]> git.proxmox.com Git - mirror_zfs.git/blob - module/zfs/vdev.c
Fix double const qualifier declarations
[mirror_zfs.git] / module / zfs / vdev.c
1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or https://opensource.org/licenses/CDDL-1.0.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21
22 /*
23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24 * Copyright (c) 2011, 2021 by Delphix. All rights reserved.
25 * Copyright 2017 Nexenta Systems, Inc.
26 * Copyright (c) 2014 Integros [integros.com]
27 * Copyright 2016 Toomas Soome <tsoome@me.com>
28 * Copyright 2017 Joyent, Inc.
29 * Copyright (c) 2017, Intel Corporation.
30 * Copyright (c) 2019, Datto Inc. All rights reserved.
31 * Copyright (c) 2021, Klara Inc.
32 * Copyright [2021] Hewlett Packard Enterprise Development LP
33 */
34
35 #include <sys/zfs_context.h>
36 #include <sys/fm/fs/zfs.h>
37 #include <sys/spa.h>
38 #include <sys/spa_impl.h>
39 #include <sys/bpobj.h>
40 #include <sys/dmu.h>
41 #include <sys/dmu_tx.h>
42 #include <sys/dsl_dir.h>
43 #include <sys/vdev_impl.h>
44 #include <sys/vdev_rebuild.h>
45 #include <sys/vdev_draid.h>
46 #include <sys/uberblock_impl.h>
47 #include <sys/metaslab.h>
48 #include <sys/metaslab_impl.h>
49 #include <sys/space_map.h>
50 #include <sys/space_reftree.h>
51 #include <sys/zio.h>
52 #include <sys/zap.h>
53 #include <sys/fs/zfs.h>
54 #include <sys/arc.h>
55 #include <sys/zil.h>
56 #include <sys/dsl_scan.h>
57 #include <sys/vdev_raidz.h>
58 #include <sys/abd.h>
59 #include <sys/vdev_initialize.h>
60 #include <sys/vdev_trim.h>
61 #include <sys/zvol.h>
62 #include <sys/zfs_ratelimit.h>
63 #include "zfs_prop.h"
64
65 /*
66 * One metaslab from each (normal-class) vdev is used by the ZIL. These are
67 * called "embedded slog metaslabs", are referenced by vdev_log_mg, and are
68 * part of the spa_embedded_log_class. The metaslab with the most free space
69 * in each vdev is selected for this purpose when the pool is opened (or a
70 * vdev is added). See vdev_metaslab_init().
71 *
72 * Log blocks can be allocated from the following locations. Each one is tried
73 * in order until the allocation succeeds:
74 * 1. dedicated log vdevs, aka "slog" (spa_log_class)
75 * 2. embedded slog metaslabs (spa_embedded_log_class)
76 * 3. other metaslabs in normal vdevs (spa_normal_class)
77 *
78 * zfs_embedded_slog_min_ms disables the embedded slog if there are fewer
79 * than this number of metaslabs in the vdev. This ensures that we don't set
80 * aside an unreasonable amount of space for the ZIL. If set to less than
81 * 1 << (spa_slop_shift + 1), on small pools the usable space may be reduced
82 * (by more than 1<<spa_slop_shift) due to the embedded slog metaslab.
83 */
84 static uint_t zfs_embedded_slog_min_ms = 64;
85
86 /* default target for number of metaslabs per top-level vdev */
87 static uint_t zfs_vdev_default_ms_count = 200;
88
89 /* minimum number of metaslabs per top-level vdev */
90 static uint_t zfs_vdev_min_ms_count = 16;
91
92 /* practical upper limit of total metaslabs per top-level vdev */
93 static uint_t zfs_vdev_ms_count_limit = 1ULL << 17;
94
95 /* lower limit for metaslab size (512M) */
96 static uint_t zfs_vdev_default_ms_shift = 29;
97
98 /* upper limit for metaslab size (16G) */
99 static const uint_t zfs_vdev_max_ms_shift = 34;
100
101 int vdev_validate_skip = B_FALSE;
102
103 /*
104 * Since the DTL space map of a vdev is not expected to have a lot of
105 * entries, we default its block size to 4K.
106 */
107 int zfs_vdev_dtl_sm_blksz = (1 << 12);
108
109 /*
110 * Rate limit slow IO (delay) events to this many per second.
111 */
112 static unsigned int zfs_slow_io_events_per_second = 20;
113
114 /*
115 * Rate limit checksum events after this many checksum errors per second.
116 */
117 static unsigned int zfs_checksum_events_per_second = 20;
118
119 /*
120 * Ignore errors during scrub/resilver. Allows to work around resilver
121 * upon import when there are pool errors.
122 */
123 static int zfs_scan_ignore_errors = 0;
124
125 /*
126 * vdev-wide space maps that have lots of entries written to them at
127 * the end of each transaction can benefit from a higher I/O bandwidth
128 * (e.g. vdev_obsolete_sm), thus we default their block size to 128K.
129 */
130 int zfs_vdev_standard_sm_blksz = (1 << 17);
131
132 /*
133 * Tunable parameter for debugging or performance analysis. Setting this
134 * will cause pool corruption on power loss if a volatile out-of-order
135 * write cache is enabled.
136 */
137 int zfs_nocacheflush = 0;
138
139 /*
140 * Maximum and minimum ashift values that can be automatically set based on
141 * vdev's physical ashift (disk's physical sector size). While ASHIFT_MAX
142 * is higher than the maximum value, it is intentionally limited here to not
143 * excessively impact pool space efficiency. Higher ashift values may still
144 * be forced by vdev logical ashift or by user via ashift property, but won't
145 * be set automatically as a performance optimization.
146 */
147 uint64_t zfs_vdev_max_auto_ashift = 14;
148 uint64_t zfs_vdev_min_auto_ashift = ASHIFT_MIN;
149
150 void
151 vdev_dbgmsg(vdev_t *vd, const char *fmt, ...)
152 {
153 va_list adx;
154 char buf[256];
155
156 va_start(adx, fmt);
157 (void) vsnprintf(buf, sizeof (buf), fmt, adx);
158 va_end(adx);
159
160 if (vd->vdev_path != NULL) {
161 zfs_dbgmsg("%s vdev '%s': %s", vd->vdev_ops->vdev_op_type,
162 vd->vdev_path, buf);
163 } else {
164 zfs_dbgmsg("%s-%llu vdev (guid %llu): %s",
165 vd->vdev_ops->vdev_op_type,
166 (u_longlong_t)vd->vdev_id,
167 (u_longlong_t)vd->vdev_guid, buf);
168 }
169 }
170
171 void
172 vdev_dbgmsg_print_tree(vdev_t *vd, int indent)
173 {
174 char state[20];
175
176 if (vd->vdev_ishole || vd->vdev_ops == &vdev_missing_ops) {
177 zfs_dbgmsg("%*svdev %llu: %s", indent, "",
178 (u_longlong_t)vd->vdev_id,
179 vd->vdev_ops->vdev_op_type);
180 return;
181 }
182
183 switch (vd->vdev_state) {
184 case VDEV_STATE_UNKNOWN:
185 (void) snprintf(state, sizeof (state), "unknown");
186 break;
187 case VDEV_STATE_CLOSED:
188 (void) snprintf(state, sizeof (state), "closed");
189 break;
190 case VDEV_STATE_OFFLINE:
191 (void) snprintf(state, sizeof (state), "offline");
192 break;
193 case VDEV_STATE_REMOVED:
194 (void) snprintf(state, sizeof (state), "removed");
195 break;
196 case VDEV_STATE_CANT_OPEN:
197 (void) snprintf(state, sizeof (state), "can't open");
198 break;
199 case VDEV_STATE_FAULTED:
200 (void) snprintf(state, sizeof (state), "faulted");
201 break;
202 case VDEV_STATE_DEGRADED:
203 (void) snprintf(state, sizeof (state), "degraded");
204 break;
205 case VDEV_STATE_HEALTHY:
206 (void) snprintf(state, sizeof (state), "healthy");
207 break;
208 default:
209 (void) snprintf(state, sizeof (state), "<state %u>",
210 (uint_t)vd->vdev_state);
211 }
212
213 zfs_dbgmsg("%*svdev %u: %s%s, guid: %llu, path: %s, %s", indent,
214 "", (int)vd->vdev_id, vd->vdev_ops->vdev_op_type,
215 vd->vdev_islog ? " (log)" : "",
216 (u_longlong_t)vd->vdev_guid,
217 vd->vdev_path ? vd->vdev_path : "N/A", state);
218
219 for (uint64_t i = 0; i < vd->vdev_children; i++)
220 vdev_dbgmsg_print_tree(vd->vdev_child[i], indent + 2);
221 }
222
223 /*
224 * Virtual device management.
225 */
226
227 static vdev_ops_t *const vdev_ops_table[] = {
228 &vdev_root_ops,
229 &vdev_raidz_ops,
230 &vdev_draid_ops,
231 &vdev_draid_spare_ops,
232 &vdev_mirror_ops,
233 &vdev_replacing_ops,
234 &vdev_spare_ops,
235 &vdev_disk_ops,
236 &vdev_file_ops,
237 &vdev_missing_ops,
238 &vdev_hole_ops,
239 &vdev_indirect_ops,
240 NULL
241 };
242
243 /*
244 * Given a vdev type, return the appropriate ops vector.
245 */
246 static vdev_ops_t *
247 vdev_getops(const char *type)
248 {
249 vdev_ops_t *ops, *const *opspp;
250
251 for (opspp = vdev_ops_table; (ops = *opspp) != NULL; opspp++)
252 if (strcmp(ops->vdev_op_type, type) == 0)
253 break;
254
255 return (ops);
256 }
257
258 /*
259 * Given a vdev and a metaslab class, find which metaslab group we're
260 * interested in. All vdevs may belong to two different metaslab classes.
261 * Dedicated slog devices use only the primary metaslab group, rather than a
262 * separate log group. For embedded slogs, the vdev_log_mg will be non-NULL.
263 */
264 metaslab_group_t *
265 vdev_get_mg(vdev_t *vd, metaslab_class_t *mc)
266 {
267 if (mc == spa_embedded_log_class(vd->vdev_spa) &&
268 vd->vdev_log_mg != NULL)
269 return (vd->vdev_log_mg);
270 else
271 return (vd->vdev_mg);
272 }
273
274 void
275 vdev_default_xlate(vdev_t *vd, const range_seg64_t *logical_rs,
276 range_seg64_t *physical_rs, range_seg64_t *remain_rs)
277 {
278 (void) vd, (void) remain_rs;
279
280 physical_rs->rs_start = logical_rs->rs_start;
281 physical_rs->rs_end = logical_rs->rs_end;
282 }
283
284 /*
285 * Derive the enumerated allocation bias from string input.
286 * String origin is either the per-vdev zap or zpool(8).
287 */
288 static vdev_alloc_bias_t
289 vdev_derive_alloc_bias(const char *bias)
290 {
291 vdev_alloc_bias_t alloc_bias = VDEV_BIAS_NONE;
292
293 if (strcmp(bias, VDEV_ALLOC_BIAS_LOG) == 0)
294 alloc_bias = VDEV_BIAS_LOG;
295 else if (strcmp(bias, VDEV_ALLOC_BIAS_SPECIAL) == 0)
296 alloc_bias = VDEV_BIAS_SPECIAL;
297 else if (strcmp(bias, VDEV_ALLOC_BIAS_DEDUP) == 0)
298 alloc_bias = VDEV_BIAS_DEDUP;
299
300 return (alloc_bias);
301 }
302
303 /*
304 * Default asize function: return the MAX of psize with the asize of
305 * all children. This is what's used by anything other than RAID-Z.
306 */
307 uint64_t
308 vdev_default_asize(vdev_t *vd, uint64_t psize)
309 {
310 uint64_t asize = P2ROUNDUP(psize, 1ULL << vd->vdev_top->vdev_ashift);
311 uint64_t csize;
312
313 for (int c = 0; c < vd->vdev_children; c++) {
314 csize = vdev_psize_to_asize(vd->vdev_child[c], psize);
315 asize = MAX(asize, csize);
316 }
317
318 return (asize);
319 }
320
321 uint64_t
322 vdev_default_min_asize(vdev_t *vd)
323 {
324 return (vd->vdev_min_asize);
325 }
326
327 /*
328 * Get the minimum allocatable size. We define the allocatable size as
329 * the vdev's asize rounded to the nearest metaslab. This allows us to
330 * replace or attach devices which don't have the same physical size but
331 * can still satisfy the same number of allocations.
332 */
333 uint64_t
334 vdev_get_min_asize(vdev_t *vd)
335 {
336 vdev_t *pvd = vd->vdev_parent;
337
338 /*
339 * If our parent is NULL (inactive spare or cache) or is the root,
340 * just return our own asize.
341 */
342 if (pvd == NULL)
343 return (vd->vdev_asize);
344
345 /*
346 * The top-level vdev just returns the allocatable size rounded
347 * to the nearest metaslab.
348 */
349 if (vd == vd->vdev_top)
350 return (P2ALIGN(vd->vdev_asize, 1ULL << vd->vdev_ms_shift));
351
352 return (pvd->vdev_ops->vdev_op_min_asize(pvd));
353 }
354
355 void
356 vdev_set_min_asize(vdev_t *vd)
357 {
358 vd->vdev_min_asize = vdev_get_min_asize(vd);
359
360 for (int c = 0; c < vd->vdev_children; c++)
361 vdev_set_min_asize(vd->vdev_child[c]);
362 }
363
364 /*
365 * Get the minimal allocation size for the top-level vdev.
366 */
367 uint64_t
368 vdev_get_min_alloc(vdev_t *vd)
369 {
370 uint64_t min_alloc = 1ULL << vd->vdev_ashift;
371
372 if (vd->vdev_ops->vdev_op_min_alloc != NULL)
373 min_alloc = vd->vdev_ops->vdev_op_min_alloc(vd);
374
375 return (min_alloc);
376 }
377
378 /*
379 * Get the parity level for a top-level vdev.
380 */
381 uint64_t
382 vdev_get_nparity(vdev_t *vd)
383 {
384 uint64_t nparity = 0;
385
386 if (vd->vdev_ops->vdev_op_nparity != NULL)
387 nparity = vd->vdev_ops->vdev_op_nparity(vd);
388
389 return (nparity);
390 }
391
392 /*
393 * Get the number of data disks for a top-level vdev.
394 */
395 uint64_t
396 vdev_get_ndisks(vdev_t *vd)
397 {
398 uint64_t ndisks = 1;
399
400 if (vd->vdev_ops->vdev_op_ndisks != NULL)
401 ndisks = vd->vdev_ops->vdev_op_ndisks(vd);
402
403 return (ndisks);
404 }
405
406 vdev_t *
407 vdev_lookup_top(spa_t *spa, uint64_t vdev)
408 {
409 vdev_t *rvd = spa->spa_root_vdev;
410
411 ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
412
413 if (vdev < rvd->vdev_children) {
414 ASSERT(rvd->vdev_child[vdev] != NULL);
415 return (rvd->vdev_child[vdev]);
416 }
417
418 return (NULL);
419 }
420
421 vdev_t *
422 vdev_lookup_by_guid(vdev_t *vd, uint64_t guid)
423 {
424 vdev_t *mvd;
425
426 if (vd->vdev_guid == guid)
427 return (vd);
428
429 for (int c = 0; c < vd->vdev_children; c++)
430 if ((mvd = vdev_lookup_by_guid(vd->vdev_child[c], guid)) !=
431 NULL)
432 return (mvd);
433
434 return (NULL);
435 }
436
437 static int
438 vdev_count_leaves_impl(vdev_t *vd)
439 {
440 int n = 0;
441
442 if (vd->vdev_ops->vdev_op_leaf)
443 return (1);
444
445 for (int c = 0; c < vd->vdev_children; c++)
446 n += vdev_count_leaves_impl(vd->vdev_child[c]);
447
448 return (n);
449 }
450
451 int
452 vdev_count_leaves(spa_t *spa)
453 {
454 int rc;
455
456 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
457 rc = vdev_count_leaves_impl(spa->spa_root_vdev);
458 spa_config_exit(spa, SCL_VDEV, FTAG);
459
460 return (rc);
461 }
462
463 void
464 vdev_add_child(vdev_t *pvd, vdev_t *cvd)
465 {
466 size_t oldsize, newsize;
467 uint64_t id = cvd->vdev_id;
468 vdev_t **newchild;
469
470 ASSERT(spa_config_held(cvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
471 ASSERT(cvd->vdev_parent == NULL);
472
473 cvd->vdev_parent = pvd;
474
475 if (pvd == NULL)
476 return;
477
478 ASSERT(id >= pvd->vdev_children || pvd->vdev_child[id] == NULL);
479
480 oldsize = pvd->vdev_children * sizeof (vdev_t *);
481 pvd->vdev_children = MAX(pvd->vdev_children, id + 1);
482 newsize = pvd->vdev_children * sizeof (vdev_t *);
483
484 newchild = kmem_alloc(newsize, KM_SLEEP);
485 if (pvd->vdev_child != NULL) {
486 memcpy(newchild, pvd->vdev_child, oldsize);
487 kmem_free(pvd->vdev_child, oldsize);
488 }
489
490 pvd->vdev_child = newchild;
491 pvd->vdev_child[id] = cvd;
492
493 cvd->vdev_top = (pvd->vdev_top ? pvd->vdev_top: cvd);
494 ASSERT(cvd->vdev_top->vdev_parent->vdev_parent == NULL);
495
496 /*
497 * Walk up all ancestors to update guid sum.
498 */
499 for (; pvd != NULL; pvd = pvd->vdev_parent)
500 pvd->vdev_guid_sum += cvd->vdev_guid_sum;
501
502 if (cvd->vdev_ops->vdev_op_leaf) {
503 list_insert_head(&cvd->vdev_spa->spa_leaf_list, cvd);
504 cvd->vdev_spa->spa_leaf_list_gen++;
505 }
506 }
507
508 void
509 vdev_remove_child(vdev_t *pvd, vdev_t *cvd)
510 {
511 int c;
512 uint_t id = cvd->vdev_id;
513
514 ASSERT(cvd->vdev_parent == pvd);
515
516 if (pvd == NULL)
517 return;
518
519 ASSERT(id < pvd->vdev_children);
520 ASSERT(pvd->vdev_child[id] == cvd);
521
522 pvd->vdev_child[id] = NULL;
523 cvd->vdev_parent = NULL;
524
525 for (c = 0; c < pvd->vdev_children; c++)
526 if (pvd->vdev_child[c])
527 break;
528
529 if (c == pvd->vdev_children) {
530 kmem_free(pvd->vdev_child, c * sizeof (vdev_t *));
531 pvd->vdev_child = NULL;
532 pvd->vdev_children = 0;
533 }
534
535 if (cvd->vdev_ops->vdev_op_leaf) {
536 spa_t *spa = cvd->vdev_spa;
537 list_remove(&spa->spa_leaf_list, cvd);
538 spa->spa_leaf_list_gen++;
539 }
540
541 /*
542 * Walk up all ancestors to update guid sum.
543 */
544 for (; pvd != NULL; pvd = pvd->vdev_parent)
545 pvd->vdev_guid_sum -= cvd->vdev_guid_sum;
546 }
547
548 /*
549 * Remove any holes in the child array.
550 */
551 void
552 vdev_compact_children(vdev_t *pvd)
553 {
554 vdev_t **newchild, *cvd;
555 int oldc = pvd->vdev_children;
556 int newc;
557
558 ASSERT(spa_config_held(pvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
559
560 if (oldc == 0)
561 return;
562
563 for (int c = newc = 0; c < oldc; c++)
564 if (pvd->vdev_child[c])
565 newc++;
566
567 if (newc > 0) {
568 newchild = kmem_zalloc(newc * sizeof (vdev_t *), KM_SLEEP);
569
570 for (int c = newc = 0; c < oldc; c++) {
571 if ((cvd = pvd->vdev_child[c]) != NULL) {
572 newchild[newc] = cvd;
573 cvd->vdev_id = newc++;
574 }
575 }
576 } else {
577 newchild = NULL;
578 }
579
580 kmem_free(pvd->vdev_child, oldc * sizeof (vdev_t *));
581 pvd->vdev_child = newchild;
582 pvd->vdev_children = newc;
583 }
584
585 /*
586 * Allocate and minimally initialize a vdev_t.
587 */
588 vdev_t *
589 vdev_alloc_common(spa_t *spa, uint_t id, uint64_t guid, vdev_ops_t *ops)
590 {
591 vdev_t *vd;
592 vdev_indirect_config_t *vic;
593
594 vd = kmem_zalloc(sizeof (vdev_t), KM_SLEEP);
595 vic = &vd->vdev_indirect_config;
596
597 if (spa->spa_root_vdev == NULL) {
598 ASSERT(ops == &vdev_root_ops);
599 spa->spa_root_vdev = vd;
600 spa->spa_load_guid = spa_generate_guid(NULL);
601 }
602
603 if (guid == 0 && ops != &vdev_hole_ops) {
604 if (spa->spa_root_vdev == vd) {
605 /*
606 * The root vdev's guid will also be the pool guid,
607 * which must be unique among all pools.
608 */
609 guid = spa_generate_guid(NULL);
610 } else {
611 /*
612 * Any other vdev's guid must be unique within the pool.
613 */
614 guid = spa_generate_guid(spa);
615 }
616 ASSERT(!spa_guid_exists(spa_guid(spa), guid));
617 }
618
619 vd->vdev_spa = spa;
620 vd->vdev_id = id;
621 vd->vdev_guid = guid;
622 vd->vdev_guid_sum = guid;
623 vd->vdev_ops = ops;
624 vd->vdev_state = VDEV_STATE_CLOSED;
625 vd->vdev_ishole = (ops == &vdev_hole_ops);
626 vic->vic_prev_indirect_vdev = UINT64_MAX;
627
628 rw_init(&vd->vdev_indirect_rwlock, NULL, RW_DEFAULT, NULL);
629 mutex_init(&vd->vdev_obsolete_lock, NULL, MUTEX_DEFAULT, NULL);
630 vd->vdev_obsolete_segments = range_tree_create(NULL, RANGE_SEG64, NULL,
631 0, 0);
632
633 /*
634 * Initialize rate limit structs for events. We rate limit ZIO delay
635 * and checksum events so that we don't overwhelm ZED with thousands
636 * of events when a disk is acting up.
637 */
638 zfs_ratelimit_init(&vd->vdev_delay_rl, &zfs_slow_io_events_per_second,
639 1);
640 zfs_ratelimit_init(&vd->vdev_deadman_rl, &zfs_slow_io_events_per_second,
641 1);
642 zfs_ratelimit_init(&vd->vdev_checksum_rl,
643 &zfs_checksum_events_per_second, 1);
644
645 list_link_init(&vd->vdev_config_dirty_node);
646 list_link_init(&vd->vdev_state_dirty_node);
647 list_link_init(&vd->vdev_initialize_node);
648 list_link_init(&vd->vdev_leaf_node);
649 list_link_init(&vd->vdev_trim_node);
650
651 mutex_init(&vd->vdev_dtl_lock, NULL, MUTEX_NOLOCKDEP, NULL);
652 mutex_init(&vd->vdev_stat_lock, NULL, MUTEX_DEFAULT, NULL);
653 mutex_init(&vd->vdev_probe_lock, NULL, MUTEX_DEFAULT, NULL);
654 mutex_init(&vd->vdev_scan_io_queue_lock, NULL, MUTEX_DEFAULT, NULL);
655
656 mutex_init(&vd->vdev_initialize_lock, NULL, MUTEX_DEFAULT, NULL);
657 mutex_init(&vd->vdev_initialize_io_lock, NULL, MUTEX_DEFAULT, NULL);
658 cv_init(&vd->vdev_initialize_cv, NULL, CV_DEFAULT, NULL);
659 cv_init(&vd->vdev_initialize_io_cv, NULL, CV_DEFAULT, NULL);
660
661 mutex_init(&vd->vdev_trim_lock, NULL, MUTEX_DEFAULT, NULL);
662 mutex_init(&vd->vdev_autotrim_lock, NULL, MUTEX_DEFAULT, NULL);
663 mutex_init(&vd->vdev_trim_io_lock, NULL, MUTEX_DEFAULT, NULL);
664 cv_init(&vd->vdev_trim_cv, NULL, CV_DEFAULT, NULL);
665 cv_init(&vd->vdev_autotrim_cv, NULL, CV_DEFAULT, NULL);
666 cv_init(&vd->vdev_trim_io_cv, NULL, CV_DEFAULT, NULL);
667
668 mutex_init(&vd->vdev_rebuild_lock, NULL, MUTEX_DEFAULT, NULL);
669 cv_init(&vd->vdev_rebuild_cv, NULL, CV_DEFAULT, NULL);
670
671 for (int t = 0; t < DTL_TYPES; t++) {
672 vd->vdev_dtl[t] = range_tree_create(NULL, RANGE_SEG64, NULL, 0,
673 0);
674 }
675
676 txg_list_create(&vd->vdev_ms_list, spa,
677 offsetof(struct metaslab, ms_txg_node));
678 txg_list_create(&vd->vdev_dtl_list, spa,
679 offsetof(struct vdev, vdev_dtl_node));
680 vd->vdev_stat.vs_timestamp = gethrtime();
681 vdev_queue_init(vd);
682 vdev_cache_init(vd);
683
684 return (vd);
685 }
686
687 /*
688 * Allocate a new vdev. The 'alloctype' is used to control whether we are
689 * creating a new vdev or loading an existing one - the behavior is slightly
690 * different for each case.
691 */
692 int
693 vdev_alloc(spa_t *spa, vdev_t **vdp, nvlist_t *nv, vdev_t *parent, uint_t id,
694 int alloctype)
695 {
696 vdev_ops_t *ops;
697 char *type;
698 uint64_t guid = 0, islog;
699 vdev_t *vd;
700 vdev_indirect_config_t *vic;
701 char *tmp = NULL;
702 int rc;
703 vdev_alloc_bias_t alloc_bias = VDEV_BIAS_NONE;
704 boolean_t top_level = (parent && !parent->vdev_parent);
705
706 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
707
708 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_TYPE, &type) != 0)
709 return (SET_ERROR(EINVAL));
710
711 if ((ops = vdev_getops(type)) == NULL)
712 return (SET_ERROR(EINVAL));
713
714 /*
715 * If this is a load, get the vdev guid from the nvlist.
716 * Otherwise, vdev_alloc_common() will generate one for us.
717 */
718 if (alloctype == VDEV_ALLOC_LOAD) {
719 uint64_t label_id;
720
721 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ID, &label_id) ||
722 label_id != id)
723 return (SET_ERROR(EINVAL));
724
725 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
726 return (SET_ERROR(EINVAL));
727 } else if (alloctype == VDEV_ALLOC_SPARE) {
728 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
729 return (SET_ERROR(EINVAL));
730 } else if (alloctype == VDEV_ALLOC_L2CACHE) {
731 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
732 return (SET_ERROR(EINVAL));
733 } else if (alloctype == VDEV_ALLOC_ROOTPOOL) {
734 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
735 return (SET_ERROR(EINVAL));
736 }
737
738 /*
739 * The first allocated vdev must be of type 'root'.
740 */
741 if (ops != &vdev_root_ops && spa->spa_root_vdev == NULL)
742 return (SET_ERROR(EINVAL));
743
744 /*
745 * Determine whether we're a log vdev.
746 */
747 islog = 0;
748 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_IS_LOG, &islog);
749 if (islog && spa_version(spa) < SPA_VERSION_SLOGS)
750 return (SET_ERROR(ENOTSUP));
751
752 if (ops == &vdev_hole_ops && spa_version(spa) < SPA_VERSION_HOLES)
753 return (SET_ERROR(ENOTSUP));
754
755 if (top_level && alloctype == VDEV_ALLOC_ADD) {
756 char *bias;
757
758 /*
759 * If creating a top-level vdev, check for allocation
760 * classes input.
761 */
762 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_ALLOCATION_BIAS,
763 &bias) == 0) {
764 alloc_bias = vdev_derive_alloc_bias(bias);
765
766 /* spa_vdev_add() expects feature to be enabled */
767 if (spa->spa_load_state != SPA_LOAD_CREATE &&
768 !spa_feature_is_enabled(spa,
769 SPA_FEATURE_ALLOCATION_CLASSES)) {
770 return (SET_ERROR(ENOTSUP));
771 }
772 }
773
774 /* spa_vdev_add() expects feature to be enabled */
775 if (ops == &vdev_draid_ops &&
776 spa->spa_load_state != SPA_LOAD_CREATE &&
777 !spa_feature_is_enabled(spa, SPA_FEATURE_DRAID)) {
778 return (SET_ERROR(ENOTSUP));
779 }
780 }
781
782 /*
783 * Initialize the vdev specific data. This is done before calling
784 * vdev_alloc_common() since it may fail and this simplifies the
785 * error reporting and cleanup code paths.
786 */
787 void *tsd = NULL;
788 if (ops->vdev_op_init != NULL) {
789 rc = ops->vdev_op_init(spa, nv, &tsd);
790 if (rc != 0) {
791 return (rc);
792 }
793 }
794
795 vd = vdev_alloc_common(spa, id, guid, ops);
796 vd->vdev_tsd = tsd;
797 vd->vdev_islog = islog;
798
799 if (top_level && alloc_bias != VDEV_BIAS_NONE)
800 vd->vdev_alloc_bias = alloc_bias;
801
802 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PATH, &vd->vdev_path) == 0)
803 vd->vdev_path = spa_strdup(vd->vdev_path);
804
805 /*
806 * ZPOOL_CONFIG_AUX_STATE = "external" means we previously forced a
807 * fault on a vdev and want it to persist across imports (like with
808 * zpool offline -f).
809 */
810 rc = nvlist_lookup_string(nv, ZPOOL_CONFIG_AUX_STATE, &tmp);
811 if (rc == 0 && tmp != NULL && strcmp(tmp, "external") == 0) {
812 vd->vdev_stat.vs_aux = VDEV_AUX_EXTERNAL;
813 vd->vdev_faulted = 1;
814 vd->vdev_label_aux = VDEV_AUX_EXTERNAL;
815 }
816
817 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_DEVID, &vd->vdev_devid) == 0)
818 vd->vdev_devid = spa_strdup(vd->vdev_devid);
819 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PHYS_PATH,
820 &vd->vdev_physpath) == 0)
821 vd->vdev_physpath = spa_strdup(vd->vdev_physpath);
822
823 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_VDEV_ENC_SYSFS_PATH,
824 &vd->vdev_enc_sysfs_path) == 0)
825 vd->vdev_enc_sysfs_path = spa_strdup(vd->vdev_enc_sysfs_path);
826
827 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_FRU, &vd->vdev_fru) == 0)
828 vd->vdev_fru = spa_strdup(vd->vdev_fru);
829
830 /*
831 * Set the whole_disk property. If it's not specified, leave the value
832 * as -1.
833 */
834 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_WHOLE_DISK,
835 &vd->vdev_wholedisk) != 0)
836 vd->vdev_wholedisk = -1ULL;
837
838 vic = &vd->vdev_indirect_config;
839
840 ASSERT0(vic->vic_mapping_object);
841 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_INDIRECT_OBJECT,
842 &vic->vic_mapping_object);
843 ASSERT0(vic->vic_births_object);
844 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_INDIRECT_BIRTHS,
845 &vic->vic_births_object);
846 ASSERT3U(vic->vic_prev_indirect_vdev, ==, UINT64_MAX);
847 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_PREV_INDIRECT_VDEV,
848 &vic->vic_prev_indirect_vdev);
849
850 /*
851 * Look for the 'not present' flag. This will only be set if the device
852 * was not present at the time of import.
853 */
854 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NOT_PRESENT,
855 &vd->vdev_not_present);
856
857 /*
858 * Get the alignment requirement.
859 */
860 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ASHIFT, &vd->vdev_ashift);
861
862 /*
863 * Retrieve the vdev creation time.
864 */
865 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_CREATE_TXG,
866 &vd->vdev_crtxg);
867
868 /*
869 * If we're a top-level vdev, try to load the allocation parameters.
870 */
871 if (top_level &&
872 (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_SPLIT)) {
873 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_METASLAB_ARRAY,
874 &vd->vdev_ms_array);
875 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_METASLAB_SHIFT,
876 &vd->vdev_ms_shift);
877 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ASIZE,
878 &vd->vdev_asize);
879 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NONALLOCATING,
880 &vd->vdev_noalloc);
881 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_REMOVING,
882 &vd->vdev_removing);
883 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_VDEV_TOP_ZAP,
884 &vd->vdev_top_zap);
885 } else {
886 ASSERT0(vd->vdev_top_zap);
887 }
888
889 if (top_level && alloctype != VDEV_ALLOC_ATTACH) {
890 ASSERT(alloctype == VDEV_ALLOC_LOAD ||
891 alloctype == VDEV_ALLOC_ADD ||
892 alloctype == VDEV_ALLOC_SPLIT ||
893 alloctype == VDEV_ALLOC_ROOTPOOL);
894 /* Note: metaslab_group_create() is now deferred */
895 }
896
897 if (vd->vdev_ops->vdev_op_leaf &&
898 (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_SPLIT)) {
899 (void) nvlist_lookup_uint64(nv,
900 ZPOOL_CONFIG_VDEV_LEAF_ZAP, &vd->vdev_leaf_zap);
901 } else {
902 ASSERT0(vd->vdev_leaf_zap);
903 }
904
905 /*
906 * If we're a leaf vdev, try to load the DTL object and other state.
907 */
908
909 if (vd->vdev_ops->vdev_op_leaf &&
910 (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_L2CACHE ||
911 alloctype == VDEV_ALLOC_ROOTPOOL)) {
912 if (alloctype == VDEV_ALLOC_LOAD) {
913 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DTL,
914 &vd->vdev_dtl_object);
915 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_UNSPARE,
916 &vd->vdev_unspare);
917 }
918
919 if (alloctype == VDEV_ALLOC_ROOTPOOL) {
920 uint64_t spare = 0;
921
922 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_IS_SPARE,
923 &spare) == 0 && spare)
924 spa_spare_add(vd);
925 }
926
927 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_OFFLINE,
928 &vd->vdev_offline);
929
930 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_RESILVER_TXG,
931 &vd->vdev_resilver_txg);
932
933 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_REBUILD_TXG,
934 &vd->vdev_rebuild_txg);
935
936 if (nvlist_exists(nv, ZPOOL_CONFIG_RESILVER_DEFER))
937 vdev_defer_resilver(vd);
938
939 /*
940 * In general, when importing a pool we want to ignore the
941 * persistent fault state, as the diagnosis made on another
942 * system may not be valid in the current context. The only
943 * exception is if we forced a vdev to a persistently faulted
944 * state with 'zpool offline -f'. The persistent fault will
945 * remain across imports until cleared.
946 *
947 * Local vdevs will remain in the faulted state.
948 */
949 if (spa_load_state(spa) == SPA_LOAD_OPEN ||
950 spa_load_state(spa) == SPA_LOAD_IMPORT) {
951 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_FAULTED,
952 &vd->vdev_faulted);
953 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DEGRADED,
954 &vd->vdev_degraded);
955 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_REMOVED,
956 &vd->vdev_removed);
957
958 if (vd->vdev_faulted || vd->vdev_degraded) {
959 char *aux;
960
961 vd->vdev_label_aux =
962 VDEV_AUX_ERR_EXCEEDED;
963 if (nvlist_lookup_string(nv,
964 ZPOOL_CONFIG_AUX_STATE, &aux) == 0 &&
965 strcmp(aux, "external") == 0)
966 vd->vdev_label_aux = VDEV_AUX_EXTERNAL;
967 else
968 vd->vdev_faulted = 0ULL;
969 }
970 }
971 }
972
973 /*
974 * Add ourselves to the parent's list of children.
975 */
976 vdev_add_child(parent, vd);
977
978 *vdp = vd;
979
980 return (0);
981 }
982
983 void
984 vdev_free(vdev_t *vd)
985 {
986 spa_t *spa = vd->vdev_spa;
987
988 ASSERT3P(vd->vdev_initialize_thread, ==, NULL);
989 ASSERT3P(vd->vdev_trim_thread, ==, NULL);
990 ASSERT3P(vd->vdev_autotrim_thread, ==, NULL);
991 ASSERT3P(vd->vdev_rebuild_thread, ==, NULL);
992
993 /*
994 * Scan queues are normally destroyed at the end of a scan. If the
995 * queue exists here, that implies the vdev is being removed while
996 * the scan is still running.
997 */
998 if (vd->vdev_scan_io_queue != NULL) {
999 mutex_enter(&vd->vdev_scan_io_queue_lock);
1000 dsl_scan_io_queue_destroy(vd->vdev_scan_io_queue);
1001 vd->vdev_scan_io_queue = NULL;
1002 mutex_exit(&vd->vdev_scan_io_queue_lock);
1003 }
1004
1005 /*
1006 * vdev_free() implies closing the vdev first. This is simpler than
1007 * trying to ensure complicated semantics for all callers.
1008 */
1009 vdev_close(vd);
1010
1011 ASSERT(!list_link_active(&vd->vdev_config_dirty_node));
1012 ASSERT(!list_link_active(&vd->vdev_state_dirty_node));
1013
1014 /*
1015 * Free all children.
1016 */
1017 for (int c = 0; c < vd->vdev_children; c++)
1018 vdev_free(vd->vdev_child[c]);
1019
1020 ASSERT(vd->vdev_child == NULL);
1021 ASSERT(vd->vdev_guid_sum == vd->vdev_guid);
1022
1023 if (vd->vdev_ops->vdev_op_fini != NULL)
1024 vd->vdev_ops->vdev_op_fini(vd);
1025
1026 /*
1027 * Discard allocation state.
1028 */
1029 if (vd->vdev_mg != NULL) {
1030 vdev_metaslab_fini(vd);
1031 metaslab_group_destroy(vd->vdev_mg);
1032 vd->vdev_mg = NULL;
1033 }
1034 if (vd->vdev_log_mg != NULL) {
1035 ASSERT0(vd->vdev_ms_count);
1036 metaslab_group_destroy(vd->vdev_log_mg);
1037 vd->vdev_log_mg = NULL;
1038 }
1039
1040 ASSERT0(vd->vdev_stat.vs_space);
1041 ASSERT0(vd->vdev_stat.vs_dspace);
1042 ASSERT0(vd->vdev_stat.vs_alloc);
1043
1044 /*
1045 * Remove this vdev from its parent's child list.
1046 */
1047 vdev_remove_child(vd->vdev_parent, vd);
1048
1049 ASSERT(vd->vdev_parent == NULL);
1050 ASSERT(!list_link_active(&vd->vdev_leaf_node));
1051
1052 /*
1053 * Clean up vdev structure.
1054 */
1055 vdev_queue_fini(vd);
1056 vdev_cache_fini(vd);
1057
1058 if (vd->vdev_path)
1059 spa_strfree(vd->vdev_path);
1060 if (vd->vdev_devid)
1061 spa_strfree(vd->vdev_devid);
1062 if (vd->vdev_physpath)
1063 spa_strfree(vd->vdev_physpath);
1064
1065 if (vd->vdev_enc_sysfs_path)
1066 spa_strfree(vd->vdev_enc_sysfs_path);
1067
1068 if (vd->vdev_fru)
1069 spa_strfree(vd->vdev_fru);
1070
1071 if (vd->vdev_isspare)
1072 spa_spare_remove(vd);
1073 if (vd->vdev_isl2cache)
1074 spa_l2cache_remove(vd);
1075
1076 txg_list_destroy(&vd->vdev_ms_list);
1077 txg_list_destroy(&vd->vdev_dtl_list);
1078
1079 mutex_enter(&vd->vdev_dtl_lock);
1080 space_map_close(vd->vdev_dtl_sm);
1081 for (int t = 0; t < DTL_TYPES; t++) {
1082 range_tree_vacate(vd->vdev_dtl[t], NULL, NULL);
1083 range_tree_destroy(vd->vdev_dtl[t]);
1084 }
1085 mutex_exit(&vd->vdev_dtl_lock);
1086
1087 EQUIV(vd->vdev_indirect_births != NULL,
1088 vd->vdev_indirect_mapping != NULL);
1089 if (vd->vdev_indirect_births != NULL) {
1090 vdev_indirect_mapping_close(vd->vdev_indirect_mapping);
1091 vdev_indirect_births_close(vd->vdev_indirect_births);
1092 }
1093
1094 if (vd->vdev_obsolete_sm != NULL) {
1095 ASSERT(vd->vdev_removing ||
1096 vd->vdev_ops == &vdev_indirect_ops);
1097 space_map_close(vd->vdev_obsolete_sm);
1098 vd->vdev_obsolete_sm = NULL;
1099 }
1100 range_tree_destroy(vd->vdev_obsolete_segments);
1101 rw_destroy(&vd->vdev_indirect_rwlock);
1102 mutex_destroy(&vd->vdev_obsolete_lock);
1103
1104 mutex_destroy(&vd->vdev_dtl_lock);
1105 mutex_destroy(&vd->vdev_stat_lock);
1106 mutex_destroy(&vd->vdev_probe_lock);
1107 mutex_destroy(&vd->vdev_scan_io_queue_lock);
1108
1109 mutex_destroy(&vd->vdev_initialize_lock);
1110 mutex_destroy(&vd->vdev_initialize_io_lock);
1111 cv_destroy(&vd->vdev_initialize_io_cv);
1112 cv_destroy(&vd->vdev_initialize_cv);
1113
1114 mutex_destroy(&vd->vdev_trim_lock);
1115 mutex_destroy(&vd->vdev_autotrim_lock);
1116 mutex_destroy(&vd->vdev_trim_io_lock);
1117 cv_destroy(&vd->vdev_trim_cv);
1118 cv_destroy(&vd->vdev_autotrim_cv);
1119 cv_destroy(&vd->vdev_trim_io_cv);
1120
1121 mutex_destroy(&vd->vdev_rebuild_lock);
1122 cv_destroy(&vd->vdev_rebuild_cv);
1123
1124 zfs_ratelimit_fini(&vd->vdev_delay_rl);
1125 zfs_ratelimit_fini(&vd->vdev_deadman_rl);
1126 zfs_ratelimit_fini(&vd->vdev_checksum_rl);
1127
1128 if (vd == spa->spa_root_vdev)
1129 spa->spa_root_vdev = NULL;
1130
1131 kmem_free(vd, sizeof (vdev_t));
1132 }
1133
1134 /*
1135 * Transfer top-level vdev state from svd to tvd.
1136 */
1137 static void
1138 vdev_top_transfer(vdev_t *svd, vdev_t *tvd)
1139 {
1140 spa_t *spa = svd->vdev_spa;
1141 metaslab_t *msp;
1142 vdev_t *vd;
1143 int t;
1144
1145 ASSERT(tvd == tvd->vdev_top);
1146
1147 tvd->vdev_pending_fastwrite = svd->vdev_pending_fastwrite;
1148 tvd->vdev_ms_array = svd->vdev_ms_array;
1149 tvd->vdev_ms_shift = svd->vdev_ms_shift;
1150 tvd->vdev_ms_count = svd->vdev_ms_count;
1151 tvd->vdev_top_zap = svd->vdev_top_zap;
1152
1153 svd->vdev_ms_array = 0;
1154 svd->vdev_ms_shift = 0;
1155 svd->vdev_ms_count = 0;
1156 svd->vdev_top_zap = 0;
1157
1158 if (tvd->vdev_mg)
1159 ASSERT3P(tvd->vdev_mg, ==, svd->vdev_mg);
1160 if (tvd->vdev_log_mg)
1161 ASSERT3P(tvd->vdev_log_mg, ==, svd->vdev_log_mg);
1162 tvd->vdev_mg = svd->vdev_mg;
1163 tvd->vdev_log_mg = svd->vdev_log_mg;
1164 tvd->vdev_ms = svd->vdev_ms;
1165
1166 svd->vdev_mg = NULL;
1167 svd->vdev_log_mg = NULL;
1168 svd->vdev_ms = NULL;
1169
1170 if (tvd->vdev_mg != NULL)
1171 tvd->vdev_mg->mg_vd = tvd;
1172 if (tvd->vdev_log_mg != NULL)
1173 tvd->vdev_log_mg->mg_vd = tvd;
1174
1175 tvd->vdev_checkpoint_sm = svd->vdev_checkpoint_sm;
1176 svd->vdev_checkpoint_sm = NULL;
1177
1178 tvd->vdev_alloc_bias = svd->vdev_alloc_bias;
1179 svd->vdev_alloc_bias = VDEV_BIAS_NONE;
1180
1181 tvd->vdev_stat.vs_alloc = svd->vdev_stat.vs_alloc;
1182 tvd->vdev_stat.vs_space = svd->vdev_stat.vs_space;
1183 tvd->vdev_stat.vs_dspace = svd->vdev_stat.vs_dspace;
1184
1185 svd->vdev_stat.vs_alloc = 0;
1186 svd->vdev_stat.vs_space = 0;
1187 svd->vdev_stat.vs_dspace = 0;
1188
1189 /*
1190 * State which may be set on a top-level vdev that's in the
1191 * process of being removed.
1192 */
1193 ASSERT0(tvd->vdev_indirect_config.vic_births_object);
1194 ASSERT0(tvd->vdev_indirect_config.vic_mapping_object);
1195 ASSERT3U(tvd->vdev_indirect_config.vic_prev_indirect_vdev, ==, -1ULL);
1196 ASSERT3P(tvd->vdev_indirect_mapping, ==, NULL);
1197 ASSERT3P(tvd->vdev_indirect_births, ==, NULL);
1198 ASSERT3P(tvd->vdev_obsolete_sm, ==, NULL);
1199 ASSERT0(tvd->vdev_noalloc);
1200 ASSERT0(tvd->vdev_removing);
1201 ASSERT0(tvd->vdev_rebuilding);
1202 tvd->vdev_noalloc = svd->vdev_noalloc;
1203 tvd->vdev_removing = svd->vdev_removing;
1204 tvd->vdev_rebuilding = svd->vdev_rebuilding;
1205 tvd->vdev_rebuild_config = svd->vdev_rebuild_config;
1206 tvd->vdev_indirect_config = svd->vdev_indirect_config;
1207 tvd->vdev_indirect_mapping = svd->vdev_indirect_mapping;
1208 tvd->vdev_indirect_births = svd->vdev_indirect_births;
1209 range_tree_swap(&svd->vdev_obsolete_segments,
1210 &tvd->vdev_obsolete_segments);
1211 tvd->vdev_obsolete_sm = svd->vdev_obsolete_sm;
1212 svd->vdev_indirect_config.vic_mapping_object = 0;
1213 svd->vdev_indirect_config.vic_births_object = 0;
1214 svd->vdev_indirect_config.vic_prev_indirect_vdev = -1ULL;
1215 svd->vdev_indirect_mapping = NULL;
1216 svd->vdev_indirect_births = NULL;
1217 svd->vdev_obsolete_sm = NULL;
1218 svd->vdev_noalloc = 0;
1219 svd->vdev_removing = 0;
1220 svd->vdev_rebuilding = 0;
1221
1222 for (t = 0; t < TXG_SIZE; t++) {
1223 while ((msp = txg_list_remove(&svd->vdev_ms_list, t)) != NULL)
1224 (void) txg_list_add(&tvd->vdev_ms_list, msp, t);
1225 while ((vd = txg_list_remove(&svd->vdev_dtl_list, t)) != NULL)
1226 (void) txg_list_add(&tvd->vdev_dtl_list, vd, t);
1227 if (txg_list_remove_this(&spa->spa_vdev_txg_list, svd, t))
1228 (void) txg_list_add(&spa->spa_vdev_txg_list, tvd, t);
1229 }
1230
1231 if (list_link_active(&svd->vdev_config_dirty_node)) {
1232 vdev_config_clean(svd);
1233 vdev_config_dirty(tvd);
1234 }
1235
1236 if (list_link_active(&svd->vdev_state_dirty_node)) {
1237 vdev_state_clean(svd);
1238 vdev_state_dirty(tvd);
1239 }
1240
1241 tvd->vdev_deflate_ratio = svd->vdev_deflate_ratio;
1242 svd->vdev_deflate_ratio = 0;
1243
1244 tvd->vdev_islog = svd->vdev_islog;
1245 svd->vdev_islog = 0;
1246
1247 dsl_scan_io_queue_vdev_xfer(svd, tvd);
1248 }
1249
1250 static void
1251 vdev_top_update(vdev_t *tvd, vdev_t *vd)
1252 {
1253 if (vd == NULL)
1254 return;
1255
1256 vd->vdev_top = tvd;
1257
1258 for (int c = 0; c < vd->vdev_children; c++)
1259 vdev_top_update(tvd, vd->vdev_child[c]);
1260 }
1261
1262 /*
1263 * Add a mirror/replacing vdev above an existing vdev. There is no need to
1264 * call .vdev_op_init() since mirror/replacing vdevs do not have private state.
1265 */
1266 vdev_t *
1267 vdev_add_parent(vdev_t *cvd, vdev_ops_t *ops)
1268 {
1269 spa_t *spa = cvd->vdev_spa;
1270 vdev_t *pvd = cvd->vdev_parent;
1271 vdev_t *mvd;
1272
1273 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
1274
1275 mvd = vdev_alloc_common(spa, cvd->vdev_id, 0, ops);
1276
1277 mvd->vdev_asize = cvd->vdev_asize;
1278 mvd->vdev_min_asize = cvd->vdev_min_asize;
1279 mvd->vdev_max_asize = cvd->vdev_max_asize;
1280 mvd->vdev_psize = cvd->vdev_psize;
1281 mvd->vdev_ashift = cvd->vdev_ashift;
1282 mvd->vdev_logical_ashift = cvd->vdev_logical_ashift;
1283 mvd->vdev_physical_ashift = cvd->vdev_physical_ashift;
1284 mvd->vdev_state = cvd->vdev_state;
1285 mvd->vdev_crtxg = cvd->vdev_crtxg;
1286
1287 vdev_remove_child(pvd, cvd);
1288 vdev_add_child(pvd, mvd);
1289 cvd->vdev_id = mvd->vdev_children;
1290 vdev_add_child(mvd, cvd);
1291 vdev_top_update(cvd->vdev_top, cvd->vdev_top);
1292
1293 if (mvd == mvd->vdev_top)
1294 vdev_top_transfer(cvd, mvd);
1295
1296 return (mvd);
1297 }
1298
1299 /*
1300 * Remove a 1-way mirror/replacing vdev from the tree.
1301 */
1302 void
1303 vdev_remove_parent(vdev_t *cvd)
1304 {
1305 vdev_t *mvd = cvd->vdev_parent;
1306 vdev_t *pvd = mvd->vdev_parent;
1307
1308 ASSERT(spa_config_held(cvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
1309
1310 ASSERT(mvd->vdev_children == 1);
1311 ASSERT(mvd->vdev_ops == &vdev_mirror_ops ||
1312 mvd->vdev_ops == &vdev_replacing_ops ||
1313 mvd->vdev_ops == &vdev_spare_ops);
1314 cvd->vdev_ashift = mvd->vdev_ashift;
1315 cvd->vdev_logical_ashift = mvd->vdev_logical_ashift;
1316 cvd->vdev_physical_ashift = mvd->vdev_physical_ashift;
1317 vdev_remove_child(mvd, cvd);
1318 vdev_remove_child(pvd, mvd);
1319
1320 /*
1321 * If cvd will replace mvd as a top-level vdev, preserve mvd's guid.
1322 * Otherwise, we could have detached an offline device, and when we
1323 * go to import the pool we'll think we have two top-level vdevs,
1324 * instead of a different version of the same top-level vdev.
1325 */
1326 if (mvd->vdev_top == mvd) {
1327 uint64_t guid_delta = mvd->vdev_guid - cvd->vdev_guid;
1328 cvd->vdev_orig_guid = cvd->vdev_guid;
1329 cvd->vdev_guid += guid_delta;
1330 cvd->vdev_guid_sum += guid_delta;
1331
1332 /*
1333 * If pool not set for autoexpand, we need to also preserve
1334 * mvd's asize to prevent automatic expansion of cvd.
1335 * Otherwise if we are adjusting the mirror by attaching and
1336 * detaching children of non-uniform sizes, the mirror could
1337 * autoexpand, unexpectedly requiring larger devices to
1338 * re-establish the mirror.
1339 */
1340 if (!cvd->vdev_spa->spa_autoexpand)
1341 cvd->vdev_asize = mvd->vdev_asize;
1342 }
1343 cvd->vdev_id = mvd->vdev_id;
1344 vdev_add_child(pvd, cvd);
1345 vdev_top_update(cvd->vdev_top, cvd->vdev_top);
1346
1347 if (cvd == cvd->vdev_top)
1348 vdev_top_transfer(mvd, cvd);
1349
1350 ASSERT(mvd->vdev_children == 0);
1351 vdev_free(mvd);
1352 }
1353
1354 void
1355 vdev_metaslab_group_create(vdev_t *vd)
1356 {
1357 spa_t *spa = vd->vdev_spa;
1358
1359 /*
1360 * metaslab_group_create was delayed until allocation bias was available
1361 */
1362 if (vd->vdev_mg == NULL) {
1363 metaslab_class_t *mc;
1364
1365 if (vd->vdev_islog && vd->vdev_alloc_bias == VDEV_BIAS_NONE)
1366 vd->vdev_alloc_bias = VDEV_BIAS_LOG;
1367
1368 ASSERT3U(vd->vdev_islog, ==,
1369 (vd->vdev_alloc_bias == VDEV_BIAS_LOG));
1370
1371 switch (vd->vdev_alloc_bias) {
1372 case VDEV_BIAS_LOG:
1373 mc = spa_log_class(spa);
1374 break;
1375 case VDEV_BIAS_SPECIAL:
1376 mc = spa_special_class(spa);
1377 break;
1378 case VDEV_BIAS_DEDUP:
1379 mc = spa_dedup_class(spa);
1380 break;
1381 default:
1382 mc = spa_normal_class(spa);
1383 }
1384
1385 vd->vdev_mg = metaslab_group_create(mc, vd,
1386 spa->spa_alloc_count);
1387
1388 if (!vd->vdev_islog) {
1389 vd->vdev_log_mg = metaslab_group_create(
1390 spa_embedded_log_class(spa), vd, 1);
1391 }
1392
1393 /*
1394 * The spa ashift min/max only apply for the normal metaslab
1395 * class. Class destination is late binding so ashift boundary
1396 * setting had to wait until now.
1397 */
1398 if (vd->vdev_top == vd && vd->vdev_ashift != 0 &&
1399 mc == spa_normal_class(spa) && vd->vdev_aux == NULL) {
1400 if (vd->vdev_ashift > spa->spa_max_ashift)
1401 spa->spa_max_ashift = vd->vdev_ashift;
1402 if (vd->vdev_ashift < spa->spa_min_ashift)
1403 spa->spa_min_ashift = vd->vdev_ashift;
1404
1405 uint64_t min_alloc = vdev_get_min_alloc(vd);
1406 if (min_alloc < spa->spa_min_alloc)
1407 spa->spa_min_alloc = min_alloc;
1408 }
1409 }
1410 }
1411
1412 int
1413 vdev_metaslab_init(vdev_t *vd, uint64_t txg)
1414 {
1415 spa_t *spa = vd->vdev_spa;
1416 uint64_t oldc = vd->vdev_ms_count;
1417 uint64_t newc = vd->vdev_asize >> vd->vdev_ms_shift;
1418 metaslab_t **mspp;
1419 int error;
1420 boolean_t expanding = (oldc != 0);
1421
1422 ASSERT(txg == 0 || spa_config_held(spa, SCL_ALLOC, RW_WRITER));
1423
1424 /*
1425 * This vdev is not being allocated from yet or is a hole.
1426 */
1427 if (vd->vdev_ms_shift == 0)
1428 return (0);
1429
1430 ASSERT(!vd->vdev_ishole);
1431
1432 ASSERT(oldc <= newc);
1433
1434 mspp = vmem_zalloc(newc * sizeof (*mspp), KM_SLEEP);
1435
1436 if (expanding) {
1437 memcpy(mspp, vd->vdev_ms, oldc * sizeof (*mspp));
1438 vmem_free(vd->vdev_ms, oldc * sizeof (*mspp));
1439 }
1440
1441 vd->vdev_ms = mspp;
1442 vd->vdev_ms_count = newc;
1443
1444 for (uint64_t m = oldc; m < newc; m++) {
1445 uint64_t object = 0;
1446 /*
1447 * vdev_ms_array may be 0 if we are creating the "fake"
1448 * metaslabs for an indirect vdev for zdb's leak detection.
1449 * See zdb_leak_init().
1450 */
1451 if (txg == 0 && vd->vdev_ms_array != 0) {
1452 error = dmu_read(spa->spa_meta_objset,
1453 vd->vdev_ms_array,
1454 m * sizeof (uint64_t), sizeof (uint64_t), &object,
1455 DMU_READ_PREFETCH);
1456 if (error != 0) {
1457 vdev_dbgmsg(vd, "unable to read the metaslab "
1458 "array [error=%d]", error);
1459 return (error);
1460 }
1461 }
1462
1463 error = metaslab_init(vd->vdev_mg, m, object, txg,
1464 &(vd->vdev_ms[m]));
1465 if (error != 0) {
1466 vdev_dbgmsg(vd, "metaslab_init failed [error=%d]",
1467 error);
1468 return (error);
1469 }
1470 }
1471
1472 /*
1473 * Find the emptiest metaslab on the vdev and mark it for use for
1474 * embedded slog by moving it from the regular to the log metaslab
1475 * group.
1476 */
1477 if (vd->vdev_mg->mg_class == spa_normal_class(spa) &&
1478 vd->vdev_ms_count > zfs_embedded_slog_min_ms &&
1479 avl_is_empty(&vd->vdev_log_mg->mg_metaslab_tree)) {
1480 uint64_t slog_msid = 0;
1481 uint64_t smallest = UINT64_MAX;
1482
1483 /*
1484 * Note, we only search the new metaslabs, because the old
1485 * (pre-existing) ones may be active (e.g. have non-empty
1486 * range_tree's), and we don't move them to the new
1487 * metaslab_t.
1488 */
1489 for (uint64_t m = oldc; m < newc; m++) {
1490 uint64_t alloc =
1491 space_map_allocated(vd->vdev_ms[m]->ms_sm);
1492 if (alloc < smallest) {
1493 slog_msid = m;
1494 smallest = alloc;
1495 }
1496 }
1497 metaslab_t *slog_ms = vd->vdev_ms[slog_msid];
1498 /*
1499 * The metaslab was marked as dirty at the end of
1500 * metaslab_init(). Remove it from the dirty list so that we
1501 * can uninitialize and reinitialize it to the new class.
1502 */
1503 if (txg != 0) {
1504 (void) txg_list_remove_this(&vd->vdev_ms_list,
1505 slog_ms, txg);
1506 }
1507 uint64_t sm_obj = space_map_object(slog_ms->ms_sm);
1508 metaslab_fini(slog_ms);
1509 VERIFY0(metaslab_init(vd->vdev_log_mg, slog_msid, sm_obj, txg,
1510 &vd->vdev_ms[slog_msid]));
1511 }
1512
1513 if (txg == 0)
1514 spa_config_enter(spa, SCL_ALLOC, FTAG, RW_WRITER);
1515
1516 /*
1517 * If the vdev is marked as non-allocating then don't
1518 * activate the metaslabs since we want to ensure that
1519 * no allocations are performed on this device.
1520 */
1521 if (vd->vdev_noalloc) {
1522 /* track non-allocating vdev space */
1523 spa->spa_nonallocating_dspace += spa_deflate(spa) ?
1524 vd->vdev_stat.vs_dspace : vd->vdev_stat.vs_space;
1525 } else if (!expanding) {
1526 metaslab_group_activate(vd->vdev_mg);
1527 if (vd->vdev_log_mg != NULL)
1528 metaslab_group_activate(vd->vdev_log_mg);
1529 }
1530
1531 if (txg == 0)
1532 spa_config_exit(spa, SCL_ALLOC, FTAG);
1533
1534 return (0);
1535 }
1536
1537 void
1538 vdev_metaslab_fini(vdev_t *vd)
1539 {
1540 if (vd->vdev_checkpoint_sm != NULL) {
1541 ASSERT(spa_feature_is_active(vd->vdev_spa,
1542 SPA_FEATURE_POOL_CHECKPOINT));
1543 space_map_close(vd->vdev_checkpoint_sm);
1544 /*
1545 * Even though we close the space map, we need to set its
1546 * pointer to NULL. The reason is that vdev_metaslab_fini()
1547 * may be called multiple times for certain operations
1548 * (i.e. when destroying a pool) so we need to ensure that
1549 * this clause never executes twice. This logic is similar
1550 * to the one used for the vdev_ms clause below.
1551 */
1552 vd->vdev_checkpoint_sm = NULL;
1553 }
1554
1555 if (vd->vdev_ms != NULL) {
1556 metaslab_group_t *mg = vd->vdev_mg;
1557
1558 metaslab_group_passivate(mg);
1559 if (vd->vdev_log_mg != NULL) {
1560 ASSERT(!vd->vdev_islog);
1561 metaslab_group_passivate(vd->vdev_log_mg);
1562 }
1563
1564 uint64_t count = vd->vdev_ms_count;
1565 for (uint64_t m = 0; m < count; m++) {
1566 metaslab_t *msp = vd->vdev_ms[m];
1567 if (msp != NULL)
1568 metaslab_fini(msp);
1569 }
1570 vmem_free(vd->vdev_ms, count * sizeof (metaslab_t *));
1571 vd->vdev_ms = NULL;
1572 vd->vdev_ms_count = 0;
1573
1574 for (int i = 0; i < RANGE_TREE_HISTOGRAM_SIZE; i++) {
1575 ASSERT0(mg->mg_histogram[i]);
1576 if (vd->vdev_log_mg != NULL)
1577 ASSERT0(vd->vdev_log_mg->mg_histogram[i]);
1578 }
1579 }
1580 ASSERT0(vd->vdev_ms_count);
1581 ASSERT3U(vd->vdev_pending_fastwrite, ==, 0);
1582 }
1583
1584 typedef struct vdev_probe_stats {
1585 boolean_t vps_readable;
1586 boolean_t vps_writeable;
1587 int vps_flags;
1588 } vdev_probe_stats_t;
1589
1590 static void
1591 vdev_probe_done(zio_t *zio)
1592 {
1593 spa_t *spa = zio->io_spa;
1594 vdev_t *vd = zio->io_vd;
1595 vdev_probe_stats_t *vps = zio->io_private;
1596
1597 ASSERT(vd->vdev_probe_zio != NULL);
1598
1599 if (zio->io_type == ZIO_TYPE_READ) {
1600 if (zio->io_error == 0)
1601 vps->vps_readable = 1;
1602 if (zio->io_error == 0 && spa_writeable(spa)) {
1603 zio_nowait(zio_write_phys(vd->vdev_probe_zio, vd,
1604 zio->io_offset, zio->io_size, zio->io_abd,
1605 ZIO_CHECKSUM_OFF, vdev_probe_done, vps,
1606 ZIO_PRIORITY_SYNC_WRITE, vps->vps_flags, B_TRUE));
1607 } else {
1608 abd_free(zio->io_abd);
1609 }
1610 } else if (zio->io_type == ZIO_TYPE_WRITE) {
1611 if (zio->io_error == 0)
1612 vps->vps_writeable = 1;
1613 abd_free(zio->io_abd);
1614 } else if (zio->io_type == ZIO_TYPE_NULL) {
1615 zio_t *pio;
1616 zio_link_t *zl;
1617
1618 vd->vdev_cant_read |= !vps->vps_readable;
1619 vd->vdev_cant_write |= !vps->vps_writeable;
1620
1621 if (vdev_readable(vd) &&
1622 (vdev_writeable(vd) || !spa_writeable(spa))) {
1623 zio->io_error = 0;
1624 } else {
1625 ASSERT(zio->io_error != 0);
1626 vdev_dbgmsg(vd, "failed probe");
1627 (void) zfs_ereport_post(FM_EREPORT_ZFS_PROBE_FAILURE,
1628 spa, vd, NULL, NULL, 0);
1629 zio->io_error = SET_ERROR(ENXIO);
1630 }
1631
1632 mutex_enter(&vd->vdev_probe_lock);
1633 ASSERT(vd->vdev_probe_zio == zio);
1634 vd->vdev_probe_zio = NULL;
1635 mutex_exit(&vd->vdev_probe_lock);
1636
1637 zl = NULL;
1638 while ((pio = zio_walk_parents(zio, &zl)) != NULL)
1639 if (!vdev_accessible(vd, pio))
1640 pio->io_error = SET_ERROR(ENXIO);
1641
1642 kmem_free(vps, sizeof (*vps));
1643 }
1644 }
1645
1646 /*
1647 * Determine whether this device is accessible.
1648 *
1649 * Read and write to several known locations: the pad regions of each
1650 * vdev label but the first, which we leave alone in case it contains
1651 * a VTOC.
1652 */
1653 zio_t *
1654 vdev_probe(vdev_t *vd, zio_t *zio)
1655 {
1656 spa_t *spa = vd->vdev_spa;
1657 vdev_probe_stats_t *vps = NULL;
1658 zio_t *pio;
1659
1660 ASSERT(vd->vdev_ops->vdev_op_leaf);
1661
1662 /*
1663 * Don't probe the probe.
1664 */
1665 if (zio && (zio->io_flags & ZIO_FLAG_PROBE))
1666 return (NULL);
1667
1668 /*
1669 * To prevent 'probe storms' when a device fails, we create
1670 * just one probe i/o at a time. All zios that want to probe
1671 * this vdev will become parents of the probe io.
1672 */
1673 mutex_enter(&vd->vdev_probe_lock);
1674
1675 if ((pio = vd->vdev_probe_zio) == NULL) {
1676 vps = kmem_zalloc(sizeof (*vps), KM_SLEEP);
1677
1678 vps->vps_flags = ZIO_FLAG_CANFAIL | ZIO_FLAG_PROBE |
1679 ZIO_FLAG_DONT_CACHE | ZIO_FLAG_DONT_AGGREGATE |
1680 ZIO_FLAG_TRYHARD;
1681
1682 if (spa_config_held(spa, SCL_ZIO, RW_WRITER)) {
1683 /*
1684 * vdev_cant_read and vdev_cant_write can only
1685 * transition from TRUE to FALSE when we have the
1686 * SCL_ZIO lock as writer; otherwise they can only
1687 * transition from FALSE to TRUE. This ensures that
1688 * any zio looking at these values can assume that
1689 * failures persist for the life of the I/O. That's
1690 * important because when a device has intermittent
1691 * connectivity problems, we want to ensure that
1692 * they're ascribed to the device (ENXIO) and not
1693 * the zio (EIO).
1694 *
1695 * Since we hold SCL_ZIO as writer here, clear both
1696 * values so the probe can reevaluate from first
1697 * principles.
1698 */
1699 vps->vps_flags |= ZIO_FLAG_CONFIG_WRITER;
1700 vd->vdev_cant_read = B_FALSE;
1701 vd->vdev_cant_write = B_FALSE;
1702 }
1703
1704 vd->vdev_probe_zio = pio = zio_null(NULL, spa, vd,
1705 vdev_probe_done, vps,
1706 vps->vps_flags | ZIO_FLAG_DONT_PROPAGATE);
1707
1708 /*
1709 * We can't change the vdev state in this context, so we
1710 * kick off an async task to do it on our behalf.
1711 */
1712 if (zio != NULL) {
1713 vd->vdev_probe_wanted = B_TRUE;
1714 spa_async_request(spa, SPA_ASYNC_PROBE);
1715 }
1716 }
1717
1718 if (zio != NULL)
1719 zio_add_child(zio, pio);
1720
1721 mutex_exit(&vd->vdev_probe_lock);
1722
1723 if (vps == NULL) {
1724 ASSERT(zio != NULL);
1725 return (NULL);
1726 }
1727
1728 for (int l = 1; l < VDEV_LABELS; l++) {
1729 zio_nowait(zio_read_phys(pio, vd,
1730 vdev_label_offset(vd->vdev_psize, l,
1731 offsetof(vdev_label_t, vl_be)), VDEV_PAD_SIZE,
1732 abd_alloc_for_io(VDEV_PAD_SIZE, B_TRUE),
1733 ZIO_CHECKSUM_OFF, vdev_probe_done, vps,
1734 ZIO_PRIORITY_SYNC_READ, vps->vps_flags, B_TRUE));
1735 }
1736
1737 if (zio == NULL)
1738 return (pio);
1739
1740 zio_nowait(pio);
1741 return (NULL);
1742 }
1743
1744 static void
1745 vdev_load_child(void *arg)
1746 {
1747 vdev_t *vd = arg;
1748
1749 vd->vdev_load_error = vdev_load(vd);
1750 }
1751
1752 static void
1753 vdev_open_child(void *arg)
1754 {
1755 vdev_t *vd = arg;
1756
1757 vd->vdev_open_thread = curthread;
1758 vd->vdev_open_error = vdev_open(vd);
1759 vd->vdev_open_thread = NULL;
1760 }
1761
1762 static boolean_t
1763 vdev_uses_zvols(vdev_t *vd)
1764 {
1765 #ifdef _KERNEL
1766 if (zvol_is_zvol(vd->vdev_path))
1767 return (B_TRUE);
1768 #endif
1769
1770 for (int c = 0; c < vd->vdev_children; c++)
1771 if (vdev_uses_zvols(vd->vdev_child[c]))
1772 return (B_TRUE);
1773
1774 return (B_FALSE);
1775 }
1776
1777 /*
1778 * Returns B_TRUE if the passed child should be opened.
1779 */
1780 static boolean_t
1781 vdev_default_open_children_func(vdev_t *vd)
1782 {
1783 (void) vd;
1784 return (B_TRUE);
1785 }
1786
1787 /*
1788 * Open the requested child vdevs. If any of the leaf vdevs are using
1789 * a ZFS volume then do the opens in a single thread. This avoids a
1790 * deadlock when the current thread is holding the spa_namespace_lock.
1791 */
1792 static void
1793 vdev_open_children_impl(vdev_t *vd, vdev_open_children_func_t *open_func)
1794 {
1795 int children = vd->vdev_children;
1796
1797 taskq_t *tq = taskq_create("vdev_open", children, minclsyspri,
1798 children, children, TASKQ_PREPOPULATE);
1799 vd->vdev_nonrot = B_TRUE;
1800
1801 for (int c = 0; c < children; c++) {
1802 vdev_t *cvd = vd->vdev_child[c];
1803
1804 if (open_func(cvd) == B_FALSE)
1805 continue;
1806
1807 if (tq == NULL || vdev_uses_zvols(vd)) {
1808 cvd->vdev_open_error = vdev_open(cvd);
1809 } else {
1810 VERIFY(taskq_dispatch(tq, vdev_open_child,
1811 cvd, TQ_SLEEP) != TASKQID_INVALID);
1812 }
1813
1814 vd->vdev_nonrot &= cvd->vdev_nonrot;
1815 }
1816
1817 if (tq != NULL) {
1818 taskq_wait(tq);
1819 taskq_destroy(tq);
1820 }
1821 }
1822
1823 /*
1824 * Open all child vdevs.
1825 */
1826 void
1827 vdev_open_children(vdev_t *vd)
1828 {
1829 vdev_open_children_impl(vd, vdev_default_open_children_func);
1830 }
1831
1832 /*
1833 * Conditionally open a subset of child vdevs.
1834 */
1835 void
1836 vdev_open_children_subset(vdev_t *vd, vdev_open_children_func_t *open_func)
1837 {
1838 vdev_open_children_impl(vd, open_func);
1839 }
1840
1841 /*
1842 * Compute the raidz-deflation ratio. Note, we hard-code
1843 * in 128k (1 << 17) because it is the "typical" blocksize.
1844 * Even though SPA_MAXBLOCKSIZE changed, this algorithm can not change,
1845 * otherwise it would inconsistently account for existing bp's.
1846 */
1847 static void
1848 vdev_set_deflate_ratio(vdev_t *vd)
1849 {
1850 if (vd == vd->vdev_top && !vd->vdev_ishole && vd->vdev_ashift != 0) {
1851 vd->vdev_deflate_ratio = (1 << 17) /
1852 (vdev_psize_to_asize(vd, 1 << 17) >> SPA_MINBLOCKSHIFT);
1853 }
1854 }
1855
1856 /*
1857 * Choose the best of two ashifts, preferring one between logical ashift
1858 * (absolute minimum) and administrator defined maximum, otherwise take
1859 * the biggest of the two.
1860 */
1861 uint64_t
1862 vdev_best_ashift(uint64_t logical, uint64_t a, uint64_t b)
1863 {
1864 if (a > logical && a <= zfs_vdev_max_auto_ashift) {
1865 if (b <= logical || b > zfs_vdev_max_auto_ashift)
1866 return (a);
1867 else
1868 return (MAX(a, b));
1869 } else if (b <= logical || b > zfs_vdev_max_auto_ashift)
1870 return (MAX(a, b));
1871 return (b);
1872 }
1873
1874 /*
1875 * Maximize performance by inflating the configured ashift for top level
1876 * vdevs to be as close to the physical ashift as possible while maintaining
1877 * administrator defined limits and ensuring it doesn't go below the
1878 * logical ashift.
1879 */
1880 static void
1881 vdev_ashift_optimize(vdev_t *vd)
1882 {
1883 ASSERT(vd == vd->vdev_top);
1884
1885 if (vd->vdev_ashift < vd->vdev_physical_ashift &&
1886 vd->vdev_physical_ashift <= zfs_vdev_max_auto_ashift) {
1887 vd->vdev_ashift = MIN(
1888 MAX(zfs_vdev_max_auto_ashift, vd->vdev_ashift),
1889 MAX(zfs_vdev_min_auto_ashift,
1890 vd->vdev_physical_ashift));
1891 } else {
1892 /*
1893 * If the logical and physical ashifts are the same, then
1894 * we ensure that the top-level vdev's ashift is not smaller
1895 * than our minimum ashift value. For the unusual case
1896 * where logical ashift > physical ashift, we can't cap
1897 * the calculated ashift based on max ashift as that
1898 * would cause failures.
1899 * We still check if we need to increase it to match
1900 * the min ashift.
1901 */
1902 vd->vdev_ashift = MAX(zfs_vdev_min_auto_ashift,
1903 vd->vdev_ashift);
1904 }
1905 }
1906
1907 /*
1908 * Prepare a virtual device for access.
1909 */
1910 int
1911 vdev_open(vdev_t *vd)
1912 {
1913 spa_t *spa = vd->vdev_spa;
1914 int error;
1915 uint64_t osize = 0;
1916 uint64_t max_osize = 0;
1917 uint64_t asize, max_asize, psize;
1918 uint64_t logical_ashift = 0;
1919 uint64_t physical_ashift = 0;
1920
1921 ASSERT(vd->vdev_open_thread == curthread ||
1922 spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
1923 ASSERT(vd->vdev_state == VDEV_STATE_CLOSED ||
1924 vd->vdev_state == VDEV_STATE_CANT_OPEN ||
1925 vd->vdev_state == VDEV_STATE_OFFLINE);
1926
1927 vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
1928 vd->vdev_cant_read = B_FALSE;
1929 vd->vdev_cant_write = B_FALSE;
1930 vd->vdev_min_asize = vdev_get_min_asize(vd);
1931
1932 /*
1933 * If this vdev is not removed, check its fault status. If it's
1934 * faulted, bail out of the open.
1935 */
1936 if (!vd->vdev_removed && vd->vdev_faulted) {
1937 ASSERT(vd->vdev_children == 0);
1938 ASSERT(vd->vdev_label_aux == VDEV_AUX_ERR_EXCEEDED ||
1939 vd->vdev_label_aux == VDEV_AUX_EXTERNAL);
1940 vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED,
1941 vd->vdev_label_aux);
1942 return (SET_ERROR(ENXIO));
1943 } else if (vd->vdev_offline) {
1944 ASSERT(vd->vdev_children == 0);
1945 vdev_set_state(vd, B_TRUE, VDEV_STATE_OFFLINE, VDEV_AUX_NONE);
1946 return (SET_ERROR(ENXIO));
1947 }
1948
1949 error = vd->vdev_ops->vdev_op_open(vd, &osize, &max_osize,
1950 &logical_ashift, &physical_ashift);
1951
1952 /* Keep the device in removed state if unplugged */
1953 if (error == ENOENT && vd->vdev_removed) {
1954 vdev_set_state(vd, B_TRUE, VDEV_STATE_REMOVED,
1955 VDEV_AUX_NONE);
1956 return (error);
1957 }
1958
1959 /*
1960 * Physical volume size should never be larger than its max size, unless
1961 * the disk has shrunk while we were reading it or the device is buggy
1962 * or damaged: either way it's not safe for use, bail out of the open.
1963 */
1964 if (osize > max_osize) {
1965 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1966 VDEV_AUX_OPEN_FAILED);
1967 return (SET_ERROR(ENXIO));
1968 }
1969
1970 /*
1971 * Reset the vdev_reopening flag so that we actually close
1972 * the vdev on error.
1973 */
1974 vd->vdev_reopening = B_FALSE;
1975 if (zio_injection_enabled && error == 0)
1976 error = zio_handle_device_injection(vd, NULL, SET_ERROR(ENXIO));
1977
1978 if (error) {
1979 if (vd->vdev_removed &&
1980 vd->vdev_stat.vs_aux != VDEV_AUX_OPEN_FAILED)
1981 vd->vdev_removed = B_FALSE;
1982
1983 if (vd->vdev_stat.vs_aux == VDEV_AUX_CHILDREN_OFFLINE) {
1984 vdev_set_state(vd, B_TRUE, VDEV_STATE_OFFLINE,
1985 vd->vdev_stat.vs_aux);
1986 } else {
1987 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1988 vd->vdev_stat.vs_aux);
1989 }
1990 return (error);
1991 }
1992
1993 vd->vdev_removed = B_FALSE;
1994
1995 /*
1996 * Recheck the faulted flag now that we have confirmed that
1997 * the vdev is accessible. If we're faulted, bail.
1998 */
1999 if (vd->vdev_faulted) {
2000 ASSERT(vd->vdev_children == 0);
2001 ASSERT(vd->vdev_label_aux == VDEV_AUX_ERR_EXCEEDED ||
2002 vd->vdev_label_aux == VDEV_AUX_EXTERNAL);
2003 vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED,
2004 vd->vdev_label_aux);
2005 return (SET_ERROR(ENXIO));
2006 }
2007
2008 if (vd->vdev_degraded) {
2009 ASSERT(vd->vdev_children == 0);
2010 vdev_set_state(vd, B_TRUE, VDEV_STATE_DEGRADED,
2011 VDEV_AUX_ERR_EXCEEDED);
2012 } else {
2013 vdev_set_state(vd, B_TRUE, VDEV_STATE_HEALTHY, 0);
2014 }
2015
2016 /*
2017 * For hole or missing vdevs we just return success.
2018 */
2019 if (vd->vdev_ishole || vd->vdev_ops == &vdev_missing_ops)
2020 return (0);
2021
2022 for (int c = 0; c < vd->vdev_children; c++) {
2023 if (vd->vdev_child[c]->vdev_state != VDEV_STATE_HEALTHY) {
2024 vdev_set_state(vd, B_TRUE, VDEV_STATE_DEGRADED,
2025 VDEV_AUX_NONE);
2026 break;
2027 }
2028 }
2029
2030 osize = P2ALIGN(osize, (uint64_t)sizeof (vdev_label_t));
2031 max_osize = P2ALIGN(max_osize, (uint64_t)sizeof (vdev_label_t));
2032
2033 if (vd->vdev_children == 0) {
2034 if (osize < SPA_MINDEVSIZE) {
2035 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
2036 VDEV_AUX_TOO_SMALL);
2037 return (SET_ERROR(EOVERFLOW));
2038 }
2039 psize = osize;
2040 asize = osize - (VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE);
2041 max_asize = max_osize - (VDEV_LABEL_START_SIZE +
2042 VDEV_LABEL_END_SIZE);
2043 } else {
2044 if (vd->vdev_parent != NULL && osize < SPA_MINDEVSIZE -
2045 (VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE)) {
2046 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
2047 VDEV_AUX_TOO_SMALL);
2048 return (SET_ERROR(EOVERFLOW));
2049 }
2050 psize = 0;
2051 asize = osize;
2052 max_asize = max_osize;
2053 }
2054
2055 /*
2056 * If the vdev was expanded, record this so that we can re-create the
2057 * uberblock rings in labels {2,3}, during the next sync.
2058 */
2059 if ((psize > vd->vdev_psize) && (vd->vdev_psize != 0))
2060 vd->vdev_copy_uberblocks = B_TRUE;
2061
2062 vd->vdev_psize = psize;
2063
2064 /*
2065 * Make sure the allocatable size hasn't shrunk too much.
2066 */
2067 if (asize < vd->vdev_min_asize) {
2068 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
2069 VDEV_AUX_BAD_LABEL);
2070 return (SET_ERROR(EINVAL));
2071 }
2072
2073 /*
2074 * We can always set the logical/physical ashift members since
2075 * their values are only used to calculate the vdev_ashift when
2076 * the device is first added to the config. These values should
2077 * not be used for anything else since they may change whenever
2078 * the device is reopened and we don't store them in the label.
2079 */
2080 vd->vdev_physical_ashift =
2081 MAX(physical_ashift, vd->vdev_physical_ashift);
2082 vd->vdev_logical_ashift = MAX(logical_ashift,
2083 vd->vdev_logical_ashift);
2084
2085 if (vd->vdev_asize == 0) {
2086 /*
2087 * This is the first-ever open, so use the computed values.
2088 * For compatibility, a different ashift can be requested.
2089 */
2090 vd->vdev_asize = asize;
2091 vd->vdev_max_asize = max_asize;
2092
2093 /*
2094 * If the vdev_ashift was not overridden at creation time,
2095 * then set it the logical ashift and optimize the ashift.
2096 */
2097 if (vd->vdev_ashift == 0) {
2098 vd->vdev_ashift = vd->vdev_logical_ashift;
2099
2100 if (vd->vdev_logical_ashift > ASHIFT_MAX) {
2101 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
2102 VDEV_AUX_ASHIFT_TOO_BIG);
2103 return (SET_ERROR(EDOM));
2104 }
2105
2106 if (vd->vdev_top == vd) {
2107 vdev_ashift_optimize(vd);
2108 }
2109 }
2110 if (vd->vdev_ashift != 0 && (vd->vdev_ashift < ASHIFT_MIN ||
2111 vd->vdev_ashift > ASHIFT_MAX)) {
2112 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
2113 VDEV_AUX_BAD_ASHIFT);
2114 return (SET_ERROR(EDOM));
2115 }
2116 } else {
2117 /*
2118 * Make sure the alignment required hasn't increased.
2119 */
2120 if (vd->vdev_ashift > vd->vdev_top->vdev_ashift &&
2121 vd->vdev_ops->vdev_op_leaf) {
2122 (void) zfs_ereport_post(
2123 FM_EREPORT_ZFS_DEVICE_BAD_ASHIFT,
2124 spa, vd, NULL, NULL, 0);
2125 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
2126 VDEV_AUX_BAD_LABEL);
2127 return (SET_ERROR(EDOM));
2128 }
2129 vd->vdev_max_asize = max_asize;
2130 }
2131
2132 /*
2133 * If all children are healthy we update asize if either:
2134 * The asize has increased, due to a device expansion caused by dynamic
2135 * LUN growth or vdev replacement, and automatic expansion is enabled;
2136 * making the additional space available.
2137 *
2138 * The asize has decreased, due to a device shrink usually caused by a
2139 * vdev replace with a smaller device. This ensures that calculations
2140 * based of max_asize and asize e.g. esize are always valid. It's safe
2141 * to do this as we've already validated that asize is greater than
2142 * vdev_min_asize.
2143 */
2144 if (vd->vdev_state == VDEV_STATE_HEALTHY &&
2145 ((asize > vd->vdev_asize &&
2146 (vd->vdev_expanding || spa->spa_autoexpand)) ||
2147 (asize < vd->vdev_asize)))
2148 vd->vdev_asize = asize;
2149
2150 vdev_set_min_asize(vd);
2151
2152 /*
2153 * Ensure we can issue some IO before declaring the
2154 * vdev open for business.
2155 */
2156 if (vd->vdev_ops->vdev_op_leaf &&
2157 (error = zio_wait(vdev_probe(vd, NULL))) != 0) {
2158 vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED,
2159 VDEV_AUX_ERR_EXCEEDED);
2160 return (error);
2161 }
2162
2163 /*
2164 * Track the minimum allocation size.
2165 */
2166 if (vd->vdev_top == vd && vd->vdev_ashift != 0 &&
2167 vd->vdev_islog == 0 && vd->vdev_aux == NULL) {
2168 uint64_t min_alloc = vdev_get_min_alloc(vd);
2169 if (min_alloc < spa->spa_min_alloc)
2170 spa->spa_min_alloc = min_alloc;
2171 }
2172
2173 /*
2174 * If this is a leaf vdev, assess whether a resilver is needed.
2175 * But don't do this if we are doing a reopen for a scrub, since
2176 * this would just restart the scrub we are already doing.
2177 */
2178 if (vd->vdev_ops->vdev_op_leaf && !spa->spa_scrub_reopen)
2179 dsl_scan_assess_vdev(spa->spa_dsl_pool, vd);
2180
2181 return (0);
2182 }
2183
2184 static void
2185 vdev_validate_child(void *arg)
2186 {
2187 vdev_t *vd = arg;
2188
2189 vd->vdev_validate_thread = curthread;
2190 vd->vdev_validate_error = vdev_validate(vd);
2191 vd->vdev_validate_thread = NULL;
2192 }
2193
2194 /*
2195 * Called once the vdevs are all opened, this routine validates the label
2196 * contents. This needs to be done before vdev_load() so that we don't
2197 * inadvertently do repair I/Os to the wrong device.
2198 *
2199 * This function will only return failure if one of the vdevs indicates that it
2200 * has since been destroyed or exported. This is only possible if
2201 * /etc/zfs/zpool.cache was readonly at the time. Otherwise, the vdev state
2202 * will be updated but the function will return 0.
2203 */
2204 int
2205 vdev_validate(vdev_t *vd)
2206 {
2207 spa_t *spa = vd->vdev_spa;
2208 taskq_t *tq = NULL;
2209 nvlist_t *label;
2210 uint64_t guid = 0, aux_guid = 0, top_guid;
2211 uint64_t state;
2212 nvlist_t *nvl;
2213 uint64_t txg;
2214 int children = vd->vdev_children;
2215
2216 if (vdev_validate_skip)
2217 return (0);
2218
2219 if (children > 0) {
2220 tq = taskq_create("vdev_validate", children, minclsyspri,
2221 children, children, TASKQ_PREPOPULATE);
2222 }
2223
2224 for (uint64_t c = 0; c < children; c++) {
2225 vdev_t *cvd = vd->vdev_child[c];
2226
2227 if (tq == NULL || vdev_uses_zvols(cvd)) {
2228 vdev_validate_child(cvd);
2229 } else {
2230 VERIFY(taskq_dispatch(tq, vdev_validate_child, cvd,
2231 TQ_SLEEP) != TASKQID_INVALID);
2232 }
2233 }
2234 if (tq != NULL) {
2235 taskq_wait(tq);
2236 taskq_destroy(tq);
2237 }
2238 for (int c = 0; c < children; c++) {
2239 int error = vd->vdev_child[c]->vdev_validate_error;
2240
2241 if (error != 0)
2242 return (SET_ERROR(EBADF));
2243 }
2244
2245
2246 /*
2247 * If the device has already failed, or was marked offline, don't do
2248 * any further validation. Otherwise, label I/O will fail and we will
2249 * overwrite the previous state.
2250 */
2251 if (!vd->vdev_ops->vdev_op_leaf || !vdev_readable(vd))
2252 return (0);
2253
2254 /*
2255 * If we are performing an extreme rewind, we allow for a label that
2256 * was modified at a point after the current txg.
2257 * If config lock is not held do not check for the txg. spa_sync could
2258 * be updating the vdev's label before updating spa_last_synced_txg.
2259 */
2260 if (spa->spa_extreme_rewind || spa_last_synced_txg(spa) == 0 ||
2261 spa_config_held(spa, SCL_CONFIG, RW_WRITER) != SCL_CONFIG)
2262 txg = UINT64_MAX;
2263 else
2264 txg = spa_last_synced_txg(spa);
2265
2266 if ((label = vdev_label_read_config(vd, txg)) == NULL) {
2267 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
2268 VDEV_AUX_BAD_LABEL);
2269 vdev_dbgmsg(vd, "vdev_validate: failed reading config for "
2270 "txg %llu", (u_longlong_t)txg);
2271 return (0);
2272 }
2273
2274 /*
2275 * Determine if this vdev has been split off into another
2276 * pool. If so, then refuse to open it.
2277 */
2278 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_SPLIT_GUID,
2279 &aux_guid) == 0 && aux_guid == spa_guid(spa)) {
2280 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
2281 VDEV_AUX_SPLIT_POOL);
2282 nvlist_free(label);
2283 vdev_dbgmsg(vd, "vdev_validate: vdev split into other pool");
2284 return (0);
2285 }
2286
2287 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_GUID, &guid) != 0) {
2288 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
2289 VDEV_AUX_CORRUPT_DATA);
2290 nvlist_free(label);
2291 vdev_dbgmsg(vd, "vdev_validate: '%s' missing from label",
2292 ZPOOL_CONFIG_POOL_GUID);
2293 return (0);
2294 }
2295
2296 /*
2297 * If config is not trusted then ignore the spa guid check. This is
2298 * necessary because if the machine crashed during a re-guid the new
2299 * guid might have been written to all of the vdev labels, but not the
2300 * cached config. The check will be performed again once we have the
2301 * trusted config from the MOS.
2302 */
2303 if (spa->spa_trust_config && guid != spa_guid(spa)) {
2304 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
2305 VDEV_AUX_CORRUPT_DATA);
2306 nvlist_free(label);
2307 vdev_dbgmsg(vd, "vdev_validate: vdev label pool_guid doesn't "
2308 "match config (%llu != %llu)", (u_longlong_t)guid,
2309 (u_longlong_t)spa_guid(spa));
2310 return (0);
2311 }
2312
2313 if (nvlist_lookup_nvlist(label, ZPOOL_CONFIG_VDEV_TREE, &nvl)
2314 != 0 || nvlist_lookup_uint64(nvl, ZPOOL_CONFIG_ORIG_GUID,
2315 &aux_guid) != 0)
2316 aux_guid = 0;
2317
2318 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID, &guid) != 0) {
2319 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
2320 VDEV_AUX_CORRUPT_DATA);
2321 nvlist_free(label);
2322 vdev_dbgmsg(vd, "vdev_validate: '%s' missing from label",
2323 ZPOOL_CONFIG_GUID);
2324 return (0);
2325 }
2326
2327 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_TOP_GUID, &top_guid)
2328 != 0) {
2329 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
2330 VDEV_AUX_CORRUPT_DATA);
2331 nvlist_free(label);
2332 vdev_dbgmsg(vd, "vdev_validate: '%s' missing from label",
2333 ZPOOL_CONFIG_TOP_GUID);
2334 return (0);
2335 }
2336
2337 /*
2338 * If this vdev just became a top-level vdev because its sibling was
2339 * detached, it will have adopted the parent's vdev guid -- but the
2340 * label may or may not be on disk yet. Fortunately, either version
2341 * of the label will have the same top guid, so if we're a top-level
2342 * vdev, we can safely compare to that instead.
2343 * However, if the config comes from a cachefile that failed to update
2344 * after the detach, a top-level vdev will appear as a non top-level
2345 * vdev in the config. Also relax the constraints if we perform an
2346 * extreme rewind.
2347 *
2348 * If we split this vdev off instead, then we also check the
2349 * original pool's guid. We don't want to consider the vdev
2350 * corrupt if it is partway through a split operation.
2351 */
2352 if (vd->vdev_guid != guid && vd->vdev_guid != aux_guid) {
2353 boolean_t mismatch = B_FALSE;
2354 if (spa->spa_trust_config && !spa->spa_extreme_rewind) {
2355 if (vd != vd->vdev_top || vd->vdev_guid != top_guid)
2356 mismatch = B_TRUE;
2357 } else {
2358 if (vd->vdev_guid != top_guid &&
2359 vd->vdev_top->vdev_guid != guid)
2360 mismatch = B_TRUE;
2361 }
2362
2363 if (mismatch) {
2364 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
2365 VDEV_AUX_CORRUPT_DATA);
2366 nvlist_free(label);
2367 vdev_dbgmsg(vd, "vdev_validate: config guid "
2368 "doesn't match label guid");
2369 vdev_dbgmsg(vd, "CONFIG: guid %llu, top_guid %llu",
2370 (u_longlong_t)vd->vdev_guid,
2371 (u_longlong_t)vd->vdev_top->vdev_guid);
2372 vdev_dbgmsg(vd, "LABEL: guid %llu, top_guid %llu, "
2373 "aux_guid %llu", (u_longlong_t)guid,
2374 (u_longlong_t)top_guid, (u_longlong_t)aux_guid);
2375 return (0);
2376 }
2377 }
2378
2379 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE,
2380 &state) != 0) {
2381 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
2382 VDEV_AUX_CORRUPT_DATA);
2383 nvlist_free(label);
2384 vdev_dbgmsg(vd, "vdev_validate: '%s' missing from label",
2385 ZPOOL_CONFIG_POOL_STATE);
2386 return (0);
2387 }
2388
2389 nvlist_free(label);
2390
2391 /*
2392 * If this is a verbatim import, no need to check the
2393 * state of the pool.
2394 */
2395 if (!(spa->spa_import_flags & ZFS_IMPORT_VERBATIM) &&
2396 spa_load_state(spa) == SPA_LOAD_OPEN &&
2397 state != POOL_STATE_ACTIVE) {
2398 vdev_dbgmsg(vd, "vdev_validate: invalid pool state (%llu) "
2399 "for spa %s", (u_longlong_t)state, spa->spa_name);
2400 return (SET_ERROR(EBADF));
2401 }
2402
2403 /*
2404 * If we were able to open and validate a vdev that was
2405 * previously marked permanently unavailable, clear that state
2406 * now.
2407 */
2408 if (vd->vdev_not_present)
2409 vd->vdev_not_present = 0;
2410
2411 return (0);
2412 }
2413
2414 static void
2415 vdev_copy_path_impl(vdev_t *svd, vdev_t *dvd)
2416 {
2417 char *old, *new;
2418 if (svd->vdev_path != NULL && dvd->vdev_path != NULL) {
2419 if (strcmp(svd->vdev_path, dvd->vdev_path) != 0) {
2420 zfs_dbgmsg("vdev_copy_path: vdev %llu: path changed "
2421 "from '%s' to '%s'", (u_longlong_t)dvd->vdev_guid,
2422 dvd->vdev_path, svd->vdev_path);
2423 spa_strfree(dvd->vdev_path);
2424 dvd->vdev_path = spa_strdup(svd->vdev_path);
2425 }
2426 } else if (svd->vdev_path != NULL) {
2427 dvd->vdev_path = spa_strdup(svd->vdev_path);
2428 zfs_dbgmsg("vdev_copy_path: vdev %llu: path set to '%s'",
2429 (u_longlong_t)dvd->vdev_guid, dvd->vdev_path);
2430 }
2431
2432 /*
2433 * Our enclosure sysfs path may have changed between imports
2434 */
2435 old = dvd->vdev_enc_sysfs_path;
2436 new = svd->vdev_enc_sysfs_path;
2437 if ((old != NULL && new == NULL) ||
2438 (old == NULL && new != NULL) ||
2439 ((old != NULL && new != NULL) && strcmp(new, old) != 0)) {
2440 zfs_dbgmsg("vdev_copy_path: vdev %llu: vdev_enc_sysfs_path "
2441 "changed from '%s' to '%s'", (u_longlong_t)dvd->vdev_guid,
2442 old, new);
2443
2444 if (dvd->vdev_enc_sysfs_path)
2445 spa_strfree(dvd->vdev_enc_sysfs_path);
2446
2447 if (svd->vdev_enc_sysfs_path) {
2448 dvd->vdev_enc_sysfs_path = spa_strdup(
2449 svd->vdev_enc_sysfs_path);
2450 } else {
2451 dvd->vdev_enc_sysfs_path = NULL;
2452 }
2453 }
2454 }
2455
2456 /*
2457 * Recursively copy vdev paths from one vdev to another. Source and destination
2458 * vdev trees must have same geometry otherwise return error. Intended to copy
2459 * paths from userland config into MOS config.
2460 */
2461 int
2462 vdev_copy_path_strict(vdev_t *svd, vdev_t *dvd)
2463 {
2464 if ((svd->vdev_ops == &vdev_missing_ops) ||
2465 (svd->vdev_ishole && dvd->vdev_ishole) ||
2466 (dvd->vdev_ops == &vdev_indirect_ops))
2467 return (0);
2468
2469 if (svd->vdev_ops != dvd->vdev_ops) {
2470 vdev_dbgmsg(svd, "vdev_copy_path: vdev type mismatch: %s != %s",
2471 svd->vdev_ops->vdev_op_type, dvd->vdev_ops->vdev_op_type);
2472 return (SET_ERROR(EINVAL));
2473 }
2474
2475 if (svd->vdev_guid != dvd->vdev_guid) {
2476 vdev_dbgmsg(svd, "vdev_copy_path: guids mismatch (%llu != "
2477 "%llu)", (u_longlong_t)svd->vdev_guid,
2478 (u_longlong_t)dvd->vdev_guid);
2479 return (SET_ERROR(EINVAL));
2480 }
2481
2482 if (svd->vdev_children != dvd->vdev_children) {
2483 vdev_dbgmsg(svd, "vdev_copy_path: children count mismatch: "
2484 "%llu != %llu", (u_longlong_t)svd->vdev_children,
2485 (u_longlong_t)dvd->vdev_children);
2486 return (SET_ERROR(EINVAL));
2487 }
2488
2489 for (uint64_t i = 0; i < svd->vdev_children; i++) {
2490 int error = vdev_copy_path_strict(svd->vdev_child[i],
2491 dvd->vdev_child[i]);
2492 if (error != 0)
2493 return (error);
2494 }
2495
2496 if (svd->vdev_ops->vdev_op_leaf)
2497 vdev_copy_path_impl(svd, dvd);
2498
2499 return (0);
2500 }
2501
2502 static void
2503 vdev_copy_path_search(vdev_t *stvd, vdev_t *dvd)
2504 {
2505 ASSERT(stvd->vdev_top == stvd);
2506 ASSERT3U(stvd->vdev_id, ==, dvd->vdev_top->vdev_id);
2507
2508 for (uint64_t i = 0; i < dvd->vdev_children; i++) {
2509 vdev_copy_path_search(stvd, dvd->vdev_child[i]);
2510 }
2511
2512 if (!dvd->vdev_ops->vdev_op_leaf || !vdev_is_concrete(dvd))
2513 return;
2514
2515 /*
2516 * The idea here is that while a vdev can shift positions within
2517 * a top vdev (when replacing, attaching mirror, etc.) it cannot
2518 * step outside of it.
2519 */
2520 vdev_t *vd = vdev_lookup_by_guid(stvd, dvd->vdev_guid);
2521
2522 if (vd == NULL || vd->vdev_ops != dvd->vdev_ops)
2523 return;
2524
2525 ASSERT(vd->vdev_ops->vdev_op_leaf);
2526
2527 vdev_copy_path_impl(vd, dvd);
2528 }
2529
2530 /*
2531 * Recursively copy vdev paths from one root vdev to another. Source and
2532 * destination vdev trees may differ in geometry. For each destination leaf
2533 * vdev, search a vdev with the same guid and top vdev id in the source.
2534 * Intended to copy paths from userland config into MOS config.
2535 */
2536 void
2537 vdev_copy_path_relaxed(vdev_t *srvd, vdev_t *drvd)
2538 {
2539 uint64_t children = MIN(srvd->vdev_children, drvd->vdev_children);
2540 ASSERT(srvd->vdev_ops == &vdev_root_ops);
2541 ASSERT(drvd->vdev_ops == &vdev_root_ops);
2542
2543 for (uint64_t i = 0; i < children; i++) {
2544 vdev_copy_path_search(srvd->vdev_child[i],
2545 drvd->vdev_child[i]);
2546 }
2547 }
2548
2549 /*
2550 * Close a virtual device.
2551 */
2552 void
2553 vdev_close(vdev_t *vd)
2554 {
2555 vdev_t *pvd = vd->vdev_parent;
2556 spa_t *spa __maybe_unused = vd->vdev_spa;
2557
2558 ASSERT(vd != NULL);
2559 ASSERT(vd->vdev_open_thread == curthread ||
2560 spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
2561
2562 /*
2563 * If our parent is reopening, then we are as well, unless we are
2564 * going offline.
2565 */
2566 if (pvd != NULL && pvd->vdev_reopening)
2567 vd->vdev_reopening = (pvd->vdev_reopening && !vd->vdev_offline);
2568
2569 vd->vdev_ops->vdev_op_close(vd);
2570
2571 vdev_cache_purge(vd);
2572
2573 /*
2574 * We record the previous state before we close it, so that if we are
2575 * doing a reopen(), we don't generate FMA ereports if we notice that
2576 * it's still faulted.
2577 */
2578 vd->vdev_prevstate = vd->vdev_state;
2579
2580 if (vd->vdev_offline)
2581 vd->vdev_state = VDEV_STATE_OFFLINE;
2582 else
2583 vd->vdev_state = VDEV_STATE_CLOSED;
2584 vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
2585 }
2586
2587 void
2588 vdev_hold(vdev_t *vd)
2589 {
2590 spa_t *spa = vd->vdev_spa;
2591
2592 ASSERT(spa_is_root(spa));
2593 if (spa->spa_state == POOL_STATE_UNINITIALIZED)
2594 return;
2595
2596 for (int c = 0; c < vd->vdev_children; c++)
2597 vdev_hold(vd->vdev_child[c]);
2598
2599 if (vd->vdev_ops->vdev_op_leaf && vd->vdev_ops->vdev_op_hold != NULL)
2600 vd->vdev_ops->vdev_op_hold(vd);
2601 }
2602
2603 void
2604 vdev_rele(vdev_t *vd)
2605 {
2606 ASSERT(spa_is_root(vd->vdev_spa));
2607 for (int c = 0; c < vd->vdev_children; c++)
2608 vdev_rele(vd->vdev_child[c]);
2609
2610 if (vd->vdev_ops->vdev_op_leaf && vd->vdev_ops->vdev_op_rele != NULL)
2611 vd->vdev_ops->vdev_op_rele(vd);
2612 }
2613
2614 /*
2615 * Reopen all interior vdevs and any unopened leaves. We don't actually
2616 * reopen leaf vdevs which had previously been opened as they might deadlock
2617 * on the spa_config_lock. Instead we only obtain the leaf's physical size.
2618 * If the leaf has never been opened then open it, as usual.
2619 */
2620 void
2621 vdev_reopen(vdev_t *vd)
2622 {
2623 spa_t *spa = vd->vdev_spa;
2624
2625 ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
2626
2627 /* set the reopening flag unless we're taking the vdev offline */
2628 vd->vdev_reopening = !vd->vdev_offline;
2629 vdev_close(vd);
2630 (void) vdev_open(vd);
2631
2632 /*
2633 * Call vdev_validate() here to make sure we have the same device.
2634 * Otherwise, a device with an invalid label could be successfully
2635 * opened in response to vdev_reopen().
2636 */
2637 if (vd->vdev_aux) {
2638 (void) vdev_validate_aux(vd);
2639 if (vdev_readable(vd) && vdev_writeable(vd) &&
2640 vd->vdev_aux == &spa->spa_l2cache) {
2641 /*
2642 * In case the vdev is present we should evict all ARC
2643 * buffers and pointers to log blocks and reclaim their
2644 * space before restoring its contents to L2ARC.
2645 */
2646 if (l2arc_vdev_present(vd)) {
2647 l2arc_rebuild_vdev(vd, B_TRUE);
2648 } else {
2649 l2arc_add_vdev(spa, vd);
2650 }
2651 spa_async_request(spa, SPA_ASYNC_L2CACHE_REBUILD);
2652 spa_async_request(spa, SPA_ASYNC_L2CACHE_TRIM);
2653 }
2654 } else {
2655 (void) vdev_validate(vd);
2656 }
2657
2658 /*
2659 * Reassess parent vdev's health.
2660 */
2661 vdev_propagate_state(vd);
2662 }
2663
2664 int
2665 vdev_create(vdev_t *vd, uint64_t txg, boolean_t isreplacing)
2666 {
2667 int error;
2668
2669 /*
2670 * Normally, partial opens (e.g. of a mirror) are allowed.
2671 * For a create, however, we want to fail the request if
2672 * there are any components we can't open.
2673 */
2674 error = vdev_open(vd);
2675
2676 if (error || vd->vdev_state != VDEV_STATE_HEALTHY) {
2677 vdev_close(vd);
2678 return (error ? error : SET_ERROR(ENXIO));
2679 }
2680
2681 /*
2682 * Recursively load DTLs and initialize all labels.
2683 */
2684 if ((error = vdev_dtl_load(vd)) != 0 ||
2685 (error = vdev_label_init(vd, txg, isreplacing ?
2686 VDEV_LABEL_REPLACE : VDEV_LABEL_CREATE)) != 0) {
2687 vdev_close(vd);
2688 return (error);
2689 }
2690
2691 return (0);
2692 }
2693
2694 void
2695 vdev_metaslab_set_size(vdev_t *vd)
2696 {
2697 uint64_t asize = vd->vdev_asize;
2698 uint64_t ms_count = asize >> zfs_vdev_default_ms_shift;
2699 uint64_t ms_shift;
2700
2701 /*
2702 * There are two dimensions to the metaslab sizing calculation:
2703 * the size of the metaslab and the count of metaslabs per vdev.
2704 *
2705 * The default values used below are a good balance between memory
2706 * usage (larger metaslab size means more memory needed for loaded
2707 * metaslabs; more metaslabs means more memory needed for the
2708 * metaslab_t structs), metaslab load time (larger metaslabs take
2709 * longer to load), and metaslab sync time (more metaslabs means
2710 * more time spent syncing all of them).
2711 *
2712 * In general, we aim for zfs_vdev_default_ms_count (200) metaslabs.
2713 * The range of the dimensions are as follows:
2714 *
2715 * 2^29 <= ms_size <= 2^34
2716 * 16 <= ms_count <= 131,072
2717 *
2718 * On the lower end of vdev sizes, we aim for metaslabs sizes of
2719 * at least 512MB (2^29) to minimize fragmentation effects when
2720 * testing with smaller devices. However, the count constraint
2721 * of at least 16 metaslabs will override this minimum size goal.
2722 *
2723 * On the upper end of vdev sizes, we aim for a maximum metaslab
2724 * size of 16GB. However, we will cap the total count to 2^17
2725 * metaslabs to keep our memory footprint in check and let the
2726 * metaslab size grow from there if that limit is hit.
2727 *
2728 * The net effect of applying above constrains is summarized below.
2729 *
2730 * vdev size metaslab count
2731 * --------------|-----------------
2732 * < 8GB ~16
2733 * 8GB - 100GB one per 512MB
2734 * 100GB - 3TB ~200
2735 * 3TB - 2PB one per 16GB
2736 * > 2PB ~131,072
2737 * --------------------------------
2738 *
2739 * Finally, note that all of the above calculate the initial
2740 * number of metaslabs. Expanding a top-level vdev will result
2741 * in additional metaslabs being allocated making it possible
2742 * to exceed the zfs_vdev_ms_count_limit.
2743 */
2744
2745 if (ms_count < zfs_vdev_min_ms_count)
2746 ms_shift = highbit64(asize / zfs_vdev_min_ms_count);
2747 else if (ms_count > zfs_vdev_default_ms_count)
2748 ms_shift = highbit64(asize / zfs_vdev_default_ms_count);
2749 else
2750 ms_shift = zfs_vdev_default_ms_shift;
2751
2752 if (ms_shift < SPA_MAXBLOCKSHIFT) {
2753 ms_shift = SPA_MAXBLOCKSHIFT;
2754 } else if (ms_shift > zfs_vdev_max_ms_shift) {
2755 ms_shift = zfs_vdev_max_ms_shift;
2756 /* cap the total count to constrain memory footprint */
2757 if ((asize >> ms_shift) > zfs_vdev_ms_count_limit)
2758 ms_shift = highbit64(asize / zfs_vdev_ms_count_limit);
2759 }
2760
2761 vd->vdev_ms_shift = ms_shift;
2762 ASSERT3U(vd->vdev_ms_shift, >=, SPA_MAXBLOCKSHIFT);
2763 }
2764
2765 void
2766 vdev_dirty(vdev_t *vd, int flags, void *arg, uint64_t txg)
2767 {
2768 ASSERT(vd == vd->vdev_top);
2769 /* indirect vdevs don't have metaslabs or dtls */
2770 ASSERT(vdev_is_concrete(vd) || flags == 0);
2771 ASSERT(ISP2(flags));
2772 ASSERT(spa_writeable(vd->vdev_spa));
2773
2774 if (flags & VDD_METASLAB)
2775 (void) txg_list_add(&vd->vdev_ms_list, arg, txg);
2776
2777 if (flags & VDD_DTL)
2778 (void) txg_list_add(&vd->vdev_dtl_list, arg, txg);
2779
2780 (void) txg_list_add(&vd->vdev_spa->spa_vdev_txg_list, vd, txg);
2781 }
2782
2783 void
2784 vdev_dirty_leaves(vdev_t *vd, int flags, uint64_t txg)
2785 {
2786 for (int c = 0; c < vd->vdev_children; c++)
2787 vdev_dirty_leaves(vd->vdev_child[c], flags, txg);
2788
2789 if (vd->vdev_ops->vdev_op_leaf)
2790 vdev_dirty(vd->vdev_top, flags, vd, txg);
2791 }
2792
2793 /*
2794 * DTLs.
2795 *
2796 * A vdev's DTL (dirty time log) is the set of transaction groups for which
2797 * the vdev has less than perfect replication. There are four kinds of DTL:
2798 *
2799 * DTL_MISSING: txgs for which the vdev has no valid copies of the data
2800 *
2801 * DTL_PARTIAL: txgs for which data is available, but not fully replicated
2802 *
2803 * DTL_SCRUB: the txgs that could not be repaired by the last scrub; upon
2804 * scrub completion, DTL_SCRUB replaces DTL_MISSING in the range of
2805 * txgs that was scrubbed.
2806 *
2807 * DTL_OUTAGE: txgs which cannot currently be read, whether due to
2808 * persistent errors or just some device being offline.
2809 * Unlike the other three, the DTL_OUTAGE map is not generally
2810 * maintained; it's only computed when needed, typically to
2811 * determine whether a device can be detached.
2812 *
2813 * For leaf vdevs, DTL_MISSING and DTL_PARTIAL are identical: the device
2814 * either has the data or it doesn't.
2815 *
2816 * For interior vdevs such as mirror and RAID-Z the picture is more complex.
2817 * A vdev's DTL_PARTIAL is the union of its children's DTL_PARTIALs, because
2818 * if any child is less than fully replicated, then so is its parent.
2819 * A vdev's DTL_MISSING is a modified union of its children's DTL_MISSINGs,
2820 * comprising only those txgs which appear in 'maxfaults' or more children;
2821 * those are the txgs we don't have enough replication to read. For example,
2822 * double-parity RAID-Z can tolerate up to two missing devices (maxfaults == 2);
2823 * thus, its DTL_MISSING consists of the set of txgs that appear in more than
2824 * two child DTL_MISSING maps.
2825 *
2826 * It should be clear from the above that to compute the DTLs and outage maps
2827 * for all vdevs, it suffices to know just the leaf vdevs' DTL_MISSING maps.
2828 * Therefore, that is all we keep on disk. When loading the pool, or after
2829 * a configuration change, we generate all other DTLs from first principles.
2830 */
2831 void
2832 vdev_dtl_dirty(vdev_t *vd, vdev_dtl_type_t t, uint64_t txg, uint64_t size)
2833 {
2834 range_tree_t *rt = vd->vdev_dtl[t];
2835
2836 ASSERT(t < DTL_TYPES);
2837 ASSERT(vd != vd->vdev_spa->spa_root_vdev);
2838 ASSERT(spa_writeable(vd->vdev_spa));
2839
2840 mutex_enter(&vd->vdev_dtl_lock);
2841 if (!range_tree_contains(rt, txg, size))
2842 range_tree_add(rt, txg, size);
2843 mutex_exit(&vd->vdev_dtl_lock);
2844 }
2845
2846 boolean_t
2847 vdev_dtl_contains(vdev_t *vd, vdev_dtl_type_t t, uint64_t txg, uint64_t size)
2848 {
2849 range_tree_t *rt = vd->vdev_dtl[t];
2850 boolean_t dirty = B_FALSE;
2851
2852 ASSERT(t < DTL_TYPES);
2853 ASSERT(vd != vd->vdev_spa->spa_root_vdev);
2854
2855 /*
2856 * While we are loading the pool, the DTLs have not been loaded yet.
2857 * This isn't a problem but it can result in devices being tried
2858 * which are known to not have the data. In which case, the import
2859 * is relying on the checksum to ensure that we get the right data.
2860 * Note that while importing we are only reading the MOS, which is
2861 * always checksummed.
2862 */
2863 mutex_enter(&vd->vdev_dtl_lock);
2864 if (!range_tree_is_empty(rt))
2865 dirty = range_tree_contains(rt, txg, size);
2866 mutex_exit(&vd->vdev_dtl_lock);
2867
2868 return (dirty);
2869 }
2870
2871 boolean_t
2872 vdev_dtl_empty(vdev_t *vd, vdev_dtl_type_t t)
2873 {
2874 range_tree_t *rt = vd->vdev_dtl[t];
2875 boolean_t empty;
2876
2877 mutex_enter(&vd->vdev_dtl_lock);
2878 empty = range_tree_is_empty(rt);
2879 mutex_exit(&vd->vdev_dtl_lock);
2880
2881 return (empty);
2882 }
2883
2884 /*
2885 * Check if the txg falls within the range which must be
2886 * resilvered. DVAs outside this range can always be skipped.
2887 */
2888 boolean_t
2889 vdev_default_need_resilver(vdev_t *vd, const dva_t *dva, size_t psize,
2890 uint64_t phys_birth)
2891 {
2892 (void) dva, (void) psize;
2893
2894 /* Set by sequential resilver. */
2895 if (phys_birth == TXG_UNKNOWN)
2896 return (B_TRUE);
2897
2898 return (vdev_dtl_contains(vd, DTL_PARTIAL, phys_birth, 1));
2899 }
2900
2901 /*
2902 * Returns B_TRUE if the vdev determines the DVA needs to be resilvered.
2903 */
2904 boolean_t
2905 vdev_dtl_need_resilver(vdev_t *vd, const dva_t *dva, size_t psize,
2906 uint64_t phys_birth)
2907 {
2908 ASSERT(vd != vd->vdev_spa->spa_root_vdev);
2909
2910 if (vd->vdev_ops->vdev_op_need_resilver == NULL ||
2911 vd->vdev_ops->vdev_op_leaf)
2912 return (B_TRUE);
2913
2914 return (vd->vdev_ops->vdev_op_need_resilver(vd, dva, psize,
2915 phys_birth));
2916 }
2917
2918 /*
2919 * Returns the lowest txg in the DTL range.
2920 */
2921 static uint64_t
2922 vdev_dtl_min(vdev_t *vd)
2923 {
2924 ASSERT(MUTEX_HELD(&vd->vdev_dtl_lock));
2925 ASSERT3U(range_tree_space(vd->vdev_dtl[DTL_MISSING]), !=, 0);
2926 ASSERT0(vd->vdev_children);
2927
2928 return (range_tree_min(vd->vdev_dtl[DTL_MISSING]) - 1);
2929 }
2930
2931 /*
2932 * Returns the highest txg in the DTL.
2933 */
2934 static uint64_t
2935 vdev_dtl_max(vdev_t *vd)
2936 {
2937 ASSERT(MUTEX_HELD(&vd->vdev_dtl_lock));
2938 ASSERT3U(range_tree_space(vd->vdev_dtl[DTL_MISSING]), !=, 0);
2939 ASSERT0(vd->vdev_children);
2940
2941 return (range_tree_max(vd->vdev_dtl[DTL_MISSING]));
2942 }
2943
2944 /*
2945 * Determine if a resilvering vdev should remove any DTL entries from
2946 * its range. If the vdev was resilvering for the entire duration of the
2947 * scan then it should excise that range from its DTLs. Otherwise, this
2948 * vdev is considered partially resilvered and should leave its DTL
2949 * entries intact. The comment in vdev_dtl_reassess() describes how we
2950 * excise the DTLs.
2951 */
2952 static boolean_t
2953 vdev_dtl_should_excise(vdev_t *vd, boolean_t rebuild_done)
2954 {
2955 ASSERT0(vd->vdev_children);
2956
2957 if (vd->vdev_state < VDEV_STATE_DEGRADED)
2958 return (B_FALSE);
2959
2960 if (vd->vdev_resilver_deferred)
2961 return (B_FALSE);
2962
2963 if (range_tree_is_empty(vd->vdev_dtl[DTL_MISSING]))
2964 return (B_TRUE);
2965
2966 if (rebuild_done) {
2967 vdev_rebuild_t *vr = &vd->vdev_top->vdev_rebuild_config;
2968 vdev_rebuild_phys_t *vrp = &vr->vr_rebuild_phys;
2969
2970 /* Rebuild not initiated by attach */
2971 if (vd->vdev_rebuild_txg == 0)
2972 return (B_TRUE);
2973
2974 /*
2975 * When a rebuild completes without error then all missing data
2976 * up to the rebuild max txg has been reconstructed and the DTL
2977 * is eligible for excision.
2978 */
2979 if (vrp->vrp_rebuild_state == VDEV_REBUILD_COMPLETE &&
2980 vdev_dtl_max(vd) <= vrp->vrp_max_txg) {
2981 ASSERT3U(vrp->vrp_min_txg, <=, vdev_dtl_min(vd));
2982 ASSERT3U(vrp->vrp_min_txg, <, vd->vdev_rebuild_txg);
2983 ASSERT3U(vd->vdev_rebuild_txg, <=, vrp->vrp_max_txg);
2984 return (B_TRUE);
2985 }
2986 } else {
2987 dsl_scan_t *scn = vd->vdev_spa->spa_dsl_pool->dp_scan;
2988 dsl_scan_phys_t *scnp __maybe_unused = &scn->scn_phys;
2989
2990 /* Resilver not initiated by attach */
2991 if (vd->vdev_resilver_txg == 0)
2992 return (B_TRUE);
2993
2994 /*
2995 * When a resilver is initiated the scan will assign the
2996 * scn_max_txg value to the highest txg value that exists
2997 * in all DTLs. If this device's max DTL is not part of this
2998 * scan (i.e. it is not in the range (scn_min_txg, scn_max_txg]
2999 * then it is not eligible for excision.
3000 */
3001 if (vdev_dtl_max(vd) <= scn->scn_phys.scn_max_txg) {
3002 ASSERT3U(scnp->scn_min_txg, <=, vdev_dtl_min(vd));
3003 ASSERT3U(scnp->scn_min_txg, <, vd->vdev_resilver_txg);
3004 ASSERT3U(vd->vdev_resilver_txg, <=, scnp->scn_max_txg);
3005 return (B_TRUE);
3006 }
3007 }
3008
3009 return (B_FALSE);
3010 }
3011
3012 /*
3013 * Reassess DTLs after a config change or scrub completion. If txg == 0 no
3014 * write operations will be issued to the pool.
3015 */
3016 void
3017 vdev_dtl_reassess(vdev_t *vd, uint64_t txg, uint64_t scrub_txg,
3018 boolean_t scrub_done, boolean_t rebuild_done)
3019 {
3020 spa_t *spa = vd->vdev_spa;
3021 avl_tree_t reftree;
3022 int minref;
3023
3024 ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
3025
3026 for (int c = 0; c < vd->vdev_children; c++)
3027 vdev_dtl_reassess(vd->vdev_child[c], txg,
3028 scrub_txg, scrub_done, rebuild_done);
3029
3030 if (vd == spa->spa_root_vdev || !vdev_is_concrete(vd) || vd->vdev_aux)
3031 return;
3032
3033 if (vd->vdev_ops->vdev_op_leaf) {
3034 dsl_scan_t *scn = spa->spa_dsl_pool->dp_scan;
3035 vdev_rebuild_t *vr = &vd->vdev_top->vdev_rebuild_config;
3036 boolean_t check_excise = B_FALSE;
3037 boolean_t wasempty = B_TRUE;
3038
3039 mutex_enter(&vd->vdev_dtl_lock);
3040
3041 /*
3042 * If requested, pretend the scan or rebuild completed cleanly.
3043 */
3044 if (zfs_scan_ignore_errors) {
3045 if (scn != NULL)
3046 scn->scn_phys.scn_errors = 0;
3047 if (vr != NULL)
3048 vr->vr_rebuild_phys.vrp_errors = 0;
3049 }
3050
3051 if (scrub_txg != 0 &&
3052 !range_tree_is_empty(vd->vdev_dtl[DTL_MISSING])) {
3053 wasempty = B_FALSE;
3054 zfs_dbgmsg("guid:%llu txg:%llu scrub:%llu started:%d "
3055 "dtl:%llu/%llu errors:%llu",
3056 (u_longlong_t)vd->vdev_guid, (u_longlong_t)txg,
3057 (u_longlong_t)scrub_txg, spa->spa_scrub_started,
3058 (u_longlong_t)vdev_dtl_min(vd),
3059 (u_longlong_t)vdev_dtl_max(vd),
3060 (u_longlong_t)(scn ? scn->scn_phys.scn_errors : 0));
3061 }
3062
3063 /*
3064 * If we've completed a scrub/resilver or a rebuild cleanly
3065 * then determine if this vdev should remove any DTLs. We
3066 * only want to excise regions on vdevs that were available
3067 * during the entire duration of this scan.
3068 */
3069 if (rebuild_done &&
3070 vr != NULL && vr->vr_rebuild_phys.vrp_errors == 0) {
3071 check_excise = B_TRUE;
3072 } else {
3073 if (spa->spa_scrub_started ||
3074 (scn != NULL && scn->scn_phys.scn_errors == 0)) {
3075 check_excise = B_TRUE;
3076 }
3077 }
3078
3079 if (scrub_txg && check_excise &&
3080 vdev_dtl_should_excise(vd, rebuild_done)) {
3081 /*
3082 * We completed a scrub, resilver or rebuild up to
3083 * scrub_txg. If we did it without rebooting, then
3084 * the scrub dtl will be valid, so excise the old
3085 * region and fold in the scrub dtl. Otherwise,
3086 * leave the dtl as-is if there was an error.
3087 *
3088 * There's little trick here: to excise the beginning
3089 * of the DTL_MISSING map, we put it into a reference
3090 * tree and then add a segment with refcnt -1 that
3091 * covers the range [0, scrub_txg). This means
3092 * that each txg in that range has refcnt -1 or 0.
3093 * We then add DTL_SCRUB with a refcnt of 2, so that
3094 * entries in the range [0, scrub_txg) will have a
3095 * positive refcnt -- either 1 or 2. We then convert
3096 * the reference tree into the new DTL_MISSING map.
3097 */
3098 space_reftree_create(&reftree);
3099 space_reftree_add_map(&reftree,
3100 vd->vdev_dtl[DTL_MISSING], 1);
3101 space_reftree_add_seg(&reftree, 0, scrub_txg, -1);
3102 space_reftree_add_map(&reftree,
3103 vd->vdev_dtl[DTL_SCRUB], 2);
3104 space_reftree_generate_map(&reftree,
3105 vd->vdev_dtl[DTL_MISSING], 1);
3106 space_reftree_destroy(&reftree);
3107
3108 if (!range_tree_is_empty(vd->vdev_dtl[DTL_MISSING])) {
3109 zfs_dbgmsg("update DTL_MISSING:%llu/%llu",
3110 (u_longlong_t)vdev_dtl_min(vd),
3111 (u_longlong_t)vdev_dtl_max(vd));
3112 } else if (!wasempty) {
3113 zfs_dbgmsg("DTL_MISSING is now empty");
3114 }
3115 }
3116 range_tree_vacate(vd->vdev_dtl[DTL_PARTIAL], NULL, NULL);
3117 range_tree_walk(vd->vdev_dtl[DTL_MISSING],
3118 range_tree_add, vd->vdev_dtl[DTL_PARTIAL]);
3119 if (scrub_done)
3120 range_tree_vacate(vd->vdev_dtl[DTL_SCRUB], NULL, NULL);
3121 range_tree_vacate(vd->vdev_dtl[DTL_OUTAGE], NULL, NULL);
3122 if (!vdev_readable(vd))
3123 range_tree_add(vd->vdev_dtl[DTL_OUTAGE], 0, -1ULL);
3124 else
3125 range_tree_walk(vd->vdev_dtl[DTL_MISSING],
3126 range_tree_add, vd->vdev_dtl[DTL_OUTAGE]);
3127
3128 /*
3129 * If the vdev was resilvering or rebuilding and no longer
3130 * has any DTLs then reset the appropriate flag and dirty
3131 * the top level so that we persist the change.
3132 */
3133 if (txg != 0 &&
3134 range_tree_is_empty(vd->vdev_dtl[DTL_MISSING]) &&
3135 range_tree_is_empty(vd->vdev_dtl[DTL_OUTAGE])) {
3136 if (vd->vdev_rebuild_txg != 0) {
3137 vd->vdev_rebuild_txg = 0;
3138 vdev_config_dirty(vd->vdev_top);
3139 } else if (vd->vdev_resilver_txg != 0) {
3140 vd->vdev_resilver_txg = 0;
3141 vdev_config_dirty(vd->vdev_top);
3142 }
3143 }
3144
3145 mutex_exit(&vd->vdev_dtl_lock);
3146
3147 if (txg != 0)
3148 vdev_dirty(vd->vdev_top, VDD_DTL, vd, txg);
3149 return;
3150 }
3151
3152 mutex_enter(&vd->vdev_dtl_lock);
3153 for (int t = 0; t < DTL_TYPES; t++) {
3154 /* account for child's outage in parent's missing map */
3155 int s = (t == DTL_MISSING) ? DTL_OUTAGE: t;
3156 if (t == DTL_SCRUB)
3157 continue; /* leaf vdevs only */
3158 if (t == DTL_PARTIAL)
3159 minref = 1; /* i.e. non-zero */
3160 else if (vdev_get_nparity(vd) != 0)
3161 minref = vdev_get_nparity(vd) + 1; /* RAID-Z, dRAID */
3162 else
3163 minref = vd->vdev_children; /* any kind of mirror */
3164 space_reftree_create(&reftree);
3165 for (int c = 0; c < vd->vdev_children; c++) {
3166 vdev_t *cvd = vd->vdev_child[c];
3167 mutex_enter(&cvd->vdev_dtl_lock);
3168 space_reftree_add_map(&reftree, cvd->vdev_dtl[s], 1);
3169 mutex_exit(&cvd->vdev_dtl_lock);
3170 }
3171 space_reftree_generate_map(&reftree, vd->vdev_dtl[t], minref);
3172 space_reftree_destroy(&reftree);
3173 }
3174 mutex_exit(&vd->vdev_dtl_lock);
3175 }
3176
3177 /*
3178 * Iterate over all the vdevs except spare, and post kobj events
3179 */
3180 void
3181 vdev_post_kobj_evt(vdev_t *vd)
3182 {
3183 if (vd->vdev_ops->vdev_op_kobj_evt_post &&
3184 vd->vdev_kobj_flag == B_FALSE) {
3185 vd->vdev_kobj_flag = B_TRUE;
3186 vd->vdev_ops->vdev_op_kobj_evt_post(vd);
3187 }
3188
3189 for (int c = 0; c < vd->vdev_children; c++)
3190 vdev_post_kobj_evt(vd->vdev_child[c]);
3191 }
3192
3193 /*
3194 * Iterate over all the vdevs except spare, and clear kobj events
3195 */
3196 void
3197 vdev_clear_kobj_evt(vdev_t *vd)
3198 {
3199 vd->vdev_kobj_flag = B_FALSE;
3200
3201 for (int c = 0; c < vd->vdev_children; c++)
3202 vdev_clear_kobj_evt(vd->vdev_child[c]);
3203 }
3204
3205 int
3206 vdev_dtl_load(vdev_t *vd)
3207 {
3208 spa_t *spa = vd->vdev_spa;
3209 objset_t *mos = spa->spa_meta_objset;
3210 range_tree_t *rt;
3211 int error = 0;
3212
3213 if (vd->vdev_ops->vdev_op_leaf && vd->vdev_dtl_object != 0) {
3214 ASSERT(vdev_is_concrete(vd));
3215
3216 /*
3217 * If the dtl cannot be sync'd there is no need to open it.
3218 */
3219 if (spa->spa_mode == SPA_MODE_READ && !spa->spa_read_spacemaps)
3220 return (0);
3221
3222 error = space_map_open(&vd->vdev_dtl_sm, mos,
3223 vd->vdev_dtl_object, 0, -1ULL, 0);
3224 if (error)
3225 return (error);
3226 ASSERT(vd->vdev_dtl_sm != NULL);
3227
3228 rt = range_tree_create(NULL, RANGE_SEG64, NULL, 0, 0);
3229 error = space_map_load(vd->vdev_dtl_sm, rt, SM_ALLOC);
3230 if (error == 0) {
3231 mutex_enter(&vd->vdev_dtl_lock);
3232 range_tree_walk(rt, range_tree_add,
3233 vd->vdev_dtl[DTL_MISSING]);
3234 mutex_exit(&vd->vdev_dtl_lock);
3235 }
3236
3237 range_tree_vacate(rt, NULL, NULL);
3238 range_tree_destroy(rt);
3239
3240 return (error);
3241 }
3242
3243 for (int c = 0; c < vd->vdev_children; c++) {
3244 error = vdev_dtl_load(vd->vdev_child[c]);
3245 if (error != 0)
3246 break;
3247 }
3248
3249 return (error);
3250 }
3251
3252 static void
3253 vdev_zap_allocation_data(vdev_t *vd, dmu_tx_t *tx)
3254 {
3255 spa_t *spa = vd->vdev_spa;
3256 objset_t *mos = spa->spa_meta_objset;
3257 vdev_alloc_bias_t alloc_bias = vd->vdev_alloc_bias;
3258 const char *string;
3259
3260 ASSERT(alloc_bias != VDEV_BIAS_NONE);
3261
3262 string =
3263 (alloc_bias == VDEV_BIAS_LOG) ? VDEV_ALLOC_BIAS_LOG :
3264 (alloc_bias == VDEV_BIAS_SPECIAL) ? VDEV_ALLOC_BIAS_SPECIAL :
3265 (alloc_bias == VDEV_BIAS_DEDUP) ? VDEV_ALLOC_BIAS_DEDUP : NULL;
3266
3267 ASSERT(string != NULL);
3268 VERIFY0(zap_add(mos, vd->vdev_top_zap, VDEV_TOP_ZAP_ALLOCATION_BIAS,
3269 1, strlen(string) + 1, string, tx));
3270
3271 if (alloc_bias == VDEV_BIAS_SPECIAL || alloc_bias == VDEV_BIAS_DEDUP) {
3272 spa_activate_allocation_classes(spa, tx);
3273 }
3274 }
3275
3276 void
3277 vdev_destroy_unlink_zap(vdev_t *vd, uint64_t zapobj, dmu_tx_t *tx)
3278 {
3279 spa_t *spa = vd->vdev_spa;
3280
3281 VERIFY0(zap_destroy(spa->spa_meta_objset, zapobj, tx));
3282 VERIFY0(zap_remove_int(spa->spa_meta_objset, spa->spa_all_vdev_zaps,
3283 zapobj, tx));
3284 }
3285
3286 uint64_t
3287 vdev_create_link_zap(vdev_t *vd, dmu_tx_t *tx)
3288 {
3289 spa_t *spa = vd->vdev_spa;
3290 uint64_t zap = zap_create(spa->spa_meta_objset, DMU_OTN_ZAP_METADATA,
3291 DMU_OT_NONE, 0, tx);
3292
3293 ASSERT(zap != 0);
3294 VERIFY0(zap_add_int(spa->spa_meta_objset, spa->spa_all_vdev_zaps,
3295 zap, tx));
3296
3297 return (zap);
3298 }
3299
3300 void
3301 vdev_construct_zaps(vdev_t *vd, dmu_tx_t *tx)
3302 {
3303 if (vd->vdev_ops != &vdev_hole_ops &&
3304 vd->vdev_ops != &vdev_missing_ops &&
3305 vd->vdev_ops != &vdev_root_ops &&
3306 !vd->vdev_top->vdev_removing) {
3307 if (vd->vdev_ops->vdev_op_leaf && vd->vdev_leaf_zap == 0) {
3308 vd->vdev_leaf_zap = vdev_create_link_zap(vd, tx);
3309 }
3310 if (vd == vd->vdev_top && vd->vdev_top_zap == 0) {
3311 vd->vdev_top_zap = vdev_create_link_zap(vd, tx);
3312 if (vd->vdev_alloc_bias != VDEV_BIAS_NONE)
3313 vdev_zap_allocation_data(vd, tx);
3314 }
3315 }
3316
3317 for (uint64_t i = 0; i < vd->vdev_children; i++) {
3318 vdev_construct_zaps(vd->vdev_child[i], tx);
3319 }
3320 }
3321
3322 static void
3323 vdev_dtl_sync(vdev_t *vd, uint64_t txg)
3324 {
3325 spa_t *spa = vd->vdev_spa;
3326 range_tree_t *rt = vd->vdev_dtl[DTL_MISSING];
3327 objset_t *mos = spa->spa_meta_objset;
3328 range_tree_t *rtsync;
3329 dmu_tx_t *tx;
3330 uint64_t object = space_map_object(vd->vdev_dtl_sm);
3331
3332 ASSERT(vdev_is_concrete(vd));
3333 ASSERT(vd->vdev_ops->vdev_op_leaf);
3334
3335 tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg);
3336
3337 if (vd->vdev_detached || vd->vdev_top->vdev_removing) {
3338 mutex_enter(&vd->vdev_dtl_lock);
3339 space_map_free(vd->vdev_dtl_sm, tx);
3340 space_map_close(vd->vdev_dtl_sm);
3341 vd->vdev_dtl_sm = NULL;
3342 mutex_exit(&vd->vdev_dtl_lock);
3343
3344 /*
3345 * We only destroy the leaf ZAP for detached leaves or for
3346 * removed log devices. Removed data devices handle leaf ZAP
3347 * cleanup later, once cancellation is no longer possible.
3348 */
3349 if (vd->vdev_leaf_zap != 0 && (vd->vdev_detached ||
3350 vd->vdev_top->vdev_islog)) {
3351 vdev_destroy_unlink_zap(vd, vd->vdev_leaf_zap, tx);
3352 vd->vdev_leaf_zap = 0;
3353 }
3354
3355 dmu_tx_commit(tx);
3356 return;
3357 }
3358
3359 if (vd->vdev_dtl_sm == NULL) {
3360 uint64_t new_object;
3361
3362 new_object = space_map_alloc(mos, zfs_vdev_dtl_sm_blksz, tx);
3363 VERIFY3U(new_object, !=, 0);
3364
3365 VERIFY0(space_map_open(&vd->vdev_dtl_sm, mos, new_object,
3366 0, -1ULL, 0));
3367 ASSERT(vd->vdev_dtl_sm != NULL);
3368 }
3369
3370 rtsync = range_tree_create(NULL, RANGE_SEG64, NULL, 0, 0);
3371
3372 mutex_enter(&vd->vdev_dtl_lock);
3373 range_tree_walk(rt, range_tree_add, rtsync);
3374 mutex_exit(&vd->vdev_dtl_lock);
3375
3376 space_map_truncate(vd->vdev_dtl_sm, zfs_vdev_dtl_sm_blksz, tx);
3377 space_map_write(vd->vdev_dtl_sm, rtsync, SM_ALLOC, SM_NO_VDEVID, tx);
3378 range_tree_vacate(rtsync, NULL, NULL);
3379
3380 range_tree_destroy(rtsync);
3381
3382 /*
3383 * If the object for the space map has changed then dirty
3384 * the top level so that we update the config.
3385 */
3386 if (object != space_map_object(vd->vdev_dtl_sm)) {
3387 vdev_dbgmsg(vd, "txg %llu, spa %s, DTL old object %llu, "
3388 "new object %llu", (u_longlong_t)txg, spa_name(spa),
3389 (u_longlong_t)object,
3390 (u_longlong_t)space_map_object(vd->vdev_dtl_sm));
3391 vdev_config_dirty(vd->vdev_top);
3392 }
3393
3394 dmu_tx_commit(tx);
3395 }
3396
3397 /*
3398 * Determine whether the specified vdev can be offlined/detached/removed
3399 * without losing data.
3400 */
3401 boolean_t
3402 vdev_dtl_required(vdev_t *vd)
3403 {
3404 spa_t *spa = vd->vdev_spa;
3405 vdev_t *tvd = vd->vdev_top;
3406 uint8_t cant_read = vd->vdev_cant_read;
3407 boolean_t required;
3408
3409 ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
3410
3411 if (vd == spa->spa_root_vdev || vd == tvd)
3412 return (B_TRUE);
3413
3414 /*
3415 * Temporarily mark the device as unreadable, and then determine
3416 * whether this results in any DTL outages in the top-level vdev.
3417 * If not, we can safely offline/detach/remove the device.
3418 */
3419 vd->vdev_cant_read = B_TRUE;
3420 vdev_dtl_reassess(tvd, 0, 0, B_FALSE, B_FALSE);
3421 required = !vdev_dtl_empty(tvd, DTL_OUTAGE);
3422 vd->vdev_cant_read = cant_read;
3423 vdev_dtl_reassess(tvd, 0, 0, B_FALSE, B_FALSE);
3424
3425 if (!required && zio_injection_enabled) {
3426 required = !!zio_handle_device_injection(vd, NULL,
3427 SET_ERROR(ECHILD));
3428 }
3429
3430 return (required);
3431 }
3432
3433 /*
3434 * Determine if resilver is needed, and if so the txg range.
3435 */
3436 boolean_t
3437 vdev_resilver_needed(vdev_t *vd, uint64_t *minp, uint64_t *maxp)
3438 {
3439 boolean_t needed = B_FALSE;
3440 uint64_t thismin = UINT64_MAX;
3441 uint64_t thismax = 0;
3442
3443 if (vd->vdev_children == 0) {
3444 mutex_enter(&vd->vdev_dtl_lock);
3445 if (!range_tree_is_empty(vd->vdev_dtl[DTL_MISSING]) &&
3446 vdev_writeable(vd)) {
3447
3448 thismin = vdev_dtl_min(vd);
3449 thismax = vdev_dtl_max(vd);
3450 needed = B_TRUE;
3451 }
3452 mutex_exit(&vd->vdev_dtl_lock);
3453 } else {
3454 for (int c = 0; c < vd->vdev_children; c++) {
3455 vdev_t *cvd = vd->vdev_child[c];
3456 uint64_t cmin, cmax;
3457
3458 if (vdev_resilver_needed(cvd, &cmin, &cmax)) {
3459 thismin = MIN(thismin, cmin);
3460 thismax = MAX(thismax, cmax);
3461 needed = B_TRUE;
3462 }
3463 }
3464 }
3465
3466 if (needed && minp) {
3467 *minp = thismin;
3468 *maxp = thismax;
3469 }
3470 return (needed);
3471 }
3472
3473 /*
3474 * Gets the checkpoint space map object from the vdev's ZAP. On success sm_obj
3475 * will contain either the checkpoint spacemap object or zero if none exists.
3476 * All other errors are returned to the caller.
3477 */
3478 int
3479 vdev_checkpoint_sm_object(vdev_t *vd, uint64_t *sm_obj)
3480 {
3481 ASSERT0(spa_config_held(vd->vdev_spa, SCL_ALL, RW_WRITER));
3482
3483 if (vd->vdev_top_zap == 0) {
3484 *sm_obj = 0;
3485 return (0);
3486 }
3487
3488 int error = zap_lookup(spa_meta_objset(vd->vdev_spa), vd->vdev_top_zap,
3489 VDEV_TOP_ZAP_POOL_CHECKPOINT_SM, sizeof (uint64_t), 1, sm_obj);
3490 if (error == ENOENT) {
3491 *sm_obj = 0;
3492 error = 0;
3493 }
3494
3495 return (error);
3496 }
3497
3498 int
3499 vdev_load(vdev_t *vd)
3500 {
3501 int children = vd->vdev_children;
3502 int error = 0;
3503 taskq_t *tq = NULL;
3504
3505 /*
3506 * It's only worthwhile to use the taskq for the root vdev, because the
3507 * slow part is metaslab_init, and that only happens for top-level
3508 * vdevs.
3509 */
3510 if (vd->vdev_ops == &vdev_root_ops && vd->vdev_children > 0) {
3511 tq = taskq_create("vdev_load", children, minclsyspri,
3512 children, children, TASKQ_PREPOPULATE);
3513 }
3514
3515 /*
3516 * Recursively load all children.
3517 */
3518 for (int c = 0; c < vd->vdev_children; c++) {
3519 vdev_t *cvd = vd->vdev_child[c];
3520
3521 if (tq == NULL || vdev_uses_zvols(cvd)) {
3522 cvd->vdev_load_error = vdev_load(cvd);
3523 } else {
3524 VERIFY(taskq_dispatch(tq, vdev_load_child,
3525 cvd, TQ_SLEEP) != TASKQID_INVALID);
3526 }
3527 }
3528
3529 if (tq != NULL) {
3530 taskq_wait(tq);
3531 taskq_destroy(tq);
3532 }
3533
3534 for (int c = 0; c < vd->vdev_children; c++) {
3535 int error = vd->vdev_child[c]->vdev_load_error;
3536
3537 if (error != 0)
3538 return (error);
3539 }
3540
3541 vdev_set_deflate_ratio(vd);
3542
3543 /*
3544 * On spa_load path, grab the allocation bias from our zap
3545 */
3546 if (vd == vd->vdev_top && vd->vdev_top_zap != 0) {
3547 spa_t *spa = vd->vdev_spa;
3548 char bias_str[64];
3549
3550 error = zap_lookup(spa->spa_meta_objset, vd->vdev_top_zap,
3551 VDEV_TOP_ZAP_ALLOCATION_BIAS, 1, sizeof (bias_str),
3552 bias_str);
3553 if (error == 0) {
3554 ASSERT(vd->vdev_alloc_bias == VDEV_BIAS_NONE);
3555 vd->vdev_alloc_bias = vdev_derive_alloc_bias(bias_str);
3556 } else if (error != ENOENT) {
3557 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
3558 VDEV_AUX_CORRUPT_DATA);
3559 vdev_dbgmsg(vd, "vdev_load: zap_lookup(top_zap=%llu) "
3560 "failed [error=%d]",
3561 (u_longlong_t)vd->vdev_top_zap, error);
3562 return (error);
3563 }
3564 }
3565
3566 /*
3567 * Load any rebuild state from the top-level vdev zap.
3568 */
3569 if (vd == vd->vdev_top && vd->vdev_top_zap != 0) {
3570 error = vdev_rebuild_load(vd);
3571 if (error && error != ENOTSUP) {
3572 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
3573 VDEV_AUX_CORRUPT_DATA);
3574 vdev_dbgmsg(vd, "vdev_load: vdev_rebuild_load "
3575 "failed [error=%d]", error);
3576 return (error);
3577 }
3578 }
3579
3580 /*
3581 * If this is a top-level vdev, initialize its metaslabs.
3582 */
3583 if (vd == vd->vdev_top && vdev_is_concrete(vd)) {
3584 vdev_metaslab_group_create(vd);
3585
3586 if (vd->vdev_ashift == 0 || vd->vdev_asize == 0) {
3587 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
3588 VDEV_AUX_CORRUPT_DATA);
3589 vdev_dbgmsg(vd, "vdev_load: invalid size. ashift=%llu, "
3590 "asize=%llu", (u_longlong_t)vd->vdev_ashift,
3591 (u_longlong_t)vd->vdev_asize);
3592 return (SET_ERROR(ENXIO));
3593 }
3594
3595 error = vdev_metaslab_init(vd, 0);
3596 if (error != 0) {
3597 vdev_dbgmsg(vd, "vdev_load: metaslab_init failed "
3598 "[error=%d]", error);
3599 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
3600 VDEV_AUX_CORRUPT_DATA);
3601 return (error);
3602 }
3603
3604 uint64_t checkpoint_sm_obj;
3605 error = vdev_checkpoint_sm_object(vd, &checkpoint_sm_obj);
3606 if (error == 0 && checkpoint_sm_obj != 0) {
3607 objset_t *mos = spa_meta_objset(vd->vdev_spa);
3608 ASSERT(vd->vdev_asize != 0);
3609 ASSERT3P(vd->vdev_checkpoint_sm, ==, NULL);
3610
3611 error = space_map_open(&vd->vdev_checkpoint_sm,
3612 mos, checkpoint_sm_obj, 0, vd->vdev_asize,
3613 vd->vdev_ashift);
3614 if (error != 0) {
3615 vdev_dbgmsg(vd, "vdev_load: space_map_open "
3616 "failed for checkpoint spacemap (obj %llu) "
3617 "[error=%d]",
3618 (u_longlong_t)checkpoint_sm_obj, error);
3619 return (error);
3620 }
3621 ASSERT3P(vd->vdev_checkpoint_sm, !=, NULL);
3622
3623 /*
3624 * Since the checkpoint_sm contains free entries
3625 * exclusively we can use space_map_allocated() to
3626 * indicate the cumulative checkpointed space that
3627 * has been freed.
3628 */
3629 vd->vdev_stat.vs_checkpoint_space =
3630 -space_map_allocated(vd->vdev_checkpoint_sm);
3631 vd->vdev_spa->spa_checkpoint_info.sci_dspace +=
3632 vd->vdev_stat.vs_checkpoint_space;
3633 } else if (error != 0) {
3634 vdev_dbgmsg(vd, "vdev_load: failed to retrieve "
3635 "checkpoint space map object from vdev ZAP "
3636 "[error=%d]", error);
3637 return (error);
3638 }
3639 }
3640
3641 /*
3642 * If this is a leaf vdev, load its DTL.
3643 */
3644 if (vd->vdev_ops->vdev_op_leaf && (error = vdev_dtl_load(vd)) != 0) {
3645 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
3646 VDEV_AUX_CORRUPT_DATA);
3647 vdev_dbgmsg(vd, "vdev_load: vdev_dtl_load failed "
3648 "[error=%d]", error);
3649 return (error);
3650 }
3651
3652 uint64_t obsolete_sm_object;
3653 error = vdev_obsolete_sm_object(vd, &obsolete_sm_object);
3654 if (error == 0 && obsolete_sm_object != 0) {
3655 objset_t *mos = vd->vdev_spa->spa_meta_objset;
3656 ASSERT(vd->vdev_asize != 0);
3657 ASSERT3P(vd->vdev_obsolete_sm, ==, NULL);
3658
3659 if ((error = space_map_open(&vd->vdev_obsolete_sm, mos,
3660 obsolete_sm_object, 0, vd->vdev_asize, 0))) {
3661 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
3662 VDEV_AUX_CORRUPT_DATA);
3663 vdev_dbgmsg(vd, "vdev_load: space_map_open failed for "
3664 "obsolete spacemap (obj %llu) [error=%d]",
3665 (u_longlong_t)obsolete_sm_object, error);
3666 return (error);
3667 }
3668 } else if (error != 0) {
3669 vdev_dbgmsg(vd, "vdev_load: failed to retrieve obsolete "
3670 "space map object from vdev ZAP [error=%d]", error);
3671 return (error);
3672 }
3673
3674 return (0);
3675 }
3676
3677 /*
3678 * The special vdev case is used for hot spares and l2cache devices. Its
3679 * sole purpose it to set the vdev state for the associated vdev. To do this,
3680 * we make sure that we can open the underlying device, then try to read the
3681 * label, and make sure that the label is sane and that it hasn't been
3682 * repurposed to another pool.
3683 */
3684 int
3685 vdev_validate_aux(vdev_t *vd)
3686 {
3687 nvlist_t *label;
3688 uint64_t guid, version;
3689 uint64_t state;
3690
3691 if (!vdev_readable(vd))
3692 return (0);
3693
3694 if ((label = vdev_label_read_config(vd, -1ULL)) == NULL) {
3695 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
3696 VDEV_AUX_CORRUPT_DATA);
3697 return (-1);
3698 }
3699
3700 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_VERSION, &version) != 0 ||
3701 !SPA_VERSION_IS_SUPPORTED(version) ||
3702 nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID, &guid) != 0 ||
3703 guid != vd->vdev_guid ||
3704 nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE, &state) != 0) {
3705 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
3706 VDEV_AUX_CORRUPT_DATA);
3707 nvlist_free(label);
3708 return (-1);
3709 }
3710
3711 /*
3712 * We don't actually check the pool state here. If it's in fact in
3713 * use by another pool, we update this fact on the fly when requested.
3714 */
3715 nvlist_free(label);
3716 return (0);
3717 }
3718
3719 static void
3720 vdev_destroy_ms_flush_data(vdev_t *vd, dmu_tx_t *tx)
3721 {
3722 objset_t *mos = spa_meta_objset(vd->vdev_spa);
3723
3724 if (vd->vdev_top_zap == 0)
3725 return;
3726
3727 uint64_t object = 0;
3728 int err = zap_lookup(mos, vd->vdev_top_zap,
3729 VDEV_TOP_ZAP_MS_UNFLUSHED_PHYS_TXGS, sizeof (uint64_t), 1, &object);
3730 if (err == ENOENT)
3731 return;
3732 VERIFY0(err);
3733
3734 VERIFY0(dmu_object_free(mos, object, tx));
3735 VERIFY0(zap_remove(mos, vd->vdev_top_zap,
3736 VDEV_TOP_ZAP_MS_UNFLUSHED_PHYS_TXGS, tx));
3737 }
3738
3739 /*
3740 * Free the objects used to store this vdev's spacemaps, and the array
3741 * that points to them.
3742 */
3743 void
3744 vdev_destroy_spacemaps(vdev_t *vd, dmu_tx_t *tx)
3745 {
3746 if (vd->vdev_ms_array == 0)
3747 return;
3748
3749 objset_t *mos = vd->vdev_spa->spa_meta_objset;
3750 uint64_t array_count = vd->vdev_asize >> vd->vdev_ms_shift;
3751 size_t array_bytes = array_count * sizeof (uint64_t);
3752 uint64_t *smobj_array = kmem_alloc(array_bytes, KM_SLEEP);
3753 VERIFY0(dmu_read(mos, vd->vdev_ms_array, 0,
3754 array_bytes, smobj_array, 0));
3755
3756 for (uint64_t i = 0; i < array_count; i++) {
3757 uint64_t smobj = smobj_array[i];
3758 if (smobj == 0)
3759 continue;
3760
3761 space_map_free_obj(mos, smobj, tx);
3762 }
3763
3764 kmem_free(smobj_array, array_bytes);
3765 VERIFY0(dmu_object_free(mos, vd->vdev_ms_array, tx));
3766 vdev_destroy_ms_flush_data(vd, tx);
3767 vd->vdev_ms_array = 0;
3768 }
3769
3770 static void
3771 vdev_remove_empty_log(vdev_t *vd, uint64_t txg)
3772 {
3773 spa_t *spa = vd->vdev_spa;
3774
3775 ASSERT(vd->vdev_islog);
3776 ASSERT(vd == vd->vdev_top);
3777 ASSERT3U(txg, ==, spa_syncing_txg(spa));
3778
3779 dmu_tx_t *tx = dmu_tx_create_assigned(spa_get_dsl(spa), txg);
3780
3781 vdev_destroy_spacemaps(vd, tx);
3782 if (vd->vdev_top_zap != 0) {
3783 vdev_destroy_unlink_zap(vd, vd->vdev_top_zap, tx);
3784 vd->vdev_top_zap = 0;
3785 }
3786
3787 dmu_tx_commit(tx);
3788 }
3789
3790 void
3791 vdev_sync_done(vdev_t *vd, uint64_t txg)
3792 {
3793 metaslab_t *msp;
3794 boolean_t reassess = !txg_list_empty(&vd->vdev_ms_list, TXG_CLEAN(txg));
3795
3796 ASSERT(vdev_is_concrete(vd));
3797
3798 while ((msp = txg_list_remove(&vd->vdev_ms_list, TXG_CLEAN(txg)))
3799 != NULL)
3800 metaslab_sync_done(msp, txg);
3801
3802 if (reassess) {
3803 metaslab_sync_reassess(vd->vdev_mg);
3804 if (vd->vdev_log_mg != NULL)
3805 metaslab_sync_reassess(vd->vdev_log_mg);
3806 }
3807 }
3808
3809 void
3810 vdev_sync(vdev_t *vd, uint64_t txg)
3811 {
3812 spa_t *spa = vd->vdev_spa;
3813 vdev_t *lvd;
3814 metaslab_t *msp;
3815
3816 ASSERT3U(txg, ==, spa->spa_syncing_txg);
3817 dmu_tx_t *tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg);
3818 if (range_tree_space(vd->vdev_obsolete_segments) > 0) {
3819 ASSERT(vd->vdev_removing ||
3820 vd->vdev_ops == &vdev_indirect_ops);
3821
3822 vdev_indirect_sync_obsolete(vd, tx);
3823
3824 /*
3825 * If the vdev is indirect, it can't have dirty
3826 * metaslabs or DTLs.
3827 */
3828 if (vd->vdev_ops == &vdev_indirect_ops) {
3829 ASSERT(txg_list_empty(&vd->vdev_ms_list, txg));
3830 ASSERT(txg_list_empty(&vd->vdev_dtl_list, txg));
3831 dmu_tx_commit(tx);
3832 return;
3833 }
3834 }
3835
3836 ASSERT(vdev_is_concrete(vd));
3837
3838 if (vd->vdev_ms_array == 0 && vd->vdev_ms_shift != 0 &&
3839 !vd->vdev_removing) {
3840 ASSERT(vd == vd->vdev_top);
3841 ASSERT0(vd->vdev_indirect_config.vic_mapping_object);
3842 vd->vdev_ms_array = dmu_object_alloc(spa->spa_meta_objset,
3843 DMU_OT_OBJECT_ARRAY, 0, DMU_OT_NONE, 0, tx);
3844 ASSERT(vd->vdev_ms_array != 0);
3845 vdev_config_dirty(vd);
3846 }
3847
3848 while ((msp = txg_list_remove(&vd->vdev_ms_list, txg)) != NULL) {
3849 metaslab_sync(msp, txg);
3850 (void) txg_list_add(&vd->vdev_ms_list, msp, TXG_CLEAN(txg));
3851 }
3852
3853 while ((lvd = txg_list_remove(&vd->vdev_dtl_list, txg)) != NULL)
3854 vdev_dtl_sync(lvd, txg);
3855
3856 /*
3857 * If this is an empty log device being removed, destroy the
3858 * metadata associated with it.
3859 */
3860 if (vd->vdev_islog && vd->vdev_stat.vs_alloc == 0 && vd->vdev_removing)
3861 vdev_remove_empty_log(vd, txg);
3862
3863 (void) txg_list_add(&spa->spa_vdev_txg_list, vd, TXG_CLEAN(txg));
3864 dmu_tx_commit(tx);
3865 }
3866
3867 uint64_t
3868 vdev_psize_to_asize(vdev_t *vd, uint64_t psize)
3869 {
3870 return (vd->vdev_ops->vdev_op_asize(vd, psize));
3871 }
3872
3873 /*
3874 * Mark the given vdev faulted. A faulted vdev behaves as if the device could
3875 * not be opened, and no I/O is attempted.
3876 */
3877 int
3878 vdev_fault(spa_t *spa, uint64_t guid, vdev_aux_t aux)
3879 {
3880 vdev_t *vd, *tvd;
3881
3882 spa_vdev_state_enter(spa, SCL_NONE);
3883
3884 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
3885 return (spa_vdev_state_exit(spa, NULL, SET_ERROR(ENODEV)));
3886
3887 if (!vd->vdev_ops->vdev_op_leaf)
3888 return (spa_vdev_state_exit(spa, NULL, SET_ERROR(ENOTSUP)));
3889
3890 tvd = vd->vdev_top;
3891
3892 /*
3893 * If user did a 'zpool offline -f' then make the fault persist across
3894 * reboots.
3895 */
3896 if (aux == VDEV_AUX_EXTERNAL_PERSIST) {
3897 /*
3898 * There are two kinds of forced faults: temporary and
3899 * persistent. Temporary faults go away at pool import, while
3900 * persistent faults stay set. Both types of faults can be
3901 * cleared with a zpool clear.
3902 *
3903 * We tell if a vdev is persistently faulted by looking at the
3904 * ZPOOL_CONFIG_AUX_STATE nvpair. If it's set to "external" at
3905 * import then it's a persistent fault. Otherwise, it's
3906 * temporary. We get ZPOOL_CONFIG_AUX_STATE set to "external"
3907 * by setting vd.vdev_stat.vs_aux to VDEV_AUX_EXTERNAL. This
3908 * tells vdev_config_generate() (which gets run later) to set
3909 * ZPOOL_CONFIG_AUX_STATE to "external" in the nvlist.
3910 */
3911 vd->vdev_stat.vs_aux = VDEV_AUX_EXTERNAL;
3912 vd->vdev_tmpoffline = B_FALSE;
3913 aux = VDEV_AUX_EXTERNAL;
3914 } else {
3915 vd->vdev_tmpoffline = B_TRUE;
3916 }
3917
3918 /*
3919 * We don't directly use the aux state here, but if we do a
3920 * vdev_reopen(), we need this value to be present to remember why we
3921 * were faulted.
3922 */
3923 vd->vdev_label_aux = aux;
3924
3925 /*
3926 * Faulted state takes precedence over degraded.
3927 */
3928 vd->vdev_delayed_close = B_FALSE;
3929 vd->vdev_faulted = 1ULL;
3930 vd->vdev_degraded = 0ULL;
3931 vdev_set_state(vd, B_FALSE, VDEV_STATE_FAULTED, aux);
3932
3933 /*
3934 * If this device has the only valid copy of the data, then
3935 * back off and simply mark the vdev as degraded instead.
3936 */
3937 if (!tvd->vdev_islog && vd->vdev_aux == NULL && vdev_dtl_required(vd)) {
3938 vd->vdev_degraded = 1ULL;
3939 vd->vdev_faulted = 0ULL;
3940
3941 /*
3942 * If we reopen the device and it's not dead, only then do we
3943 * mark it degraded.
3944 */
3945 vdev_reopen(tvd);
3946
3947 if (vdev_readable(vd))
3948 vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED, aux);
3949 }
3950
3951 return (spa_vdev_state_exit(spa, vd, 0));
3952 }
3953
3954 /*
3955 * Mark the given vdev degraded. A degraded vdev is purely an indication to the
3956 * user that something is wrong. The vdev continues to operate as normal as far
3957 * as I/O is concerned.
3958 */
3959 int
3960 vdev_degrade(spa_t *spa, uint64_t guid, vdev_aux_t aux)
3961 {
3962 vdev_t *vd;
3963
3964 spa_vdev_state_enter(spa, SCL_NONE);
3965
3966 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
3967 return (spa_vdev_state_exit(spa, NULL, SET_ERROR(ENODEV)));
3968
3969 if (!vd->vdev_ops->vdev_op_leaf)
3970 return (spa_vdev_state_exit(spa, NULL, SET_ERROR(ENOTSUP)));
3971
3972 /*
3973 * If the vdev is already faulted, then don't do anything.
3974 */
3975 if (vd->vdev_faulted || vd->vdev_degraded)
3976 return (spa_vdev_state_exit(spa, NULL, 0));
3977
3978 vd->vdev_degraded = 1ULL;
3979 if (!vdev_is_dead(vd))
3980 vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED,
3981 aux);
3982
3983 return (spa_vdev_state_exit(spa, vd, 0));
3984 }
3985
3986 int
3987 vdev_remove_wanted(spa_t *spa, uint64_t guid)
3988 {
3989 vdev_t *vd;
3990
3991 spa_vdev_state_enter(spa, SCL_NONE);
3992
3993 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
3994 return (spa_vdev_state_exit(spa, NULL, SET_ERROR(ENODEV)));
3995
3996 /*
3997 * If the vdev is already removed, then don't do anything.
3998 */
3999 if (vd->vdev_removed)
4000 return (spa_vdev_state_exit(spa, NULL, 0));
4001
4002 vd->vdev_remove_wanted = B_TRUE;
4003 spa_async_request(spa, SPA_ASYNC_REMOVE);
4004
4005 return (spa_vdev_state_exit(spa, vd, 0));
4006 }
4007
4008
4009 /*
4010 * Online the given vdev.
4011 *
4012 * If 'ZFS_ONLINE_UNSPARE' is set, it implies two things. First, any attached
4013 * spare device should be detached when the device finishes resilvering.
4014 * Second, the online should be treated like a 'test' online case, so no FMA
4015 * events are generated if the device fails to open.
4016 */
4017 int
4018 vdev_online(spa_t *spa, uint64_t guid, uint64_t flags, vdev_state_t *newstate)
4019 {
4020 vdev_t *vd, *tvd, *pvd, *rvd = spa->spa_root_vdev;
4021 boolean_t wasoffline;
4022 vdev_state_t oldstate;
4023
4024 spa_vdev_state_enter(spa, SCL_NONE);
4025
4026 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
4027 return (spa_vdev_state_exit(spa, NULL, SET_ERROR(ENODEV)));
4028
4029 if (!vd->vdev_ops->vdev_op_leaf)
4030 return (spa_vdev_state_exit(spa, NULL, SET_ERROR(ENOTSUP)));
4031
4032 wasoffline = (vd->vdev_offline || vd->vdev_tmpoffline);
4033 oldstate = vd->vdev_state;
4034
4035 tvd = vd->vdev_top;
4036 vd->vdev_offline = B_FALSE;
4037 vd->vdev_tmpoffline = B_FALSE;
4038 vd->vdev_checkremove = !!(flags & ZFS_ONLINE_CHECKREMOVE);
4039 vd->vdev_forcefault = !!(flags & ZFS_ONLINE_FORCEFAULT);
4040
4041 /* XXX - L2ARC 1.0 does not support expansion */
4042 if (!vd->vdev_aux) {
4043 for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent)
4044 pvd->vdev_expanding = !!((flags & ZFS_ONLINE_EXPAND) ||
4045 spa->spa_autoexpand);
4046 vd->vdev_expansion_time = gethrestime_sec();
4047 }
4048
4049 vdev_reopen(tvd);
4050 vd->vdev_checkremove = vd->vdev_forcefault = B_FALSE;
4051
4052 if (!vd->vdev_aux) {
4053 for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent)
4054 pvd->vdev_expanding = B_FALSE;
4055 }
4056
4057 if (newstate)
4058 *newstate = vd->vdev_state;
4059 if ((flags & ZFS_ONLINE_UNSPARE) &&
4060 !vdev_is_dead(vd) && vd->vdev_parent &&
4061 vd->vdev_parent->vdev_ops == &vdev_spare_ops &&
4062 vd->vdev_parent->vdev_child[0] == vd)
4063 vd->vdev_unspare = B_TRUE;
4064
4065 if ((flags & ZFS_ONLINE_EXPAND) || spa->spa_autoexpand) {
4066
4067 /* XXX - L2ARC 1.0 does not support expansion */
4068 if (vd->vdev_aux)
4069 return (spa_vdev_state_exit(spa, vd, ENOTSUP));
4070 spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
4071 }
4072
4073 /* Restart initializing if necessary */
4074 mutex_enter(&vd->vdev_initialize_lock);
4075 if (vdev_writeable(vd) &&
4076 vd->vdev_initialize_thread == NULL &&
4077 vd->vdev_initialize_state == VDEV_INITIALIZE_ACTIVE) {
4078 (void) vdev_initialize(vd);
4079 }
4080 mutex_exit(&vd->vdev_initialize_lock);
4081
4082 /*
4083 * Restart trimming if necessary. We do not restart trimming for cache
4084 * devices here. This is triggered by l2arc_rebuild_vdev()
4085 * asynchronously for the whole device or in l2arc_evict() as it evicts
4086 * space for upcoming writes.
4087 */
4088 mutex_enter(&vd->vdev_trim_lock);
4089 if (vdev_writeable(vd) && !vd->vdev_isl2cache &&
4090 vd->vdev_trim_thread == NULL &&
4091 vd->vdev_trim_state == VDEV_TRIM_ACTIVE) {
4092 (void) vdev_trim(vd, vd->vdev_trim_rate, vd->vdev_trim_partial,
4093 vd->vdev_trim_secure);
4094 }
4095 mutex_exit(&vd->vdev_trim_lock);
4096
4097 if (wasoffline ||
4098 (oldstate < VDEV_STATE_DEGRADED &&
4099 vd->vdev_state >= VDEV_STATE_DEGRADED))
4100 spa_event_notify(spa, vd, NULL, ESC_ZFS_VDEV_ONLINE);
4101
4102 return (spa_vdev_state_exit(spa, vd, 0));
4103 }
4104
4105 static int
4106 vdev_offline_locked(spa_t *spa, uint64_t guid, uint64_t flags)
4107 {
4108 vdev_t *vd, *tvd;
4109 int error = 0;
4110 uint64_t generation;
4111 metaslab_group_t *mg;
4112
4113 top:
4114 spa_vdev_state_enter(spa, SCL_ALLOC);
4115
4116 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
4117 return (spa_vdev_state_exit(spa, NULL, SET_ERROR(ENODEV)));
4118
4119 if (!vd->vdev_ops->vdev_op_leaf)
4120 return (spa_vdev_state_exit(spa, NULL, SET_ERROR(ENOTSUP)));
4121
4122 if (vd->vdev_ops == &vdev_draid_spare_ops)
4123 return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
4124
4125 tvd = vd->vdev_top;
4126 mg = tvd->vdev_mg;
4127 generation = spa->spa_config_generation + 1;
4128
4129 /*
4130 * If the device isn't already offline, try to offline it.
4131 */
4132 if (!vd->vdev_offline) {
4133 /*
4134 * If this device has the only valid copy of some data,
4135 * don't allow it to be offlined. Log devices are always
4136 * expendable.
4137 */
4138 if (!tvd->vdev_islog && vd->vdev_aux == NULL &&
4139 vdev_dtl_required(vd))
4140 return (spa_vdev_state_exit(spa, NULL,
4141 SET_ERROR(EBUSY)));
4142
4143 /*
4144 * If the top-level is a slog and it has had allocations
4145 * then proceed. We check that the vdev's metaslab group
4146 * is not NULL since it's possible that we may have just
4147 * added this vdev but not yet initialized its metaslabs.
4148 */
4149 if (tvd->vdev_islog && mg != NULL) {
4150 /*
4151 * Prevent any future allocations.
4152 */
4153 ASSERT3P(tvd->vdev_log_mg, ==, NULL);
4154 metaslab_group_passivate(mg);
4155 (void) spa_vdev_state_exit(spa, vd, 0);
4156
4157 error = spa_reset_logs(spa);
4158
4159 /*
4160 * If the log device was successfully reset but has
4161 * checkpointed data, do not offline it.
4162 */
4163 if (error == 0 &&
4164 tvd->vdev_checkpoint_sm != NULL) {
4165 ASSERT3U(space_map_allocated(
4166 tvd->vdev_checkpoint_sm), !=, 0);
4167 error = ZFS_ERR_CHECKPOINT_EXISTS;
4168 }
4169
4170 spa_vdev_state_enter(spa, SCL_ALLOC);
4171
4172 /*
4173 * Check to see if the config has changed.
4174 */
4175 if (error || generation != spa->spa_config_generation) {
4176 metaslab_group_activate(mg);
4177 if (error)
4178 return (spa_vdev_state_exit(spa,
4179 vd, error));
4180 (void) spa_vdev_state_exit(spa, vd, 0);
4181 goto top;
4182 }
4183 ASSERT0(tvd->vdev_stat.vs_alloc);
4184 }
4185
4186 /*
4187 * Offline this device and reopen its top-level vdev.
4188 * If the top-level vdev is a log device then just offline
4189 * it. Otherwise, if this action results in the top-level
4190 * vdev becoming unusable, undo it and fail the request.
4191 */
4192 vd->vdev_offline = B_TRUE;
4193 vdev_reopen(tvd);
4194
4195 if (!tvd->vdev_islog && vd->vdev_aux == NULL &&
4196 vdev_is_dead(tvd)) {
4197 vd->vdev_offline = B_FALSE;
4198 vdev_reopen(tvd);
4199 return (spa_vdev_state_exit(spa, NULL,
4200 SET_ERROR(EBUSY)));
4201 }
4202
4203 /*
4204 * Add the device back into the metaslab rotor so that
4205 * once we online the device it's open for business.
4206 */
4207 if (tvd->vdev_islog && mg != NULL)
4208 metaslab_group_activate(mg);
4209 }
4210
4211 vd->vdev_tmpoffline = !!(flags & ZFS_OFFLINE_TEMPORARY);
4212
4213 return (spa_vdev_state_exit(spa, vd, 0));
4214 }
4215
4216 int
4217 vdev_offline(spa_t *spa, uint64_t guid, uint64_t flags)
4218 {
4219 int error;
4220
4221 mutex_enter(&spa->spa_vdev_top_lock);
4222 error = vdev_offline_locked(spa, guid, flags);
4223 mutex_exit(&spa->spa_vdev_top_lock);
4224
4225 return (error);
4226 }
4227
4228 /*
4229 * Clear the error counts associated with this vdev. Unlike vdev_online() and
4230 * vdev_offline(), we assume the spa config is locked. We also clear all
4231 * children. If 'vd' is NULL, then the user wants to clear all vdevs.
4232 */
4233 void
4234 vdev_clear(spa_t *spa, vdev_t *vd)
4235 {
4236 vdev_t *rvd = spa->spa_root_vdev;
4237
4238 ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
4239
4240 if (vd == NULL)
4241 vd = rvd;
4242
4243 vd->vdev_stat.vs_read_errors = 0;
4244 vd->vdev_stat.vs_write_errors = 0;
4245 vd->vdev_stat.vs_checksum_errors = 0;
4246 vd->vdev_stat.vs_slow_ios = 0;
4247
4248 for (int c = 0; c < vd->vdev_children; c++)
4249 vdev_clear(spa, vd->vdev_child[c]);
4250
4251 /*
4252 * It makes no sense to "clear" an indirect vdev.
4253 */
4254 if (!vdev_is_concrete(vd))
4255 return;
4256
4257 /*
4258 * If we're in the FAULTED state or have experienced failed I/O, then
4259 * clear the persistent state and attempt to reopen the device. We
4260 * also mark the vdev config dirty, so that the new faulted state is
4261 * written out to disk.
4262 */
4263 if (vd->vdev_faulted || vd->vdev_degraded ||
4264 !vdev_readable(vd) || !vdev_writeable(vd)) {
4265 /*
4266 * When reopening in response to a clear event, it may be due to
4267 * a fmadm repair request. In this case, if the device is
4268 * still broken, we want to still post the ereport again.
4269 */
4270 vd->vdev_forcefault = B_TRUE;
4271
4272 vd->vdev_faulted = vd->vdev_degraded = 0ULL;
4273 vd->vdev_cant_read = B_FALSE;
4274 vd->vdev_cant_write = B_FALSE;
4275 vd->vdev_stat.vs_aux = 0;
4276
4277 vdev_reopen(vd == rvd ? rvd : vd->vdev_top);
4278
4279 vd->vdev_forcefault = B_FALSE;
4280
4281 if (vd != rvd && vdev_writeable(vd->vdev_top))
4282 vdev_state_dirty(vd->vdev_top);
4283
4284 /* If a resilver isn't required, check if vdevs can be culled */
4285 if (vd->vdev_aux == NULL && !vdev_is_dead(vd) &&
4286 !dsl_scan_resilvering(spa->spa_dsl_pool) &&
4287 !dsl_scan_resilver_scheduled(spa->spa_dsl_pool))
4288 spa_async_request(spa, SPA_ASYNC_RESILVER_DONE);
4289
4290 spa_event_notify(spa, vd, NULL, ESC_ZFS_VDEV_CLEAR);
4291 }
4292
4293 /*
4294 * When clearing a FMA-diagnosed fault, we always want to
4295 * unspare the device, as we assume that the original spare was
4296 * done in response to the FMA fault.
4297 */
4298 if (!vdev_is_dead(vd) && vd->vdev_parent != NULL &&
4299 vd->vdev_parent->vdev_ops == &vdev_spare_ops &&
4300 vd->vdev_parent->vdev_child[0] == vd)
4301 vd->vdev_unspare = B_TRUE;
4302
4303 /* Clear recent error events cache (i.e. duplicate events tracking) */
4304 zfs_ereport_clear(spa, vd);
4305 }
4306
4307 boolean_t
4308 vdev_is_dead(vdev_t *vd)
4309 {
4310 /*
4311 * Holes and missing devices are always considered "dead".
4312 * This simplifies the code since we don't have to check for
4313 * these types of devices in the various code paths.
4314 * Instead we rely on the fact that we skip over dead devices
4315 * before issuing I/O to them.
4316 */
4317 return (vd->vdev_state < VDEV_STATE_DEGRADED ||
4318 vd->vdev_ops == &vdev_hole_ops ||
4319 vd->vdev_ops == &vdev_missing_ops);
4320 }
4321
4322 boolean_t
4323 vdev_readable(vdev_t *vd)
4324 {
4325 return (!vdev_is_dead(vd) && !vd->vdev_cant_read);
4326 }
4327
4328 boolean_t
4329 vdev_writeable(vdev_t *vd)
4330 {
4331 return (!vdev_is_dead(vd) && !vd->vdev_cant_write &&
4332 vdev_is_concrete(vd));
4333 }
4334
4335 boolean_t
4336 vdev_allocatable(vdev_t *vd)
4337 {
4338 uint64_t state = vd->vdev_state;
4339
4340 /*
4341 * We currently allow allocations from vdevs which may be in the
4342 * process of reopening (i.e. VDEV_STATE_CLOSED). If the device
4343 * fails to reopen then we'll catch it later when we're holding
4344 * the proper locks. Note that we have to get the vdev state
4345 * in a local variable because although it changes atomically,
4346 * we're asking two separate questions about it.
4347 */
4348 return (!(state < VDEV_STATE_DEGRADED && state != VDEV_STATE_CLOSED) &&
4349 !vd->vdev_cant_write && vdev_is_concrete(vd) &&
4350 vd->vdev_mg->mg_initialized);
4351 }
4352
4353 boolean_t
4354 vdev_accessible(vdev_t *vd, zio_t *zio)
4355 {
4356 ASSERT(zio->io_vd == vd);
4357
4358 if (vdev_is_dead(vd) || vd->vdev_remove_wanted)
4359 return (B_FALSE);
4360
4361 if (zio->io_type == ZIO_TYPE_READ)
4362 return (!vd->vdev_cant_read);
4363
4364 if (zio->io_type == ZIO_TYPE_WRITE)
4365 return (!vd->vdev_cant_write);
4366
4367 return (B_TRUE);
4368 }
4369
4370 static void
4371 vdev_get_child_stat(vdev_t *cvd, vdev_stat_t *vs, vdev_stat_t *cvs)
4372 {
4373 /*
4374 * Exclude the dRAID spare when aggregating to avoid double counting
4375 * the ops and bytes. These IOs are counted by the physical leaves.
4376 */
4377 if (cvd->vdev_ops == &vdev_draid_spare_ops)
4378 return;
4379
4380 for (int t = 0; t < VS_ZIO_TYPES; t++) {
4381 vs->vs_ops[t] += cvs->vs_ops[t];
4382 vs->vs_bytes[t] += cvs->vs_bytes[t];
4383 }
4384
4385 cvs->vs_scan_removing = cvd->vdev_removing;
4386 }
4387
4388 /*
4389 * Get extended stats
4390 */
4391 static void
4392 vdev_get_child_stat_ex(vdev_t *cvd, vdev_stat_ex_t *vsx, vdev_stat_ex_t *cvsx)
4393 {
4394 (void) cvd;
4395
4396 int t, b;
4397 for (t = 0; t < ZIO_TYPES; t++) {
4398 for (b = 0; b < ARRAY_SIZE(vsx->vsx_disk_histo[0]); b++)
4399 vsx->vsx_disk_histo[t][b] += cvsx->vsx_disk_histo[t][b];
4400
4401 for (b = 0; b < ARRAY_SIZE(vsx->vsx_total_histo[0]); b++) {
4402 vsx->vsx_total_histo[t][b] +=
4403 cvsx->vsx_total_histo[t][b];
4404 }
4405 }
4406
4407 for (t = 0; t < ZIO_PRIORITY_NUM_QUEUEABLE; t++) {
4408 for (b = 0; b < ARRAY_SIZE(vsx->vsx_queue_histo[0]); b++) {
4409 vsx->vsx_queue_histo[t][b] +=
4410 cvsx->vsx_queue_histo[t][b];
4411 }
4412 vsx->vsx_active_queue[t] += cvsx->vsx_active_queue[t];
4413 vsx->vsx_pend_queue[t] += cvsx->vsx_pend_queue[t];
4414
4415 for (b = 0; b < ARRAY_SIZE(vsx->vsx_ind_histo[0]); b++)
4416 vsx->vsx_ind_histo[t][b] += cvsx->vsx_ind_histo[t][b];
4417
4418 for (b = 0; b < ARRAY_SIZE(vsx->vsx_agg_histo[0]); b++)
4419 vsx->vsx_agg_histo[t][b] += cvsx->vsx_agg_histo[t][b];
4420 }
4421
4422 }
4423
4424 boolean_t
4425 vdev_is_spacemap_addressable(vdev_t *vd)
4426 {
4427 if (spa_feature_is_active(vd->vdev_spa, SPA_FEATURE_SPACEMAP_V2))
4428 return (B_TRUE);
4429
4430 /*
4431 * If double-word space map entries are not enabled we assume
4432 * 47 bits of the space map entry are dedicated to the entry's
4433 * offset (see SM_OFFSET_BITS in space_map.h). We then use that
4434 * to calculate the maximum address that can be described by a
4435 * space map entry for the given device.
4436 */
4437 uint64_t shift = vd->vdev_ashift + SM_OFFSET_BITS;
4438
4439 if (shift >= 63) /* detect potential overflow */
4440 return (B_TRUE);
4441
4442 return (vd->vdev_asize < (1ULL << shift));
4443 }
4444
4445 /*
4446 * Get statistics for the given vdev.
4447 */
4448 static void
4449 vdev_get_stats_ex_impl(vdev_t *vd, vdev_stat_t *vs, vdev_stat_ex_t *vsx)
4450 {
4451 int t;
4452 /*
4453 * If we're getting stats on the root vdev, aggregate the I/O counts
4454 * over all top-level vdevs (i.e. the direct children of the root).
4455 */
4456 if (!vd->vdev_ops->vdev_op_leaf) {
4457 if (vs) {
4458 memset(vs->vs_ops, 0, sizeof (vs->vs_ops));
4459 memset(vs->vs_bytes, 0, sizeof (vs->vs_bytes));
4460 }
4461 if (vsx)
4462 memset(vsx, 0, sizeof (*vsx));
4463
4464 for (int c = 0; c < vd->vdev_children; c++) {
4465 vdev_t *cvd = vd->vdev_child[c];
4466 vdev_stat_t *cvs = &cvd->vdev_stat;
4467 vdev_stat_ex_t *cvsx = &cvd->vdev_stat_ex;
4468
4469 vdev_get_stats_ex_impl(cvd, cvs, cvsx);
4470 if (vs)
4471 vdev_get_child_stat(cvd, vs, cvs);
4472 if (vsx)
4473 vdev_get_child_stat_ex(cvd, vsx, cvsx);
4474 }
4475 } else {
4476 /*
4477 * We're a leaf. Just copy our ZIO active queue stats in. The
4478 * other leaf stats are updated in vdev_stat_update().
4479 */
4480 if (!vsx)
4481 return;
4482
4483 memcpy(vsx, &vd->vdev_stat_ex, sizeof (vd->vdev_stat_ex));
4484
4485 for (t = 0; t < ARRAY_SIZE(vd->vdev_queue.vq_class); t++) {
4486 vsx->vsx_active_queue[t] =
4487 vd->vdev_queue.vq_class[t].vqc_active;
4488 vsx->vsx_pend_queue[t] = avl_numnodes(
4489 &vd->vdev_queue.vq_class[t].vqc_queued_tree);
4490 }
4491 }
4492 }
4493
4494 void
4495 vdev_get_stats_ex(vdev_t *vd, vdev_stat_t *vs, vdev_stat_ex_t *vsx)
4496 {
4497 vdev_t *tvd = vd->vdev_top;
4498 mutex_enter(&vd->vdev_stat_lock);
4499 if (vs) {
4500 memcpy(vs, &vd->vdev_stat, sizeof (*vs));
4501 vs->vs_timestamp = gethrtime() - vs->vs_timestamp;
4502 vs->vs_state = vd->vdev_state;
4503 vs->vs_rsize = vdev_get_min_asize(vd);
4504
4505 if (vd->vdev_ops->vdev_op_leaf) {
4506 vs->vs_pspace = vd->vdev_psize;
4507 vs->vs_rsize += VDEV_LABEL_START_SIZE +
4508 VDEV_LABEL_END_SIZE;
4509 /*
4510 * Report initializing progress. Since we don't
4511 * have the initializing locks held, this is only
4512 * an estimate (although a fairly accurate one).
4513 */
4514 vs->vs_initialize_bytes_done =
4515 vd->vdev_initialize_bytes_done;
4516 vs->vs_initialize_bytes_est =
4517 vd->vdev_initialize_bytes_est;
4518 vs->vs_initialize_state = vd->vdev_initialize_state;
4519 vs->vs_initialize_action_time =
4520 vd->vdev_initialize_action_time;
4521
4522 /*
4523 * Report manual TRIM progress. Since we don't have
4524 * the manual TRIM locks held, this is only an
4525 * estimate (although fairly accurate one).
4526 */
4527 vs->vs_trim_notsup = !vd->vdev_has_trim;
4528 vs->vs_trim_bytes_done = vd->vdev_trim_bytes_done;
4529 vs->vs_trim_bytes_est = vd->vdev_trim_bytes_est;
4530 vs->vs_trim_state = vd->vdev_trim_state;
4531 vs->vs_trim_action_time = vd->vdev_trim_action_time;
4532
4533 /* Set when there is a deferred resilver. */
4534 vs->vs_resilver_deferred = vd->vdev_resilver_deferred;
4535 }
4536
4537 /*
4538 * Report expandable space on top-level, non-auxiliary devices
4539 * only. The expandable space is reported in terms of metaslab
4540 * sized units since that determines how much space the pool
4541 * can expand.
4542 */
4543 if (vd->vdev_aux == NULL && tvd != NULL) {
4544 vs->vs_esize = P2ALIGN(
4545 vd->vdev_max_asize - vd->vdev_asize,
4546 1ULL << tvd->vdev_ms_shift);
4547 }
4548
4549 vs->vs_configured_ashift = vd->vdev_top != NULL
4550 ? vd->vdev_top->vdev_ashift : vd->vdev_ashift;
4551 vs->vs_logical_ashift = vd->vdev_logical_ashift;
4552 if (vd->vdev_physical_ashift <= ASHIFT_MAX)
4553 vs->vs_physical_ashift = vd->vdev_physical_ashift;
4554 else
4555 vs->vs_physical_ashift = 0;
4556
4557 /*
4558 * Report fragmentation and rebuild progress for top-level,
4559 * non-auxiliary, concrete devices.
4560 */
4561 if (vd->vdev_aux == NULL && vd == vd->vdev_top &&
4562 vdev_is_concrete(vd)) {
4563 /*
4564 * The vdev fragmentation rating doesn't take into
4565 * account the embedded slog metaslab (vdev_log_mg).
4566 * Since it's only one metaslab, it would have a tiny
4567 * impact on the overall fragmentation.
4568 */
4569 vs->vs_fragmentation = (vd->vdev_mg != NULL) ?
4570 vd->vdev_mg->mg_fragmentation : 0;
4571 }
4572 vs->vs_noalloc = MAX(vd->vdev_noalloc,
4573 tvd ? tvd->vdev_noalloc : 0);
4574 }
4575
4576 vdev_get_stats_ex_impl(vd, vs, vsx);
4577 mutex_exit(&vd->vdev_stat_lock);
4578 }
4579
4580 void
4581 vdev_get_stats(vdev_t *vd, vdev_stat_t *vs)
4582 {
4583 return (vdev_get_stats_ex(vd, vs, NULL));
4584 }
4585
4586 void
4587 vdev_clear_stats(vdev_t *vd)
4588 {
4589 mutex_enter(&vd->vdev_stat_lock);
4590 vd->vdev_stat.vs_space = 0;
4591 vd->vdev_stat.vs_dspace = 0;
4592 vd->vdev_stat.vs_alloc = 0;
4593 mutex_exit(&vd->vdev_stat_lock);
4594 }
4595
4596 void
4597 vdev_scan_stat_init(vdev_t *vd)
4598 {
4599 vdev_stat_t *vs = &vd->vdev_stat;
4600
4601 for (int c = 0; c < vd->vdev_children; c++)
4602 vdev_scan_stat_init(vd->vdev_child[c]);
4603
4604 mutex_enter(&vd->vdev_stat_lock);
4605 vs->vs_scan_processed = 0;
4606 mutex_exit(&vd->vdev_stat_lock);
4607 }
4608
4609 void
4610 vdev_stat_update(zio_t *zio, uint64_t psize)
4611 {
4612 spa_t *spa = zio->io_spa;
4613 vdev_t *rvd = spa->spa_root_vdev;
4614 vdev_t *vd = zio->io_vd ? zio->io_vd : rvd;
4615 vdev_t *pvd;
4616 uint64_t txg = zio->io_txg;
4617 vdev_stat_t *vs = vd ? &vd->vdev_stat : NULL;
4618 vdev_stat_ex_t *vsx = vd ? &vd->vdev_stat_ex : NULL;
4619 zio_type_t type = zio->io_type;
4620 int flags = zio->io_flags;
4621
4622 /*
4623 * If this i/o is a gang leader, it didn't do any actual work.
4624 */
4625 if (zio->io_gang_tree)
4626 return;
4627
4628 if (zio->io_error == 0) {
4629 /*
4630 * If this is a root i/o, don't count it -- we've already
4631 * counted the top-level vdevs, and vdev_get_stats() will
4632 * aggregate them when asked. This reduces contention on
4633 * the root vdev_stat_lock and implicitly handles blocks
4634 * that compress away to holes, for which there is no i/o.
4635 * (Holes never create vdev children, so all the counters
4636 * remain zero, which is what we want.)
4637 *
4638 * Note: this only applies to successful i/o (io_error == 0)
4639 * because unlike i/o counts, errors are not additive.
4640 * When reading a ditto block, for example, failure of
4641 * one top-level vdev does not imply a root-level error.
4642 */
4643 if (vd == rvd)
4644 return;
4645
4646 ASSERT(vd == zio->io_vd);
4647
4648 if (flags & ZIO_FLAG_IO_BYPASS)
4649 return;
4650
4651 mutex_enter(&vd->vdev_stat_lock);
4652
4653 if (flags & ZIO_FLAG_IO_REPAIR) {
4654 /*
4655 * Repair is the result of a resilver issued by the
4656 * scan thread (spa_sync).
4657 */
4658 if (flags & ZIO_FLAG_SCAN_THREAD) {
4659 dsl_scan_t *scn = spa->spa_dsl_pool->dp_scan;
4660 dsl_scan_phys_t *scn_phys = &scn->scn_phys;
4661 uint64_t *processed = &scn_phys->scn_processed;
4662
4663 if (vd->vdev_ops->vdev_op_leaf)
4664 atomic_add_64(processed, psize);
4665 vs->vs_scan_processed += psize;
4666 }
4667
4668 /*
4669 * Repair is the result of a rebuild issued by the
4670 * rebuild thread (vdev_rebuild_thread). To avoid
4671 * double counting repaired bytes the virtual dRAID
4672 * spare vdev is excluded from the processed bytes.
4673 */
4674 if (zio->io_priority == ZIO_PRIORITY_REBUILD) {
4675 vdev_t *tvd = vd->vdev_top;
4676 vdev_rebuild_t *vr = &tvd->vdev_rebuild_config;
4677 vdev_rebuild_phys_t *vrp = &vr->vr_rebuild_phys;
4678 uint64_t *rebuilt = &vrp->vrp_bytes_rebuilt;
4679
4680 if (vd->vdev_ops->vdev_op_leaf &&
4681 vd->vdev_ops != &vdev_draid_spare_ops) {
4682 atomic_add_64(rebuilt, psize);
4683 }
4684 vs->vs_rebuild_processed += psize;
4685 }
4686
4687 if (flags & ZIO_FLAG_SELF_HEAL)
4688 vs->vs_self_healed += psize;
4689 }
4690
4691 /*
4692 * The bytes/ops/histograms are recorded at the leaf level and
4693 * aggregated into the higher level vdevs in vdev_get_stats().
4694 */
4695 if (vd->vdev_ops->vdev_op_leaf &&
4696 (zio->io_priority < ZIO_PRIORITY_NUM_QUEUEABLE)) {
4697 zio_type_t vs_type = type;
4698 zio_priority_t priority = zio->io_priority;
4699
4700 /*
4701 * TRIM ops and bytes are reported to user space as
4702 * ZIO_TYPE_IOCTL. This is done to preserve the
4703 * vdev_stat_t structure layout for user space.
4704 */
4705 if (type == ZIO_TYPE_TRIM)
4706 vs_type = ZIO_TYPE_IOCTL;
4707
4708 /*
4709 * Solely for the purposes of 'zpool iostat -lqrw'
4710 * reporting use the priority to categorize the IO.
4711 * Only the following are reported to user space:
4712 *
4713 * ZIO_PRIORITY_SYNC_READ,
4714 * ZIO_PRIORITY_SYNC_WRITE,
4715 * ZIO_PRIORITY_ASYNC_READ,
4716 * ZIO_PRIORITY_ASYNC_WRITE,
4717 * ZIO_PRIORITY_SCRUB,
4718 * ZIO_PRIORITY_TRIM,
4719 * ZIO_PRIORITY_REBUILD.
4720 */
4721 if (priority == ZIO_PRIORITY_INITIALIZING) {
4722 ASSERT3U(type, ==, ZIO_TYPE_WRITE);
4723 priority = ZIO_PRIORITY_ASYNC_WRITE;
4724 } else if (priority == ZIO_PRIORITY_REMOVAL) {
4725 priority = ((type == ZIO_TYPE_WRITE) ?
4726 ZIO_PRIORITY_ASYNC_WRITE :
4727 ZIO_PRIORITY_ASYNC_READ);
4728 }
4729
4730 vs->vs_ops[vs_type]++;
4731 vs->vs_bytes[vs_type] += psize;
4732
4733 if (flags & ZIO_FLAG_DELEGATED) {
4734 vsx->vsx_agg_histo[priority]
4735 [RQ_HISTO(zio->io_size)]++;
4736 } else {
4737 vsx->vsx_ind_histo[priority]
4738 [RQ_HISTO(zio->io_size)]++;
4739 }
4740
4741 if (zio->io_delta && zio->io_delay) {
4742 vsx->vsx_queue_histo[priority]
4743 [L_HISTO(zio->io_delta - zio->io_delay)]++;
4744 vsx->vsx_disk_histo[type]
4745 [L_HISTO(zio->io_delay)]++;
4746 vsx->vsx_total_histo[type]
4747 [L_HISTO(zio->io_delta)]++;
4748 }
4749 }
4750
4751 mutex_exit(&vd->vdev_stat_lock);
4752 return;
4753 }
4754
4755 if (flags & ZIO_FLAG_SPECULATIVE)
4756 return;
4757
4758 /*
4759 * If this is an I/O error that is going to be retried, then ignore the
4760 * error. Otherwise, the user may interpret B_FAILFAST I/O errors as
4761 * hard errors, when in reality they can happen for any number of
4762 * innocuous reasons (bus resets, MPxIO link failure, etc).
4763 */
4764 if (zio->io_error == EIO &&
4765 !(zio->io_flags & ZIO_FLAG_IO_RETRY))
4766 return;
4767
4768 /*
4769 * Intent logs writes won't propagate their error to the root
4770 * I/O so don't mark these types of failures as pool-level
4771 * errors.
4772 */
4773 if (zio->io_vd == NULL && (zio->io_flags & ZIO_FLAG_DONT_PROPAGATE))
4774 return;
4775
4776 if (type == ZIO_TYPE_WRITE && txg != 0 &&
4777 (!(flags & ZIO_FLAG_IO_REPAIR) ||
4778 (flags & ZIO_FLAG_SCAN_THREAD) ||
4779 spa->spa_claiming)) {
4780 /*
4781 * This is either a normal write (not a repair), or it's
4782 * a repair induced by the scrub thread, or it's a repair
4783 * made by zil_claim() during spa_load() in the first txg.
4784 * In the normal case, we commit the DTL change in the same
4785 * txg as the block was born. In the scrub-induced repair
4786 * case, we know that scrubs run in first-pass syncing context,
4787 * so we commit the DTL change in spa_syncing_txg(spa).
4788 * In the zil_claim() case, we commit in spa_first_txg(spa).
4789 *
4790 * We currently do not make DTL entries for failed spontaneous
4791 * self-healing writes triggered by normal (non-scrubbing)
4792 * reads, because we have no transactional context in which to
4793 * do so -- and it's not clear that it'd be desirable anyway.
4794 */
4795 if (vd->vdev_ops->vdev_op_leaf) {
4796 uint64_t commit_txg = txg;
4797 if (flags & ZIO_FLAG_SCAN_THREAD) {
4798 ASSERT(flags & ZIO_FLAG_IO_REPAIR);
4799 ASSERT(spa_sync_pass(spa) == 1);
4800 vdev_dtl_dirty(vd, DTL_SCRUB, txg, 1);
4801 commit_txg = spa_syncing_txg(spa);
4802 } else if (spa->spa_claiming) {
4803 ASSERT(flags & ZIO_FLAG_IO_REPAIR);
4804 commit_txg = spa_first_txg(spa);
4805 }
4806 ASSERT(commit_txg >= spa_syncing_txg(spa));
4807 if (vdev_dtl_contains(vd, DTL_MISSING, txg, 1))
4808 return;
4809 for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent)
4810 vdev_dtl_dirty(pvd, DTL_PARTIAL, txg, 1);
4811 vdev_dirty(vd->vdev_top, VDD_DTL, vd, commit_txg);
4812 }
4813 if (vd != rvd)
4814 vdev_dtl_dirty(vd, DTL_MISSING, txg, 1);
4815 }
4816 }
4817
4818 int64_t
4819 vdev_deflated_space(vdev_t *vd, int64_t space)
4820 {
4821 ASSERT((space & (SPA_MINBLOCKSIZE-1)) == 0);
4822 ASSERT(vd->vdev_deflate_ratio != 0 || vd->vdev_isl2cache);
4823
4824 return ((space >> SPA_MINBLOCKSHIFT) * vd->vdev_deflate_ratio);
4825 }
4826
4827 /*
4828 * Update the in-core space usage stats for this vdev, its metaslab class,
4829 * and the root vdev.
4830 */
4831 void
4832 vdev_space_update(vdev_t *vd, int64_t alloc_delta, int64_t defer_delta,
4833 int64_t space_delta)
4834 {
4835 (void) defer_delta;
4836 int64_t dspace_delta;
4837 spa_t *spa = vd->vdev_spa;
4838 vdev_t *rvd = spa->spa_root_vdev;
4839
4840 ASSERT(vd == vd->vdev_top);
4841
4842 /*
4843 * Apply the inverse of the psize-to-asize (ie. RAID-Z) space-expansion
4844 * factor. We must calculate this here and not at the root vdev
4845 * because the root vdev's psize-to-asize is simply the max of its
4846 * children's, thus not accurate enough for us.
4847 */
4848 dspace_delta = vdev_deflated_space(vd, space_delta);
4849
4850 mutex_enter(&vd->vdev_stat_lock);
4851 /* ensure we won't underflow */
4852 if (alloc_delta < 0) {
4853 ASSERT3U(vd->vdev_stat.vs_alloc, >=, -alloc_delta);
4854 }
4855
4856 vd->vdev_stat.vs_alloc += alloc_delta;
4857 vd->vdev_stat.vs_space += space_delta;
4858 vd->vdev_stat.vs_dspace += dspace_delta;
4859 mutex_exit(&vd->vdev_stat_lock);
4860
4861 /* every class but log contributes to root space stats */
4862 if (vd->vdev_mg != NULL && !vd->vdev_islog) {
4863 ASSERT(!vd->vdev_isl2cache);
4864 mutex_enter(&rvd->vdev_stat_lock);
4865 rvd->vdev_stat.vs_alloc += alloc_delta;
4866 rvd->vdev_stat.vs_space += space_delta;
4867 rvd->vdev_stat.vs_dspace += dspace_delta;
4868 mutex_exit(&rvd->vdev_stat_lock);
4869 }
4870 /* Note: metaslab_class_space_update moved to metaslab_space_update */
4871 }
4872
4873 /*
4874 * Mark a top-level vdev's config as dirty, placing it on the dirty list
4875 * so that it will be written out next time the vdev configuration is synced.
4876 * If the root vdev is specified (vdev_top == NULL), dirty all top-level vdevs.
4877 */
4878 void
4879 vdev_config_dirty(vdev_t *vd)
4880 {
4881 spa_t *spa = vd->vdev_spa;
4882 vdev_t *rvd = spa->spa_root_vdev;
4883 int c;
4884
4885 ASSERT(spa_writeable(spa));
4886
4887 /*
4888 * If this is an aux vdev (as with l2cache and spare devices), then we
4889 * update the vdev config manually and set the sync flag.
4890 */
4891 if (vd->vdev_aux != NULL) {
4892 spa_aux_vdev_t *sav = vd->vdev_aux;
4893 nvlist_t **aux;
4894 uint_t naux;
4895
4896 for (c = 0; c < sav->sav_count; c++) {
4897 if (sav->sav_vdevs[c] == vd)
4898 break;
4899 }
4900
4901 if (c == sav->sav_count) {
4902 /*
4903 * We're being removed. There's nothing more to do.
4904 */
4905 ASSERT(sav->sav_sync == B_TRUE);
4906 return;
4907 }
4908
4909 sav->sav_sync = B_TRUE;
4910
4911 if (nvlist_lookup_nvlist_array(sav->sav_config,
4912 ZPOOL_CONFIG_L2CACHE, &aux, &naux) != 0) {
4913 VERIFY(nvlist_lookup_nvlist_array(sav->sav_config,
4914 ZPOOL_CONFIG_SPARES, &aux, &naux) == 0);
4915 }
4916
4917 ASSERT(c < naux);
4918
4919 /*
4920 * Setting the nvlist in the middle if the array is a little
4921 * sketchy, but it will work.
4922 */
4923 nvlist_free(aux[c]);
4924 aux[c] = vdev_config_generate(spa, vd, B_TRUE, 0);
4925
4926 return;
4927 }
4928
4929 /*
4930 * The dirty list is protected by the SCL_CONFIG lock. The caller
4931 * must either hold SCL_CONFIG as writer, or must be the sync thread
4932 * (which holds SCL_CONFIG as reader). There's only one sync thread,
4933 * so this is sufficient to ensure mutual exclusion.
4934 */
4935 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_WRITER) ||
4936 (dsl_pool_sync_context(spa_get_dsl(spa)) &&
4937 spa_config_held(spa, SCL_CONFIG, RW_READER)));
4938
4939 if (vd == rvd) {
4940 for (c = 0; c < rvd->vdev_children; c++)
4941 vdev_config_dirty(rvd->vdev_child[c]);
4942 } else {
4943 ASSERT(vd == vd->vdev_top);
4944
4945 if (!list_link_active(&vd->vdev_config_dirty_node) &&
4946 vdev_is_concrete(vd)) {
4947 list_insert_head(&spa->spa_config_dirty_list, vd);
4948 }
4949 }
4950 }
4951
4952 void
4953 vdev_config_clean(vdev_t *vd)
4954 {
4955 spa_t *spa = vd->vdev_spa;
4956
4957 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_WRITER) ||
4958 (dsl_pool_sync_context(spa_get_dsl(spa)) &&
4959 spa_config_held(spa, SCL_CONFIG, RW_READER)));
4960
4961 ASSERT(list_link_active(&vd->vdev_config_dirty_node));
4962 list_remove(&spa->spa_config_dirty_list, vd);
4963 }
4964
4965 /*
4966 * Mark a top-level vdev's state as dirty, so that the next pass of
4967 * spa_sync() can convert this into vdev_config_dirty(). We distinguish
4968 * the state changes from larger config changes because they require
4969 * much less locking, and are often needed for administrative actions.
4970 */
4971 void
4972 vdev_state_dirty(vdev_t *vd)
4973 {
4974 spa_t *spa = vd->vdev_spa;
4975
4976 ASSERT(spa_writeable(spa));
4977 ASSERT(vd == vd->vdev_top);
4978
4979 /*
4980 * The state list is protected by the SCL_STATE lock. The caller
4981 * must either hold SCL_STATE as writer, or must be the sync thread
4982 * (which holds SCL_STATE as reader). There's only one sync thread,
4983 * so this is sufficient to ensure mutual exclusion.
4984 */
4985 ASSERT(spa_config_held(spa, SCL_STATE, RW_WRITER) ||
4986 (dsl_pool_sync_context(spa_get_dsl(spa)) &&
4987 spa_config_held(spa, SCL_STATE, RW_READER)));
4988
4989 if (!list_link_active(&vd->vdev_state_dirty_node) &&
4990 vdev_is_concrete(vd))
4991 list_insert_head(&spa->spa_state_dirty_list, vd);
4992 }
4993
4994 void
4995 vdev_state_clean(vdev_t *vd)
4996 {
4997 spa_t *spa = vd->vdev_spa;
4998
4999 ASSERT(spa_config_held(spa, SCL_STATE, RW_WRITER) ||
5000 (dsl_pool_sync_context(spa_get_dsl(spa)) &&
5001 spa_config_held(spa, SCL_STATE, RW_READER)));
5002
5003 ASSERT(list_link_active(&vd->vdev_state_dirty_node));
5004 list_remove(&spa->spa_state_dirty_list, vd);
5005 }
5006
5007 /*
5008 * Propagate vdev state up from children to parent.
5009 */
5010 void
5011 vdev_propagate_state(vdev_t *vd)
5012 {
5013 spa_t *spa = vd->vdev_spa;
5014 vdev_t *rvd = spa->spa_root_vdev;
5015 int degraded = 0, faulted = 0;
5016 int corrupted = 0;
5017 vdev_t *child;
5018
5019 if (vd->vdev_children > 0) {
5020 for (int c = 0; c < vd->vdev_children; c++) {
5021 child = vd->vdev_child[c];
5022
5023 /*
5024 * Don't factor holes or indirect vdevs into the
5025 * decision.
5026 */
5027 if (!vdev_is_concrete(child))
5028 continue;
5029
5030 if (!vdev_readable(child) ||
5031 (!vdev_writeable(child) && spa_writeable(spa))) {
5032 /*
5033 * Root special: if there is a top-level log
5034 * device, treat the root vdev as if it were
5035 * degraded.
5036 */
5037 if (child->vdev_islog && vd == rvd)
5038 degraded++;
5039 else
5040 faulted++;
5041 } else if (child->vdev_state <= VDEV_STATE_DEGRADED) {
5042 degraded++;
5043 }
5044
5045 if (child->vdev_stat.vs_aux == VDEV_AUX_CORRUPT_DATA)
5046 corrupted++;
5047 }
5048
5049 vd->vdev_ops->vdev_op_state_change(vd, faulted, degraded);
5050
5051 /*
5052 * Root special: if there is a top-level vdev that cannot be
5053 * opened due to corrupted metadata, then propagate the root
5054 * vdev's aux state as 'corrupt' rather than 'insufficient
5055 * replicas'.
5056 */
5057 if (corrupted && vd == rvd &&
5058 rvd->vdev_state == VDEV_STATE_CANT_OPEN)
5059 vdev_set_state(rvd, B_FALSE, VDEV_STATE_CANT_OPEN,
5060 VDEV_AUX_CORRUPT_DATA);
5061 }
5062
5063 if (vd->vdev_parent)
5064 vdev_propagate_state(vd->vdev_parent);
5065 }
5066
5067 /*
5068 * Set a vdev's state. If this is during an open, we don't update the parent
5069 * state, because we're in the process of opening children depth-first.
5070 * Otherwise, we propagate the change to the parent.
5071 *
5072 * If this routine places a device in a faulted state, an appropriate ereport is
5073 * generated.
5074 */
5075 void
5076 vdev_set_state(vdev_t *vd, boolean_t isopen, vdev_state_t state, vdev_aux_t aux)
5077 {
5078 uint64_t save_state;
5079 spa_t *spa = vd->vdev_spa;
5080
5081 if (state == vd->vdev_state) {
5082 /*
5083 * Since vdev_offline() code path is already in an offline
5084 * state we can miss a statechange event to OFFLINE. Check
5085 * the previous state to catch this condition.
5086 */
5087 if (vd->vdev_ops->vdev_op_leaf &&
5088 (state == VDEV_STATE_OFFLINE) &&
5089 (vd->vdev_prevstate >= VDEV_STATE_FAULTED)) {
5090 /* post an offline state change */
5091 zfs_post_state_change(spa, vd, vd->vdev_prevstate);
5092 }
5093 vd->vdev_stat.vs_aux = aux;
5094 return;
5095 }
5096
5097 save_state = vd->vdev_state;
5098
5099 vd->vdev_state = state;
5100 vd->vdev_stat.vs_aux = aux;
5101
5102 /*
5103 * If we are setting the vdev state to anything but an open state, then
5104 * always close the underlying device unless the device has requested
5105 * a delayed close (i.e. we're about to remove or fault the device).
5106 * Otherwise, we keep accessible but invalid devices open forever.
5107 * We don't call vdev_close() itself, because that implies some extra
5108 * checks (offline, etc) that we don't want here. This is limited to
5109 * leaf devices, because otherwise closing the device will affect other
5110 * children.
5111 */
5112 if (!vd->vdev_delayed_close && vdev_is_dead(vd) &&
5113 vd->vdev_ops->vdev_op_leaf)
5114 vd->vdev_ops->vdev_op_close(vd);
5115
5116 if (vd->vdev_removed &&
5117 state == VDEV_STATE_CANT_OPEN &&
5118 (aux == VDEV_AUX_OPEN_FAILED || vd->vdev_checkremove)) {
5119 /*
5120 * If the previous state is set to VDEV_STATE_REMOVED, then this
5121 * device was previously marked removed and someone attempted to
5122 * reopen it. If this failed due to a nonexistent device, then
5123 * keep the device in the REMOVED state. We also let this be if
5124 * it is one of our special test online cases, which is only
5125 * attempting to online the device and shouldn't generate an FMA
5126 * fault.
5127 */
5128 vd->vdev_state = VDEV_STATE_REMOVED;
5129 vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
5130 } else if (state == VDEV_STATE_REMOVED) {
5131 vd->vdev_removed = B_TRUE;
5132 } else if (state == VDEV_STATE_CANT_OPEN) {
5133 /*
5134 * If we fail to open a vdev during an import or recovery, we
5135 * mark it as "not available", which signifies that it was
5136 * never there to begin with. Failure to open such a device
5137 * is not considered an error.
5138 */
5139 if ((spa_load_state(spa) == SPA_LOAD_IMPORT ||
5140 spa_load_state(spa) == SPA_LOAD_RECOVER) &&
5141 vd->vdev_ops->vdev_op_leaf)
5142 vd->vdev_not_present = 1;
5143
5144 /*
5145 * Post the appropriate ereport. If the 'prevstate' field is
5146 * set to something other than VDEV_STATE_UNKNOWN, it indicates
5147 * that this is part of a vdev_reopen(). In this case, we don't
5148 * want to post the ereport if the device was already in the
5149 * CANT_OPEN state beforehand.
5150 *
5151 * If the 'checkremove' flag is set, then this is an attempt to
5152 * online the device in response to an insertion event. If we
5153 * hit this case, then we have detected an insertion event for a
5154 * faulted or offline device that wasn't in the removed state.
5155 * In this scenario, we don't post an ereport because we are
5156 * about to replace the device, or attempt an online with
5157 * vdev_forcefault, which will generate the fault for us.
5158 */
5159 if ((vd->vdev_prevstate != state || vd->vdev_forcefault) &&
5160 !vd->vdev_not_present && !vd->vdev_checkremove &&
5161 vd != spa->spa_root_vdev) {
5162 const char *class;
5163
5164 switch (aux) {
5165 case VDEV_AUX_OPEN_FAILED:
5166 class = FM_EREPORT_ZFS_DEVICE_OPEN_FAILED;
5167 break;
5168 case VDEV_AUX_CORRUPT_DATA:
5169 class = FM_EREPORT_ZFS_DEVICE_CORRUPT_DATA;
5170 break;
5171 case VDEV_AUX_NO_REPLICAS:
5172 class = FM_EREPORT_ZFS_DEVICE_NO_REPLICAS;
5173 break;
5174 case VDEV_AUX_BAD_GUID_SUM:
5175 class = FM_EREPORT_ZFS_DEVICE_BAD_GUID_SUM;
5176 break;
5177 case VDEV_AUX_TOO_SMALL:
5178 class = FM_EREPORT_ZFS_DEVICE_TOO_SMALL;
5179 break;
5180 case VDEV_AUX_BAD_LABEL:
5181 class = FM_EREPORT_ZFS_DEVICE_BAD_LABEL;
5182 break;
5183 case VDEV_AUX_BAD_ASHIFT:
5184 class = FM_EREPORT_ZFS_DEVICE_BAD_ASHIFT;
5185 break;
5186 default:
5187 class = FM_EREPORT_ZFS_DEVICE_UNKNOWN;
5188 }
5189
5190 (void) zfs_ereport_post(class, spa, vd, NULL, NULL,
5191 save_state);
5192 }
5193
5194 /* Erase any notion of persistent removed state */
5195 vd->vdev_removed = B_FALSE;
5196 } else {
5197 vd->vdev_removed = B_FALSE;
5198 }
5199
5200 /*
5201 * Notify ZED of any significant state-change on a leaf vdev.
5202 *
5203 */
5204 if (vd->vdev_ops->vdev_op_leaf) {
5205 /* preserve original state from a vdev_reopen() */
5206 if ((vd->vdev_prevstate != VDEV_STATE_UNKNOWN) &&
5207 (vd->vdev_prevstate != vd->vdev_state) &&
5208 (save_state <= VDEV_STATE_CLOSED))
5209 save_state = vd->vdev_prevstate;
5210
5211 /* filter out state change due to initial vdev_open */
5212 if (save_state > VDEV_STATE_CLOSED)
5213 zfs_post_state_change(spa, vd, save_state);
5214 }
5215
5216 if (!isopen && vd->vdev_parent)
5217 vdev_propagate_state(vd->vdev_parent);
5218 }
5219
5220 boolean_t
5221 vdev_children_are_offline(vdev_t *vd)
5222 {
5223 ASSERT(!vd->vdev_ops->vdev_op_leaf);
5224
5225 for (uint64_t i = 0; i < vd->vdev_children; i++) {
5226 if (vd->vdev_child[i]->vdev_state != VDEV_STATE_OFFLINE)
5227 return (B_FALSE);
5228 }
5229
5230 return (B_TRUE);
5231 }
5232
5233 /*
5234 * Check the vdev configuration to ensure that it's capable of supporting
5235 * a root pool. We do not support partial configuration.
5236 */
5237 boolean_t
5238 vdev_is_bootable(vdev_t *vd)
5239 {
5240 if (!vd->vdev_ops->vdev_op_leaf) {
5241 const char *vdev_type = vd->vdev_ops->vdev_op_type;
5242
5243 if (strcmp(vdev_type, VDEV_TYPE_MISSING) == 0)
5244 return (B_FALSE);
5245 }
5246
5247 for (int c = 0; c < vd->vdev_children; c++) {
5248 if (!vdev_is_bootable(vd->vdev_child[c]))
5249 return (B_FALSE);
5250 }
5251 return (B_TRUE);
5252 }
5253
5254 boolean_t
5255 vdev_is_concrete(vdev_t *vd)
5256 {
5257 vdev_ops_t *ops = vd->vdev_ops;
5258 if (ops == &vdev_indirect_ops || ops == &vdev_hole_ops ||
5259 ops == &vdev_missing_ops || ops == &vdev_root_ops) {
5260 return (B_FALSE);
5261 } else {
5262 return (B_TRUE);
5263 }
5264 }
5265
5266 /*
5267 * Determine if a log device has valid content. If the vdev was
5268 * removed or faulted in the MOS config then we know that
5269 * the content on the log device has already been written to the pool.
5270 */
5271 boolean_t
5272 vdev_log_state_valid(vdev_t *vd)
5273 {
5274 if (vd->vdev_ops->vdev_op_leaf && !vd->vdev_faulted &&
5275 !vd->vdev_removed)
5276 return (B_TRUE);
5277
5278 for (int c = 0; c < vd->vdev_children; c++)
5279 if (vdev_log_state_valid(vd->vdev_child[c]))
5280 return (B_TRUE);
5281
5282 return (B_FALSE);
5283 }
5284
5285 /*
5286 * Expand a vdev if possible.
5287 */
5288 void
5289 vdev_expand(vdev_t *vd, uint64_t txg)
5290 {
5291 ASSERT(vd->vdev_top == vd);
5292 ASSERT(spa_config_held(vd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
5293 ASSERT(vdev_is_concrete(vd));
5294
5295 vdev_set_deflate_ratio(vd);
5296
5297 if ((vd->vdev_asize >> vd->vdev_ms_shift) > vd->vdev_ms_count &&
5298 vdev_is_concrete(vd)) {
5299 vdev_metaslab_group_create(vd);
5300 VERIFY(vdev_metaslab_init(vd, txg) == 0);
5301 vdev_config_dirty(vd);
5302 }
5303 }
5304
5305 /*
5306 * Split a vdev.
5307 */
5308 void
5309 vdev_split(vdev_t *vd)
5310 {
5311 vdev_t *cvd, *pvd = vd->vdev_parent;
5312
5313 vdev_remove_child(pvd, vd);
5314 vdev_compact_children(pvd);
5315
5316 cvd = pvd->vdev_child[0];
5317 if (pvd->vdev_children == 1) {
5318 vdev_remove_parent(cvd);
5319 cvd->vdev_splitting = B_TRUE;
5320 }
5321 vdev_propagate_state(cvd);
5322 }
5323
5324 void
5325 vdev_deadman(vdev_t *vd, const char *tag)
5326 {
5327 for (int c = 0; c < vd->vdev_children; c++) {
5328 vdev_t *cvd = vd->vdev_child[c];
5329
5330 vdev_deadman(cvd, tag);
5331 }
5332
5333 if (vd->vdev_ops->vdev_op_leaf) {
5334 vdev_queue_t *vq = &vd->vdev_queue;
5335
5336 mutex_enter(&vq->vq_lock);
5337 if (avl_numnodes(&vq->vq_active_tree) > 0) {
5338 spa_t *spa = vd->vdev_spa;
5339 zio_t *fio;
5340 uint64_t delta;
5341
5342 zfs_dbgmsg("slow vdev: %s has %lu active IOs",
5343 vd->vdev_path, avl_numnodes(&vq->vq_active_tree));
5344
5345 /*
5346 * Look at the head of all the pending queues,
5347 * if any I/O has been outstanding for longer than
5348 * the spa_deadman_synctime invoke the deadman logic.
5349 */
5350 fio = avl_first(&vq->vq_active_tree);
5351 delta = gethrtime() - fio->io_timestamp;
5352 if (delta > spa_deadman_synctime(spa))
5353 zio_deadman(fio, tag);
5354 }
5355 mutex_exit(&vq->vq_lock);
5356 }
5357 }
5358
5359 void
5360 vdev_defer_resilver(vdev_t *vd)
5361 {
5362 ASSERT(vd->vdev_ops->vdev_op_leaf);
5363
5364 vd->vdev_resilver_deferred = B_TRUE;
5365 vd->vdev_spa->spa_resilver_deferred = B_TRUE;
5366 }
5367
5368 /*
5369 * Clears the resilver deferred flag on all leaf devs under vd. Returns
5370 * B_TRUE if we have devices that need to be resilvered and are available to
5371 * accept resilver I/Os.
5372 */
5373 boolean_t
5374 vdev_clear_resilver_deferred(vdev_t *vd, dmu_tx_t *tx)
5375 {
5376 boolean_t resilver_needed = B_FALSE;
5377 spa_t *spa = vd->vdev_spa;
5378
5379 for (int c = 0; c < vd->vdev_children; c++) {
5380 vdev_t *cvd = vd->vdev_child[c];
5381 resilver_needed |= vdev_clear_resilver_deferred(cvd, tx);
5382 }
5383
5384 if (vd == spa->spa_root_vdev &&
5385 spa_feature_is_active(spa, SPA_FEATURE_RESILVER_DEFER)) {
5386 spa_feature_decr(spa, SPA_FEATURE_RESILVER_DEFER, tx);
5387 vdev_config_dirty(vd);
5388 spa->spa_resilver_deferred = B_FALSE;
5389 return (resilver_needed);
5390 }
5391
5392 if (!vdev_is_concrete(vd) || vd->vdev_aux ||
5393 !vd->vdev_ops->vdev_op_leaf)
5394 return (resilver_needed);
5395
5396 vd->vdev_resilver_deferred = B_FALSE;
5397
5398 return (!vdev_is_dead(vd) && !vd->vdev_offline &&
5399 vdev_resilver_needed(vd, NULL, NULL));
5400 }
5401
5402 boolean_t
5403 vdev_xlate_is_empty(range_seg64_t *rs)
5404 {
5405 return (rs->rs_start == rs->rs_end);
5406 }
5407
5408 /*
5409 * Translate a logical range to the first contiguous physical range for the
5410 * specified vdev_t. This function is initially called with a leaf vdev and
5411 * will walk each parent vdev until it reaches a top-level vdev. Once the
5412 * top-level is reached the physical range is initialized and the recursive
5413 * function begins to unwind. As it unwinds it calls the parent's vdev
5414 * specific translation function to do the real conversion.
5415 */
5416 void
5417 vdev_xlate(vdev_t *vd, const range_seg64_t *logical_rs,
5418 range_seg64_t *physical_rs, range_seg64_t *remain_rs)
5419 {
5420 /*
5421 * Walk up the vdev tree
5422 */
5423 if (vd != vd->vdev_top) {
5424 vdev_xlate(vd->vdev_parent, logical_rs, physical_rs,
5425 remain_rs);
5426 } else {
5427 /*
5428 * We've reached the top-level vdev, initialize the physical
5429 * range to the logical range and set an empty remaining
5430 * range then start to unwind.
5431 */
5432 physical_rs->rs_start = logical_rs->rs_start;
5433 physical_rs->rs_end = logical_rs->rs_end;
5434
5435 remain_rs->rs_start = logical_rs->rs_start;
5436 remain_rs->rs_end = logical_rs->rs_start;
5437
5438 return;
5439 }
5440
5441 vdev_t *pvd = vd->vdev_parent;
5442 ASSERT3P(pvd, !=, NULL);
5443 ASSERT3P(pvd->vdev_ops->vdev_op_xlate, !=, NULL);
5444
5445 /*
5446 * As this recursive function unwinds, translate the logical
5447 * range into its physical and any remaining components by calling
5448 * the vdev specific translate function.
5449 */
5450 range_seg64_t intermediate = { 0 };
5451 pvd->vdev_ops->vdev_op_xlate(vd, physical_rs, &intermediate, remain_rs);
5452
5453 physical_rs->rs_start = intermediate.rs_start;
5454 physical_rs->rs_end = intermediate.rs_end;
5455 }
5456
5457 void
5458 vdev_xlate_walk(vdev_t *vd, const range_seg64_t *logical_rs,
5459 vdev_xlate_func_t *func, void *arg)
5460 {
5461 range_seg64_t iter_rs = *logical_rs;
5462 range_seg64_t physical_rs;
5463 range_seg64_t remain_rs;
5464
5465 while (!vdev_xlate_is_empty(&iter_rs)) {
5466
5467 vdev_xlate(vd, &iter_rs, &physical_rs, &remain_rs);
5468
5469 /*
5470 * With raidz and dRAID, it's possible that the logical range
5471 * does not live on this leaf vdev. Only when there is a non-
5472 * zero physical size call the provided function.
5473 */
5474 if (!vdev_xlate_is_empty(&physical_rs))
5475 func(arg, &physical_rs);
5476
5477 iter_rs = remain_rs;
5478 }
5479 }
5480
5481 static char *
5482 vdev_name(vdev_t *vd, char *buf, int buflen)
5483 {
5484 if (vd->vdev_path == NULL) {
5485 if (strcmp(vd->vdev_ops->vdev_op_type, "root") == 0) {
5486 strlcpy(buf, vd->vdev_spa->spa_name, buflen);
5487 } else if (!vd->vdev_ops->vdev_op_leaf) {
5488 snprintf(buf, buflen, "%s-%llu",
5489 vd->vdev_ops->vdev_op_type,
5490 (u_longlong_t)vd->vdev_id);
5491 }
5492 } else {
5493 strlcpy(buf, vd->vdev_path, buflen);
5494 }
5495 return (buf);
5496 }
5497
5498 /*
5499 * Look at the vdev tree and determine whether any devices are currently being
5500 * replaced.
5501 */
5502 boolean_t
5503 vdev_replace_in_progress(vdev_t *vdev)
5504 {
5505 ASSERT(spa_config_held(vdev->vdev_spa, SCL_ALL, RW_READER) != 0);
5506
5507 if (vdev->vdev_ops == &vdev_replacing_ops)
5508 return (B_TRUE);
5509
5510 /*
5511 * A 'spare' vdev indicates that we have a replace in progress, unless
5512 * it has exactly two children, and the second, the hot spare, has
5513 * finished being resilvered.
5514 */
5515 if (vdev->vdev_ops == &vdev_spare_ops && (vdev->vdev_children > 2 ||
5516 !vdev_dtl_empty(vdev->vdev_child[1], DTL_MISSING)))
5517 return (B_TRUE);
5518
5519 for (int i = 0; i < vdev->vdev_children; i++) {
5520 if (vdev_replace_in_progress(vdev->vdev_child[i]))
5521 return (B_TRUE);
5522 }
5523
5524 return (B_FALSE);
5525 }
5526
5527 /*
5528 * Add a (source=src, propname=propval) list to an nvlist.
5529 */
5530 static void
5531 vdev_prop_add_list(nvlist_t *nvl, const char *propname, char *strval,
5532 uint64_t intval, zprop_source_t src)
5533 {
5534 nvlist_t *propval;
5535
5536 propval = fnvlist_alloc();
5537 fnvlist_add_uint64(propval, ZPROP_SOURCE, src);
5538
5539 if (strval != NULL)
5540 fnvlist_add_string(propval, ZPROP_VALUE, strval);
5541 else
5542 fnvlist_add_uint64(propval, ZPROP_VALUE, intval);
5543
5544 fnvlist_add_nvlist(nvl, propname, propval);
5545 nvlist_free(propval);
5546 }
5547
5548 static void
5549 vdev_props_set_sync(void *arg, dmu_tx_t *tx)
5550 {
5551 vdev_t *vd;
5552 nvlist_t *nvp = arg;
5553 spa_t *spa = dmu_tx_pool(tx)->dp_spa;
5554 objset_t *mos = spa->spa_meta_objset;
5555 nvpair_t *elem = NULL;
5556 uint64_t vdev_guid;
5557 nvlist_t *nvprops;
5558
5559 vdev_guid = fnvlist_lookup_uint64(nvp, ZPOOL_VDEV_PROPS_SET_VDEV);
5560 nvprops = fnvlist_lookup_nvlist(nvp, ZPOOL_VDEV_PROPS_SET_PROPS);
5561 vd = spa_lookup_by_guid(spa, vdev_guid, B_TRUE);
5562
5563 /* this vdev could get removed while waiting for this sync task */
5564 if (vd == NULL)
5565 return;
5566
5567 mutex_enter(&spa->spa_props_lock);
5568
5569 while ((elem = nvlist_next_nvpair(nvprops, elem)) != NULL) {
5570 uint64_t intval, objid = 0;
5571 char *strval;
5572 vdev_prop_t prop;
5573 const char *propname = nvpair_name(elem);
5574 zprop_type_t proptype;
5575
5576 /*
5577 * Set vdev property values in the vdev props mos object.
5578 */
5579 if (vd->vdev_top_zap != 0) {
5580 objid = vd->vdev_top_zap;
5581 } else if (vd->vdev_leaf_zap != 0) {
5582 objid = vd->vdev_leaf_zap;
5583 } else {
5584 panic("vdev not top or leaf");
5585 }
5586
5587 switch (prop = vdev_name_to_prop(propname)) {
5588 case VDEV_PROP_USERPROP:
5589 if (vdev_prop_user(propname)) {
5590 strval = fnvpair_value_string(elem);
5591 if (strlen(strval) == 0) {
5592 /* remove the property if value == "" */
5593 (void) zap_remove(mos, objid, propname,
5594 tx);
5595 } else {
5596 VERIFY0(zap_update(mos, objid, propname,
5597 1, strlen(strval) + 1, strval, tx));
5598 }
5599 spa_history_log_internal(spa, "vdev set", tx,
5600 "vdev_guid=%llu: %s=%s",
5601 (u_longlong_t)vdev_guid, nvpair_name(elem),
5602 strval);
5603 }
5604 break;
5605 default:
5606 /* normalize the property name */
5607 propname = vdev_prop_to_name(prop);
5608 proptype = vdev_prop_get_type(prop);
5609
5610 if (nvpair_type(elem) == DATA_TYPE_STRING) {
5611 ASSERT(proptype == PROP_TYPE_STRING);
5612 strval = fnvpair_value_string(elem);
5613 VERIFY0(zap_update(mos, objid, propname,
5614 1, strlen(strval) + 1, strval, tx));
5615 spa_history_log_internal(spa, "vdev set", tx,
5616 "vdev_guid=%llu: %s=%s",
5617 (u_longlong_t)vdev_guid, nvpair_name(elem),
5618 strval);
5619 } else if (nvpair_type(elem) == DATA_TYPE_UINT64) {
5620 intval = fnvpair_value_uint64(elem);
5621
5622 if (proptype == PROP_TYPE_INDEX) {
5623 const char *unused;
5624 VERIFY0(vdev_prop_index_to_string(
5625 prop, intval, &unused));
5626 }
5627 VERIFY0(zap_update(mos, objid, propname,
5628 sizeof (uint64_t), 1, &intval, tx));
5629 spa_history_log_internal(spa, "vdev set", tx,
5630 "vdev_guid=%llu: %s=%lld",
5631 (u_longlong_t)vdev_guid,
5632 nvpair_name(elem), (longlong_t)intval);
5633 } else {
5634 panic("invalid vdev property type %u",
5635 nvpair_type(elem));
5636 }
5637 }
5638
5639 }
5640
5641 mutex_exit(&spa->spa_props_lock);
5642 }
5643
5644 int
5645 vdev_prop_set(vdev_t *vd, nvlist_t *innvl, nvlist_t *outnvl)
5646 {
5647 spa_t *spa = vd->vdev_spa;
5648 nvpair_t *elem = NULL;
5649 uint64_t vdev_guid;
5650 nvlist_t *nvprops;
5651 int error;
5652
5653 ASSERT(vd != NULL);
5654
5655 if (nvlist_lookup_uint64(innvl, ZPOOL_VDEV_PROPS_SET_VDEV,
5656 &vdev_guid) != 0)
5657 return (SET_ERROR(EINVAL));
5658
5659 if (nvlist_lookup_nvlist(innvl, ZPOOL_VDEV_PROPS_SET_PROPS,
5660 &nvprops) != 0)
5661 return (SET_ERROR(EINVAL));
5662
5663 if ((vd = spa_lookup_by_guid(spa, vdev_guid, B_TRUE)) == NULL)
5664 return (SET_ERROR(EINVAL));
5665
5666 while ((elem = nvlist_next_nvpair(nvprops, elem)) != NULL) {
5667 char *propname = nvpair_name(elem);
5668 vdev_prop_t prop = vdev_name_to_prop(propname);
5669 uint64_t intval = 0;
5670 char *strval = NULL;
5671
5672 if (prop == VDEV_PROP_USERPROP && !vdev_prop_user(propname)) {
5673 error = EINVAL;
5674 goto end;
5675 }
5676
5677 if (vdev_prop_readonly(prop)) {
5678 error = EROFS;
5679 goto end;
5680 }
5681
5682 /* Special Processing */
5683 switch (prop) {
5684 case VDEV_PROP_PATH:
5685 if (vd->vdev_path == NULL) {
5686 error = EROFS;
5687 break;
5688 }
5689 if (nvpair_value_string(elem, &strval) != 0) {
5690 error = EINVAL;
5691 break;
5692 }
5693 /* New path must start with /dev/ */
5694 if (strncmp(strval, "/dev/", 5)) {
5695 error = EINVAL;
5696 break;
5697 }
5698 error = spa_vdev_setpath(spa, vdev_guid, strval);
5699 break;
5700 case VDEV_PROP_ALLOCATING:
5701 if (nvpair_value_uint64(elem, &intval) != 0) {
5702 error = EINVAL;
5703 break;
5704 }
5705 if (intval != vd->vdev_noalloc)
5706 break;
5707 if (intval == 0)
5708 error = spa_vdev_noalloc(spa, vdev_guid);
5709 else
5710 error = spa_vdev_alloc(spa, vdev_guid);
5711 break;
5712 default:
5713 /* Most processing is done in vdev_props_set_sync */
5714 break;
5715 }
5716 end:
5717 if (error != 0) {
5718 intval = error;
5719 vdev_prop_add_list(outnvl, propname, strval, intval, 0);
5720 return (error);
5721 }
5722 }
5723
5724 return (dsl_sync_task(spa->spa_name, NULL, vdev_props_set_sync,
5725 innvl, 6, ZFS_SPACE_CHECK_EXTRA_RESERVED));
5726 }
5727
5728 int
5729 vdev_prop_get(vdev_t *vd, nvlist_t *innvl, nvlist_t *outnvl)
5730 {
5731 spa_t *spa = vd->vdev_spa;
5732 objset_t *mos = spa->spa_meta_objset;
5733 int err = 0;
5734 uint64_t objid;
5735 uint64_t vdev_guid;
5736 nvpair_t *elem = NULL;
5737 nvlist_t *nvprops = NULL;
5738 uint64_t intval = 0;
5739 char *strval = NULL;
5740 const char *propname = NULL;
5741 vdev_prop_t prop;
5742
5743 ASSERT(vd != NULL);
5744 ASSERT(mos != NULL);
5745
5746 if (nvlist_lookup_uint64(innvl, ZPOOL_VDEV_PROPS_GET_VDEV,
5747 &vdev_guid) != 0)
5748 return (SET_ERROR(EINVAL));
5749
5750 nvlist_lookup_nvlist(innvl, ZPOOL_VDEV_PROPS_GET_PROPS, &nvprops);
5751
5752 if (vd->vdev_top_zap != 0) {
5753 objid = vd->vdev_top_zap;
5754 } else if (vd->vdev_leaf_zap != 0) {
5755 objid = vd->vdev_leaf_zap;
5756 } else {
5757 return (SET_ERROR(EINVAL));
5758 }
5759 ASSERT(objid != 0);
5760
5761 mutex_enter(&spa->spa_props_lock);
5762
5763 if (nvprops != NULL) {
5764 char namebuf[64] = { 0 };
5765
5766 while ((elem = nvlist_next_nvpair(nvprops, elem)) != NULL) {
5767 intval = 0;
5768 strval = NULL;
5769 propname = nvpair_name(elem);
5770 prop = vdev_name_to_prop(propname);
5771 zprop_source_t src = ZPROP_SRC_DEFAULT;
5772 uint64_t integer_size, num_integers;
5773
5774 switch (prop) {
5775 /* Special Read-only Properties */
5776 case VDEV_PROP_NAME:
5777 strval = vdev_name(vd, namebuf,
5778 sizeof (namebuf));
5779 if (strval == NULL)
5780 continue;
5781 vdev_prop_add_list(outnvl, propname, strval, 0,
5782 ZPROP_SRC_NONE);
5783 continue;
5784 case VDEV_PROP_CAPACITY:
5785 /* percent used */
5786 intval = (vd->vdev_stat.vs_dspace == 0) ? 0 :
5787 (vd->vdev_stat.vs_alloc * 100 /
5788 vd->vdev_stat.vs_dspace);
5789 vdev_prop_add_list(outnvl, propname, NULL,
5790 intval, ZPROP_SRC_NONE);
5791 continue;
5792 case VDEV_PROP_STATE:
5793 vdev_prop_add_list(outnvl, propname, NULL,
5794 vd->vdev_state, ZPROP_SRC_NONE);
5795 continue;
5796 case VDEV_PROP_GUID:
5797 vdev_prop_add_list(outnvl, propname, NULL,
5798 vd->vdev_guid, ZPROP_SRC_NONE);
5799 continue;
5800 case VDEV_PROP_ASIZE:
5801 vdev_prop_add_list(outnvl, propname, NULL,
5802 vd->vdev_asize, ZPROP_SRC_NONE);
5803 continue;
5804 case VDEV_PROP_PSIZE:
5805 vdev_prop_add_list(outnvl, propname, NULL,
5806 vd->vdev_psize, ZPROP_SRC_NONE);
5807 continue;
5808 case VDEV_PROP_ASHIFT:
5809 vdev_prop_add_list(outnvl, propname, NULL,
5810 vd->vdev_ashift, ZPROP_SRC_NONE);
5811 continue;
5812 case VDEV_PROP_SIZE:
5813 vdev_prop_add_list(outnvl, propname, NULL,
5814 vd->vdev_stat.vs_dspace, ZPROP_SRC_NONE);
5815 continue;
5816 case VDEV_PROP_FREE:
5817 vdev_prop_add_list(outnvl, propname, NULL,
5818 vd->vdev_stat.vs_dspace -
5819 vd->vdev_stat.vs_alloc, ZPROP_SRC_NONE);
5820 continue;
5821 case VDEV_PROP_ALLOCATED:
5822 vdev_prop_add_list(outnvl, propname, NULL,
5823 vd->vdev_stat.vs_alloc, ZPROP_SRC_NONE);
5824 continue;
5825 case VDEV_PROP_EXPANDSZ:
5826 vdev_prop_add_list(outnvl, propname, NULL,
5827 vd->vdev_stat.vs_esize, ZPROP_SRC_NONE);
5828 continue;
5829 case VDEV_PROP_FRAGMENTATION:
5830 vdev_prop_add_list(outnvl, propname, NULL,
5831 vd->vdev_stat.vs_fragmentation,
5832 ZPROP_SRC_NONE);
5833 continue;
5834 case VDEV_PROP_PARITY:
5835 vdev_prop_add_list(outnvl, propname, NULL,
5836 vdev_get_nparity(vd), ZPROP_SRC_NONE);
5837 continue;
5838 case VDEV_PROP_PATH:
5839 if (vd->vdev_path == NULL)
5840 continue;
5841 vdev_prop_add_list(outnvl, propname,
5842 vd->vdev_path, 0, ZPROP_SRC_NONE);
5843 continue;
5844 case VDEV_PROP_DEVID:
5845 if (vd->vdev_devid == NULL)
5846 continue;
5847 vdev_prop_add_list(outnvl, propname,
5848 vd->vdev_devid, 0, ZPROP_SRC_NONE);
5849 continue;
5850 case VDEV_PROP_PHYS_PATH:
5851 if (vd->vdev_physpath == NULL)
5852 continue;
5853 vdev_prop_add_list(outnvl, propname,
5854 vd->vdev_physpath, 0, ZPROP_SRC_NONE);
5855 continue;
5856 case VDEV_PROP_ENC_PATH:
5857 if (vd->vdev_enc_sysfs_path == NULL)
5858 continue;
5859 vdev_prop_add_list(outnvl, propname,
5860 vd->vdev_enc_sysfs_path, 0, ZPROP_SRC_NONE);
5861 continue;
5862 case VDEV_PROP_FRU:
5863 if (vd->vdev_fru == NULL)
5864 continue;
5865 vdev_prop_add_list(outnvl, propname,
5866 vd->vdev_fru, 0, ZPROP_SRC_NONE);
5867 continue;
5868 case VDEV_PROP_PARENT:
5869 if (vd->vdev_parent != NULL) {
5870 strval = vdev_name(vd->vdev_parent,
5871 namebuf, sizeof (namebuf));
5872 vdev_prop_add_list(outnvl, propname,
5873 strval, 0, ZPROP_SRC_NONE);
5874 }
5875 continue;
5876 case VDEV_PROP_CHILDREN:
5877 if (vd->vdev_children > 0)
5878 strval = kmem_zalloc(ZAP_MAXVALUELEN,
5879 KM_SLEEP);
5880 for (uint64_t i = 0; i < vd->vdev_children;
5881 i++) {
5882 const char *vname;
5883
5884 vname = vdev_name(vd->vdev_child[i],
5885 namebuf, sizeof (namebuf));
5886 if (vname == NULL)
5887 vname = "(unknown)";
5888 if (strlen(strval) > 0)
5889 strlcat(strval, ",",
5890 ZAP_MAXVALUELEN);
5891 strlcat(strval, vname, ZAP_MAXVALUELEN);
5892 }
5893 if (strval != NULL) {
5894 vdev_prop_add_list(outnvl, propname,
5895 strval, 0, ZPROP_SRC_NONE);
5896 kmem_free(strval, ZAP_MAXVALUELEN);
5897 }
5898 continue;
5899 case VDEV_PROP_NUMCHILDREN:
5900 vdev_prop_add_list(outnvl, propname, NULL,
5901 vd->vdev_children, ZPROP_SRC_NONE);
5902 continue;
5903 case VDEV_PROP_READ_ERRORS:
5904 vdev_prop_add_list(outnvl, propname, NULL,
5905 vd->vdev_stat.vs_read_errors,
5906 ZPROP_SRC_NONE);
5907 continue;
5908 case VDEV_PROP_WRITE_ERRORS:
5909 vdev_prop_add_list(outnvl, propname, NULL,
5910 vd->vdev_stat.vs_write_errors,
5911 ZPROP_SRC_NONE);
5912 continue;
5913 case VDEV_PROP_CHECKSUM_ERRORS:
5914 vdev_prop_add_list(outnvl, propname, NULL,
5915 vd->vdev_stat.vs_checksum_errors,
5916 ZPROP_SRC_NONE);
5917 continue;
5918 case VDEV_PROP_INITIALIZE_ERRORS:
5919 vdev_prop_add_list(outnvl, propname, NULL,
5920 vd->vdev_stat.vs_initialize_errors,
5921 ZPROP_SRC_NONE);
5922 continue;
5923 case VDEV_PROP_OPS_NULL:
5924 vdev_prop_add_list(outnvl, propname, NULL,
5925 vd->vdev_stat.vs_ops[ZIO_TYPE_NULL],
5926 ZPROP_SRC_NONE);
5927 continue;
5928 case VDEV_PROP_OPS_READ:
5929 vdev_prop_add_list(outnvl, propname, NULL,
5930 vd->vdev_stat.vs_ops[ZIO_TYPE_READ],
5931 ZPROP_SRC_NONE);
5932 continue;
5933 case VDEV_PROP_OPS_WRITE:
5934 vdev_prop_add_list(outnvl, propname, NULL,
5935 vd->vdev_stat.vs_ops[ZIO_TYPE_WRITE],
5936 ZPROP_SRC_NONE);
5937 continue;
5938 case VDEV_PROP_OPS_FREE:
5939 vdev_prop_add_list(outnvl, propname, NULL,
5940 vd->vdev_stat.vs_ops[ZIO_TYPE_FREE],
5941 ZPROP_SRC_NONE);
5942 continue;
5943 case VDEV_PROP_OPS_CLAIM:
5944 vdev_prop_add_list(outnvl, propname, NULL,
5945 vd->vdev_stat.vs_ops[ZIO_TYPE_CLAIM],
5946 ZPROP_SRC_NONE);
5947 continue;
5948 case VDEV_PROP_OPS_TRIM:
5949 /*
5950 * TRIM ops and bytes are reported to user
5951 * space as ZIO_TYPE_IOCTL. This is done to
5952 * preserve the vdev_stat_t structure layout
5953 * for user space.
5954 */
5955 vdev_prop_add_list(outnvl, propname, NULL,
5956 vd->vdev_stat.vs_ops[ZIO_TYPE_IOCTL],
5957 ZPROP_SRC_NONE);
5958 continue;
5959 case VDEV_PROP_BYTES_NULL:
5960 vdev_prop_add_list(outnvl, propname, NULL,
5961 vd->vdev_stat.vs_bytes[ZIO_TYPE_NULL],
5962 ZPROP_SRC_NONE);
5963 continue;
5964 case VDEV_PROP_BYTES_READ:
5965 vdev_prop_add_list(outnvl, propname, NULL,
5966 vd->vdev_stat.vs_bytes[ZIO_TYPE_READ],
5967 ZPROP_SRC_NONE);
5968 continue;
5969 case VDEV_PROP_BYTES_WRITE:
5970 vdev_prop_add_list(outnvl, propname, NULL,
5971 vd->vdev_stat.vs_bytes[ZIO_TYPE_WRITE],
5972 ZPROP_SRC_NONE);
5973 continue;
5974 case VDEV_PROP_BYTES_FREE:
5975 vdev_prop_add_list(outnvl, propname, NULL,
5976 vd->vdev_stat.vs_bytes[ZIO_TYPE_FREE],
5977 ZPROP_SRC_NONE);
5978 continue;
5979 case VDEV_PROP_BYTES_CLAIM:
5980 vdev_prop_add_list(outnvl, propname, NULL,
5981 vd->vdev_stat.vs_bytes[ZIO_TYPE_CLAIM],
5982 ZPROP_SRC_NONE);
5983 continue;
5984 case VDEV_PROP_BYTES_TRIM:
5985 /*
5986 * TRIM ops and bytes are reported to user
5987 * space as ZIO_TYPE_IOCTL. This is done to
5988 * preserve the vdev_stat_t structure layout
5989 * for user space.
5990 */
5991 vdev_prop_add_list(outnvl, propname, NULL,
5992 vd->vdev_stat.vs_bytes[ZIO_TYPE_IOCTL],
5993 ZPROP_SRC_NONE);
5994 continue;
5995 case VDEV_PROP_REMOVING:
5996 vdev_prop_add_list(outnvl, propname, NULL,
5997 vd->vdev_removing, ZPROP_SRC_NONE);
5998 continue;
5999 /* Numeric Properites */
6000 case VDEV_PROP_ALLOCATING:
6001 src = ZPROP_SRC_LOCAL;
6002 strval = NULL;
6003
6004 err = zap_lookup(mos, objid, nvpair_name(elem),
6005 sizeof (uint64_t), 1, &intval);
6006 if (err == ENOENT) {
6007 intval =
6008 vdev_prop_default_numeric(prop);
6009 err = 0;
6010 } else if (err)
6011 break;
6012 if (intval == vdev_prop_default_numeric(prop))
6013 src = ZPROP_SRC_DEFAULT;
6014
6015 /* Leaf vdevs cannot have this property */
6016 if (vd->vdev_mg == NULL &&
6017 vd->vdev_top != NULL) {
6018 src = ZPROP_SRC_NONE;
6019 intval = ZPROP_BOOLEAN_NA;
6020 }
6021
6022 vdev_prop_add_list(outnvl, propname, strval,
6023 intval, src);
6024 break;
6025 /* Text Properties */
6026 case VDEV_PROP_COMMENT:
6027 /* Exists in the ZAP below */
6028 /* FALLTHRU */
6029 case VDEV_PROP_USERPROP:
6030 /* User Properites */
6031 src = ZPROP_SRC_LOCAL;
6032
6033 err = zap_length(mos, objid, nvpair_name(elem),
6034 &integer_size, &num_integers);
6035 if (err)
6036 break;
6037
6038 switch (integer_size) {
6039 case 8:
6040 /* User properties cannot be integers */
6041 err = EINVAL;
6042 break;
6043 case 1:
6044 /* string property */
6045 strval = kmem_alloc(num_integers,
6046 KM_SLEEP);
6047 err = zap_lookup(mos, objid,
6048 nvpair_name(elem), 1,
6049 num_integers, strval);
6050 if (err) {
6051 kmem_free(strval,
6052 num_integers);
6053 break;
6054 }
6055 vdev_prop_add_list(outnvl, propname,
6056 strval, 0, src);
6057 kmem_free(strval, num_integers);
6058 break;
6059 }
6060 break;
6061 default:
6062 err = ENOENT;
6063 break;
6064 }
6065 if (err)
6066 break;
6067 }
6068 } else {
6069 /*
6070 * Get all properties from the MOS vdev property object.
6071 */
6072 zap_cursor_t zc;
6073 zap_attribute_t za;
6074 for (zap_cursor_init(&zc, mos, objid);
6075 (err = zap_cursor_retrieve(&zc, &za)) == 0;
6076 zap_cursor_advance(&zc)) {
6077 intval = 0;
6078 strval = NULL;
6079 zprop_source_t src = ZPROP_SRC_DEFAULT;
6080 propname = za.za_name;
6081 prop = vdev_name_to_prop(propname);
6082
6083 switch (za.za_integer_length) {
6084 case 8:
6085 /* We do not allow integer user properties */
6086 /* This is likely an internal value */
6087 break;
6088 case 1:
6089 /* string property */
6090 strval = kmem_alloc(za.za_num_integers,
6091 KM_SLEEP);
6092 err = zap_lookup(mos, objid, za.za_name, 1,
6093 za.za_num_integers, strval);
6094 if (err) {
6095 kmem_free(strval, za.za_num_integers);
6096 break;
6097 }
6098 vdev_prop_add_list(outnvl, propname, strval, 0,
6099 src);
6100 kmem_free(strval, za.za_num_integers);
6101 break;
6102
6103 default:
6104 break;
6105 }
6106 }
6107 zap_cursor_fini(&zc);
6108 }
6109
6110 mutex_exit(&spa->spa_props_lock);
6111 if (err && err != ENOENT) {
6112 return (err);
6113 }
6114
6115 return (0);
6116 }
6117
6118 EXPORT_SYMBOL(vdev_fault);
6119 EXPORT_SYMBOL(vdev_degrade);
6120 EXPORT_SYMBOL(vdev_online);
6121 EXPORT_SYMBOL(vdev_offline);
6122 EXPORT_SYMBOL(vdev_clear);
6123
6124 ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, default_ms_count, UINT, ZMOD_RW,
6125 "Target number of metaslabs per top-level vdev");
6126
6127 ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, default_ms_shift, UINT, ZMOD_RW,
6128 "Default limit for metaslab size");
6129
6130 ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, min_ms_count, UINT, ZMOD_RW,
6131 "Minimum number of metaslabs per top-level vdev");
6132
6133 ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, ms_count_limit, UINT, ZMOD_RW,
6134 "Practical upper limit of total metaslabs per top-level vdev");
6135
6136 ZFS_MODULE_PARAM(zfs, zfs_, slow_io_events_per_second, UINT, ZMOD_RW,
6137 "Rate limit slow IO (delay) events to this many per second");
6138
6139 /* BEGIN CSTYLED */
6140 ZFS_MODULE_PARAM(zfs, zfs_, checksum_events_per_second, UINT, ZMOD_RW,
6141 "Rate limit checksum events to this many checksum errors per second "
6142 "(do not set below ZED threshold).");
6143 /* END CSTYLED */
6144
6145 ZFS_MODULE_PARAM(zfs, zfs_, scan_ignore_errors, INT, ZMOD_RW,
6146 "Ignore errors during resilver/scrub");
6147
6148 ZFS_MODULE_PARAM(zfs_vdev, vdev_, validate_skip, INT, ZMOD_RW,
6149 "Bypass vdev_validate()");
6150
6151 ZFS_MODULE_PARAM(zfs, zfs_, nocacheflush, INT, ZMOD_RW,
6152 "Disable cache flushes");
6153
6154 ZFS_MODULE_PARAM(zfs, zfs_, embedded_slog_min_ms, UINT, ZMOD_RW,
6155 "Minimum number of metaslabs required to dedicate one for log blocks");
6156
6157 /* BEGIN CSTYLED */
6158 ZFS_MODULE_PARAM_CALL(zfs_vdev, zfs_vdev_, min_auto_ashift,
6159 param_set_min_auto_ashift, param_get_ulong, ZMOD_RW,
6160 "Minimum ashift used when creating new top-level vdevs");
6161
6162 ZFS_MODULE_PARAM_CALL(zfs_vdev, zfs_vdev_, max_auto_ashift,
6163 param_set_max_auto_ashift, param_get_ulong, ZMOD_RW,
6164 "Maximum ashift used when optimizing for logical -> physical sector "
6165 "size on new top-level vdevs");
6166 /* END CSTYLED */