]> git.proxmox.com Git - mirror_zfs.git/blob - module/zfs/vdev_disk.c
DLPX-44812 integrate EP-220 large memory scalability
[mirror_zfs.git] / module / zfs / vdev_disk.c
1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright (C) 2008-2010 Lawrence Livermore National Security, LLC.
23 * Produced at Lawrence Livermore National Laboratory (cf, DISCLAIMER).
24 * Rewritten for Linux by Brian Behlendorf <behlendorf1@llnl.gov>.
25 * LLNL-CODE-403049.
26 * Copyright (c) 2012, 2015 by Delphix. All rights reserved.
27 */
28
29 #include <sys/zfs_context.h>
30 #include <sys/spa.h>
31 #include <sys/vdev_disk.h>
32 #include <sys/vdev_impl.h>
33 #include <sys/abd.h>
34 #include <sys/fs/zfs.h>
35 #include <sys/zio.h>
36 #include <sys/sunldi.h>
37
38 char *zfs_vdev_scheduler = VDEV_SCHEDULER;
39 static void *zfs_vdev_holder = VDEV_HOLDER;
40
41 /*
42 * Virtual device vector for disks.
43 */
44 typedef struct dio_request {
45 zio_t *dr_zio; /* Parent ZIO */
46 void *dr_loanbuf; /* borrowed abd buffer */
47 atomic_t dr_ref; /* References */
48 int dr_error; /* Bio error */
49 int dr_bio_count; /* Count of bio's */
50 struct bio *dr_bio[0]; /* Attached bio's */
51 } dio_request_t;
52
53
54 #ifdef HAVE_OPEN_BDEV_EXCLUSIVE
55 static fmode_t
56 vdev_bdev_mode(int smode)
57 {
58 fmode_t mode = 0;
59
60 ASSERT3S(smode & (FREAD | FWRITE), !=, 0);
61
62 if (smode & FREAD)
63 mode |= FMODE_READ;
64
65 if (smode & FWRITE)
66 mode |= FMODE_WRITE;
67
68 return (mode);
69 }
70 #else
71 static int
72 vdev_bdev_mode(int smode)
73 {
74 int mode = 0;
75
76 ASSERT3S(smode & (FREAD | FWRITE), !=, 0);
77
78 if ((smode & FREAD) && !(smode & FWRITE))
79 mode = MS_RDONLY;
80
81 return (mode);
82 }
83 #endif /* HAVE_OPEN_BDEV_EXCLUSIVE */
84
85 static uint64_t
86 bdev_capacity(struct block_device *bdev)
87 {
88 struct hd_struct *part = bdev->bd_part;
89
90 /* The partition capacity referenced by the block device */
91 if (part)
92 return (part->nr_sects << 9);
93
94 /* Otherwise assume the full device capacity */
95 return (get_capacity(bdev->bd_disk) << 9);
96 }
97
98 static void
99 vdev_disk_error(zio_t *zio)
100 {
101 #ifdef ZFS_DEBUG
102 printk("ZFS: zio error=%d type=%d offset=%llu size=%llu "
103 "flags=%x\n", zio->io_error, zio->io_type,
104 (u_longlong_t)zio->io_offset, (u_longlong_t)zio->io_size,
105 zio->io_flags);
106 #endif
107 }
108
109 /*
110 * Use the Linux 'noop' elevator for zfs managed block devices. This
111 * strikes the ideal balance by allowing the zfs elevator to do all
112 * request ordering and prioritization. While allowing the Linux
113 * elevator to do the maximum front/back merging allowed by the
114 * physical device. This yields the largest possible requests for
115 * the device with the lowest total overhead.
116 */
117 static int
118 vdev_elevator_switch(vdev_t *v, char *elevator)
119 {
120 vdev_disk_t *vd = v->vdev_tsd;
121 struct block_device *bdev = vd->vd_bdev;
122 struct request_queue *q = bdev_get_queue(bdev);
123 char *device = bdev->bd_disk->disk_name;
124 int error;
125
126 /*
127 * Skip devices which are not whole disks (partitions).
128 * Device-mapper devices are excepted since they may be whole
129 * disks despite the vdev_wholedisk flag, in which case we can
130 * and should switch the elevator. If the device-mapper device
131 * does not have an elevator (i.e. dm-raid, dm-crypt, etc.) the
132 * "Skip devices without schedulers" check below will fail.
133 */
134 if (!v->vdev_wholedisk && strncmp(device, "dm-", 3) != 0)
135 return (0);
136
137 /* Skip devices without schedulers (loop, ram, dm, etc) */
138 if (!q->elevator || !blk_queue_stackable(q))
139 return (0);
140
141 /* Leave existing scheduler when set to "none" */
142 if ((strncmp(elevator, "none", 4) == 0) && (strlen(elevator) == 4))
143 return (0);
144
145 #ifdef HAVE_ELEVATOR_CHANGE
146 error = elevator_change(q, elevator);
147 #else
148 /*
149 * For pre-2.6.36 kernels elevator_change() is not available.
150 * Therefore we fall back to using a usermodehelper to echo the
151 * elevator into sysfs; This requires /bin/echo and sysfs to be
152 * mounted which may not be true early in the boot process.
153 */
154 #define SET_SCHEDULER_CMD \
155 "exec 0</dev/null " \
156 " 1>/sys/block/%s/queue/scheduler " \
157 " 2>/dev/null; " \
158 "echo %s"
159
160 {
161 char *argv[] = { "/bin/sh", "-c", NULL, NULL };
162 char *envp[] = { NULL };
163
164 argv[2] = kmem_asprintf(SET_SCHEDULER_CMD, device, elevator);
165 error = call_usermodehelper(argv[0], argv, envp, UMH_WAIT_PROC);
166 strfree(argv[2]);
167 }
168 #endif /* HAVE_ELEVATOR_CHANGE */
169 if (error)
170 printk("ZFS: Unable to set \"%s\" scheduler for %s (%s): %d\n",
171 elevator, v->vdev_path, device, error);
172
173 return (error);
174 }
175
176 /*
177 * Expanding a whole disk vdev involves invoking BLKRRPART on the
178 * whole disk device. This poses a problem, because BLKRRPART will
179 * return EBUSY if one of the disk's partitions is open. That's why
180 * we have to do it here, just before opening the data partition.
181 * Unfortunately, BLKRRPART works by dropping all partitions and
182 * recreating them, which means that for a short time window, all
183 * /dev/sdxN device files disappear (until udev recreates them).
184 * This means two things:
185 * - When we open the data partition just after a BLKRRPART, we
186 * can't do it using the normal device file path because of the
187 * obvious race condition with udev. Instead, we use reliable
188 * kernel APIs to get a handle to the new partition device from
189 * the whole disk device.
190 * - Because vdev_disk_open() initially needs to find the device
191 * using its path, multiple vdev_disk_open() invocations in
192 * short succession on the same disk with BLKRRPARTs in the
193 * middle have a high probability of failure (because of the
194 * race condition with udev). A typical situation where this
195 * might happen is when the zpool userspace tool does a
196 * TRYIMPORT immediately followed by an IMPORT. For this
197 * reason, we only invoke BLKRRPART in the module when strictly
198 * necessary (zpool online -e case), and rely on userspace to
199 * do it when possible.
200 */
201 static struct block_device *
202 vdev_disk_rrpart(const char *path, int mode, vdev_disk_t *vd)
203 {
204 #if defined(HAVE_3ARG_BLKDEV_GET) && defined(HAVE_GET_GENDISK)
205 struct block_device *bdev, *result = ERR_PTR(-ENXIO);
206 struct gendisk *disk;
207 int error, partno;
208
209 bdev = vdev_bdev_open(path, vdev_bdev_mode(mode), zfs_vdev_holder);
210 if (IS_ERR(bdev))
211 return (bdev);
212
213 disk = get_gendisk(bdev->bd_dev, &partno);
214 vdev_bdev_close(bdev, vdev_bdev_mode(mode));
215
216 if (disk) {
217 bdev = bdget(disk_devt(disk));
218 if (bdev) {
219 error = blkdev_get(bdev, vdev_bdev_mode(mode), vd);
220 if (error == 0)
221 error = ioctl_by_bdev(bdev, BLKRRPART, 0);
222 vdev_bdev_close(bdev, vdev_bdev_mode(mode));
223 }
224
225 bdev = bdget_disk(disk, partno);
226 if (bdev) {
227 error = blkdev_get(bdev,
228 vdev_bdev_mode(mode) | FMODE_EXCL, vd);
229 if (error == 0)
230 result = bdev;
231 }
232 put_disk(disk);
233 }
234
235 return (result);
236 #else
237 return (ERR_PTR(-EOPNOTSUPP));
238 #endif /* defined(HAVE_3ARG_BLKDEV_GET) && defined(HAVE_GET_GENDISK) */
239 }
240
241 static int
242 vdev_disk_open(vdev_t *v, uint64_t *psize, uint64_t *max_psize,
243 uint64_t *ashift)
244 {
245 struct block_device *bdev = ERR_PTR(-ENXIO);
246 vdev_disk_t *vd;
247 int count = 0, mode, block_size;
248
249 /* Must have a pathname and it must be absolute. */
250 if (v->vdev_path == NULL || v->vdev_path[0] != '/') {
251 v->vdev_stat.vs_aux = VDEV_AUX_BAD_LABEL;
252 return (SET_ERROR(EINVAL));
253 }
254
255 /*
256 * Reopen the device if it's not currently open. Otherwise,
257 * just update the physical size of the device.
258 */
259 if (v->vdev_tsd != NULL) {
260 ASSERT(v->vdev_reopening);
261 vd = v->vdev_tsd;
262 goto skip_open;
263 }
264
265 vd = kmem_zalloc(sizeof (vdev_disk_t), KM_SLEEP);
266 if (vd == NULL)
267 return (SET_ERROR(ENOMEM));
268
269 /*
270 * Devices are always opened by the path provided at configuration
271 * time. This means that if the provided path is a udev by-id path
272 * then drives may be recabled without an issue. If the provided
273 * path is a udev by-path path, then the physical location information
274 * will be preserved. This can be critical for more complicated
275 * configurations where drives are located in specific physical
276 * locations to maximize the systems tolerence to component failure.
277 * Alternatively, you can provide your own udev rule to flexibly map
278 * the drives as you see fit. It is not advised that you use the
279 * /dev/[hd]d devices which may be reordered due to probing order.
280 * Devices in the wrong locations will be detected by the higher
281 * level vdev validation.
282 *
283 * The specified paths may be briefly removed and recreated in
284 * response to udev events. This should be exceptionally unlikely
285 * because the zpool command makes every effort to verify these paths
286 * have already settled prior to reaching this point. Therefore,
287 * a ENOENT failure at this point is highly likely to be transient
288 * and it is reasonable to sleep and retry before giving up. In
289 * practice delays have been observed to be on the order of 100ms.
290 */
291 mode = spa_mode(v->vdev_spa);
292 if (v->vdev_wholedisk && v->vdev_expanding)
293 bdev = vdev_disk_rrpart(v->vdev_path, mode, vd);
294
295 while (IS_ERR(bdev) && count < 50) {
296 bdev = vdev_bdev_open(v->vdev_path,
297 vdev_bdev_mode(mode), zfs_vdev_holder);
298 if (unlikely(PTR_ERR(bdev) == -ENOENT)) {
299 msleep(10);
300 count++;
301 } else if (IS_ERR(bdev)) {
302 break;
303 }
304 }
305
306 if (IS_ERR(bdev)) {
307 dprintf("failed open v->vdev_path=%s, error=%d count=%d\n",
308 v->vdev_path, -PTR_ERR(bdev), count);
309 kmem_free(vd, sizeof (vdev_disk_t));
310 return (SET_ERROR(-PTR_ERR(bdev)));
311 }
312
313 v->vdev_tsd = vd;
314 vd->vd_bdev = bdev;
315
316 skip_open:
317 /* Determine the physical block size */
318 block_size = vdev_bdev_block_size(vd->vd_bdev);
319
320 /* Clear the nowritecache bit, causes vdev_reopen() to try again. */
321 v->vdev_nowritecache = B_FALSE;
322
323 /* Inform the ZIO pipeline that we are non-rotational */
324 v->vdev_nonrot = blk_queue_nonrot(bdev_get_queue(vd->vd_bdev));
325
326 /* Physical volume size in bytes */
327 *psize = bdev_capacity(vd->vd_bdev);
328
329 /* TODO: report possible expansion size */
330 *max_psize = *psize;
331
332 /* Based on the minimum sector size set the block size */
333 *ashift = highbit64(MAX(block_size, SPA_MINBLOCKSIZE)) - 1;
334
335 /* Try to set the io scheduler elevator algorithm */
336 (void) vdev_elevator_switch(v, zfs_vdev_scheduler);
337
338 return (0);
339 }
340
341 static void
342 vdev_disk_close(vdev_t *v)
343 {
344 vdev_disk_t *vd = v->vdev_tsd;
345
346 if (v->vdev_reopening || vd == NULL)
347 return;
348
349 if (vd->vd_bdev != NULL)
350 vdev_bdev_close(vd->vd_bdev,
351 vdev_bdev_mode(spa_mode(v->vdev_spa)));
352
353 kmem_free(vd, sizeof (vdev_disk_t));
354 v->vdev_tsd = NULL;
355 }
356
357 static dio_request_t *
358 vdev_disk_dio_alloc(int bio_count)
359 {
360 dio_request_t *dr;
361 int i;
362
363 dr = kmem_zalloc(sizeof (dio_request_t) +
364 sizeof (struct bio *) * bio_count, KM_SLEEP);
365 if (dr) {
366 atomic_set(&dr->dr_ref, 0);
367 dr->dr_bio_count = bio_count;
368 dr->dr_error = 0;
369
370 for (i = 0; i < dr->dr_bio_count; i++)
371 dr->dr_bio[i] = NULL;
372 }
373
374 return (dr);
375 }
376
377 static void
378 vdev_disk_dio_free(dio_request_t *dr)
379 {
380 int i;
381
382 for (i = 0; i < dr->dr_bio_count; i++)
383 if (dr->dr_bio[i])
384 bio_put(dr->dr_bio[i]);
385
386 kmem_free(dr, sizeof (dio_request_t) +
387 sizeof (struct bio *) * dr->dr_bio_count);
388 }
389
390 static void
391 vdev_disk_dio_get(dio_request_t *dr)
392 {
393 atomic_inc(&dr->dr_ref);
394 }
395
396 static int
397 vdev_disk_dio_put(dio_request_t *dr)
398 {
399 int rc = atomic_dec_return(&dr->dr_ref);
400
401 /*
402 * Free the dio_request when the last reference is dropped and
403 * ensure zio_interpret is called only once with the correct zio
404 */
405 if (rc == 0) {
406 zio_t *zio = dr->dr_zio;
407 void *loanbuf = dr->dr_loanbuf;
408 int error = dr->dr_error;
409
410 vdev_disk_dio_free(dr);
411
412 if (zio) {
413 zio->io_error = error;
414 ASSERT3S(zio->io_error, >=, 0);
415 if (zio->io_error)
416 vdev_disk_error(zio);
417 /* ABD placeholder */
418 if (loanbuf != NULL) {
419 if (zio->io_type == ZIO_TYPE_READ) {
420 abd_copy_from_buf(zio->io_abd, loanbuf,
421 zio->io_size);
422 }
423 zio_buf_free(loanbuf, zio->io_size);
424 }
425
426 zio_delay_interrupt(zio);
427 }
428 }
429
430 return (rc);
431 }
432
433 BIO_END_IO_PROTO(vdev_disk_physio_completion, bio, error)
434 {
435 dio_request_t *dr = bio->bi_private;
436 int rc;
437
438 if (dr->dr_error == 0) {
439 #ifdef HAVE_1ARG_BIO_END_IO_T
440 dr->dr_error = -(bio->bi_error);
441 #else
442 if (error)
443 dr->dr_error = -(error);
444 else if (!test_bit(BIO_UPTODATE, &bio->bi_flags))
445 dr->dr_error = EIO;
446 #endif
447 }
448
449 /* Drop reference aquired by __vdev_disk_physio */
450 rc = vdev_disk_dio_put(dr);
451 }
452
453 static inline unsigned long
454 bio_nr_pages(void *bio_ptr, unsigned int bio_size)
455 {
456 return ((((unsigned long)bio_ptr + bio_size + PAGE_SIZE - 1) >>
457 PAGE_SHIFT) - ((unsigned long)bio_ptr >> PAGE_SHIFT));
458 }
459
460 static unsigned int
461 bio_map(struct bio *bio, void *bio_ptr, unsigned int bio_size)
462 {
463 unsigned int offset, size, i;
464 struct page *page;
465
466 offset = offset_in_page(bio_ptr);
467 for (i = 0; i < bio->bi_max_vecs; i++) {
468 size = PAGE_SIZE - offset;
469
470 if (bio_size <= 0)
471 break;
472
473 if (size > bio_size)
474 size = bio_size;
475
476 if (is_vmalloc_addr(bio_ptr))
477 page = vmalloc_to_page(bio_ptr);
478 else
479 page = virt_to_page(bio_ptr);
480
481 /*
482 * Some network related block device uses tcp_sendpage, which
483 * doesn't behave well when using 0-count page, this is a
484 * safety net to catch them.
485 */
486 ASSERT3S(page_count(page), >, 0);
487
488 if (bio_add_page(bio, page, size, offset) != size)
489 break;
490
491 bio_ptr += size;
492 bio_size -= size;
493 offset = 0;
494 }
495
496 return (bio_size);
497 }
498
499 #ifndef bio_set_op_attrs
500 #define bio_set_op_attrs(bio, rw, flags) \
501 do { (bio)->bi_rw |= (rw)|(flags); } while (0)
502 #endif
503
504 static inline void
505 vdev_submit_bio_impl(struct bio *bio)
506 {
507 #ifdef HAVE_1ARG_SUBMIT_BIO
508 submit_bio(bio);
509 #else
510 submit_bio(0, bio);
511 #endif
512 }
513
514 static inline void
515 vdev_submit_bio(struct bio *bio)
516 {
517 #ifdef HAVE_CURRENT_BIO_TAIL
518 struct bio **bio_tail = current->bio_tail;
519 current->bio_tail = NULL;
520 vdev_submit_bio_impl(bio);
521 current->bio_tail = bio_tail;
522 #else
523 struct bio_list *bio_list = current->bio_list;
524 current->bio_list = NULL;
525 vdev_submit_bio_impl(bio);
526 current->bio_list = bio_list;
527 #endif
528 }
529
530 static int
531 __vdev_disk_physio(struct block_device *bdev, zio_t *zio, caddr_t kbuf_ptr,
532 size_t kbuf_size, uint64_t kbuf_offset, int rw, int flags)
533 {
534 dio_request_t *dr;
535 caddr_t bio_ptr;
536 uint64_t bio_offset;
537 int bio_size, bio_count = 16;
538 int i = 0, error = 0;
539 #if defined(HAVE_BLK_QUEUE_HAVE_BLK_PLUG)
540 struct blk_plug plug;
541 #endif
542
543 ASSERT3U(kbuf_offset + kbuf_size, <=, bdev->bd_inode->i_size);
544
545 retry:
546 dr = vdev_disk_dio_alloc(bio_count);
547 if (dr == NULL)
548 return (ENOMEM);
549
550 if (zio && !(zio->io_flags & (ZIO_FLAG_IO_RETRY | ZIO_FLAG_TRYHARD)))
551 bio_set_flags_failfast(bdev, &flags);
552
553 dr->dr_zio = zio;
554
555 /*
556 * When the IO size exceeds the maximum bio size for the request
557 * queue we are forced to break the IO in multiple bio's and wait
558 * for them all to complete. Ideally, all pool users will set
559 * their volume block size to match the maximum request size and
560 * the common case will be one bio per vdev IO request.
561 */
562 if (zio != NULL) {
563 abd_t *abd = zio->io_abd;
564
565 /*
566 * ABD placeholder
567 * We can't use abd_borrow_buf routines here since our
568 * completion context is interrupt and abd refcounts
569 * take a mutex (in debug mode).
570 */
571 if (abd_is_linear(abd)) {
572 bio_ptr = abd_to_buf(abd);
573 dr->dr_loanbuf = NULL;
574 } else {
575 bio_ptr = zio_buf_alloc(zio->io_size);
576 dr->dr_loanbuf = bio_ptr;
577 if (zio->io_type != ZIO_TYPE_READ)
578 abd_copy_to_buf(bio_ptr, abd, zio->io_size);
579
580 }
581 } else {
582 bio_ptr = kbuf_ptr;
583 dr->dr_loanbuf = NULL;
584 }
585
586 bio_offset = kbuf_offset;
587 bio_size = kbuf_size;
588 for (i = 0; i <= dr->dr_bio_count; i++) {
589
590 /* Finished constructing bio's for given buffer */
591 if (bio_size <= 0)
592 break;
593
594 /*
595 * By default only 'bio_count' bio's per dio are allowed.
596 * However, if we find ourselves in a situation where more
597 * are needed we allocate a larger dio and warn the user.
598 */
599 if (dr->dr_bio_count == i) {
600 if (dr->dr_loanbuf)
601 zio_buf_free(dr->dr_loanbuf, zio->io_size);
602 vdev_disk_dio_free(dr);
603 bio_count *= 2;
604 goto retry;
605 }
606
607 /* bio_alloc() with __GFP_WAIT never returns NULL */
608 dr->dr_bio[i] = bio_alloc(GFP_NOIO,
609 MIN(bio_nr_pages(bio_ptr, bio_size), BIO_MAX_PAGES));
610 if (unlikely(dr->dr_bio[i] == NULL)) {
611 if (dr->dr_loanbuf)
612 zio_buf_free(dr->dr_loanbuf, zio->io_size);
613 vdev_disk_dio_free(dr);
614 return (ENOMEM);
615 }
616
617 /* Matching put called by vdev_disk_physio_completion */
618 vdev_disk_dio_get(dr);
619
620 dr->dr_bio[i]->bi_bdev = bdev;
621 BIO_BI_SECTOR(dr->dr_bio[i]) = bio_offset >> 9;
622 dr->dr_bio[i]->bi_end_io = vdev_disk_physio_completion;
623 dr->dr_bio[i]->bi_private = dr;
624 bio_set_op_attrs(dr->dr_bio[i], rw, flags);
625
626 /* Remaining size is returned to become the new size */
627 bio_size = bio_map(dr->dr_bio[i], bio_ptr, bio_size);
628
629 /* Advance in buffer and construct another bio if needed */
630 bio_ptr += BIO_BI_SIZE(dr->dr_bio[i]);
631 bio_offset += BIO_BI_SIZE(dr->dr_bio[i]);
632 }
633
634 /* Extra reference to protect dio_request during vdev_submit_bio */
635 vdev_disk_dio_get(dr);
636
637 #if defined(HAVE_BLK_QUEUE_HAVE_BLK_PLUG)
638 if (dr->dr_bio_count > 1)
639 blk_start_plug(&plug);
640 #endif
641
642 /* Submit all bio's associated with this dio */
643 for (i = 0; i < dr->dr_bio_count; i++)
644 if (dr->dr_bio[i])
645 vdev_submit_bio(dr->dr_bio[i]);
646
647 #if defined(HAVE_BLK_QUEUE_HAVE_BLK_PLUG)
648 if (dr->dr_bio_count > 1)
649 blk_finish_plug(&plug);
650 #endif
651
652 (void) vdev_disk_dio_put(dr);
653
654 return (error);
655 }
656
657 BIO_END_IO_PROTO(vdev_disk_io_flush_completion, bio, rc)
658 {
659 zio_t *zio = bio->bi_private;
660 #ifdef HAVE_1ARG_BIO_END_IO_T
661 int rc = bio->bi_error;
662 #endif
663
664 zio->io_error = -rc;
665 if (rc && (rc == -EOPNOTSUPP))
666 zio->io_vd->vdev_nowritecache = B_TRUE;
667
668 bio_put(bio);
669 ASSERT3S(zio->io_error, >=, 0);
670 if (zio->io_error)
671 vdev_disk_error(zio);
672 zio_interrupt(zio);
673 }
674
675 static int
676 vdev_disk_io_flush(struct block_device *bdev, zio_t *zio)
677 {
678 struct request_queue *q;
679 struct bio *bio;
680
681 q = bdev_get_queue(bdev);
682 if (!q)
683 return (ENXIO);
684
685 bio = bio_alloc(GFP_NOIO, 0);
686 /* bio_alloc() with __GFP_WAIT never returns NULL */
687 if (unlikely(bio == NULL))
688 return (ENOMEM);
689
690 bio->bi_end_io = vdev_disk_io_flush_completion;
691 bio->bi_private = zio;
692 bio->bi_bdev = bdev;
693 bio_set_op_attrs(bio, 0, VDEV_WRITE_FLUSH_FUA);
694 vdev_submit_bio(bio);
695 invalidate_bdev(bdev);
696
697 return (0);
698 }
699
700 static void
701 vdev_disk_io_start(zio_t *zio)
702 {
703 vdev_t *v = zio->io_vd;
704 vdev_disk_t *vd = v->vdev_tsd;
705 int rw, flags, error;
706
707 switch (zio->io_type) {
708 case ZIO_TYPE_IOCTL:
709
710 if (!vdev_readable(v)) {
711 zio->io_error = SET_ERROR(ENXIO);
712 zio_interrupt(zio);
713 return;
714 }
715
716 switch (zio->io_cmd) {
717 case DKIOCFLUSHWRITECACHE:
718
719 if (zfs_nocacheflush)
720 break;
721
722 if (v->vdev_nowritecache) {
723 zio->io_error = SET_ERROR(ENOTSUP);
724 break;
725 }
726
727 error = vdev_disk_io_flush(vd->vd_bdev, zio);
728 if (error == 0)
729 return;
730
731 zio->io_error = error;
732 if (error == ENOTSUP)
733 v->vdev_nowritecache = B_TRUE;
734
735 break;
736
737 default:
738 zio->io_error = SET_ERROR(ENOTSUP);
739 }
740
741 zio_execute(zio);
742 return;
743 case ZIO_TYPE_WRITE:
744 rw = WRITE;
745 #if defined(HAVE_BLK_QUEUE_HAVE_BIO_RW_UNPLUG)
746 flags = (1 << BIO_RW_UNPLUG);
747 #elif defined(REQ_UNPLUG)
748 flags = REQ_UNPLUG;
749 #else
750 flags = 0;
751 #endif
752 break;
753
754 case ZIO_TYPE_READ:
755 rw = READ;
756 #if defined(HAVE_BLK_QUEUE_HAVE_BIO_RW_UNPLUG)
757 flags = (1 << BIO_RW_UNPLUG);
758 #elif defined(REQ_UNPLUG)
759 flags = REQ_UNPLUG;
760 #else
761 flags = 0;
762 #endif
763 break;
764
765 default:
766 zio->io_error = SET_ERROR(ENOTSUP);
767 zio_interrupt(zio);
768 return;
769 }
770
771 zio->io_target_timestamp = zio_handle_io_delay(zio);
772 error = __vdev_disk_physio(vd->vd_bdev, zio, NULL,
773 zio->io_size, zio->io_offset, rw, flags);
774 if (error) {
775 zio->io_error = error;
776 zio_interrupt(zio);
777 return;
778 }
779 }
780
781 static void
782 vdev_disk_io_done(zio_t *zio)
783 {
784 /*
785 * If the device returned EIO, we revalidate the media. If it is
786 * determined the media has changed this triggers the asynchronous
787 * removal of the device from the configuration.
788 */
789 if (zio->io_error == EIO) {
790 vdev_t *v = zio->io_vd;
791 vdev_disk_t *vd = v->vdev_tsd;
792
793 if (check_disk_change(vd->vd_bdev)) {
794 vdev_bdev_invalidate(vd->vd_bdev);
795 v->vdev_remove_wanted = B_TRUE;
796 spa_async_request(zio->io_spa, SPA_ASYNC_REMOVE);
797 }
798 }
799 }
800
801 static void
802 vdev_disk_hold(vdev_t *vd)
803 {
804 ASSERT(spa_config_held(vd->vdev_spa, SCL_STATE, RW_WRITER));
805
806 /* We must have a pathname, and it must be absolute. */
807 if (vd->vdev_path == NULL || vd->vdev_path[0] != '/')
808 return;
809
810 /*
811 * Only prefetch path and devid info if the device has
812 * never been opened.
813 */
814 if (vd->vdev_tsd != NULL)
815 return;
816
817 /* XXX: Implement me as a vnode lookup for the device */
818 vd->vdev_name_vp = NULL;
819 vd->vdev_devid_vp = NULL;
820 }
821
822 static void
823 vdev_disk_rele(vdev_t *vd)
824 {
825 ASSERT(spa_config_held(vd->vdev_spa, SCL_STATE, RW_WRITER));
826
827 /* XXX: Implement me as a vnode rele for the device */
828 }
829
830 vdev_ops_t vdev_disk_ops = {
831 vdev_disk_open,
832 vdev_disk_close,
833 vdev_default_asize,
834 vdev_disk_io_start,
835 vdev_disk_io_done,
836 NULL,
837 vdev_disk_hold,
838 vdev_disk_rele,
839 VDEV_TYPE_DISK, /* name of this vdev type */
840 B_TRUE /* leaf vdev */
841 };
842
843 module_param(zfs_vdev_scheduler, charp, 0644);
844 MODULE_PARM_DESC(zfs_vdev_scheduler, "I/O scheduler");