]> git.proxmox.com Git - mirror_zfs.git/blob - module/zfs/zfs_ctldir.c
Fix use after free in zfsctl_snapshot_unmount()
[mirror_zfs.git] / module / zfs / zfs_ctldir.c
1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 *
23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24 * Copyright (C) 2011 Lawrence Livermore National Security, LLC.
25 * Produced at Lawrence Livermore National Laboratory (cf, DISCLAIMER).
26 * LLNL-CODE-403049.
27 * Rewritten for Linux by:
28 * Rohan Puri <rohan.puri15@gmail.com>
29 * Brian Behlendorf <behlendorf1@llnl.gov>
30 * Copyright (c) 2013 by Delphix. All rights reserved.
31 * Copyright 2015, OmniTI Computer Consulting, Inc. All rights reserved.
32 */
33
34 /*
35 * ZFS control directory (a.k.a. ".zfs")
36 *
37 * This directory provides a common location for all ZFS meta-objects.
38 * Currently, this is only the 'snapshot' and 'shares' directory, but this may
39 * expand in the future. The elements are built dynamically, as the hierarchy
40 * does not actually exist on disk.
41 *
42 * For 'snapshot', we don't want to have all snapshots always mounted, because
43 * this would take up a huge amount of space in /etc/mnttab. We have three
44 * types of objects:
45 *
46 * ctldir ------> snapshotdir -------> snapshot
47 * |
48 * |
49 * V
50 * mounted fs
51 *
52 * The 'snapshot' node contains just enough information to lookup '..' and act
53 * as a mountpoint for the snapshot. Whenever we lookup a specific snapshot, we
54 * perform an automount of the underlying filesystem and return the
55 * corresponding inode.
56 *
57 * All mounts are handled automatically by an user mode helper which invokes
58 * the mount mount procedure. Unmounts are handled by allowing the mount
59 * point to expire so the kernel may automatically unmount it.
60 *
61 * The '.zfs', '.zfs/snapshot', and all directories created under
62 * '.zfs/snapshot' (ie: '.zfs/snapshot/<snapname>') all share the same
63 * share the same zfs_sb_t as the head filesystem (what '.zfs' lives under).
64 *
65 * File systems mounted on top of the '.zfs/snapshot/<snapname>' paths
66 * (ie: snapshots) are complete ZFS filesystems and have their own unique
67 * zfs_sb_t. However, the fsid reported by these mounts will be the same
68 * as that used by the parent zfs_sb_t to make NFS happy.
69 */
70
71 #include <sys/types.h>
72 #include <sys/param.h>
73 #include <sys/time.h>
74 #include <sys/systm.h>
75 #include <sys/sysmacros.h>
76 #include <sys/pathname.h>
77 #include <sys/vfs.h>
78 #include <sys/vfs_opreg.h>
79 #include <sys/zfs_ctldir.h>
80 #include <sys/zfs_ioctl.h>
81 #include <sys/zfs_vfsops.h>
82 #include <sys/zfs_vnops.h>
83 #include <sys/stat.h>
84 #include <sys/dmu.h>
85 #include <sys/dmu_objset.h>
86 #include <sys/dsl_destroy.h>
87 #include <sys/dsl_deleg.h>
88 #include <sys/mount.h>
89 #include <sys/zpl.h>
90 #include "zfs_namecheck.h"
91
92 /*
93 * Two AVL trees are maintained which contain all currently automounted
94 * snapshots. Every automounted snapshots maps to a single zfs_snapentry_t
95 * entry which MUST:
96 *
97 * - be attached to both trees, and
98 * - be unique, no duplicate entries are allowed.
99 *
100 * The zfs_snapshots_by_name tree is indexed by the full dataset name
101 * while the zfs_snapshots_by_objsetid tree is indexed by the unique
102 * objsetid. This allows for fast lookups either by name or objsetid.
103 */
104 static avl_tree_t zfs_snapshots_by_name;
105 static avl_tree_t zfs_snapshots_by_objsetid;
106 static krwlock_t zfs_snapshot_lock;
107
108 /*
109 * Control Directory Tunables (.zfs)
110 */
111 int zfs_expire_snapshot = ZFSCTL_EXPIRE_SNAPSHOT;
112 int zfs_admin_snapshot = 1;
113
114 /*
115 * Dedicated task queue for unmounting snapshots.
116 */
117 static taskq_t *zfs_expire_taskq;
118
119 typedef struct {
120 char *se_name; /* full snapshot name */
121 char *se_path; /* full mount path */
122 spa_t *se_spa; /* pool spa */
123 uint64_t se_objsetid; /* snapshot objset id */
124 struct dentry *se_root_dentry; /* snapshot root dentry */
125 taskqid_t se_taskqid; /* scheduled unmount taskqid */
126 avl_node_t se_node_name; /* zfs_snapshots_by_name link */
127 avl_node_t se_node_objsetid; /* zfs_snapshots_by_objsetid link */
128 refcount_t se_refcount; /* reference count */
129 } zfs_snapentry_t;
130
131 static void zfsctl_snapshot_unmount_delay_impl(zfs_snapentry_t *se, int delay);
132
133 /*
134 * Allocate a new zfs_snapentry_t being careful to make a copy of the
135 * the snapshot name and provided mount point. No reference is taken.
136 */
137 static zfs_snapentry_t *
138 zfsctl_snapshot_alloc(char *full_name, char *full_path, spa_t *spa,
139 uint64_t objsetid, struct dentry *root_dentry)
140 {
141 zfs_snapentry_t *se;
142
143 se = kmem_zalloc(sizeof (zfs_snapentry_t), KM_SLEEP);
144
145 se->se_name = strdup(full_name);
146 se->se_path = strdup(full_path);
147 se->se_spa = spa;
148 se->se_objsetid = objsetid;
149 se->se_root_dentry = root_dentry;
150 se->se_taskqid = -1;
151
152 refcount_create(&se->se_refcount);
153
154 return (se);
155 }
156
157 /*
158 * Free a zfs_snapentry_t the called must ensure there are no active
159 * references.
160 */
161 static void
162 zfsctl_snapshot_free(zfs_snapentry_t *se)
163 {
164 refcount_destroy(&se->se_refcount);
165 strfree(se->se_name);
166 strfree(se->se_path);
167
168 kmem_free(se, sizeof (zfs_snapentry_t));
169 }
170
171 /*
172 * Hold a reference on the zfs_snapentry_t.
173 */
174 static void
175 zfsctl_snapshot_hold(zfs_snapentry_t *se)
176 {
177 refcount_add(&se->se_refcount, NULL);
178 }
179
180 /*
181 * Release a reference on the zfs_snapentry_t. When the number of
182 * references drops to zero the structure will be freed.
183 */
184 static void
185 zfsctl_snapshot_rele(zfs_snapentry_t *se)
186 {
187 if (refcount_remove(&se->se_refcount, NULL) == 0)
188 zfsctl_snapshot_free(se);
189 }
190
191 /*
192 * Add a zfs_snapentry_t to both the zfs_snapshots_by_name and
193 * zfs_snapshots_by_objsetid trees. While the zfs_snapentry_t is part
194 * of the trees a reference is held.
195 */
196 static void
197 zfsctl_snapshot_add(zfs_snapentry_t *se)
198 {
199 ASSERT(RW_WRITE_HELD(&zfs_snapshot_lock));
200 refcount_add(&se->se_refcount, NULL);
201 avl_add(&zfs_snapshots_by_name, se);
202 avl_add(&zfs_snapshots_by_objsetid, se);
203 }
204
205 /*
206 * Remove a zfs_snapentry_t from both the zfs_snapshots_by_name and
207 * zfs_snapshots_by_objsetid trees. Upon removal a reference is dropped,
208 * this can result in the structure being freed if that was the last
209 * remaining reference.
210 */
211 static void
212 zfsctl_snapshot_remove(zfs_snapentry_t *se)
213 {
214 ASSERT(RW_WRITE_HELD(&zfs_snapshot_lock));
215 avl_remove(&zfs_snapshots_by_name, se);
216 avl_remove(&zfs_snapshots_by_objsetid, se);
217 zfsctl_snapshot_rele(se);
218 }
219
220 /*
221 * Snapshot name comparison function for the zfs_snapshots_by_name.
222 */
223 static int
224 snapentry_compare_by_name(const void *a, const void *b)
225 {
226 const zfs_snapentry_t *se_a = a;
227 const zfs_snapentry_t *se_b = b;
228 int ret;
229
230 ret = strcmp(se_a->se_name, se_b->se_name);
231
232 if (ret < 0)
233 return (-1);
234 else if (ret > 0)
235 return (1);
236 else
237 return (0);
238 }
239
240 /*
241 * Snapshot name comparison function for the zfs_snapshots_by_objsetid.
242 */
243 static int
244 snapentry_compare_by_objsetid(const void *a, const void *b)
245 {
246 const zfs_snapentry_t *se_a = a;
247 const zfs_snapentry_t *se_b = b;
248
249 if (se_a->se_spa != se_b->se_spa)
250 return ((ulong_t)se_a->se_spa < (ulong_t)se_b->se_spa ? -1 : 1);
251
252 if (se_a->se_objsetid < se_b->se_objsetid)
253 return (-1);
254 else if (se_a->se_objsetid > se_b->se_objsetid)
255 return (1);
256 else
257 return (0);
258 }
259
260 /*
261 * Find a zfs_snapentry_t in zfs_snapshots_by_name. If the snapname
262 * is found a pointer to the zfs_snapentry_t is returned and a reference
263 * taken on the structure. The caller is responsible for dropping the
264 * reference with zfsctl_snapshot_rele(). If the snapname is not found
265 * NULL will be returned.
266 */
267 static zfs_snapentry_t *
268 zfsctl_snapshot_find_by_name(char *snapname)
269 {
270 zfs_snapentry_t *se, search;
271
272 ASSERT(RW_LOCK_HELD(&zfs_snapshot_lock));
273
274 search.se_name = snapname;
275 se = avl_find(&zfs_snapshots_by_name, &search, NULL);
276 if (se)
277 refcount_add(&se->se_refcount, NULL);
278
279 return (se);
280 }
281
282 /*
283 * Find a zfs_snapentry_t in zfs_snapshots_by_objsetid given the objset id
284 * rather than the snapname. In all other respects it behaves the same
285 * as zfsctl_snapshot_find_by_name().
286 */
287 static zfs_snapentry_t *
288 zfsctl_snapshot_find_by_objsetid(spa_t *spa, uint64_t objsetid)
289 {
290 zfs_snapentry_t *se, search;
291
292 ASSERT(RW_LOCK_HELD(&zfs_snapshot_lock));
293
294 search.se_spa = spa;
295 search.se_objsetid = objsetid;
296 se = avl_find(&zfs_snapshots_by_objsetid, &search, NULL);
297 if (se)
298 refcount_add(&se->se_refcount, NULL);
299
300 return (se);
301 }
302
303 /*
304 * Rename a zfs_snapentry_t in the zfs_snapshots_by_name. The structure is
305 * removed, renamed, and added back to the new correct location in the tree.
306 */
307 static int
308 zfsctl_snapshot_rename(char *old_snapname, char *new_snapname)
309 {
310 zfs_snapentry_t *se;
311
312 ASSERT(RW_WRITE_HELD(&zfs_snapshot_lock));
313
314 se = zfsctl_snapshot_find_by_name(old_snapname);
315 if (se == NULL)
316 return (ENOENT);
317
318 zfsctl_snapshot_remove(se);
319 strfree(se->se_name);
320 se->se_name = strdup(new_snapname);
321 zfsctl_snapshot_add(se);
322 zfsctl_snapshot_rele(se);
323
324 return (0);
325 }
326
327 /*
328 * Delayed task responsible for unmounting an expired automounted snapshot.
329 */
330 static void
331 snapentry_expire(void *data)
332 {
333 zfs_snapentry_t *se = (zfs_snapentry_t *)data;
334 spa_t *spa = se->se_spa;
335 uint64_t objsetid = se->se_objsetid;
336
337 if (zfs_expire_snapshot <= 0) {
338 zfsctl_snapshot_rele(se);
339 return;
340 }
341
342 se->se_taskqid = -1;
343 (void) zfsctl_snapshot_unmount(se->se_name, MNT_EXPIRE);
344 zfsctl_snapshot_rele(se);
345
346 /*
347 * Reschedule the unmount if the zfs_snapentry_t wasn't removed.
348 * This can occur when the snapshot is busy.
349 */
350 rw_enter(&zfs_snapshot_lock, RW_READER);
351 if ((se = zfsctl_snapshot_find_by_objsetid(spa, objsetid)) != NULL) {
352 zfsctl_snapshot_unmount_delay_impl(se, zfs_expire_snapshot);
353 zfsctl_snapshot_rele(se);
354 }
355 rw_exit(&zfs_snapshot_lock);
356 }
357
358 /*
359 * Cancel an automatic unmount of a snapname. This callback is responsible
360 * for dropping the reference on the zfs_snapentry_t which was taken when
361 * during dispatch.
362 */
363 static void
364 zfsctl_snapshot_unmount_cancel(zfs_snapentry_t *se)
365 {
366 ASSERT(RW_LOCK_HELD(&zfs_snapshot_lock));
367
368 if (taskq_cancel_id(zfs_expire_taskq, se->se_taskqid) == 0) {
369 se->se_taskqid = -1;
370 zfsctl_snapshot_rele(se);
371 }
372 }
373
374 /*
375 * Dispatch the unmount task for delayed handling with a hold protecting it.
376 */
377 static void
378 zfsctl_snapshot_unmount_delay_impl(zfs_snapentry_t *se, int delay)
379 {
380 ASSERT3S(se->se_taskqid, ==, -1);
381
382 if (delay <= 0)
383 return;
384
385 zfsctl_snapshot_hold(se);
386 se->se_taskqid = taskq_dispatch_delay(zfs_expire_taskq,
387 snapentry_expire, se, TQ_SLEEP, ddi_get_lbolt() + delay * HZ);
388 }
389
390 /*
391 * Schedule an automatic unmount of objset id to occur in delay seconds from
392 * now. Any previous delayed unmount will be cancelled in favor of the
393 * updated deadline. A reference is taken by zfsctl_snapshot_find_by_name()
394 * and held until the outstanding task is handled or cancelled.
395 */
396 int
397 zfsctl_snapshot_unmount_delay(spa_t *spa, uint64_t objsetid, int delay)
398 {
399 zfs_snapentry_t *se;
400 int error = ENOENT;
401
402 rw_enter(&zfs_snapshot_lock, RW_READER);
403 if ((se = zfsctl_snapshot_find_by_objsetid(spa, objsetid)) != NULL) {
404 zfsctl_snapshot_unmount_cancel(se);
405 zfsctl_snapshot_unmount_delay_impl(se, delay);
406 zfsctl_snapshot_rele(se);
407 error = 0;
408 }
409 rw_exit(&zfs_snapshot_lock);
410
411 return (error);
412 }
413
414 /*
415 * Check if snapname is currently mounted. Returned non-zero when mounted
416 * and zero when unmounted.
417 */
418 static boolean_t
419 zfsctl_snapshot_ismounted(char *snapname)
420 {
421 zfs_snapentry_t *se;
422 boolean_t ismounted = B_FALSE;
423
424 rw_enter(&zfs_snapshot_lock, RW_READER);
425 if ((se = zfsctl_snapshot_find_by_name(snapname)) != NULL) {
426 zfsctl_snapshot_rele(se);
427 ismounted = B_TRUE;
428 }
429 rw_exit(&zfs_snapshot_lock);
430
431 return (ismounted);
432 }
433
434 /*
435 * Check if the given inode is a part of the virtual .zfs directory.
436 */
437 boolean_t
438 zfsctl_is_node(struct inode *ip)
439 {
440 return (ITOZ(ip)->z_is_ctldir);
441 }
442
443 /*
444 * Check if the given inode is a .zfs/snapshots/snapname directory.
445 */
446 boolean_t
447 zfsctl_is_snapdir(struct inode *ip)
448 {
449 return (zfsctl_is_node(ip) && (ip->i_ino <= ZFSCTL_INO_SNAPDIRS));
450 }
451
452 /*
453 * Allocate a new inode with the passed id and ops.
454 */
455 static struct inode *
456 zfsctl_inode_alloc(zfs_sb_t *zsb, uint64_t id,
457 const struct file_operations *fops, const struct inode_operations *ops)
458 {
459 struct timespec now = current_fs_time(zsb->z_sb);
460 struct inode *ip;
461 znode_t *zp;
462
463 ip = new_inode(zsb->z_sb);
464 if (ip == NULL)
465 return (NULL);
466
467 zp = ITOZ(ip);
468 ASSERT3P(zp->z_dirlocks, ==, NULL);
469 ASSERT3P(zp->z_acl_cached, ==, NULL);
470 ASSERT3P(zp->z_xattr_cached, ==, NULL);
471 zp->z_id = id;
472 zp->z_unlinked = 0;
473 zp->z_atime_dirty = 0;
474 zp->z_zn_prefetch = 0;
475 zp->z_moved = 0;
476 zp->z_sa_hdl = NULL;
477 zp->z_blksz = 0;
478 zp->z_seq = 0;
479 zp->z_mapcnt = 0;
480 zp->z_size = 0;
481 zp->z_pflags = 0;
482 zp->z_mode = 0;
483 zp->z_sync_cnt = 0;
484 zp->z_is_mapped = B_FALSE;
485 zp->z_is_ctldir = B_TRUE;
486 zp->z_is_sa = B_FALSE;
487 zp->z_is_stale = B_FALSE;
488 ip->i_generation = 0;
489 ip->i_ino = id;
490 ip->i_mode = (S_IFDIR | S_IRWXUGO);
491 ip->i_uid = SUID_TO_KUID(0);
492 ip->i_gid = SGID_TO_KGID(0);
493 ip->i_blkbits = SPA_MINBLOCKSHIFT;
494 ip->i_atime = now;
495 ip->i_mtime = now;
496 ip->i_ctime = now;
497 ip->i_fop = fops;
498 ip->i_op = ops;
499
500 if (insert_inode_locked(ip)) {
501 unlock_new_inode(ip);
502 iput(ip);
503 return (NULL);
504 }
505
506 mutex_enter(&zsb->z_znodes_lock);
507 list_insert_tail(&zsb->z_all_znodes, zp);
508 zsb->z_nr_znodes++;
509 membar_producer();
510 mutex_exit(&zsb->z_znodes_lock);
511
512 unlock_new_inode(ip);
513
514 return (ip);
515 }
516
517 /*
518 * Lookup the inode with given id, it will be allocated if needed.
519 */
520 static struct inode *
521 zfsctl_inode_lookup(zfs_sb_t *zsb, uint64_t id,
522 const struct file_operations *fops, const struct inode_operations *ops)
523 {
524 struct inode *ip = NULL;
525
526 while (ip == NULL) {
527 ip = ilookup(zsb->z_sb, (unsigned long)id);
528 if (ip)
529 break;
530
531 /* May fail due to concurrent zfsctl_inode_alloc() */
532 ip = zfsctl_inode_alloc(zsb, id, fops, ops);
533 }
534
535 return (ip);
536 }
537
538 /*
539 * Create the '.zfs' directory. This directory is cached as part of the VFS
540 * structure. This results in a hold on the zfs_sb_t. The code in zfs_umount()
541 * therefore checks against a vfs_count of 2 instead of 1. This reference
542 * is removed when the ctldir is destroyed in the unmount. All other entities
543 * under the '.zfs' directory are created dynamically as needed.
544 *
545 * Because the dynamically created '.zfs' directory entries assume the use
546 * of 64-bit inode numbers this support must be disabled on 32-bit systems.
547 */
548 int
549 zfsctl_create(zfs_sb_t *zsb)
550 {
551 #if defined(CONFIG_64BIT)
552 ASSERT(zsb->z_ctldir == NULL);
553
554 zsb->z_ctldir = zfsctl_inode_alloc(zsb, ZFSCTL_INO_ROOT,
555 &zpl_fops_root, &zpl_ops_root);
556 if (zsb->z_ctldir == NULL)
557 return (SET_ERROR(ENOENT));
558
559 return (0);
560 #else
561 return (SET_ERROR(EOPNOTSUPP));
562 #endif /* CONFIG_64BIT */
563 }
564
565 /*
566 * Destroy the '.zfs' directory or remove a snapshot from zfs_snapshots_by_name.
567 * Only called when the filesystem is unmounted.
568 */
569 void
570 zfsctl_destroy(zfs_sb_t *zsb)
571 {
572 if (zsb->z_issnap) {
573 zfs_snapentry_t *se;
574 spa_t *spa = zsb->z_os->os_spa;
575 uint64_t objsetid = dmu_objset_id(zsb->z_os);
576
577 rw_enter(&zfs_snapshot_lock, RW_WRITER);
578 if ((se = zfsctl_snapshot_find_by_objsetid(spa, objsetid))
579 != NULL) {
580 zfsctl_snapshot_unmount_cancel(se);
581 zfsctl_snapshot_remove(se);
582 zfsctl_snapshot_rele(se);
583 }
584 rw_exit(&zfs_snapshot_lock);
585 } else if (zsb->z_ctldir) {
586 iput(zsb->z_ctldir);
587 zsb->z_ctldir = NULL;
588 }
589 }
590
591 /*
592 * Given a root znode, retrieve the associated .zfs directory.
593 * Add a hold to the vnode and return it.
594 */
595 struct inode *
596 zfsctl_root(znode_t *zp)
597 {
598 ASSERT(zfs_has_ctldir(zp));
599 igrab(ZTOZSB(zp)->z_ctldir);
600 return (ZTOZSB(zp)->z_ctldir);
601 }
602 /*
603 * Generate a long fid which includes the root object and objset of a
604 * snapshot but not the generation number. For the root object the
605 * generation number is ignored when zero to avoid needing to open
606 * the dataset when generating fids for the snapshot names.
607 */
608 static int
609 zfsctl_snapdir_fid(struct inode *ip, fid_t *fidp)
610 {
611 zfs_sb_t *zsb = ITOZSB(ip);
612 zfid_short_t *zfid = (zfid_short_t *)fidp;
613 zfid_long_t *zlfid = (zfid_long_t *)fidp;
614 uint32_t gen = 0;
615 uint64_t object;
616 uint64_t objsetid;
617 int i;
618
619 object = zsb->z_root;
620 objsetid = ZFSCTL_INO_SNAPDIRS - ip->i_ino;
621 zfid->zf_len = LONG_FID_LEN;
622
623 for (i = 0; i < sizeof (zfid->zf_object); i++)
624 zfid->zf_object[i] = (uint8_t)(object >> (8 * i));
625
626 for (i = 0; i < sizeof (zfid->zf_gen); i++)
627 zfid->zf_gen[i] = (uint8_t)(gen >> (8 * i));
628
629 for (i = 0; i < sizeof (zlfid->zf_setid); i++)
630 zlfid->zf_setid[i] = (uint8_t)(objsetid >> (8 * i));
631
632 for (i = 0; i < sizeof (zlfid->zf_setgen); i++)
633 zlfid->zf_setgen[i] = 0;
634
635 return (0);
636 }
637
638 /*
639 * Generate an appropriate fid for an entry in the .zfs directory.
640 */
641 int
642 zfsctl_fid(struct inode *ip, fid_t *fidp)
643 {
644 znode_t *zp = ITOZ(ip);
645 zfs_sb_t *zsb = ITOZSB(ip);
646 uint64_t object = zp->z_id;
647 zfid_short_t *zfid;
648 int i;
649
650 ZFS_ENTER(zsb);
651
652 if (fidp->fid_len < SHORT_FID_LEN) {
653 fidp->fid_len = SHORT_FID_LEN;
654 ZFS_EXIT(zsb);
655 return (SET_ERROR(ENOSPC));
656 }
657
658 if (zfsctl_is_snapdir(ip)) {
659 ZFS_EXIT(zsb);
660 return (zfsctl_snapdir_fid(ip, fidp));
661 }
662
663 zfid = (zfid_short_t *)fidp;
664
665 zfid->zf_len = SHORT_FID_LEN;
666
667 for (i = 0; i < sizeof (zfid->zf_object); i++)
668 zfid->zf_object[i] = (uint8_t)(object >> (8 * i));
669
670 /* .zfs znodes always have a generation number of 0 */
671 for (i = 0; i < sizeof (zfid->zf_gen); i++)
672 zfid->zf_gen[i] = 0;
673
674 ZFS_EXIT(zsb);
675 return (0);
676 }
677
678 /*
679 * Construct a full dataset name in full_name: "pool/dataset@snap_name"
680 */
681 static int
682 zfsctl_snapshot_name(zfs_sb_t *zsb, const char *snap_name, int len,
683 char *full_name)
684 {
685 objset_t *os = zsb->z_os;
686
687 if (zfs_component_namecheck(snap_name, NULL, NULL) != 0)
688 return (SET_ERROR(EILSEQ));
689
690 dmu_objset_name(os, full_name);
691 if ((strlen(full_name) + 1 + strlen(snap_name)) >= len)
692 return (SET_ERROR(ENAMETOOLONG));
693
694 (void) strcat(full_name, "@");
695 (void) strcat(full_name, snap_name);
696
697 return (0);
698 }
699
700 /*
701 * Returns full path in full_path: "/pool/dataset/.zfs/snapshot/snap_name/"
702 */
703 static int
704 zfsctl_snapshot_path(struct path *path, int len, char *full_path)
705 {
706 char *path_buffer, *path_ptr;
707 int path_len, error = 0;
708
709 path_buffer = kmem_alloc(len, KM_SLEEP);
710
711 path_ptr = d_path(path, path_buffer, len);
712 if (IS_ERR(path_ptr)) {
713 error = -PTR_ERR(path_ptr);
714 goto out;
715 }
716
717 path_len = path_buffer + len - 1 - path_ptr;
718 if (path_len > len) {
719 error = SET_ERROR(EFAULT);
720 goto out;
721 }
722
723 memcpy(full_path, path_ptr, path_len);
724 full_path[path_len] = '\0';
725 out:
726 kmem_free(path_buffer, len);
727
728 return (error);
729 }
730
731 /*
732 * Returns full path in full_path: "/pool/dataset/.zfs/snapshot/snap_name/"
733 */
734 static int
735 zfsctl_snapshot_path_objset(zfs_sb_t *zsb, uint64_t objsetid,
736 int path_len, char *full_path)
737 {
738 objset_t *os = zsb->z_os;
739 fstrans_cookie_t cookie;
740 char *snapname;
741 boolean_t case_conflict;
742 uint64_t id, pos = 0;
743 int error = 0;
744
745 if (zsb->z_mntopts->z_mntpoint == NULL)
746 return (ENOENT);
747
748 cookie = spl_fstrans_mark();
749 snapname = kmem_alloc(ZFS_MAX_DATASET_NAME_LEN, KM_SLEEP);
750
751 while (error == 0) {
752 dsl_pool_config_enter(dmu_objset_pool(os), FTAG);
753 error = dmu_snapshot_list_next(zsb->z_os,
754 ZFS_MAX_DATASET_NAME_LEN, snapname, &id, &pos,
755 &case_conflict);
756 dsl_pool_config_exit(dmu_objset_pool(os), FTAG);
757 if (error)
758 goto out;
759
760 if (id == objsetid)
761 break;
762 }
763
764 memset(full_path, 0, path_len);
765 snprintf(full_path, path_len - 1, "%s/.zfs/snapshot/%s",
766 zsb->z_mntopts->z_mntpoint, snapname);
767 out:
768 kmem_free(snapname, ZFS_MAX_DATASET_NAME_LEN);
769 spl_fstrans_unmark(cookie);
770
771 return (error);
772 }
773
774 /*
775 * Special case the handling of "..".
776 */
777 int
778 zfsctl_root_lookup(struct inode *dip, char *name, struct inode **ipp,
779 int flags, cred_t *cr, int *direntflags, pathname_t *realpnp)
780 {
781 zfs_sb_t *zsb = ITOZSB(dip);
782 int error = 0;
783
784 ZFS_ENTER(zsb);
785
786 if (strcmp(name, "..") == 0) {
787 *ipp = dip->i_sb->s_root->d_inode;
788 } else if (strcmp(name, ZFS_SNAPDIR_NAME) == 0) {
789 *ipp = zfsctl_inode_lookup(zsb, ZFSCTL_INO_SNAPDIR,
790 &zpl_fops_snapdir, &zpl_ops_snapdir);
791 } else if (strcmp(name, ZFS_SHAREDIR_NAME) == 0) {
792 *ipp = zfsctl_inode_lookup(zsb, ZFSCTL_INO_SHARES,
793 &zpl_fops_shares, &zpl_ops_shares);
794 } else {
795 *ipp = NULL;
796 }
797
798 if (*ipp == NULL)
799 error = SET_ERROR(ENOENT);
800
801 ZFS_EXIT(zsb);
802
803 return (error);
804 }
805
806 /*
807 * Lookup entry point for the 'snapshot' directory. Try to open the
808 * snapshot if it exist, creating the pseudo filesystem inode as necessary.
809 * Perform a mount of the associated dataset on top of the inode.
810 */
811 int
812 zfsctl_snapdir_lookup(struct inode *dip, char *name, struct inode **ipp,
813 int flags, cred_t *cr, int *direntflags, pathname_t *realpnp)
814 {
815 zfs_sb_t *zsb = ITOZSB(dip);
816 uint64_t id;
817 int error;
818
819 ZFS_ENTER(zsb);
820
821 error = dmu_snapshot_lookup(zsb->z_os, name, &id);
822 if (error) {
823 ZFS_EXIT(zsb);
824 return (error);
825 }
826
827 *ipp = zfsctl_inode_lookup(zsb, ZFSCTL_INO_SNAPDIRS - id,
828 &simple_dir_operations, &simple_dir_inode_operations);
829 if (*ipp == NULL)
830 error = SET_ERROR(ENOENT);
831
832 ZFS_EXIT(zsb);
833
834 return (error);
835 }
836
837 /*
838 * Renaming a directory under '.zfs/snapshot' will automatically trigger
839 * a rename of the snapshot to the new given name. The rename is confined
840 * to the '.zfs/snapshot' directory snapshots cannot be moved elsewhere.
841 */
842 int
843 zfsctl_snapdir_rename(struct inode *sdip, char *snm,
844 struct inode *tdip, char *tnm, cred_t *cr, int flags)
845 {
846 zfs_sb_t *zsb = ITOZSB(sdip);
847 char *to, *from, *real, *fsname;
848 int error;
849
850 if (!zfs_admin_snapshot)
851 return (EACCES);
852
853 ZFS_ENTER(zsb);
854
855 to = kmem_alloc(ZFS_MAX_DATASET_NAME_LEN, KM_SLEEP);
856 from = kmem_alloc(ZFS_MAX_DATASET_NAME_LEN, KM_SLEEP);
857 real = kmem_alloc(ZFS_MAX_DATASET_NAME_LEN, KM_SLEEP);
858 fsname = kmem_alloc(ZFS_MAX_DATASET_NAME_LEN, KM_SLEEP);
859
860 if (zsb->z_case == ZFS_CASE_INSENSITIVE) {
861 error = dmu_snapshot_realname(zsb->z_os, snm, real,
862 ZFS_MAX_DATASET_NAME_LEN, NULL);
863 if (error == 0) {
864 snm = real;
865 } else if (error != ENOTSUP) {
866 goto out;
867 }
868 }
869
870 dmu_objset_name(zsb->z_os, fsname);
871
872 error = zfsctl_snapshot_name(ITOZSB(sdip), snm,
873 ZFS_MAX_DATASET_NAME_LEN, from);
874 if (error == 0)
875 error = zfsctl_snapshot_name(ITOZSB(tdip), tnm,
876 ZFS_MAX_DATASET_NAME_LEN, to);
877 if (error == 0)
878 error = zfs_secpolicy_rename_perms(from, to, cr);
879 if (error != 0)
880 goto out;
881
882 /*
883 * Cannot move snapshots out of the snapdir.
884 */
885 if (sdip != tdip) {
886 error = SET_ERROR(EINVAL);
887 goto out;
888 }
889
890 /*
891 * No-op when names are identical.
892 */
893 if (strcmp(snm, tnm) == 0) {
894 error = 0;
895 goto out;
896 }
897
898 rw_enter(&zfs_snapshot_lock, RW_WRITER);
899
900 error = dsl_dataset_rename_snapshot(fsname, snm, tnm, B_FALSE);
901 if (error == 0)
902 (void) zfsctl_snapshot_rename(snm, tnm);
903
904 rw_exit(&zfs_snapshot_lock);
905 out:
906 kmem_free(from, ZFS_MAX_DATASET_NAME_LEN);
907 kmem_free(to, ZFS_MAX_DATASET_NAME_LEN);
908 kmem_free(real, ZFS_MAX_DATASET_NAME_LEN);
909 kmem_free(fsname, ZFS_MAX_DATASET_NAME_LEN);
910
911 ZFS_EXIT(zsb);
912
913 return (error);
914 }
915
916 /*
917 * Removing a directory under '.zfs/snapshot' will automatically trigger
918 * the removal of the snapshot with the given name.
919 */
920 int
921 zfsctl_snapdir_remove(struct inode *dip, char *name, cred_t *cr, int flags)
922 {
923 zfs_sb_t *zsb = ITOZSB(dip);
924 char *snapname, *real;
925 int error;
926
927 if (!zfs_admin_snapshot)
928 return (EACCES);
929
930 ZFS_ENTER(zsb);
931
932 snapname = kmem_alloc(ZFS_MAX_DATASET_NAME_LEN, KM_SLEEP);
933 real = kmem_alloc(ZFS_MAX_DATASET_NAME_LEN, KM_SLEEP);
934
935 if (zsb->z_case == ZFS_CASE_INSENSITIVE) {
936 error = dmu_snapshot_realname(zsb->z_os, name, real,
937 ZFS_MAX_DATASET_NAME_LEN, NULL);
938 if (error == 0) {
939 name = real;
940 } else if (error != ENOTSUP) {
941 goto out;
942 }
943 }
944
945 error = zfsctl_snapshot_name(ITOZSB(dip), name,
946 ZFS_MAX_DATASET_NAME_LEN, snapname);
947 if (error == 0)
948 error = zfs_secpolicy_destroy_perms(snapname, cr);
949 if (error != 0)
950 goto out;
951
952 error = zfsctl_snapshot_unmount(snapname, MNT_FORCE);
953 if ((error == 0) || (error == ENOENT))
954 error = dsl_destroy_snapshot(snapname, B_FALSE);
955 out:
956 kmem_free(snapname, ZFS_MAX_DATASET_NAME_LEN);
957 kmem_free(real, ZFS_MAX_DATASET_NAME_LEN);
958
959 ZFS_EXIT(zsb);
960
961 return (error);
962 }
963
964 /*
965 * Creating a directory under '.zfs/snapshot' will automatically trigger
966 * the creation of a new snapshot with the given name.
967 */
968 int
969 zfsctl_snapdir_mkdir(struct inode *dip, char *dirname, vattr_t *vap,
970 struct inode **ipp, cred_t *cr, int flags)
971 {
972 zfs_sb_t *zsb = ITOZSB(dip);
973 char *dsname;
974 int error;
975
976 if (!zfs_admin_snapshot)
977 return (EACCES);
978
979 dsname = kmem_alloc(ZFS_MAX_DATASET_NAME_LEN, KM_SLEEP);
980
981 if (zfs_component_namecheck(dirname, NULL, NULL) != 0) {
982 error = SET_ERROR(EILSEQ);
983 goto out;
984 }
985
986 dmu_objset_name(zsb->z_os, dsname);
987
988 error = zfs_secpolicy_snapshot_perms(dsname, cr);
989 if (error != 0)
990 goto out;
991
992 if (error == 0) {
993 error = dmu_objset_snapshot_one(dsname, dirname);
994 if (error != 0)
995 goto out;
996
997 error = zfsctl_snapdir_lookup(dip, dirname, ipp,
998 0, cr, NULL, NULL);
999 }
1000 out:
1001 kmem_free(dsname, ZFS_MAX_DATASET_NAME_LEN);
1002
1003 return (error);
1004 }
1005
1006 /*
1007 * Attempt to unmount a snapshot by making a call to user space.
1008 * There is no assurance that this can or will succeed, is just a
1009 * best effort. In the case where it does fail, perhaps because
1010 * it's in use, the unmount will fail harmlessly.
1011 */
1012 #define SET_UNMOUNT_CMD \
1013 "exec 0</dev/null " \
1014 " 1>/dev/null " \
1015 " 2>/dev/null; " \
1016 "umount -t zfs -n %s'%s'"
1017
1018 int
1019 zfsctl_snapshot_unmount(char *snapname, int flags)
1020 {
1021 char *argv[] = { "/bin/sh", "-c", NULL, NULL };
1022 char *envp[] = { NULL };
1023 zfs_snapentry_t *se;
1024 int error;
1025
1026 rw_enter(&zfs_snapshot_lock, RW_READER);
1027 if ((se = zfsctl_snapshot_find_by_name(snapname)) == NULL) {
1028 rw_exit(&zfs_snapshot_lock);
1029 return (ENOENT);
1030 }
1031 rw_exit(&zfs_snapshot_lock);
1032
1033 argv[2] = kmem_asprintf(SET_UNMOUNT_CMD,
1034 flags & MNT_FORCE ? "-f " : "", se->se_path);
1035 dprintf("unmount; path=%s\n", se->se_path);
1036 error = call_usermodehelper(argv[0], argv, envp, UMH_WAIT_PROC);
1037 strfree(argv[2]);
1038 zfsctl_snapshot_rele(se);
1039
1040
1041 /*
1042 * The umount system utility will return 256 on error. We must
1043 * assume this error is because the file system is busy so it is
1044 * converted to the more sensible EBUSY.
1045 */
1046 if (error)
1047 error = SET_ERROR(EBUSY);
1048
1049 return (error);
1050 }
1051
1052 #define MOUNT_BUSY 0x80 /* Mount failed due to EBUSY (from mntent.h) */
1053 #define SET_MOUNT_CMD \
1054 "exec 0</dev/null " \
1055 " 1>/dev/null " \
1056 " 2>/dev/null; " \
1057 "mount -t zfs -n '%s' '%s'"
1058
1059 int
1060 zfsctl_snapshot_mount(struct path *path, int flags)
1061 {
1062 struct dentry *dentry = path->dentry;
1063 struct inode *ip = dentry->d_inode;
1064 zfs_sb_t *zsb;
1065 zfs_sb_t *snap_zsb;
1066 zfs_snapentry_t *se;
1067 char *full_name, *full_path;
1068 char *argv[] = { "/bin/sh", "-c", NULL, NULL };
1069 char *envp[] = { NULL };
1070 int error;
1071 struct path spath;
1072
1073 if (ip == NULL)
1074 return (EISDIR);
1075
1076 zsb = ITOZSB(ip);
1077 ZFS_ENTER(zsb);
1078
1079 full_name = kmem_zalloc(ZFS_MAX_DATASET_NAME_LEN, KM_SLEEP);
1080 full_path = kmem_zalloc(MAXPATHLEN, KM_SLEEP);
1081
1082 error = zfsctl_snapshot_name(zsb, dname(dentry),
1083 ZFS_MAX_DATASET_NAME_LEN, full_name);
1084 if (error)
1085 goto error;
1086
1087 error = zfsctl_snapshot_path(path, MAXPATHLEN, full_path);
1088 if (error)
1089 goto error;
1090
1091 /*
1092 * Multiple concurrent automounts of a snapshot are never allowed.
1093 * The snapshot may be manually mounted as many times as desired.
1094 */
1095 if (zfsctl_snapshot_ismounted(full_name)) {
1096 error = 0;
1097 goto error;
1098 }
1099
1100 /*
1101 * Attempt to mount the snapshot from user space. Normally this
1102 * would be done using the vfs_kern_mount() function, however that
1103 * function is marked GPL-only and cannot be used. On error we
1104 * careful to log the real error to the console and return EISDIR
1105 * to safely abort the automount. This should be very rare.
1106 *
1107 * If the user mode helper happens to return EBUSY, a concurrent
1108 * mount is already in progress in which case the error is ignored.
1109 * Take note that if the program was executed successfully the return
1110 * value from call_usermodehelper() will be (exitcode << 8 + signal).
1111 */
1112 dprintf("mount; name=%s path=%s\n", full_name, full_path);
1113 argv[2] = kmem_asprintf(SET_MOUNT_CMD, full_name, full_path);
1114 error = call_usermodehelper(argv[0], argv, envp, UMH_WAIT_PROC);
1115 strfree(argv[2]);
1116 if (error) {
1117 if (!(error & MOUNT_BUSY << 8)) {
1118 cmn_err(CE_WARN, "Unable to automount %s/%s: %d",
1119 full_path, full_name, error);
1120 error = SET_ERROR(EISDIR);
1121 } else {
1122 /*
1123 * EBUSY, this could mean a concurrent mount, or the
1124 * snapshot has already been mounted at completely
1125 * different place. We return 0 so VFS will retry. For
1126 * the latter case the VFS will retry several times
1127 * and return ELOOP, which is probably not a very good
1128 * behavior.
1129 */
1130 error = 0;
1131 }
1132 goto error;
1133 }
1134
1135 /*
1136 * Follow down in to the mounted snapshot and set MNT_SHRINKABLE
1137 * to identify this as an automounted filesystem.
1138 */
1139 spath = *path;
1140 path_get(&spath);
1141 if (zpl_follow_down_one(&spath)) {
1142 snap_zsb = ITOZSB(spath.dentry->d_inode);
1143 snap_zsb->z_parent = zsb;
1144 dentry = spath.dentry;
1145 spath.mnt->mnt_flags |= MNT_SHRINKABLE;
1146
1147 rw_enter(&zfs_snapshot_lock, RW_WRITER);
1148 se = zfsctl_snapshot_alloc(full_name, full_path,
1149 snap_zsb->z_os->os_spa, dmu_objset_id(snap_zsb->z_os),
1150 dentry);
1151 zfsctl_snapshot_add(se);
1152 zfsctl_snapshot_unmount_delay_impl(se, zfs_expire_snapshot);
1153 rw_exit(&zfs_snapshot_lock);
1154 }
1155 path_put(&spath);
1156 error:
1157 kmem_free(full_name, ZFS_MAX_DATASET_NAME_LEN);
1158 kmem_free(full_path, MAXPATHLEN);
1159
1160 ZFS_EXIT(zsb);
1161
1162 return (error);
1163 }
1164
1165 /*
1166 * Given the objset id of the snapshot return its zfs_sb_t as zsbp.
1167 */
1168 int
1169 zfsctl_lookup_objset(struct super_block *sb, uint64_t objsetid, zfs_sb_t **zsbp)
1170 {
1171 zfs_snapentry_t *se;
1172 int error;
1173 spa_t *spa = ((zfs_sb_t *)(sb->s_fs_info))->z_os->os_spa;
1174
1175 /*
1176 * Verify that the snapshot is mounted then lookup the mounted root
1177 * rather than the covered mount point. This may fail if the
1178 * snapshot has just been unmounted by an unrelated user space
1179 * process. This race cannot occur to an expired mount point
1180 * because we hold the zfs_snapshot_lock to prevent the race.
1181 */
1182 rw_enter(&zfs_snapshot_lock, RW_READER);
1183 if ((se = zfsctl_snapshot_find_by_objsetid(spa, objsetid)) != NULL) {
1184 zfs_sb_t *zsb;
1185
1186 zsb = ITOZSB(se->se_root_dentry->d_inode);
1187 ASSERT3U(dmu_objset_id(zsb->z_os), ==, objsetid);
1188
1189 if (time_after(jiffies, zsb->z_snap_defer_time +
1190 MAX(zfs_expire_snapshot * HZ / 2, HZ))) {
1191 zsb->z_snap_defer_time = jiffies;
1192 zfsctl_snapshot_unmount_cancel(se);
1193 zfsctl_snapshot_unmount_delay_impl(se,
1194 zfs_expire_snapshot);
1195 }
1196
1197 *zsbp = zsb;
1198 zfsctl_snapshot_rele(se);
1199 error = SET_ERROR(0);
1200 } else {
1201 error = SET_ERROR(ENOENT);
1202 }
1203 rw_exit(&zfs_snapshot_lock);
1204
1205 /*
1206 * Automount the snapshot given the objset id by constructing the
1207 * full mount point and performing a traversal.
1208 */
1209 if (error == ENOENT) {
1210 struct path path;
1211 char *mnt;
1212
1213 mnt = kmem_alloc(MAXPATHLEN, KM_SLEEP);
1214 error = zfsctl_snapshot_path_objset(sb->s_fs_info, objsetid,
1215 MAXPATHLEN, mnt);
1216 if (error) {
1217 kmem_free(mnt, MAXPATHLEN);
1218 return (SET_ERROR(error));
1219 }
1220
1221 error = kern_path(mnt, LOOKUP_FOLLOW|LOOKUP_DIRECTORY, &path);
1222 if (error == 0) {
1223 *zsbp = ITOZSB(path.dentry->d_inode);
1224 path_put(&path);
1225 }
1226
1227 kmem_free(mnt, MAXPATHLEN);
1228 }
1229
1230 return (error);
1231 }
1232
1233 int
1234 zfsctl_shares_lookup(struct inode *dip, char *name, struct inode **ipp,
1235 int flags, cred_t *cr, int *direntflags, pathname_t *realpnp)
1236 {
1237 zfs_sb_t *zsb = ITOZSB(dip);
1238 struct inode *ip;
1239 znode_t *dzp;
1240 int error;
1241
1242 ZFS_ENTER(zsb);
1243
1244 if (zsb->z_shares_dir == 0) {
1245 ZFS_EXIT(zsb);
1246 return (SET_ERROR(ENOTSUP));
1247 }
1248
1249 if ((error = zfs_zget(zsb, zsb->z_shares_dir, &dzp)) == 0) {
1250 error = zfs_lookup(ZTOI(dzp), name, &ip, 0, cr, NULL, NULL);
1251 iput(ZTOI(dzp));
1252 }
1253
1254 ZFS_EXIT(zsb);
1255
1256 return (error);
1257 }
1258
1259 /*
1260 * Initialize the various pieces we'll need to create and manipulate .zfs
1261 * directories. Currently this is unused but available.
1262 */
1263 void
1264 zfsctl_init(void)
1265 {
1266 avl_create(&zfs_snapshots_by_name, snapentry_compare_by_name,
1267 sizeof (zfs_snapentry_t), offsetof(zfs_snapentry_t,
1268 se_node_name));
1269 avl_create(&zfs_snapshots_by_objsetid, snapentry_compare_by_objsetid,
1270 sizeof (zfs_snapentry_t), offsetof(zfs_snapentry_t,
1271 se_node_objsetid));
1272 rw_init(&zfs_snapshot_lock, NULL, RW_DEFAULT, NULL);
1273
1274 zfs_expire_taskq = taskq_create("z_unmount", 1, defclsyspri,
1275 1, 8, TASKQ_PREPOPULATE);
1276 }
1277
1278 /*
1279 * Cleanup the various pieces we needed for .zfs directories. In particular
1280 * ensure the expiry timer is canceled safely.
1281 */
1282 void
1283 zfsctl_fini(void)
1284 {
1285 taskq_destroy(zfs_expire_taskq);
1286
1287 avl_destroy(&zfs_snapshots_by_name);
1288 avl_destroy(&zfs_snapshots_by_objsetid);
1289 rw_destroy(&zfs_snapshot_lock);
1290 }
1291
1292 module_param(zfs_admin_snapshot, int, 0644);
1293 MODULE_PARM_DESC(zfs_admin_snapshot, "Enable mkdir/rmdir/mv in .zfs/snapshot");
1294
1295 module_param(zfs_expire_snapshot, int, 0644);
1296 MODULE_PARM_DESC(zfs_expire_snapshot, "Seconds to expire .zfs/snapshot");