]> git.proxmox.com Git - mirror_zfs.git/blob - module/zfs/zfs_ctldir.c
Use native inode->i_nlink instead of znode->z_links
[mirror_zfs.git] / module / zfs / zfs_ctldir.c
1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 *
23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24 * Copyright (C) 2011 Lawrence Livermore National Security, LLC.
25 * Produced at Lawrence Livermore National Laboratory (cf, DISCLAIMER).
26 * LLNL-CODE-403049.
27 * Rewritten for Linux by:
28 * Rohan Puri <rohan.puri15@gmail.com>
29 * Brian Behlendorf <behlendorf1@llnl.gov>
30 * Copyright (c) 2013 by Delphix. All rights reserved.
31 * Copyright 2015, OmniTI Computer Consulting, Inc. All rights reserved.
32 */
33
34 /*
35 * ZFS control directory (a.k.a. ".zfs")
36 *
37 * This directory provides a common location for all ZFS meta-objects.
38 * Currently, this is only the 'snapshot' and 'shares' directory, but this may
39 * expand in the future. The elements are built dynamically, as the hierarchy
40 * does not actually exist on disk.
41 *
42 * For 'snapshot', we don't want to have all snapshots always mounted, because
43 * this would take up a huge amount of space in /etc/mnttab. We have three
44 * types of objects:
45 *
46 * ctldir ------> snapshotdir -------> snapshot
47 * |
48 * |
49 * V
50 * mounted fs
51 *
52 * The 'snapshot' node contains just enough information to lookup '..' and act
53 * as a mountpoint for the snapshot. Whenever we lookup a specific snapshot, we
54 * perform an automount of the underlying filesystem and return the
55 * corresponding inode.
56 *
57 * All mounts are handled automatically by an user mode helper which invokes
58 * the mount mount procedure. Unmounts are handled by allowing the mount
59 * point to expire so the kernel may automatically unmount it.
60 *
61 * The '.zfs', '.zfs/snapshot', and all directories created under
62 * '.zfs/snapshot' (ie: '.zfs/snapshot/<snapname>') all share the same
63 * share the same zfs_sb_t as the head filesystem (what '.zfs' lives under).
64 *
65 * File systems mounted on top of the '.zfs/snapshot/<snapname>' paths
66 * (ie: snapshots) are complete ZFS filesystems and have their own unique
67 * zfs_sb_t. However, the fsid reported by these mounts will be the same
68 * as that used by the parent zfs_sb_t to make NFS happy.
69 */
70
71 #include <sys/types.h>
72 #include <sys/param.h>
73 #include <sys/time.h>
74 #include <sys/systm.h>
75 #include <sys/sysmacros.h>
76 #include <sys/pathname.h>
77 #include <sys/vfs.h>
78 #include <sys/vfs_opreg.h>
79 #include <sys/zfs_ctldir.h>
80 #include <sys/zfs_ioctl.h>
81 #include <sys/zfs_vfsops.h>
82 #include <sys/zfs_vnops.h>
83 #include <sys/stat.h>
84 #include <sys/dmu.h>
85 #include <sys/dmu_objset.h>
86 #include <sys/dsl_destroy.h>
87 #include <sys/dsl_deleg.h>
88 #include <sys/mount.h>
89 #include <sys/zpl.h>
90 #include "zfs_namecheck.h"
91
92 /*
93 * Two AVL trees are maintained which contain all currently automounted
94 * snapshots. Every automounted snapshots maps to a single zfs_snapentry_t
95 * entry which MUST:
96 *
97 * - be attached to both trees, and
98 * - be unique, no duplicate entries are allowed.
99 *
100 * The zfs_snapshots_by_name tree is indexed by the full dataset name
101 * while the zfs_snapshots_by_objsetid tree is indexed by the unique
102 * objsetid. This allows for fast lookups either by name or objsetid.
103 */
104 static avl_tree_t zfs_snapshots_by_name;
105 static avl_tree_t zfs_snapshots_by_objsetid;
106 static krwlock_t zfs_snapshot_lock;
107
108 /*
109 * Control Directory Tunables (.zfs)
110 */
111 int zfs_expire_snapshot = ZFSCTL_EXPIRE_SNAPSHOT;
112 int zfs_admin_snapshot = 1;
113
114 /*
115 * Dedicated task queue for unmounting snapshots.
116 */
117 static taskq_t *zfs_expire_taskq;
118
119 typedef struct {
120 char *se_name; /* full snapshot name */
121 char *se_path; /* full mount path */
122 spa_t *se_spa; /* pool spa */
123 uint64_t se_objsetid; /* snapshot objset id */
124 struct dentry *se_root_dentry; /* snapshot root dentry */
125 taskqid_t se_taskqid; /* scheduled unmount taskqid */
126 avl_node_t se_node_name; /* zfs_snapshots_by_name link */
127 avl_node_t se_node_objsetid; /* zfs_snapshots_by_objsetid link */
128 refcount_t se_refcount; /* reference count */
129 } zfs_snapentry_t;
130
131 static void zfsctl_snapshot_unmount_delay_impl(zfs_snapentry_t *se, int delay);
132
133 /*
134 * Allocate a new zfs_snapentry_t being careful to make a copy of the
135 * the snapshot name and provided mount point. No reference is taken.
136 */
137 static zfs_snapentry_t *
138 zfsctl_snapshot_alloc(char *full_name, char *full_path, spa_t *spa,
139 uint64_t objsetid, struct dentry *root_dentry)
140 {
141 zfs_snapentry_t *se;
142
143 se = kmem_zalloc(sizeof (zfs_snapentry_t), KM_SLEEP);
144
145 se->se_name = strdup(full_name);
146 se->se_path = strdup(full_path);
147 se->se_spa = spa;
148 se->se_objsetid = objsetid;
149 se->se_root_dentry = root_dentry;
150 se->se_taskqid = -1;
151
152 refcount_create(&se->se_refcount);
153
154 return (se);
155 }
156
157 /*
158 * Free a zfs_snapentry_t the called must ensure there are no active
159 * references.
160 */
161 static void
162 zfsctl_snapshot_free(zfs_snapentry_t *se)
163 {
164 refcount_destroy(&se->se_refcount);
165 strfree(se->se_name);
166 strfree(se->se_path);
167
168 kmem_free(se, sizeof (zfs_snapentry_t));
169 }
170
171 /*
172 * Hold a reference on the zfs_snapentry_t.
173 */
174 static void
175 zfsctl_snapshot_hold(zfs_snapentry_t *se)
176 {
177 refcount_add(&se->se_refcount, NULL);
178 }
179
180 /*
181 * Release a reference on the zfs_snapentry_t. When the number of
182 * references drops to zero the structure will be freed.
183 */
184 static void
185 zfsctl_snapshot_rele(zfs_snapentry_t *se)
186 {
187 if (refcount_remove(&se->se_refcount, NULL) == 0)
188 zfsctl_snapshot_free(se);
189 }
190
191 /*
192 * Add a zfs_snapentry_t to both the zfs_snapshots_by_name and
193 * zfs_snapshots_by_objsetid trees. While the zfs_snapentry_t is part
194 * of the trees a reference is held.
195 */
196 static void
197 zfsctl_snapshot_add(zfs_snapentry_t *se)
198 {
199 ASSERT(RW_WRITE_HELD(&zfs_snapshot_lock));
200 refcount_add(&se->se_refcount, NULL);
201 avl_add(&zfs_snapshots_by_name, se);
202 avl_add(&zfs_snapshots_by_objsetid, se);
203 }
204
205 /*
206 * Remove a zfs_snapentry_t from both the zfs_snapshots_by_name and
207 * zfs_snapshots_by_objsetid trees. Upon removal a reference is dropped,
208 * this can result in the structure being freed if that was the last
209 * remaining reference.
210 */
211 static void
212 zfsctl_snapshot_remove(zfs_snapentry_t *se)
213 {
214 ASSERT(RW_WRITE_HELD(&zfs_snapshot_lock));
215 avl_remove(&zfs_snapshots_by_name, se);
216 avl_remove(&zfs_snapshots_by_objsetid, se);
217 zfsctl_snapshot_rele(se);
218 }
219
220 /*
221 * Snapshot name comparison function for the zfs_snapshots_by_name.
222 */
223 static int
224 snapentry_compare_by_name(const void *a, const void *b)
225 {
226 const zfs_snapentry_t *se_a = a;
227 const zfs_snapentry_t *se_b = b;
228 int ret;
229
230 ret = strcmp(se_a->se_name, se_b->se_name);
231
232 if (ret < 0)
233 return (-1);
234 else if (ret > 0)
235 return (1);
236 else
237 return (0);
238 }
239
240 /*
241 * Snapshot name comparison function for the zfs_snapshots_by_objsetid.
242 */
243 static int
244 snapentry_compare_by_objsetid(const void *a, const void *b)
245 {
246 const zfs_snapentry_t *se_a = a;
247 const zfs_snapentry_t *se_b = b;
248
249 if (se_a->se_spa != se_b->se_spa)
250 return ((ulong_t)se_a->se_spa < (ulong_t)se_b->se_spa ? -1 : 1);
251
252 if (se_a->se_objsetid < se_b->se_objsetid)
253 return (-1);
254 else if (se_a->se_objsetid > se_b->se_objsetid)
255 return (1);
256 else
257 return (0);
258 }
259
260 /*
261 * Find a zfs_snapentry_t in zfs_snapshots_by_name. If the snapname
262 * is found a pointer to the zfs_snapentry_t is returned and a reference
263 * taken on the structure. The caller is responsible for dropping the
264 * reference with zfsctl_snapshot_rele(). If the snapname is not found
265 * NULL will be returned.
266 */
267 static zfs_snapentry_t *
268 zfsctl_snapshot_find_by_name(char *snapname)
269 {
270 zfs_snapentry_t *se, search;
271
272 ASSERT(RW_LOCK_HELD(&zfs_snapshot_lock));
273
274 search.se_name = snapname;
275 se = avl_find(&zfs_snapshots_by_name, &search, NULL);
276 if (se)
277 refcount_add(&se->se_refcount, NULL);
278
279 return (se);
280 }
281
282 /*
283 * Find a zfs_snapentry_t in zfs_snapshots_by_objsetid given the objset id
284 * rather than the snapname. In all other respects it behaves the same
285 * as zfsctl_snapshot_find_by_name().
286 */
287 static zfs_snapentry_t *
288 zfsctl_snapshot_find_by_objsetid(spa_t *spa, uint64_t objsetid)
289 {
290 zfs_snapentry_t *se, search;
291
292 ASSERT(RW_LOCK_HELD(&zfs_snapshot_lock));
293
294 search.se_spa = spa;
295 search.se_objsetid = objsetid;
296 se = avl_find(&zfs_snapshots_by_objsetid, &search, NULL);
297 if (se)
298 refcount_add(&se->se_refcount, NULL);
299
300 return (se);
301 }
302
303 /*
304 * Rename a zfs_snapentry_t in the zfs_snapshots_by_name. The structure is
305 * removed, renamed, and added back to the new correct location in the tree.
306 */
307 static int
308 zfsctl_snapshot_rename(char *old_snapname, char *new_snapname)
309 {
310 zfs_snapentry_t *se;
311
312 ASSERT(RW_WRITE_HELD(&zfs_snapshot_lock));
313
314 se = zfsctl_snapshot_find_by_name(old_snapname);
315 if (se == NULL)
316 return (ENOENT);
317
318 zfsctl_snapshot_remove(se);
319 strfree(se->se_name);
320 se->se_name = strdup(new_snapname);
321 zfsctl_snapshot_add(se);
322 zfsctl_snapshot_rele(se);
323
324 return (0);
325 }
326
327 /*
328 * Delayed task responsible for unmounting an expired automounted snapshot.
329 */
330 static void
331 snapentry_expire(void *data)
332 {
333 zfs_snapentry_t *se = (zfs_snapentry_t *)data;
334 spa_t *spa = se->se_spa;
335 uint64_t objsetid = se->se_objsetid;
336
337 if (zfs_expire_snapshot <= 0) {
338 zfsctl_snapshot_rele(se);
339 return;
340 }
341
342 se->se_taskqid = -1;
343 (void) zfsctl_snapshot_unmount(se->se_name, MNT_EXPIRE);
344 zfsctl_snapshot_rele(se);
345
346 /*
347 * Reschedule the unmount if the zfs_snapentry_t wasn't removed.
348 * This can occur when the snapshot is busy.
349 */
350 rw_enter(&zfs_snapshot_lock, RW_READER);
351 if ((se = zfsctl_snapshot_find_by_objsetid(spa, objsetid)) != NULL) {
352 zfsctl_snapshot_unmount_delay_impl(se, zfs_expire_snapshot);
353 zfsctl_snapshot_rele(se);
354 }
355 rw_exit(&zfs_snapshot_lock);
356 }
357
358 /*
359 * Cancel an automatic unmount of a snapname. This callback is responsible
360 * for dropping the reference on the zfs_snapentry_t which was taken when
361 * during dispatch.
362 */
363 static void
364 zfsctl_snapshot_unmount_cancel(zfs_snapentry_t *se)
365 {
366 ASSERT(RW_LOCK_HELD(&zfs_snapshot_lock));
367
368 if (taskq_cancel_id(zfs_expire_taskq, se->se_taskqid) == 0) {
369 se->se_taskqid = -1;
370 zfsctl_snapshot_rele(se);
371 }
372 }
373
374 /*
375 * Dispatch the unmount task for delayed handling with a hold protecting it.
376 */
377 static void
378 zfsctl_snapshot_unmount_delay_impl(zfs_snapentry_t *se, int delay)
379 {
380 ASSERT3S(se->se_taskqid, ==, -1);
381
382 if (delay <= 0)
383 return;
384
385 zfsctl_snapshot_hold(se);
386 se->se_taskqid = taskq_dispatch_delay(zfs_expire_taskq,
387 snapentry_expire, se, TQ_SLEEP, ddi_get_lbolt() + delay * HZ);
388 }
389
390 /*
391 * Schedule an automatic unmount of objset id to occur in delay seconds from
392 * now. Any previous delayed unmount will be cancelled in favor of the
393 * updated deadline. A reference is taken by zfsctl_snapshot_find_by_name()
394 * and held until the outstanding task is handled or cancelled.
395 */
396 int
397 zfsctl_snapshot_unmount_delay(spa_t *spa, uint64_t objsetid, int delay)
398 {
399 zfs_snapentry_t *se;
400 int error = ENOENT;
401
402 rw_enter(&zfs_snapshot_lock, RW_READER);
403 if ((se = zfsctl_snapshot_find_by_objsetid(spa, objsetid)) != NULL) {
404 zfsctl_snapshot_unmount_cancel(se);
405 zfsctl_snapshot_unmount_delay_impl(se, delay);
406 zfsctl_snapshot_rele(se);
407 error = 0;
408 }
409 rw_exit(&zfs_snapshot_lock);
410
411 return (error);
412 }
413
414 /*
415 * Check if snapname is currently mounted. Returned non-zero when mounted
416 * and zero when unmounted.
417 */
418 static boolean_t
419 zfsctl_snapshot_ismounted(char *snapname)
420 {
421 zfs_snapentry_t *se;
422 boolean_t ismounted = B_FALSE;
423
424 rw_enter(&zfs_snapshot_lock, RW_READER);
425 if ((se = zfsctl_snapshot_find_by_name(snapname)) != NULL) {
426 zfsctl_snapshot_rele(se);
427 ismounted = B_TRUE;
428 }
429 rw_exit(&zfs_snapshot_lock);
430
431 return (ismounted);
432 }
433
434 /*
435 * Check if the given inode is a part of the virtual .zfs directory.
436 */
437 boolean_t
438 zfsctl_is_node(struct inode *ip)
439 {
440 return (ITOZ(ip)->z_is_ctldir);
441 }
442
443 /*
444 * Check if the given inode is a .zfs/snapshots/snapname directory.
445 */
446 boolean_t
447 zfsctl_is_snapdir(struct inode *ip)
448 {
449 return (zfsctl_is_node(ip) && (ip->i_ino <= ZFSCTL_INO_SNAPDIRS));
450 }
451
452 /*
453 * Allocate a new inode with the passed id and ops.
454 */
455 static struct inode *
456 zfsctl_inode_alloc(zfs_sb_t *zsb, uint64_t id,
457 const struct file_operations *fops, const struct inode_operations *ops)
458 {
459 struct timespec now = current_fs_time(zsb->z_sb);
460 struct inode *ip;
461 znode_t *zp;
462
463 ip = new_inode(zsb->z_sb);
464 if (ip == NULL)
465 return (NULL);
466
467 zp = ITOZ(ip);
468 ASSERT3P(zp->z_dirlocks, ==, NULL);
469 ASSERT3P(zp->z_acl_cached, ==, NULL);
470 ASSERT3P(zp->z_xattr_cached, ==, NULL);
471 zp->z_id = id;
472 zp->z_unlinked = 0;
473 zp->z_atime_dirty = 0;
474 zp->z_zn_prefetch = 0;
475 zp->z_moved = 0;
476 zp->z_sa_hdl = NULL;
477 zp->z_blksz = 0;
478 zp->z_seq = 0;
479 zp->z_mapcnt = 0;
480 zp->z_size = 0;
481 zp->z_pflags = 0;
482 zp->z_uid = 0;
483 zp->z_gid = 0;
484 zp->z_mode = 0;
485 zp->z_sync_cnt = 0;
486 zp->z_is_mapped = B_FALSE;
487 zp->z_is_ctldir = B_TRUE;
488 zp->z_is_sa = B_FALSE;
489 zp->z_is_stale = B_FALSE;
490 ip->i_generation = 0;
491 ip->i_ino = id;
492 ip->i_mode = (S_IFDIR | S_IRWXUGO);
493 ip->i_uid = SUID_TO_KUID(0);
494 ip->i_gid = SGID_TO_KGID(0);
495 ip->i_blkbits = SPA_MINBLOCKSHIFT;
496 ip->i_atime = now;
497 ip->i_mtime = now;
498 ip->i_ctime = now;
499 ip->i_fop = fops;
500 ip->i_op = ops;
501
502 if (insert_inode_locked(ip)) {
503 unlock_new_inode(ip);
504 iput(ip);
505 return (NULL);
506 }
507
508 mutex_enter(&zsb->z_znodes_lock);
509 list_insert_tail(&zsb->z_all_znodes, zp);
510 zsb->z_nr_znodes++;
511 membar_producer();
512 mutex_exit(&zsb->z_znodes_lock);
513
514 unlock_new_inode(ip);
515
516 return (ip);
517 }
518
519 /*
520 * Lookup the inode with given id, it will be allocated if needed.
521 */
522 static struct inode *
523 zfsctl_inode_lookup(zfs_sb_t *zsb, uint64_t id,
524 const struct file_operations *fops, const struct inode_operations *ops)
525 {
526 struct inode *ip = NULL;
527
528 while (ip == NULL) {
529 ip = ilookup(zsb->z_sb, (unsigned long)id);
530 if (ip)
531 break;
532
533 /* May fail due to concurrent zfsctl_inode_alloc() */
534 ip = zfsctl_inode_alloc(zsb, id, fops, ops);
535 }
536
537 return (ip);
538 }
539
540 /*
541 * Create the '.zfs' directory. This directory is cached as part of the VFS
542 * structure. This results in a hold on the zfs_sb_t. The code in zfs_umount()
543 * therefore checks against a vfs_count of 2 instead of 1. This reference
544 * is removed when the ctldir is destroyed in the unmount. All other entities
545 * under the '.zfs' directory are created dynamically as needed.
546 *
547 * Because the dynamically created '.zfs' directory entries assume the use
548 * of 64-bit inode numbers this support must be disabled on 32-bit systems.
549 */
550 int
551 zfsctl_create(zfs_sb_t *zsb)
552 {
553 #if defined(CONFIG_64BIT)
554 ASSERT(zsb->z_ctldir == NULL);
555
556 zsb->z_ctldir = zfsctl_inode_alloc(zsb, ZFSCTL_INO_ROOT,
557 &zpl_fops_root, &zpl_ops_root);
558 if (zsb->z_ctldir == NULL)
559 return (SET_ERROR(ENOENT));
560
561 return (0);
562 #else
563 return (SET_ERROR(EOPNOTSUPP));
564 #endif /* CONFIG_64BIT */
565 }
566
567 /*
568 * Destroy the '.zfs' directory or remove a snapshot from zfs_snapshots_by_name.
569 * Only called when the filesystem is unmounted.
570 */
571 void
572 zfsctl_destroy(zfs_sb_t *zsb)
573 {
574 if (zsb->z_issnap) {
575 zfs_snapentry_t *se;
576 spa_t *spa = zsb->z_os->os_spa;
577 uint64_t objsetid = dmu_objset_id(zsb->z_os);
578
579 rw_enter(&zfs_snapshot_lock, RW_WRITER);
580 if ((se = zfsctl_snapshot_find_by_objsetid(spa, objsetid))
581 != NULL) {
582 zfsctl_snapshot_unmount_cancel(se);
583 zfsctl_snapshot_remove(se);
584 zfsctl_snapshot_rele(se);
585 }
586 rw_exit(&zfs_snapshot_lock);
587 } else if (zsb->z_ctldir) {
588 iput(zsb->z_ctldir);
589 zsb->z_ctldir = NULL;
590 }
591 }
592
593 /*
594 * Given a root znode, retrieve the associated .zfs directory.
595 * Add a hold to the vnode and return it.
596 */
597 struct inode *
598 zfsctl_root(znode_t *zp)
599 {
600 ASSERT(zfs_has_ctldir(zp));
601 igrab(ZTOZSB(zp)->z_ctldir);
602 return (ZTOZSB(zp)->z_ctldir);
603 }
604 /*
605 * Generate a long fid which includes the root object and objset of a
606 * snapshot but not the generation number. For the root object the
607 * generation number is ignored when zero to avoid needing to open
608 * the dataset when generating fids for the snapshot names.
609 */
610 static int
611 zfsctl_snapdir_fid(struct inode *ip, fid_t *fidp)
612 {
613 zfs_sb_t *zsb = ITOZSB(ip);
614 zfid_short_t *zfid = (zfid_short_t *)fidp;
615 zfid_long_t *zlfid = (zfid_long_t *)fidp;
616 uint32_t gen = 0;
617 uint64_t object;
618 uint64_t objsetid;
619 int i;
620
621 object = zsb->z_root;
622 objsetid = ZFSCTL_INO_SNAPDIRS - ip->i_ino;
623 zfid->zf_len = LONG_FID_LEN;
624
625 for (i = 0; i < sizeof (zfid->zf_object); i++)
626 zfid->zf_object[i] = (uint8_t)(object >> (8 * i));
627
628 for (i = 0; i < sizeof (zfid->zf_gen); i++)
629 zfid->zf_gen[i] = (uint8_t)(gen >> (8 * i));
630
631 for (i = 0; i < sizeof (zlfid->zf_setid); i++)
632 zlfid->zf_setid[i] = (uint8_t)(objsetid >> (8 * i));
633
634 for (i = 0; i < sizeof (zlfid->zf_setgen); i++)
635 zlfid->zf_setgen[i] = 0;
636
637 return (0);
638 }
639
640 /*
641 * Generate an appropriate fid for an entry in the .zfs directory.
642 */
643 int
644 zfsctl_fid(struct inode *ip, fid_t *fidp)
645 {
646 znode_t *zp = ITOZ(ip);
647 zfs_sb_t *zsb = ITOZSB(ip);
648 uint64_t object = zp->z_id;
649 zfid_short_t *zfid;
650 int i;
651
652 ZFS_ENTER(zsb);
653
654 if (fidp->fid_len < SHORT_FID_LEN) {
655 fidp->fid_len = SHORT_FID_LEN;
656 ZFS_EXIT(zsb);
657 return (SET_ERROR(ENOSPC));
658 }
659
660 if (zfsctl_is_snapdir(ip)) {
661 ZFS_EXIT(zsb);
662 return (zfsctl_snapdir_fid(ip, fidp));
663 }
664
665 zfid = (zfid_short_t *)fidp;
666
667 zfid->zf_len = SHORT_FID_LEN;
668
669 for (i = 0; i < sizeof (zfid->zf_object); i++)
670 zfid->zf_object[i] = (uint8_t)(object >> (8 * i));
671
672 /* .zfs znodes always have a generation number of 0 */
673 for (i = 0; i < sizeof (zfid->zf_gen); i++)
674 zfid->zf_gen[i] = 0;
675
676 ZFS_EXIT(zsb);
677 return (0);
678 }
679
680 /*
681 * Construct a full dataset name in full_name: "pool/dataset@snap_name"
682 */
683 static int
684 zfsctl_snapshot_name(zfs_sb_t *zsb, const char *snap_name, int len,
685 char *full_name)
686 {
687 objset_t *os = zsb->z_os;
688
689 if (zfs_component_namecheck(snap_name, NULL, NULL) != 0)
690 return (SET_ERROR(EILSEQ));
691
692 dmu_objset_name(os, full_name);
693 if ((strlen(full_name) + 1 + strlen(snap_name)) >= len)
694 return (SET_ERROR(ENAMETOOLONG));
695
696 (void) strcat(full_name, "@");
697 (void) strcat(full_name, snap_name);
698
699 return (0);
700 }
701
702 /*
703 * Returns full path in full_path: "/pool/dataset/.zfs/snapshot/snap_name/"
704 */
705 static int
706 zfsctl_snapshot_path(struct path *path, int len, char *full_path)
707 {
708 char *path_buffer, *path_ptr;
709 int path_len, error = 0;
710
711 path_buffer = kmem_alloc(len, KM_SLEEP);
712
713 path_ptr = d_path(path, path_buffer, len);
714 if (IS_ERR(path_ptr)) {
715 error = -PTR_ERR(path_ptr);
716 goto out;
717 }
718
719 path_len = path_buffer + len - 1 - path_ptr;
720 if (path_len > len) {
721 error = SET_ERROR(EFAULT);
722 goto out;
723 }
724
725 memcpy(full_path, path_ptr, path_len);
726 full_path[path_len] = '\0';
727 out:
728 kmem_free(path_buffer, len);
729
730 return (error);
731 }
732
733 /*
734 * Returns full path in full_path: "/pool/dataset/.zfs/snapshot/snap_name/"
735 */
736 static int
737 zfsctl_snapshot_path_objset(zfs_sb_t *zsb, uint64_t objsetid,
738 int path_len, char *full_path)
739 {
740 objset_t *os = zsb->z_os;
741 fstrans_cookie_t cookie;
742 char *snapname;
743 boolean_t case_conflict;
744 uint64_t id, pos = 0;
745 int error = 0;
746
747 if (zsb->z_mntopts->z_mntpoint == NULL)
748 return (ENOENT);
749
750 cookie = spl_fstrans_mark();
751 snapname = kmem_alloc(ZFS_MAX_DATASET_NAME_LEN, KM_SLEEP);
752
753 while (error == 0) {
754 dsl_pool_config_enter(dmu_objset_pool(os), FTAG);
755 error = dmu_snapshot_list_next(zsb->z_os,
756 ZFS_MAX_DATASET_NAME_LEN, snapname, &id, &pos,
757 &case_conflict);
758 dsl_pool_config_exit(dmu_objset_pool(os), FTAG);
759 if (error)
760 goto out;
761
762 if (id == objsetid)
763 break;
764 }
765
766 memset(full_path, 0, path_len);
767 snprintf(full_path, path_len - 1, "%s/.zfs/snapshot/%s",
768 zsb->z_mntopts->z_mntpoint, snapname);
769 out:
770 kmem_free(snapname, ZFS_MAX_DATASET_NAME_LEN);
771 spl_fstrans_unmark(cookie);
772
773 return (error);
774 }
775
776 /*
777 * Special case the handling of "..".
778 */
779 int
780 zfsctl_root_lookup(struct inode *dip, char *name, struct inode **ipp,
781 int flags, cred_t *cr, int *direntflags, pathname_t *realpnp)
782 {
783 zfs_sb_t *zsb = ITOZSB(dip);
784 int error = 0;
785
786 ZFS_ENTER(zsb);
787
788 if (strcmp(name, "..") == 0) {
789 *ipp = dip->i_sb->s_root->d_inode;
790 } else if (strcmp(name, ZFS_SNAPDIR_NAME) == 0) {
791 *ipp = zfsctl_inode_lookup(zsb, ZFSCTL_INO_SNAPDIR,
792 &zpl_fops_snapdir, &zpl_ops_snapdir);
793 } else if (strcmp(name, ZFS_SHAREDIR_NAME) == 0) {
794 *ipp = zfsctl_inode_lookup(zsb, ZFSCTL_INO_SHARES,
795 &zpl_fops_shares, &zpl_ops_shares);
796 } else {
797 *ipp = NULL;
798 }
799
800 if (*ipp == NULL)
801 error = SET_ERROR(ENOENT);
802
803 ZFS_EXIT(zsb);
804
805 return (error);
806 }
807
808 /*
809 * Lookup entry point for the 'snapshot' directory. Try to open the
810 * snapshot if it exist, creating the pseudo filesystem inode as necessary.
811 * Perform a mount of the associated dataset on top of the inode.
812 */
813 int
814 zfsctl_snapdir_lookup(struct inode *dip, char *name, struct inode **ipp,
815 int flags, cred_t *cr, int *direntflags, pathname_t *realpnp)
816 {
817 zfs_sb_t *zsb = ITOZSB(dip);
818 uint64_t id;
819 int error;
820
821 ZFS_ENTER(zsb);
822
823 error = dmu_snapshot_lookup(zsb->z_os, name, &id);
824 if (error) {
825 ZFS_EXIT(zsb);
826 return (error);
827 }
828
829 *ipp = zfsctl_inode_lookup(zsb, ZFSCTL_INO_SNAPDIRS - id,
830 &simple_dir_operations, &simple_dir_inode_operations);
831 if (*ipp == NULL)
832 error = SET_ERROR(ENOENT);
833
834 ZFS_EXIT(zsb);
835
836 return (error);
837 }
838
839 /*
840 * Renaming a directory under '.zfs/snapshot' will automatically trigger
841 * a rename of the snapshot to the new given name. The rename is confined
842 * to the '.zfs/snapshot' directory snapshots cannot be moved elsewhere.
843 */
844 int
845 zfsctl_snapdir_rename(struct inode *sdip, char *snm,
846 struct inode *tdip, char *tnm, cred_t *cr, int flags)
847 {
848 zfs_sb_t *zsb = ITOZSB(sdip);
849 char *to, *from, *real, *fsname;
850 int error;
851
852 if (!zfs_admin_snapshot)
853 return (EACCES);
854
855 ZFS_ENTER(zsb);
856
857 to = kmem_alloc(ZFS_MAX_DATASET_NAME_LEN, KM_SLEEP);
858 from = kmem_alloc(ZFS_MAX_DATASET_NAME_LEN, KM_SLEEP);
859 real = kmem_alloc(ZFS_MAX_DATASET_NAME_LEN, KM_SLEEP);
860 fsname = kmem_alloc(ZFS_MAX_DATASET_NAME_LEN, KM_SLEEP);
861
862 if (zsb->z_case == ZFS_CASE_INSENSITIVE) {
863 error = dmu_snapshot_realname(zsb->z_os, snm, real,
864 ZFS_MAX_DATASET_NAME_LEN, NULL);
865 if (error == 0) {
866 snm = real;
867 } else if (error != ENOTSUP) {
868 goto out;
869 }
870 }
871
872 dmu_objset_name(zsb->z_os, fsname);
873
874 error = zfsctl_snapshot_name(ITOZSB(sdip), snm,
875 ZFS_MAX_DATASET_NAME_LEN, from);
876 if (error == 0)
877 error = zfsctl_snapshot_name(ITOZSB(tdip), tnm,
878 ZFS_MAX_DATASET_NAME_LEN, to);
879 if (error == 0)
880 error = zfs_secpolicy_rename_perms(from, to, cr);
881 if (error != 0)
882 goto out;
883
884 /*
885 * Cannot move snapshots out of the snapdir.
886 */
887 if (sdip != tdip) {
888 error = SET_ERROR(EINVAL);
889 goto out;
890 }
891
892 /*
893 * No-op when names are identical.
894 */
895 if (strcmp(snm, tnm) == 0) {
896 error = 0;
897 goto out;
898 }
899
900 rw_enter(&zfs_snapshot_lock, RW_WRITER);
901
902 error = dsl_dataset_rename_snapshot(fsname, snm, tnm, B_FALSE);
903 if (error == 0)
904 (void) zfsctl_snapshot_rename(snm, tnm);
905
906 rw_exit(&zfs_snapshot_lock);
907 out:
908 kmem_free(from, ZFS_MAX_DATASET_NAME_LEN);
909 kmem_free(to, ZFS_MAX_DATASET_NAME_LEN);
910 kmem_free(real, ZFS_MAX_DATASET_NAME_LEN);
911 kmem_free(fsname, ZFS_MAX_DATASET_NAME_LEN);
912
913 ZFS_EXIT(zsb);
914
915 return (error);
916 }
917
918 /*
919 * Removing a directory under '.zfs/snapshot' will automatically trigger
920 * the removal of the snapshot with the given name.
921 */
922 int
923 zfsctl_snapdir_remove(struct inode *dip, char *name, cred_t *cr, int flags)
924 {
925 zfs_sb_t *zsb = ITOZSB(dip);
926 char *snapname, *real;
927 int error;
928
929 if (!zfs_admin_snapshot)
930 return (EACCES);
931
932 ZFS_ENTER(zsb);
933
934 snapname = kmem_alloc(ZFS_MAX_DATASET_NAME_LEN, KM_SLEEP);
935 real = kmem_alloc(ZFS_MAX_DATASET_NAME_LEN, KM_SLEEP);
936
937 if (zsb->z_case == ZFS_CASE_INSENSITIVE) {
938 error = dmu_snapshot_realname(zsb->z_os, name, real,
939 ZFS_MAX_DATASET_NAME_LEN, NULL);
940 if (error == 0) {
941 name = real;
942 } else if (error != ENOTSUP) {
943 goto out;
944 }
945 }
946
947 error = zfsctl_snapshot_name(ITOZSB(dip), name,
948 ZFS_MAX_DATASET_NAME_LEN, snapname);
949 if (error == 0)
950 error = zfs_secpolicy_destroy_perms(snapname, cr);
951 if (error != 0)
952 goto out;
953
954 error = zfsctl_snapshot_unmount(snapname, MNT_FORCE);
955 if ((error == 0) || (error == ENOENT))
956 error = dsl_destroy_snapshot(snapname, B_FALSE);
957 out:
958 kmem_free(snapname, ZFS_MAX_DATASET_NAME_LEN);
959 kmem_free(real, ZFS_MAX_DATASET_NAME_LEN);
960
961 ZFS_EXIT(zsb);
962
963 return (error);
964 }
965
966 /*
967 * Creating a directory under '.zfs/snapshot' will automatically trigger
968 * the creation of a new snapshot with the given name.
969 */
970 int
971 zfsctl_snapdir_mkdir(struct inode *dip, char *dirname, vattr_t *vap,
972 struct inode **ipp, cred_t *cr, int flags)
973 {
974 zfs_sb_t *zsb = ITOZSB(dip);
975 char *dsname;
976 int error;
977
978 if (!zfs_admin_snapshot)
979 return (EACCES);
980
981 dsname = kmem_alloc(ZFS_MAX_DATASET_NAME_LEN, KM_SLEEP);
982
983 if (zfs_component_namecheck(dirname, NULL, NULL) != 0) {
984 error = SET_ERROR(EILSEQ);
985 goto out;
986 }
987
988 dmu_objset_name(zsb->z_os, dsname);
989
990 error = zfs_secpolicy_snapshot_perms(dsname, cr);
991 if (error != 0)
992 goto out;
993
994 if (error == 0) {
995 error = dmu_objset_snapshot_one(dsname, dirname);
996 if (error != 0)
997 goto out;
998
999 error = zfsctl_snapdir_lookup(dip, dirname, ipp,
1000 0, cr, NULL, NULL);
1001 }
1002 out:
1003 kmem_free(dsname, ZFS_MAX_DATASET_NAME_LEN);
1004
1005 return (error);
1006 }
1007
1008 /*
1009 * Attempt to unmount a snapshot by making a call to user space.
1010 * There is no assurance that this can or will succeed, is just a
1011 * best effort. In the case where it does fail, perhaps because
1012 * it's in use, the unmount will fail harmlessly.
1013 */
1014 #define SET_UNMOUNT_CMD \
1015 "exec 0</dev/null " \
1016 " 1>/dev/null " \
1017 " 2>/dev/null; " \
1018 "umount -t zfs -n %s'%s'"
1019
1020 int
1021 zfsctl_snapshot_unmount(char *snapname, int flags)
1022 {
1023 char *argv[] = { "/bin/sh", "-c", NULL, NULL };
1024 char *envp[] = { NULL };
1025 zfs_snapentry_t *se;
1026 int error;
1027
1028 rw_enter(&zfs_snapshot_lock, RW_READER);
1029 if ((se = zfsctl_snapshot_find_by_name(snapname)) == NULL) {
1030 rw_exit(&zfs_snapshot_lock);
1031 return (ENOENT);
1032 }
1033 rw_exit(&zfs_snapshot_lock);
1034
1035 argv[2] = kmem_asprintf(SET_UNMOUNT_CMD,
1036 flags & MNT_FORCE ? "-f " : "", se->se_path);
1037 zfsctl_snapshot_rele(se);
1038 dprintf("unmount; path=%s\n", se->se_path);
1039 error = call_usermodehelper(argv[0], argv, envp, UMH_WAIT_PROC);
1040 strfree(argv[2]);
1041
1042
1043 /*
1044 * The umount system utility will return 256 on error. We must
1045 * assume this error is because the file system is busy so it is
1046 * converted to the more sensible EBUSY.
1047 */
1048 if (error)
1049 error = SET_ERROR(EBUSY);
1050
1051 return (error);
1052 }
1053
1054 #define MOUNT_BUSY 0x80 /* Mount failed due to EBUSY (from mntent.h) */
1055 #define SET_MOUNT_CMD \
1056 "exec 0</dev/null " \
1057 " 1>/dev/null " \
1058 " 2>/dev/null; " \
1059 "mount -t zfs -n '%s' '%s'"
1060
1061 int
1062 zfsctl_snapshot_mount(struct path *path, int flags)
1063 {
1064 struct dentry *dentry = path->dentry;
1065 struct inode *ip = dentry->d_inode;
1066 zfs_sb_t *zsb;
1067 zfs_sb_t *snap_zsb;
1068 zfs_snapentry_t *se;
1069 char *full_name, *full_path;
1070 char *argv[] = { "/bin/sh", "-c", NULL, NULL };
1071 char *envp[] = { NULL };
1072 int error;
1073 struct path spath;
1074
1075 if (ip == NULL)
1076 return (EISDIR);
1077
1078 zsb = ITOZSB(ip);
1079 ZFS_ENTER(zsb);
1080
1081 full_name = kmem_zalloc(ZFS_MAX_DATASET_NAME_LEN, KM_SLEEP);
1082 full_path = kmem_zalloc(MAXPATHLEN, KM_SLEEP);
1083
1084 error = zfsctl_snapshot_name(zsb, dname(dentry),
1085 ZFS_MAX_DATASET_NAME_LEN, full_name);
1086 if (error)
1087 goto error;
1088
1089 error = zfsctl_snapshot_path(path, MAXPATHLEN, full_path);
1090 if (error)
1091 goto error;
1092
1093 /*
1094 * Multiple concurrent automounts of a snapshot are never allowed.
1095 * The snapshot may be manually mounted as many times as desired.
1096 */
1097 if (zfsctl_snapshot_ismounted(full_name)) {
1098 error = 0;
1099 goto error;
1100 }
1101
1102 /*
1103 * Attempt to mount the snapshot from user space. Normally this
1104 * would be done using the vfs_kern_mount() function, however that
1105 * function is marked GPL-only and cannot be used. On error we
1106 * careful to log the real error to the console and return EISDIR
1107 * to safely abort the automount. This should be very rare.
1108 *
1109 * If the user mode helper happens to return EBUSY, a concurrent
1110 * mount is already in progress in which case the error is ignored.
1111 * Take note that if the program was executed successfully the return
1112 * value from call_usermodehelper() will be (exitcode << 8 + signal).
1113 */
1114 dprintf("mount; name=%s path=%s\n", full_name, full_path);
1115 argv[2] = kmem_asprintf(SET_MOUNT_CMD, full_name, full_path);
1116 error = call_usermodehelper(argv[0], argv, envp, UMH_WAIT_PROC);
1117 strfree(argv[2]);
1118 if (error) {
1119 if (!(error & MOUNT_BUSY << 8)) {
1120 cmn_err(CE_WARN, "Unable to automount %s/%s: %d",
1121 full_path, full_name, error);
1122 error = SET_ERROR(EISDIR);
1123 } else {
1124 /*
1125 * EBUSY, this could mean a concurrent mount, or the
1126 * snapshot has already been mounted at completely
1127 * different place. We return 0 so VFS will retry. For
1128 * the latter case the VFS will retry several times
1129 * and return ELOOP, which is probably not a very good
1130 * behavior.
1131 */
1132 error = 0;
1133 }
1134 goto error;
1135 }
1136
1137 /*
1138 * Follow down in to the mounted snapshot and set MNT_SHRINKABLE
1139 * to identify this as an automounted filesystem.
1140 */
1141 spath = *path;
1142 path_get(&spath);
1143 if (zpl_follow_down_one(&spath)) {
1144 snap_zsb = ITOZSB(spath.dentry->d_inode);
1145 snap_zsb->z_parent = zsb;
1146 dentry = spath.dentry;
1147 spath.mnt->mnt_flags |= MNT_SHRINKABLE;
1148
1149 rw_enter(&zfs_snapshot_lock, RW_WRITER);
1150 se = zfsctl_snapshot_alloc(full_name, full_path,
1151 snap_zsb->z_os->os_spa, dmu_objset_id(snap_zsb->z_os),
1152 dentry);
1153 zfsctl_snapshot_add(se);
1154 zfsctl_snapshot_unmount_delay_impl(se, zfs_expire_snapshot);
1155 rw_exit(&zfs_snapshot_lock);
1156 }
1157 path_put(&spath);
1158 error:
1159 kmem_free(full_name, ZFS_MAX_DATASET_NAME_LEN);
1160 kmem_free(full_path, MAXPATHLEN);
1161
1162 ZFS_EXIT(zsb);
1163
1164 return (error);
1165 }
1166
1167 /*
1168 * Given the objset id of the snapshot return its zfs_sb_t as zsbp.
1169 */
1170 int
1171 zfsctl_lookup_objset(struct super_block *sb, uint64_t objsetid, zfs_sb_t **zsbp)
1172 {
1173 zfs_snapentry_t *se;
1174 int error;
1175 spa_t *spa = ((zfs_sb_t *)(sb->s_fs_info))->z_os->os_spa;
1176
1177 /*
1178 * Verify that the snapshot is mounted then lookup the mounted root
1179 * rather than the covered mount point. This may fail if the
1180 * snapshot has just been unmounted by an unrelated user space
1181 * process. This race cannot occur to an expired mount point
1182 * because we hold the zfs_snapshot_lock to prevent the race.
1183 */
1184 rw_enter(&zfs_snapshot_lock, RW_READER);
1185 if ((se = zfsctl_snapshot_find_by_objsetid(spa, objsetid)) != NULL) {
1186 zfs_sb_t *zsb;
1187
1188 zsb = ITOZSB(se->se_root_dentry->d_inode);
1189 ASSERT3U(dmu_objset_id(zsb->z_os), ==, objsetid);
1190
1191 if (time_after(jiffies, zsb->z_snap_defer_time +
1192 MAX(zfs_expire_snapshot * HZ / 2, HZ))) {
1193 zsb->z_snap_defer_time = jiffies;
1194 zfsctl_snapshot_unmount_cancel(se);
1195 zfsctl_snapshot_unmount_delay_impl(se,
1196 zfs_expire_snapshot);
1197 }
1198
1199 *zsbp = zsb;
1200 zfsctl_snapshot_rele(se);
1201 error = SET_ERROR(0);
1202 } else {
1203 error = SET_ERROR(ENOENT);
1204 }
1205 rw_exit(&zfs_snapshot_lock);
1206
1207 /*
1208 * Automount the snapshot given the objset id by constructing the
1209 * full mount point and performing a traversal.
1210 */
1211 if (error == ENOENT) {
1212 struct path path;
1213 char *mnt;
1214
1215 mnt = kmem_alloc(MAXPATHLEN, KM_SLEEP);
1216 error = zfsctl_snapshot_path_objset(sb->s_fs_info, objsetid,
1217 MAXPATHLEN, mnt);
1218 if (error) {
1219 kmem_free(mnt, MAXPATHLEN);
1220 return (SET_ERROR(error));
1221 }
1222
1223 error = kern_path(mnt, LOOKUP_FOLLOW|LOOKUP_DIRECTORY, &path);
1224 if (error == 0) {
1225 *zsbp = ITOZSB(path.dentry->d_inode);
1226 path_put(&path);
1227 }
1228
1229 kmem_free(mnt, MAXPATHLEN);
1230 }
1231
1232 return (error);
1233 }
1234
1235 int
1236 zfsctl_shares_lookup(struct inode *dip, char *name, struct inode **ipp,
1237 int flags, cred_t *cr, int *direntflags, pathname_t *realpnp)
1238 {
1239 zfs_sb_t *zsb = ITOZSB(dip);
1240 struct inode *ip;
1241 znode_t *dzp;
1242 int error;
1243
1244 ZFS_ENTER(zsb);
1245
1246 if (zsb->z_shares_dir == 0) {
1247 ZFS_EXIT(zsb);
1248 return (SET_ERROR(ENOTSUP));
1249 }
1250
1251 if ((error = zfs_zget(zsb, zsb->z_shares_dir, &dzp)) == 0) {
1252 error = zfs_lookup(ZTOI(dzp), name, &ip, 0, cr, NULL, NULL);
1253 iput(ZTOI(dzp));
1254 }
1255
1256 ZFS_EXIT(zsb);
1257
1258 return (error);
1259 }
1260
1261 /*
1262 * Initialize the various pieces we'll need to create and manipulate .zfs
1263 * directories. Currently this is unused but available.
1264 */
1265 void
1266 zfsctl_init(void)
1267 {
1268 avl_create(&zfs_snapshots_by_name, snapentry_compare_by_name,
1269 sizeof (zfs_snapentry_t), offsetof(zfs_snapentry_t,
1270 se_node_name));
1271 avl_create(&zfs_snapshots_by_objsetid, snapentry_compare_by_objsetid,
1272 sizeof (zfs_snapentry_t), offsetof(zfs_snapentry_t,
1273 se_node_objsetid));
1274 rw_init(&zfs_snapshot_lock, NULL, RW_DEFAULT, NULL);
1275
1276 zfs_expire_taskq = taskq_create("z_unmount", 1, defclsyspri,
1277 1, 8, TASKQ_PREPOPULATE);
1278 }
1279
1280 /*
1281 * Cleanup the various pieces we needed for .zfs directories. In particular
1282 * ensure the expiry timer is canceled safely.
1283 */
1284 void
1285 zfsctl_fini(void)
1286 {
1287 taskq_destroy(zfs_expire_taskq);
1288
1289 avl_destroy(&zfs_snapshots_by_name);
1290 avl_destroy(&zfs_snapshots_by_objsetid);
1291 rw_destroy(&zfs_snapshot_lock);
1292 }
1293
1294 module_param(zfs_admin_snapshot, int, 0644);
1295 MODULE_PARM_DESC(zfs_admin_snapshot, "Enable mkdir/rmdir/mv in .zfs/snapshot");
1296
1297 module_param(zfs_expire_snapshot, int, 0644);
1298 MODULE_PARM_DESC(zfs_expire_snapshot, "Seconds to expire .zfs/snapshot");