %u "
2590 "compress = %u dn_slots = %u err = %d\n",
2591 (u_longlong_t)drro->drr_object, drro->drr_type,
2592 drro->drr_bonustype, drro->drr_blksz, drro->drr_bonuslen,
2593 drro->drr_checksumtype, drro->drr_compress,
2594 drro->drr_dn_slots, err);
2595 break;
2596 }
2597 case DRR_FREEOBJECTS:
2598 {
2599 struct drr_freeobjects *drrfo =
2600 &rrd->header.drr_u.drr_freeobjects;
2601 dprintf("drr_type = FREEOBJECTS firstobj = %llu "
2602 "numobjs = %llu err = %d\n",
2603 (u_longlong_t)drrfo->drr_firstobj,
2604 (u_longlong_t)drrfo->drr_numobjs, err);
2605 break;
2606 }
2607 case DRR_WRITE:
2608 {
2609 struct drr_write *drrw = &rrd->header.drr_u.drr_write;
2610 dprintf("drr_type = WRITE obj = %llu type = %u offset = %llu "
2611 "lsize = %llu cksumtype = %u flags = %u "
2612 "compress = %u psize = %llu err = %d\n",
2613 (u_longlong_t)drrw->drr_object, drrw->drr_type,
2614 (u_longlong_t)drrw->drr_offset,
2615 (u_longlong_t)drrw->drr_logical_size,
2616 drrw->drr_checksumtype, drrw->drr_flags,
2617 drrw->drr_compressiontype,
2618 (u_longlong_t)drrw->drr_compressed_size, err);
2619 break;
2620 }
2621 case DRR_WRITE_BYREF:
2622 {
2623 struct drr_write_byref *drrwbr =
2624 &rrd->header.drr_u.drr_write_byref;
2625 dprintf("drr_type = WRITE_BYREF obj = %llu offset = %llu "
2626 "length = %llu toguid = %llx refguid = %llx "
2627 "refobject = %llu refoffset = %llu cksumtype = %u "
2628 "flags = %u err = %d\n",
2629 (u_longlong_t)drrwbr->drr_object,
2630 (u_longlong_t)drrwbr->drr_offset,
2631 (u_longlong_t)drrwbr->drr_length,
2632 (u_longlong_t)drrwbr->drr_toguid,
2633 (u_longlong_t)drrwbr->drr_refguid,
2634 (u_longlong_t)drrwbr->drr_refobject,
2635 (u_longlong_t)drrwbr->drr_refoffset,
2636 drrwbr->drr_checksumtype, drrwbr->drr_flags, err);
2637 break;
2638 }
2639 case DRR_WRITE_EMBEDDED:
2640 {
2641 struct drr_write_embedded *drrwe =
2642 &rrd->header.drr_u.drr_write_embedded;
2643 dprintf("drr_type = WRITE_EMBEDDED obj = %llu offset = %llu "
2644 "length = %llu compress = %u etype = %u lsize = %u "
2645 "psize = %u err = %d\n",
2646 (u_longlong_t)drrwe->drr_object,
2647 (u_longlong_t)drrwe->drr_offset,
2648 (u_longlong_t)drrwe->drr_length,
2649 drrwe->drr_compression, drrwe->drr_etype,
2650 drrwe->drr_lsize, drrwe->drr_psize, err);
2651 break;
2652 }
2653 case DRR_FREE:
2654 {
2655 struct drr_free *drrf = &rrd->header.drr_u.drr_free;
2656 dprintf("drr_type = FREE obj = %llu offset = %llu "
2657 "length = %lld err = %d\n",
2658 (u_longlong_t)drrf->drr_object,
2659 (u_longlong_t)drrf->drr_offset,
2660 (longlong_t)drrf->drr_length,
2661 err);
2662 break;
2663 }
2664 case DRR_SPILL:
2665 {
2666 struct drr_spill *drrs = &rrd->header.drr_u.drr_spill;
2667 dprintf("drr_type = SPILL obj = %llu length = %llu "
2668 "err = %d\n", (u_longlong_t)drrs->drr_object,
2669 (u_longlong_t)drrs->drr_length, err);
2670 break;
2671 }
2672 case DRR_OBJECT_RANGE:
2673 {
2674 struct drr_object_range *drror =
2675 &rrd->header.drr_u.drr_object_range;
2676 dprintf("drr_type = OBJECT_RANGE firstobj = %llu "
2677 "numslots = %llu flags = %u err = %d\n",
2678 (u_longlong_t)drror->drr_firstobj,
2679 (u_longlong_t)drror->drr_numslots,
2680 drror->drr_flags, err);
2681 break;
2682 }
2683 default:
2684 return;
2685 }
2686 #endif
2687 }
2688
2689 /*
2690 * Commit the records to the pool.
2691 */
2692 static int
2693 receive_process_record(struct receive_writer_arg *rwa,
2694 struct receive_record_arg *rrd)
2695 {
2696 int err;
2697
2698 /* Processing in order, therefore bytes_read should be increasing. */
2699 ASSERT3U(rrd->bytes_read, >=, rwa->bytes_read);
2700 rwa->bytes_read = rrd->bytes_read;
2701
2702 if (rrd->header.drr_type != DRR_WRITE) {
2703 err = flush_write_batch(rwa);
2704 if (err != 0) {
2705 if (rrd->abd != NULL) {
2706 abd_free(rrd->abd);
2707 rrd->abd = NULL;
2708 rrd->payload = NULL;
2709 } else if (rrd->payload != NULL) {
2710 kmem_free(rrd->payload, rrd->payload_size);
2711 rrd->payload = NULL;
2712 }
2713
2714 return (err);
2715 }
2716 }
2717
2718 switch (rrd->header.drr_type) {
2719 case DRR_OBJECT:
2720 {
2721 struct drr_object *drro = &rrd->header.drr_u.drr_object;
2722 err = receive_object(rwa, drro, rrd->payload);
2723 kmem_free(rrd->payload, rrd->payload_size);
2724 rrd->payload = NULL;
2725 break;
2726 }
2727 case DRR_FREEOBJECTS:
2728 {
2729 struct drr_freeobjects *drrfo =
2730 &rrd->header.drr_u.drr_freeobjects;
2731 err = receive_freeobjects(rwa, drrfo);
2732 break;
2733 }
2734 case DRR_WRITE:
2735 {
2736 err = receive_process_write_record(rwa, rrd);
2737 if (err != EAGAIN) {
2738 /*
2739 * On success, receive_process_write_record() returns
2740 * EAGAIN to indicate that we do not want to free
2741 * the rrd or arc_buf.
2742 */
2743 ASSERT(err != 0);
2744 abd_free(rrd->abd);
2745 rrd->abd = NULL;
2746 }
2747 break;
2748 }
2749 case DRR_WRITE_EMBEDDED:
2750 {
2751 struct drr_write_embedded *drrwe =
2752 &rrd->header.drr_u.drr_write_embedded;
2753 err = receive_write_embedded(rwa, drrwe, rrd->payload);
2754 kmem_free(rrd->payload, rrd->payload_size);
2755 rrd->payload = NULL;
2756 break;
2757 }
2758 case DRR_FREE:
2759 {
2760 struct drr_free *drrf = &rrd->header.drr_u.drr_free;
2761 err = receive_free(rwa, drrf);
2762 break;
2763 }
2764 case DRR_SPILL:
2765 {
2766 struct drr_spill *drrs = &rrd->header.drr_u.drr_spill;
2767 err = receive_spill(rwa, drrs, rrd->abd);
2768 if (err != 0)
2769 abd_free(rrd->abd);
2770 rrd->abd = NULL;
2771 rrd->payload = NULL;
2772 break;
2773 }
2774 case DRR_OBJECT_RANGE:
2775 {
2776 struct drr_object_range *drror =
2777 &rrd->header.drr_u.drr_object_range;
2778 err = receive_object_range(rwa, drror);
2779 break;
2780 }
2781 case DRR_REDACT:
2782 {
2783 struct drr_redact *drrr = &rrd->header.drr_u.drr_redact;
2784 err = receive_redact(rwa, drrr);
2785 break;
2786 }
2787 default:
2788 err = (SET_ERROR(EINVAL));
2789 }
2790
2791 if (err != 0)
2792 dprintf_drr(rrd, err);
2793
2794 return (err);
2795 }
2796
2797 /*
2798 * dmu_recv_stream's worker thread; pull records off the queue, and then call
2799 * receive_process_record When we're done, signal the main thread and exit.
2800 */
2801 static void
2802 receive_writer_thread(void *arg)
2803 {
2804 struct receive_writer_arg *rwa = arg;
2805 struct receive_record_arg *rrd;
2806 fstrans_cookie_t cookie = spl_fstrans_mark();
2807
2808 for (rrd = bqueue_dequeue(&rwa->q); !rrd->eos_marker;
2809 rrd = bqueue_dequeue(&rwa->q)) {
2810 /*
2811 * If there's an error, the main thread will stop putting things
2812 * on the queue, but we need to clear everything in it before we
2813 * can exit.
2814 */
2815 int err = 0;
2816 if (rwa->err == 0) {
2817 err = receive_process_record(rwa, rrd);
2818 } else if (rrd->abd != NULL) {
2819 abd_free(rrd->abd);
2820 rrd->abd = NULL;
2821 rrd->payload = NULL;
2822 } else if (rrd->payload != NULL) {
2823 kmem_free(rrd->payload, rrd->payload_size);
2824 rrd->payload = NULL;
2825 }
2826 /*
2827 * EAGAIN indicates that this record has been saved (on
2828 * raw->write_batch), and will be used again, so we don't
2829 * free it.
2830 */
2831 if (err != EAGAIN) {
2832 if (rwa->err == 0)
2833 rwa->err = err;
2834 kmem_free(rrd, sizeof (*rrd));
2835 }
2836 }
2837 kmem_free(rrd, sizeof (*rrd));
2838
2839 int err = flush_write_batch(rwa);
2840 if (rwa->err == 0)
2841 rwa->err = err;
2842
2843 mutex_enter(&rwa->mutex);
2844 rwa->done = B_TRUE;
2845 cv_signal(&rwa->cv);
2846 mutex_exit(&rwa->mutex);
2847 spl_fstrans_unmark(cookie);
2848 thread_exit();
2849 }
2850
2851 static int
2852 resume_check(dmu_recv_cookie_t *drc, nvlist_t *begin_nvl)
2853 {
2854 uint64_t val;
2855 objset_t *mos = dmu_objset_pool(drc->drc_os)->dp_meta_objset;
2856 uint64_t dsobj = dmu_objset_id(drc->drc_os);
2857 uint64_t resume_obj, resume_off;
2858
2859 if (nvlist_lookup_uint64(begin_nvl,
2860 "resume_object", &resume_obj) != 0 ||
2861 nvlist_lookup_uint64(begin_nvl,
2862 "resume_offset", &resume_off) != 0) {
2863 return (SET_ERROR(EINVAL));
2864 }
2865 VERIFY0(zap_lookup(mos, dsobj,
2866 DS_FIELD_RESUME_OBJECT, sizeof (val), 1, &val));
2867 if (resume_obj != val)
2868 return (SET_ERROR(EINVAL));
2869 VERIFY0(zap_lookup(mos, dsobj,
2870 DS_FIELD_RESUME_OFFSET, sizeof (val), 1, &val));
2871 if (resume_off != val)
2872 return (SET_ERROR(EINVAL));
2873
2874 return (0);
2875 }
2876
2877 /*
2878 * Read in the stream's records, one by one, and apply them to the pool. There
2879 * are two threads involved; the thread that calls this function will spin up a
2880 * worker thread, read the records off the stream one by one, and issue
2881 * prefetches for any necessary indirect blocks. It will then push the records
2882 * onto an internal blocking queue. The worker thread will pull the records off
2883 * the queue, and actually write the data into the DMU. This way, the worker
2884 * thread doesn't have to wait for reads to complete, since everything it needs
2885 * (the indirect blocks) will be prefetched.
2886 *
2887 * NB: callers *must* call dmu_recv_end() if this succeeds.
2888 */
2889 int
2890 dmu_recv_stream(dmu_recv_cookie_t *drc, offset_t *voffp)
2891 {
2892 int err = 0;
2893 struct receive_writer_arg *rwa = kmem_zalloc(sizeof (*rwa), KM_SLEEP);
2894
2895 if (dsl_dataset_has_resume_receive_state(drc->drc_ds)) {
2896 uint64_t bytes = 0;
2897 (void) zap_lookup(drc->drc_ds->ds_dir->dd_pool->dp_meta_objset,
2898 drc->drc_ds->ds_object, DS_FIELD_RESUME_BYTES,
2899 sizeof (bytes), 1, &bytes);
2900 drc->drc_bytes_read += bytes;
2901 }
2902
2903 drc->drc_ignore_objlist = objlist_create();
2904
2905 /* these were verified in dmu_recv_begin */
2906 ASSERT3U(DMU_GET_STREAM_HDRTYPE(drc->drc_drrb->drr_versioninfo), ==,
2907 DMU_SUBSTREAM);
2908 ASSERT3U(drc->drc_drrb->drr_type, <, DMU_OST_NUMTYPES);
2909
2910 ASSERT(dsl_dataset_phys(drc->drc_ds)->ds_flags & DS_FLAG_INCONSISTENT);
2911 ASSERT0(drc->drc_os->os_encrypted &&
2912 (drc->drc_featureflags & DMU_BACKUP_FEATURE_EMBED_DATA));
2913
2914 /* handle DSL encryption key payload */
2915 if (drc->drc_featureflags & DMU_BACKUP_FEATURE_RAW) {
2916 nvlist_t *keynvl = NULL;
2917
2918 ASSERT(drc->drc_os->os_encrypted);
2919 ASSERT(drc->drc_raw);
2920
2921 err = nvlist_lookup_nvlist(drc->drc_begin_nvl, "crypt_keydata",
2922 &keynvl);
2923 if (err != 0)
2924 goto out;
2925
2926 /*
2927 * If this is a new dataset we set the key immediately.
2928 * Otherwise we don't want to change the key until we
2929 * are sure the rest of the receive succeeded so we stash
2930 * the keynvl away until then.
2931 */
2932 err = dsl_crypto_recv_raw(spa_name(drc->drc_os->os_spa),
2933 drc->drc_ds->ds_object, drc->drc_fromsnapobj,
2934 drc->drc_drrb->drr_type, keynvl, drc->drc_newfs);
2935 if (err != 0)
2936 goto out;
2937
2938 /* see comment in dmu_recv_end_sync() */
2939 drc->drc_ivset_guid = 0;
2940 (void) nvlist_lookup_uint64(keynvl, "to_ivset_guid",
2941 &drc->drc_ivset_guid);
2942
2943 if (!drc->drc_newfs)
2944 drc->drc_keynvl = fnvlist_dup(keynvl);
2945 }
2946
2947 if (drc->drc_featureflags & DMU_BACKUP_FEATURE_RESUMING) {
2948 err = resume_check(drc, drc->drc_begin_nvl);
2949 if (err != 0)
2950 goto out;
2951 }
2952
2953 /*
2954 * If we failed before this point we will clean up any new resume
2955 * state that was created. Now that we've gotten past the initial
2956 * checks we are ok to retain that resume state.
2957 */
2958 drc->drc_should_save = B_TRUE;
2959
2960 (void) bqueue_init(&rwa->q, zfs_recv_queue_ff,
2961 MAX(zfs_recv_queue_length, 2 * zfs_max_recordsize),
2962 offsetof(struct receive_record_arg, node));
2963 cv_init(&rwa->cv, NULL, CV_DEFAULT, NULL);
2964 mutex_init(&rwa->mutex, NULL, MUTEX_DEFAULT, NULL);
2965 rwa->os = drc->drc_os;
2966 rwa->byteswap = drc->drc_byteswap;
2967 rwa->resumable = drc->drc_resumable;
2968 rwa->raw = drc->drc_raw;
2969 rwa->spill = drc->drc_spill;
2970 rwa->full = (drc->drc_drr_begin->drr_u.drr_begin.drr_fromguid == 0);
2971 rwa->os->os_raw_receive = drc->drc_raw;
2972 list_create(&rwa->write_batch, sizeof (struct receive_record_arg),
2973 offsetof(struct receive_record_arg, node.bqn_node));
2974
2975 (void) thread_create(NULL, 0, receive_writer_thread, rwa, 0, curproc,
2976 TS_RUN, minclsyspri);
2977 /*
2978 * We're reading rwa->err without locks, which is safe since we are the
2979 * only reader, and the worker thread is the only writer. It's ok if we
2980 * miss a write for an iteration or two of the loop, since the writer
2981 * thread will keep freeing records we send it until we send it an eos
2982 * marker.
2983 *
2984 * We can leave this loop in 3 ways: First, if rwa->err is
2985 * non-zero. In that case, the writer thread will free the rrd we just
2986 * pushed. Second, if we're interrupted; in that case, either it's the
2987 * first loop and drc->drc_rrd was never allocated, or it's later, and
2988 * drc->drc_rrd has been handed off to the writer thread who will free
2989 * it. Finally, if receive_read_record fails or we're at the end of the
2990 * stream, then we free drc->drc_rrd and exit.
2991 */
2992 while (rwa->err == 0) {
2993 if (issig(JUSTLOOKING) && issig(FORREAL)) {
2994 err = SET_ERROR(EINTR);
2995 break;
2996 }
2997
2998 ASSERT3P(drc->drc_rrd, ==, NULL);
2999 drc->drc_rrd = drc->drc_next_rrd;
3000 drc->drc_next_rrd = NULL;
3001 /* Allocates and loads header into drc->drc_next_rrd */
3002 err = receive_read_record(drc);
3003
3004 if (drc->drc_rrd->header.drr_type == DRR_END || err != 0) {
3005 kmem_free(drc->drc_rrd, sizeof (*drc->drc_rrd));
3006 drc->drc_rrd = NULL;
3007 break;
3008 }
3009
3010 bqueue_enqueue(&rwa->q, drc->drc_rrd,
3011 sizeof (struct receive_record_arg) +
3012 drc->drc_rrd->payload_size);
3013 drc->drc_rrd = NULL;
3014 }
3015
3016 ASSERT3P(drc->drc_rrd, ==, NULL);
3017 drc->drc_rrd = kmem_zalloc(sizeof (*drc->drc_rrd), KM_SLEEP);
3018 drc->drc_rrd->eos_marker = B_TRUE;
3019 bqueue_enqueue_flush(&rwa->q, drc->drc_rrd, 1);
3020
3021 mutex_enter(&rwa->mutex);
3022 while (!rwa->done) {
3023 /*
3024 * We need to use cv_wait_sig() so that any process that may
3025 * be sleeping here can still fork.
3026 */
3027 (void) cv_wait_sig(&rwa->cv, &rwa->mutex);
3028 }
3029 mutex_exit(&rwa->mutex);
3030
3031 /*
3032 * If we are receiving a full stream as a clone, all object IDs which
3033 * are greater than the maximum ID referenced in the stream are
3034 * by definition unused and must be freed.
3035 */
3036 if (drc->drc_clone && drc->drc_drrb->drr_fromguid == 0) {
3037 uint64_t obj = rwa->max_object + 1;
3038 int free_err = 0;
3039 int next_err = 0;
3040
3041 while (next_err == 0) {
3042 free_err = dmu_free_long_object(rwa->os, obj);
3043 if (free_err != 0 && free_err != ENOENT)
3044 break;
3045
3046 next_err = dmu_object_next(rwa->os, &obj, FALSE, 0);
3047 }
3048
3049 if (err == 0) {
3050 if (free_err != 0 && free_err != ENOENT)
3051 err = free_err;
3052 else if (next_err != ESRCH)
3053 err = next_err;
3054 }
3055 }
3056
3057 cv_destroy(&rwa->cv);
3058 mutex_destroy(&rwa->mutex);
3059 bqueue_destroy(&rwa->q);
3060 list_destroy(&rwa->write_batch);
3061 if (err == 0)
3062 err = rwa->err;
3063
3064 out:
3065 /*
3066 * If we hit an error before we started the receive_writer_thread
3067 * we need to clean up the next_rrd we create by processing the
3068 * DRR_BEGIN record.
3069 */
3070 if (drc->drc_next_rrd != NULL)
3071 kmem_free(drc->drc_next_rrd, sizeof (*drc->drc_next_rrd));
3072
3073 /*
3074 * The objset will be invalidated by dmu_recv_end() when we do
3075 * dsl_dataset_clone_swap_sync_impl().
3076 */
3077 drc->drc_os = NULL;
3078
3079 kmem_free(rwa, sizeof (*rwa));
3080 nvlist_free(drc->drc_begin_nvl);
3081
3082 if (err != 0) {
3083 /*
3084 * Clean up references. If receive is not resumable,
3085 * destroy what we created, so we don't leave it in
3086 * the inconsistent state.
3087 */
3088 dmu_recv_cleanup_ds(drc);
3089 nvlist_free(drc->drc_keynvl);
3090 }
3091
3092 objlist_destroy(drc->drc_ignore_objlist);
3093 drc->drc_ignore_objlist = NULL;
3094 *voffp = drc->drc_voff;
3095 return (err);
3096 }
3097
3098 static int
3099 dmu_recv_end_check(void *arg, dmu_tx_t *tx)
3100 {
3101 dmu_recv_cookie_t *drc = arg;
3102 dsl_pool_t *dp = dmu_tx_pool(tx);
3103 int error;
3104
3105 ASSERT3P(drc->drc_ds->ds_owner, ==, dmu_recv_tag);
3106
3107 if (!drc->drc_newfs) {
3108 dsl_dataset_t *origin_head;
3109
3110 error = dsl_dataset_hold(dp, drc->drc_tofs, FTAG, &origin_head);
3111 if (error != 0)
3112 return (error);
3113 if (drc->drc_force) {
3114 /*
3115 * We will destroy any snapshots in tofs (i.e. before
3116 * origin_head) that are after the origin (which is
3117 * the snap before drc_ds, because drc_ds can not
3118 * have any snaps of its own).
3119 */
3120 uint64_t obj;
3121
3122 obj = dsl_dataset_phys(origin_head)->ds_prev_snap_obj;
3123 while (obj !=
3124 dsl_dataset_phys(drc->drc_ds)->ds_prev_snap_obj) {
3125 dsl_dataset_t *snap;
3126 error = dsl_dataset_hold_obj(dp, obj, FTAG,
3127 &snap);
3128 if (error != 0)
3129 break;
3130 if (snap->ds_dir != origin_head->ds_dir)
3131 error = SET_ERROR(EINVAL);
3132 if (error == 0) {
3133 error = dsl_destroy_snapshot_check_impl(
3134 snap, B_FALSE);
3135 }
3136 obj = dsl_dataset_phys(snap)->ds_prev_snap_obj;
3137 dsl_dataset_rele(snap, FTAG);
3138 if (error != 0)
3139 break;
3140 }
3141 if (error != 0) {
3142 dsl_dataset_rele(origin_head, FTAG);
3143 return (error);
3144 }
3145 }
3146 if (drc->drc_keynvl != NULL) {
3147 error = dsl_crypto_recv_raw_key_check(drc->drc_ds,
3148 drc->drc_keynvl, tx);
3149 if (error != 0) {
3150 dsl_dataset_rele(origin_head, FTAG);
3151 return (error);
3152 }
3153 }
3154
3155 error = dsl_dataset_clone_swap_check_impl(drc->drc_ds,
3156 origin_head, drc->drc_force, drc->drc_owner, tx);
3157 if (error != 0) {
3158 dsl_dataset_rele(origin_head, FTAG);
3159 return (error);
3160 }
3161 error = dsl_dataset_snapshot_check_impl(origin_head,
3162 drc->drc_tosnap, tx, B_TRUE, 1,
3163 drc->drc_cred, drc->drc_proc);
3164 dsl_dataset_rele(origin_head, FTAG);
3165 if (error != 0)
3166 return (error);
3167
3168 error = dsl_destroy_head_check_impl(drc->drc_ds, 1);
3169 } else {
3170 error = dsl_dataset_snapshot_check_impl(drc->drc_ds,
3171 drc->drc_tosnap, tx, B_TRUE, 1,
3172 drc->drc_cred, drc->drc_proc);
3173 }
3174 return (error);
3175 }
3176
3177 static void
3178 dmu_recv_end_sync(void *arg, dmu_tx_t *tx)
3179 {
3180 dmu_recv_cookie_t *drc = arg;
3181 dsl_pool_t *dp = dmu_tx_pool(tx);
3182 boolean_t encrypted = drc->drc_ds->ds_dir->dd_crypto_obj != 0;
3183 uint64_t newsnapobj;
3184
3185 spa_history_log_internal_ds(drc->drc_ds, "finish receiving",
3186 tx, "snap=%s", drc->drc_tosnap);
3187 drc->drc_ds->ds_objset->os_raw_receive = B_FALSE;
3188
3189 if (!drc->drc_newfs) {
3190 dsl_dataset_t *origin_head;
3191
3192 VERIFY0(dsl_dataset_hold(dp, drc->drc_tofs, FTAG,
3193 &origin_head));
3194
3195 if (drc->drc_force) {
3196 /*
3197 * Destroy any snapshots of drc_tofs (origin_head)
3198 * after the origin (the snap before drc_ds).
3199 */
3200 uint64_t obj;
3201
3202 obj = dsl_dataset_phys(origin_head)->ds_prev_snap_obj;
3203 while (obj !=
3204 dsl_dataset_phys(drc->drc_ds)->ds_prev_snap_obj) {
3205 dsl_dataset_t *snap;
3206 VERIFY0(dsl_dataset_hold_obj(dp, obj, FTAG,
3207 &snap));
3208 ASSERT3P(snap->ds_dir, ==, origin_head->ds_dir);
3209 obj = dsl_dataset_phys(snap)->ds_prev_snap_obj;
3210 dsl_destroy_snapshot_sync_impl(snap,
3211 B_FALSE, tx);
3212 dsl_dataset_rele(snap, FTAG);
3213 }
3214 }
3215 if (drc->drc_keynvl != NULL) {
3216 dsl_crypto_recv_raw_key_sync(drc->drc_ds,
3217 drc->drc_keynvl, tx);
3218 nvlist_free(drc->drc_keynvl);
3219 drc->drc_keynvl = NULL;
3220 }
3221
3222 VERIFY3P(drc->drc_ds->ds_prev, ==,
3223 origin_head->ds_prev);
3224
3225 dsl_dataset_clone_swap_sync_impl(drc->drc_ds,
3226 origin_head, tx);
3227 /*
3228 * The objset was evicted by dsl_dataset_clone_swap_sync_impl,
3229 * so drc_os is no longer valid.
3230 */
3231 drc->drc_os = NULL;
3232
3233 dsl_dataset_snapshot_sync_impl(origin_head,
3234 drc->drc_tosnap, tx);
3235
3236 /* set snapshot's creation time and guid */
3237 dmu_buf_will_dirty(origin_head->ds_prev->ds_dbuf, tx);
3238 dsl_dataset_phys(origin_head->ds_prev)->ds_creation_time =
3239 drc->drc_drrb->drr_creation_time;
3240 dsl_dataset_phys(origin_head->ds_prev)->ds_guid =
3241 drc->drc_drrb->drr_toguid;
3242 dsl_dataset_phys(origin_head->ds_prev)->ds_flags &=
3243 ~DS_FLAG_INCONSISTENT;
3244
3245 dmu_buf_will_dirty(origin_head->ds_dbuf, tx);
3246 dsl_dataset_phys(origin_head)->ds_flags &=
3247 ~DS_FLAG_INCONSISTENT;
3248
3249 newsnapobj =
3250 dsl_dataset_phys(origin_head)->ds_prev_snap_obj;
3251
3252 dsl_dataset_rele(origin_head, FTAG);
3253 dsl_destroy_head_sync_impl(drc->drc_ds, tx);
3254
3255 if (drc->drc_owner != NULL)
3256 VERIFY3P(origin_head->ds_owner, ==, drc->drc_owner);
3257 } else {
3258 dsl_dataset_t *ds = drc->drc_ds;
3259
3260 dsl_dataset_snapshot_sync_impl(ds, drc->drc_tosnap, tx);
3261
3262 /* set snapshot's creation time and guid */
3263 dmu_buf_will_dirty(ds->ds_prev->ds_dbuf, tx);
3264 dsl_dataset_phys(ds->ds_prev)->ds_creation_time =
3265 drc->drc_drrb->drr_creation_time;
3266 dsl_dataset_phys(ds->ds_prev)->ds_guid =
3267 drc->drc_drrb->drr_toguid;
3268 dsl_dataset_phys(ds->ds_prev)->ds_flags &=
3269 ~DS_FLAG_INCONSISTENT;
3270
3271 dmu_buf_will_dirty(ds->ds_dbuf, tx);
3272 dsl_dataset_phys(ds)->ds_flags &= ~DS_FLAG_INCONSISTENT;
3273 if (dsl_dataset_has_resume_receive_state(ds)) {
3274 (void) zap_remove(dp->dp_meta_objset, ds->ds_object,
3275 DS_FIELD_RESUME_FROMGUID, tx);
3276 (void) zap_remove(dp->dp_meta_objset, ds->ds_object,
3277 DS_FIELD_RESUME_OBJECT, tx);
3278 (void) zap_remove(dp->dp_meta_objset, ds->ds_object,
3279 DS_FIELD_RESUME_OFFSET, tx);
3280 (void) zap_remove(dp->dp_meta_objset, ds->ds_object,
3281 DS_FIELD_RESUME_BYTES, tx);
3282 (void) zap_remove(dp->dp_meta_objset, ds->ds_object,
3283 DS_FIELD_RESUME_TOGUID, tx);
3284 (void) zap_remove(dp->dp_meta_objset, ds->ds_object,
3285 DS_FIELD_RESUME_TONAME, tx);
3286 (void) zap_remove(dp->dp_meta_objset, ds->ds_object,
3287 DS_FIELD_RESUME_REDACT_BOOKMARK_SNAPS, tx);
3288 }
3289 newsnapobj =
3290 dsl_dataset_phys(drc->drc_ds)->ds_prev_snap_obj;
3291 }
3292
3293 /*
3294 * If this is a raw receive, the crypt_keydata nvlist will include
3295 * a to_ivset_guid for us to set on the new snapshot. This value
3296 * will override the value generated by the snapshot code. However,
3297 * this value may not be present, because older implementations of
3298 * the raw send code did not include this value, and we are still
3299 * allowed to receive them if the zfs_disable_ivset_guid_check
3300 * tunable is set, in which case we will leave the newly-generated
3301 * value.
3302 */
3303 if (drc->drc_raw && drc->drc_ivset_guid != 0) {
3304 dmu_object_zapify(dp->dp_meta_objset, newsnapobj,
3305 DMU_OT_DSL_DATASET, tx);
3306 VERIFY0(zap_update(dp->dp_meta_objset, newsnapobj,
3307 DS_FIELD_IVSET_GUID, sizeof (uint64_t), 1,
3308 &drc->drc_ivset_guid, tx));
3309 }
3310
3311 /*
3312 * Release the hold from dmu_recv_begin. This must be done before
3313 * we return to open context, so that when we free the dataset's dnode
3314 * we can evict its bonus buffer. Since the dataset may be destroyed
3315 * at this point (and therefore won't have a valid pointer to the spa)
3316 * we release the key mapping manually here while we do have a valid
3317 * pointer, if it exists.
3318 */
3319 if (!drc->drc_raw && encrypted) {
3320 (void) spa_keystore_remove_mapping(dmu_tx_pool(tx)->dp_spa,
3321 drc->drc_ds->ds_object, drc->drc_ds);
3322 }
3323 dsl_dataset_disown(drc->drc_ds, 0, dmu_recv_tag);
3324 drc->drc_ds = NULL;
3325 }
3326
3327 static int dmu_recv_end_modified_blocks = 3;
3328
3329 static int
3330 dmu_recv_existing_end(dmu_recv_cookie_t *drc)
3331 {
3332 #ifdef _KERNEL
3333 /*
3334 * We will be destroying the ds; make sure its origin is unmounted if
3335 * necessary.
3336 */
3337 char name[ZFS_MAX_DATASET_NAME_LEN];
3338 dsl_dataset_name(drc->drc_ds, name);
3339 zfs_destroy_unmount_origin(name);
3340 #endif
3341
3342 return (dsl_sync_task(drc->drc_tofs,
3343 dmu_recv_end_check, dmu_recv_end_sync, drc,
3344 dmu_recv_end_modified_blocks, ZFS_SPACE_CHECK_NORMAL));
3345 }
3346
3347 static int
3348 dmu_recv_new_end(dmu_recv_cookie_t *drc)
3349 {
3350 return (dsl_sync_task(drc->drc_tofs,
3351 dmu_recv_end_check, dmu_recv_end_sync, drc,
3352 dmu_recv_end_modified_blocks, ZFS_SPACE_CHECK_NORMAL));
3353 }
3354
3355 int
3356 dmu_recv_end(dmu_recv_cookie_t *drc, void *owner)
3357 {
3358 int error;
3359
3360 drc->drc_owner = owner;
3361
3362 if (drc->drc_newfs)
3363 error = dmu_recv_new_end(drc);
3364 else
3365 error = dmu_recv_existing_end(drc);
3366
3367 if (error != 0) {
3368 dmu_recv_cleanup_ds(drc);
3369 nvlist_free(drc->drc_keynvl);
3370 } else {
3371 if (drc->drc_newfs) {
3372 zvol_create_minor(drc->drc_tofs);
3373 }
3374 char *snapname = kmem_asprintf("%s@%s",
3375 drc->drc_tofs, drc->drc_tosnap);
3376 zvol_create_minor(snapname);
3377 kmem_strfree(snapname);
3378 }
3379 return (error);
3380 }
3381
3382 /*
3383 * Return TRUE if this objset is currently being received into.
3384 */
3385 boolean_t
3386 dmu_objset_is_receiving(objset_t *os)
3387 {
3388 return (os->os_dsl_dataset != NULL &&
3389 os->os_dsl_dataset->ds_owner == dmu_recv_tag);
3390 }
3391
3392 /* BEGIN CSTYLED */
3393 ZFS_MODULE_PARAM(zfs_recv, zfs_recv_, queue_length, INT, ZMOD_RW,
3394 "Maximum receive queue length");
3395
3396 ZFS_MODULE_PARAM(zfs_recv, zfs_recv_, queue_ff, INT, ZMOD_RW,
3397 "Receive queue fill fraction");
3398
3399 ZFS_MODULE_PARAM(zfs_recv, zfs_recv_, write_batch_size, INT, ZMOD_RW,
3400 "Maximum amount of writes to batch into one transaction");
3401 /* END CSTYLED */