]> git.proxmox.com Git - mirror_zfs.git/blob - module/zfs/dnode_sync.c
OpenZFS 9438 - Holes can lose birth time info if a block has a mix of birth times
[mirror_zfs.git] / module / zfs / dnode_sync.c
1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21
22 /*
23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24 * Copyright (c) 2012, 2018 by Delphix. All rights reserved.
25 * Copyright (c) 2014 Spectra Logic Corporation, All rights reserved.
26 */
27
28 #include <sys/zfs_context.h>
29 #include <sys/dbuf.h>
30 #include <sys/dnode.h>
31 #include <sys/dmu.h>
32 #include <sys/dmu_tx.h>
33 #include <sys/dmu_objset.h>
34 #include <sys/dmu_send.h>
35 #include <sys/dsl_dataset.h>
36 #include <sys/spa.h>
37 #include <sys/range_tree.h>
38 #include <sys/zfeature.h>
39
40 static void
41 dnode_increase_indirection(dnode_t *dn, dmu_tx_t *tx)
42 {
43 dmu_buf_impl_t *db;
44 int txgoff = tx->tx_txg & TXG_MASK;
45 int nblkptr = dn->dn_phys->dn_nblkptr;
46 int old_toplvl = dn->dn_phys->dn_nlevels - 1;
47 int new_level = dn->dn_next_nlevels[txgoff];
48 int i;
49
50 rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
51
52 /* this dnode can't be paged out because it's dirty */
53 ASSERT(dn->dn_phys->dn_type != DMU_OT_NONE);
54 ASSERT(RW_WRITE_HELD(&dn->dn_struct_rwlock));
55 ASSERT(new_level > 1 && dn->dn_phys->dn_nlevels > 0);
56
57 db = dbuf_hold_level(dn, dn->dn_phys->dn_nlevels, 0, FTAG);
58 ASSERT(db != NULL);
59
60 dn->dn_phys->dn_nlevels = new_level;
61 dprintf("os=%p obj=%llu, increase to %d\n", dn->dn_objset,
62 dn->dn_object, dn->dn_phys->dn_nlevels);
63
64 /* transfer dnode's block pointers to new indirect block */
65 (void) dbuf_read(db, NULL, DB_RF_MUST_SUCCEED|DB_RF_HAVESTRUCT);
66 ASSERT(db->db.db_data);
67 ASSERT(arc_released(db->db_buf));
68 ASSERT3U(sizeof (blkptr_t) * nblkptr, <=, db->db.db_size);
69 bcopy(dn->dn_phys->dn_blkptr, db->db.db_data,
70 sizeof (blkptr_t) * nblkptr);
71 arc_buf_freeze(db->db_buf);
72
73 /* set dbuf's parent pointers to new indirect buf */
74 for (i = 0; i < nblkptr; i++) {
75 dmu_buf_impl_t *child =
76 dbuf_find(dn->dn_objset, dn->dn_object, old_toplvl, i);
77
78 if (child == NULL)
79 continue;
80 #ifdef DEBUG
81 DB_DNODE_ENTER(child);
82 ASSERT3P(DB_DNODE(child), ==, dn);
83 DB_DNODE_EXIT(child);
84 #endif /* DEBUG */
85 if (child->db_parent && child->db_parent != dn->dn_dbuf) {
86 ASSERT(child->db_parent->db_level == db->db_level);
87 ASSERT(child->db_blkptr !=
88 &dn->dn_phys->dn_blkptr[child->db_blkid]);
89 mutex_exit(&child->db_mtx);
90 continue;
91 }
92 ASSERT(child->db_parent == NULL ||
93 child->db_parent == dn->dn_dbuf);
94
95 child->db_parent = db;
96 dbuf_add_ref(db, child);
97 if (db->db.db_data)
98 child->db_blkptr = (blkptr_t *)db->db.db_data + i;
99 else
100 child->db_blkptr = NULL;
101 dprintf_dbuf_bp(child, child->db_blkptr,
102 "changed db_blkptr to new indirect %s", "");
103
104 mutex_exit(&child->db_mtx);
105 }
106
107 bzero(dn->dn_phys->dn_blkptr, sizeof (blkptr_t) * nblkptr);
108
109 dbuf_rele(db, FTAG);
110
111 rw_exit(&dn->dn_struct_rwlock);
112 }
113
114 static void
115 free_blocks(dnode_t *dn, blkptr_t *bp, int num, dmu_tx_t *tx)
116 {
117 dsl_dataset_t *ds = dn->dn_objset->os_dsl_dataset;
118 uint64_t bytesfreed = 0;
119
120 dprintf("ds=%p obj=%llx num=%d\n", ds, dn->dn_object, num);
121
122 for (int i = 0; i < num; i++, bp++) {
123 if (BP_IS_HOLE(bp))
124 continue;
125
126 bytesfreed += dsl_dataset_block_kill(ds, bp, tx, B_FALSE);
127 ASSERT3U(bytesfreed, <=, DN_USED_BYTES(dn->dn_phys));
128
129 /*
130 * Save some useful information on the holes being
131 * punched, including logical size, type, and indirection
132 * level. Retaining birth time enables detection of when
133 * holes are punched for reducing the number of free
134 * records transmitted during a zfs send.
135 */
136
137 uint64_t lsize = BP_GET_LSIZE(bp);
138 dmu_object_type_t type = BP_GET_TYPE(bp);
139 uint64_t lvl = BP_GET_LEVEL(bp);
140
141 bzero(bp, sizeof (blkptr_t));
142
143 if (spa_feature_is_active(dn->dn_objset->os_spa,
144 SPA_FEATURE_HOLE_BIRTH)) {
145 BP_SET_LSIZE(bp, lsize);
146 BP_SET_TYPE(bp, type);
147 BP_SET_LEVEL(bp, lvl);
148 BP_SET_BIRTH(bp, dmu_tx_get_txg(tx), 0);
149 }
150 }
151 dnode_diduse_space(dn, -bytesfreed);
152 }
153
154 #ifdef ZFS_DEBUG
155 static void
156 free_verify(dmu_buf_impl_t *db, uint64_t start, uint64_t end, dmu_tx_t *tx)
157 {
158 int off, num;
159 int i, err, epbs;
160 uint64_t txg = tx->tx_txg;
161 dnode_t *dn;
162
163 DB_DNODE_ENTER(db);
164 dn = DB_DNODE(db);
165 epbs = dn->dn_phys->dn_indblkshift - SPA_BLKPTRSHIFT;
166 off = start - (db->db_blkid * 1<<epbs);
167 num = end - start + 1;
168
169 ASSERT3U(off, >=, 0);
170 ASSERT3U(num, >=, 0);
171 ASSERT3U(db->db_level, >, 0);
172 ASSERT3U(db->db.db_size, ==, 1 << dn->dn_phys->dn_indblkshift);
173 ASSERT3U(off+num, <=, db->db.db_size >> SPA_BLKPTRSHIFT);
174 ASSERT(db->db_blkptr != NULL);
175
176 for (i = off; i < off+num; i++) {
177 uint64_t *buf;
178 dmu_buf_impl_t *child;
179 dbuf_dirty_record_t *dr;
180 int j;
181
182 ASSERT(db->db_level == 1);
183
184 rw_enter(&dn->dn_struct_rwlock, RW_READER);
185 err = dbuf_hold_impl(dn, db->db_level-1,
186 (db->db_blkid << epbs) + i, TRUE, FALSE, FTAG, &child);
187 rw_exit(&dn->dn_struct_rwlock);
188 if (err == ENOENT)
189 continue;
190 ASSERT(err == 0);
191 ASSERT(child->db_level == 0);
192 dr = child->db_last_dirty;
193 while (dr && dr->dr_txg > txg)
194 dr = dr->dr_next;
195 ASSERT(dr == NULL || dr->dr_txg == txg);
196
197 /* data_old better be zeroed */
198 if (dr) {
199 buf = dr->dt.dl.dr_data->b_data;
200 for (j = 0; j < child->db.db_size >> 3; j++) {
201 if (buf[j] != 0) {
202 panic("freed data not zero: "
203 "child=%p i=%d off=%d num=%d\n",
204 (void *)child, i, off, num);
205 }
206 }
207 }
208
209 /*
210 * db_data better be zeroed unless it's dirty in a
211 * future txg.
212 */
213 mutex_enter(&child->db_mtx);
214 buf = child->db.db_data;
215 if (buf != NULL && child->db_state != DB_FILL &&
216 child->db_last_dirty == NULL) {
217 for (j = 0; j < child->db.db_size >> 3; j++) {
218 if (buf[j] != 0) {
219 panic("freed data not zero: "
220 "child=%p i=%d off=%d num=%d\n",
221 (void *)child, i, off, num);
222 }
223 }
224 }
225 mutex_exit(&child->db_mtx);
226
227 dbuf_rele(child, FTAG);
228 }
229 DB_DNODE_EXIT(db);
230 }
231 #endif
232
233 /*
234 * We don't usually free the indirect blocks here. If in one txg we have a
235 * free_range and a write to the same indirect block, it's important that we
236 * preserve the hole's birth times. Therefore, we don't free any any indirect
237 * blocks in free_children(). If an indirect block happens to turn into all
238 * holes, it will be freed by dbuf_write_children_ready, which happens at a
239 * point in the syncing process where we know for certain the contents of the
240 * indirect block.
241 *
242 * However, if we're freeing a dnode, its space accounting must go to zero
243 * before we actually try to free the dnode, or we will trip an assertion. In
244 * addition, we know the case described above cannot occur, because the dnode is
245 * being freed. Therefore, we free the indirect blocks immediately in that
246 * case.
247 */
248 static void
249 free_children(dmu_buf_impl_t *db, uint64_t blkid, uint64_t nblks,
250 boolean_t free_indirects, dmu_tx_t *tx)
251 {
252 dnode_t *dn;
253 blkptr_t *bp;
254 dmu_buf_impl_t *subdb;
255 uint64_t start, end, dbstart, dbend;
256 unsigned int epbs, shift, i;
257
258 /*
259 * There is a small possibility that this block will not be cached:
260 * 1 - if level > 1 and there are no children with level <= 1
261 * 2 - if this block was evicted since we read it from
262 * dmu_tx_hold_free().
263 */
264 if (db->db_state != DB_CACHED)
265 (void) dbuf_read(db, NULL, DB_RF_MUST_SUCCEED);
266
267 dbuf_release_bp(db);
268 bp = db->db.db_data;
269
270 DB_DNODE_ENTER(db);
271 dn = DB_DNODE(db);
272 epbs = dn->dn_phys->dn_indblkshift - SPA_BLKPTRSHIFT;
273 ASSERT3U(epbs, <, 31);
274 shift = (db->db_level - 1) * epbs;
275 dbstart = db->db_blkid << epbs;
276 start = blkid >> shift;
277 if (dbstart < start) {
278 bp += start - dbstart;
279 } else {
280 start = dbstart;
281 }
282 dbend = ((db->db_blkid + 1) << epbs) - 1;
283 end = (blkid + nblks - 1) >> shift;
284 if (dbend <= end)
285 end = dbend;
286
287 ASSERT3U(start, <=, end);
288
289 if (db->db_level == 1) {
290 FREE_VERIFY(db, start, end, tx);
291 free_blocks(dn, bp, end-start+1, tx);
292 } else {
293 for (uint64_t id = start; id <= end; id++, bp++) {
294 if (BP_IS_HOLE(bp))
295 continue;
296 rw_enter(&dn->dn_struct_rwlock, RW_READER);
297 VERIFY0(dbuf_hold_impl(dn, db->db_level - 1,
298 id, TRUE, FALSE, FTAG, &subdb));
299 rw_exit(&dn->dn_struct_rwlock);
300 ASSERT3P(bp, ==, subdb->db_blkptr);
301
302 free_children(subdb, blkid, nblks, free_indirects, tx);
303 dbuf_rele(subdb, FTAG);
304 }
305 }
306
307 if (free_indirects) {
308 for (i = 0, bp = db->db.db_data; i < 1 << epbs; i++, bp++)
309 ASSERT(BP_IS_HOLE(bp));
310 bzero(db->db.db_data, db->db.db_size);
311 free_blocks(dn, db->db_blkptr, 1, tx);
312 }
313
314 DB_DNODE_EXIT(db);
315 arc_buf_freeze(db->db_buf);
316 }
317
318 /*
319 * Traverse the indicated range of the provided file
320 * and "free" all the blocks contained there.
321 */
322 static void
323 dnode_sync_free_range_impl(dnode_t *dn, uint64_t blkid, uint64_t nblks,
324 boolean_t free_indirects, dmu_tx_t *tx)
325 {
326 blkptr_t *bp = dn->dn_phys->dn_blkptr;
327 int dnlevel = dn->dn_phys->dn_nlevels;
328 boolean_t trunc = B_FALSE;
329
330 if (blkid > dn->dn_phys->dn_maxblkid)
331 return;
332
333 ASSERT(dn->dn_phys->dn_maxblkid < UINT64_MAX);
334 if (blkid + nblks > dn->dn_phys->dn_maxblkid) {
335 nblks = dn->dn_phys->dn_maxblkid - blkid + 1;
336 trunc = B_TRUE;
337 }
338
339 /* There are no indirect blocks in the object */
340 if (dnlevel == 1) {
341 if (blkid >= dn->dn_phys->dn_nblkptr) {
342 /* this range was never made persistent */
343 return;
344 }
345 ASSERT3U(blkid + nblks, <=, dn->dn_phys->dn_nblkptr);
346 free_blocks(dn, bp + blkid, nblks, tx);
347 } else {
348 int shift = (dnlevel - 1) *
349 (dn->dn_phys->dn_indblkshift - SPA_BLKPTRSHIFT);
350 int start = blkid >> shift;
351 int end = (blkid + nblks - 1) >> shift;
352 dmu_buf_impl_t *db;
353
354 ASSERT(start < dn->dn_phys->dn_nblkptr);
355 bp += start;
356 for (int i = start; i <= end; i++, bp++) {
357 if (BP_IS_HOLE(bp))
358 continue;
359 rw_enter(&dn->dn_struct_rwlock, RW_READER);
360 VERIFY0(dbuf_hold_impl(dn, dnlevel - 1, i,
361 TRUE, FALSE, FTAG, &db));
362 rw_exit(&dn->dn_struct_rwlock);
363
364 free_children(db, blkid, nblks, free_indirects, tx);
365 dbuf_rele(db, FTAG);
366 }
367 }
368
369 /*
370 * Do not truncate the maxblkid if we are performing a raw
371 * receive. The raw receive sets the mablkid manually and
372 * must not be overriden.
373 */
374 if (trunc && !dn->dn_objset->os_raw_receive) {
375 ASSERTV(uint64_t off);
376 dn->dn_phys->dn_maxblkid = blkid == 0 ? 0 : blkid - 1;
377
378 ASSERTV(off = (dn->dn_phys->dn_maxblkid + 1) *
379 (dn->dn_phys->dn_datablkszsec << SPA_MINBLOCKSHIFT));
380 ASSERT(off < dn->dn_phys->dn_maxblkid ||
381 dn->dn_phys->dn_maxblkid == 0 ||
382 dnode_next_offset(dn, 0, &off, 1, 1, 0) != 0);
383 }
384 }
385
386 typedef struct dnode_sync_free_range_arg {
387 dnode_t *dsfra_dnode;
388 dmu_tx_t *dsfra_tx;
389 boolean_t dsfra_free_indirects;
390 } dnode_sync_free_range_arg_t;
391
392 static void
393 dnode_sync_free_range(void *arg, uint64_t blkid, uint64_t nblks)
394 {
395 dnode_sync_free_range_arg_t *dsfra = arg;
396 dnode_t *dn = dsfra->dsfra_dnode;
397
398 mutex_exit(&dn->dn_mtx);
399 dnode_sync_free_range_impl(dn, blkid, nblks,
400 dsfra->dsfra_free_indirects, dsfra->dsfra_tx);
401 mutex_enter(&dn->dn_mtx);
402 }
403
404 /*
405 * Try to kick all the dnode's dbufs out of the cache...
406 */
407 void
408 dnode_evict_dbufs(dnode_t *dn)
409 {
410 dmu_buf_impl_t *db_marker;
411 dmu_buf_impl_t *db, *db_next;
412
413 db_marker = kmem_alloc(sizeof (dmu_buf_impl_t), KM_SLEEP);
414
415 mutex_enter(&dn->dn_dbufs_mtx);
416 for (db = avl_first(&dn->dn_dbufs); db != NULL; db = db_next) {
417
418 #ifdef DEBUG
419 DB_DNODE_ENTER(db);
420 ASSERT3P(DB_DNODE(db), ==, dn);
421 DB_DNODE_EXIT(db);
422 #endif /* DEBUG */
423
424 mutex_enter(&db->db_mtx);
425 if (db->db_state != DB_EVICTING &&
426 refcount_is_zero(&db->db_holds)) {
427 db_marker->db_level = db->db_level;
428 db_marker->db_blkid = db->db_blkid;
429 db_marker->db_state = DB_SEARCH;
430 avl_insert_here(&dn->dn_dbufs, db_marker, db,
431 AVL_BEFORE);
432
433 /*
434 * We need to use the "marker" dbuf rather than
435 * simply getting the next dbuf, because
436 * dbuf_destroy() may actually remove multiple dbufs.
437 * It can call itself recursively on the parent dbuf,
438 * which may also be removed from dn_dbufs. The code
439 * flow would look like:
440 *
441 * dbuf_destroy():
442 * dnode_rele_and_unlock(parent_dbuf):
443 * if (!cacheable || pending_evict)
444 * dbuf_destroy()
445 */
446 dbuf_destroy(db);
447
448 db_next = AVL_NEXT(&dn->dn_dbufs, db_marker);
449 avl_remove(&dn->dn_dbufs, db_marker);
450 } else {
451 db->db_pending_evict = TRUE;
452 mutex_exit(&db->db_mtx);
453 db_next = AVL_NEXT(&dn->dn_dbufs, db);
454 }
455 }
456 mutex_exit(&dn->dn_dbufs_mtx);
457
458 kmem_free(db_marker, sizeof (dmu_buf_impl_t));
459
460 dnode_evict_bonus(dn);
461 }
462
463 void
464 dnode_evict_bonus(dnode_t *dn)
465 {
466 rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
467 if (dn->dn_bonus != NULL) {
468 if (refcount_is_zero(&dn->dn_bonus->db_holds)) {
469 mutex_enter(&dn->dn_bonus->db_mtx);
470 dbuf_destroy(dn->dn_bonus);
471 dn->dn_bonus = NULL;
472 } else {
473 dn->dn_bonus->db_pending_evict = TRUE;
474 }
475 }
476 rw_exit(&dn->dn_struct_rwlock);
477 }
478
479 static void
480 dnode_undirty_dbufs(list_t *list)
481 {
482 dbuf_dirty_record_t *dr;
483
484 while ((dr = list_head(list))) {
485 dmu_buf_impl_t *db = dr->dr_dbuf;
486 uint64_t txg = dr->dr_txg;
487
488 if (db->db_level != 0)
489 dnode_undirty_dbufs(&dr->dt.di.dr_children);
490
491 mutex_enter(&db->db_mtx);
492 /* XXX - use dbuf_undirty()? */
493 list_remove(list, dr);
494 ASSERT(db->db_last_dirty == dr);
495 db->db_last_dirty = NULL;
496 db->db_dirtycnt -= 1;
497 if (db->db_level == 0) {
498 ASSERT(db->db_blkid == DMU_BONUS_BLKID ||
499 dr->dt.dl.dr_data == db->db_buf);
500 dbuf_unoverride(dr);
501 } else {
502 mutex_destroy(&dr->dt.di.dr_mtx);
503 list_destroy(&dr->dt.di.dr_children);
504 }
505 kmem_free(dr, sizeof (dbuf_dirty_record_t));
506 dbuf_rele_and_unlock(db, (void *)(uintptr_t)txg);
507 }
508 }
509
510 static void
511 dnode_sync_free(dnode_t *dn, dmu_tx_t *tx)
512 {
513 int txgoff = tx->tx_txg & TXG_MASK;
514
515 ASSERT(dmu_tx_is_syncing(tx));
516
517 /*
518 * Our contents should have been freed in dnode_sync() by the
519 * free range record inserted by the caller of dnode_free().
520 */
521 ASSERT0(DN_USED_BYTES(dn->dn_phys));
522 ASSERT(BP_IS_HOLE(dn->dn_phys->dn_blkptr));
523
524 dnode_undirty_dbufs(&dn->dn_dirty_records[txgoff]);
525 dnode_evict_dbufs(dn);
526
527 /*
528 * XXX - It would be nice to assert this, but we may still
529 * have residual holds from async evictions from the arc...
530 *
531 * zfs_obj_to_path() also depends on this being
532 * commented out.
533 *
534 * ASSERT3U(refcount_count(&dn->dn_holds), ==, 1);
535 */
536
537 /* Undirty next bits */
538 dn->dn_next_nlevels[txgoff] = 0;
539 dn->dn_next_indblkshift[txgoff] = 0;
540 dn->dn_next_blksz[txgoff] = 0;
541 dn->dn_next_maxblkid[txgoff] = 0;
542
543 /* ASSERT(blkptrs are zero); */
544 ASSERT(dn->dn_phys->dn_type != DMU_OT_NONE);
545 ASSERT(dn->dn_type != DMU_OT_NONE);
546
547 ASSERT(dn->dn_free_txg > 0);
548 if (dn->dn_allocated_txg != dn->dn_free_txg)
549 dmu_buf_will_dirty(&dn->dn_dbuf->db, tx);
550 bzero(dn->dn_phys, sizeof (dnode_phys_t) * dn->dn_num_slots);
551 dnode_free_interior_slots(dn);
552
553 mutex_enter(&dn->dn_mtx);
554 dn->dn_type = DMU_OT_NONE;
555 dn->dn_maxblkid = 0;
556 dn->dn_allocated_txg = 0;
557 dn->dn_free_txg = 0;
558 dn->dn_have_spill = B_FALSE;
559 dn->dn_num_slots = 1;
560 mutex_exit(&dn->dn_mtx);
561
562 ASSERT(dn->dn_object != DMU_META_DNODE_OBJECT);
563
564 dnode_rele(dn, (void *)(uintptr_t)tx->tx_txg);
565 /*
566 * Now that we've released our hold, the dnode may
567 * be evicted, so we mustn't access it.
568 */
569 }
570
571 /*
572 * Write out the dnode's dirty buffers.
573 */
574 void
575 dnode_sync(dnode_t *dn, dmu_tx_t *tx)
576 {
577 objset_t *os = dn->dn_objset;
578 dnode_phys_t *dnp = dn->dn_phys;
579 int txgoff = tx->tx_txg & TXG_MASK;
580 list_t *list = &dn->dn_dirty_records[txgoff];
581 ASSERTV(static const dnode_phys_t zerodn = { 0 });
582 boolean_t kill_spill = B_FALSE;
583
584 ASSERT(dmu_tx_is_syncing(tx));
585 ASSERT(dnp->dn_type != DMU_OT_NONE || dn->dn_allocated_txg);
586 ASSERT(dnp->dn_type != DMU_OT_NONE ||
587 bcmp(dnp, &zerodn, DNODE_MIN_SIZE) == 0);
588 DNODE_VERIFY(dn);
589
590 ASSERT(dn->dn_dbuf == NULL || arc_released(dn->dn_dbuf->db_buf));
591
592 /*
593 * Do user accounting if it is enabled and this is not
594 * an encrypted receive.
595 */
596 if (dmu_objset_userused_enabled(os) &&
597 !DMU_OBJECT_IS_SPECIAL(dn->dn_object) &&
598 (!os->os_encrypted || !dmu_objset_is_receiving(os))) {
599 mutex_enter(&dn->dn_mtx);
600 dn->dn_oldused = DN_USED_BYTES(dn->dn_phys);
601 dn->dn_oldflags = dn->dn_phys->dn_flags;
602 dn->dn_phys->dn_flags |= DNODE_FLAG_USERUSED_ACCOUNTED;
603 if (dmu_objset_userobjused_enabled(dn->dn_objset))
604 dn->dn_phys->dn_flags |=
605 DNODE_FLAG_USEROBJUSED_ACCOUNTED;
606 mutex_exit(&dn->dn_mtx);
607 dmu_objset_userquota_get_ids(dn, B_FALSE, tx);
608 } else {
609 /* Once we account for it, we should always account for it */
610 ASSERT(!(dn->dn_phys->dn_flags &
611 DNODE_FLAG_USERUSED_ACCOUNTED));
612 ASSERT(!(dn->dn_phys->dn_flags &
613 DNODE_FLAG_USEROBJUSED_ACCOUNTED));
614 }
615
616 mutex_enter(&dn->dn_mtx);
617 if (dn->dn_allocated_txg == tx->tx_txg) {
618 /* The dnode is newly allocated or reallocated */
619 if (dnp->dn_type == DMU_OT_NONE) {
620 /* this is a first alloc, not a realloc */
621 dnp->dn_nlevels = 1;
622 dnp->dn_nblkptr = dn->dn_nblkptr;
623 }
624
625 dnp->dn_type = dn->dn_type;
626 dnp->dn_bonustype = dn->dn_bonustype;
627 dnp->dn_bonuslen = dn->dn_bonuslen;
628 }
629
630 dnp->dn_extra_slots = dn->dn_num_slots - 1;
631
632 ASSERT(dnp->dn_nlevels > 1 ||
633 BP_IS_HOLE(&dnp->dn_blkptr[0]) ||
634 BP_IS_EMBEDDED(&dnp->dn_blkptr[0]) ||
635 BP_GET_LSIZE(&dnp->dn_blkptr[0]) ==
636 dnp->dn_datablkszsec << SPA_MINBLOCKSHIFT);
637 ASSERT(dnp->dn_nlevels < 2 ||
638 BP_IS_HOLE(&dnp->dn_blkptr[0]) ||
639 BP_GET_LSIZE(&dnp->dn_blkptr[0]) == 1 << dnp->dn_indblkshift);
640
641 if (dn->dn_next_type[txgoff] != 0) {
642 dnp->dn_type = dn->dn_type;
643 dn->dn_next_type[txgoff] = 0;
644 }
645
646 if (dn->dn_next_blksz[txgoff] != 0) {
647 ASSERT(P2PHASE(dn->dn_next_blksz[txgoff],
648 SPA_MINBLOCKSIZE) == 0);
649 ASSERT(BP_IS_HOLE(&dnp->dn_blkptr[0]) ||
650 dn->dn_maxblkid == 0 || list_head(list) != NULL ||
651 dn->dn_next_blksz[txgoff] >> SPA_MINBLOCKSHIFT ==
652 dnp->dn_datablkszsec ||
653 !range_tree_is_empty(dn->dn_free_ranges[txgoff]));
654 dnp->dn_datablkszsec =
655 dn->dn_next_blksz[txgoff] >> SPA_MINBLOCKSHIFT;
656 dn->dn_next_blksz[txgoff] = 0;
657 }
658
659 if (dn->dn_next_bonuslen[txgoff] != 0) {
660 if (dn->dn_next_bonuslen[txgoff] == DN_ZERO_BONUSLEN)
661 dnp->dn_bonuslen = 0;
662 else
663 dnp->dn_bonuslen = dn->dn_next_bonuslen[txgoff];
664 ASSERT(dnp->dn_bonuslen <=
665 DN_SLOTS_TO_BONUSLEN(dnp->dn_extra_slots + 1));
666 dn->dn_next_bonuslen[txgoff] = 0;
667 }
668
669 if (dn->dn_next_bonustype[txgoff] != 0) {
670 ASSERT(DMU_OT_IS_VALID(dn->dn_next_bonustype[txgoff]));
671 dnp->dn_bonustype = dn->dn_next_bonustype[txgoff];
672 dn->dn_next_bonustype[txgoff] = 0;
673 }
674
675 boolean_t freeing_dnode = dn->dn_free_txg > 0 &&
676 dn->dn_free_txg <= tx->tx_txg;
677
678 /*
679 * Remove the spill block if we have been explicitly asked to
680 * remove it, or if the object is being removed.
681 */
682 if (dn->dn_rm_spillblk[txgoff] || freeing_dnode) {
683 if (dnp->dn_flags & DNODE_FLAG_SPILL_BLKPTR)
684 kill_spill = B_TRUE;
685 dn->dn_rm_spillblk[txgoff] = 0;
686 }
687
688 if (dn->dn_next_indblkshift[txgoff] != 0) {
689 ASSERT(dnp->dn_nlevels == 1);
690 dnp->dn_indblkshift = dn->dn_next_indblkshift[txgoff];
691 dn->dn_next_indblkshift[txgoff] = 0;
692 }
693
694 /*
695 * Just take the live (open-context) values for checksum and compress.
696 * Strictly speaking it's a future leak, but nothing bad happens if we
697 * start using the new checksum or compress algorithm a little early.
698 */
699 dnp->dn_checksum = dn->dn_checksum;
700 dnp->dn_compress = dn->dn_compress;
701
702 mutex_exit(&dn->dn_mtx);
703
704 if (kill_spill) {
705 free_blocks(dn, DN_SPILL_BLKPTR(dn->dn_phys), 1, tx);
706 mutex_enter(&dn->dn_mtx);
707 dnp->dn_flags &= ~DNODE_FLAG_SPILL_BLKPTR;
708 mutex_exit(&dn->dn_mtx);
709 }
710
711 /* process all the "freed" ranges in the file */
712 if (dn->dn_free_ranges[txgoff] != NULL) {
713 dnode_sync_free_range_arg_t dsfra;
714 dsfra.dsfra_dnode = dn;
715 dsfra.dsfra_tx = tx;
716 dsfra.dsfra_free_indirects = freeing_dnode;
717 if (freeing_dnode) {
718 ASSERT(range_tree_contains(dn->dn_free_ranges[txgoff],
719 0, dn->dn_maxblkid + 1));
720 }
721 mutex_enter(&dn->dn_mtx);
722 range_tree_vacate(dn->dn_free_ranges[txgoff],
723 dnode_sync_free_range, &dsfra);
724 range_tree_destroy(dn->dn_free_ranges[txgoff]);
725 dn->dn_free_ranges[txgoff] = NULL;
726 mutex_exit(&dn->dn_mtx);
727 }
728
729 if (freeing_dnode) {
730 dn->dn_objset->os_freed_dnodes++;
731 dnode_sync_free(dn, tx);
732 return;
733 }
734
735 if (dn->dn_num_slots > DNODE_MIN_SLOTS) {
736 dsl_dataset_t *ds = dn->dn_objset->os_dsl_dataset;
737 mutex_enter(&ds->ds_lock);
738 ds->ds_feature_activation_needed[SPA_FEATURE_LARGE_DNODE] =
739 B_TRUE;
740 mutex_exit(&ds->ds_lock);
741 }
742
743 if (dn->dn_next_nlevels[txgoff]) {
744 dnode_increase_indirection(dn, tx);
745 dn->dn_next_nlevels[txgoff] = 0;
746 }
747
748 /*
749 * This must be done after dnode_sync_free_range()
750 * and dnode_increase_indirection().
751 */
752 if (dn->dn_next_maxblkid[txgoff]) {
753 mutex_enter(&dn->dn_mtx);
754 dnp->dn_maxblkid = dn->dn_next_maxblkid[txgoff];
755 dn->dn_next_maxblkid[txgoff] = 0;
756 mutex_exit(&dn->dn_mtx);
757 }
758
759 if (dn->dn_next_nblkptr[txgoff]) {
760 /* this should only happen on a realloc */
761 ASSERT(dn->dn_allocated_txg == tx->tx_txg);
762 if (dn->dn_next_nblkptr[txgoff] > dnp->dn_nblkptr) {
763 /* zero the new blkptrs we are gaining */
764 bzero(dnp->dn_blkptr + dnp->dn_nblkptr,
765 sizeof (blkptr_t) *
766 (dn->dn_next_nblkptr[txgoff] - dnp->dn_nblkptr));
767 #ifdef ZFS_DEBUG
768 } else {
769 int i;
770 ASSERT(dn->dn_next_nblkptr[txgoff] < dnp->dn_nblkptr);
771 /* the blkptrs we are losing better be unallocated */
772 for (i = 0; i < dnp->dn_nblkptr; i++) {
773 if (i >= dn->dn_next_nblkptr[txgoff])
774 ASSERT(BP_IS_HOLE(&dnp->dn_blkptr[i]));
775 }
776 #endif
777 }
778 mutex_enter(&dn->dn_mtx);
779 dnp->dn_nblkptr = dn->dn_next_nblkptr[txgoff];
780 dn->dn_next_nblkptr[txgoff] = 0;
781 mutex_exit(&dn->dn_mtx);
782 }
783
784 dbuf_sync_list(list, dn->dn_phys->dn_nlevels - 1, tx);
785
786 if (!DMU_OBJECT_IS_SPECIAL(dn->dn_object)) {
787 ASSERT3P(list_head(list), ==, NULL);
788 dnode_rele(dn, (void *)(uintptr_t)tx->tx_txg);
789 }
790
791 /*
792 * Although we have dropped our reference to the dnode, it
793 * can't be evicted until its written, and we haven't yet
794 * initiated the IO for the dnode's dbuf.
795 */
796 }