]> git.proxmox.com Git - mirror_zfs.git/blob - module/zfs/spa_misc.c
Selectable block allocators
[mirror_zfs.git] / module / zfs / spa_misc.c
1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or https://opensource.org/licenses/CDDL-1.0.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright (c) 2011, 2019 by Delphix. All rights reserved.
24 * Copyright 2015 Nexenta Systems, Inc. All rights reserved.
25 * Copyright (c) 2014 Spectra Logic Corporation, All rights reserved.
26 * Copyright 2013 Saso Kiselkov. All rights reserved.
27 * Copyright (c) 2017 Datto Inc.
28 * Copyright (c) 2017, Intel Corporation.
29 * Copyright (c) 2019, loli10K <ezomori.nozomu@gmail.com>. All rights reserved.
30 */
31
32 #include <sys/zfs_context.h>
33 #include <sys/zfs_chksum.h>
34 #include <sys/spa_impl.h>
35 #include <sys/zio.h>
36 #include <sys/zio_checksum.h>
37 #include <sys/zio_compress.h>
38 #include <sys/dmu.h>
39 #include <sys/dmu_tx.h>
40 #include <sys/zap.h>
41 #include <sys/zil.h>
42 #include <sys/vdev_impl.h>
43 #include <sys/vdev_initialize.h>
44 #include <sys/vdev_trim.h>
45 #include <sys/vdev_file.h>
46 #include <sys/vdev_raidz.h>
47 #include <sys/metaslab.h>
48 #include <sys/uberblock_impl.h>
49 #include <sys/txg.h>
50 #include <sys/avl.h>
51 #include <sys/unique.h>
52 #include <sys/dsl_pool.h>
53 #include <sys/dsl_dir.h>
54 #include <sys/dsl_prop.h>
55 #include <sys/fm/util.h>
56 #include <sys/dsl_scan.h>
57 #include <sys/fs/zfs.h>
58 #include <sys/metaslab_impl.h>
59 #include <sys/arc.h>
60 #include <sys/brt.h>
61 #include <sys/ddt.h>
62 #include <sys/kstat.h>
63 #include "zfs_prop.h"
64 #include <sys/btree.h>
65 #include <sys/zfeature.h>
66 #include <sys/qat.h>
67 #include <sys/zstd/zstd.h>
68
69 /*
70 * SPA locking
71 *
72 * There are three basic locks for managing spa_t structures:
73 *
74 * spa_namespace_lock (global mutex)
75 *
76 * This lock must be acquired to do any of the following:
77 *
78 * - Lookup a spa_t by name
79 * - Add or remove a spa_t from the namespace
80 * - Increase spa_refcount from non-zero
81 * - Check if spa_refcount is zero
82 * - Rename a spa_t
83 * - add/remove/attach/detach devices
84 * - Held for the duration of create/destroy/import/export
85 *
86 * It does not need to handle recursion. A create or destroy may
87 * reference objects (files or zvols) in other pools, but by
88 * definition they must have an existing reference, and will never need
89 * to lookup a spa_t by name.
90 *
91 * spa_refcount (per-spa zfs_refcount_t protected by mutex)
92 *
93 * This reference count keep track of any active users of the spa_t. The
94 * spa_t cannot be destroyed or freed while this is non-zero. Internally,
95 * the refcount is never really 'zero' - opening a pool implicitly keeps
96 * some references in the DMU. Internally we check against spa_minref, but
97 * present the image of a zero/non-zero value to consumers.
98 *
99 * spa_config_lock[] (per-spa array of rwlocks)
100 *
101 * This protects the spa_t from config changes, and must be held in
102 * the following circumstances:
103 *
104 * - RW_READER to perform I/O to the spa
105 * - RW_WRITER to change the vdev config
106 *
107 * The locking order is fairly straightforward:
108 *
109 * spa_namespace_lock -> spa_refcount
110 *
111 * The namespace lock must be acquired to increase the refcount from 0
112 * or to check if it is zero.
113 *
114 * spa_refcount -> spa_config_lock[]
115 *
116 * There must be at least one valid reference on the spa_t to acquire
117 * the config lock.
118 *
119 * spa_namespace_lock -> spa_config_lock[]
120 *
121 * The namespace lock must always be taken before the config lock.
122 *
123 *
124 * The spa_namespace_lock can be acquired directly and is globally visible.
125 *
126 * The namespace is manipulated using the following functions, all of which
127 * require the spa_namespace_lock to be held.
128 *
129 * spa_lookup() Lookup a spa_t by name.
130 *
131 * spa_add() Create a new spa_t in the namespace.
132 *
133 * spa_remove() Remove a spa_t from the namespace. This also
134 * frees up any memory associated with the spa_t.
135 *
136 * spa_next() Returns the next spa_t in the system, or the
137 * first if NULL is passed.
138 *
139 * spa_evict_all() Shutdown and remove all spa_t structures in
140 * the system.
141 *
142 * spa_guid_exists() Determine whether a pool/device guid exists.
143 *
144 * The spa_refcount is manipulated using the following functions:
145 *
146 * spa_open_ref() Adds a reference to the given spa_t. Must be
147 * called with spa_namespace_lock held if the
148 * refcount is currently zero.
149 *
150 * spa_close() Remove a reference from the spa_t. This will
151 * not free the spa_t or remove it from the
152 * namespace. No locking is required.
153 *
154 * spa_refcount_zero() Returns true if the refcount is currently
155 * zero. Must be called with spa_namespace_lock
156 * held.
157 *
158 * The spa_config_lock[] is an array of rwlocks, ordered as follows:
159 * SCL_CONFIG > SCL_STATE > SCL_ALLOC > SCL_ZIO > SCL_FREE > SCL_VDEV.
160 * spa_config_lock[] is manipulated with spa_config_{enter,exit,held}().
161 *
162 * To read the configuration, it suffices to hold one of these locks as reader.
163 * To modify the configuration, you must hold all locks as writer. To modify
164 * vdev state without altering the vdev tree's topology (e.g. online/offline),
165 * you must hold SCL_STATE and SCL_ZIO as writer.
166 *
167 * We use these distinct config locks to avoid recursive lock entry.
168 * For example, spa_sync() (which holds SCL_CONFIG as reader) induces
169 * block allocations (SCL_ALLOC), which may require reading space maps
170 * from disk (dmu_read() -> zio_read() -> SCL_ZIO).
171 *
172 * The spa config locks cannot be normal rwlocks because we need the
173 * ability to hand off ownership. For example, SCL_ZIO is acquired
174 * by the issuing thread and later released by an interrupt thread.
175 * They do, however, obey the usual write-wanted semantics to prevent
176 * writer (i.e. system administrator) starvation.
177 *
178 * The lock acquisition rules are as follows:
179 *
180 * SCL_CONFIG
181 * Protects changes to the vdev tree topology, such as vdev
182 * add/remove/attach/detach. Protects the dirty config list
183 * (spa_config_dirty_list) and the set of spares and l2arc devices.
184 *
185 * SCL_STATE
186 * Protects changes to pool state and vdev state, such as vdev
187 * online/offline/fault/degrade/clear. Protects the dirty state list
188 * (spa_state_dirty_list) and global pool state (spa_state).
189 *
190 * SCL_ALLOC
191 * Protects changes to metaslab groups and classes.
192 * Held as reader by metaslab_alloc() and metaslab_claim().
193 *
194 * SCL_ZIO
195 * Held by bp-level zios (those which have no io_vd upon entry)
196 * to prevent changes to the vdev tree. The bp-level zio implicitly
197 * protects all of its vdev child zios, which do not hold SCL_ZIO.
198 *
199 * SCL_FREE
200 * Protects changes to metaslab groups and classes.
201 * Held as reader by metaslab_free(). SCL_FREE is distinct from
202 * SCL_ALLOC, and lower than SCL_ZIO, so that we can safely free
203 * blocks in zio_done() while another i/o that holds either
204 * SCL_ALLOC or SCL_ZIO is waiting for this i/o to complete.
205 *
206 * SCL_VDEV
207 * Held as reader to prevent changes to the vdev tree during trivial
208 * inquiries such as bp_get_dsize(). SCL_VDEV is distinct from the
209 * other locks, and lower than all of them, to ensure that it's safe
210 * to acquire regardless of caller context.
211 *
212 * In addition, the following rules apply:
213 *
214 * (a) spa_props_lock protects pool properties, spa_config and spa_config_list.
215 * The lock ordering is SCL_CONFIG > spa_props_lock.
216 *
217 * (b) I/O operations on leaf vdevs. For any zio operation that takes
218 * an explicit vdev_t argument -- such as zio_ioctl(), zio_read_phys(),
219 * or zio_write_phys() -- the caller must ensure that the config cannot
220 * cannot change in the interim, and that the vdev cannot be reopened.
221 * SCL_STATE as reader suffices for both.
222 *
223 * The vdev configuration is protected by spa_vdev_enter() / spa_vdev_exit().
224 *
225 * spa_vdev_enter() Acquire the namespace lock and the config lock
226 * for writing.
227 *
228 * spa_vdev_exit() Release the config lock, wait for all I/O
229 * to complete, sync the updated configs to the
230 * cache, and release the namespace lock.
231 *
232 * vdev state is protected by spa_vdev_state_enter() / spa_vdev_state_exit().
233 * Like spa_vdev_enter/exit, these are convenience wrappers -- the actual
234 * locking is, always, based on spa_namespace_lock and spa_config_lock[].
235 */
236
237 static avl_tree_t spa_namespace_avl;
238 kmutex_t spa_namespace_lock;
239 static kcondvar_t spa_namespace_cv;
240 static const int spa_max_replication_override = SPA_DVAS_PER_BP;
241
242 static kmutex_t spa_spare_lock;
243 static avl_tree_t spa_spare_avl;
244 static kmutex_t spa_l2cache_lock;
245 static avl_tree_t spa_l2cache_avl;
246
247 spa_mode_t spa_mode_global = SPA_MODE_UNINIT;
248
249 #ifdef ZFS_DEBUG
250 /*
251 * Everything except dprintf, set_error, spa, and indirect_remap is on
252 * by default in debug builds.
253 */
254 int zfs_flags = ~(ZFS_DEBUG_DPRINTF | ZFS_DEBUG_SET_ERROR |
255 ZFS_DEBUG_INDIRECT_REMAP);
256 #else
257 int zfs_flags = 0;
258 #endif
259
260 /*
261 * zfs_recover can be set to nonzero to attempt to recover from
262 * otherwise-fatal errors, typically caused by on-disk corruption. When
263 * set, calls to zfs_panic_recover() will turn into warning messages.
264 * This should only be used as a last resort, as it typically results
265 * in leaked space, or worse.
266 */
267 int zfs_recover = B_FALSE;
268
269 /*
270 * If destroy encounters an EIO while reading metadata (e.g. indirect
271 * blocks), space referenced by the missing metadata can not be freed.
272 * Normally this causes the background destroy to become "stalled", as
273 * it is unable to make forward progress. While in this stalled state,
274 * all remaining space to free from the error-encountering filesystem is
275 * "temporarily leaked". Set this flag to cause it to ignore the EIO,
276 * permanently leak the space from indirect blocks that can not be read,
277 * and continue to free everything else that it can.
278 *
279 * The default, "stalling" behavior is useful if the storage partially
280 * fails (i.e. some but not all i/os fail), and then later recovers. In
281 * this case, we will be able to continue pool operations while it is
282 * partially failed, and when it recovers, we can continue to free the
283 * space, with no leaks. However, note that this case is actually
284 * fairly rare.
285 *
286 * Typically pools either (a) fail completely (but perhaps temporarily,
287 * e.g. a top-level vdev going offline), or (b) have localized,
288 * permanent errors (e.g. disk returns the wrong data due to bit flip or
289 * firmware bug). In case (a), this setting does not matter because the
290 * pool will be suspended and the sync thread will not be able to make
291 * forward progress regardless. In case (b), because the error is
292 * permanent, the best we can do is leak the minimum amount of space,
293 * which is what setting this flag will do. Therefore, it is reasonable
294 * for this flag to normally be set, but we chose the more conservative
295 * approach of not setting it, so that there is no possibility of
296 * leaking space in the "partial temporary" failure case.
297 */
298 int zfs_free_leak_on_eio = B_FALSE;
299
300 /*
301 * Expiration time in milliseconds. This value has two meanings. First it is
302 * used to determine when the spa_deadman() logic should fire. By default the
303 * spa_deadman() will fire if spa_sync() has not completed in 600 seconds.
304 * Secondly, the value determines if an I/O is considered "hung". Any I/O that
305 * has not completed in zfs_deadman_synctime_ms is considered "hung" resulting
306 * in one of three behaviors controlled by zfs_deadman_failmode.
307 */
308 uint64_t zfs_deadman_synctime_ms = 600000UL; /* 10 min. */
309
310 /*
311 * This value controls the maximum amount of time zio_wait() will block for an
312 * outstanding IO. By default this is 300 seconds at which point the "hung"
313 * behavior will be applied as described for zfs_deadman_synctime_ms.
314 */
315 uint64_t zfs_deadman_ziotime_ms = 300000UL; /* 5 min. */
316
317 /*
318 * Check time in milliseconds. This defines the frequency at which we check
319 * for hung I/O.
320 */
321 uint64_t zfs_deadman_checktime_ms = 60000UL; /* 1 min. */
322
323 /*
324 * By default the deadman is enabled.
325 */
326 int zfs_deadman_enabled = B_TRUE;
327
328 /*
329 * Controls the behavior of the deadman when it detects a "hung" I/O.
330 * Valid values are zfs_deadman_failmode=<wait|continue|panic>.
331 *
332 * wait - Wait for the "hung" I/O (default)
333 * continue - Attempt to recover from a "hung" I/O
334 * panic - Panic the system
335 */
336 const char *zfs_deadman_failmode = "wait";
337
338 /*
339 * The worst case is single-sector max-parity RAID-Z blocks, in which
340 * case the space requirement is exactly (VDEV_RAIDZ_MAXPARITY + 1)
341 * times the size; so just assume that. Add to this the fact that
342 * we can have up to 3 DVAs per bp, and one more factor of 2 because
343 * the block may be dittoed with up to 3 DVAs by ddt_sync(). All together,
344 * the worst case is:
345 * (VDEV_RAIDZ_MAXPARITY + 1) * SPA_DVAS_PER_BP * 2 == 24
346 */
347 uint_t spa_asize_inflation = 24;
348
349 /*
350 * Normally, we don't allow the last 3.2% (1/(2^spa_slop_shift)) of space in
351 * the pool to be consumed (bounded by spa_max_slop). This ensures that we
352 * don't run the pool completely out of space, due to unaccounted changes (e.g.
353 * to the MOS). It also limits the worst-case time to allocate space. If we
354 * have less than this amount of free space, most ZPL operations (e.g. write,
355 * create) will return ENOSPC. The ZIL metaslabs (spa_embedded_log_class) are
356 * also part of this 3.2% of space which can't be consumed by normal writes;
357 * the slop space "proper" (spa_get_slop_space()) is decreased by the embedded
358 * log space.
359 *
360 * Certain operations (e.g. file removal, most administrative actions) can
361 * use half the slop space. They will only return ENOSPC if less than half
362 * the slop space is free. Typically, once the pool has less than the slop
363 * space free, the user will use these operations to free up space in the pool.
364 * These are the operations that call dsl_pool_adjustedsize() with the netfree
365 * argument set to TRUE.
366 *
367 * Operations that are almost guaranteed to free up space in the absence of
368 * a pool checkpoint can use up to three quarters of the slop space
369 * (e.g zfs destroy).
370 *
371 * A very restricted set of operations are always permitted, regardless of
372 * the amount of free space. These are the operations that call
373 * dsl_sync_task(ZFS_SPACE_CHECK_NONE). If these operations result in a net
374 * increase in the amount of space used, it is possible to run the pool
375 * completely out of space, causing it to be permanently read-only.
376 *
377 * Note that on very small pools, the slop space will be larger than
378 * 3.2%, in an effort to have it be at least spa_min_slop (128MB),
379 * but we never allow it to be more than half the pool size.
380 *
381 * Further, on very large pools, the slop space will be smaller than
382 * 3.2%, to avoid reserving much more space than we actually need; bounded
383 * by spa_max_slop (128GB).
384 *
385 * See also the comments in zfs_space_check_t.
386 */
387 uint_t spa_slop_shift = 5;
388 static const uint64_t spa_min_slop = 128ULL * 1024 * 1024;
389 static const uint64_t spa_max_slop = 128ULL * 1024 * 1024 * 1024;
390 static const int spa_allocators = 4;
391
392 /*
393 * Spa active allocator.
394 * Valid values are zfs_active_allocator=<dynamic|cursor|new-dynamic>.
395 */
396 const char *zfs_active_allocator = "dynamic";
397
398 void
399 spa_load_failed(spa_t *spa, const char *fmt, ...)
400 {
401 va_list adx;
402 char buf[256];
403
404 va_start(adx, fmt);
405 (void) vsnprintf(buf, sizeof (buf), fmt, adx);
406 va_end(adx);
407
408 zfs_dbgmsg("spa_load(%s, config %s): FAILED: %s", spa->spa_name,
409 spa->spa_trust_config ? "trusted" : "untrusted", buf);
410 }
411
412 void
413 spa_load_note(spa_t *spa, const char *fmt, ...)
414 {
415 va_list adx;
416 char buf[256];
417
418 va_start(adx, fmt);
419 (void) vsnprintf(buf, sizeof (buf), fmt, adx);
420 va_end(adx);
421
422 zfs_dbgmsg("spa_load(%s, config %s): %s", spa->spa_name,
423 spa->spa_trust_config ? "trusted" : "untrusted", buf);
424 }
425
426 /*
427 * By default dedup and user data indirects land in the special class
428 */
429 static int zfs_ddt_data_is_special = B_TRUE;
430 static int zfs_user_indirect_is_special = B_TRUE;
431
432 /*
433 * The percentage of special class final space reserved for metadata only.
434 * Once we allocate 100 - zfs_special_class_metadata_reserve_pct we only
435 * let metadata into the class.
436 */
437 static uint_t zfs_special_class_metadata_reserve_pct = 25;
438
439 /*
440 * ==========================================================================
441 * SPA config locking
442 * ==========================================================================
443 */
444 static void
445 spa_config_lock_init(spa_t *spa)
446 {
447 for (int i = 0; i < SCL_LOCKS; i++) {
448 spa_config_lock_t *scl = &spa->spa_config_lock[i];
449 mutex_init(&scl->scl_lock, NULL, MUTEX_DEFAULT, NULL);
450 cv_init(&scl->scl_cv, NULL, CV_DEFAULT, NULL);
451 scl->scl_writer = NULL;
452 scl->scl_write_wanted = 0;
453 scl->scl_count = 0;
454 }
455 }
456
457 static void
458 spa_config_lock_destroy(spa_t *spa)
459 {
460 for (int i = 0; i < SCL_LOCKS; i++) {
461 spa_config_lock_t *scl = &spa->spa_config_lock[i];
462 mutex_destroy(&scl->scl_lock);
463 cv_destroy(&scl->scl_cv);
464 ASSERT(scl->scl_writer == NULL);
465 ASSERT(scl->scl_write_wanted == 0);
466 ASSERT(scl->scl_count == 0);
467 }
468 }
469
470 int
471 spa_config_tryenter(spa_t *spa, int locks, const void *tag, krw_t rw)
472 {
473 for (int i = 0; i < SCL_LOCKS; i++) {
474 spa_config_lock_t *scl = &spa->spa_config_lock[i];
475 if (!(locks & (1 << i)))
476 continue;
477 mutex_enter(&scl->scl_lock);
478 if (rw == RW_READER) {
479 if (scl->scl_writer || scl->scl_write_wanted) {
480 mutex_exit(&scl->scl_lock);
481 spa_config_exit(spa, locks & ((1 << i) - 1),
482 tag);
483 return (0);
484 }
485 } else {
486 ASSERT(scl->scl_writer != curthread);
487 if (scl->scl_count != 0) {
488 mutex_exit(&scl->scl_lock);
489 spa_config_exit(spa, locks & ((1 << i) - 1),
490 tag);
491 return (0);
492 }
493 scl->scl_writer = curthread;
494 }
495 scl->scl_count++;
496 mutex_exit(&scl->scl_lock);
497 }
498 return (1);
499 }
500
501 static void
502 spa_config_enter_impl(spa_t *spa, int locks, const void *tag, krw_t rw,
503 int mmp_flag)
504 {
505 (void) tag;
506 int wlocks_held = 0;
507
508 ASSERT3U(SCL_LOCKS, <, sizeof (wlocks_held) * NBBY);
509
510 for (int i = 0; i < SCL_LOCKS; i++) {
511 spa_config_lock_t *scl = &spa->spa_config_lock[i];
512 if (scl->scl_writer == curthread)
513 wlocks_held |= (1 << i);
514 if (!(locks & (1 << i)))
515 continue;
516 mutex_enter(&scl->scl_lock);
517 if (rw == RW_READER) {
518 while (scl->scl_writer ||
519 (!mmp_flag && scl->scl_write_wanted)) {
520 cv_wait(&scl->scl_cv, &scl->scl_lock);
521 }
522 } else {
523 ASSERT(scl->scl_writer != curthread);
524 while (scl->scl_count != 0) {
525 scl->scl_write_wanted++;
526 cv_wait(&scl->scl_cv, &scl->scl_lock);
527 scl->scl_write_wanted--;
528 }
529 scl->scl_writer = curthread;
530 }
531 scl->scl_count++;
532 mutex_exit(&scl->scl_lock);
533 }
534 ASSERT3U(wlocks_held, <=, locks);
535 }
536
537 void
538 spa_config_enter(spa_t *spa, int locks, const void *tag, krw_t rw)
539 {
540 spa_config_enter_impl(spa, locks, tag, rw, 0);
541 }
542
543 /*
544 * The spa_config_enter_mmp() allows the mmp thread to cut in front of
545 * outstanding write lock requests. This is needed since the mmp updates are
546 * time sensitive and failure to service them promptly will result in a
547 * suspended pool. This pool suspension has been seen in practice when there is
548 * a single disk in a pool that is responding slowly and presumably about to
549 * fail.
550 */
551
552 void
553 spa_config_enter_mmp(spa_t *spa, int locks, const void *tag, krw_t rw)
554 {
555 spa_config_enter_impl(spa, locks, tag, rw, 1);
556 }
557
558 void
559 spa_config_exit(spa_t *spa, int locks, const void *tag)
560 {
561 (void) tag;
562 for (int i = SCL_LOCKS - 1; i >= 0; i--) {
563 spa_config_lock_t *scl = &spa->spa_config_lock[i];
564 if (!(locks & (1 << i)))
565 continue;
566 mutex_enter(&scl->scl_lock);
567 ASSERT(scl->scl_count > 0);
568 if (--scl->scl_count == 0) {
569 ASSERT(scl->scl_writer == NULL ||
570 scl->scl_writer == curthread);
571 scl->scl_writer = NULL; /* OK in either case */
572 cv_broadcast(&scl->scl_cv);
573 }
574 mutex_exit(&scl->scl_lock);
575 }
576 }
577
578 int
579 spa_config_held(spa_t *spa, int locks, krw_t rw)
580 {
581 int locks_held = 0;
582
583 for (int i = 0; i < SCL_LOCKS; i++) {
584 spa_config_lock_t *scl = &spa->spa_config_lock[i];
585 if (!(locks & (1 << i)))
586 continue;
587 if ((rw == RW_READER && scl->scl_count != 0) ||
588 (rw == RW_WRITER && scl->scl_writer == curthread))
589 locks_held |= 1 << i;
590 }
591
592 return (locks_held);
593 }
594
595 /*
596 * ==========================================================================
597 * SPA namespace functions
598 * ==========================================================================
599 */
600
601 /*
602 * Lookup the named spa_t in the AVL tree. The spa_namespace_lock must be held.
603 * Returns NULL if no matching spa_t is found.
604 */
605 spa_t *
606 spa_lookup(const char *name)
607 {
608 static spa_t search; /* spa_t is large; don't allocate on stack */
609 spa_t *spa;
610 avl_index_t where;
611 char *cp;
612
613 ASSERT(MUTEX_HELD(&spa_namespace_lock));
614
615 (void) strlcpy(search.spa_name, name, sizeof (search.spa_name));
616
617 /*
618 * If it's a full dataset name, figure out the pool name and
619 * just use that.
620 */
621 cp = strpbrk(search.spa_name, "/@#");
622 if (cp != NULL)
623 *cp = '\0';
624
625 spa = avl_find(&spa_namespace_avl, &search, &where);
626
627 return (spa);
628 }
629
630 /*
631 * Fires when spa_sync has not completed within zfs_deadman_synctime_ms.
632 * If the zfs_deadman_enabled flag is set then it inspects all vdev queues
633 * looking for potentially hung I/Os.
634 */
635 void
636 spa_deadman(void *arg)
637 {
638 spa_t *spa = arg;
639
640 /* Disable the deadman if the pool is suspended. */
641 if (spa_suspended(spa))
642 return;
643
644 zfs_dbgmsg("slow spa_sync: started %llu seconds ago, calls %llu",
645 (gethrtime() - spa->spa_sync_starttime) / NANOSEC,
646 (u_longlong_t)++spa->spa_deadman_calls);
647 if (zfs_deadman_enabled)
648 vdev_deadman(spa->spa_root_vdev, FTAG);
649
650 spa->spa_deadman_tqid = taskq_dispatch_delay(system_delay_taskq,
651 spa_deadman, spa, TQ_SLEEP, ddi_get_lbolt() +
652 MSEC_TO_TICK(zfs_deadman_checktime_ms));
653 }
654
655 static int
656 spa_log_sm_sort_by_txg(const void *va, const void *vb)
657 {
658 const spa_log_sm_t *a = va;
659 const spa_log_sm_t *b = vb;
660
661 return (TREE_CMP(a->sls_txg, b->sls_txg));
662 }
663
664 /*
665 * Create an uninitialized spa_t with the given name. Requires
666 * spa_namespace_lock. The caller must ensure that the spa_t doesn't already
667 * exist by calling spa_lookup() first.
668 */
669 spa_t *
670 spa_add(const char *name, nvlist_t *config, const char *altroot)
671 {
672 spa_t *spa;
673 spa_config_dirent_t *dp;
674
675 ASSERT(MUTEX_HELD(&spa_namespace_lock));
676
677 spa = kmem_zalloc(sizeof (spa_t), KM_SLEEP);
678
679 mutex_init(&spa->spa_async_lock, NULL, MUTEX_DEFAULT, NULL);
680 mutex_init(&spa->spa_errlist_lock, NULL, MUTEX_DEFAULT, NULL);
681 mutex_init(&spa->spa_errlog_lock, NULL, MUTEX_DEFAULT, NULL);
682 mutex_init(&spa->spa_evicting_os_lock, NULL, MUTEX_DEFAULT, NULL);
683 mutex_init(&spa->spa_history_lock, NULL, MUTEX_DEFAULT, NULL);
684 mutex_init(&spa->spa_proc_lock, NULL, MUTEX_DEFAULT, NULL);
685 mutex_init(&spa->spa_props_lock, NULL, MUTEX_DEFAULT, NULL);
686 mutex_init(&spa->spa_cksum_tmpls_lock, NULL, MUTEX_DEFAULT, NULL);
687 mutex_init(&spa->spa_scrub_lock, NULL, MUTEX_DEFAULT, NULL);
688 mutex_init(&spa->spa_suspend_lock, NULL, MUTEX_DEFAULT, NULL);
689 mutex_init(&spa->spa_vdev_top_lock, NULL, MUTEX_DEFAULT, NULL);
690 mutex_init(&spa->spa_feat_stats_lock, NULL, MUTEX_DEFAULT, NULL);
691 mutex_init(&spa->spa_flushed_ms_lock, NULL, MUTEX_DEFAULT, NULL);
692 mutex_init(&spa->spa_activities_lock, NULL, MUTEX_DEFAULT, NULL);
693
694 cv_init(&spa->spa_async_cv, NULL, CV_DEFAULT, NULL);
695 cv_init(&spa->spa_evicting_os_cv, NULL, CV_DEFAULT, NULL);
696 cv_init(&spa->spa_proc_cv, NULL, CV_DEFAULT, NULL);
697 cv_init(&spa->spa_scrub_io_cv, NULL, CV_DEFAULT, NULL);
698 cv_init(&spa->spa_suspend_cv, NULL, CV_DEFAULT, NULL);
699 cv_init(&spa->spa_activities_cv, NULL, CV_DEFAULT, NULL);
700 cv_init(&spa->spa_waiters_cv, NULL, CV_DEFAULT, NULL);
701
702 for (int t = 0; t < TXG_SIZE; t++)
703 bplist_create(&spa->spa_free_bplist[t]);
704
705 (void) strlcpy(spa->spa_name, name, sizeof (spa->spa_name));
706 spa->spa_state = POOL_STATE_UNINITIALIZED;
707 spa->spa_freeze_txg = UINT64_MAX;
708 spa->spa_final_txg = UINT64_MAX;
709 spa->spa_load_max_txg = UINT64_MAX;
710 spa->spa_proc = &p0;
711 spa->spa_proc_state = SPA_PROC_NONE;
712 spa->spa_trust_config = B_TRUE;
713 spa->spa_hostid = zone_get_hostid(NULL);
714
715 spa->spa_deadman_synctime = MSEC2NSEC(zfs_deadman_synctime_ms);
716 spa->spa_deadman_ziotime = MSEC2NSEC(zfs_deadman_ziotime_ms);
717 spa_set_deadman_failmode(spa, zfs_deadman_failmode);
718 spa_set_allocator(spa, zfs_active_allocator);
719
720 zfs_refcount_create(&spa->spa_refcount);
721 spa_config_lock_init(spa);
722 spa_stats_init(spa);
723
724 avl_add(&spa_namespace_avl, spa);
725
726 /*
727 * Set the alternate root, if there is one.
728 */
729 if (altroot)
730 spa->spa_root = spa_strdup(altroot);
731
732 spa->spa_alloc_count = spa_allocators;
733 spa->spa_allocs = kmem_zalloc(spa->spa_alloc_count *
734 sizeof (spa_alloc_t), KM_SLEEP);
735 for (int i = 0; i < spa->spa_alloc_count; i++) {
736 mutex_init(&spa->spa_allocs[i].spaa_lock, NULL, MUTEX_DEFAULT,
737 NULL);
738 avl_create(&spa->spa_allocs[i].spaa_tree, zio_bookmark_compare,
739 sizeof (zio_t), offsetof(zio_t, io_queue_node.a));
740 }
741 avl_create(&spa->spa_metaslabs_by_flushed, metaslab_sort_by_flushed,
742 sizeof (metaslab_t), offsetof(metaslab_t, ms_spa_txg_node));
743 avl_create(&spa->spa_sm_logs_by_txg, spa_log_sm_sort_by_txg,
744 sizeof (spa_log_sm_t), offsetof(spa_log_sm_t, sls_node));
745 list_create(&spa->spa_log_summary, sizeof (log_summary_entry_t),
746 offsetof(log_summary_entry_t, lse_node));
747
748 /*
749 * Every pool starts with the default cachefile
750 */
751 list_create(&spa->spa_config_list, sizeof (spa_config_dirent_t),
752 offsetof(spa_config_dirent_t, scd_link));
753
754 dp = kmem_zalloc(sizeof (spa_config_dirent_t), KM_SLEEP);
755 dp->scd_path = altroot ? NULL : spa_strdup(spa_config_path);
756 list_insert_head(&spa->spa_config_list, dp);
757
758 VERIFY(nvlist_alloc(&spa->spa_load_info, NV_UNIQUE_NAME,
759 KM_SLEEP) == 0);
760
761 if (config != NULL) {
762 nvlist_t *features;
763
764 if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_FEATURES_FOR_READ,
765 &features) == 0) {
766 VERIFY(nvlist_dup(features, &spa->spa_label_features,
767 0) == 0);
768 }
769
770 VERIFY(nvlist_dup(config, &spa->spa_config, 0) == 0);
771 }
772
773 if (spa->spa_label_features == NULL) {
774 VERIFY(nvlist_alloc(&spa->spa_label_features, NV_UNIQUE_NAME,
775 KM_SLEEP) == 0);
776 }
777
778 spa->spa_min_ashift = INT_MAX;
779 spa->spa_max_ashift = 0;
780 spa->spa_min_alloc = INT_MAX;
781 spa->spa_gcd_alloc = INT_MAX;
782
783 /* Reset cached value */
784 spa->spa_dedup_dspace = ~0ULL;
785
786 /*
787 * As a pool is being created, treat all features as disabled by
788 * setting SPA_FEATURE_DISABLED for all entries in the feature
789 * refcount cache.
790 */
791 for (int i = 0; i < SPA_FEATURES; i++) {
792 spa->spa_feat_refcount_cache[i] = SPA_FEATURE_DISABLED;
793 }
794
795 list_create(&spa->spa_leaf_list, sizeof (vdev_t),
796 offsetof(vdev_t, vdev_leaf_node));
797
798 return (spa);
799 }
800
801 /*
802 * Removes a spa_t from the namespace, freeing up any memory used. Requires
803 * spa_namespace_lock. This is called only after the spa_t has been closed and
804 * deactivated.
805 */
806 void
807 spa_remove(spa_t *spa)
808 {
809 spa_config_dirent_t *dp;
810
811 ASSERT(MUTEX_HELD(&spa_namespace_lock));
812 ASSERT(spa_state(spa) == POOL_STATE_UNINITIALIZED);
813 ASSERT3U(zfs_refcount_count(&spa->spa_refcount), ==, 0);
814 ASSERT0(spa->spa_waiters);
815
816 nvlist_free(spa->spa_config_splitting);
817
818 avl_remove(&spa_namespace_avl, spa);
819 cv_broadcast(&spa_namespace_cv);
820
821 if (spa->spa_root)
822 spa_strfree(spa->spa_root);
823
824 while ((dp = list_remove_head(&spa->spa_config_list)) != NULL) {
825 if (dp->scd_path != NULL)
826 spa_strfree(dp->scd_path);
827 kmem_free(dp, sizeof (spa_config_dirent_t));
828 }
829
830 for (int i = 0; i < spa->spa_alloc_count; i++) {
831 avl_destroy(&spa->spa_allocs[i].spaa_tree);
832 mutex_destroy(&spa->spa_allocs[i].spaa_lock);
833 }
834 kmem_free(spa->spa_allocs, spa->spa_alloc_count *
835 sizeof (spa_alloc_t));
836
837 avl_destroy(&spa->spa_metaslabs_by_flushed);
838 avl_destroy(&spa->spa_sm_logs_by_txg);
839 list_destroy(&spa->spa_log_summary);
840 list_destroy(&spa->spa_config_list);
841 list_destroy(&spa->spa_leaf_list);
842
843 nvlist_free(spa->spa_label_features);
844 nvlist_free(spa->spa_load_info);
845 nvlist_free(spa->spa_feat_stats);
846 spa_config_set(spa, NULL);
847
848 zfs_refcount_destroy(&spa->spa_refcount);
849
850 spa_stats_destroy(spa);
851 spa_config_lock_destroy(spa);
852
853 for (int t = 0; t < TXG_SIZE; t++)
854 bplist_destroy(&spa->spa_free_bplist[t]);
855
856 zio_checksum_templates_free(spa);
857
858 cv_destroy(&spa->spa_async_cv);
859 cv_destroy(&spa->spa_evicting_os_cv);
860 cv_destroy(&spa->spa_proc_cv);
861 cv_destroy(&spa->spa_scrub_io_cv);
862 cv_destroy(&spa->spa_suspend_cv);
863 cv_destroy(&spa->spa_activities_cv);
864 cv_destroy(&spa->spa_waiters_cv);
865
866 mutex_destroy(&spa->spa_flushed_ms_lock);
867 mutex_destroy(&spa->spa_async_lock);
868 mutex_destroy(&spa->spa_errlist_lock);
869 mutex_destroy(&spa->spa_errlog_lock);
870 mutex_destroy(&spa->spa_evicting_os_lock);
871 mutex_destroy(&spa->spa_history_lock);
872 mutex_destroy(&spa->spa_proc_lock);
873 mutex_destroy(&spa->spa_props_lock);
874 mutex_destroy(&spa->spa_cksum_tmpls_lock);
875 mutex_destroy(&spa->spa_scrub_lock);
876 mutex_destroy(&spa->spa_suspend_lock);
877 mutex_destroy(&spa->spa_vdev_top_lock);
878 mutex_destroy(&spa->spa_feat_stats_lock);
879 mutex_destroy(&spa->spa_activities_lock);
880
881 kmem_free(spa, sizeof (spa_t));
882 }
883
884 /*
885 * Given a pool, return the next pool in the namespace, or NULL if there is
886 * none. If 'prev' is NULL, return the first pool.
887 */
888 spa_t *
889 spa_next(spa_t *prev)
890 {
891 ASSERT(MUTEX_HELD(&spa_namespace_lock));
892
893 if (prev)
894 return (AVL_NEXT(&spa_namespace_avl, prev));
895 else
896 return (avl_first(&spa_namespace_avl));
897 }
898
899 /*
900 * ==========================================================================
901 * SPA refcount functions
902 * ==========================================================================
903 */
904
905 /*
906 * Add a reference to the given spa_t. Must have at least one reference, or
907 * have the namespace lock held.
908 */
909 void
910 spa_open_ref(spa_t *spa, const void *tag)
911 {
912 ASSERT(zfs_refcount_count(&spa->spa_refcount) >= spa->spa_minref ||
913 MUTEX_HELD(&spa_namespace_lock));
914 (void) zfs_refcount_add(&spa->spa_refcount, tag);
915 }
916
917 /*
918 * Remove a reference to the given spa_t. Must have at least one reference, or
919 * have the namespace lock held.
920 */
921 void
922 spa_close(spa_t *spa, const void *tag)
923 {
924 ASSERT(zfs_refcount_count(&spa->spa_refcount) > spa->spa_minref ||
925 MUTEX_HELD(&spa_namespace_lock));
926 (void) zfs_refcount_remove(&spa->spa_refcount, tag);
927 }
928
929 /*
930 * Remove a reference to the given spa_t held by a dsl dir that is
931 * being asynchronously released. Async releases occur from a taskq
932 * performing eviction of dsl datasets and dirs. The namespace lock
933 * isn't held and the hold by the object being evicted may contribute to
934 * spa_minref (e.g. dataset or directory released during pool export),
935 * so the asserts in spa_close() do not apply.
936 */
937 void
938 spa_async_close(spa_t *spa, const void *tag)
939 {
940 (void) zfs_refcount_remove(&spa->spa_refcount, tag);
941 }
942
943 /*
944 * Check to see if the spa refcount is zero. Must be called with
945 * spa_namespace_lock held. We really compare against spa_minref, which is the
946 * number of references acquired when opening a pool
947 */
948 boolean_t
949 spa_refcount_zero(spa_t *spa)
950 {
951 ASSERT(MUTEX_HELD(&spa_namespace_lock));
952
953 return (zfs_refcount_count(&spa->spa_refcount) == spa->spa_minref);
954 }
955
956 /*
957 * ==========================================================================
958 * SPA spare and l2cache tracking
959 * ==========================================================================
960 */
961
962 /*
963 * Hot spares and cache devices are tracked using the same code below,
964 * for 'auxiliary' devices.
965 */
966
967 typedef struct spa_aux {
968 uint64_t aux_guid;
969 uint64_t aux_pool;
970 avl_node_t aux_avl;
971 int aux_count;
972 } spa_aux_t;
973
974 static inline int
975 spa_aux_compare(const void *a, const void *b)
976 {
977 const spa_aux_t *sa = (const spa_aux_t *)a;
978 const spa_aux_t *sb = (const spa_aux_t *)b;
979
980 return (TREE_CMP(sa->aux_guid, sb->aux_guid));
981 }
982
983 static void
984 spa_aux_add(vdev_t *vd, avl_tree_t *avl)
985 {
986 avl_index_t where;
987 spa_aux_t search;
988 spa_aux_t *aux;
989
990 search.aux_guid = vd->vdev_guid;
991 if ((aux = avl_find(avl, &search, &where)) != NULL) {
992 aux->aux_count++;
993 } else {
994 aux = kmem_zalloc(sizeof (spa_aux_t), KM_SLEEP);
995 aux->aux_guid = vd->vdev_guid;
996 aux->aux_count = 1;
997 avl_insert(avl, aux, where);
998 }
999 }
1000
1001 static void
1002 spa_aux_remove(vdev_t *vd, avl_tree_t *avl)
1003 {
1004 spa_aux_t search;
1005 spa_aux_t *aux;
1006 avl_index_t where;
1007
1008 search.aux_guid = vd->vdev_guid;
1009 aux = avl_find(avl, &search, &where);
1010
1011 ASSERT(aux != NULL);
1012
1013 if (--aux->aux_count == 0) {
1014 avl_remove(avl, aux);
1015 kmem_free(aux, sizeof (spa_aux_t));
1016 } else if (aux->aux_pool == spa_guid(vd->vdev_spa)) {
1017 aux->aux_pool = 0ULL;
1018 }
1019 }
1020
1021 static boolean_t
1022 spa_aux_exists(uint64_t guid, uint64_t *pool, int *refcnt, avl_tree_t *avl)
1023 {
1024 spa_aux_t search, *found;
1025
1026 search.aux_guid = guid;
1027 found = avl_find(avl, &search, NULL);
1028
1029 if (pool) {
1030 if (found)
1031 *pool = found->aux_pool;
1032 else
1033 *pool = 0ULL;
1034 }
1035
1036 if (refcnt) {
1037 if (found)
1038 *refcnt = found->aux_count;
1039 else
1040 *refcnt = 0;
1041 }
1042
1043 return (found != NULL);
1044 }
1045
1046 static void
1047 spa_aux_activate(vdev_t *vd, avl_tree_t *avl)
1048 {
1049 spa_aux_t search, *found;
1050 avl_index_t where;
1051
1052 search.aux_guid = vd->vdev_guid;
1053 found = avl_find(avl, &search, &where);
1054 ASSERT(found != NULL);
1055 ASSERT(found->aux_pool == 0ULL);
1056
1057 found->aux_pool = spa_guid(vd->vdev_spa);
1058 }
1059
1060 /*
1061 * Spares are tracked globally due to the following constraints:
1062 *
1063 * - A spare may be part of multiple pools.
1064 * - A spare may be added to a pool even if it's actively in use within
1065 * another pool.
1066 * - A spare in use in any pool can only be the source of a replacement if
1067 * the target is a spare in the same pool.
1068 *
1069 * We keep track of all spares on the system through the use of a reference
1070 * counted AVL tree. When a vdev is added as a spare, or used as a replacement
1071 * spare, then we bump the reference count in the AVL tree. In addition, we set
1072 * the 'vdev_isspare' member to indicate that the device is a spare (active or
1073 * inactive). When a spare is made active (used to replace a device in the
1074 * pool), we also keep track of which pool its been made a part of.
1075 *
1076 * The 'spa_spare_lock' protects the AVL tree. These functions are normally
1077 * called under the spa_namespace lock as part of vdev reconfiguration. The
1078 * separate spare lock exists for the status query path, which does not need to
1079 * be completely consistent with respect to other vdev configuration changes.
1080 */
1081
1082 static int
1083 spa_spare_compare(const void *a, const void *b)
1084 {
1085 return (spa_aux_compare(a, b));
1086 }
1087
1088 void
1089 spa_spare_add(vdev_t *vd)
1090 {
1091 mutex_enter(&spa_spare_lock);
1092 ASSERT(!vd->vdev_isspare);
1093 spa_aux_add(vd, &spa_spare_avl);
1094 vd->vdev_isspare = B_TRUE;
1095 mutex_exit(&spa_spare_lock);
1096 }
1097
1098 void
1099 spa_spare_remove(vdev_t *vd)
1100 {
1101 mutex_enter(&spa_spare_lock);
1102 ASSERT(vd->vdev_isspare);
1103 spa_aux_remove(vd, &spa_spare_avl);
1104 vd->vdev_isspare = B_FALSE;
1105 mutex_exit(&spa_spare_lock);
1106 }
1107
1108 boolean_t
1109 spa_spare_exists(uint64_t guid, uint64_t *pool, int *refcnt)
1110 {
1111 boolean_t found;
1112
1113 mutex_enter(&spa_spare_lock);
1114 found = spa_aux_exists(guid, pool, refcnt, &spa_spare_avl);
1115 mutex_exit(&spa_spare_lock);
1116
1117 return (found);
1118 }
1119
1120 void
1121 spa_spare_activate(vdev_t *vd)
1122 {
1123 mutex_enter(&spa_spare_lock);
1124 ASSERT(vd->vdev_isspare);
1125 spa_aux_activate(vd, &spa_spare_avl);
1126 mutex_exit(&spa_spare_lock);
1127 }
1128
1129 /*
1130 * Level 2 ARC devices are tracked globally for the same reasons as spares.
1131 * Cache devices currently only support one pool per cache device, and so
1132 * for these devices the aux reference count is currently unused beyond 1.
1133 */
1134
1135 static int
1136 spa_l2cache_compare(const void *a, const void *b)
1137 {
1138 return (spa_aux_compare(a, b));
1139 }
1140
1141 void
1142 spa_l2cache_add(vdev_t *vd)
1143 {
1144 mutex_enter(&spa_l2cache_lock);
1145 ASSERT(!vd->vdev_isl2cache);
1146 spa_aux_add(vd, &spa_l2cache_avl);
1147 vd->vdev_isl2cache = B_TRUE;
1148 mutex_exit(&spa_l2cache_lock);
1149 }
1150
1151 void
1152 spa_l2cache_remove(vdev_t *vd)
1153 {
1154 mutex_enter(&spa_l2cache_lock);
1155 ASSERT(vd->vdev_isl2cache);
1156 spa_aux_remove(vd, &spa_l2cache_avl);
1157 vd->vdev_isl2cache = B_FALSE;
1158 mutex_exit(&spa_l2cache_lock);
1159 }
1160
1161 boolean_t
1162 spa_l2cache_exists(uint64_t guid, uint64_t *pool)
1163 {
1164 boolean_t found;
1165
1166 mutex_enter(&spa_l2cache_lock);
1167 found = spa_aux_exists(guid, pool, NULL, &spa_l2cache_avl);
1168 mutex_exit(&spa_l2cache_lock);
1169
1170 return (found);
1171 }
1172
1173 void
1174 spa_l2cache_activate(vdev_t *vd)
1175 {
1176 mutex_enter(&spa_l2cache_lock);
1177 ASSERT(vd->vdev_isl2cache);
1178 spa_aux_activate(vd, &spa_l2cache_avl);
1179 mutex_exit(&spa_l2cache_lock);
1180 }
1181
1182 /*
1183 * ==========================================================================
1184 * SPA vdev locking
1185 * ==========================================================================
1186 */
1187
1188 /*
1189 * Lock the given spa_t for the purpose of adding or removing a vdev.
1190 * Grabs the global spa_namespace_lock plus the spa config lock for writing.
1191 * It returns the next transaction group for the spa_t.
1192 */
1193 uint64_t
1194 spa_vdev_enter(spa_t *spa)
1195 {
1196 mutex_enter(&spa->spa_vdev_top_lock);
1197 mutex_enter(&spa_namespace_lock);
1198
1199 vdev_autotrim_stop_all(spa);
1200
1201 return (spa_vdev_config_enter(spa));
1202 }
1203
1204 /*
1205 * The same as spa_vdev_enter() above but additionally takes the guid of
1206 * the vdev being detached. When there is a rebuild in process it will be
1207 * suspended while the vdev tree is modified then resumed by spa_vdev_exit().
1208 * The rebuild is canceled if only a single child remains after the detach.
1209 */
1210 uint64_t
1211 spa_vdev_detach_enter(spa_t *spa, uint64_t guid)
1212 {
1213 mutex_enter(&spa->spa_vdev_top_lock);
1214 mutex_enter(&spa_namespace_lock);
1215
1216 vdev_autotrim_stop_all(spa);
1217
1218 if (guid != 0) {
1219 vdev_t *vd = spa_lookup_by_guid(spa, guid, B_FALSE);
1220 if (vd) {
1221 vdev_rebuild_stop_wait(vd->vdev_top);
1222 }
1223 }
1224
1225 return (spa_vdev_config_enter(spa));
1226 }
1227
1228 /*
1229 * Internal implementation for spa_vdev_enter(). Used when a vdev
1230 * operation requires multiple syncs (i.e. removing a device) while
1231 * keeping the spa_namespace_lock held.
1232 */
1233 uint64_t
1234 spa_vdev_config_enter(spa_t *spa)
1235 {
1236 ASSERT(MUTEX_HELD(&spa_namespace_lock));
1237
1238 spa_config_enter(spa, SCL_ALL, spa, RW_WRITER);
1239
1240 return (spa_last_synced_txg(spa) + 1);
1241 }
1242
1243 /*
1244 * Used in combination with spa_vdev_config_enter() to allow the syncing
1245 * of multiple transactions without releasing the spa_namespace_lock.
1246 */
1247 void
1248 spa_vdev_config_exit(spa_t *spa, vdev_t *vd, uint64_t txg, int error,
1249 const char *tag)
1250 {
1251 ASSERT(MUTEX_HELD(&spa_namespace_lock));
1252
1253 int config_changed = B_FALSE;
1254
1255 ASSERT(txg > spa_last_synced_txg(spa));
1256
1257 spa->spa_pending_vdev = NULL;
1258
1259 /*
1260 * Reassess the DTLs.
1261 */
1262 vdev_dtl_reassess(spa->spa_root_vdev, 0, 0, B_FALSE, B_FALSE);
1263
1264 if (error == 0 && !list_is_empty(&spa->spa_config_dirty_list)) {
1265 config_changed = B_TRUE;
1266 spa->spa_config_generation++;
1267 }
1268
1269 /*
1270 * Verify the metaslab classes.
1271 */
1272 ASSERT(metaslab_class_validate(spa_normal_class(spa)) == 0);
1273 ASSERT(metaslab_class_validate(spa_log_class(spa)) == 0);
1274 ASSERT(metaslab_class_validate(spa_embedded_log_class(spa)) == 0);
1275 ASSERT(metaslab_class_validate(spa_special_class(spa)) == 0);
1276 ASSERT(metaslab_class_validate(spa_dedup_class(spa)) == 0);
1277
1278 spa_config_exit(spa, SCL_ALL, spa);
1279
1280 /*
1281 * Panic the system if the specified tag requires it. This
1282 * is useful for ensuring that configurations are updated
1283 * transactionally.
1284 */
1285 if (zio_injection_enabled)
1286 zio_handle_panic_injection(spa, tag, 0);
1287
1288 /*
1289 * Note: this txg_wait_synced() is important because it ensures
1290 * that there won't be more than one config change per txg.
1291 * This allows us to use the txg as the generation number.
1292 */
1293 if (error == 0)
1294 txg_wait_synced(spa->spa_dsl_pool, txg);
1295
1296 if (vd != NULL) {
1297 ASSERT(!vd->vdev_detached || vd->vdev_dtl_sm == NULL);
1298 if (vd->vdev_ops->vdev_op_leaf) {
1299 mutex_enter(&vd->vdev_initialize_lock);
1300 vdev_initialize_stop(vd, VDEV_INITIALIZE_CANCELED,
1301 NULL);
1302 mutex_exit(&vd->vdev_initialize_lock);
1303
1304 mutex_enter(&vd->vdev_trim_lock);
1305 vdev_trim_stop(vd, VDEV_TRIM_CANCELED, NULL);
1306 mutex_exit(&vd->vdev_trim_lock);
1307 }
1308
1309 /*
1310 * The vdev may be both a leaf and top-level device.
1311 */
1312 vdev_autotrim_stop_wait(vd);
1313
1314 spa_config_enter(spa, SCL_STATE_ALL, spa, RW_WRITER);
1315 vdev_free(vd);
1316 spa_config_exit(spa, SCL_STATE_ALL, spa);
1317 }
1318
1319 /*
1320 * If the config changed, update the config cache.
1321 */
1322 if (config_changed)
1323 spa_write_cachefile(spa, B_FALSE, B_TRUE, B_TRUE);
1324 }
1325
1326 /*
1327 * Unlock the spa_t after adding or removing a vdev. Besides undoing the
1328 * locking of spa_vdev_enter(), we also want make sure the transactions have
1329 * synced to disk, and then update the global configuration cache with the new
1330 * information.
1331 */
1332 int
1333 spa_vdev_exit(spa_t *spa, vdev_t *vd, uint64_t txg, int error)
1334 {
1335 vdev_autotrim_restart(spa);
1336 vdev_rebuild_restart(spa);
1337
1338 spa_vdev_config_exit(spa, vd, txg, error, FTAG);
1339 mutex_exit(&spa_namespace_lock);
1340 mutex_exit(&spa->spa_vdev_top_lock);
1341
1342 return (error);
1343 }
1344
1345 /*
1346 * Lock the given spa_t for the purpose of changing vdev state.
1347 */
1348 void
1349 spa_vdev_state_enter(spa_t *spa, int oplocks)
1350 {
1351 int locks = SCL_STATE_ALL | oplocks;
1352
1353 /*
1354 * Root pools may need to read of the underlying devfs filesystem
1355 * when opening up a vdev. Unfortunately if we're holding the
1356 * SCL_ZIO lock it will result in a deadlock when we try to issue
1357 * the read from the root filesystem. Instead we "prefetch"
1358 * the associated vnodes that we need prior to opening the
1359 * underlying devices and cache them so that we can prevent
1360 * any I/O when we are doing the actual open.
1361 */
1362 if (spa_is_root(spa)) {
1363 int low = locks & ~(SCL_ZIO - 1);
1364 int high = locks & ~low;
1365
1366 spa_config_enter(spa, high, spa, RW_WRITER);
1367 vdev_hold(spa->spa_root_vdev);
1368 spa_config_enter(spa, low, spa, RW_WRITER);
1369 } else {
1370 spa_config_enter(spa, locks, spa, RW_WRITER);
1371 }
1372 spa->spa_vdev_locks = locks;
1373 }
1374
1375 int
1376 spa_vdev_state_exit(spa_t *spa, vdev_t *vd, int error)
1377 {
1378 boolean_t config_changed = B_FALSE;
1379 vdev_t *vdev_top;
1380
1381 if (vd == NULL || vd == spa->spa_root_vdev) {
1382 vdev_top = spa->spa_root_vdev;
1383 } else {
1384 vdev_top = vd->vdev_top;
1385 }
1386
1387 if (vd != NULL || error == 0)
1388 vdev_dtl_reassess(vdev_top, 0, 0, B_FALSE, B_FALSE);
1389
1390 if (vd != NULL) {
1391 if (vd != spa->spa_root_vdev)
1392 vdev_state_dirty(vdev_top);
1393
1394 config_changed = B_TRUE;
1395 spa->spa_config_generation++;
1396 }
1397
1398 if (spa_is_root(spa))
1399 vdev_rele(spa->spa_root_vdev);
1400
1401 ASSERT3U(spa->spa_vdev_locks, >=, SCL_STATE_ALL);
1402 spa_config_exit(spa, spa->spa_vdev_locks, spa);
1403
1404 /*
1405 * If anything changed, wait for it to sync. This ensures that,
1406 * from the system administrator's perspective, zpool(8) commands
1407 * are synchronous. This is important for things like zpool offline:
1408 * when the command completes, you expect no further I/O from ZFS.
1409 */
1410 if (vd != NULL)
1411 txg_wait_synced(spa->spa_dsl_pool, 0);
1412
1413 /*
1414 * If the config changed, update the config cache.
1415 */
1416 if (config_changed) {
1417 mutex_enter(&spa_namespace_lock);
1418 spa_write_cachefile(spa, B_FALSE, B_TRUE, B_FALSE);
1419 mutex_exit(&spa_namespace_lock);
1420 }
1421
1422 return (error);
1423 }
1424
1425 /*
1426 * ==========================================================================
1427 * Miscellaneous functions
1428 * ==========================================================================
1429 */
1430
1431 void
1432 spa_activate_mos_feature(spa_t *spa, const char *feature, dmu_tx_t *tx)
1433 {
1434 if (!nvlist_exists(spa->spa_label_features, feature)) {
1435 fnvlist_add_boolean(spa->spa_label_features, feature);
1436 /*
1437 * When we are creating the pool (tx_txg==TXG_INITIAL), we can't
1438 * dirty the vdev config because lock SCL_CONFIG is not held.
1439 * Thankfully, in this case we don't need to dirty the config
1440 * because it will be written out anyway when we finish
1441 * creating the pool.
1442 */
1443 if (tx->tx_txg != TXG_INITIAL)
1444 vdev_config_dirty(spa->spa_root_vdev);
1445 }
1446 }
1447
1448 void
1449 spa_deactivate_mos_feature(spa_t *spa, const char *feature)
1450 {
1451 if (nvlist_remove_all(spa->spa_label_features, feature) == 0)
1452 vdev_config_dirty(spa->spa_root_vdev);
1453 }
1454
1455 /*
1456 * Return the spa_t associated with given pool_guid, if it exists. If
1457 * device_guid is non-zero, determine whether the pool exists *and* contains
1458 * a device with the specified device_guid.
1459 */
1460 spa_t *
1461 spa_by_guid(uint64_t pool_guid, uint64_t device_guid)
1462 {
1463 spa_t *spa;
1464 avl_tree_t *t = &spa_namespace_avl;
1465
1466 ASSERT(MUTEX_HELD(&spa_namespace_lock));
1467
1468 for (spa = avl_first(t); spa != NULL; spa = AVL_NEXT(t, spa)) {
1469 if (spa->spa_state == POOL_STATE_UNINITIALIZED)
1470 continue;
1471 if (spa->spa_root_vdev == NULL)
1472 continue;
1473 if (spa_guid(spa) == pool_guid) {
1474 if (device_guid == 0)
1475 break;
1476
1477 if (vdev_lookup_by_guid(spa->spa_root_vdev,
1478 device_guid) != NULL)
1479 break;
1480
1481 /*
1482 * Check any devices we may be in the process of adding.
1483 */
1484 if (spa->spa_pending_vdev) {
1485 if (vdev_lookup_by_guid(spa->spa_pending_vdev,
1486 device_guid) != NULL)
1487 break;
1488 }
1489 }
1490 }
1491
1492 return (spa);
1493 }
1494
1495 /*
1496 * Determine whether a pool with the given pool_guid exists.
1497 */
1498 boolean_t
1499 spa_guid_exists(uint64_t pool_guid, uint64_t device_guid)
1500 {
1501 return (spa_by_guid(pool_guid, device_guid) != NULL);
1502 }
1503
1504 char *
1505 spa_strdup(const char *s)
1506 {
1507 size_t len;
1508 char *new;
1509
1510 len = strlen(s);
1511 new = kmem_alloc(len + 1, KM_SLEEP);
1512 memcpy(new, s, len + 1);
1513
1514 return (new);
1515 }
1516
1517 void
1518 spa_strfree(char *s)
1519 {
1520 kmem_free(s, strlen(s) + 1);
1521 }
1522
1523 uint64_t
1524 spa_generate_guid(spa_t *spa)
1525 {
1526 uint64_t guid;
1527
1528 if (spa != NULL) {
1529 do {
1530 (void) random_get_pseudo_bytes((void *)&guid,
1531 sizeof (guid));
1532 } while (guid == 0 || spa_guid_exists(spa_guid(spa), guid));
1533 } else {
1534 do {
1535 (void) random_get_pseudo_bytes((void *)&guid,
1536 sizeof (guid));
1537 } while (guid == 0 || spa_guid_exists(guid, 0));
1538 }
1539
1540 return (guid);
1541 }
1542
1543 void
1544 snprintf_blkptr(char *buf, size_t buflen, const blkptr_t *bp)
1545 {
1546 char type[256];
1547 const char *checksum = NULL;
1548 const char *compress = NULL;
1549
1550 if (bp != NULL) {
1551 if (BP_GET_TYPE(bp) & DMU_OT_NEWTYPE) {
1552 dmu_object_byteswap_t bswap =
1553 DMU_OT_BYTESWAP(BP_GET_TYPE(bp));
1554 (void) snprintf(type, sizeof (type), "bswap %s %s",
1555 DMU_OT_IS_METADATA(BP_GET_TYPE(bp)) ?
1556 "metadata" : "data",
1557 dmu_ot_byteswap[bswap].ob_name);
1558 } else {
1559 (void) strlcpy(type, dmu_ot[BP_GET_TYPE(bp)].ot_name,
1560 sizeof (type));
1561 }
1562 if (!BP_IS_EMBEDDED(bp)) {
1563 checksum =
1564 zio_checksum_table[BP_GET_CHECKSUM(bp)].ci_name;
1565 }
1566 compress = zio_compress_table[BP_GET_COMPRESS(bp)].ci_name;
1567 }
1568
1569 SNPRINTF_BLKPTR(kmem_scnprintf, ' ', buf, buflen, bp, type, checksum,
1570 compress);
1571 }
1572
1573 void
1574 spa_freeze(spa_t *spa)
1575 {
1576 uint64_t freeze_txg = 0;
1577
1578 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1579 if (spa->spa_freeze_txg == UINT64_MAX) {
1580 freeze_txg = spa_last_synced_txg(spa) + TXG_SIZE;
1581 spa->spa_freeze_txg = freeze_txg;
1582 }
1583 spa_config_exit(spa, SCL_ALL, FTAG);
1584 if (freeze_txg != 0)
1585 txg_wait_synced(spa_get_dsl(spa), freeze_txg);
1586 }
1587
1588 void
1589 zfs_panic_recover(const char *fmt, ...)
1590 {
1591 va_list adx;
1592
1593 va_start(adx, fmt);
1594 vcmn_err(zfs_recover ? CE_WARN : CE_PANIC, fmt, adx);
1595 va_end(adx);
1596 }
1597
1598 /*
1599 * This is a stripped-down version of strtoull, suitable only for converting
1600 * lowercase hexadecimal numbers that don't overflow.
1601 */
1602 uint64_t
1603 zfs_strtonum(const char *str, char **nptr)
1604 {
1605 uint64_t val = 0;
1606 char c;
1607 int digit;
1608
1609 while ((c = *str) != '\0') {
1610 if (c >= '0' && c <= '9')
1611 digit = c - '0';
1612 else if (c >= 'a' && c <= 'f')
1613 digit = 10 + c - 'a';
1614 else
1615 break;
1616
1617 val *= 16;
1618 val += digit;
1619
1620 str++;
1621 }
1622
1623 if (nptr)
1624 *nptr = (char *)str;
1625
1626 return (val);
1627 }
1628
1629 void
1630 spa_activate_allocation_classes(spa_t *spa, dmu_tx_t *tx)
1631 {
1632 /*
1633 * We bump the feature refcount for each special vdev added to the pool
1634 */
1635 ASSERT(spa_feature_is_enabled(spa, SPA_FEATURE_ALLOCATION_CLASSES));
1636 spa_feature_incr(spa, SPA_FEATURE_ALLOCATION_CLASSES, tx);
1637 }
1638
1639 /*
1640 * ==========================================================================
1641 * Accessor functions
1642 * ==========================================================================
1643 */
1644
1645 boolean_t
1646 spa_shutting_down(spa_t *spa)
1647 {
1648 return (spa->spa_async_suspended);
1649 }
1650
1651 dsl_pool_t *
1652 spa_get_dsl(spa_t *spa)
1653 {
1654 return (spa->spa_dsl_pool);
1655 }
1656
1657 boolean_t
1658 spa_is_initializing(spa_t *spa)
1659 {
1660 return (spa->spa_is_initializing);
1661 }
1662
1663 boolean_t
1664 spa_indirect_vdevs_loaded(spa_t *spa)
1665 {
1666 return (spa->spa_indirect_vdevs_loaded);
1667 }
1668
1669 blkptr_t *
1670 spa_get_rootblkptr(spa_t *spa)
1671 {
1672 return (&spa->spa_ubsync.ub_rootbp);
1673 }
1674
1675 void
1676 spa_set_rootblkptr(spa_t *spa, const blkptr_t *bp)
1677 {
1678 spa->spa_uberblock.ub_rootbp = *bp;
1679 }
1680
1681 void
1682 spa_altroot(spa_t *spa, char *buf, size_t buflen)
1683 {
1684 if (spa->spa_root == NULL)
1685 buf[0] = '\0';
1686 else
1687 (void) strlcpy(buf, spa->spa_root, buflen);
1688 }
1689
1690 uint32_t
1691 spa_sync_pass(spa_t *spa)
1692 {
1693 return (spa->spa_sync_pass);
1694 }
1695
1696 char *
1697 spa_name(spa_t *spa)
1698 {
1699 return (spa->spa_name);
1700 }
1701
1702 uint64_t
1703 spa_guid(spa_t *spa)
1704 {
1705 dsl_pool_t *dp = spa_get_dsl(spa);
1706 uint64_t guid;
1707
1708 /*
1709 * If we fail to parse the config during spa_load(), we can go through
1710 * the error path (which posts an ereport) and end up here with no root
1711 * vdev. We stash the original pool guid in 'spa_config_guid' to handle
1712 * this case.
1713 */
1714 if (spa->spa_root_vdev == NULL)
1715 return (spa->spa_config_guid);
1716
1717 guid = spa->spa_last_synced_guid != 0 ?
1718 spa->spa_last_synced_guid : spa->spa_root_vdev->vdev_guid;
1719
1720 /*
1721 * Return the most recently synced out guid unless we're
1722 * in syncing context.
1723 */
1724 if (dp && dsl_pool_sync_context(dp))
1725 return (spa->spa_root_vdev->vdev_guid);
1726 else
1727 return (guid);
1728 }
1729
1730 uint64_t
1731 spa_load_guid(spa_t *spa)
1732 {
1733 /*
1734 * This is a GUID that exists solely as a reference for the
1735 * purposes of the arc. It is generated at load time, and
1736 * is never written to persistent storage.
1737 */
1738 return (spa->spa_load_guid);
1739 }
1740
1741 uint64_t
1742 spa_last_synced_txg(spa_t *spa)
1743 {
1744 return (spa->spa_ubsync.ub_txg);
1745 }
1746
1747 uint64_t
1748 spa_first_txg(spa_t *spa)
1749 {
1750 return (spa->spa_first_txg);
1751 }
1752
1753 uint64_t
1754 spa_syncing_txg(spa_t *spa)
1755 {
1756 return (spa->spa_syncing_txg);
1757 }
1758
1759 /*
1760 * Return the last txg where data can be dirtied. The final txgs
1761 * will be used to just clear out any deferred frees that remain.
1762 */
1763 uint64_t
1764 spa_final_dirty_txg(spa_t *spa)
1765 {
1766 return (spa->spa_final_txg - TXG_DEFER_SIZE);
1767 }
1768
1769 pool_state_t
1770 spa_state(spa_t *spa)
1771 {
1772 return (spa->spa_state);
1773 }
1774
1775 spa_load_state_t
1776 spa_load_state(spa_t *spa)
1777 {
1778 return (spa->spa_load_state);
1779 }
1780
1781 uint64_t
1782 spa_freeze_txg(spa_t *spa)
1783 {
1784 return (spa->spa_freeze_txg);
1785 }
1786
1787 /*
1788 * Return the inflated asize for a logical write in bytes. This is used by the
1789 * DMU to calculate the space a logical write will require on disk.
1790 * If lsize is smaller than the largest physical block size allocatable on this
1791 * pool we use its value instead, since the write will end up using the whole
1792 * block anyway.
1793 */
1794 uint64_t
1795 spa_get_worst_case_asize(spa_t *spa, uint64_t lsize)
1796 {
1797 if (lsize == 0)
1798 return (0); /* No inflation needed */
1799 return (MAX(lsize, 1 << spa->spa_max_ashift) * spa_asize_inflation);
1800 }
1801
1802 /*
1803 * Return the amount of slop space in bytes. It is typically 1/32 of the pool
1804 * (3.2%), minus the embedded log space. On very small pools, it may be
1805 * slightly larger than this. On very large pools, it will be capped to
1806 * the value of spa_max_slop. The embedded log space is not included in
1807 * spa_dspace. By subtracting it, the usable space (per "zfs list") is a
1808 * constant 97% of the total space, regardless of metaslab size (assuming the
1809 * default spa_slop_shift=5 and a non-tiny pool).
1810 *
1811 * See the comment above spa_slop_shift for more details.
1812 */
1813 uint64_t
1814 spa_get_slop_space(spa_t *spa)
1815 {
1816 uint64_t space = 0;
1817 uint64_t slop = 0;
1818
1819 /*
1820 * Make sure spa_dedup_dspace has been set.
1821 */
1822 if (spa->spa_dedup_dspace == ~0ULL)
1823 spa_update_dspace(spa);
1824
1825 /*
1826 * spa_get_dspace() includes the space only logically "used" by
1827 * deduplicated data, so since it's not useful to reserve more
1828 * space with more deduplicated data, we subtract that out here.
1829 */
1830 space = spa_get_dspace(spa) - spa->spa_dedup_dspace;
1831 slop = MIN(space >> spa_slop_shift, spa_max_slop);
1832
1833 /*
1834 * Subtract the embedded log space, but no more than half the (3.2%)
1835 * unusable space. Note, the "no more than half" is only relevant if
1836 * zfs_embedded_slog_min_ms >> spa_slop_shift < 2, which is not true by
1837 * default.
1838 */
1839 uint64_t embedded_log =
1840 metaslab_class_get_dspace(spa_embedded_log_class(spa));
1841 slop -= MIN(embedded_log, slop >> 1);
1842
1843 /*
1844 * Slop space should be at least spa_min_slop, but no more than half
1845 * the entire pool.
1846 */
1847 slop = MAX(slop, MIN(space >> 1, spa_min_slop));
1848 return (slop);
1849 }
1850
1851 uint64_t
1852 spa_get_dspace(spa_t *spa)
1853 {
1854 return (spa->spa_dspace);
1855 }
1856
1857 uint64_t
1858 spa_get_checkpoint_space(spa_t *spa)
1859 {
1860 return (spa->spa_checkpoint_info.sci_dspace);
1861 }
1862
1863 void
1864 spa_update_dspace(spa_t *spa)
1865 {
1866 spa->spa_dspace = metaslab_class_get_dspace(spa_normal_class(spa)) +
1867 ddt_get_dedup_dspace(spa) + brt_get_dspace(spa);
1868 if (spa->spa_nonallocating_dspace > 0) {
1869 /*
1870 * Subtract the space provided by all non-allocating vdevs that
1871 * contribute to dspace. If a file is overwritten, its old
1872 * blocks are freed and new blocks are allocated. If there are
1873 * no snapshots of the file, the available space should remain
1874 * the same. The old blocks could be freed from the
1875 * non-allocating vdev, but the new blocks must be allocated on
1876 * other (allocating) vdevs. By reserving the entire size of
1877 * the non-allocating vdevs (including allocated space), we
1878 * ensure that there will be enough space on the allocating
1879 * vdevs for this file overwrite to succeed.
1880 *
1881 * Note that the DMU/DSL doesn't actually know or care
1882 * how much space is allocated (it does its own tracking
1883 * of how much space has been logically used). So it
1884 * doesn't matter that the data we are moving may be
1885 * allocated twice (on the old device and the new device).
1886 */
1887 ASSERT3U(spa->spa_dspace, >=, spa->spa_nonallocating_dspace);
1888 spa->spa_dspace -= spa->spa_nonallocating_dspace;
1889 }
1890 }
1891
1892 /*
1893 * Return the failure mode that has been set to this pool. The default
1894 * behavior will be to block all I/Os when a complete failure occurs.
1895 */
1896 uint64_t
1897 spa_get_failmode(spa_t *spa)
1898 {
1899 return (spa->spa_failmode);
1900 }
1901
1902 boolean_t
1903 spa_suspended(spa_t *spa)
1904 {
1905 return (spa->spa_suspended != ZIO_SUSPEND_NONE);
1906 }
1907
1908 uint64_t
1909 spa_version(spa_t *spa)
1910 {
1911 return (spa->spa_ubsync.ub_version);
1912 }
1913
1914 boolean_t
1915 spa_deflate(spa_t *spa)
1916 {
1917 return (spa->spa_deflate);
1918 }
1919
1920 metaslab_class_t *
1921 spa_normal_class(spa_t *spa)
1922 {
1923 return (spa->spa_normal_class);
1924 }
1925
1926 metaslab_class_t *
1927 spa_log_class(spa_t *spa)
1928 {
1929 return (spa->spa_log_class);
1930 }
1931
1932 metaslab_class_t *
1933 spa_embedded_log_class(spa_t *spa)
1934 {
1935 return (spa->spa_embedded_log_class);
1936 }
1937
1938 metaslab_class_t *
1939 spa_special_class(spa_t *spa)
1940 {
1941 return (spa->spa_special_class);
1942 }
1943
1944 metaslab_class_t *
1945 spa_dedup_class(spa_t *spa)
1946 {
1947 return (spa->spa_dedup_class);
1948 }
1949
1950 /*
1951 * Locate an appropriate allocation class
1952 */
1953 metaslab_class_t *
1954 spa_preferred_class(spa_t *spa, uint64_t size, dmu_object_type_t objtype,
1955 uint_t level, uint_t special_smallblk)
1956 {
1957 /*
1958 * ZIL allocations determine their class in zio_alloc_zil().
1959 */
1960 ASSERT(objtype != DMU_OT_INTENT_LOG);
1961
1962 boolean_t has_special_class = spa->spa_special_class->mc_groups != 0;
1963
1964 if (DMU_OT_IS_DDT(objtype)) {
1965 if (spa->spa_dedup_class->mc_groups != 0)
1966 return (spa_dedup_class(spa));
1967 else if (has_special_class && zfs_ddt_data_is_special)
1968 return (spa_special_class(spa));
1969 else
1970 return (spa_normal_class(spa));
1971 }
1972
1973 /* Indirect blocks for user data can land in special if allowed */
1974 if (level > 0 && (DMU_OT_IS_FILE(objtype) || objtype == DMU_OT_ZVOL)) {
1975 if (has_special_class && zfs_user_indirect_is_special)
1976 return (spa_special_class(spa));
1977 else
1978 return (spa_normal_class(spa));
1979 }
1980
1981 if (DMU_OT_IS_METADATA(objtype) || level > 0) {
1982 if (has_special_class)
1983 return (spa_special_class(spa));
1984 else
1985 return (spa_normal_class(spa));
1986 }
1987
1988 /*
1989 * Allow small file blocks in special class in some cases (like
1990 * for the dRAID vdev feature). But always leave a reserve of
1991 * zfs_special_class_metadata_reserve_pct exclusively for metadata.
1992 */
1993 if (DMU_OT_IS_FILE(objtype) &&
1994 has_special_class && size <= special_smallblk) {
1995 metaslab_class_t *special = spa_special_class(spa);
1996 uint64_t alloc = metaslab_class_get_alloc(special);
1997 uint64_t space = metaslab_class_get_space(special);
1998 uint64_t limit =
1999 (space * (100 - zfs_special_class_metadata_reserve_pct))
2000 / 100;
2001
2002 if (alloc < limit)
2003 return (special);
2004 }
2005
2006 return (spa_normal_class(spa));
2007 }
2008
2009 void
2010 spa_evicting_os_register(spa_t *spa, objset_t *os)
2011 {
2012 mutex_enter(&spa->spa_evicting_os_lock);
2013 list_insert_head(&spa->spa_evicting_os_list, os);
2014 mutex_exit(&spa->spa_evicting_os_lock);
2015 }
2016
2017 void
2018 spa_evicting_os_deregister(spa_t *spa, objset_t *os)
2019 {
2020 mutex_enter(&spa->spa_evicting_os_lock);
2021 list_remove(&spa->spa_evicting_os_list, os);
2022 cv_broadcast(&spa->spa_evicting_os_cv);
2023 mutex_exit(&spa->spa_evicting_os_lock);
2024 }
2025
2026 void
2027 spa_evicting_os_wait(spa_t *spa)
2028 {
2029 mutex_enter(&spa->spa_evicting_os_lock);
2030 while (!list_is_empty(&spa->spa_evicting_os_list))
2031 cv_wait(&spa->spa_evicting_os_cv, &spa->spa_evicting_os_lock);
2032 mutex_exit(&spa->spa_evicting_os_lock);
2033
2034 dmu_buf_user_evict_wait();
2035 }
2036
2037 int
2038 spa_max_replication(spa_t *spa)
2039 {
2040 /*
2041 * As of SPA_VERSION == SPA_VERSION_DITTO_BLOCKS, we are able to
2042 * handle BPs with more than one DVA allocated. Set our max
2043 * replication level accordingly.
2044 */
2045 if (spa_version(spa) < SPA_VERSION_DITTO_BLOCKS)
2046 return (1);
2047 return (MIN(SPA_DVAS_PER_BP, spa_max_replication_override));
2048 }
2049
2050 int
2051 spa_prev_software_version(spa_t *spa)
2052 {
2053 return (spa->spa_prev_software_version);
2054 }
2055
2056 uint64_t
2057 spa_deadman_synctime(spa_t *spa)
2058 {
2059 return (spa->spa_deadman_synctime);
2060 }
2061
2062 spa_autotrim_t
2063 spa_get_autotrim(spa_t *spa)
2064 {
2065 return (spa->spa_autotrim);
2066 }
2067
2068 uint64_t
2069 spa_deadman_ziotime(spa_t *spa)
2070 {
2071 return (spa->spa_deadman_ziotime);
2072 }
2073
2074 uint64_t
2075 spa_get_deadman_failmode(spa_t *spa)
2076 {
2077 return (spa->spa_deadman_failmode);
2078 }
2079
2080 void
2081 spa_set_deadman_failmode(spa_t *spa, const char *failmode)
2082 {
2083 if (strcmp(failmode, "wait") == 0)
2084 spa->spa_deadman_failmode = ZIO_FAILURE_MODE_WAIT;
2085 else if (strcmp(failmode, "continue") == 0)
2086 spa->spa_deadman_failmode = ZIO_FAILURE_MODE_CONTINUE;
2087 else if (strcmp(failmode, "panic") == 0)
2088 spa->spa_deadman_failmode = ZIO_FAILURE_MODE_PANIC;
2089 else
2090 spa->spa_deadman_failmode = ZIO_FAILURE_MODE_WAIT;
2091 }
2092
2093 void
2094 spa_set_deadman_ziotime(hrtime_t ns)
2095 {
2096 spa_t *spa = NULL;
2097
2098 if (spa_mode_global != SPA_MODE_UNINIT) {
2099 mutex_enter(&spa_namespace_lock);
2100 while ((spa = spa_next(spa)) != NULL)
2101 spa->spa_deadman_ziotime = ns;
2102 mutex_exit(&spa_namespace_lock);
2103 }
2104 }
2105
2106 void
2107 spa_set_deadman_synctime(hrtime_t ns)
2108 {
2109 spa_t *spa = NULL;
2110
2111 if (spa_mode_global != SPA_MODE_UNINIT) {
2112 mutex_enter(&spa_namespace_lock);
2113 while ((spa = spa_next(spa)) != NULL)
2114 spa->spa_deadman_synctime = ns;
2115 mutex_exit(&spa_namespace_lock);
2116 }
2117 }
2118
2119 uint64_t
2120 dva_get_dsize_sync(spa_t *spa, const dva_t *dva)
2121 {
2122 uint64_t asize = DVA_GET_ASIZE(dva);
2123 uint64_t dsize = asize;
2124
2125 ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
2126
2127 if (asize != 0 && spa->spa_deflate) {
2128 vdev_t *vd = vdev_lookup_top(spa, DVA_GET_VDEV(dva));
2129 if (vd != NULL)
2130 dsize = (asize >> SPA_MINBLOCKSHIFT) *
2131 vd->vdev_deflate_ratio;
2132 }
2133
2134 return (dsize);
2135 }
2136
2137 uint64_t
2138 bp_get_dsize_sync(spa_t *spa, const blkptr_t *bp)
2139 {
2140 uint64_t dsize = 0;
2141
2142 for (int d = 0; d < BP_GET_NDVAS(bp); d++)
2143 dsize += dva_get_dsize_sync(spa, &bp->blk_dva[d]);
2144
2145 return (dsize);
2146 }
2147
2148 uint64_t
2149 bp_get_dsize(spa_t *spa, const blkptr_t *bp)
2150 {
2151 uint64_t dsize = 0;
2152
2153 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
2154
2155 for (int d = 0; d < BP_GET_NDVAS(bp); d++)
2156 dsize += dva_get_dsize_sync(spa, &bp->blk_dva[d]);
2157
2158 spa_config_exit(spa, SCL_VDEV, FTAG);
2159
2160 return (dsize);
2161 }
2162
2163 uint64_t
2164 spa_dirty_data(spa_t *spa)
2165 {
2166 return (spa->spa_dsl_pool->dp_dirty_total);
2167 }
2168
2169 /*
2170 * ==========================================================================
2171 * SPA Import Progress Routines
2172 * ==========================================================================
2173 */
2174
2175 typedef struct spa_import_progress {
2176 uint64_t pool_guid; /* unique id for updates */
2177 char *pool_name;
2178 spa_load_state_t spa_load_state;
2179 uint64_t mmp_sec_remaining; /* MMP activity check */
2180 uint64_t spa_load_max_txg; /* rewind txg */
2181 procfs_list_node_t smh_node;
2182 } spa_import_progress_t;
2183
2184 spa_history_list_t *spa_import_progress_list = NULL;
2185
2186 static int
2187 spa_import_progress_show_header(struct seq_file *f)
2188 {
2189 seq_printf(f, "%-20s %-14s %-14s %-12s %s\n", "pool_guid",
2190 "load_state", "multihost_secs", "max_txg",
2191 "pool_name");
2192 return (0);
2193 }
2194
2195 static int
2196 spa_import_progress_show(struct seq_file *f, void *data)
2197 {
2198 spa_import_progress_t *sip = (spa_import_progress_t *)data;
2199
2200 seq_printf(f, "%-20llu %-14llu %-14llu %-12llu %s\n",
2201 (u_longlong_t)sip->pool_guid, (u_longlong_t)sip->spa_load_state,
2202 (u_longlong_t)sip->mmp_sec_remaining,
2203 (u_longlong_t)sip->spa_load_max_txg,
2204 (sip->pool_name ? sip->pool_name : "-"));
2205
2206 return (0);
2207 }
2208
2209 /* Remove oldest elements from list until there are no more than 'size' left */
2210 static void
2211 spa_import_progress_truncate(spa_history_list_t *shl, unsigned int size)
2212 {
2213 spa_import_progress_t *sip;
2214 while (shl->size > size) {
2215 sip = list_remove_head(&shl->procfs_list.pl_list);
2216 if (sip->pool_name)
2217 spa_strfree(sip->pool_name);
2218 kmem_free(sip, sizeof (spa_import_progress_t));
2219 shl->size--;
2220 }
2221
2222 IMPLY(size == 0, list_is_empty(&shl->procfs_list.pl_list));
2223 }
2224
2225 static void
2226 spa_import_progress_init(void)
2227 {
2228 spa_import_progress_list = kmem_zalloc(sizeof (spa_history_list_t),
2229 KM_SLEEP);
2230
2231 spa_import_progress_list->size = 0;
2232
2233 spa_import_progress_list->procfs_list.pl_private =
2234 spa_import_progress_list;
2235
2236 procfs_list_install("zfs",
2237 NULL,
2238 "import_progress",
2239 0644,
2240 &spa_import_progress_list->procfs_list,
2241 spa_import_progress_show,
2242 spa_import_progress_show_header,
2243 NULL,
2244 offsetof(spa_import_progress_t, smh_node));
2245 }
2246
2247 static void
2248 spa_import_progress_destroy(void)
2249 {
2250 spa_history_list_t *shl = spa_import_progress_list;
2251 procfs_list_uninstall(&shl->procfs_list);
2252 spa_import_progress_truncate(shl, 0);
2253 procfs_list_destroy(&shl->procfs_list);
2254 kmem_free(shl, sizeof (spa_history_list_t));
2255 }
2256
2257 int
2258 spa_import_progress_set_state(uint64_t pool_guid,
2259 spa_load_state_t load_state)
2260 {
2261 spa_history_list_t *shl = spa_import_progress_list;
2262 spa_import_progress_t *sip;
2263 int error = ENOENT;
2264
2265 if (shl->size == 0)
2266 return (0);
2267
2268 mutex_enter(&shl->procfs_list.pl_lock);
2269 for (sip = list_tail(&shl->procfs_list.pl_list); sip != NULL;
2270 sip = list_prev(&shl->procfs_list.pl_list, sip)) {
2271 if (sip->pool_guid == pool_guid) {
2272 sip->spa_load_state = load_state;
2273 error = 0;
2274 break;
2275 }
2276 }
2277 mutex_exit(&shl->procfs_list.pl_lock);
2278
2279 return (error);
2280 }
2281
2282 int
2283 spa_import_progress_set_max_txg(uint64_t pool_guid, uint64_t load_max_txg)
2284 {
2285 spa_history_list_t *shl = spa_import_progress_list;
2286 spa_import_progress_t *sip;
2287 int error = ENOENT;
2288
2289 if (shl->size == 0)
2290 return (0);
2291
2292 mutex_enter(&shl->procfs_list.pl_lock);
2293 for (sip = list_tail(&shl->procfs_list.pl_list); sip != NULL;
2294 sip = list_prev(&shl->procfs_list.pl_list, sip)) {
2295 if (sip->pool_guid == pool_guid) {
2296 sip->spa_load_max_txg = load_max_txg;
2297 error = 0;
2298 break;
2299 }
2300 }
2301 mutex_exit(&shl->procfs_list.pl_lock);
2302
2303 return (error);
2304 }
2305
2306 int
2307 spa_import_progress_set_mmp_check(uint64_t pool_guid,
2308 uint64_t mmp_sec_remaining)
2309 {
2310 spa_history_list_t *shl = spa_import_progress_list;
2311 spa_import_progress_t *sip;
2312 int error = ENOENT;
2313
2314 if (shl->size == 0)
2315 return (0);
2316
2317 mutex_enter(&shl->procfs_list.pl_lock);
2318 for (sip = list_tail(&shl->procfs_list.pl_list); sip != NULL;
2319 sip = list_prev(&shl->procfs_list.pl_list, sip)) {
2320 if (sip->pool_guid == pool_guid) {
2321 sip->mmp_sec_remaining = mmp_sec_remaining;
2322 error = 0;
2323 break;
2324 }
2325 }
2326 mutex_exit(&shl->procfs_list.pl_lock);
2327
2328 return (error);
2329 }
2330
2331 /*
2332 * A new import is in progress, add an entry.
2333 */
2334 void
2335 spa_import_progress_add(spa_t *spa)
2336 {
2337 spa_history_list_t *shl = spa_import_progress_list;
2338 spa_import_progress_t *sip;
2339 const char *poolname = NULL;
2340
2341 sip = kmem_zalloc(sizeof (spa_import_progress_t), KM_SLEEP);
2342 sip->pool_guid = spa_guid(spa);
2343
2344 (void) nvlist_lookup_string(spa->spa_config, ZPOOL_CONFIG_POOL_NAME,
2345 &poolname);
2346 if (poolname == NULL)
2347 poolname = spa_name(spa);
2348 sip->pool_name = spa_strdup(poolname);
2349 sip->spa_load_state = spa_load_state(spa);
2350
2351 mutex_enter(&shl->procfs_list.pl_lock);
2352 procfs_list_add(&shl->procfs_list, sip);
2353 shl->size++;
2354 mutex_exit(&shl->procfs_list.pl_lock);
2355 }
2356
2357 void
2358 spa_import_progress_remove(uint64_t pool_guid)
2359 {
2360 spa_history_list_t *shl = spa_import_progress_list;
2361 spa_import_progress_t *sip;
2362
2363 mutex_enter(&shl->procfs_list.pl_lock);
2364 for (sip = list_tail(&shl->procfs_list.pl_list); sip != NULL;
2365 sip = list_prev(&shl->procfs_list.pl_list, sip)) {
2366 if (sip->pool_guid == pool_guid) {
2367 if (sip->pool_name)
2368 spa_strfree(sip->pool_name);
2369 list_remove(&shl->procfs_list.pl_list, sip);
2370 shl->size--;
2371 kmem_free(sip, sizeof (spa_import_progress_t));
2372 break;
2373 }
2374 }
2375 mutex_exit(&shl->procfs_list.pl_lock);
2376 }
2377
2378 /*
2379 * ==========================================================================
2380 * Initialization and Termination
2381 * ==========================================================================
2382 */
2383
2384 static int
2385 spa_name_compare(const void *a1, const void *a2)
2386 {
2387 const spa_t *s1 = a1;
2388 const spa_t *s2 = a2;
2389 int s;
2390
2391 s = strcmp(s1->spa_name, s2->spa_name);
2392
2393 return (TREE_ISIGN(s));
2394 }
2395
2396 void
2397 spa_boot_init(void)
2398 {
2399 spa_config_load();
2400 }
2401
2402 void
2403 spa_init(spa_mode_t mode)
2404 {
2405 mutex_init(&spa_namespace_lock, NULL, MUTEX_DEFAULT, NULL);
2406 mutex_init(&spa_spare_lock, NULL, MUTEX_DEFAULT, NULL);
2407 mutex_init(&spa_l2cache_lock, NULL, MUTEX_DEFAULT, NULL);
2408 cv_init(&spa_namespace_cv, NULL, CV_DEFAULT, NULL);
2409
2410 avl_create(&spa_namespace_avl, spa_name_compare, sizeof (spa_t),
2411 offsetof(spa_t, spa_avl));
2412
2413 avl_create(&spa_spare_avl, spa_spare_compare, sizeof (spa_aux_t),
2414 offsetof(spa_aux_t, aux_avl));
2415
2416 avl_create(&spa_l2cache_avl, spa_l2cache_compare, sizeof (spa_aux_t),
2417 offsetof(spa_aux_t, aux_avl));
2418
2419 spa_mode_global = mode;
2420
2421 #ifndef _KERNEL
2422 if (spa_mode_global != SPA_MODE_READ && dprintf_find_string("watch")) {
2423 struct sigaction sa;
2424
2425 sa.sa_flags = SA_SIGINFO;
2426 sigemptyset(&sa.sa_mask);
2427 sa.sa_sigaction = arc_buf_sigsegv;
2428
2429 if (sigaction(SIGSEGV, &sa, NULL) == -1) {
2430 perror("could not enable watchpoints: "
2431 "sigaction(SIGSEGV, ...) = ");
2432 } else {
2433 arc_watch = B_TRUE;
2434 }
2435 }
2436 #endif
2437
2438 fm_init();
2439 zfs_refcount_init();
2440 unique_init();
2441 zfs_btree_init();
2442 metaslab_stat_init();
2443 brt_init();
2444 ddt_init();
2445 zio_init();
2446 dmu_init();
2447 zil_init();
2448 vdev_mirror_stat_init();
2449 vdev_raidz_math_init();
2450 vdev_file_init();
2451 zfs_prop_init();
2452 chksum_init();
2453 zpool_prop_init();
2454 zpool_feature_init();
2455 spa_config_load();
2456 vdev_prop_init();
2457 l2arc_start();
2458 scan_init();
2459 qat_init();
2460 spa_import_progress_init();
2461 }
2462
2463 void
2464 spa_fini(void)
2465 {
2466 l2arc_stop();
2467
2468 spa_evict_all();
2469
2470 vdev_file_fini();
2471 vdev_mirror_stat_fini();
2472 vdev_raidz_math_fini();
2473 chksum_fini();
2474 zil_fini();
2475 dmu_fini();
2476 zio_fini();
2477 ddt_fini();
2478 brt_fini();
2479 metaslab_stat_fini();
2480 zfs_btree_fini();
2481 unique_fini();
2482 zfs_refcount_fini();
2483 fm_fini();
2484 scan_fini();
2485 qat_fini();
2486 spa_import_progress_destroy();
2487
2488 avl_destroy(&spa_namespace_avl);
2489 avl_destroy(&spa_spare_avl);
2490 avl_destroy(&spa_l2cache_avl);
2491
2492 cv_destroy(&spa_namespace_cv);
2493 mutex_destroy(&spa_namespace_lock);
2494 mutex_destroy(&spa_spare_lock);
2495 mutex_destroy(&spa_l2cache_lock);
2496 }
2497
2498 /*
2499 * Return whether this pool has a dedicated slog device. No locking needed.
2500 * It's not a problem if the wrong answer is returned as it's only for
2501 * performance and not correctness.
2502 */
2503 boolean_t
2504 spa_has_slogs(spa_t *spa)
2505 {
2506 return (spa->spa_log_class->mc_groups != 0);
2507 }
2508
2509 spa_log_state_t
2510 spa_get_log_state(spa_t *spa)
2511 {
2512 return (spa->spa_log_state);
2513 }
2514
2515 void
2516 spa_set_log_state(spa_t *spa, spa_log_state_t state)
2517 {
2518 spa->spa_log_state = state;
2519 }
2520
2521 boolean_t
2522 spa_is_root(spa_t *spa)
2523 {
2524 return (spa->spa_is_root);
2525 }
2526
2527 boolean_t
2528 spa_writeable(spa_t *spa)
2529 {
2530 return (!!(spa->spa_mode & SPA_MODE_WRITE) && spa->spa_trust_config);
2531 }
2532
2533 /*
2534 * Returns true if there is a pending sync task in any of the current
2535 * syncing txg, the current quiescing txg, or the current open txg.
2536 */
2537 boolean_t
2538 spa_has_pending_synctask(spa_t *spa)
2539 {
2540 return (!txg_all_lists_empty(&spa->spa_dsl_pool->dp_sync_tasks) ||
2541 !txg_all_lists_empty(&spa->spa_dsl_pool->dp_early_sync_tasks));
2542 }
2543
2544 spa_mode_t
2545 spa_mode(spa_t *spa)
2546 {
2547 return (spa->spa_mode);
2548 }
2549
2550 uint64_t
2551 spa_bootfs(spa_t *spa)
2552 {
2553 return (spa->spa_bootfs);
2554 }
2555
2556 uint64_t
2557 spa_delegation(spa_t *spa)
2558 {
2559 return (spa->spa_delegation);
2560 }
2561
2562 objset_t *
2563 spa_meta_objset(spa_t *spa)
2564 {
2565 return (spa->spa_meta_objset);
2566 }
2567
2568 enum zio_checksum
2569 spa_dedup_checksum(spa_t *spa)
2570 {
2571 return (spa->spa_dedup_checksum);
2572 }
2573
2574 /*
2575 * Reset pool scan stat per scan pass (or reboot).
2576 */
2577 void
2578 spa_scan_stat_init(spa_t *spa)
2579 {
2580 /* data not stored on disk */
2581 spa->spa_scan_pass_start = gethrestime_sec();
2582 if (dsl_scan_is_paused_scrub(spa->spa_dsl_pool->dp_scan))
2583 spa->spa_scan_pass_scrub_pause = spa->spa_scan_pass_start;
2584 else
2585 spa->spa_scan_pass_scrub_pause = 0;
2586
2587 if (dsl_errorscrub_is_paused(spa->spa_dsl_pool->dp_scan))
2588 spa->spa_scan_pass_errorscrub_pause = spa->spa_scan_pass_start;
2589 else
2590 spa->spa_scan_pass_errorscrub_pause = 0;
2591
2592 spa->spa_scan_pass_scrub_spent_paused = 0;
2593 spa->spa_scan_pass_exam = 0;
2594 spa->spa_scan_pass_issued = 0;
2595
2596 // error scrub stats
2597 spa->spa_scan_pass_errorscrub_spent_paused = 0;
2598 }
2599
2600 /*
2601 * Get scan stats for zpool status reports
2602 */
2603 int
2604 spa_scan_get_stats(spa_t *spa, pool_scan_stat_t *ps)
2605 {
2606 dsl_scan_t *scn = spa->spa_dsl_pool ? spa->spa_dsl_pool->dp_scan : NULL;
2607
2608 if (scn == NULL || (scn->scn_phys.scn_func == POOL_SCAN_NONE &&
2609 scn->errorscrub_phys.dep_func == POOL_SCAN_NONE))
2610 return (SET_ERROR(ENOENT));
2611
2612 memset(ps, 0, sizeof (pool_scan_stat_t));
2613
2614 /* data stored on disk */
2615 ps->pss_func = scn->scn_phys.scn_func;
2616 ps->pss_state = scn->scn_phys.scn_state;
2617 ps->pss_start_time = scn->scn_phys.scn_start_time;
2618 ps->pss_end_time = scn->scn_phys.scn_end_time;
2619 ps->pss_to_examine = scn->scn_phys.scn_to_examine;
2620 ps->pss_examined = scn->scn_phys.scn_examined;
2621 ps->pss_skipped = scn->scn_phys.scn_skipped;
2622 ps->pss_processed = scn->scn_phys.scn_processed;
2623 ps->pss_errors = scn->scn_phys.scn_errors;
2624
2625 /* data not stored on disk */
2626 ps->pss_pass_exam = spa->spa_scan_pass_exam;
2627 ps->pss_pass_start = spa->spa_scan_pass_start;
2628 ps->pss_pass_scrub_pause = spa->spa_scan_pass_scrub_pause;
2629 ps->pss_pass_scrub_spent_paused = spa->spa_scan_pass_scrub_spent_paused;
2630 ps->pss_pass_issued = spa->spa_scan_pass_issued;
2631 ps->pss_issued =
2632 scn->scn_issued_before_pass + spa->spa_scan_pass_issued;
2633
2634 /* error scrub data stored on disk */
2635 ps->pss_error_scrub_func = scn->errorscrub_phys.dep_func;
2636 ps->pss_error_scrub_state = scn->errorscrub_phys.dep_state;
2637 ps->pss_error_scrub_start = scn->errorscrub_phys.dep_start_time;
2638 ps->pss_error_scrub_end = scn->errorscrub_phys.dep_end_time;
2639 ps->pss_error_scrub_examined = scn->errorscrub_phys.dep_examined;
2640 ps->pss_error_scrub_to_be_examined =
2641 scn->errorscrub_phys.dep_to_examine;
2642
2643 /* error scrub data not stored on disk */
2644 ps->pss_pass_error_scrub_pause = spa->spa_scan_pass_errorscrub_pause;
2645
2646 return (0);
2647 }
2648
2649 int
2650 spa_maxblocksize(spa_t *spa)
2651 {
2652 if (spa_feature_is_enabled(spa, SPA_FEATURE_LARGE_BLOCKS))
2653 return (SPA_MAXBLOCKSIZE);
2654 else
2655 return (SPA_OLD_MAXBLOCKSIZE);
2656 }
2657
2658
2659 /*
2660 * Returns the txg that the last device removal completed. No indirect mappings
2661 * have been added since this txg.
2662 */
2663 uint64_t
2664 spa_get_last_removal_txg(spa_t *spa)
2665 {
2666 uint64_t vdevid;
2667 uint64_t ret = -1ULL;
2668
2669 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
2670 /*
2671 * sr_prev_indirect_vdev is only modified while holding all the
2672 * config locks, so it is sufficient to hold SCL_VDEV as reader when
2673 * examining it.
2674 */
2675 vdevid = spa->spa_removing_phys.sr_prev_indirect_vdev;
2676
2677 while (vdevid != -1ULL) {
2678 vdev_t *vd = vdev_lookup_top(spa, vdevid);
2679 vdev_indirect_births_t *vib = vd->vdev_indirect_births;
2680
2681 ASSERT3P(vd->vdev_ops, ==, &vdev_indirect_ops);
2682
2683 /*
2684 * If the removal did not remap any data, we don't care.
2685 */
2686 if (vdev_indirect_births_count(vib) != 0) {
2687 ret = vdev_indirect_births_last_entry_txg(vib);
2688 break;
2689 }
2690
2691 vdevid = vd->vdev_indirect_config.vic_prev_indirect_vdev;
2692 }
2693 spa_config_exit(spa, SCL_VDEV, FTAG);
2694
2695 IMPLY(ret != -1ULL,
2696 spa_feature_is_active(spa, SPA_FEATURE_DEVICE_REMOVAL));
2697
2698 return (ret);
2699 }
2700
2701 int
2702 spa_maxdnodesize(spa_t *spa)
2703 {
2704 if (spa_feature_is_enabled(spa, SPA_FEATURE_LARGE_DNODE))
2705 return (DNODE_MAX_SIZE);
2706 else
2707 return (DNODE_MIN_SIZE);
2708 }
2709
2710 boolean_t
2711 spa_multihost(spa_t *spa)
2712 {
2713 return (spa->spa_multihost ? B_TRUE : B_FALSE);
2714 }
2715
2716 uint32_t
2717 spa_get_hostid(spa_t *spa)
2718 {
2719 return (spa->spa_hostid);
2720 }
2721
2722 boolean_t
2723 spa_trust_config(spa_t *spa)
2724 {
2725 return (spa->spa_trust_config);
2726 }
2727
2728 uint64_t
2729 spa_missing_tvds_allowed(spa_t *spa)
2730 {
2731 return (spa->spa_missing_tvds_allowed);
2732 }
2733
2734 space_map_t *
2735 spa_syncing_log_sm(spa_t *spa)
2736 {
2737 return (spa->spa_syncing_log_sm);
2738 }
2739
2740 void
2741 spa_set_missing_tvds(spa_t *spa, uint64_t missing)
2742 {
2743 spa->spa_missing_tvds = missing;
2744 }
2745
2746 /*
2747 * Return the pool state string ("ONLINE", "DEGRADED", "SUSPENDED", etc).
2748 */
2749 const char *
2750 spa_state_to_name(spa_t *spa)
2751 {
2752 ASSERT3P(spa, !=, NULL);
2753
2754 /*
2755 * it is possible for the spa to exist, without root vdev
2756 * as the spa transitions during import/export
2757 */
2758 vdev_t *rvd = spa->spa_root_vdev;
2759 if (rvd == NULL) {
2760 return ("TRANSITIONING");
2761 }
2762 vdev_state_t state = rvd->vdev_state;
2763 vdev_aux_t aux = rvd->vdev_stat.vs_aux;
2764
2765 if (spa_suspended(spa) &&
2766 (spa_get_failmode(spa) != ZIO_FAILURE_MODE_CONTINUE))
2767 return ("SUSPENDED");
2768
2769 switch (state) {
2770 case VDEV_STATE_CLOSED:
2771 case VDEV_STATE_OFFLINE:
2772 return ("OFFLINE");
2773 case VDEV_STATE_REMOVED:
2774 return ("REMOVED");
2775 case VDEV_STATE_CANT_OPEN:
2776 if (aux == VDEV_AUX_CORRUPT_DATA || aux == VDEV_AUX_BAD_LOG)
2777 return ("FAULTED");
2778 else if (aux == VDEV_AUX_SPLIT_POOL)
2779 return ("SPLIT");
2780 else
2781 return ("UNAVAIL");
2782 case VDEV_STATE_FAULTED:
2783 return ("FAULTED");
2784 case VDEV_STATE_DEGRADED:
2785 return ("DEGRADED");
2786 case VDEV_STATE_HEALTHY:
2787 return ("ONLINE");
2788 default:
2789 break;
2790 }
2791
2792 return ("UNKNOWN");
2793 }
2794
2795 boolean_t
2796 spa_top_vdevs_spacemap_addressable(spa_t *spa)
2797 {
2798 vdev_t *rvd = spa->spa_root_vdev;
2799 for (uint64_t c = 0; c < rvd->vdev_children; c++) {
2800 if (!vdev_is_spacemap_addressable(rvd->vdev_child[c]))
2801 return (B_FALSE);
2802 }
2803 return (B_TRUE);
2804 }
2805
2806 boolean_t
2807 spa_has_checkpoint(spa_t *spa)
2808 {
2809 return (spa->spa_checkpoint_txg != 0);
2810 }
2811
2812 boolean_t
2813 spa_importing_readonly_checkpoint(spa_t *spa)
2814 {
2815 return ((spa->spa_import_flags & ZFS_IMPORT_CHECKPOINT) &&
2816 spa->spa_mode == SPA_MODE_READ);
2817 }
2818
2819 uint64_t
2820 spa_min_claim_txg(spa_t *spa)
2821 {
2822 uint64_t checkpoint_txg = spa->spa_uberblock.ub_checkpoint_txg;
2823
2824 if (checkpoint_txg != 0)
2825 return (checkpoint_txg + 1);
2826
2827 return (spa->spa_first_txg);
2828 }
2829
2830 /*
2831 * If there is a checkpoint, async destroys may consume more space from
2832 * the pool instead of freeing it. In an attempt to save the pool from
2833 * getting suspended when it is about to run out of space, we stop
2834 * processing async destroys.
2835 */
2836 boolean_t
2837 spa_suspend_async_destroy(spa_t *spa)
2838 {
2839 dsl_pool_t *dp = spa_get_dsl(spa);
2840
2841 uint64_t unreserved = dsl_pool_unreserved_space(dp,
2842 ZFS_SPACE_CHECK_EXTRA_RESERVED);
2843 uint64_t used = dsl_dir_phys(dp->dp_root_dir)->dd_used_bytes;
2844 uint64_t avail = (unreserved > used) ? (unreserved - used) : 0;
2845
2846 if (spa_has_checkpoint(spa) && avail == 0)
2847 return (B_TRUE);
2848
2849 return (B_FALSE);
2850 }
2851
2852 #if defined(_KERNEL)
2853
2854 int
2855 param_set_deadman_failmode_common(const char *val)
2856 {
2857 spa_t *spa = NULL;
2858 char *p;
2859
2860 if (val == NULL)
2861 return (SET_ERROR(EINVAL));
2862
2863 if ((p = strchr(val, '\n')) != NULL)
2864 *p = '\0';
2865
2866 if (strcmp(val, "wait") != 0 && strcmp(val, "continue") != 0 &&
2867 strcmp(val, "panic"))
2868 return (SET_ERROR(EINVAL));
2869
2870 if (spa_mode_global != SPA_MODE_UNINIT) {
2871 mutex_enter(&spa_namespace_lock);
2872 while ((spa = spa_next(spa)) != NULL)
2873 spa_set_deadman_failmode(spa, val);
2874 mutex_exit(&spa_namespace_lock);
2875 }
2876
2877 return (0);
2878 }
2879 #endif
2880
2881 /* Namespace manipulation */
2882 EXPORT_SYMBOL(spa_lookup);
2883 EXPORT_SYMBOL(spa_add);
2884 EXPORT_SYMBOL(spa_remove);
2885 EXPORT_SYMBOL(spa_next);
2886
2887 /* Refcount functions */
2888 EXPORT_SYMBOL(spa_open_ref);
2889 EXPORT_SYMBOL(spa_close);
2890 EXPORT_SYMBOL(spa_refcount_zero);
2891
2892 /* Pool configuration lock */
2893 EXPORT_SYMBOL(spa_config_tryenter);
2894 EXPORT_SYMBOL(spa_config_enter);
2895 EXPORT_SYMBOL(spa_config_exit);
2896 EXPORT_SYMBOL(spa_config_held);
2897
2898 /* Pool vdev add/remove lock */
2899 EXPORT_SYMBOL(spa_vdev_enter);
2900 EXPORT_SYMBOL(spa_vdev_exit);
2901
2902 /* Pool vdev state change lock */
2903 EXPORT_SYMBOL(spa_vdev_state_enter);
2904 EXPORT_SYMBOL(spa_vdev_state_exit);
2905
2906 /* Accessor functions */
2907 EXPORT_SYMBOL(spa_shutting_down);
2908 EXPORT_SYMBOL(spa_get_dsl);
2909 EXPORT_SYMBOL(spa_get_rootblkptr);
2910 EXPORT_SYMBOL(spa_set_rootblkptr);
2911 EXPORT_SYMBOL(spa_altroot);
2912 EXPORT_SYMBOL(spa_sync_pass);
2913 EXPORT_SYMBOL(spa_name);
2914 EXPORT_SYMBOL(spa_guid);
2915 EXPORT_SYMBOL(spa_last_synced_txg);
2916 EXPORT_SYMBOL(spa_first_txg);
2917 EXPORT_SYMBOL(spa_syncing_txg);
2918 EXPORT_SYMBOL(spa_version);
2919 EXPORT_SYMBOL(spa_state);
2920 EXPORT_SYMBOL(spa_load_state);
2921 EXPORT_SYMBOL(spa_freeze_txg);
2922 EXPORT_SYMBOL(spa_get_dspace);
2923 EXPORT_SYMBOL(spa_update_dspace);
2924 EXPORT_SYMBOL(spa_deflate);
2925 EXPORT_SYMBOL(spa_normal_class);
2926 EXPORT_SYMBOL(spa_log_class);
2927 EXPORT_SYMBOL(spa_special_class);
2928 EXPORT_SYMBOL(spa_preferred_class);
2929 EXPORT_SYMBOL(spa_max_replication);
2930 EXPORT_SYMBOL(spa_prev_software_version);
2931 EXPORT_SYMBOL(spa_get_failmode);
2932 EXPORT_SYMBOL(spa_suspended);
2933 EXPORT_SYMBOL(spa_bootfs);
2934 EXPORT_SYMBOL(spa_delegation);
2935 EXPORT_SYMBOL(spa_meta_objset);
2936 EXPORT_SYMBOL(spa_maxblocksize);
2937 EXPORT_SYMBOL(spa_maxdnodesize);
2938
2939 /* Miscellaneous support routines */
2940 EXPORT_SYMBOL(spa_guid_exists);
2941 EXPORT_SYMBOL(spa_strdup);
2942 EXPORT_SYMBOL(spa_strfree);
2943 EXPORT_SYMBOL(spa_generate_guid);
2944 EXPORT_SYMBOL(snprintf_blkptr);
2945 EXPORT_SYMBOL(spa_freeze);
2946 EXPORT_SYMBOL(spa_upgrade);
2947 EXPORT_SYMBOL(spa_evict_all);
2948 EXPORT_SYMBOL(spa_lookup_by_guid);
2949 EXPORT_SYMBOL(spa_has_spare);
2950 EXPORT_SYMBOL(dva_get_dsize_sync);
2951 EXPORT_SYMBOL(bp_get_dsize_sync);
2952 EXPORT_SYMBOL(bp_get_dsize);
2953 EXPORT_SYMBOL(spa_has_slogs);
2954 EXPORT_SYMBOL(spa_is_root);
2955 EXPORT_SYMBOL(spa_writeable);
2956 EXPORT_SYMBOL(spa_mode);
2957 EXPORT_SYMBOL(spa_namespace_lock);
2958 EXPORT_SYMBOL(spa_trust_config);
2959 EXPORT_SYMBOL(spa_missing_tvds_allowed);
2960 EXPORT_SYMBOL(spa_set_missing_tvds);
2961 EXPORT_SYMBOL(spa_state_to_name);
2962 EXPORT_SYMBOL(spa_importing_readonly_checkpoint);
2963 EXPORT_SYMBOL(spa_min_claim_txg);
2964 EXPORT_SYMBOL(spa_suspend_async_destroy);
2965 EXPORT_SYMBOL(spa_has_checkpoint);
2966 EXPORT_SYMBOL(spa_top_vdevs_spacemap_addressable);
2967
2968 ZFS_MODULE_PARAM(zfs, zfs_, flags, UINT, ZMOD_RW,
2969 "Set additional debugging flags");
2970
2971 ZFS_MODULE_PARAM(zfs, zfs_, recover, INT, ZMOD_RW,
2972 "Set to attempt to recover from fatal errors");
2973
2974 ZFS_MODULE_PARAM(zfs, zfs_, free_leak_on_eio, INT, ZMOD_RW,
2975 "Set to ignore IO errors during free and permanently leak the space");
2976
2977 ZFS_MODULE_PARAM(zfs_deadman, zfs_deadman_, checktime_ms, U64, ZMOD_RW,
2978 "Dead I/O check interval in milliseconds");
2979
2980 ZFS_MODULE_PARAM(zfs_deadman, zfs_deadman_, enabled, INT, ZMOD_RW,
2981 "Enable deadman timer");
2982
2983 ZFS_MODULE_PARAM(zfs_spa, spa_, asize_inflation, UINT, ZMOD_RW,
2984 "SPA size estimate multiplication factor");
2985
2986 ZFS_MODULE_PARAM(zfs, zfs_, ddt_data_is_special, INT, ZMOD_RW,
2987 "Place DDT data into the special class");
2988
2989 ZFS_MODULE_PARAM(zfs, zfs_, user_indirect_is_special, INT, ZMOD_RW,
2990 "Place user data indirect blocks into the special class");
2991
2992 /* BEGIN CSTYLED */
2993 ZFS_MODULE_PARAM_CALL(zfs_deadman, zfs_deadman_, failmode,
2994 param_set_deadman_failmode, param_get_charp, ZMOD_RW,
2995 "Failmode for deadman timer");
2996
2997 ZFS_MODULE_PARAM_CALL(zfs_deadman, zfs_deadman_, synctime_ms,
2998 param_set_deadman_synctime, spl_param_get_u64, ZMOD_RW,
2999 "Pool sync expiration time in milliseconds");
3000
3001 ZFS_MODULE_PARAM_CALL(zfs_deadman, zfs_deadman_, ziotime_ms,
3002 param_set_deadman_ziotime, spl_param_get_u64, ZMOD_RW,
3003 "IO expiration time in milliseconds");
3004
3005 ZFS_MODULE_PARAM(zfs, zfs_, special_class_metadata_reserve_pct, UINT, ZMOD_RW,
3006 "Small file blocks in special vdevs depends on this much "
3007 "free space available");
3008 /* END CSTYLED */
3009
3010 ZFS_MODULE_PARAM_CALL(zfs_spa, spa_, slop_shift, param_set_slop_shift,
3011 param_get_uint, ZMOD_RW, "Reserved free space in pool");