]> git.proxmox.com Git - mirror_zfs.git/blob - module/zfs/mmp.c
'zfs receive' fails with "dataset is busy"
[mirror_zfs.git] / module / zfs / mmp.c
1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright (c) 2017 by Lawrence Livermore National Security, LLC.
23 */
24
25 #include <sys/abd.h>
26 #include <sys/mmp.h>
27 #include <sys/spa.h>
28 #include <sys/spa_impl.h>
29 #include <sys/time.h>
30 #include <sys/vdev.h>
31 #include <sys/vdev_impl.h>
32 #include <sys/zfs_context.h>
33 #include <sys/callb.h>
34
35 /*
36 * Multi-Modifier Protection (MMP) attempts to prevent a user from importing
37 * or opening a pool on more than one host at a time. In particular, it
38 * prevents "zpool import -f" on a host from succeeding while the pool is
39 * already imported on another host. There are many other ways in which a
40 * device could be used by two hosts for different purposes at the same time
41 * resulting in pool damage. This implementation does not attempt to detect
42 * those cases.
43 *
44 * MMP operates by ensuring there are frequent visible changes on disk (a
45 * "heartbeat") at all times. And by altering the import process to check
46 * for these changes and failing the import when they are detected. This
47 * functionality is enabled by setting the 'multihost' pool property to on.
48 *
49 * Uberblocks written by the txg_sync thread always go into the first
50 * (N-MMP_BLOCKS_PER_LABEL) slots, the remaining slots are reserved for MMP.
51 * They are used to hold uberblocks which are exactly the same as the last
52 * synced uberblock except that the ub_timestamp is frequently updated.
53 * Like all other uberblocks, the slot is written with an embedded checksum,
54 * and slots with invalid checksums are ignored. This provides the
55 * "heartbeat", with no risk of overwriting good uberblocks that must be
56 * preserved, e.g. previous txgs and associated block pointers.
57 *
58 * Two optional fields are added to uberblock structure: ub_mmp_magic and
59 * ub_mmp_delay. The magic field allows zfs to tell whether ub_mmp_delay is
60 * valid. The delay field is a decaying average of the amount of time between
61 * completion of successive MMP writes, in nanoseconds. It is used to predict
62 * how long the import must wait to detect activity in the pool, before
63 * concluding it is not in use.
64 *
65 * During import an activity test may now be performed to determine if
66 * the pool is in use. The activity test is typically required if the
67 * ZPOOL_CONFIG_HOSTID does not match the system hostid, the pool state is
68 * POOL_STATE_ACTIVE, and the pool is not a root pool.
69 *
70 * The activity test finds the "best" uberblock (highest txg & timestamp),
71 * waits some time, and then finds the "best" uberblock again. If the txg
72 * and timestamp in both "best" uberblocks do not match, the pool is in use
73 * by another host and the import fails. Since the granularity of the
74 * timestamp is in seconds this activity test must take a bare minimum of one
75 * second. In order to assure the accuracy of the activity test, the default
76 * values result in an activity test duration of 10x the mmp write interval.
77 *
78 * The "zpool import" activity test can be expected to take a minimum time of
79 * zfs_multihost_import_intervals * zfs_multihost_interval milliseconds. If the
80 * "best" uberblock has a valid ub_mmp_delay field, then the duration of the
81 * test may take longer if MMP writes were occurring less frequently than
82 * expected. Additionally, the duration is then extended by a random 25% to
83 * attempt to to detect simultaneous imports. For example, if both partner
84 * hosts are rebooted at the same time and automatically attempt to import the
85 * pool.
86 */
87
88 /*
89 * Used to control the frequency of mmp writes which are performed when the
90 * 'multihost' pool property is on. This is one factor used to determine the
91 * length of the activity check during import.
92 *
93 * The mmp write period is zfs_multihost_interval / leaf-vdevs milliseconds.
94 * This means that on average an mmp write will be issued for each leaf vdev
95 * every zfs_multihost_interval milliseconds. In practice, the observed period
96 * can vary with the I/O load and this observed value is the delay which is
97 * stored in the uberblock. The minimum allowed value is 100 ms.
98 */
99 ulong_t zfs_multihost_interval = MMP_DEFAULT_INTERVAL;
100
101 /*
102 * Used to control the duration of the activity test on import. Smaller values
103 * of zfs_multihost_import_intervals will reduce the import time but increase
104 * the risk of failing to detect an active pool. The total activity check time
105 * is never allowed to drop below one second. A value of 0 is ignored and
106 * treated as if it was set to 1.
107 */
108 uint_t zfs_multihost_import_intervals = MMP_DEFAULT_IMPORT_INTERVALS;
109
110 /*
111 * Controls the behavior of the pool when mmp write failures are detected.
112 *
113 * When zfs_multihost_fail_intervals = 0 then mmp write failures are ignored.
114 * The failures will still be reported to the ZED which depending on its
115 * configuration may take action such as suspending the pool or taking a
116 * device offline.
117 *
118 * When zfs_multihost_fail_intervals > 0 then sequential mmp write failures will
119 * cause the pool to be suspended. This occurs when
120 * zfs_multihost_fail_intervals * zfs_multihost_interval milliseconds have
121 * passed since the last successful mmp write. This guarantees the activity
122 * test will see mmp writes if the
123 * pool is imported.
124 */
125 uint_t zfs_multihost_fail_intervals = MMP_DEFAULT_FAIL_INTERVALS;
126
127 char *mmp_tag = "mmp_write_uberblock";
128 static void mmp_thread(void *arg);
129
130 void
131 mmp_init(spa_t *spa)
132 {
133 mmp_thread_t *mmp = &spa->spa_mmp;
134
135 mutex_init(&mmp->mmp_thread_lock, NULL, MUTEX_DEFAULT, NULL);
136 cv_init(&mmp->mmp_thread_cv, NULL, CV_DEFAULT, NULL);
137 mutex_init(&mmp->mmp_io_lock, NULL, MUTEX_DEFAULT, NULL);
138 }
139
140 void
141 mmp_fini(spa_t *spa)
142 {
143 mmp_thread_t *mmp = &spa->spa_mmp;
144
145 mutex_destroy(&mmp->mmp_thread_lock);
146 cv_destroy(&mmp->mmp_thread_cv);
147 mutex_destroy(&mmp->mmp_io_lock);
148 }
149
150 static void
151 mmp_thread_enter(mmp_thread_t *mmp, callb_cpr_t *cpr)
152 {
153 CALLB_CPR_INIT(cpr, &mmp->mmp_thread_lock, callb_generic_cpr, FTAG);
154 mutex_enter(&mmp->mmp_thread_lock);
155 }
156
157 static void
158 mmp_thread_exit(mmp_thread_t *mmp, kthread_t **mpp, callb_cpr_t *cpr)
159 {
160 ASSERT(*mpp != NULL);
161 *mpp = NULL;
162 cv_broadcast(&mmp->mmp_thread_cv);
163 CALLB_CPR_EXIT(cpr); /* drops &mmp->mmp_thread_lock */
164 thread_exit();
165 }
166
167 void
168 mmp_thread_start(spa_t *spa)
169 {
170 mmp_thread_t *mmp = &spa->spa_mmp;
171
172 if (spa_writeable(spa)) {
173 mutex_enter(&mmp->mmp_thread_lock);
174 if (!mmp->mmp_thread) {
175 dprintf("mmp_thread_start pool %s\n",
176 spa->spa_name);
177 mmp->mmp_thread = thread_create(NULL, 0, mmp_thread,
178 spa, 0, &p0, TS_RUN, defclsyspri);
179 }
180 mutex_exit(&mmp->mmp_thread_lock);
181 }
182 }
183
184 void
185 mmp_thread_stop(spa_t *spa)
186 {
187 mmp_thread_t *mmp = &spa->spa_mmp;
188
189 mutex_enter(&mmp->mmp_thread_lock);
190 mmp->mmp_thread_exiting = 1;
191 cv_broadcast(&mmp->mmp_thread_cv);
192
193 while (mmp->mmp_thread) {
194 cv_wait(&mmp->mmp_thread_cv, &mmp->mmp_thread_lock);
195 }
196 mutex_exit(&mmp->mmp_thread_lock);
197
198 ASSERT(mmp->mmp_thread == NULL);
199 mmp->mmp_thread_exiting = 0;
200 }
201
202 /*
203 * Choose a leaf vdev to write an MMP block to. It must not have an
204 * outstanding mmp write (if so then there is a problem, and a new write will
205 * also block). If there is no usable leaf in this subtree return NULL,
206 * otherwise return a pointer to the leaf.
207 *
208 * When walking the subtree, a random child is chosen as the starting point so
209 * that when the tree is healthy, the leaf chosen will be random with even
210 * distribution. If there are unhealthy vdevs in the tree, the distribution
211 * will be really poor only if a large proportion of the vdevs are unhealthy,
212 * in which case there are other more pressing problems.
213 */
214 static vdev_t *
215 mmp_random_leaf(vdev_t *vd)
216 {
217 int child_idx;
218
219 if (!vdev_writeable(vd))
220 return (NULL);
221
222 if (vd->vdev_ops->vdev_op_leaf)
223 return (vd->vdev_mmp_pending == 0 ? vd : NULL);
224
225 child_idx = spa_get_random(vd->vdev_children);
226 for (int offset = vd->vdev_children; offset > 0; offset--) {
227 vdev_t *leaf;
228 vdev_t *child = vd->vdev_child[(child_idx + offset) %
229 vd->vdev_children];
230
231 leaf = mmp_random_leaf(child);
232 if (leaf)
233 return (leaf);
234 }
235
236 return (NULL);
237 }
238
239 static void
240 mmp_write_done(zio_t *zio)
241 {
242 spa_t *spa = zio->io_spa;
243 vdev_t *vd = zio->io_vd;
244 mmp_thread_t *mts = zio->io_private;
245
246 mutex_enter(&mts->mmp_io_lock);
247 vd->vdev_mmp_pending = 0;
248
249 if (zio->io_error)
250 goto unlock;
251
252 /*
253 * Mmp writes are queued on a fixed schedule, but under many
254 * circumstances, such as a busy device or faulty hardware,
255 * the writes will complete at variable, much longer,
256 * intervals. In these cases, another node checking for
257 * activity must wait longer to account for these delays.
258 *
259 * The mmp_delay is calculated as a decaying average of the interval
260 * between completed mmp writes. This is used to predict how long
261 * the import must wait to detect activity in the pool, before
262 * concluding it is not in use.
263 *
264 * Do not set mmp_delay if the multihost property is not on,
265 * so as not to trigger an activity check on import.
266 */
267 if (spa_multihost(spa)) {
268 hrtime_t delay = gethrtime() - mts->mmp_last_write;
269
270 if (delay > mts->mmp_delay)
271 mts->mmp_delay = delay;
272 else
273 mts->mmp_delay = (delay + mts->mmp_delay * 127) /
274 128;
275 } else {
276 mts->mmp_delay = 0;
277 }
278 mts->mmp_last_write = gethrtime();
279
280 unlock:
281 mutex_exit(&mts->mmp_io_lock);
282 spa_config_exit(spa, SCL_STATE, mmp_tag);
283
284 abd_free(zio->io_abd);
285 }
286
287 /*
288 * When the uberblock on-disk is updated by a spa_sync,
289 * creating a new "best" uberblock, update the one stored
290 * in the mmp thread state, used for mmp writes.
291 */
292 void
293 mmp_update_uberblock(spa_t *spa, uberblock_t *ub)
294 {
295 mmp_thread_t *mmp = &spa->spa_mmp;
296
297 mutex_enter(&mmp->mmp_io_lock);
298 mmp->mmp_ub = *ub;
299 mmp->mmp_ub.ub_timestamp = gethrestime_sec();
300 mutex_exit(&mmp->mmp_io_lock);
301 }
302
303 /*
304 * Choose a random vdev, label, and MMP block, and write over it
305 * with a copy of the last-synced uberblock, whose timestamp
306 * has been updated to reflect that the pool is in use.
307 */
308 static void
309 mmp_write_uberblock(spa_t *spa)
310 {
311 int flags = ZIO_FLAG_CONFIG_WRITER | ZIO_FLAG_CANFAIL;
312 mmp_thread_t *mmp = &spa->spa_mmp;
313 uberblock_t *ub;
314 vdev_t *vd;
315 int label;
316 uint64_t offset;
317
318 spa_config_enter(spa, SCL_STATE, mmp_tag, RW_READER);
319 vd = mmp_random_leaf(spa->spa_root_vdev);
320 if (vd == NULL) {
321 spa_config_exit(spa, SCL_STATE, FTAG);
322 return;
323 }
324
325 mutex_enter(&mmp->mmp_io_lock);
326
327 if (mmp->mmp_zio_root == NULL)
328 mmp->mmp_zio_root = zio_root(spa, NULL, NULL,
329 flags | ZIO_FLAG_GODFATHER);
330
331 ub = &mmp->mmp_ub;
332 ub->ub_timestamp = gethrestime_sec();
333 ub->ub_mmp_magic = MMP_MAGIC;
334 ub->ub_mmp_delay = mmp->mmp_delay;
335 vd->vdev_mmp_pending = gethrtime();
336
337 zio_t *zio = zio_null(mmp->mmp_zio_root, spa, NULL, NULL, NULL, flags);
338 abd_t *ub_abd = abd_alloc_for_io(VDEV_UBERBLOCK_SIZE(vd), B_TRUE);
339 abd_zero(ub_abd, VDEV_UBERBLOCK_SIZE(vd));
340 abd_copy_from_buf(ub_abd, ub, sizeof (uberblock_t));
341
342 mutex_exit(&mmp->mmp_io_lock);
343
344 offset = VDEV_UBERBLOCK_OFFSET(vd, VDEV_UBERBLOCK_COUNT(vd) -
345 MMP_BLOCKS_PER_LABEL + spa_get_random(MMP_BLOCKS_PER_LABEL));
346
347 label = spa_get_random(VDEV_LABELS);
348 vdev_label_write(zio, vd, label, ub_abd, offset,
349 VDEV_UBERBLOCK_SIZE(vd), mmp_write_done, mmp,
350 flags | ZIO_FLAG_DONT_PROPAGATE);
351
352 spa_mmp_history_add(ub->ub_txg, ub->ub_timestamp, ub->ub_mmp_delay, vd,
353 label);
354
355 zio_nowait(zio);
356 }
357
358 static void
359 mmp_thread(void *arg)
360 {
361 spa_t *spa = (spa_t *)arg;
362 mmp_thread_t *mmp = &spa->spa_mmp;
363 boolean_t last_spa_suspended = spa_suspended(spa);
364 boolean_t last_spa_multihost = spa_multihost(spa);
365 callb_cpr_t cpr;
366 hrtime_t max_fail_ns = zfs_multihost_fail_intervals *
367 MSEC2NSEC(MAX(zfs_multihost_interval, MMP_MIN_INTERVAL));
368
369 mmp_thread_enter(mmp, &cpr);
370
371 /*
372 * The mmp_write_done() function calculates mmp_delay based on the
373 * prior value of mmp_delay and the elapsed time since the last write.
374 * For the first mmp write, there is no "last write", so we start
375 * with fake, but reasonable, default non-zero values.
376 */
377 mmp->mmp_delay = MSEC2NSEC(MAX(zfs_multihost_interval,
378 MMP_MIN_INTERVAL)) / MAX(vdev_count_leaves(spa), 1);
379 mmp->mmp_last_write = gethrtime() - mmp->mmp_delay;
380
381 while (!mmp->mmp_thread_exiting) {
382 uint64_t mmp_fail_intervals = zfs_multihost_fail_intervals;
383 uint64_t mmp_interval = MSEC2NSEC(
384 MAX(zfs_multihost_interval, MMP_MIN_INTERVAL));
385 boolean_t suspended = spa_suspended(spa);
386 boolean_t multihost = spa_multihost(spa);
387 hrtime_t start, next_time;
388
389 start = gethrtime();
390 if (multihost) {
391 next_time = start + mmp_interval /
392 MAX(vdev_count_leaves(spa), 1);
393 } else {
394 next_time = start + MSEC2NSEC(MMP_DEFAULT_INTERVAL);
395 }
396
397 /*
398 * When MMP goes off => on, or spa goes suspended =>
399 * !suspended, we know no writes occurred recently. We
400 * update mmp_last_write to give us some time to try.
401 */
402 if ((!last_spa_multihost && multihost) ||
403 (last_spa_suspended && !suspended)) {
404 mutex_enter(&mmp->mmp_io_lock);
405 mmp->mmp_last_write = gethrtime();
406 mutex_exit(&mmp->mmp_io_lock);
407 } else if (last_spa_multihost && !multihost) {
408 mutex_enter(&mmp->mmp_io_lock);
409 mmp->mmp_delay = 0;
410 mutex_exit(&mmp->mmp_io_lock);
411 }
412 last_spa_multihost = multihost;
413 last_spa_suspended = suspended;
414
415 /*
416 * Smooth max_fail_ns when its factors are decreased, because
417 * making (max_fail_ns < mmp_interval) results in the pool being
418 * immediately suspended before writes can occur at the new
419 * higher frequency.
420 */
421 if ((mmp_interval * mmp_fail_intervals) < max_fail_ns) {
422 max_fail_ns = ((31 * max_fail_ns) + (mmp_interval *
423 mmp_fail_intervals)) / 32;
424 } else {
425 max_fail_ns = mmp_interval * mmp_fail_intervals;
426 }
427
428 /*
429 * Suspend the pool if no MMP write has succeeded in over
430 * mmp_interval * mmp_fail_intervals nanoseconds.
431 */
432 if (!suspended && mmp_fail_intervals && multihost &&
433 (start - mmp->mmp_last_write) > max_fail_ns) {
434 cmn_err(CE_WARN, "MMP writes to pool '%s' have not "
435 "succeeded in over %llus; suspending pool",
436 spa_name(spa),
437 NSEC2SEC(start - mmp->mmp_last_write));
438 zio_suspend(spa, NULL);
439 }
440
441 if (multihost)
442 mmp_write_uberblock(spa);
443
444 CALLB_CPR_SAFE_BEGIN(&cpr);
445 (void) cv_timedwait_sig(&mmp->mmp_thread_cv,
446 &mmp->mmp_thread_lock, ddi_get_lbolt() +
447 ((next_time - gethrtime()) / (NANOSEC / hz)));
448 CALLB_CPR_SAFE_END(&cpr, &mmp->mmp_thread_lock);
449 }
450
451 /* Outstanding writes are allowed to complete. */
452 if (mmp->mmp_zio_root)
453 zio_wait(mmp->mmp_zio_root);
454
455 mmp->mmp_zio_root = NULL;
456 mmp_thread_exit(mmp, &mmp->mmp_thread, &cpr);
457 }
458
459 /*
460 * Signal the MMP thread to wake it, when it is sleeping on
461 * its cv. Used when some module parameter has changed and
462 * we want the thread to know about it.
463 * Only signal if the pool is active and mmp thread is
464 * running, otherwise there is no thread to wake.
465 */
466 static void
467 mmp_signal_thread(spa_t *spa)
468 {
469 mmp_thread_t *mmp = &spa->spa_mmp;
470
471 mutex_enter(&mmp->mmp_thread_lock);
472 if (mmp->mmp_thread)
473 cv_broadcast(&mmp->mmp_thread_cv);
474 mutex_exit(&mmp->mmp_thread_lock);
475 }
476
477 void
478 mmp_signal_all_threads(void)
479 {
480 spa_t *spa = NULL;
481
482 mutex_enter(&spa_namespace_lock);
483 while ((spa = spa_next(spa))) {
484 if (spa->spa_state == POOL_STATE_ACTIVE)
485 mmp_signal_thread(spa);
486 }
487 mutex_exit(&spa_namespace_lock);
488 }
489
490 #if defined(_KERNEL) && defined(HAVE_SPL)
491 #include <linux/mod_compat.h>
492
493 static int
494 param_set_multihost_interval(const char *val, zfs_kernel_param_t *kp)
495 {
496 int ret;
497
498 ret = param_set_ulong(val, kp);
499 if (ret < 0)
500 return (ret);
501
502 mmp_signal_all_threads();
503
504 return (ret);
505 }
506
507 /* BEGIN CSTYLED */
508 module_param(zfs_multihost_fail_intervals, uint, 0644);
509 MODULE_PARM_DESC(zfs_multihost_fail_intervals,
510 "Max allowed period without a successful mmp write");
511
512 module_param_call(zfs_multihost_interval, param_set_multihost_interval,
513 param_get_ulong, &zfs_multihost_interval, 0644);
514 MODULE_PARM_DESC(zfs_multihost_interval,
515 "Milliseconds between mmp writes to each leaf");
516
517 module_param(zfs_multihost_import_intervals, uint, 0644);
518 MODULE_PARM_DESC(zfs_multihost_import_intervals,
519 "Number of zfs_multihost_interval periods to wait for activity");
520 /* END CSTYLED */
521 #endif