]> git.proxmox.com Git - mirror_zfs.git/blob - module/zfs/zio.c
OpenZFS 8909 - 8585 can cause a use-after-free kernel panic
[mirror_zfs.git] / module / zfs / zio.c
1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright (c) 2011, 2017 by Delphix. All rights reserved.
24 * Copyright (c) 2011 Nexenta Systems, Inc. All rights reserved.
25 */
26
27 #include <sys/sysmacros.h>
28 #include <sys/zfs_context.h>
29 #include <sys/fm/fs/zfs.h>
30 #include <sys/spa.h>
31 #include <sys/txg.h>
32 #include <sys/spa_impl.h>
33 #include <sys/vdev_impl.h>
34 #include <sys/zio_impl.h>
35 #include <sys/zio_compress.h>
36 #include <sys/zio_checksum.h>
37 #include <sys/dmu_objset.h>
38 #include <sys/arc.h>
39 #include <sys/ddt.h>
40 #include <sys/blkptr.h>
41 #include <sys/zfeature.h>
42 #include <sys/dsl_scan.h>
43 #include <sys/metaslab_impl.h>
44 #include <sys/time.h>
45 #include <sys/trace_zio.h>
46 #include <sys/abd.h>
47 #include <sys/dsl_crypt.h>
48
49 /*
50 * ==========================================================================
51 * I/O type descriptions
52 * ==========================================================================
53 */
54 const char *zio_type_name[ZIO_TYPES] = {
55 /*
56 * Note: Linux kernel thread name length is limited
57 * so these names will differ from upstream open zfs.
58 */
59 "z_null", "z_rd", "z_wr", "z_fr", "z_cl", "z_ioctl"
60 };
61
62 int zio_dva_throttle_enabled = B_TRUE;
63
64 /*
65 * ==========================================================================
66 * I/O kmem caches
67 * ==========================================================================
68 */
69 kmem_cache_t *zio_cache;
70 kmem_cache_t *zio_link_cache;
71 kmem_cache_t *zio_buf_cache[SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT];
72 kmem_cache_t *zio_data_buf_cache[SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT];
73 #if defined(ZFS_DEBUG) && !defined(_KERNEL)
74 uint64_t zio_buf_cache_allocs[SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT];
75 uint64_t zio_buf_cache_frees[SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT];
76 #endif
77
78 int zio_delay_max = ZIO_DELAY_MAX;
79
80 #define ZIO_PIPELINE_CONTINUE 0x100
81 #define ZIO_PIPELINE_STOP 0x101
82
83 #define BP_SPANB(indblkshift, level) \
84 (((uint64_t)1) << ((level) * ((indblkshift) - SPA_BLKPTRSHIFT)))
85 #define COMPARE_META_LEVEL 0x80000000ul
86 /*
87 * The following actions directly effect the spa's sync-to-convergence logic.
88 * The values below define the sync pass when we start performing the action.
89 * Care should be taken when changing these values as they directly impact
90 * spa_sync() performance. Tuning these values may introduce subtle performance
91 * pathologies and should only be done in the context of performance analysis.
92 * These tunables will eventually be removed and replaced with #defines once
93 * enough analysis has been done to determine optimal values.
94 *
95 * The 'zfs_sync_pass_deferred_free' pass must be greater than 1 to ensure that
96 * regular blocks are not deferred.
97 */
98 int zfs_sync_pass_deferred_free = 2; /* defer frees starting in this pass */
99 int zfs_sync_pass_dont_compress = 5; /* don't compress starting in this pass */
100 int zfs_sync_pass_rewrite = 2; /* rewrite new bps starting in this pass */
101
102 /*
103 * An allocating zio is one that either currently has the DVA allocate
104 * stage set or will have it later in its lifetime.
105 */
106 #define IO_IS_ALLOCATING(zio) ((zio)->io_orig_pipeline & ZIO_STAGE_DVA_ALLOCATE)
107
108 int zio_requeue_io_start_cut_in_line = 1;
109
110 #ifdef ZFS_DEBUG
111 int zio_buf_debug_limit = 16384;
112 #else
113 int zio_buf_debug_limit = 0;
114 #endif
115
116 static inline void __zio_execute(zio_t *zio);
117
118 static void zio_taskq_dispatch(zio_t *, zio_taskq_type_t, boolean_t);
119
120 void
121 zio_init(void)
122 {
123 size_t c;
124 vmem_t *data_alloc_arena = NULL;
125
126 zio_cache = kmem_cache_create("zio_cache",
127 sizeof (zio_t), 0, NULL, NULL, NULL, NULL, NULL, 0);
128 zio_link_cache = kmem_cache_create("zio_link_cache",
129 sizeof (zio_link_t), 0, NULL, NULL, NULL, NULL, NULL, 0);
130
131 /*
132 * For small buffers, we want a cache for each multiple of
133 * SPA_MINBLOCKSIZE. For larger buffers, we want a cache
134 * for each quarter-power of 2.
135 */
136 for (c = 0; c < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT; c++) {
137 size_t size = (c + 1) << SPA_MINBLOCKSHIFT;
138 size_t p2 = size;
139 size_t align = 0;
140 size_t cflags = (size > zio_buf_debug_limit) ? KMC_NODEBUG : 0;
141
142 #if defined(_ILP32) && defined(_KERNEL)
143 /*
144 * Cache size limited to 1M on 32-bit platforms until ARC
145 * buffers no longer require virtual address space.
146 */
147 if (size > zfs_max_recordsize)
148 break;
149 #endif
150
151 while (!ISP2(p2))
152 p2 &= p2 - 1;
153
154 #ifndef _KERNEL
155 /*
156 * If we are using watchpoints, put each buffer on its own page,
157 * to eliminate the performance overhead of trapping to the
158 * kernel when modifying a non-watched buffer that shares the
159 * page with a watched buffer.
160 */
161 if (arc_watch && !IS_P2ALIGNED(size, PAGESIZE))
162 continue;
163 /*
164 * Here's the problem - on 4K native devices in userland on
165 * Linux using O_DIRECT, buffers must be 4K aligned or I/O
166 * will fail with EINVAL, causing zdb (and others) to coredump.
167 * Since userland probably doesn't need optimized buffer caches,
168 * we just force 4K alignment on everything.
169 */
170 align = 8 * SPA_MINBLOCKSIZE;
171 #else
172 if (size < PAGESIZE) {
173 align = SPA_MINBLOCKSIZE;
174 } else if (IS_P2ALIGNED(size, p2 >> 2)) {
175 align = PAGESIZE;
176 }
177 #endif
178
179 if (align != 0) {
180 char name[36];
181 (void) sprintf(name, "zio_buf_%lu", (ulong_t)size);
182 zio_buf_cache[c] = kmem_cache_create(name, size,
183 align, NULL, NULL, NULL, NULL, NULL, cflags);
184
185 (void) sprintf(name, "zio_data_buf_%lu", (ulong_t)size);
186 zio_data_buf_cache[c] = kmem_cache_create(name, size,
187 align, NULL, NULL, NULL, NULL,
188 data_alloc_arena, cflags);
189 }
190 }
191
192 while (--c != 0) {
193 ASSERT(zio_buf_cache[c] != NULL);
194 if (zio_buf_cache[c - 1] == NULL)
195 zio_buf_cache[c - 1] = zio_buf_cache[c];
196
197 ASSERT(zio_data_buf_cache[c] != NULL);
198 if (zio_data_buf_cache[c - 1] == NULL)
199 zio_data_buf_cache[c - 1] = zio_data_buf_cache[c];
200 }
201
202 zio_inject_init();
203
204 lz4_init();
205 }
206
207 void
208 zio_fini(void)
209 {
210 size_t c;
211 kmem_cache_t *last_cache = NULL;
212 kmem_cache_t *last_data_cache = NULL;
213
214 for (c = 0; c < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT; c++) {
215 #ifdef _ILP32
216 /*
217 * Cache size limited to 1M on 32-bit platforms until ARC
218 * buffers no longer require virtual address space.
219 */
220 if (((c + 1) << SPA_MINBLOCKSHIFT) > zfs_max_recordsize)
221 break;
222 #endif
223 #if defined(ZFS_DEBUG) && !defined(_KERNEL)
224 if (zio_buf_cache_allocs[c] != zio_buf_cache_frees[c])
225 (void) printf("zio_fini: [%d] %llu != %llu\n",
226 (int)((c + 1) << SPA_MINBLOCKSHIFT),
227 (long long unsigned)zio_buf_cache_allocs[c],
228 (long long unsigned)zio_buf_cache_frees[c]);
229 #endif
230 if (zio_buf_cache[c] != last_cache) {
231 last_cache = zio_buf_cache[c];
232 kmem_cache_destroy(zio_buf_cache[c]);
233 }
234 zio_buf_cache[c] = NULL;
235
236 if (zio_data_buf_cache[c] != last_data_cache) {
237 last_data_cache = zio_data_buf_cache[c];
238 kmem_cache_destroy(zio_data_buf_cache[c]);
239 }
240 zio_data_buf_cache[c] = NULL;
241 }
242
243 kmem_cache_destroy(zio_link_cache);
244 kmem_cache_destroy(zio_cache);
245
246 zio_inject_fini();
247
248 lz4_fini();
249 }
250
251 /*
252 * ==========================================================================
253 * Allocate and free I/O buffers
254 * ==========================================================================
255 */
256
257 /*
258 * Use zio_buf_alloc to allocate ZFS metadata. This data will appear in a
259 * crashdump if the kernel panics, so use it judiciously. Obviously, it's
260 * useful to inspect ZFS metadata, but if possible, we should avoid keeping
261 * excess / transient data in-core during a crashdump.
262 */
263 void *
264 zio_buf_alloc(size_t size)
265 {
266 size_t c = (size - 1) >> SPA_MINBLOCKSHIFT;
267
268 VERIFY3U(c, <, SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT);
269 #if defined(ZFS_DEBUG) && !defined(_KERNEL)
270 atomic_add_64(&zio_buf_cache_allocs[c], 1);
271 #endif
272
273 return (kmem_cache_alloc(zio_buf_cache[c], KM_PUSHPAGE));
274 }
275
276 /*
277 * Use zio_data_buf_alloc to allocate data. The data will not appear in a
278 * crashdump if the kernel panics. This exists so that we will limit the amount
279 * of ZFS data that shows up in a kernel crashdump. (Thus reducing the amount
280 * of kernel heap dumped to disk when the kernel panics)
281 */
282 void *
283 zio_data_buf_alloc(size_t size)
284 {
285 size_t c = (size - 1) >> SPA_MINBLOCKSHIFT;
286
287 VERIFY3U(c, <, SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT);
288
289 return (kmem_cache_alloc(zio_data_buf_cache[c], KM_PUSHPAGE));
290 }
291
292 void
293 zio_buf_free(void *buf, size_t size)
294 {
295 size_t c = (size - 1) >> SPA_MINBLOCKSHIFT;
296
297 VERIFY3U(c, <, SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT);
298 #if defined(ZFS_DEBUG) && !defined(_KERNEL)
299 atomic_add_64(&zio_buf_cache_frees[c], 1);
300 #endif
301
302 kmem_cache_free(zio_buf_cache[c], buf);
303 }
304
305 void
306 zio_data_buf_free(void *buf, size_t size)
307 {
308 size_t c = (size - 1) >> SPA_MINBLOCKSHIFT;
309
310 VERIFY3U(c, <, SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT);
311
312 kmem_cache_free(zio_data_buf_cache[c], buf);
313 }
314
315 static void
316 zio_abd_free(void *abd, size_t size)
317 {
318 abd_free((abd_t *)abd);
319 }
320
321 /*
322 * ==========================================================================
323 * Push and pop I/O transform buffers
324 * ==========================================================================
325 */
326 void
327 zio_push_transform(zio_t *zio, abd_t *data, uint64_t size, uint64_t bufsize,
328 zio_transform_func_t *transform)
329 {
330 zio_transform_t *zt = kmem_alloc(sizeof (zio_transform_t), KM_SLEEP);
331
332 /*
333 * Ensure that anyone expecting this zio to contain a linear ABD isn't
334 * going to get a nasty surprise when they try to access the data.
335 */
336 IMPLY(abd_is_linear(zio->io_abd), abd_is_linear(data));
337
338 zt->zt_orig_abd = zio->io_abd;
339 zt->zt_orig_size = zio->io_size;
340 zt->zt_bufsize = bufsize;
341 zt->zt_transform = transform;
342
343 zt->zt_next = zio->io_transform_stack;
344 zio->io_transform_stack = zt;
345
346 zio->io_abd = data;
347 zio->io_size = size;
348 }
349
350 void
351 zio_pop_transforms(zio_t *zio)
352 {
353 zio_transform_t *zt;
354
355 while ((zt = zio->io_transform_stack) != NULL) {
356 if (zt->zt_transform != NULL)
357 zt->zt_transform(zio,
358 zt->zt_orig_abd, zt->zt_orig_size);
359
360 if (zt->zt_bufsize != 0)
361 abd_free(zio->io_abd);
362
363 zio->io_abd = zt->zt_orig_abd;
364 zio->io_size = zt->zt_orig_size;
365 zio->io_transform_stack = zt->zt_next;
366
367 kmem_free(zt, sizeof (zio_transform_t));
368 }
369 }
370
371 /*
372 * ==========================================================================
373 * I/O transform callbacks for subblocks, decompression, and decryption
374 * ==========================================================================
375 */
376 static void
377 zio_subblock(zio_t *zio, abd_t *data, uint64_t size)
378 {
379 ASSERT(zio->io_size > size);
380
381 if (zio->io_type == ZIO_TYPE_READ)
382 abd_copy(data, zio->io_abd, size);
383 }
384
385 static void
386 zio_decompress(zio_t *zio, abd_t *data, uint64_t size)
387 {
388 if (zio->io_error == 0) {
389 void *tmp = abd_borrow_buf(data, size);
390 int ret = zio_decompress_data(BP_GET_COMPRESS(zio->io_bp),
391 zio->io_abd, tmp, zio->io_size, size);
392 abd_return_buf_copy(data, tmp, size);
393
394 if (ret != 0)
395 zio->io_error = SET_ERROR(EIO);
396 }
397 }
398
399 static void
400 zio_decrypt(zio_t *zio, abd_t *data, uint64_t size)
401 {
402 int ret;
403 void *tmp;
404 blkptr_t *bp = zio->io_bp;
405 uint64_t lsize = BP_GET_LSIZE(bp);
406 dmu_object_type_t ot = BP_GET_TYPE(bp);
407 uint8_t salt[ZIO_DATA_SALT_LEN];
408 uint8_t iv[ZIO_DATA_IV_LEN];
409 uint8_t mac[ZIO_DATA_MAC_LEN];
410 boolean_t no_crypt = B_FALSE;
411
412 ASSERT(BP_USES_CRYPT(bp));
413 ASSERT3U(size, !=, 0);
414
415 if (zio->io_error != 0)
416 return;
417
418 /*
419 * Verify the cksum of MACs stored in an indirect bp. It will always
420 * be possible to verify this since it does not require an encryption
421 * key.
422 */
423 if (BP_HAS_INDIRECT_MAC_CKSUM(bp)) {
424 zio_crypt_decode_mac_bp(bp, mac);
425
426 if (BP_GET_COMPRESS(bp) != ZIO_COMPRESS_OFF) {
427 /*
428 * We haven't decompressed the data yet, but
429 * zio_crypt_do_indirect_mac_checksum() requires
430 * decompressed data to be able to parse out the MACs
431 * from the indirect block. We decompress it now and
432 * throw away the result after we are finished.
433 */
434 tmp = zio_buf_alloc(lsize);
435 ret = zio_decompress_data(BP_GET_COMPRESS(bp),
436 zio->io_abd, tmp, zio->io_size, lsize);
437 if (ret != 0) {
438 ret = SET_ERROR(EIO);
439 goto error;
440 }
441 ret = zio_crypt_do_indirect_mac_checksum(B_FALSE,
442 tmp, lsize, BP_SHOULD_BYTESWAP(bp), mac);
443 zio_buf_free(tmp, lsize);
444 } else {
445 ret = zio_crypt_do_indirect_mac_checksum_abd(B_FALSE,
446 zio->io_abd, size, BP_SHOULD_BYTESWAP(bp), mac);
447 }
448 abd_copy(data, zio->io_abd, size);
449
450 if (ret != 0)
451 goto error;
452
453 return;
454 }
455
456 /*
457 * If this is an authenticated block, just check the MAC. It would be
458 * nice to separate this out into its own flag, but for the moment
459 * enum zio_flag is out of bits.
460 */
461 if (BP_IS_AUTHENTICATED(bp)) {
462 if (ot == DMU_OT_OBJSET) {
463 ret = spa_do_crypt_objset_mac_abd(B_FALSE, zio->io_spa,
464 zio->io_bookmark.zb_objset, zio->io_abd, size,
465 BP_SHOULD_BYTESWAP(bp));
466 } else {
467 zio_crypt_decode_mac_bp(bp, mac);
468 ret = spa_do_crypt_mac_abd(B_FALSE, zio->io_spa,
469 zio->io_bookmark.zb_objset, zio->io_abd, size, mac);
470 }
471 abd_copy(data, zio->io_abd, size);
472
473 if (ret != 0)
474 goto error;
475
476 return;
477 }
478
479 zio_crypt_decode_params_bp(bp, salt, iv);
480
481 if (ot == DMU_OT_INTENT_LOG) {
482 tmp = abd_borrow_buf_copy(zio->io_abd, sizeof (zil_chain_t));
483 zio_crypt_decode_mac_zil(tmp, mac);
484 abd_return_buf(zio->io_abd, tmp, sizeof (zil_chain_t));
485 } else {
486 zio_crypt_decode_mac_bp(bp, mac);
487 }
488
489 ret = spa_do_crypt_abd(B_FALSE, zio->io_spa, zio->io_bookmark.zb_objset,
490 bp, bp->blk_birth, size, data, zio->io_abd, iv, mac, salt,
491 &no_crypt);
492 if (no_crypt)
493 abd_copy(data, zio->io_abd, size);
494
495 if (ret != 0)
496 goto error;
497
498 return;
499
500 error:
501 /* assert that the key was found unless this was speculative */
502 ASSERT(ret != ENOENT || (zio->io_flags & ZIO_FLAG_SPECULATIVE));
503
504 /*
505 * If there was a decryption / authentication error return EIO as
506 * the io_error. If this was not a speculative zio, create an ereport.
507 */
508 if (ret == ECKSUM) {
509 ret = SET_ERROR(EIO);
510 if ((zio->io_flags & ZIO_FLAG_SPECULATIVE) == 0) {
511 zfs_ereport_post(FM_EREPORT_ZFS_AUTHENTICATION,
512 zio->io_spa, NULL, &zio->io_bookmark, zio, 0, 0);
513 }
514 } else {
515 zio->io_error = ret;
516 }
517 }
518
519 /*
520 * ==========================================================================
521 * I/O parent/child relationships and pipeline interlocks
522 * ==========================================================================
523 */
524 zio_t *
525 zio_walk_parents(zio_t *cio, zio_link_t **zl)
526 {
527 list_t *pl = &cio->io_parent_list;
528
529 *zl = (*zl == NULL) ? list_head(pl) : list_next(pl, *zl);
530 if (*zl == NULL)
531 return (NULL);
532
533 ASSERT((*zl)->zl_child == cio);
534 return ((*zl)->zl_parent);
535 }
536
537 zio_t *
538 zio_walk_children(zio_t *pio, zio_link_t **zl)
539 {
540 list_t *cl = &pio->io_child_list;
541
542 ASSERT(MUTEX_HELD(&pio->io_lock));
543
544 *zl = (*zl == NULL) ? list_head(cl) : list_next(cl, *zl);
545 if (*zl == NULL)
546 return (NULL);
547
548 ASSERT((*zl)->zl_parent == pio);
549 return ((*zl)->zl_child);
550 }
551
552 zio_t *
553 zio_unique_parent(zio_t *cio)
554 {
555 zio_link_t *zl = NULL;
556 zio_t *pio = zio_walk_parents(cio, &zl);
557
558 VERIFY3P(zio_walk_parents(cio, &zl), ==, NULL);
559 return (pio);
560 }
561
562 void
563 zio_add_child(zio_t *pio, zio_t *cio)
564 {
565 zio_link_t *zl = kmem_cache_alloc(zio_link_cache, KM_SLEEP);
566
567 /*
568 * Logical I/Os can have logical, gang, or vdev children.
569 * Gang I/Os can have gang or vdev children.
570 * Vdev I/Os can only have vdev children.
571 * The following ASSERT captures all of these constraints.
572 */
573 ASSERT3S(cio->io_child_type, <=, pio->io_child_type);
574
575 zl->zl_parent = pio;
576 zl->zl_child = cio;
577
578 mutex_enter(&pio->io_lock);
579 mutex_enter(&cio->io_lock);
580
581 ASSERT(pio->io_state[ZIO_WAIT_DONE] == 0);
582
583 for (int w = 0; w < ZIO_WAIT_TYPES; w++)
584 pio->io_children[cio->io_child_type][w] += !cio->io_state[w];
585
586 list_insert_head(&pio->io_child_list, zl);
587 list_insert_head(&cio->io_parent_list, zl);
588
589 pio->io_child_count++;
590 cio->io_parent_count++;
591
592 mutex_exit(&cio->io_lock);
593 mutex_exit(&pio->io_lock);
594 }
595
596 static void
597 zio_remove_child(zio_t *pio, zio_t *cio, zio_link_t *zl)
598 {
599 ASSERT(zl->zl_parent == pio);
600 ASSERT(zl->zl_child == cio);
601
602 mutex_enter(&pio->io_lock);
603 mutex_enter(&cio->io_lock);
604
605 list_remove(&pio->io_child_list, zl);
606 list_remove(&cio->io_parent_list, zl);
607
608 pio->io_child_count--;
609 cio->io_parent_count--;
610
611 mutex_exit(&cio->io_lock);
612 mutex_exit(&pio->io_lock);
613 kmem_cache_free(zio_link_cache, zl);
614 }
615
616 static boolean_t
617 zio_wait_for_children(zio_t *zio, enum zio_child child, enum zio_wait_type wait)
618 {
619 uint64_t *countp = &zio->io_children[child][wait];
620 boolean_t waiting = B_FALSE;
621
622 mutex_enter(&zio->io_lock);
623 ASSERT(zio->io_stall == NULL);
624 if (*countp != 0) {
625 zio->io_stage >>= 1;
626 ASSERT3U(zio->io_stage, !=, ZIO_STAGE_OPEN);
627 zio->io_stall = countp;
628 waiting = B_TRUE;
629 }
630 mutex_exit(&zio->io_lock);
631
632 return (waiting);
633 }
634
635 __attribute__((always_inline))
636 static inline void
637 zio_notify_parent(zio_t *pio, zio_t *zio, enum zio_wait_type wait)
638 {
639 uint64_t *countp = &pio->io_children[zio->io_child_type][wait];
640 int *errorp = &pio->io_child_error[zio->io_child_type];
641
642 mutex_enter(&pio->io_lock);
643 if (zio->io_error && !(zio->io_flags & ZIO_FLAG_DONT_PROPAGATE))
644 *errorp = zio_worst_error(*errorp, zio->io_error);
645 pio->io_reexecute |= zio->io_reexecute;
646 ASSERT3U(*countp, >, 0);
647
648 (*countp)--;
649
650 if (*countp == 0 && pio->io_stall == countp) {
651 zio_taskq_type_t type =
652 pio->io_stage < ZIO_STAGE_VDEV_IO_START ? ZIO_TASKQ_ISSUE :
653 ZIO_TASKQ_INTERRUPT;
654 pio->io_stall = NULL;
655 mutex_exit(&pio->io_lock);
656 /*
657 * Dispatch the parent zio in its own taskq so that
658 * the child can continue to make progress. This also
659 * prevents overflowing the stack when we have deeply nested
660 * parent-child relationships.
661 */
662 zio_taskq_dispatch(pio, type, B_FALSE);
663 } else {
664 mutex_exit(&pio->io_lock);
665 }
666 }
667
668 static void
669 zio_inherit_child_errors(zio_t *zio, enum zio_child c)
670 {
671 if (zio->io_child_error[c] != 0 && zio->io_error == 0)
672 zio->io_error = zio->io_child_error[c];
673 }
674
675 int
676 zio_bookmark_compare(const void *x1, const void *x2)
677 {
678 const zio_t *z1 = x1;
679 const zio_t *z2 = x2;
680
681 if (z1->io_bookmark.zb_objset < z2->io_bookmark.zb_objset)
682 return (-1);
683 if (z1->io_bookmark.zb_objset > z2->io_bookmark.zb_objset)
684 return (1);
685
686 if (z1->io_bookmark.zb_object < z2->io_bookmark.zb_object)
687 return (-1);
688 if (z1->io_bookmark.zb_object > z2->io_bookmark.zb_object)
689 return (1);
690
691 if (z1->io_bookmark.zb_level < z2->io_bookmark.zb_level)
692 return (-1);
693 if (z1->io_bookmark.zb_level > z2->io_bookmark.zb_level)
694 return (1);
695
696 if (z1->io_bookmark.zb_blkid < z2->io_bookmark.zb_blkid)
697 return (-1);
698 if (z1->io_bookmark.zb_blkid > z2->io_bookmark.zb_blkid)
699 return (1);
700
701 if (z1 < z2)
702 return (-1);
703 if (z1 > z2)
704 return (1);
705
706 return (0);
707 }
708
709 /*
710 * ==========================================================================
711 * Create the various types of I/O (read, write, free, etc)
712 * ==========================================================================
713 */
714 static zio_t *
715 zio_create(zio_t *pio, spa_t *spa, uint64_t txg, const blkptr_t *bp,
716 abd_t *data, uint64_t lsize, uint64_t psize, zio_done_func_t *done,
717 void *private, zio_type_t type, zio_priority_t priority,
718 enum zio_flag flags, vdev_t *vd, uint64_t offset,
719 const zbookmark_phys_t *zb, enum zio_stage stage,
720 enum zio_stage pipeline)
721 {
722 zio_t *zio;
723
724 ASSERT3U(psize, <=, SPA_MAXBLOCKSIZE);
725 ASSERT(P2PHASE(psize, SPA_MINBLOCKSIZE) == 0);
726 ASSERT(P2PHASE(offset, SPA_MINBLOCKSIZE) == 0);
727
728 ASSERT(!vd || spa_config_held(spa, SCL_STATE_ALL, RW_READER));
729 ASSERT(!bp || !(flags & ZIO_FLAG_CONFIG_WRITER));
730 ASSERT(vd || stage == ZIO_STAGE_OPEN);
731
732 IMPLY(lsize != psize, (flags & ZIO_FLAG_RAW_COMPRESS) != 0);
733
734 zio = kmem_cache_alloc(zio_cache, KM_SLEEP);
735 bzero(zio, sizeof (zio_t));
736
737 mutex_init(&zio->io_lock, NULL, MUTEX_NOLOCKDEP, NULL);
738 cv_init(&zio->io_cv, NULL, CV_DEFAULT, NULL);
739
740 list_create(&zio->io_parent_list, sizeof (zio_link_t),
741 offsetof(zio_link_t, zl_parent_node));
742 list_create(&zio->io_child_list, sizeof (zio_link_t),
743 offsetof(zio_link_t, zl_child_node));
744 metaslab_trace_init(&zio->io_alloc_list);
745
746 if (vd != NULL)
747 zio->io_child_type = ZIO_CHILD_VDEV;
748 else if (flags & ZIO_FLAG_GANG_CHILD)
749 zio->io_child_type = ZIO_CHILD_GANG;
750 else if (flags & ZIO_FLAG_DDT_CHILD)
751 zio->io_child_type = ZIO_CHILD_DDT;
752 else
753 zio->io_child_type = ZIO_CHILD_LOGICAL;
754
755 if (bp != NULL) {
756 zio->io_bp = (blkptr_t *)bp;
757 zio->io_bp_copy = *bp;
758 zio->io_bp_orig = *bp;
759 if (type != ZIO_TYPE_WRITE ||
760 zio->io_child_type == ZIO_CHILD_DDT)
761 zio->io_bp = &zio->io_bp_copy; /* so caller can free */
762 if (zio->io_child_type == ZIO_CHILD_LOGICAL)
763 zio->io_logical = zio;
764 if (zio->io_child_type > ZIO_CHILD_GANG && BP_IS_GANG(bp))
765 pipeline |= ZIO_GANG_STAGES;
766 }
767
768 zio->io_spa = spa;
769 zio->io_txg = txg;
770 zio->io_done = done;
771 zio->io_private = private;
772 zio->io_type = type;
773 zio->io_priority = priority;
774 zio->io_vd = vd;
775 zio->io_offset = offset;
776 zio->io_orig_abd = zio->io_abd = data;
777 zio->io_orig_size = zio->io_size = psize;
778 zio->io_lsize = lsize;
779 zio->io_orig_flags = zio->io_flags = flags;
780 zio->io_orig_stage = zio->io_stage = stage;
781 zio->io_orig_pipeline = zio->io_pipeline = pipeline;
782 zio->io_pipeline_trace = ZIO_STAGE_OPEN;
783
784 zio->io_state[ZIO_WAIT_READY] = (stage >= ZIO_STAGE_READY);
785 zio->io_state[ZIO_WAIT_DONE] = (stage >= ZIO_STAGE_DONE);
786
787 if (zb != NULL)
788 zio->io_bookmark = *zb;
789
790 if (pio != NULL) {
791 if (zio->io_logical == NULL)
792 zio->io_logical = pio->io_logical;
793 if (zio->io_child_type == ZIO_CHILD_GANG)
794 zio->io_gang_leader = pio->io_gang_leader;
795 zio_add_child(pio, zio);
796 }
797
798 taskq_init_ent(&zio->io_tqent);
799
800 return (zio);
801 }
802
803 static void
804 zio_destroy(zio_t *zio)
805 {
806 metaslab_trace_fini(&zio->io_alloc_list);
807 list_destroy(&zio->io_parent_list);
808 list_destroy(&zio->io_child_list);
809 mutex_destroy(&zio->io_lock);
810 cv_destroy(&zio->io_cv);
811 kmem_cache_free(zio_cache, zio);
812 }
813
814 zio_t *
815 zio_null(zio_t *pio, spa_t *spa, vdev_t *vd, zio_done_func_t *done,
816 void *private, enum zio_flag flags)
817 {
818 zio_t *zio;
819
820 zio = zio_create(pio, spa, 0, NULL, NULL, 0, 0, done, private,
821 ZIO_TYPE_NULL, ZIO_PRIORITY_NOW, flags, vd, 0, NULL,
822 ZIO_STAGE_OPEN, ZIO_INTERLOCK_PIPELINE);
823
824 return (zio);
825 }
826
827 zio_t *
828 zio_root(spa_t *spa, zio_done_func_t *done, void *private, enum zio_flag flags)
829 {
830 return (zio_null(NULL, spa, NULL, done, private, flags));
831 }
832
833 void
834 zfs_blkptr_verify(spa_t *spa, const blkptr_t *bp)
835 {
836 if (!DMU_OT_IS_VALID(BP_GET_TYPE(bp))) {
837 zfs_panic_recover("blkptr at %p has invalid TYPE %llu",
838 bp, (longlong_t)BP_GET_TYPE(bp));
839 }
840 if (BP_GET_CHECKSUM(bp) >= ZIO_CHECKSUM_FUNCTIONS ||
841 BP_GET_CHECKSUM(bp) <= ZIO_CHECKSUM_ON) {
842 zfs_panic_recover("blkptr at %p has invalid CHECKSUM %llu",
843 bp, (longlong_t)BP_GET_CHECKSUM(bp));
844 }
845 if (BP_GET_COMPRESS(bp) >= ZIO_COMPRESS_FUNCTIONS ||
846 BP_GET_COMPRESS(bp) <= ZIO_COMPRESS_ON) {
847 zfs_panic_recover("blkptr at %p has invalid COMPRESS %llu",
848 bp, (longlong_t)BP_GET_COMPRESS(bp));
849 }
850 if (BP_GET_LSIZE(bp) > SPA_MAXBLOCKSIZE) {
851 zfs_panic_recover("blkptr at %p has invalid LSIZE %llu",
852 bp, (longlong_t)BP_GET_LSIZE(bp));
853 }
854 if (BP_GET_PSIZE(bp) > SPA_MAXBLOCKSIZE) {
855 zfs_panic_recover("blkptr at %p has invalid PSIZE %llu",
856 bp, (longlong_t)BP_GET_PSIZE(bp));
857 }
858
859 if (BP_IS_EMBEDDED(bp)) {
860 if (BPE_GET_ETYPE(bp) > NUM_BP_EMBEDDED_TYPES) {
861 zfs_panic_recover("blkptr at %p has invalid ETYPE %llu",
862 bp, (longlong_t)BPE_GET_ETYPE(bp));
863 }
864 }
865
866 /*
867 * Pool-specific checks.
868 *
869 * Note: it would be nice to verify that the blk_birth and
870 * BP_PHYSICAL_BIRTH() are not too large. However, spa_freeze()
871 * allows the birth time of log blocks (and dmu_sync()-ed blocks
872 * that are in the log) to be arbitrarily large.
873 */
874 for (int i = 0; i < BP_GET_NDVAS(bp); i++) {
875 uint64_t vdevid = DVA_GET_VDEV(&bp->blk_dva[i]);
876
877 if (vdevid >= spa->spa_root_vdev->vdev_children) {
878 zfs_panic_recover("blkptr at %p DVA %u has invalid "
879 "VDEV %llu",
880 bp, i, (longlong_t)vdevid);
881 continue;
882 }
883 vdev_t *vd = spa->spa_root_vdev->vdev_child[vdevid];
884 if (vd == NULL) {
885 zfs_panic_recover("blkptr at %p DVA %u has invalid "
886 "VDEV %llu",
887 bp, i, (longlong_t)vdevid);
888 continue;
889 }
890 if (vd->vdev_ops == &vdev_hole_ops) {
891 zfs_panic_recover("blkptr at %p DVA %u has hole "
892 "VDEV %llu",
893 bp, i, (longlong_t)vdevid);
894 continue;
895 }
896 if (vd->vdev_ops == &vdev_missing_ops) {
897 /*
898 * "missing" vdevs are valid during import, but we
899 * don't have their detailed info (e.g. asize), so
900 * we can't perform any more checks on them.
901 */
902 continue;
903 }
904 uint64_t offset = DVA_GET_OFFSET(&bp->blk_dva[i]);
905 uint64_t asize = DVA_GET_ASIZE(&bp->blk_dva[i]);
906 if (BP_IS_GANG(bp))
907 asize = vdev_psize_to_asize(vd, SPA_GANGBLOCKSIZE);
908 if (offset + asize > vd->vdev_asize) {
909 zfs_panic_recover("blkptr at %p DVA %u has invalid "
910 "OFFSET %llu",
911 bp, i, (longlong_t)offset);
912 }
913 }
914 }
915
916 zio_t *
917 zio_read(zio_t *pio, spa_t *spa, const blkptr_t *bp,
918 abd_t *data, uint64_t size, zio_done_func_t *done, void *private,
919 zio_priority_t priority, enum zio_flag flags, const zbookmark_phys_t *zb)
920 {
921 zio_t *zio;
922
923 zfs_blkptr_verify(spa, bp);
924
925 zio = zio_create(pio, spa, BP_PHYSICAL_BIRTH(bp), bp,
926 data, size, size, done, private,
927 ZIO_TYPE_READ, priority, flags, NULL, 0, zb,
928 ZIO_STAGE_OPEN, (flags & ZIO_FLAG_DDT_CHILD) ?
929 ZIO_DDT_CHILD_READ_PIPELINE : ZIO_READ_PIPELINE);
930
931 return (zio);
932 }
933
934 zio_t *
935 zio_write(zio_t *pio, spa_t *spa, uint64_t txg, blkptr_t *bp,
936 abd_t *data, uint64_t lsize, uint64_t psize, const zio_prop_t *zp,
937 zio_done_func_t *ready, zio_done_func_t *children_ready,
938 zio_done_func_t *physdone, zio_done_func_t *done,
939 void *private, zio_priority_t priority, enum zio_flag flags,
940 const zbookmark_phys_t *zb)
941 {
942 zio_t *zio;
943
944 ASSERT(zp->zp_checksum >= ZIO_CHECKSUM_OFF &&
945 zp->zp_checksum < ZIO_CHECKSUM_FUNCTIONS &&
946 zp->zp_compress >= ZIO_COMPRESS_OFF &&
947 zp->zp_compress < ZIO_COMPRESS_FUNCTIONS &&
948 DMU_OT_IS_VALID(zp->zp_type) &&
949 zp->zp_level < 32 &&
950 zp->zp_copies > 0 &&
951 zp->zp_copies <= spa_max_replication(spa));
952
953 zio = zio_create(pio, spa, txg, bp, data, lsize, psize, done, private,
954 ZIO_TYPE_WRITE, priority, flags, NULL, 0, zb,
955 ZIO_STAGE_OPEN, (flags & ZIO_FLAG_DDT_CHILD) ?
956 ZIO_DDT_CHILD_WRITE_PIPELINE : ZIO_WRITE_PIPELINE);
957
958 zio->io_ready = ready;
959 zio->io_children_ready = children_ready;
960 zio->io_physdone = physdone;
961 zio->io_prop = *zp;
962
963 /*
964 * Data can be NULL if we are going to call zio_write_override() to
965 * provide the already-allocated BP. But we may need the data to
966 * verify a dedup hit (if requested). In this case, don't try to
967 * dedup (just take the already-allocated BP verbatim). Encrypted
968 * dedup blocks need data as well so we also disable dedup in this
969 * case.
970 */
971 if (data == NULL &&
972 (zio->io_prop.zp_dedup_verify || zio->io_prop.zp_encrypt)) {
973 zio->io_prop.zp_dedup = zio->io_prop.zp_dedup_verify = B_FALSE;
974 }
975
976 return (zio);
977 }
978
979 zio_t *
980 zio_rewrite(zio_t *pio, spa_t *spa, uint64_t txg, blkptr_t *bp, abd_t *data,
981 uint64_t size, zio_done_func_t *done, void *private,
982 zio_priority_t priority, enum zio_flag flags, zbookmark_phys_t *zb)
983 {
984 zio_t *zio;
985
986 zio = zio_create(pio, spa, txg, bp, data, size, size, done, private,
987 ZIO_TYPE_WRITE, priority, flags | ZIO_FLAG_IO_REWRITE, NULL, 0, zb,
988 ZIO_STAGE_OPEN, ZIO_REWRITE_PIPELINE);
989
990 return (zio);
991 }
992
993 void
994 zio_write_override(zio_t *zio, blkptr_t *bp, int copies, boolean_t nopwrite)
995 {
996 ASSERT(zio->io_type == ZIO_TYPE_WRITE);
997 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
998 ASSERT(zio->io_stage == ZIO_STAGE_OPEN);
999 ASSERT(zio->io_txg == spa_syncing_txg(zio->io_spa));
1000
1001 /*
1002 * We must reset the io_prop to match the values that existed
1003 * when the bp was first written by dmu_sync() keeping in mind
1004 * that nopwrite and dedup are mutually exclusive.
1005 */
1006 zio->io_prop.zp_dedup = nopwrite ? B_FALSE : zio->io_prop.zp_dedup;
1007 zio->io_prop.zp_nopwrite = nopwrite;
1008 zio->io_prop.zp_copies = copies;
1009 zio->io_bp_override = bp;
1010 }
1011
1012 void
1013 zio_free(spa_t *spa, uint64_t txg, const blkptr_t *bp)
1014 {
1015
1016 /*
1017 * The check for EMBEDDED is a performance optimization. We
1018 * process the free here (by ignoring it) rather than
1019 * putting it on the list and then processing it in zio_free_sync().
1020 */
1021 if (BP_IS_EMBEDDED(bp))
1022 return;
1023 metaslab_check_free(spa, bp);
1024
1025 /*
1026 * Frees that are for the currently-syncing txg, are not going to be
1027 * deferred, and which will not need to do a read (i.e. not GANG or
1028 * DEDUP), can be processed immediately. Otherwise, put them on the
1029 * in-memory list for later processing.
1030 */
1031 if (BP_IS_GANG(bp) || BP_GET_DEDUP(bp) ||
1032 txg != spa->spa_syncing_txg ||
1033 spa_sync_pass(spa) >= zfs_sync_pass_deferred_free) {
1034 bplist_append(&spa->spa_free_bplist[txg & TXG_MASK], bp);
1035 } else {
1036 VERIFY0(zio_wait(zio_free_sync(NULL, spa, txg, bp, 0)));
1037 }
1038 }
1039
1040 zio_t *
1041 zio_free_sync(zio_t *pio, spa_t *spa, uint64_t txg, const blkptr_t *bp,
1042 enum zio_flag flags)
1043 {
1044 zio_t *zio;
1045 enum zio_stage stage = ZIO_FREE_PIPELINE;
1046
1047 ASSERT(!BP_IS_HOLE(bp));
1048 ASSERT(spa_syncing_txg(spa) == txg);
1049 ASSERT(spa_sync_pass(spa) < zfs_sync_pass_deferred_free);
1050
1051 if (BP_IS_EMBEDDED(bp))
1052 return (zio_null(pio, spa, NULL, NULL, NULL, 0));
1053
1054 metaslab_check_free(spa, bp);
1055 arc_freed(spa, bp);
1056 dsl_scan_freed(spa, bp);
1057
1058 /*
1059 * GANG and DEDUP blocks can induce a read (for the gang block header,
1060 * or the DDT), so issue them asynchronously so that this thread is
1061 * not tied up.
1062 */
1063 if (BP_IS_GANG(bp) || BP_GET_DEDUP(bp))
1064 stage |= ZIO_STAGE_ISSUE_ASYNC;
1065
1066 zio = zio_create(pio, spa, txg, bp, NULL, BP_GET_PSIZE(bp),
1067 BP_GET_PSIZE(bp), NULL, NULL, ZIO_TYPE_FREE, ZIO_PRIORITY_NOW,
1068 flags, NULL, 0, NULL, ZIO_STAGE_OPEN, stage);
1069
1070 return (zio);
1071 }
1072
1073 zio_t *
1074 zio_claim(zio_t *pio, spa_t *spa, uint64_t txg, const blkptr_t *bp,
1075 zio_done_func_t *done, void *private, enum zio_flag flags)
1076 {
1077 zio_t *zio;
1078
1079 dprintf_bp(bp, "claiming in txg %llu", txg);
1080
1081 if (BP_IS_EMBEDDED(bp))
1082 return (zio_null(pio, spa, NULL, NULL, NULL, 0));
1083
1084 /*
1085 * A claim is an allocation of a specific block. Claims are needed
1086 * to support immediate writes in the intent log. The issue is that
1087 * immediate writes contain committed data, but in a txg that was
1088 * *not* committed. Upon opening the pool after an unclean shutdown,
1089 * the intent log claims all blocks that contain immediate write data
1090 * so that the SPA knows they're in use.
1091 *
1092 * All claims *must* be resolved in the first txg -- before the SPA
1093 * starts allocating blocks -- so that nothing is allocated twice.
1094 * If txg == 0 we just verify that the block is claimable.
1095 */
1096 ASSERT3U(spa->spa_uberblock.ub_rootbp.blk_birth, <, spa_first_txg(spa));
1097 ASSERT(txg == spa_first_txg(spa) || txg == 0);
1098 ASSERT(!BP_GET_DEDUP(bp) || !spa_writeable(spa)); /* zdb(1M) */
1099
1100 zio = zio_create(pio, spa, txg, bp, NULL, BP_GET_PSIZE(bp),
1101 BP_GET_PSIZE(bp), done, private, ZIO_TYPE_CLAIM, ZIO_PRIORITY_NOW,
1102 flags, NULL, 0, NULL, ZIO_STAGE_OPEN, ZIO_CLAIM_PIPELINE);
1103 ASSERT0(zio->io_queued_timestamp);
1104
1105 return (zio);
1106 }
1107
1108 zio_t *
1109 zio_ioctl(zio_t *pio, spa_t *spa, vdev_t *vd, int cmd,
1110 zio_done_func_t *done, void *private, enum zio_flag flags)
1111 {
1112 zio_t *zio;
1113 int c;
1114
1115 if (vd->vdev_children == 0) {
1116 zio = zio_create(pio, spa, 0, NULL, NULL, 0, 0, done, private,
1117 ZIO_TYPE_IOCTL, ZIO_PRIORITY_NOW, flags, vd, 0, NULL,
1118 ZIO_STAGE_OPEN, ZIO_IOCTL_PIPELINE);
1119
1120 zio->io_cmd = cmd;
1121 } else {
1122 zio = zio_null(pio, spa, NULL, NULL, NULL, flags);
1123
1124 for (c = 0; c < vd->vdev_children; c++)
1125 zio_nowait(zio_ioctl(zio, spa, vd->vdev_child[c], cmd,
1126 done, private, flags));
1127 }
1128
1129 return (zio);
1130 }
1131
1132 zio_t *
1133 zio_read_phys(zio_t *pio, vdev_t *vd, uint64_t offset, uint64_t size,
1134 abd_t *data, int checksum, zio_done_func_t *done, void *private,
1135 zio_priority_t priority, enum zio_flag flags, boolean_t labels)
1136 {
1137 zio_t *zio;
1138
1139 ASSERT(vd->vdev_children == 0);
1140 ASSERT(!labels || offset + size <= VDEV_LABEL_START_SIZE ||
1141 offset >= vd->vdev_psize - VDEV_LABEL_END_SIZE);
1142 ASSERT3U(offset + size, <=, vd->vdev_psize);
1143
1144 zio = zio_create(pio, vd->vdev_spa, 0, NULL, data, size, size, done,
1145 private, ZIO_TYPE_READ, priority, flags | ZIO_FLAG_PHYSICAL, vd,
1146 offset, NULL, ZIO_STAGE_OPEN, ZIO_READ_PHYS_PIPELINE);
1147
1148 zio->io_prop.zp_checksum = checksum;
1149
1150 return (zio);
1151 }
1152
1153 zio_t *
1154 zio_write_phys(zio_t *pio, vdev_t *vd, uint64_t offset, uint64_t size,
1155 abd_t *data, int checksum, zio_done_func_t *done, void *private,
1156 zio_priority_t priority, enum zio_flag flags, boolean_t labels)
1157 {
1158 zio_t *zio;
1159
1160 ASSERT(vd->vdev_children == 0);
1161 ASSERT(!labels || offset + size <= VDEV_LABEL_START_SIZE ||
1162 offset >= vd->vdev_psize - VDEV_LABEL_END_SIZE);
1163 ASSERT3U(offset + size, <=, vd->vdev_psize);
1164
1165 zio = zio_create(pio, vd->vdev_spa, 0, NULL, data, size, size, done,
1166 private, ZIO_TYPE_WRITE, priority, flags | ZIO_FLAG_PHYSICAL, vd,
1167 offset, NULL, ZIO_STAGE_OPEN, ZIO_WRITE_PHYS_PIPELINE);
1168
1169 zio->io_prop.zp_checksum = checksum;
1170
1171 if (zio_checksum_table[checksum].ci_flags & ZCHECKSUM_FLAG_EMBEDDED) {
1172 /*
1173 * zec checksums are necessarily destructive -- they modify
1174 * the end of the write buffer to hold the verifier/checksum.
1175 * Therefore, we must make a local copy in case the data is
1176 * being written to multiple places in parallel.
1177 */
1178 abd_t *wbuf = abd_alloc_sametype(data, size);
1179 abd_copy(wbuf, data, size);
1180
1181 zio_push_transform(zio, wbuf, size, size, NULL);
1182 }
1183
1184 return (zio);
1185 }
1186
1187 /*
1188 * Create a child I/O to do some work for us.
1189 */
1190 zio_t *
1191 zio_vdev_child_io(zio_t *pio, blkptr_t *bp, vdev_t *vd, uint64_t offset,
1192 abd_t *data, uint64_t size, int type, zio_priority_t priority,
1193 enum zio_flag flags, zio_done_func_t *done, void *private)
1194 {
1195 enum zio_stage pipeline = ZIO_VDEV_CHILD_PIPELINE;
1196 zio_t *zio;
1197
1198 ASSERT(vd->vdev_parent ==
1199 (pio->io_vd ? pio->io_vd : pio->io_spa->spa_root_vdev));
1200
1201 if (type == ZIO_TYPE_READ && bp != NULL) {
1202 /*
1203 * If we have the bp, then the child should perform the
1204 * checksum and the parent need not. This pushes error
1205 * detection as close to the leaves as possible and
1206 * eliminates redundant checksums in the interior nodes.
1207 */
1208 pipeline |= ZIO_STAGE_CHECKSUM_VERIFY;
1209 pio->io_pipeline &= ~ZIO_STAGE_CHECKSUM_VERIFY;
1210 }
1211
1212 if (vd->vdev_children == 0)
1213 offset += VDEV_LABEL_START_SIZE;
1214
1215 flags |= ZIO_VDEV_CHILD_FLAGS(pio) | ZIO_FLAG_DONT_PROPAGATE;
1216
1217 /*
1218 * If we've decided to do a repair, the write is not speculative --
1219 * even if the original read was.
1220 */
1221 if (flags & ZIO_FLAG_IO_REPAIR)
1222 flags &= ~ZIO_FLAG_SPECULATIVE;
1223
1224 /*
1225 * If we're creating a child I/O that is not associated with a
1226 * top-level vdev, then the child zio is not an allocating I/O.
1227 * If this is a retried I/O then we ignore it since we will
1228 * have already processed the original allocating I/O.
1229 */
1230 if (flags & ZIO_FLAG_IO_ALLOCATING &&
1231 (vd != vd->vdev_top || (flags & ZIO_FLAG_IO_RETRY))) {
1232 ASSERTV(metaslab_class_t *mc = spa_normal_class(pio->io_spa));
1233
1234 ASSERT(mc->mc_alloc_throttle_enabled);
1235 ASSERT(type == ZIO_TYPE_WRITE);
1236 ASSERT(priority == ZIO_PRIORITY_ASYNC_WRITE);
1237 ASSERT(!(flags & ZIO_FLAG_IO_REPAIR));
1238 ASSERT(!(pio->io_flags & ZIO_FLAG_IO_REWRITE) ||
1239 pio->io_child_type == ZIO_CHILD_GANG);
1240
1241 flags &= ~ZIO_FLAG_IO_ALLOCATING;
1242 }
1243
1244
1245 zio = zio_create(pio, pio->io_spa, pio->io_txg, bp, data, size, size,
1246 done, private, type, priority, flags, vd, offset, &pio->io_bookmark,
1247 ZIO_STAGE_VDEV_IO_START >> 1, pipeline);
1248 ASSERT3U(zio->io_child_type, ==, ZIO_CHILD_VDEV);
1249
1250 zio->io_physdone = pio->io_physdone;
1251 if (vd->vdev_ops->vdev_op_leaf && zio->io_logical != NULL)
1252 zio->io_logical->io_phys_children++;
1253
1254 return (zio);
1255 }
1256
1257 zio_t *
1258 zio_vdev_delegated_io(vdev_t *vd, uint64_t offset, abd_t *data, uint64_t size,
1259 int type, zio_priority_t priority, enum zio_flag flags,
1260 zio_done_func_t *done, void *private)
1261 {
1262 zio_t *zio;
1263
1264 ASSERT(vd->vdev_ops->vdev_op_leaf);
1265
1266 zio = zio_create(NULL, vd->vdev_spa, 0, NULL,
1267 data, size, size, done, private, type, priority,
1268 flags | ZIO_FLAG_CANFAIL | ZIO_FLAG_DONT_RETRY | ZIO_FLAG_DELEGATED,
1269 vd, offset, NULL,
1270 ZIO_STAGE_VDEV_IO_START >> 1, ZIO_VDEV_CHILD_PIPELINE);
1271
1272 return (zio);
1273 }
1274
1275 void
1276 zio_flush(zio_t *zio, vdev_t *vd)
1277 {
1278 zio_nowait(zio_ioctl(zio, zio->io_spa, vd, DKIOCFLUSHWRITECACHE,
1279 NULL, NULL,
1280 ZIO_FLAG_CANFAIL | ZIO_FLAG_DONT_PROPAGATE | ZIO_FLAG_DONT_RETRY));
1281 }
1282
1283 void
1284 zio_shrink(zio_t *zio, uint64_t size)
1285 {
1286 ASSERT3P(zio->io_executor, ==, NULL);
1287 ASSERT3U(zio->io_orig_size, ==, zio->io_size);
1288 ASSERT3U(size, <=, zio->io_size);
1289
1290 /*
1291 * We don't shrink for raidz because of problems with the
1292 * reconstruction when reading back less than the block size.
1293 * Note, BP_IS_RAIDZ() assumes no compression.
1294 */
1295 ASSERT(BP_GET_COMPRESS(zio->io_bp) == ZIO_COMPRESS_OFF);
1296 if (!BP_IS_RAIDZ(zio->io_bp)) {
1297 /* we are not doing a raw write */
1298 ASSERT3U(zio->io_size, ==, zio->io_lsize);
1299 zio->io_orig_size = zio->io_size = zio->io_lsize = size;
1300 }
1301 }
1302
1303 /*
1304 * ==========================================================================
1305 * Prepare to read and write logical blocks
1306 * ==========================================================================
1307 */
1308
1309 static int
1310 zio_read_bp_init(zio_t *zio)
1311 {
1312 blkptr_t *bp = zio->io_bp;
1313 uint64_t psize =
1314 BP_IS_EMBEDDED(bp) ? BPE_GET_PSIZE(bp) : BP_GET_PSIZE(bp);
1315
1316 if (BP_GET_COMPRESS(bp) != ZIO_COMPRESS_OFF &&
1317 zio->io_child_type == ZIO_CHILD_LOGICAL &&
1318 !(zio->io_flags & ZIO_FLAG_RAW_COMPRESS)) {
1319 zio_push_transform(zio, abd_alloc_sametype(zio->io_abd, psize),
1320 psize, psize, zio_decompress);
1321 }
1322
1323 if (((BP_IS_PROTECTED(bp) && !(zio->io_flags & ZIO_FLAG_RAW_ENCRYPT)) ||
1324 BP_HAS_INDIRECT_MAC_CKSUM(bp)) &&
1325 zio->io_child_type == ZIO_CHILD_LOGICAL) {
1326 zio_push_transform(zio, abd_alloc_sametype(zio->io_abd, psize),
1327 psize, psize, zio_decrypt);
1328 }
1329
1330 if (BP_IS_EMBEDDED(bp) && BPE_GET_ETYPE(bp) == BP_EMBEDDED_TYPE_DATA) {
1331 int psize = BPE_GET_PSIZE(bp);
1332 void *data = abd_borrow_buf(zio->io_abd, psize);
1333
1334 zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
1335 decode_embedded_bp_compressed(bp, data);
1336 abd_return_buf_copy(zio->io_abd, data, psize);
1337 } else {
1338 ASSERT(!BP_IS_EMBEDDED(bp));
1339 }
1340
1341 if (!DMU_OT_IS_METADATA(BP_GET_TYPE(bp)) && BP_GET_LEVEL(bp) == 0)
1342 zio->io_flags |= ZIO_FLAG_DONT_CACHE;
1343
1344 if (BP_GET_TYPE(bp) == DMU_OT_DDT_ZAP)
1345 zio->io_flags |= ZIO_FLAG_DONT_CACHE;
1346
1347 if (BP_GET_DEDUP(bp) && zio->io_child_type == ZIO_CHILD_LOGICAL)
1348 zio->io_pipeline = ZIO_DDT_READ_PIPELINE;
1349
1350 return (ZIO_PIPELINE_CONTINUE);
1351 }
1352
1353 static int
1354 zio_write_bp_init(zio_t *zio)
1355 {
1356 if (!IO_IS_ALLOCATING(zio))
1357 return (ZIO_PIPELINE_CONTINUE);
1358
1359 ASSERT(zio->io_child_type != ZIO_CHILD_DDT);
1360
1361 if (zio->io_bp_override) {
1362 blkptr_t *bp = zio->io_bp;
1363 zio_prop_t *zp = &zio->io_prop;
1364
1365 ASSERT(bp->blk_birth != zio->io_txg);
1366 ASSERT(BP_GET_DEDUP(zio->io_bp_override) == 0);
1367
1368 *bp = *zio->io_bp_override;
1369 zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
1370
1371 if (BP_IS_EMBEDDED(bp))
1372 return (ZIO_PIPELINE_CONTINUE);
1373
1374 /*
1375 * If we've been overridden and nopwrite is set then
1376 * set the flag accordingly to indicate that a nopwrite
1377 * has already occurred.
1378 */
1379 if (!BP_IS_HOLE(bp) && zp->zp_nopwrite) {
1380 ASSERT(!zp->zp_dedup);
1381 ASSERT3U(BP_GET_CHECKSUM(bp), ==, zp->zp_checksum);
1382 zio->io_flags |= ZIO_FLAG_NOPWRITE;
1383 return (ZIO_PIPELINE_CONTINUE);
1384 }
1385
1386 ASSERT(!zp->zp_nopwrite);
1387
1388 if (BP_IS_HOLE(bp) || !zp->zp_dedup)
1389 return (ZIO_PIPELINE_CONTINUE);
1390
1391 ASSERT((zio_checksum_table[zp->zp_checksum].ci_flags &
1392 ZCHECKSUM_FLAG_DEDUP) || zp->zp_dedup_verify);
1393
1394 if (BP_GET_CHECKSUM(bp) == zp->zp_checksum &&
1395 !zp->zp_encrypt) {
1396 BP_SET_DEDUP(bp, 1);
1397 zio->io_pipeline |= ZIO_STAGE_DDT_WRITE;
1398 return (ZIO_PIPELINE_CONTINUE);
1399 }
1400
1401 /*
1402 * We were unable to handle this as an override bp, treat
1403 * it as a regular write I/O.
1404 */
1405 zio->io_bp_override = NULL;
1406 *bp = zio->io_bp_orig;
1407 zio->io_pipeline = zio->io_orig_pipeline;
1408 }
1409
1410 return (ZIO_PIPELINE_CONTINUE);
1411 }
1412
1413 static int
1414 zio_write_compress(zio_t *zio)
1415 {
1416 spa_t *spa = zio->io_spa;
1417 zio_prop_t *zp = &zio->io_prop;
1418 enum zio_compress compress = zp->zp_compress;
1419 blkptr_t *bp = zio->io_bp;
1420 uint64_t lsize = zio->io_lsize;
1421 uint64_t psize = zio->io_size;
1422 int pass = 1;
1423
1424 /*
1425 * If our children haven't all reached the ready stage,
1426 * wait for them and then repeat this pipeline stage.
1427 */
1428 if (zio_wait_for_children(zio, ZIO_CHILD_GANG, ZIO_WAIT_READY) ||
1429 zio_wait_for_children(zio, ZIO_CHILD_LOGICAL, ZIO_WAIT_READY))
1430 return (ZIO_PIPELINE_STOP);
1431
1432 if (!IO_IS_ALLOCATING(zio))
1433 return (ZIO_PIPELINE_CONTINUE);
1434
1435 if (zio->io_children_ready != NULL) {
1436 /*
1437 * Now that all our children are ready, run the callback
1438 * associated with this zio in case it wants to modify the
1439 * data to be written.
1440 */
1441 ASSERT3U(zp->zp_level, >, 0);
1442 zio->io_children_ready(zio);
1443 }
1444
1445 ASSERT(zio->io_child_type != ZIO_CHILD_DDT);
1446 ASSERT(zio->io_bp_override == NULL);
1447
1448 if (!BP_IS_HOLE(bp) && bp->blk_birth == zio->io_txg) {
1449 /*
1450 * We're rewriting an existing block, which means we're
1451 * working on behalf of spa_sync(). For spa_sync() to
1452 * converge, it must eventually be the case that we don't
1453 * have to allocate new blocks. But compression changes
1454 * the blocksize, which forces a reallocate, and makes
1455 * convergence take longer. Therefore, after the first
1456 * few passes, stop compressing to ensure convergence.
1457 */
1458 pass = spa_sync_pass(spa);
1459
1460 ASSERT(zio->io_txg == spa_syncing_txg(spa));
1461 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
1462 ASSERT(!BP_GET_DEDUP(bp));
1463
1464 if (pass >= zfs_sync_pass_dont_compress)
1465 compress = ZIO_COMPRESS_OFF;
1466
1467 /* Make sure someone doesn't change their mind on overwrites */
1468 ASSERT(BP_IS_EMBEDDED(bp) || MIN(zp->zp_copies + BP_IS_GANG(bp),
1469 spa_max_replication(spa)) == BP_GET_NDVAS(bp));
1470 }
1471
1472 /* If it's a compressed write that is not raw, compress the buffer. */
1473 if (compress != ZIO_COMPRESS_OFF &&
1474 !(zio->io_flags & ZIO_FLAG_RAW_COMPRESS)) {
1475 void *cbuf = zio_buf_alloc(lsize);
1476 psize = zio_compress_data(compress, zio->io_abd, cbuf, lsize);
1477 if (psize == 0 || psize == lsize) {
1478 compress = ZIO_COMPRESS_OFF;
1479 zio_buf_free(cbuf, lsize);
1480 } else if (!zp->zp_dedup && !zp->zp_encrypt &&
1481 psize <= BPE_PAYLOAD_SIZE &&
1482 zp->zp_level == 0 && !DMU_OT_HAS_FILL(zp->zp_type) &&
1483 spa_feature_is_enabled(spa, SPA_FEATURE_EMBEDDED_DATA)) {
1484 encode_embedded_bp_compressed(bp,
1485 cbuf, compress, lsize, psize);
1486 BPE_SET_ETYPE(bp, BP_EMBEDDED_TYPE_DATA);
1487 BP_SET_TYPE(bp, zio->io_prop.zp_type);
1488 BP_SET_LEVEL(bp, zio->io_prop.zp_level);
1489 zio_buf_free(cbuf, lsize);
1490 bp->blk_birth = zio->io_txg;
1491 zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
1492 ASSERT(spa_feature_is_active(spa,
1493 SPA_FEATURE_EMBEDDED_DATA));
1494 return (ZIO_PIPELINE_CONTINUE);
1495 } else {
1496 /*
1497 * Round up compressed size up to the ashift
1498 * of the smallest-ashift device, and zero the tail.
1499 * This ensures that the compressed size of the BP
1500 * (and thus compressratio property) are correct,
1501 * in that we charge for the padding used to fill out
1502 * the last sector.
1503 */
1504 ASSERT3U(spa->spa_min_ashift, >=, SPA_MINBLOCKSHIFT);
1505 size_t rounded = (size_t)P2ROUNDUP(psize,
1506 1ULL << spa->spa_min_ashift);
1507 if (rounded >= lsize) {
1508 compress = ZIO_COMPRESS_OFF;
1509 zio_buf_free(cbuf, lsize);
1510 psize = lsize;
1511 } else {
1512 abd_t *cdata = abd_get_from_buf(cbuf, lsize);
1513 abd_take_ownership_of_buf(cdata, B_TRUE);
1514 abd_zero_off(cdata, psize, rounded - psize);
1515 psize = rounded;
1516 zio_push_transform(zio, cdata,
1517 psize, lsize, NULL);
1518 }
1519 }
1520
1521 /*
1522 * We were unable to handle this as an override bp, treat
1523 * it as a regular write I/O.
1524 */
1525 zio->io_bp_override = NULL;
1526 *bp = zio->io_bp_orig;
1527 zio->io_pipeline = zio->io_orig_pipeline;
1528
1529 } else {
1530 ASSERT3U(psize, !=, 0);
1531
1532 }
1533
1534 /*
1535 * The final pass of spa_sync() must be all rewrites, but the first
1536 * few passes offer a trade-off: allocating blocks defers convergence,
1537 * but newly allocated blocks are sequential, so they can be written
1538 * to disk faster. Therefore, we allow the first few passes of
1539 * spa_sync() to allocate new blocks, but force rewrites after that.
1540 * There should only be a handful of blocks after pass 1 in any case.
1541 */
1542 if (!BP_IS_HOLE(bp) && bp->blk_birth == zio->io_txg &&
1543 BP_GET_PSIZE(bp) == psize &&
1544 pass >= zfs_sync_pass_rewrite) {
1545 ASSERT(psize != 0);
1546 enum zio_stage gang_stages = zio->io_pipeline & ZIO_GANG_STAGES;
1547 zio->io_pipeline = ZIO_REWRITE_PIPELINE | gang_stages;
1548 zio->io_flags |= ZIO_FLAG_IO_REWRITE;
1549 } else {
1550 BP_ZERO(bp);
1551 zio->io_pipeline = ZIO_WRITE_PIPELINE;
1552 }
1553
1554 if (psize == 0) {
1555 if (zio->io_bp_orig.blk_birth != 0 &&
1556 spa_feature_is_active(spa, SPA_FEATURE_HOLE_BIRTH)) {
1557 BP_SET_LSIZE(bp, lsize);
1558 BP_SET_TYPE(bp, zp->zp_type);
1559 BP_SET_LEVEL(bp, zp->zp_level);
1560 BP_SET_BIRTH(bp, zio->io_txg, 0);
1561 }
1562 zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
1563 } else {
1564 ASSERT(zp->zp_checksum != ZIO_CHECKSUM_GANG_HEADER);
1565 BP_SET_LSIZE(bp, lsize);
1566 BP_SET_TYPE(bp, zp->zp_type);
1567 BP_SET_LEVEL(bp, zp->zp_level);
1568 BP_SET_PSIZE(bp, psize);
1569 BP_SET_COMPRESS(bp, compress);
1570 BP_SET_CHECKSUM(bp, zp->zp_checksum);
1571 BP_SET_DEDUP(bp, zp->zp_dedup);
1572 BP_SET_BYTEORDER(bp, ZFS_HOST_BYTEORDER);
1573 if (zp->zp_dedup) {
1574 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
1575 ASSERT(!(zio->io_flags & ZIO_FLAG_IO_REWRITE));
1576 ASSERT(!zp->zp_encrypt ||
1577 DMU_OT_IS_ENCRYPTED(zp->zp_type));
1578 zio->io_pipeline = ZIO_DDT_WRITE_PIPELINE;
1579 }
1580 if (zp->zp_nopwrite) {
1581 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
1582 ASSERT(!(zio->io_flags & ZIO_FLAG_IO_REWRITE));
1583 zio->io_pipeline |= ZIO_STAGE_NOP_WRITE;
1584 }
1585 }
1586 return (ZIO_PIPELINE_CONTINUE);
1587 }
1588
1589 static int
1590 zio_free_bp_init(zio_t *zio)
1591 {
1592 blkptr_t *bp = zio->io_bp;
1593
1594 if (zio->io_child_type == ZIO_CHILD_LOGICAL) {
1595 if (BP_GET_DEDUP(bp))
1596 zio->io_pipeline = ZIO_DDT_FREE_PIPELINE;
1597 }
1598
1599 return (ZIO_PIPELINE_CONTINUE);
1600 }
1601
1602 /*
1603 * ==========================================================================
1604 * Execute the I/O pipeline
1605 * ==========================================================================
1606 */
1607
1608 static void
1609 zio_taskq_dispatch(zio_t *zio, zio_taskq_type_t q, boolean_t cutinline)
1610 {
1611 spa_t *spa = zio->io_spa;
1612 zio_type_t t = zio->io_type;
1613 int flags = (cutinline ? TQ_FRONT : 0);
1614
1615 /*
1616 * If we're a config writer or a probe, the normal issue and
1617 * interrupt threads may all be blocked waiting for the config lock.
1618 * In this case, select the otherwise-unused taskq for ZIO_TYPE_NULL.
1619 */
1620 if (zio->io_flags & (ZIO_FLAG_CONFIG_WRITER | ZIO_FLAG_PROBE))
1621 t = ZIO_TYPE_NULL;
1622
1623 /*
1624 * A similar issue exists for the L2ARC write thread until L2ARC 2.0.
1625 */
1626 if (t == ZIO_TYPE_WRITE && zio->io_vd && zio->io_vd->vdev_aux)
1627 t = ZIO_TYPE_NULL;
1628
1629 /*
1630 * If this is a high priority I/O, then use the high priority taskq if
1631 * available.
1632 */
1633 if (zio->io_priority == ZIO_PRIORITY_NOW &&
1634 spa->spa_zio_taskq[t][q + 1].stqs_count != 0)
1635 q++;
1636
1637 ASSERT3U(q, <, ZIO_TASKQ_TYPES);
1638
1639 /*
1640 * NB: We are assuming that the zio can only be dispatched
1641 * to a single taskq at a time. It would be a grievous error
1642 * to dispatch the zio to another taskq at the same time.
1643 */
1644 ASSERT(taskq_empty_ent(&zio->io_tqent));
1645 spa_taskq_dispatch_ent(spa, t, q, (task_func_t *)zio_execute, zio,
1646 flags, &zio->io_tqent);
1647 }
1648
1649 static boolean_t
1650 zio_taskq_member(zio_t *zio, zio_taskq_type_t q)
1651 {
1652 kthread_t *executor = zio->io_executor;
1653 spa_t *spa = zio->io_spa;
1654
1655 for (zio_type_t t = 0; t < ZIO_TYPES; t++) {
1656 spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q];
1657 uint_t i;
1658 for (i = 0; i < tqs->stqs_count; i++) {
1659 if (taskq_member(tqs->stqs_taskq[i], executor))
1660 return (B_TRUE);
1661 }
1662 }
1663
1664 return (B_FALSE);
1665 }
1666
1667 static int
1668 zio_issue_async(zio_t *zio)
1669 {
1670 zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE, B_FALSE);
1671
1672 return (ZIO_PIPELINE_STOP);
1673 }
1674
1675 void
1676 zio_interrupt(zio_t *zio)
1677 {
1678 zio_taskq_dispatch(zio, ZIO_TASKQ_INTERRUPT, B_FALSE);
1679 }
1680
1681 void
1682 zio_delay_interrupt(zio_t *zio)
1683 {
1684 /*
1685 * The timeout_generic() function isn't defined in userspace, so
1686 * rather than trying to implement the function, the zio delay
1687 * functionality has been disabled for userspace builds.
1688 */
1689
1690 #ifdef _KERNEL
1691 /*
1692 * If io_target_timestamp is zero, then no delay has been registered
1693 * for this IO, thus jump to the end of this function and "skip" the
1694 * delay; issuing it directly to the zio layer.
1695 */
1696 if (zio->io_target_timestamp != 0) {
1697 hrtime_t now = gethrtime();
1698
1699 if (now >= zio->io_target_timestamp) {
1700 /*
1701 * This IO has already taken longer than the target
1702 * delay to complete, so we don't want to delay it
1703 * any longer; we "miss" the delay and issue it
1704 * directly to the zio layer. This is likely due to
1705 * the target latency being set to a value less than
1706 * the underlying hardware can satisfy (e.g. delay
1707 * set to 1ms, but the disks take 10ms to complete an
1708 * IO request).
1709 */
1710
1711 DTRACE_PROBE2(zio__delay__miss, zio_t *, zio,
1712 hrtime_t, now);
1713
1714 zio_interrupt(zio);
1715 } else {
1716 taskqid_t tid;
1717 hrtime_t diff = zio->io_target_timestamp - now;
1718 clock_t expire_at_tick = ddi_get_lbolt() +
1719 NSEC_TO_TICK(diff);
1720
1721 DTRACE_PROBE3(zio__delay__hit, zio_t *, zio,
1722 hrtime_t, now, hrtime_t, diff);
1723
1724 if (NSEC_TO_TICK(diff) == 0) {
1725 /* Our delay is less than a jiffy - just spin */
1726 zfs_sleep_until(zio->io_target_timestamp);
1727 } else {
1728 /*
1729 * Use taskq_dispatch_delay() in the place of
1730 * OpenZFS's timeout_generic().
1731 */
1732 tid = taskq_dispatch_delay(system_taskq,
1733 (task_func_t *)zio_interrupt,
1734 zio, TQ_NOSLEEP, expire_at_tick);
1735 if (tid == TASKQID_INVALID) {
1736 /*
1737 * Couldn't allocate a task. Just
1738 * finish the zio without a delay.
1739 */
1740 zio_interrupt(zio);
1741 }
1742 }
1743 }
1744 return;
1745 }
1746 #endif
1747 DTRACE_PROBE1(zio__delay__skip, zio_t *, zio);
1748 zio_interrupt(zio);
1749 }
1750
1751 /*
1752 * Execute the I/O pipeline until one of the following occurs:
1753 * (1) the I/O completes; (2) the pipeline stalls waiting for
1754 * dependent child I/Os; (3) the I/O issues, so we're waiting
1755 * for an I/O completion interrupt; (4) the I/O is delegated by
1756 * vdev-level caching or aggregation; (5) the I/O is deferred
1757 * due to vdev-level queueing; (6) the I/O is handed off to
1758 * another thread. In all cases, the pipeline stops whenever
1759 * there's no CPU work; it never burns a thread in cv_wait_io().
1760 *
1761 * There's no locking on io_stage because there's no legitimate way
1762 * for multiple threads to be attempting to process the same I/O.
1763 */
1764 static zio_pipe_stage_t *zio_pipeline[];
1765
1766 /*
1767 * zio_execute() is a wrapper around the static function
1768 * __zio_execute() so that we can force __zio_execute() to be
1769 * inlined. This reduces stack overhead which is important
1770 * because __zio_execute() is called recursively in several zio
1771 * code paths. zio_execute() itself cannot be inlined because
1772 * it is externally visible.
1773 */
1774 void
1775 zio_execute(zio_t *zio)
1776 {
1777 fstrans_cookie_t cookie;
1778
1779 cookie = spl_fstrans_mark();
1780 __zio_execute(zio);
1781 spl_fstrans_unmark(cookie);
1782 }
1783
1784 /*
1785 * Used to determine if in the current context the stack is sized large
1786 * enough to allow zio_execute() to be called recursively. A minimum
1787 * stack size of 16K is required to avoid needing to re-dispatch the zio.
1788 */
1789 boolean_t
1790 zio_execute_stack_check(zio_t *zio)
1791 {
1792 #if !defined(HAVE_LARGE_STACKS)
1793 dsl_pool_t *dp = spa_get_dsl(zio->io_spa);
1794
1795 /* Executing in txg_sync_thread() context. */
1796 if (dp && curthread == dp->dp_tx.tx_sync_thread)
1797 return (B_TRUE);
1798
1799 /* Pool initialization outside of zio_taskq context. */
1800 if (dp && spa_is_initializing(dp->dp_spa) &&
1801 !zio_taskq_member(zio, ZIO_TASKQ_ISSUE) &&
1802 !zio_taskq_member(zio, ZIO_TASKQ_ISSUE_HIGH))
1803 return (B_TRUE);
1804 #endif /* HAVE_LARGE_STACKS */
1805
1806 return (B_FALSE);
1807 }
1808
1809 __attribute__((always_inline))
1810 static inline void
1811 __zio_execute(zio_t *zio)
1812 {
1813 zio->io_executor = curthread;
1814
1815 ASSERT3U(zio->io_queued_timestamp, >, 0);
1816
1817 while (zio->io_stage < ZIO_STAGE_DONE) {
1818 enum zio_stage pipeline = zio->io_pipeline;
1819 enum zio_stage stage = zio->io_stage;
1820 int rv;
1821
1822 ASSERT(!MUTEX_HELD(&zio->io_lock));
1823 ASSERT(ISP2(stage));
1824 ASSERT(zio->io_stall == NULL);
1825
1826 do {
1827 stage <<= 1;
1828 } while ((stage & pipeline) == 0);
1829
1830 ASSERT(stage <= ZIO_STAGE_DONE);
1831
1832 /*
1833 * If we are in interrupt context and this pipeline stage
1834 * will grab a config lock that is held across I/O,
1835 * or may wait for an I/O that needs an interrupt thread
1836 * to complete, issue async to avoid deadlock.
1837 *
1838 * For VDEV_IO_START, we cut in line so that the io will
1839 * be sent to disk promptly.
1840 */
1841 if ((stage & ZIO_BLOCKING_STAGES) && zio->io_vd == NULL &&
1842 zio_taskq_member(zio, ZIO_TASKQ_INTERRUPT)) {
1843 boolean_t cut = (stage == ZIO_STAGE_VDEV_IO_START) ?
1844 zio_requeue_io_start_cut_in_line : B_FALSE;
1845 zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE, cut);
1846 return;
1847 }
1848
1849 /*
1850 * If the current context doesn't have large enough stacks
1851 * the zio must be issued asynchronously to prevent overflow.
1852 */
1853 if (zio_execute_stack_check(zio)) {
1854 boolean_t cut = (stage == ZIO_STAGE_VDEV_IO_START) ?
1855 zio_requeue_io_start_cut_in_line : B_FALSE;
1856 zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE, cut);
1857 return;
1858 }
1859
1860 zio->io_stage = stage;
1861 zio->io_pipeline_trace |= zio->io_stage;
1862 rv = zio_pipeline[highbit64(stage) - 1](zio);
1863
1864 if (rv == ZIO_PIPELINE_STOP)
1865 return;
1866
1867 ASSERT(rv == ZIO_PIPELINE_CONTINUE);
1868 }
1869 }
1870
1871
1872 /*
1873 * ==========================================================================
1874 * Initiate I/O, either sync or async
1875 * ==========================================================================
1876 */
1877 int
1878 zio_wait(zio_t *zio)
1879 {
1880 int error;
1881
1882 ASSERT3S(zio->io_stage, ==, ZIO_STAGE_OPEN);
1883 ASSERT3P(zio->io_executor, ==, NULL);
1884
1885 zio->io_waiter = curthread;
1886 ASSERT0(zio->io_queued_timestamp);
1887 zio->io_queued_timestamp = gethrtime();
1888
1889 __zio_execute(zio);
1890
1891 mutex_enter(&zio->io_lock);
1892 while (zio->io_executor != NULL)
1893 cv_wait_io(&zio->io_cv, &zio->io_lock);
1894 mutex_exit(&zio->io_lock);
1895
1896 error = zio->io_error;
1897 zio_destroy(zio);
1898
1899 return (error);
1900 }
1901
1902 void
1903 zio_nowait(zio_t *zio)
1904 {
1905 ASSERT3P(zio->io_executor, ==, NULL);
1906
1907 if (zio->io_child_type == ZIO_CHILD_LOGICAL &&
1908 zio_unique_parent(zio) == NULL) {
1909 zio_t *pio;
1910
1911 /*
1912 * This is a logical async I/O with no parent to wait for it.
1913 * We add it to the spa_async_root_zio "Godfather" I/O which
1914 * will ensure they complete prior to unloading the pool.
1915 */
1916 spa_t *spa = zio->io_spa;
1917 kpreempt_disable();
1918 pio = spa->spa_async_zio_root[CPU_SEQID];
1919 kpreempt_enable();
1920
1921 zio_add_child(pio, zio);
1922 }
1923
1924 ASSERT0(zio->io_queued_timestamp);
1925 zio->io_queued_timestamp = gethrtime();
1926 __zio_execute(zio);
1927 }
1928
1929 /*
1930 * ==========================================================================
1931 * Reexecute, cancel, or suspend/resume failed I/O
1932 * ==========================================================================
1933 */
1934
1935 static void
1936 zio_reexecute(zio_t *pio)
1937 {
1938 zio_t *cio, *cio_next;
1939
1940 ASSERT(pio->io_child_type == ZIO_CHILD_LOGICAL);
1941 ASSERT(pio->io_orig_stage == ZIO_STAGE_OPEN);
1942 ASSERT(pio->io_gang_leader == NULL);
1943 ASSERT(pio->io_gang_tree == NULL);
1944
1945 pio->io_flags = pio->io_orig_flags;
1946 pio->io_stage = pio->io_orig_stage;
1947 pio->io_pipeline = pio->io_orig_pipeline;
1948 pio->io_reexecute = 0;
1949 pio->io_flags |= ZIO_FLAG_REEXECUTED;
1950 pio->io_pipeline_trace = 0;
1951 pio->io_error = 0;
1952 for (int w = 0; w < ZIO_WAIT_TYPES; w++)
1953 pio->io_state[w] = 0;
1954 for (int c = 0; c < ZIO_CHILD_TYPES; c++)
1955 pio->io_child_error[c] = 0;
1956
1957 if (IO_IS_ALLOCATING(pio))
1958 BP_ZERO(pio->io_bp);
1959
1960 /*
1961 * As we reexecute pio's children, new children could be created.
1962 * New children go to the head of pio's io_child_list, however,
1963 * so we will (correctly) not reexecute them. The key is that
1964 * the remainder of pio's io_child_list, from 'cio_next' onward,
1965 * cannot be affected by any side effects of reexecuting 'cio'.
1966 */
1967 zio_link_t *zl = NULL;
1968 mutex_enter(&pio->io_lock);
1969 for (cio = zio_walk_children(pio, &zl); cio != NULL; cio = cio_next) {
1970 cio_next = zio_walk_children(pio, &zl);
1971 for (int w = 0; w < ZIO_WAIT_TYPES; w++)
1972 pio->io_children[cio->io_child_type][w]++;
1973 mutex_exit(&pio->io_lock);
1974 zio_reexecute(cio);
1975 mutex_enter(&pio->io_lock);
1976 }
1977 mutex_exit(&pio->io_lock);
1978
1979 /*
1980 * Now that all children have been reexecuted, execute the parent.
1981 * We don't reexecute "The Godfather" I/O here as it's the
1982 * responsibility of the caller to wait on it.
1983 */
1984 if (!(pio->io_flags & ZIO_FLAG_GODFATHER)) {
1985 pio->io_queued_timestamp = gethrtime();
1986 __zio_execute(pio);
1987 }
1988 }
1989
1990 void
1991 zio_suspend(spa_t *spa, zio_t *zio)
1992 {
1993 if (spa_get_failmode(spa) == ZIO_FAILURE_MODE_PANIC)
1994 fm_panic("Pool '%s' has encountered an uncorrectable I/O "
1995 "failure and the failure mode property for this pool "
1996 "is set to panic.", spa_name(spa));
1997
1998 cmn_err(CE_WARN, "Pool '%s' has encountered an uncorrectable I/O "
1999 "failure and has been suspended.\n", spa_name(spa));
2000
2001 zfs_ereport_post(FM_EREPORT_ZFS_IO_FAILURE, spa, NULL,
2002 NULL, NULL, 0, 0);
2003
2004 mutex_enter(&spa->spa_suspend_lock);
2005
2006 if (spa->spa_suspend_zio_root == NULL)
2007 spa->spa_suspend_zio_root = zio_root(spa, NULL, NULL,
2008 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE |
2009 ZIO_FLAG_GODFATHER);
2010
2011 spa->spa_suspended = B_TRUE;
2012
2013 if (zio != NULL) {
2014 ASSERT(!(zio->io_flags & ZIO_FLAG_GODFATHER));
2015 ASSERT(zio != spa->spa_suspend_zio_root);
2016 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
2017 ASSERT(zio_unique_parent(zio) == NULL);
2018 ASSERT(zio->io_stage == ZIO_STAGE_DONE);
2019 zio_add_child(spa->spa_suspend_zio_root, zio);
2020 }
2021
2022 mutex_exit(&spa->spa_suspend_lock);
2023 }
2024
2025 int
2026 zio_resume(spa_t *spa)
2027 {
2028 zio_t *pio;
2029
2030 /*
2031 * Reexecute all previously suspended i/o.
2032 */
2033 mutex_enter(&spa->spa_suspend_lock);
2034 spa->spa_suspended = B_FALSE;
2035 cv_broadcast(&spa->spa_suspend_cv);
2036 pio = spa->spa_suspend_zio_root;
2037 spa->spa_suspend_zio_root = NULL;
2038 mutex_exit(&spa->spa_suspend_lock);
2039
2040 if (pio == NULL)
2041 return (0);
2042
2043 zio_reexecute(pio);
2044 return (zio_wait(pio));
2045 }
2046
2047 void
2048 zio_resume_wait(spa_t *spa)
2049 {
2050 mutex_enter(&spa->spa_suspend_lock);
2051 while (spa_suspended(spa))
2052 cv_wait(&spa->spa_suspend_cv, &spa->spa_suspend_lock);
2053 mutex_exit(&spa->spa_suspend_lock);
2054 }
2055
2056 /*
2057 * ==========================================================================
2058 * Gang blocks.
2059 *
2060 * A gang block is a collection of small blocks that looks to the DMU
2061 * like one large block. When zio_dva_allocate() cannot find a block
2062 * of the requested size, due to either severe fragmentation or the pool
2063 * being nearly full, it calls zio_write_gang_block() to construct the
2064 * block from smaller fragments.
2065 *
2066 * A gang block consists of a gang header (zio_gbh_phys_t) and up to
2067 * three (SPA_GBH_NBLKPTRS) gang members. The gang header is just like
2068 * an indirect block: it's an array of block pointers. It consumes
2069 * only one sector and hence is allocatable regardless of fragmentation.
2070 * The gang header's bps point to its gang members, which hold the data.
2071 *
2072 * Gang blocks are self-checksumming, using the bp's <vdev, offset, txg>
2073 * as the verifier to ensure uniqueness of the SHA256 checksum.
2074 * Critically, the gang block bp's blk_cksum is the checksum of the data,
2075 * not the gang header. This ensures that data block signatures (needed for
2076 * deduplication) are independent of how the block is physically stored.
2077 *
2078 * Gang blocks can be nested: a gang member may itself be a gang block.
2079 * Thus every gang block is a tree in which root and all interior nodes are
2080 * gang headers, and the leaves are normal blocks that contain user data.
2081 * The root of the gang tree is called the gang leader.
2082 *
2083 * To perform any operation (read, rewrite, free, claim) on a gang block,
2084 * zio_gang_assemble() first assembles the gang tree (minus data leaves)
2085 * in the io_gang_tree field of the original logical i/o by recursively
2086 * reading the gang leader and all gang headers below it. This yields
2087 * an in-core tree containing the contents of every gang header and the
2088 * bps for every constituent of the gang block.
2089 *
2090 * With the gang tree now assembled, zio_gang_issue() just walks the gang tree
2091 * and invokes a callback on each bp. To free a gang block, zio_gang_issue()
2092 * calls zio_free_gang() -- a trivial wrapper around zio_free() -- for each bp.
2093 * zio_claim_gang() provides a similarly trivial wrapper for zio_claim().
2094 * zio_read_gang() is a wrapper around zio_read() that omits reading gang
2095 * headers, since we already have those in io_gang_tree. zio_rewrite_gang()
2096 * performs a zio_rewrite() of the data or, for gang headers, a zio_rewrite()
2097 * of the gang header plus zio_checksum_compute() of the data to update the
2098 * gang header's blk_cksum as described above.
2099 *
2100 * The two-phase assemble/issue model solves the problem of partial failure --
2101 * what if you'd freed part of a gang block but then couldn't read the
2102 * gang header for another part? Assembling the entire gang tree first
2103 * ensures that all the necessary gang header I/O has succeeded before
2104 * starting the actual work of free, claim, or write. Once the gang tree
2105 * is assembled, free and claim are in-memory operations that cannot fail.
2106 *
2107 * In the event that a gang write fails, zio_dva_unallocate() walks the
2108 * gang tree to immediately free (i.e. insert back into the space map)
2109 * everything we've allocated. This ensures that we don't get ENOSPC
2110 * errors during repeated suspend/resume cycles due to a flaky device.
2111 *
2112 * Gang rewrites only happen during sync-to-convergence. If we can't assemble
2113 * the gang tree, we won't modify the block, so we can safely defer the free
2114 * (knowing that the block is still intact). If we *can* assemble the gang
2115 * tree, then even if some of the rewrites fail, zio_dva_unallocate() will free
2116 * each constituent bp and we can allocate a new block on the next sync pass.
2117 *
2118 * In all cases, the gang tree allows complete recovery from partial failure.
2119 * ==========================================================================
2120 */
2121
2122 static void
2123 zio_gang_issue_func_done(zio_t *zio)
2124 {
2125 abd_put(zio->io_abd);
2126 }
2127
2128 static zio_t *
2129 zio_read_gang(zio_t *pio, blkptr_t *bp, zio_gang_node_t *gn, abd_t *data,
2130 uint64_t offset)
2131 {
2132 if (gn != NULL)
2133 return (pio);
2134
2135 return (zio_read(pio, pio->io_spa, bp, abd_get_offset(data, offset),
2136 BP_GET_PSIZE(bp), zio_gang_issue_func_done,
2137 NULL, pio->io_priority, ZIO_GANG_CHILD_FLAGS(pio),
2138 &pio->io_bookmark));
2139 }
2140
2141 static zio_t *
2142 zio_rewrite_gang(zio_t *pio, blkptr_t *bp, zio_gang_node_t *gn, abd_t *data,
2143 uint64_t offset)
2144 {
2145 zio_t *zio;
2146
2147 if (gn != NULL) {
2148 abd_t *gbh_abd =
2149 abd_get_from_buf(gn->gn_gbh, SPA_GANGBLOCKSIZE);
2150 zio = zio_rewrite(pio, pio->io_spa, pio->io_txg, bp,
2151 gbh_abd, SPA_GANGBLOCKSIZE, zio_gang_issue_func_done, NULL,
2152 pio->io_priority, ZIO_GANG_CHILD_FLAGS(pio),
2153 &pio->io_bookmark);
2154 /*
2155 * As we rewrite each gang header, the pipeline will compute
2156 * a new gang block header checksum for it; but no one will
2157 * compute a new data checksum, so we do that here. The one
2158 * exception is the gang leader: the pipeline already computed
2159 * its data checksum because that stage precedes gang assembly.
2160 * (Presently, nothing actually uses interior data checksums;
2161 * this is just good hygiene.)
2162 */
2163 if (gn != pio->io_gang_leader->io_gang_tree) {
2164 abd_t *buf = abd_get_offset(data, offset);
2165
2166 zio_checksum_compute(zio, BP_GET_CHECKSUM(bp),
2167 buf, BP_GET_PSIZE(bp));
2168
2169 abd_put(buf);
2170 }
2171 /*
2172 * If we are here to damage data for testing purposes,
2173 * leave the GBH alone so that we can detect the damage.
2174 */
2175 if (pio->io_gang_leader->io_flags & ZIO_FLAG_INDUCE_DAMAGE)
2176 zio->io_pipeline &= ~ZIO_VDEV_IO_STAGES;
2177 } else {
2178 zio = zio_rewrite(pio, pio->io_spa, pio->io_txg, bp,
2179 abd_get_offset(data, offset), BP_GET_PSIZE(bp),
2180 zio_gang_issue_func_done, NULL, pio->io_priority,
2181 ZIO_GANG_CHILD_FLAGS(pio), &pio->io_bookmark);
2182 }
2183
2184 return (zio);
2185 }
2186
2187 /* ARGSUSED */
2188 static zio_t *
2189 zio_free_gang(zio_t *pio, blkptr_t *bp, zio_gang_node_t *gn, abd_t *data,
2190 uint64_t offset)
2191 {
2192 return (zio_free_sync(pio, pio->io_spa, pio->io_txg, bp,
2193 ZIO_GANG_CHILD_FLAGS(pio)));
2194 }
2195
2196 /* ARGSUSED */
2197 static zio_t *
2198 zio_claim_gang(zio_t *pio, blkptr_t *bp, zio_gang_node_t *gn, abd_t *data,
2199 uint64_t offset)
2200 {
2201 return (zio_claim(pio, pio->io_spa, pio->io_txg, bp,
2202 NULL, NULL, ZIO_GANG_CHILD_FLAGS(pio)));
2203 }
2204
2205 static zio_gang_issue_func_t *zio_gang_issue_func[ZIO_TYPES] = {
2206 NULL,
2207 zio_read_gang,
2208 zio_rewrite_gang,
2209 zio_free_gang,
2210 zio_claim_gang,
2211 NULL
2212 };
2213
2214 static void zio_gang_tree_assemble_done(zio_t *zio);
2215
2216 static zio_gang_node_t *
2217 zio_gang_node_alloc(zio_gang_node_t **gnpp)
2218 {
2219 zio_gang_node_t *gn;
2220
2221 ASSERT(*gnpp == NULL);
2222
2223 gn = kmem_zalloc(sizeof (*gn), KM_SLEEP);
2224 gn->gn_gbh = zio_buf_alloc(SPA_GANGBLOCKSIZE);
2225 *gnpp = gn;
2226
2227 return (gn);
2228 }
2229
2230 static void
2231 zio_gang_node_free(zio_gang_node_t **gnpp)
2232 {
2233 zio_gang_node_t *gn = *gnpp;
2234
2235 for (int g = 0; g < SPA_GBH_NBLKPTRS; g++)
2236 ASSERT(gn->gn_child[g] == NULL);
2237
2238 zio_buf_free(gn->gn_gbh, SPA_GANGBLOCKSIZE);
2239 kmem_free(gn, sizeof (*gn));
2240 *gnpp = NULL;
2241 }
2242
2243 static void
2244 zio_gang_tree_free(zio_gang_node_t **gnpp)
2245 {
2246 zio_gang_node_t *gn = *gnpp;
2247
2248 if (gn == NULL)
2249 return;
2250
2251 for (int g = 0; g < SPA_GBH_NBLKPTRS; g++)
2252 zio_gang_tree_free(&gn->gn_child[g]);
2253
2254 zio_gang_node_free(gnpp);
2255 }
2256
2257 static void
2258 zio_gang_tree_assemble(zio_t *gio, blkptr_t *bp, zio_gang_node_t **gnpp)
2259 {
2260 zio_gang_node_t *gn = zio_gang_node_alloc(gnpp);
2261 abd_t *gbh_abd = abd_get_from_buf(gn->gn_gbh, SPA_GANGBLOCKSIZE);
2262
2263 ASSERT(gio->io_gang_leader == gio);
2264 ASSERT(BP_IS_GANG(bp));
2265
2266 zio_nowait(zio_read(gio, gio->io_spa, bp, gbh_abd, SPA_GANGBLOCKSIZE,
2267 zio_gang_tree_assemble_done, gn, gio->io_priority,
2268 ZIO_GANG_CHILD_FLAGS(gio), &gio->io_bookmark));
2269 }
2270
2271 static void
2272 zio_gang_tree_assemble_done(zio_t *zio)
2273 {
2274 zio_t *gio = zio->io_gang_leader;
2275 zio_gang_node_t *gn = zio->io_private;
2276 blkptr_t *bp = zio->io_bp;
2277
2278 ASSERT(gio == zio_unique_parent(zio));
2279 ASSERT(zio->io_child_count == 0);
2280
2281 if (zio->io_error)
2282 return;
2283
2284 /* this ABD was created from a linear buf in zio_gang_tree_assemble */
2285 if (BP_SHOULD_BYTESWAP(bp))
2286 byteswap_uint64_array(abd_to_buf(zio->io_abd), zio->io_size);
2287
2288 ASSERT3P(abd_to_buf(zio->io_abd), ==, gn->gn_gbh);
2289 ASSERT(zio->io_size == SPA_GANGBLOCKSIZE);
2290 ASSERT(gn->gn_gbh->zg_tail.zec_magic == ZEC_MAGIC);
2291
2292 abd_put(zio->io_abd);
2293
2294 for (int g = 0; g < SPA_GBH_NBLKPTRS; g++) {
2295 blkptr_t *gbp = &gn->gn_gbh->zg_blkptr[g];
2296 if (!BP_IS_GANG(gbp))
2297 continue;
2298 zio_gang_tree_assemble(gio, gbp, &gn->gn_child[g]);
2299 }
2300 }
2301
2302 static void
2303 zio_gang_tree_issue(zio_t *pio, zio_gang_node_t *gn, blkptr_t *bp, abd_t *data,
2304 uint64_t offset)
2305 {
2306 zio_t *gio = pio->io_gang_leader;
2307 zio_t *zio;
2308
2309 ASSERT(BP_IS_GANG(bp) == !!gn);
2310 ASSERT(BP_GET_CHECKSUM(bp) == BP_GET_CHECKSUM(gio->io_bp));
2311 ASSERT(BP_GET_LSIZE(bp) == BP_GET_PSIZE(bp) || gn == gio->io_gang_tree);
2312
2313 /*
2314 * If you're a gang header, your data is in gn->gn_gbh.
2315 * If you're a gang member, your data is in 'data' and gn == NULL.
2316 */
2317 zio = zio_gang_issue_func[gio->io_type](pio, bp, gn, data, offset);
2318
2319 if (gn != NULL) {
2320 ASSERT(gn->gn_gbh->zg_tail.zec_magic == ZEC_MAGIC);
2321
2322 for (int g = 0; g < SPA_GBH_NBLKPTRS; g++) {
2323 blkptr_t *gbp = &gn->gn_gbh->zg_blkptr[g];
2324 if (BP_IS_HOLE(gbp))
2325 continue;
2326 zio_gang_tree_issue(zio, gn->gn_child[g], gbp, data,
2327 offset);
2328 offset += BP_GET_PSIZE(gbp);
2329 }
2330 }
2331
2332 if (gn == gio->io_gang_tree)
2333 ASSERT3U(gio->io_size, ==, offset);
2334
2335 if (zio != pio)
2336 zio_nowait(zio);
2337 }
2338
2339 static int
2340 zio_gang_assemble(zio_t *zio)
2341 {
2342 blkptr_t *bp = zio->io_bp;
2343
2344 ASSERT(BP_IS_GANG(bp) && zio->io_gang_leader == NULL);
2345 ASSERT(zio->io_child_type > ZIO_CHILD_GANG);
2346
2347 zio->io_gang_leader = zio;
2348
2349 zio_gang_tree_assemble(zio, bp, &zio->io_gang_tree);
2350
2351 return (ZIO_PIPELINE_CONTINUE);
2352 }
2353
2354 static int
2355 zio_gang_issue(zio_t *zio)
2356 {
2357 blkptr_t *bp = zio->io_bp;
2358
2359 if (zio_wait_for_children(zio, ZIO_CHILD_GANG, ZIO_WAIT_DONE))
2360 return (ZIO_PIPELINE_STOP);
2361
2362 ASSERT(BP_IS_GANG(bp) && zio->io_gang_leader == zio);
2363 ASSERT(zio->io_child_type > ZIO_CHILD_GANG);
2364
2365 if (zio->io_child_error[ZIO_CHILD_GANG] == 0)
2366 zio_gang_tree_issue(zio, zio->io_gang_tree, bp, zio->io_abd,
2367 0);
2368 else
2369 zio_gang_tree_free(&zio->io_gang_tree);
2370
2371 zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
2372
2373 return (ZIO_PIPELINE_CONTINUE);
2374 }
2375
2376 static void
2377 zio_write_gang_member_ready(zio_t *zio)
2378 {
2379 zio_t *pio = zio_unique_parent(zio);
2380 dva_t *cdva = zio->io_bp->blk_dva;
2381 dva_t *pdva = pio->io_bp->blk_dva;
2382 uint64_t asize;
2383 ASSERTV(zio_t *gio = zio->io_gang_leader);
2384
2385 if (BP_IS_HOLE(zio->io_bp))
2386 return;
2387
2388 ASSERT(BP_IS_HOLE(&zio->io_bp_orig));
2389
2390 ASSERT(zio->io_child_type == ZIO_CHILD_GANG);
2391 ASSERT3U(zio->io_prop.zp_copies, ==, gio->io_prop.zp_copies);
2392 ASSERT3U(zio->io_prop.zp_copies, <=, BP_GET_NDVAS(zio->io_bp));
2393 ASSERT3U(pio->io_prop.zp_copies, <=, BP_GET_NDVAS(pio->io_bp));
2394 ASSERT3U(BP_GET_NDVAS(zio->io_bp), <=, BP_GET_NDVAS(pio->io_bp));
2395
2396 mutex_enter(&pio->io_lock);
2397 for (int d = 0; d < BP_GET_NDVAS(zio->io_bp); d++) {
2398 ASSERT(DVA_GET_GANG(&pdva[d]));
2399 asize = DVA_GET_ASIZE(&pdva[d]);
2400 asize += DVA_GET_ASIZE(&cdva[d]);
2401 DVA_SET_ASIZE(&pdva[d], asize);
2402 }
2403 mutex_exit(&pio->io_lock);
2404 }
2405
2406 static void
2407 zio_write_gang_done(zio_t *zio)
2408 {
2409 abd_put(zio->io_abd);
2410 }
2411
2412 static int
2413 zio_write_gang_block(zio_t *pio)
2414 {
2415 spa_t *spa = pio->io_spa;
2416 metaslab_class_t *mc = spa_normal_class(spa);
2417 blkptr_t *bp = pio->io_bp;
2418 zio_t *gio = pio->io_gang_leader;
2419 zio_t *zio;
2420 zio_gang_node_t *gn, **gnpp;
2421 zio_gbh_phys_t *gbh;
2422 abd_t *gbh_abd;
2423 uint64_t txg = pio->io_txg;
2424 uint64_t resid = pio->io_size;
2425 uint64_t lsize;
2426 int copies = gio->io_prop.zp_copies;
2427 int gbh_copies;
2428 zio_prop_t zp;
2429 int error;
2430
2431 /*
2432 * encrypted blocks need DVA[2] free so encrypted gang headers can't
2433 * have a third copy.
2434 */
2435 gbh_copies = MIN(copies + 1, spa_max_replication(spa));
2436 if (gio->io_prop.zp_encrypt && gbh_copies >= SPA_DVAS_PER_BP)
2437 gbh_copies = SPA_DVAS_PER_BP - 1;
2438
2439 int flags = METASLAB_HINTBP_FAVOR | METASLAB_GANG_HEADER;
2440 if (pio->io_flags & ZIO_FLAG_IO_ALLOCATING) {
2441 ASSERT(pio->io_priority == ZIO_PRIORITY_ASYNC_WRITE);
2442 ASSERT(!(pio->io_flags & ZIO_FLAG_NODATA));
2443
2444 flags |= METASLAB_ASYNC_ALLOC;
2445 VERIFY(refcount_held(&mc->mc_alloc_slots, pio));
2446
2447 /*
2448 * The logical zio has already placed a reservation for
2449 * 'copies' allocation slots but gang blocks may require
2450 * additional copies. These additional copies
2451 * (i.e. gbh_copies - copies) are guaranteed to succeed
2452 * since metaslab_class_throttle_reserve() always allows
2453 * additional reservations for gang blocks.
2454 */
2455 VERIFY(metaslab_class_throttle_reserve(mc, gbh_copies - copies,
2456 pio, flags));
2457 }
2458
2459 error = metaslab_alloc(spa, mc, SPA_GANGBLOCKSIZE,
2460 bp, gbh_copies, txg, pio == gio ? NULL : gio->io_bp, flags,
2461 &pio->io_alloc_list, pio);
2462 if (error) {
2463 if (pio->io_flags & ZIO_FLAG_IO_ALLOCATING) {
2464 ASSERT(pio->io_priority == ZIO_PRIORITY_ASYNC_WRITE);
2465 ASSERT(!(pio->io_flags & ZIO_FLAG_NODATA));
2466
2467 /*
2468 * If we failed to allocate the gang block header then
2469 * we remove any additional allocation reservations that
2470 * we placed here. The original reservation will
2471 * be removed when the logical I/O goes to the ready
2472 * stage.
2473 */
2474 metaslab_class_throttle_unreserve(mc,
2475 gbh_copies - copies, pio);
2476 }
2477
2478 pio->io_error = error;
2479 return (ZIO_PIPELINE_CONTINUE);
2480 }
2481
2482 if (pio == gio) {
2483 gnpp = &gio->io_gang_tree;
2484 } else {
2485 gnpp = pio->io_private;
2486 ASSERT(pio->io_ready == zio_write_gang_member_ready);
2487 }
2488
2489 gn = zio_gang_node_alloc(gnpp);
2490 gbh = gn->gn_gbh;
2491 bzero(gbh, SPA_GANGBLOCKSIZE);
2492 gbh_abd = abd_get_from_buf(gbh, SPA_GANGBLOCKSIZE);
2493
2494 /*
2495 * Create the gang header.
2496 */
2497 zio = zio_rewrite(pio, spa, txg, bp, gbh_abd, SPA_GANGBLOCKSIZE,
2498 zio_write_gang_done, NULL, pio->io_priority,
2499 ZIO_GANG_CHILD_FLAGS(pio), &pio->io_bookmark);
2500
2501 /*
2502 * Create and nowait the gang children.
2503 */
2504 for (int g = 0; resid != 0; resid -= lsize, g++) {
2505 lsize = P2ROUNDUP(resid / (SPA_GBH_NBLKPTRS - g),
2506 SPA_MINBLOCKSIZE);
2507 ASSERT(lsize >= SPA_MINBLOCKSIZE && lsize <= resid);
2508
2509 zp.zp_checksum = gio->io_prop.zp_checksum;
2510 zp.zp_compress = ZIO_COMPRESS_OFF;
2511 zp.zp_type = DMU_OT_NONE;
2512 zp.zp_level = 0;
2513 zp.zp_copies = gio->io_prop.zp_copies;
2514 zp.zp_dedup = B_FALSE;
2515 zp.zp_dedup_verify = B_FALSE;
2516 zp.zp_nopwrite = B_FALSE;
2517 zp.zp_encrypt = gio->io_prop.zp_encrypt;
2518 zp.zp_byteorder = gio->io_prop.zp_byteorder;
2519 bzero(zp.zp_salt, ZIO_DATA_SALT_LEN);
2520 bzero(zp.zp_iv, ZIO_DATA_IV_LEN);
2521 bzero(zp.zp_mac, ZIO_DATA_MAC_LEN);
2522
2523 zio_t *cio = zio_write(zio, spa, txg, &gbh->zg_blkptr[g],
2524 abd_get_offset(pio->io_abd, pio->io_size - resid), lsize,
2525 lsize, &zp, zio_write_gang_member_ready, NULL, NULL,
2526 zio_write_gang_done, &gn->gn_child[g], pio->io_priority,
2527 ZIO_GANG_CHILD_FLAGS(pio), &pio->io_bookmark);
2528
2529 if (pio->io_flags & ZIO_FLAG_IO_ALLOCATING) {
2530 ASSERT(pio->io_priority == ZIO_PRIORITY_ASYNC_WRITE);
2531 ASSERT(!(pio->io_flags & ZIO_FLAG_NODATA));
2532
2533 /*
2534 * Gang children won't throttle but we should
2535 * account for their work, so reserve an allocation
2536 * slot for them here.
2537 */
2538 VERIFY(metaslab_class_throttle_reserve(mc,
2539 zp.zp_copies, cio, flags));
2540 }
2541 zio_nowait(cio);
2542 }
2543
2544 /*
2545 * Set pio's pipeline to just wait for zio to finish.
2546 */
2547 pio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
2548
2549 /*
2550 * We didn't allocate this bp, so make sure it doesn't get unmarked.
2551 */
2552 pio->io_flags &= ~ZIO_FLAG_FASTWRITE;
2553
2554 zio_nowait(zio);
2555
2556 return (ZIO_PIPELINE_CONTINUE);
2557 }
2558
2559 /*
2560 * The zio_nop_write stage in the pipeline determines if allocating a
2561 * new bp is necessary. The nopwrite feature can handle writes in
2562 * either syncing or open context (i.e. zil writes) and as a result is
2563 * mutually exclusive with dedup.
2564 *
2565 * By leveraging a cryptographically secure checksum, such as SHA256, we
2566 * can compare the checksums of the new data and the old to determine if
2567 * allocating a new block is required. Note that our requirements for
2568 * cryptographic strength are fairly weak: there can't be any accidental
2569 * hash collisions, but we don't need to be secure against intentional
2570 * (malicious) collisions. To trigger a nopwrite, you have to be able
2571 * to write the file to begin with, and triggering an incorrect (hash
2572 * collision) nopwrite is no worse than simply writing to the file.
2573 * That said, there are no known attacks against the checksum algorithms
2574 * used for nopwrite, assuming that the salt and the checksums
2575 * themselves remain secret.
2576 */
2577 static int
2578 zio_nop_write(zio_t *zio)
2579 {
2580 blkptr_t *bp = zio->io_bp;
2581 blkptr_t *bp_orig = &zio->io_bp_orig;
2582 zio_prop_t *zp = &zio->io_prop;
2583
2584 ASSERT(BP_GET_LEVEL(bp) == 0);
2585 ASSERT(!(zio->io_flags & ZIO_FLAG_IO_REWRITE));
2586 ASSERT(zp->zp_nopwrite);
2587 ASSERT(!zp->zp_dedup);
2588 ASSERT(zio->io_bp_override == NULL);
2589 ASSERT(IO_IS_ALLOCATING(zio));
2590
2591 /*
2592 * Check to see if the original bp and the new bp have matching
2593 * characteristics (i.e. same checksum, compression algorithms, etc).
2594 * If they don't then just continue with the pipeline which will
2595 * allocate a new bp.
2596 */
2597 if (BP_IS_HOLE(bp_orig) ||
2598 !(zio_checksum_table[BP_GET_CHECKSUM(bp)].ci_flags &
2599 ZCHECKSUM_FLAG_NOPWRITE) ||
2600 BP_IS_ENCRYPTED(bp) || BP_IS_ENCRYPTED(bp_orig) ||
2601 BP_GET_CHECKSUM(bp) != BP_GET_CHECKSUM(bp_orig) ||
2602 BP_GET_COMPRESS(bp) != BP_GET_COMPRESS(bp_orig) ||
2603 BP_GET_DEDUP(bp) != BP_GET_DEDUP(bp_orig) ||
2604 zp->zp_copies != BP_GET_NDVAS(bp_orig))
2605 return (ZIO_PIPELINE_CONTINUE);
2606
2607 /*
2608 * If the checksums match then reset the pipeline so that we
2609 * avoid allocating a new bp and issuing any I/O.
2610 */
2611 if (ZIO_CHECKSUM_EQUAL(bp->blk_cksum, bp_orig->blk_cksum)) {
2612 ASSERT(zio_checksum_table[zp->zp_checksum].ci_flags &
2613 ZCHECKSUM_FLAG_NOPWRITE);
2614 ASSERT3U(BP_GET_PSIZE(bp), ==, BP_GET_PSIZE(bp_orig));
2615 ASSERT3U(BP_GET_LSIZE(bp), ==, BP_GET_LSIZE(bp_orig));
2616 ASSERT(zp->zp_compress != ZIO_COMPRESS_OFF);
2617 ASSERT(bcmp(&bp->blk_prop, &bp_orig->blk_prop,
2618 sizeof (uint64_t)) == 0);
2619
2620 *bp = *bp_orig;
2621 zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
2622 zio->io_flags |= ZIO_FLAG_NOPWRITE;
2623 }
2624
2625 return (ZIO_PIPELINE_CONTINUE);
2626 }
2627
2628 /*
2629 * ==========================================================================
2630 * Dedup
2631 * ==========================================================================
2632 */
2633 static void
2634 zio_ddt_child_read_done(zio_t *zio)
2635 {
2636 blkptr_t *bp = zio->io_bp;
2637 ddt_entry_t *dde = zio->io_private;
2638 ddt_phys_t *ddp;
2639 zio_t *pio = zio_unique_parent(zio);
2640
2641 mutex_enter(&pio->io_lock);
2642 ddp = ddt_phys_select(dde, bp);
2643 if (zio->io_error == 0)
2644 ddt_phys_clear(ddp); /* this ddp doesn't need repair */
2645
2646 if (zio->io_error == 0 && dde->dde_repair_abd == NULL)
2647 dde->dde_repair_abd = zio->io_abd;
2648 else
2649 abd_free(zio->io_abd);
2650 mutex_exit(&pio->io_lock);
2651 }
2652
2653 static int
2654 zio_ddt_read_start(zio_t *zio)
2655 {
2656 blkptr_t *bp = zio->io_bp;
2657
2658 ASSERT(BP_GET_DEDUP(bp));
2659 ASSERT(BP_GET_PSIZE(bp) == zio->io_size);
2660 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
2661
2662 if (zio->io_child_error[ZIO_CHILD_DDT]) {
2663 ddt_t *ddt = ddt_select(zio->io_spa, bp);
2664 ddt_entry_t *dde = ddt_repair_start(ddt, bp);
2665 ddt_phys_t *ddp = dde->dde_phys;
2666 ddt_phys_t *ddp_self = ddt_phys_select(dde, bp);
2667 blkptr_t blk;
2668
2669 ASSERT(zio->io_vsd == NULL);
2670 zio->io_vsd = dde;
2671
2672 if (ddp_self == NULL)
2673 return (ZIO_PIPELINE_CONTINUE);
2674
2675 for (int p = 0; p < DDT_PHYS_TYPES; p++, ddp++) {
2676 if (ddp->ddp_phys_birth == 0 || ddp == ddp_self)
2677 continue;
2678 ddt_bp_create(ddt->ddt_checksum, &dde->dde_key, ddp,
2679 &blk);
2680 zio_nowait(zio_read(zio, zio->io_spa, &blk,
2681 abd_alloc_for_io(zio->io_size, B_TRUE),
2682 zio->io_size, zio_ddt_child_read_done, dde,
2683 zio->io_priority, ZIO_DDT_CHILD_FLAGS(zio) |
2684 ZIO_FLAG_DONT_PROPAGATE, &zio->io_bookmark));
2685 }
2686 return (ZIO_PIPELINE_CONTINUE);
2687 }
2688
2689 zio_nowait(zio_read(zio, zio->io_spa, bp,
2690 zio->io_abd, zio->io_size, NULL, NULL, zio->io_priority,
2691 ZIO_DDT_CHILD_FLAGS(zio), &zio->io_bookmark));
2692
2693 return (ZIO_PIPELINE_CONTINUE);
2694 }
2695
2696 static int
2697 zio_ddt_read_done(zio_t *zio)
2698 {
2699 blkptr_t *bp = zio->io_bp;
2700
2701 if (zio_wait_for_children(zio, ZIO_CHILD_DDT, ZIO_WAIT_DONE))
2702 return (ZIO_PIPELINE_STOP);
2703
2704 ASSERT(BP_GET_DEDUP(bp));
2705 ASSERT(BP_GET_PSIZE(bp) == zio->io_size);
2706 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
2707
2708 if (zio->io_child_error[ZIO_CHILD_DDT]) {
2709 ddt_t *ddt = ddt_select(zio->io_spa, bp);
2710 ddt_entry_t *dde = zio->io_vsd;
2711 if (ddt == NULL) {
2712 ASSERT(spa_load_state(zio->io_spa) != SPA_LOAD_NONE);
2713 return (ZIO_PIPELINE_CONTINUE);
2714 }
2715 if (dde == NULL) {
2716 zio->io_stage = ZIO_STAGE_DDT_READ_START >> 1;
2717 zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE, B_FALSE);
2718 return (ZIO_PIPELINE_STOP);
2719 }
2720 if (dde->dde_repair_abd != NULL) {
2721 abd_copy(zio->io_abd, dde->dde_repair_abd,
2722 zio->io_size);
2723 zio->io_child_error[ZIO_CHILD_DDT] = 0;
2724 }
2725 ddt_repair_done(ddt, dde);
2726 zio->io_vsd = NULL;
2727 }
2728
2729 ASSERT(zio->io_vsd == NULL);
2730
2731 return (ZIO_PIPELINE_CONTINUE);
2732 }
2733
2734 static boolean_t
2735 zio_ddt_collision(zio_t *zio, ddt_t *ddt, ddt_entry_t *dde)
2736 {
2737 spa_t *spa = zio->io_spa;
2738 boolean_t do_raw = !!(zio->io_flags & ZIO_FLAG_RAW);
2739
2740 ASSERT(!(zio->io_bp_override && do_raw));
2741
2742 /*
2743 * Note: we compare the original data, not the transformed data,
2744 * because when zio->io_bp is an override bp, we will not have
2745 * pushed the I/O transforms. That's an important optimization
2746 * because otherwise we'd compress/encrypt all dmu_sync() data twice.
2747 * However, we should never get a raw, override zio so in these
2748 * cases we can compare the io_abd directly. This is useful because
2749 * it allows us to do dedup verification even if we don't have access
2750 * to the original data (for instance, if the encryption keys aren't
2751 * loaded).
2752 */
2753
2754 for (int p = DDT_PHYS_SINGLE; p <= DDT_PHYS_TRIPLE; p++) {
2755 zio_t *lio = dde->dde_lead_zio[p];
2756
2757 if (lio != NULL && do_raw) {
2758 return (lio->io_size != zio->io_size ||
2759 abd_cmp(zio->io_abd, lio->io_abd) != 0);
2760 } else if (lio != NULL) {
2761 return (lio->io_orig_size != zio->io_orig_size ||
2762 abd_cmp(zio->io_orig_abd, lio->io_orig_abd) != 0);
2763 }
2764 }
2765
2766 for (int p = DDT_PHYS_SINGLE; p <= DDT_PHYS_TRIPLE; p++) {
2767 ddt_phys_t *ddp = &dde->dde_phys[p];
2768
2769 if (ddp->ddp_phys_birth != 0 && do_raw) {
2770 blkptr_t blk = *zio->io_bp;
2771 uint64_t psize;
2772 abd_t *tmpabd;
2773 int error;
2774
2775 ddt_bp_fill(ddp, &blk, ddp->ddp_phys_birth);
2776 psize = BP_GET_PSIZE(&blk);
2777
2778 if (psize != zio->io_size)
2779 return (B_TRUE);
2780
2781 ddt_exit(ddt);
2782
2783 tmpabd = abd_alloc_for_io(psize, B_TRUE);
2784
2785 error = zio_wait(zio_read(NULL, spa, &blk, tmpabd,
2786 psize, NULL, NULL, ZIO_PRIORITY_SYNC_READ,
2787 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE |
2788 ZIO_FLAG_RAW, &zio->io_bookmark));
2789
2790 if (error == 0) {
2791 if (abd_cmp(tmpabd, zio->io_abd) != 0)
2792 error = SET_ERROR(ENOENT);
2793 }
2794
2795 abd_free(tmpabd);
2796 ddt_enter(ddt);
2797 return (error != 0);
2798 } else if (ddp->ddp_phys_birth != 0) {
2799 arc_buf_t *abuf = NULL;
2800 arc_flags_t aflags = ARC_FLAG_WAIT;
2801 blkptr_t blk = *zio->io_bp;
2802 int error;
2803
2804 ddt_bp_fill(ddp, &blk, ddp->ddp_phys_birth);
2805
2806 if (BP_GET_LSIZE(&blk) != zio->io_orig_size)
2807 return (B_TRUE);
2808
2809 ddt_exit(ddt);
2810
2811 error = arc_read(NULL, spa, &blk,
2812 arc_getbuf_func, &abuf, ZIO_PRIORITY_SYNC_READ,
2813 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE,
2814 &aflags, &zio->io_bookmark);
2815
2816 if (error == 0) {
2817 if (abd_cmp_buf(zio->io_orig_abd, abuf->b_data,
2818 zio->io_orig_size) != 0)
2819 error = SET_ERROR(ENOENT);
2820 arc_buf_destroy(abuf, &abuf);
2821 }
2822
2823 ddt_enter(ddt);
2824 return (error != 0);
2825 }
2826 }
2827
2828 return (B_FALSE);
2829 }
2830
2831 static void
2832 zio_ddt_child_write_ready(zio_t *zio)
2833 {
2834 int p = zio->io_prop.zp_copies;
2835 ddt_t *ddt = ddt_select(zio->io_spa, zio->io_bp);
2836 ddt_entry_t *dde = zio->io_private;
2837 ddt_phys_t *ddp = &dde->dde_phys[p];
2838 zio_t *pio;
2839
2840 if (zio->io_error)
2841 return;
2842
2843 ddt_enter(ddt);
2844
2845 ASSERT(dde->dde_lead_zio[p] == zio);
2846
2847 ddt_phys_fill(ddp, zio->io_bp);
2848
2849 zio_link_t *zl = NULL;
2850 while ((pio = zio_walk_parents(zio, &zl)) != NULL)
2851 ddt_bp_fill(ddp, pio->io_bp, zio->io_txg);
2852
2853 ddt_exit(ddt);
2854 }
2855
2856 static void
2857 zio_ddt_child_write_done(zio_t *zio)
2858 {
2859 int p = zio->io_prop.zp_copies;
2860 ddt_t *ddt = ddt_select(zio->io_spa, zio->io_bp);
2861 ddt_entry_t *dde = zio->io_private;
2862 ddt_phys_t *ddp = &dde->dde_phys[p];
2863
2864 ddt_enter(ddt);
2865
2866 ASSERT(ddp->ddp_refcnt == 0);
2867 ASSERT(dde->dde_lead_zio[p] == zio);
2868 dde->dde_lead_zio[p] = NULL;
2869
2870 if (zio->io_error == 0) {
2871 zio_link_t *zl = NULL;
2872 while (zio_walk_parents(zio, &zl) != NULL)
2873 ddt_phys_addref(ddp);
2874 } else {
2875 ddt_phys_clear(ddp);
2876 }
2877
2878 ddt_exit(ddt);
2879 }
2880
2881 static void
2882 zio_ddt_ditto_write_done(zio_t *zio)
2883 {
2884 int p = DDT_PHYS_DITTO;
2885 ASSERTV(zio_prop_t *zp = &zio->io_prop);
2886 blkptr_t *bp = zio->io_bp;
2887 ddt_t *ddt = ddt_select(zio->io_spa, bp);
2888 ddt_entry_t *dde = zio->io_private;
2889 ddt_phys_t *ddp = &dde->dde_phys[p];
2890 ddt_key_t *ddk = &dde->dde_key;
2891
2892 ddt_enter(ddt);
2893
2894 ASSERT(ddp->ddp_refcnt == 0);
2895 ASSERT(dde->dde_lead_zio[p] == zio);
2896 dde->dde_lead_zio[p] = NULL;
2897
2898 if (zio->io_error == 0) {
2899 ASSERT(ZIO_CHECKSUM_EQUAL(bp->blk_cksum, ddk->ddk_cksum));
2900 ASSERT(zp->zp_copies < SPA_DVAS_PER_BP);
2901 ASSERT(zp->zp_copies == BP_GET_NDVAS(bp) - BP_IS_GANG(bp));
2902 if (ddp->ddp_phys_birth != 0)
2903 ddt_phys_free(ddt, ddk, ddp, zio->io_txg);
2904 ddt_phys_fill(ddp, bp);
2905 }
2906
2907 ddt_exit(ddt);
2908 }
2909
2910 static int
2911 zio_ddt_write(zio_t *zio)
2912 {
2913 spa_t *spa = zio->io_spa;
2914 blkptr_t *bp = zio->io_bp;
2915 uint64_t txg = zio->io_txg;
2916 zio_prop_t *zp = &zio->io_prop;
2917 int p = zp->zp_copies;
2918 int ditto_copies;
2919 zio_t *cio = NULL;
2920 zio_t *dio = NULL;
2921 ddt_t *ddt = ddt_select(spa, bp);
2922 ddt_entry_t *dde;
2923 ddt_phys_t *ddp;
2924
2925 ASSERT(BP_GET_DEDUP(bp));
2926 ASSERT(BP_GET_CHECKSUM(bp) == zp->zp_checksum);
2927 ASSERT(BP_IS_HOLE(bp) || zio->io_bp_override);
2928 ASSERT(!(zio->io_bp_override && (zio->io_flags & ZIO_FLAG_RAW)));
2929
2930 ddt_enter(ddt);
2931 dde = ddt_lookup(ddt, bp, B_TRUE);
2932 ddp = &dde->dde_phys[p];
2933
2934 if (zp->zp_dedup_verify && zio_ddt_collision(zio, ddt, dde)) {
2935 /*
2936 * If we're using a weak checksum, upgrade to a strong checksum
2937 * and try again. If we're already using a strong checksum,
2938 * we can't resolve it, so just convert to an ordinary write.
2939 * (And automatically e-mail a paper to Nature?)
2940 */
2941 if (!(zio_checksum_table[zp->zp_checksum].ci_flags &
2942 ZCHECKSUM_FLAG_DEDUP)) {
2943 zp->zp_checksum = spa_dedup_checksum(spa);
2944 zio_pop_transforms(zio);
2945 zio->io_stage = ZIO_STAGE_OPEN;
2946 BP_ZERO(bp);
2947 } else {
2948 zp->zp_dedup = B_FALSE;
2949 }
2950 zio->io_pipeline = ZIO_WRITE_PIPELINE;
2951 ddt_exit(ddt);
2952 return (ZIO_PIPELINE_CONTINUE);
2953 }
2954
2955 ditto_copies = ddt_ditto_copies_needed(ddt, dde, ddp);
2956 ASSERT(ditto_copies < SPA_DVAS_PER_BP);
2957
2958 if (ditto_copies > ddt_ditto_copies_present(dde) &&
2959 dde->dde_lead_zio[DDT_PHYS_DITTO] == NULL) {
2960 zio_prop_t czp = *zp;
2961
2962 czp.zp_copies = ditto_copies;
2963
2964 /*
2965 * If we arrived here with an override bp, we won't have run
2966 * the transform stack, so we won't have the data we need to
2967 * generate a child i/o. So, toss the override bp and restart.
2968 * This is safe, because using the override bp is just an
2969 * optimization; and it's rare, so the cost doesn't matter.
2970 */
2971 if (zio->io_bp_override) {
2972 zio_pop_transforms(zio);
2973 zio->io_stage = ZIO_STAGE_OPEN;
2974 zio->io_pipeline = ZIO_WRITE_PIPELINE;
2975 zio->io_bp_override = NULL;
2976 BP_ZERO(bp);
2977 ddt_exit(ddt);
2978 return (ZIO_PIPELINE_CONTINUE);
2979 }
2980
2981 dio = zio_write(zio, spa, txg, bp, zio->io_orig_abd,
2982 zio->io_orig_size, zio->io_orig_size, &czp, NULL, NULL,
2983 NULL, zio_ddt_ditto_write_done, dde, zio->io_priority,
2984 ZIO_DDT_CHILD_FLAGS(zio), &zio->io_bookmark);
2985
2986 zio_push_transform(dio, zio->io_abd, zio->io_size, 0, NULL);
2987 dde->dde_lead_zio[DDT_PHYS_DITTO] = dio;
2988 }
2989
2990 if (ddp->ddp_phys_birth != 0 || dde->dde_lead_zio[p] != NULL) {
2991 if (ddp->ddp_phys_birth != 0)
2992 ddt_bp_fill(ddp, bp, txg);
2993 if (dde->dde_lead_zio[p] != NULL)
2994 zio_add_child(zio, dde->dde_lead_zio[p]);
2995 else
2996 ddt_phys_addref(ddp);
2997 } else if (zio->io_bp_override) {
2998 ASSERT(bp->blk_birth == txg);
2999 ASSERT(BP_EQUAL(bp, zio->io_bp_override));
3000 ddt_phys_fill(ddp, bp);
3001 ddt_phys_addref(ddp);
3002 } else {
3003 cio = zio_write(zio, spa, txg, bp, zio->io_orig_abd,
3004 zio->io_orig_size, zio->io_orig_size, zp,
3005 zio_ddt_child_write_ready, NULL, NULL,
3006 zio_ddt_child_write_done, dde, zio->io_priority,
3007 ZIO_DDT_CHILD_FLAGS(zio), &zio->io_bookmark);
3008
3009 zio_push_transform(cio, zio->io_abd, zio->io_size, 0, NULL);
3010 dde->dde_lead_zio[p] = cio;
3011 }
3012
3013 ddt_exit(ddt);
3014
3015 if (cio)
3016 zio_nowait(cio);
3017 if (dio)
3018 zio_nowait(dio);
3019
3020 return (ZIO_PIPELINE_CONTINUE);
3021 }
3022
3023 ddt_entry_t *freedde; /* for debugging */
3024
3025 static int
3026 zio_ddt_free(zio_t *zio)
3027 {
3028 spa_t *spa = zio->io_spa;
3029 blkptr_t *bp = zio->io_bp;
3030 ddt_t *ddt = ddt_select(spa, bp);
3031 ddt_entry_t *dde;
3032 ddt_phys_t *ddp;
3033
3034 ASSERT(BP_GET_DEDUP(bp));
3035 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
3036
3037 ddt_enter(ddt);
3038 freedde = dde = ddt_lookup(ddt, bp, B_TRUE);
3039 if (dde) {
3040 ddp = ddt_phys_select(dde, bp);
3041 if (ddp)
3042 ddt_phys_decref(ddp);
3043 }
3044 ddt_exit(ddt);
3045
3046 return (ZIO_PIPELINE_CONTINUE);
3047 }
3048
3049 /*
3050 * ==========================================================================
3051 * Allocate and free blocks
3052 * ==========================================================================
3053 */
3054
3055 static zio_t *
3056 zio_io_to_allocate(spa_t *spa)
3057 {
3058 zio_t *zio;
3059
3060 ASSERT(MUTEX_HELD(&spa->spa_alloc_lock));
3061
3062 zio = avl_first(&spa->spa_alloc_tree);
3063 if (zio == NULL)
3064 return (NULL);
3065
3066 ASSERT(IO_IS_ALLOCATING(zio));
3067
3068 /*
3069 * Try to place a reservation for this zio. If we're unable to
3070 * reserve then we throttle.
3071 */
3072 if (!metaslab_class_throttle_reserve(spa_normal_class(spa),
3073 zio->io_prop.zp_copies, zio, 0)) {
3074 return (NULL);
3075 }
3076
3077 avl_remove(&spa->spa_alloc_tree, zio);
3078 ASSERT3U(zio->io_stage, <, ZIO_STAGE_DVA_ALLOCATE);
3079
3080 return (zio);
3081 }
3082
3083 static int
3084 zio_dva_throttle(zio_t *zio)
3085 {
3086 spa_t *spa = zio->io_spa;
3087 zio_t *nio;
3088
3089 if (zio->io_priority == ZIO_PRIORITY_SYNC_WRITE ||
3090 !spa_normal_class(zio->io_spa)->mc_alloc_throttle_enabled ||
3091 zio->io_child_type == ZIO_CHILD_GANG ||
3092 zio->io_flags & ZIO_FLAG_NODATA) {
3093 return (ZIO_PIPELINE_CONTINUE);
3094 }
3095
3096 ASSERT(zio->io_child_type > ZIO_CHILD_GANG);
3097
3098 ASSERT3U(zio->io_queued_timestamp, >, 0);
3099 ASSERT(zio->io_stage == ZIO_STAGE_DVA_THROTTLE);
3100
3101 mutex_enter(&spa->spa_alloc_lock);
3102
3103 ASSERT(zio->io_type == ZIO_TYPE_WRITE);
3104 avl_add(&spa->spa_alloc_tree, zio);
3105
3106 nio = zio_io_to_allocate(zio->io_spa);
3107 mutex_exit(&spa->spa_alloc_lock);
3108
3109 if (nio == zio)
3110 return (ZIO_PIPELINE_CONTINUE);
3111
3112 if (nio != NULL) {
3113 ASSERT(nio->io_stage == ZIO_STAGE_DVA_THROTTLE);
3114 /*
3115 * We are passing control to a new zio so make sure that
3116 * it is processed by a different thread. We do this to
3117 * avoid stack overflows that can occur when parents are
3118 * throttled and children are making progress. We allow
3119 * it to go to the head of the taskq since it's already
3120 * been waiting.
3121 */
3122 zio_taskq_dispatch(nio, ZIO_TASKQ_ISSUE, B_TRUE);
3123 }
3124 return (ZIO_PIPELINE_STOP);
3125 }
3126
3127 void
3128 zio_allocate_dispatch(spa_t *spa)
3129 {
3130 zio_t *zio;
3131
3132 mutex_enter(&spa->spa_alloc_lock);
3133 zio = zio_io_to_allocate(spa);
3134 mutex_exit(&spa->spa_alloc_lock);
3135 if (zio == NULL)
3136 return;
3137
3138 ASSERT3U(zio->io_stage, ==, ZIO_STAGE_DVA_THROTTLE);
3139 ASSERT0(zio->io_error);
3140 zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE, B_TRUE);
3141 }
3142
3143 static int
3144 zio_dva_allocate(zio_t *zio)
3145 {
3146 spa_t *spa = zio->io_spa;
3147 metaslab_class_t *mc = spa_normal_class(spa);
3148 blkptr_t *bp = zio->io_bp;
3149 int error;
3150 int flags = 0;
3151
3152 if (zio->io_gang_leader == NULL) {
3153 ASSERT(zio->io_child_type > ZIO_CHILD_GANG);
3154 zio->io_gang_leader = zio;
3155 }
3156
3157 ASSERT(BP_IS_HOLE(bp));
3158 ASSERT0(BP_GET_NDVAS(bp));
3159 ASSERT3U(zio->io_prop.zp_copies, >, 0);
3160 ASSERT3U(zio->io_prop.zp_copies, <=, spa_max_replication(spa));
3161 ASSERT3U(zio->io_size, ==, BP_GET_PSIZE(bp));
3162
3163 flags |= (zio->io_flags & ZIO_FLAG_FASTWRITE) ? METASLAB_FASTWRITE : 0;
3164 if (zio->io_flags & ZIO_FLAG_NODATA)
3165 flags |= METASLAB_DONT_THROTTLE;
3166 if (zio->io_flags & ZIO_FLAG_GANG_CHILD)
3167 flags |= METASLAB_GANG_CHILD;
3168 if (zio->io_priority == ZIO_PRIORITY_ASYNC_WRITE)
3169 flags |= METASLAB_ASYNC_ALLOC;
3170
3171 error = metaslab_alloc(spa, mc, zio->io_size, bp,
3172 zio->io_prop.zp_copies, zio->io_txg, NULL, flags,
3173 &zio->io_alloc_list, zio);
3174
3175 if (error != 0) {
3176 spa_dbgmsg(spa, "%s: metaslab allocation failure: zio %p, "
3177 "size %llu, error %d", spa_name(spa), zio, zio->io_size,
3178 error);
3179 if (error == ENOSPC && zio->io_size > SPA_MINBLOCKSIZE)
3180 return (zio_write_gang_block(zio));
3181 zio->io_error = error;
3182 }
3183
3184 return (ZIO_PIPELINE_CONTINUE);
3185 }
3186
3187 static int
3188 zio_dva_free(zio_t *zio)
3189 {
3190 metaslab_free(zio->io_spa, zio->io_bp, zio->io_txg, B_FALSE);
3191
3192 return (ZIO_PIPELINE_CONTINUE);
3193 }
3194
3195 static int
3196 zio_dva_claim(zio_t *zio)
3197 {
3198 int error;
3199
3200 error = metaslab_claim(zio->io_spa, zio->io_bp, zio->io_txg);
3201 if (error)
3202 zio->io_error = error;
3203
3204 return (ZIO_PIPELINE_CONTINUE);
3205 }
3206
3207 /*
3208 * Undo an allocation. This is used by zio_done() when an I/O fails
3209 * and we want to give back the block we just allocated.
3210 * This handles both normal blocks and gang blocks.
3211 */
3212 static void
3213 zio_dva_unallocate(zio_t *zio, zio_gang_node_t *gn, blkptr_t *bp)
3214 {
3215 ASSERT(bp->blk_birth == zio->io_txg || BP_IS_HOLE(bp));
3216 ASSERT(zio->io_bp_override == NULL);
3217
3218 if (!BP_IS_HOLE(bp))
3219 metaslab_free(zio->io_spa, bp, bp->blk_birth, B_TRUE);
3220
3221 if (gn != NULL) {
3222 for (int g = 0; g < SPA_GBH_NBLKPTRS; g++) {
3223 zio_dva_unallocate(zio, gn->gn_child[g],
3224 &gn->gn_gbh->zg_blkptr[g]);
3225 }
3226 }
3227 }
3228
3229 /*
3230 * Try to allocate an intent log block. Return 0 on success, errno on failure.
3231 */
3232 int
3233 zio_alloc_zil(spa_t *spa, objset_t *os, uint64_t txg, blkptr_t *new_bp,
3234 uint64_t size, boolean_t *slog)
3235 {
3236 int error = 1;
3237 zio_alloc_list_t io_alloc_list;
3238
3239 ASSERT(txg > spa_syncing_txg(spa));
3240
3241 metaslab_trace_init(&io_alloc_list);
3242 error = metaslab_alloc(spa, spa_log_class(spa), size, new_bp, 1,
3243 txg, NULL, METASLAB_FASTWRITE, &io_alloc_list, NULL);
3244 if (error == 0) {
3245 *slog = TRUE;
3246 } else {
3247 error = metaslab_alloc(spa, spa_normal_class(spa), size,
3248 new_bp, 1, txg, NULL, METASLAB_FASTWRITE,
3249 &io_alloc_list, NULL);
3250 if (error == 0)
3251 *slog = FALSE;
3252 }
3253 metaslab_trace_fini(&io_alloc_list);
3254
3255 if (error == 0) {
3256 BP_SET_LSIZE(new_bp, size);
3257 BP_SET_PSIZE(new_bp, size);
3258 BP_SET_COMPRESS(new_bp, ZIO_COMPRESS_OFF);
3259 BP_SET_CHECKSUM(new_bp,
3260 spa_version(spa) >= SPA_VERSION_SLIM_ZIL
3261 ? ZIO_CHECKSUM_ZILOG2 : ZIO_CHECKSUM_ZILOG);
3262 BP_SET_TYPE(new_bp, DMU_OT_INTENT_LOG);
3263 BP_SET_LEVEL(new_bp, 0);
3264 BP_SET_DEDUP(new_bp, 0);
3265 BP_SET_BYTEORDER(new_bp, ZFS_HOST_BYTEORDER);
3266
3267 /*
3268 * encrypted blocks will require an IV and salt. We generate
3269 * these now since we will not be rewriting the bp at
3270 * rewrite time.
3271 */
3272 if (os->os_encrypted) {
3273 uint8_t iv[ZIO_DATA_IV_LEN];
3274 uint8_t salt[ZIO_DATA_SALT_LEN];
3275
3276 BP_SET_CRYPT(new_bp, B_TRUE);
3277 VERIFY0(spa_crypt_get_salt(spa,
3278 dmu_objset_id(os), salt));
3279 VERIFY0(zio_crypt_generate_iv(iv));
3280
3281 zio_crypt_encode_params_bp(new_bp, salt, iv);
3282 }
3283 } else {
3284 zfs_dbgmsg("%s: zil block allocation failure: "
3285 "size %llu, error %d", spa_name(spa), size, error);
3286 }
3287
3288 return (error);
3289 }
3290
3291 /*
3292 * Free an intent log block.
3293 */
3294 void
3295 zio_free_zil(spa_t *spa, uint64_t txg, blkptr_t *bp)
3296 {
3297 ASSERT(BP_GET_TYPE(bp) == DMU_OT_INTENT_LOG);
3298 ASSERT(!BP_IS_GANG(bp));
3299
3300 zio_free(spa, txg, bp);
3301 }
3302
3303 /*
3304 * ==========================================================================
3305 * Read and write to physical devices
3306 * ==========================================================================
3307 */
3308
3309
3310 /*
3311 * Issue an I/O to the underlying vdev. Typically the issue pipeline
3312 * stops after this stage and will resume upon I/O completion.
3313 * However, there are instances where the vdev layer may need to
3314 * continue the pipeline when an I/O was not issued. Since the I/O
3315 * that was sent to the vdev layer might be different than the one
3316 * currently active in the pipeline (see vdev_queue_io()), we explicitly
3317 * force the underlying vdev layers to call either zio_execute() or
3318 * zio_interrupt() to ensure that the pipeline continues with the correct I/O.
3319 */
3320 static int
3321 zio_vdev_io_start(zio_t *zio)
3322 {
3323 vdev_t *vd = zio->io_vd;
3324 uint64_t align;
3325 spa_t *spa = zio->io_spa;
3326
3327 zio->io_delay = 0;
3328
3329 ASSERT(zio->io_error == 0);
3330 ASSERT(zio->io_child_error[ZIO_CHILD_VDEV] == 0);
3331
3332 if (vd == NULL) {
3333 if (!(zio->io_flags & ZIO_FLAG_CONFIG_WRITER))
3334 spa_config_enter(spa, SCL_ZIO, zio, RW_READER);
3335
3336 /*
3337 * The mirror_ops handle multiple DVAs in a single BP.
3338 */
3339 vdev_mirror_ops.vdev_op_io_start(zio);
3340 return (ZIO_PIPELINE_STOP);
3341 }
3342
3343 ASSERT3P(zio->io_logical, !=, zio);
3344
3345 align = 1ULL << vd->vdev_top->vdev_ashift;
3346
3347 if (!(zio->io_flags & ZIO_FLAG_PHYSICAL) &&
3348 P2PHASE(zio->io_size, align) != 0) {
3349 /* Transform logical writes to be a full physical block size. */
3350 uint64_t asize = P2ROUNDUP(zio->io_size, align);
3351 abd_t *abuf = abd_alloc_sametype(zio->io_abd, asize);
3352 ASSERT(vd == vd->vdev_top);
3353 if (zio->io_type == ZIO_TYPE_WRITE) {
3354 abd_copy(abuf, zio->io_abd, zio->io_size);
3355 abd_zero_off(abuf, zio->io_size, asize - zio->io_size);
3356 }
3357 zio_push_transform(zio, abuf, asize, asize, zio_subblock);
3358 }
3359
3360 /*
3361 * If this is not a physical io, make sure that it is properly aligned
3362 * before proceeding.
3363 */
3364 if (!(zio->io_flags & ZIO_FLAG_PHYSICAL)) {
3365 ASSERT0(P2PHASE(zio->io_offset, align));
3366 ASSERT0(P2PHASE(zio->io_size, align));
3367 } else {
3368 /*
3369 * For physical writes, we allow 512b aligned writes and assume
3370 * the device will perform a read-modify-write as necessary.
3371 */
3372 ASSERT0(P2PHASE(zio->io_offset, SPA_MINBLOCKSIZE));
3373 ASSERT0(P2PHASE(zio->io_size, SPA_MINBLOCKSIZE));
3374 }
3375
3376 VERIFY(zio->io_type != ZIO_TYPE_WRITE || spa_writeable(spa));
3377
3378 /*
3379 * If this is a repair I/O, and there's no self-healing involved --
3380 * that is, we're just resilvering what we expect to resilver --
3381 * then don't do the I/O unless zio's txg is actually in vd's DTL.
3382 * This prevents spurious resilvering with nested replication.
3383 * For example, given a mirror of mirrors, (A+B)+(C+D), if only
3384 * A is out of date, we'll read from C+D, then use the data to
3385 * resilver A+B -- but we don't actually want to resilver B, just A.
3386 * The top-level mirror has no way to know this, so instead we just
3387 * discard unnecessary repairs as we work our way down the vdev tree.
3388 * The same logic applies to any form of nested replication:
3389 * ditto + mirror, RAID-Z + replacing, etc. This covers them all.
3390 */
3391 if ((zio->io_flags & ZIO_FLAG_IO_REPAIR) &&
3392 !(zio->io_flags & ZIO_FLAG_SELF_HEAL) &&
3393 zio->io_txg != 0 && /* not a delegated i/o */
3394 !vdev_dtl_contains(vd, DTL_PARTIAL, zio->io_txg, 1)) {
3395 ASSERT(zio->io_type == ZIO_TYPE_WRITE);
3396 zio_vdev_io_bypass(zio);
3397 return (ZIO_PIPELINE_CONTINUE);
3398 }
3399
3400 if (vd->vdev_ops->vdev_op_leaf &&
3401 (zio->io_type == ZIO_TYPE_READ || zio->io_type == ZIO_TYPE_WRITE)) {
3402
3403 if (zio->io_type == ZIO_TYPE_READ && vdev_cache_read(zio))
3404 return (ZIO_PIPELINE_CONTINUE);
3405
3406 if ((zio = vdev_queue_io(zio)) == NULL)
3407 return (ZIO_PIPELINE_STOP);
3408
3409 if (!vdev_accessible(vd, zio)) {
3410 zio->io_error = SET_ERROR(ENXIO);
3411 zio_interrupt(zio);
3412 return (ZIO_PIPELINE_STOP);
3413 }
3414 zio->io_delay = gethrtime();
3415 }
3416
3417 vd->vdev_ops->vdev_op_io_start(zio);
3418 return (ZIO_PIPELINE_STOP);
3419 }
3420
3421 static int
3422 zio_vdev_io_done(zio_t *zio)
3423 {
3424 vdev_t *vd = zio->io_vd;
3425 vdev_ops_t *ops = vd ? vd->vdev_ops : &vdev_mirror_ops;
3426 boolean_t unexpected_error = B_FALSE;
3427
3428 if (zio_wait_for_children(zio, ZIO_CHILD_VDEV, ZIO_WAIT_DONE))
3429 return (ZIO_PIPELINE_STOP);
3430
3431 ASSERT(zio->io_type == ZIO_TYPE_READ || zio->io_type == ZIO_TYPE_WRITE);
3432
3433 if (zio->io_delay)
3434 zio->io_delay = gethrtime() - zio->io_delay;
3435
3436 if (vd != NULL && vd->vdev_ops->vdev_op_leaf) {
3437
3438 vdev_queue_io_done(zio);
3439
3440 if (zio->io_type == ZIO_TYPE_WRITE)
3441 vdev_cache_write(zio);
3442
3443 if (zio_injection_enabled && zio->io_error == 0)
3444 zio->io_error = zio_handle_device_injections(vd, zio,
3445 EIO, EILSEQ);
3446
3447 if (zio_injection_enabled && zio->io_error == 0)
3448 zio->io_error = zio_handle_label_injection(zio, EIO);
3449
3450 if (zio->io_error) {
3451 if (!vdev_accessible(vd, zio)) {
3452 zio->io_error = SET_ERROR(ENXIO);
3453 } else {
3454 unexpected_error = B_TRUE;
3455 }
3456 }
3457 }
3458
3459 ops->vdev_op_io_done(zio);
3460
3461 if (unexpected_error)
3462 VERIFY(vdev_probe(vd, zio) == NULL);
3463
3464 return (ZIO_PIPELINE_CONTINUE);
3465 }
3466
3467 /*
3468 * This function is used to change the priority of an existing zio that is
3469 * currently in-flight. This is used by the arc to upgrade priority in the
3470 * event that a demand read is made for a block that is currently queued
3471 * as a scrub or async read IO. Otherwise, the high priority read request
3472 * would end up having to wait for the lower priority IO.
3473 */
3474 void
3475 zio_change_priority(zio_t *pio, zio_priority_t priority)
3476 {
3477 zio_t *cio, *cio_next;
3478 zio_link_t *zl = NULL;
3479
3480 ASSERT3U(priority, <, ZIO_PRIORITY_NUM_QUEUEABLE);
3481
3482 if (pio->io_vd != NULL && pio->io_vd->vdev_ops->vdev_op_leaf) {
3483 vdev_queue_change_io_priority(pio, priority);
3484 } else {
3485 pio->io_priority = priority;
3486 }
3487
3488 mutex_enter(&pio->io_lock);
3489 for (cio = zio_walk_children(pio, &zl); cio != NULL; cio = cio_next) {
3490 cio_next = zio_walk_children(pio, &zl);
3491 zio_change_priority(cio, priority);
3492 }
3493 mutex_exit(&pio->io_lock);
3494 }
3495
3496 /*
3497 * For non-raidz ZIOs, we can just copy aside the bad data read from the
3498 * disk, and use that to finish the checksum ereport later.
3499 */
3500 static void
3501 zio_vsd_default_cksum_finish(zio_cksum_report_t *zcr,
3502 const abd_t *good_buf)
3503 {
3504 /* no processing needed */
3505 zfs_ereport_finish_checksum(zcr, good_buf, zcr->zcr_cbdata, B_FALSE);
3506 }
3507
3508 /*ARGSUSED*/
3509 void
3510 zio_vsd_default_cksum_report(zio_t *zio, zio_cksum_report_t *zcr, void *ignored)
3511 {
3512 void *abd = abd_alloc_sametype(zio->io_abd, zio->io_size);
3513
3514 abd_copy(abd, zio->io_abd, zio->io_size);
3515
3516 zcr->zcr_cbinfo = zio->io_size;
3517 zcr->zcr_cbdata = abd;
3518 zcr->zcr_finish = zio_vsd_default_cksum_finish;
3519 zcr->zcr_free = zio_abd_free;
3520 }
3521
3522 static int
3523 zio_vdev_io_assess(zio_t *zio)
3524 {
3525 vdev_t *vd = zio->io_vd;
3526
3527 if (zio_wait_for_children(zio, ZIO_CHILD_VDEV, ZIO_WAIT_DONE))
3528 return (ZIO_PIPELINE_STOP);
3529
3530 if (vd == NULL && !(zio->io_flags & ZIO_FLAG_CONFIG_WRITER))
3531 spa_config_exit(zio->io_spa, SCL_ZIO, zio);
3532
3533 if (zio->io_vsd != NULL) {
3534 zio->io_vsd_ops->vsd_free(zio);
3535 zio->io_vsd = NULL;
3536 }
3537
3538 if (zio_injection_enabled && zio->io_error == 0)
3539 zio->io_error = zio_handle_fault_injection(zio, EIO);
3540
3541 /*
3542 * If the I/O failed, determine whether we should attempt to retry it.
3543 *
3544 * On retry, we cut in line in the issue queue, since we don't want
3545 * compression/checksumming/etc. work to prevent our (cheap) IO reissue.
3546 */
3547 if (zio->io_error && vd == NULL &&
3548 !(zio->io_flags & (ZIO_FLAG_DONT_RETRY | ZIO_FLAG_IO_RETRY))) {
3549 ASSERT(!(zio->io_flags & ZIO_FLAG_DONT_QUEUE)); /* not a leaf */
3550 ASSERT(!(zio->io_flags & ZIO_FLAG_IO_BYPASS)); /* not a leaf */
3551 zio->io_error = 0;
3552 zio->io_flags |= ZIO_FLAG_IO_RETRY |
3553 ZIO_FLAG_DONT_CACHE | ZIO_FLAG_DONT_AGGREGATE;
3554 zio->io_stage = ZIO_STAGE_VDEV_IO_START >> 1;
3555 zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE,
3556 zio_requeue_io_start_cut_in_line);
3557 return (ZIO_PIPELINE_STOP);
3558 }
3559
3560 /*
3561 * If we got an error on a leaf device, convert it to ENXIO
3562 * if the device is not accessible at all.
3563 */
3564 if (zio->io_error && vd != NULL && vd->vdev_ops->vdev_op_leaf &&
3565 !vdev_accessible(vd, zio))
3566 zio->io_error = SET_ERROR(ENXIO);
3567
3568 /*
3569 * If we can't write to an interior vdev (mirror or RAID-Z),
3570 * set vdev_cant_write so that we stop trying to allocate from it.
3571 */
3572 if (zio->io_error == ENXIO && zio->io_type == ZIO_TYPE_WRITE &&
3573 vd != NULL && !vd->vdev_ops->vdev_op_leaf) {
3574 vd->vdev_cant_write = B_TRUE;
3575 }
3576
3577 /*
3578 * If a cache flush returns ENOTSUP or ENOTTY, we know that no future
3579 * attempts will ever succeed. In this case we set a persistent bit so
3580 * that we don't bother with it in the future.
3581 */
3582 if ((zio->io_error == ENOTSUP || zio->io_error == ENOTTY) &&
3583 zio->io_type == ZIO_TYPE_IOCTL &&
3584 zio->io_cmd == DKIOCFLUSHWRITECACHE && vd != NULL)
3585 vd->vdev_nowritecache = B_TRUE;
3586
3587 if (zio->io_error)
3588 zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
3589
3590 if (vd != NULL && vd->vdev_ops->vdev_op_leaf &&
3591 zio->io_physdone != NULL) {
3592 ASSERT(!(zio->io_flags & ZIO_FLAG_DELEGATED));
3593 ASSERT(zio->io_child_type == ZIO_CHILD_VDEV);
3594 zio->io_physdone(zio->io_logical);
3595 }
3596
3597 return (ZIO_PIPELINE_CONTINUE);
3598 }
3599
3600 void
3601 zio_vdev_io_reissue(zio_t *zio)
3602 {
3603 ASSERT(zio->io_stage == ZIO_STAGE_VDEV_IO_START);
3604 ASSERT(zio->io_error == 0);
3605
3606 zio->io_stage >>= 1;
3607 }
3608
3609 void
3610 zio_vdev_io_redone(zio_t *zio)
3611 {
3612 ASSERT(zio->io_stage == ZIO_STAGE_VDEV_IO_DONE);
3613
3614 zio->io_stage >>= 1;
3615 }
3616
3617 void
3618 zio_vdev_io_bypass(zio_t *zio)
3619 {
3620 ASSERT(zio->io_stage == ZIO_STAGE_VDEV_IO_START);
3621 ASSERT(zio->io_error == 0);
3622
3623 zio->io_flags |= ZIO_FLAG_IO_BYPASS;
3624 zio->io_stage = ZIO_STAGE_VDEV_IO_ASSESS >> 1;
3625 }
3626
3627 /*
3628 * ==========================================================================
3629 * Encrypt and store encryption parameters
3630 * ==========================================================================
3631 */
3632
3633
3634 /*
3635 * This function is used for ZIO_STAGE_ENCRYPT. It is responsible for
3636 * managing the storage of encryption parameters and passing them to the
3637 * lower-level encryption functions.
3638 */
3639 static int
3640 zio_encrypt(zio_t *zio)
3641 {
3642 zio_prop_t *zp = &zio->io_prop;
3643 spa_t *spa = zio->io_spa;
3644 blkptr_t *bp = zio->io_bp;
3645 uint64_t psize = BP_GET_PSIZE(bp);
3646 dmu_object_type_t ot = BP_GET_TYPE(bp);
3647 void *enc_buf = NULL;
3648 abd_t *eabd = NULL;
3649 uint8_t salt[ZIO_DATA_SALT_LEN];
3650 uint8_t iv[ZIO_DATA_IV_LEN];
3651 uint8_t mac[ZIO_DATA_MAC_LEN];
3652 boolean_t no_crypt = B_FALSE;
3653
3654 /* the root zio already encrypted the data */
3655 if (zio->io_child_type == ZIO_CHILD_GANG)
3656 return (ZIO_PIPELINE_CONTINUE);
3657
3658 /* only ZIL blocks are re-encrypted on rewrite */
3659 if (!IO_IS_ALLOCATING(zio) && ot != DMU_OT_INTENT_LOG)
3660 return (ZIO_PIPELINE_CONTINUE);
3661
3662 if (!(zp->zp_encrypt || BP_IS_ENCRYPTED(bp))) {
3663 BP_SET_CRYPT(bp, B_FALSE);
3664 return (ZIO_PIPELINE_CONTINUE);
3665 }
3666
3667 /* if we are doing raw encryption set the provided encryption params */
3668 if (zio->io_flags & ZIO_FLAG_RAW_ENCRYPT) {
3669 BP_SET_CRYPT(bp, B_TRUE);
3670 BP_SET_BYTEORDER(bp, zp->zp_byteorder);
3671 if (ot != DMU_OT_OBJSET)
3672 zio_crypt_encode_mac_bp(bp, zp->zp_mac);
3673 if (DMU_OT_IS_ENCRYPTED(ot))
3674 zio_crypt_encode_params_bp(bp, zp->zp_salt, zp->zp_iv);
3675 return (ZIO_PIPELINE_CONTINUE);
3676 }
3677
3678 /* indirect blocks only maintain a cksum of the lower level MACs */
3679 if (BP_GET_LEVEL(bp) > 0) {
3680 BP_SET_CRYPT(bp, B_TRUE);
3681 VERIFY0(zio_crypt_do_indirect_mac_checksum_abd(B_TRUE,
3682 zio->io_orig_abd, BP_GET_LSIZE(bp), BP_SHOULD_BYTESWAP(bp),
3683 mac));
3684 zio_crypt_encode_mac_bp(bp, mac);
3685 return (ZIO_PIPELINE_CONTINUE);
3686 }
3687
3688 /*
3689 * Objset blocks are a special case since they have 2 256-bit MACs
3690 * embedded within them.
3691 */
3692 if (ot == DMU_OT_OBJSET) {
3693 ASSERT0(DMU_OT_IS_ENCRYPTED(ot));
3694 ASSERT3U(BP_GET_COMPRESS(bp), ==, ZIO_COMPRESS_OFF);
3695 BP_SET_CRYPT(bp, B_TRUE);
3696 VERIFY0(spa_do_crypt_objset_mac_abd(B_TRUE, spa,
3697 zio->io_bookmark.zb_objset, zio->io_abd, psize,
3698 BP_SHOULD_BYTESWAP(bp)));
3699 return (ZIO_PIPELINE_CONTINUE);
3700 }
3701
3702 /* unencrypted object types are only authenticated with a MAC */
3703 if (!DMU_OT_IS_ENCRYPTED(ot)) {
3704 BP_SET_CRYPT(bp, B_TRUE);
3705 VERIFY0(spa_do_crypt_mac_abd(B_TRUE, spa,
3706 zio->io_bookmark.zb_objset, zio->io_abd, psize, mac));
3707 zio_crypt_encode_mac_bp(bp, mac);
3708 return (ZIO_PIPELINE_CONTINUE);
3709 }
3710
3711 /*
3712 * Later passes of sync-to-convergence may decide to rewrite data
3713 * in place to avoid more disk reallocations. This presents a problem
3714 * for encryption because this consitutes rewriting the new data with
3715 * the same encryption key and IV. However, this only applies to blocks
3716 * in the MOS (particularly the spacemaps) and we do not encrypt the
3717 * MOS. We assert that the zio is allocating or an intent log write
3718 * to enforce this.
3719 */
3720 ASSERT(IO_IS_ALLOCATING(zio) || ot == DMU_OT_INTENT_LOG);
3721 ASSERT(BP_GET_LEVEL(bp) == 0 || ot == DMU_OT_INTENT_LOG);
3722 ASSERT(spa_feature_is_active(spa, SPA_FEATURE_ENCRYPTION));
3723 ASSERT3U(psize, !=, 0);
3724
3725 enc_buf = zio_buf_alloc(psize);
3726 eabd = abd_get_from_buf(enc_buf, psize);
3727 abd_take_ownership_of_buf(eabd, B_TRUE);
3728
3729 /*
3730 * For an explanation of what encryption parameters are stored
3731 * where, see the block comment in zio_crypt.c.
3732 */
3733 if (ot == DMU_OT_INTENT_LOG) {
3734 zio_crypt_decode_params_bp(bp, salt, iv);
3735 } else {
3736 BP_SET_CRYPT(bp, B_TRUE);
3737 }
3738
3739 /* Perform the encryption. This should not fail */
3740 VERIFY0(spa_do_crypt_abd(B_TRUE, spa, zio->io_bookmark.zb_objset, bp,
3741 zio->io_txg, psize, zio->io_abd, eabd, iv, mac, salt, &no_crypt));
3742
3743 /* encode encryption metadata into the bp */
3744 if (ot == DMU_OT_INTENT_LOG) {
3745 /*
3746 * ZIL blocks store the MAC in the embedded checksum, so the
3747 * transform must always be applied.
3748 */
3749 zio_crypt_encode_mac_zil(enc_buf, mac);
3750 zio_push_transform(zio, eabd, psize, psize, NULL);
3751 } else {
3752 BP_SET_CRYPT(bp, B_TRUE);
3753 zio_crypt_encode_params_bp(bp, salt, iv);
3754 zio_crypt_encode_mac_bp(bp, mac);
3755
3756 if (no_crypt) {
3757 ASSERT3U(ot, ==, DMU_OT_DNODE);
3758 abd_free(eabd);
3759 } else {
3760 zio_push_transform(zio, eabd, psize, psize, NULL);
3761 }
3762 }
3763
3764 return (ZIO_PIPELINE_CONTINUE);
3765 }
3766
3767 /*
3768 * ==========================================================================
3769 * Generate and verify checksums
3770 * ==========================================================================
3771 */
3772 static int
3773 zio_checksum_generate(zio_t *zio)
3774 {
3775 blkptr_t *bp = zio->io_bp;
3776 enum zio_checksum checksum;
3777
3778 if (bp == NULL) {
3779 /*
3780 * This is zio_write_phys().
3781 * We're either generating a label checksum, or none at all.
3782 */
3783 checksum = zio->io_prop.zp_checksum;
3784
3785 if (checksum == ZIO_CHECKSUM_OFF)
3786 return (ZIO_PIPELINE_CONTINUE);
3787
3788 ASSERT(checksum == ZIO_CHECKSUM_LABEL);
3789 } else {
3790 if (BP_IS_GANG(bp) && zio->io_child_type == ZIO_CHILD_GANG) {
3791 ASSERT(!IO_IS_ALLOCATING(zio));
3792 checksum = ZIO_CHECKSUM_GANG_HEADER;
3793 } else {
3794 checksum = BP_GET_CHECKSUM(bp);
3795 }
3796 }
3797
3798 zio_checksum_compute(zio, checksum, zio->io_abd, zio->io_size);
3799
3800 return (ZIO_PIPELINE_CONTINUE);
3801 }
3802
3803 static int
3804 zio_checksum_verify(zio_t *zio)
3805 {
3806 zio_bad_cksum_t info;
3807 blkptr_t *bp = zio->io_bp;
3808 int error;
3809
3810 ASSERT(zio->io_vd != NULL);
3811
3812 if (bp == NULL) {
3813 /*
3814 * This is zio_read_phys().
3815 * We're either verifying a label checksum, or nothing at all.
3816 */
3817 if (zio->io_prop.zp_checksum == ZIO_CHECKSUM_OFF)
3818 return (ZIO_PIPELINE_CONTINUE);
3819
3820 ASSERT(zio->io_prop.zp_checksum == ZIO_CHECKSUM_LABEL);
3821 }
3822
3823 if ((error = zio_checksum_error(zio, &info)) != 0) {
3824 zio->io_error = error;
3825 if (error == ECKSUM &&
3826 !(zio->io_flags & ZIO_FLAG_SPECULATIVE)) {
3827 zfs_ereport_start_checksum(zio->io_spa,
3828 zio->io_vd, &zio->io_bookmark, zio,
3829 zio->io_offset, zio->io_size, NULL, &info);
3830 }
3831 }
3832
3833 return (ZIO_PIPELINE_CONTINUE);
3834 }
3835
3836 /*
3837 * Called by RAID-Z to ensure we don't compute the checksum twice.
3838 */
3839 void
3840 zio_checksum_verified(zio_t *zio)
3841 {
3842 zio->io_pipeline &= ~ZIO_STAGE_CHECKSUM_VERIFY;
3843 }
3844
3845 /*
3846 * ==========================================================================
3847 * Error rank. Error are ranked in the order 0, ENXIO, ECKSUM, EIO, other.
3848 * An error of 0 indicates success. ENXIO indicates whole-device failure,
3849 * which may be transient (e.g. unplugged) or permament. ECKSUM and EIO
3850 * indicate errors that are specific to one I/O, and most likely permanent.
3851 * Any other error is presumed to be worse because we weren't expecting it.
3852 * ==========================================================================
3853 */
3854 int
3855 zio_worst_error(int e1, int e2)
3856 {
3857 static int zio_error_rank[] = { 0, ENXIO, ECKSUM, EIO };
3858 int r1, r2;
3859
3860 for (r1 = 0; r1 < sizeof (zio_error_rank) / sizeof (int); r1++)
3861 if (e1 == zio_error_rank[r1])
3862 break;
3863
3864 for (r2 = 0; r2 < sizeof (zio_error_rank) / sizeof (int); r2++)
3865 if (e2 == zio_error_rank[r2])
3866 break;
3867
3868 return (r1 > r2 ? e1 : e2);
3869 }
3870
3871 /*
3872 * ==========================================================================
3873 * I/O completion
3874 * ==========================================================================
3875 */
3876 static int
3877 zio_ready(zio_t *zio)
3878 {
3879 blkptr_t *bp = zio->io_bp;
3880 zio_t *pio, *pio_next;
3881 zio_link_t *zl = NULL;
3882
3883 if (zio_wait_for_children(zio, ZIO_CHILD_GANG, ZIO_WAIT_READY) ||
3884 zio_wait_for_children(zio, ZIO_CHILD_DDT, ZIO_WAIT_READY))
3885 return (ZIO_PIPELINE_STOP);
3886
3887 if (zio->io_ready) {
3888 ASSERT(IO_IS_ALLOCATING(zio));
3889 ASSERT(bp->blk_birth == zio->io_txg || BP_IS_HOLE(bp) ||
3890 (zio->io_flags & ZIO_FLAG_NOPWRITE));
3891 ASSERT(zio->io_children[ZIO_CHILD_GANG][ZIO_WAIT_READY] == 0);
3892
3893 zio->io_ready(zio);
3894 }
3895
3896 if (bp != NULL && bp != &zio->io_bp_copy)
3897 zio->io_bp_copy = *bp;
3898
3899 if (zio->io_error != 0) {
3900 zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
3901
3902 if (zio->io_flags & ZIO_FLAG_IO_ALLOCATING) {
3903 ASSERT(IO_IS_ALLOCATING(zio));
3904 ASSERT(zio->io_priority == ZIO_PRIORITY_ASYNC_WRITE);
3905 /*
3906 * We were unable to allocate anything, unreserve and
3907 * issue the next I/O to allocate.
3908 */
3909 metaslab_class_throttle_unreserve(
3910 spa_normal_class(zio->io_spa),
3911 zio->io_prop.zp_copies, zio);
3912 zio_allocate_dispatch(zio->io_spa);
3913 }
3914 }
3915
3916 mutex_enter(&zio->io_lock);
3917 zio->io_state[ZIO_WAIT_READY] = 1;
3918 pio = zio_walk_parents(zio, &zl);
3919 mutex_exit(&zio->io_lock);
3920
3921 /*
3922 * As we notify zio's parents, new parents could be added.
3923 * New parents go to the head of zio's io_parent_list, however,
3924 * so we will (correctly) not notify them. The remainder of zio's
3925 * io_parent_list, from 'pio_next' onward, cannot change because
3926 * all parents must wait for us to be done before they can be done.
3927 */
3928 for (; pio != NULL; pio = pio_next) {
3929 pio_next = zio_walk_parents(zio, &zl);
3930 zio_notify_parent(pio, zio, ZIO_WAIT_READY);
3931 }
3932
3933 if (zio->io_flags & ZIO_FLAG_NODATA) {
3934 if (BP_IS_GANG(bp)) {
3935 zio->io_flags &= ~ZIO_FLAG_NODATA;
3936 } else {
3937 ASSERT((uintptr_t)zio->io_abd < SPA_MAXBLOCKSIZE);
3938 zio->io_pipeline &= ~ZIO_VDEV_IO_STAGES;
3939 }
3940 }
3941
3942 if (zio_injection_enabled &&
3943 zio->io_spa->spa_syncing_txg == zio->io_txg)
3944 zio_handle_ignored_writes(zio);
3945
3946 return (ZIO_PIPELINE_CONTINUE);
3947 }
3948
3949 /*
3950 * Update the allocation throttle accounting.
3951 */
3952 static void
3953 zio_dva_throttle_done(zio_t *zio)
3954 {
3955 ASSERTV(zio_t *lio = zio->io_logical);
3956 zio_t *pio = zio_unique_parent(zio);
3957 vdev_t *vd = zio->io_vd;
3958 int flags = METASLAB_ASYNC_ALLOC;
3959
3960 ASSERT3P(zio->io_bp, !=, NULL);
3961 ASSERT3U(zio->io_type, ==, ZIO_TYPE_WRITE);
3962 ASSERT3U(zio->io_priority, ==, ZIO_PRIORITY_ASYNC_WRITE);
3963 ASSERT3U(zio->io_child_type, ==, ZIO_CHILD_VDEV);
3964 ASSERT(vd != NULL);
3965 ASSERT3P(vd, ==, vd->vdev_top);
3966 ASSERT(zio_injection_enabled || !(zio->io_flags & ZIO_FLAG_IO_RETRY));
3967 ASSERT(!(zio->io_flags & ZIO_FLAG_IO_REPAIR));
3968 ASSERT(zio->io_flags & ZIO_FLAG_IO_ALLOCATING);
3969 ASSERT(!(lio->io_flags & ZIO_FLAG_IO_REWRITE));
3970 ASSERT(!(lio->io_orig_flags & ZIO_FLAG_NODATA));
3971
3972 /*
3973 * Parents of gang children can have two flavors -- ones that
3974 * allocated the gang header (will have ZIO_FLAG_IO_REWRITE set)
3975 * and ones that allocated the constituent blocks. The allocation
3976 * throttle needs to know the allocating parent zio so we must find
3977 * it here.
3978 */
3979 if (pio->io_child_type == ZIO_CHILD_GANG) {
3980 /*
3981 * If our parent is a rewrite gang child then our grandparent
3982 * would have been the one that performed the allocation.
3983 */
3984 if (pio->io_flags & ZIO_FLAG_IO_REWRITE)
3985 pio = zio_unique_parent(pio);
3986 flags |= METASLAB_GANG_CHILD;
3987 }
3988
3989 ASSERT(IO_IS_ALLOCATING(pio));
3990 ASSERT3P(zio, !=, zio->io_logical);
3991 ASSERT(zio->io_logical != NULL);
3992 ASSERT(!(zio->io_flags & ZIO_FLAG_IO_REPAIR));
3993 ASSERT0(zio->io_flags & ZIO_FLAG_NOPWRITE);
3994
3995 mutex_enter(&pio->io_lock);
3996 metaslab_group_alloc_decrement(zio->io_spa, vd->vdev_id, pio, flags);
3997 mutex_exit(&pio->io_lock);
3998
3999 metaslab_class_throttle_unreserve(spa_normal_class(zio->io_spa),
4000 1, pio);
4001
4002 /*
4003 * Call into the pipeline to see if there is more work that
4004 * needs to be done. If there is work to be done it will be
4005 * dispatched to another taskq thread.
4006 */
4007 zio_allocate_dispatch(zio->io_spa);
4008 }
4009
4010 static int
4011 zio_done(zio_t *zio)
4012 {
4013 /*
4014 * Always attempt to keep stack usage minimal here since
4015 * we can be called recurisvely up to 19 levels deep.
4016 */
4017 const uint64_t psize = zio->io_size;
4018 zio_t *pio, *pio_next;
4019 zio_link_t *zl = NULL;
4020
4021 /*
4022 * If our children haven't all completed,
4023 * wait for them and then repeat this pipeline stage.
4024 */
4025 if (zio_wait_for_children(zio, ZIO_CHILD_VDEV, ZIO_WAIT_DONE) ||
4026 zio_wait_for_children(zio, ZIO_CHILD_GANG, ZIO_WAIT_DONE) ||
4027 zio_wait_for_children(zio, ZIO_CHILD_DDT, ZIO_WAIT_DONE) ||
4028 zio_wait_for_children(zio, ZIO_CHILD_LOGICAL, ZIO_WAIT_DONE))
4029 return (ZIO_PIPELINE_STOP);
4030
4031 /*
4032 * If the allocation throttle is enabled, then update the accounting.
4033 * We only track child I/Os that are part of an allocating async
4034 * write. We must do this since the allocation is performed
4035 * by the logical I/O but the actual write is done by child I/Os.
4036 */
4037 if (zio->io_flags & ZIO_FLAG_IO_ALLOCATING &&
4038 zio->io_child_type == ZIO_CHILD_VDEV) {
4039 ASSERT(spa_normal_class(
4040 zio->io_spa)->mc_alloc_throttle_enabled);
4041 zio_dva_throttle_done(zio);
4042 }
4043
4044 /*
4045 * If the allocation throttle is enabled, verify that
4046 * we have decremented the refcounts for every I/O that was throttled.
4047 */
4048 if (zio->io_flags & ZIO_FLAG_IO_ALLOCATING) {
4049 ASSERT(zio->io_type == ZIO_TYPE_WRITE);
4050 ASSERT(zio->io_priority == ZIO_PRIORITY_ASYNC_WRITE);
4051 ASSERT(zio->io_bp != NULL);
4052 metaslab_group_alloc_verify(zio->io_spa, zio->io_bp, zio);
4053 VERIFY(refcount_not_held(
4054 &(spa_normal_class(zio->io_spa)->mc_alloc_slots), zio));
4055 }
4056
4057
4058 for (int c = 0; c < ZIO_CHILD_TYPES; c++)
4059 for (int w = 0; w < ZIO_WAIT_TYPES; w++)
4060 ASSERT(zio->io_children[c][w] == 0);
4061
4062 if (zio->io_bp != NULL && !BP_IS_EMBEDDED(zio->io_bp)) {
4063 ASSERT(zio->io_bp->blk_pad[0] == 0);
4064 ASSERT(zio->io_bp->blk_pad[1] == 0);
4065 ASSERT(bcmp(zio->io_bp, &zio->io_bp_copy,
4066 sizeof (blkptr_t)) == 0 ||
4067 (zio->io_bp == zio_unique_parent(zio)->io_bp));
4068 if (zio->io_type == ZIO_TYPE_WRITE && !BP_IS_HOLE(zio->io_bp) &&
4069 zio->io_bp_override == NULL &&
4070 !(zio->io_flags & ZIO_FLAG_IO_REPAIR)) {
4071 ASSERT(!BP_SHOULD_BYTESWAP(zio->io_bp));
4072 ASSERT3U(zio->io_prop.zp_copies, <=,
4073 BP_GET_NDVAS(zio->io_bp));
4074 ASSERT(BP_COUNT_GANG(zio->io_bp) == 0 ||
4075 (BP_COUNT_GANG(zio->io_bp) ==
4076 BP_GET_NDVAS(zio->io_bp)));
4077 }
4078 if (zio->io_flags & ZIO_FLAG_NOPWRITE)
4079 VERIFY(BP_EQUAL(zio->io_bp, &zio->io_bp_orig));
4080 }
4081
4082 /*
4083 * If there were child vdev/gang/ddt errors, they apply to us now.
4084 */
4085 zio_inherit_child_errors(zio, ZIO_CHILD_VDEV);
4086 zio_inherit_child_errors(zio, ZIO_CHILD_GANG);
4087 zio_inherit_child_errors(zio, ZIO_CHILD_DDT);
4088
4089 /*
4090 * If the I/O on the transformed data was successful, generate any
4091 * checksum reports now while we still have the transformed data.
4092 */
4093 if (zio->io_error == 0) {
4094 while (zio->io_cksum_report != NULL) {
4095 zio_cksum_report_t *zcr = zio->io_cksum_report;
4096 uint64_t align = zcr->zcr_align;
4097 uint64_t asize = P2ROUNDUP(psize, align);
4098 abd_t *adata = zio->io_abd;
4099
4100 if (asize != psize) {
4101 adata = abd_alloc(asize, B_TRUE);
4102 abd_copy(adata, zio->io_abd, psize);
4103 abd_zero_off(adata, psize, asize - psize);
4104 }
4105
4106 zio->io_cksum_report = zcr->zcr_next;
4107 zcr->zcr_next = NULL;
4108 zcr->zcr_finish(zcr, adata);
4109 zfs_ereport_free_checksum(zcr);
4110
4111 if (asize != psize)
4112 abd_free(adata);
4113 }
4114 }
4115
4116 zio_pop_transforms(zio); /* note: may set zio->io_error */
4117
4118 vdev_stat_update(zio, psize);
4119
4120 /*
4121 * If this I/O is attached to a particular vdev is slow, exceeding
4122 * 30 seconds to complete, post an error described the I/O delay.
4123 * We ignore these errors if the device is currently unavailable.
4124 */
4125 if (zio->io_delay >= MSEC2NSEC(zio_delay_max)) {
4126 if (zio->io_vd != NULL && !vdev_is_dead(zio->io_vd))
4127 zfs_ereport_post(FM_EREPORT_ZFS_DELAY, zio->io_spa,
4128 zio->io_vd, &zio->io_bookmark, zio, 0, 0);
4129 }
4130
4131 if (zio->io_error) {
4132 /*
4133 * If this I/O is attached to a particular vdev,
4134 * generate an error message describing the I/O failure
4135 * at the block level. We ignore these errors if the
4136 * device is currently unavailable.
4137 */
4138 if (zio->io_error != ECKSUM && zio->io_vd != NULL &&
4139 !vdev_is_dead(zio->io_vd))
4140 zfs_ereport_post(FM_EREPORT_ZFS_IO, zio->io_spa,
4141 zio->io_vd, &zio->io_bookmark, zio, 0, 0);
4142
4143 if ((zio->io_error == EIO || !(zio->io_flags &
4144 (ZIO_FLAG_SPECULATIVE | ZIO_FLAG_DONT_PROPAGATE))) &&
4145 zio == zio->io_logical) {
4146 /*
4147 * For logical I/O requests, tell the SPA to log the
4148 * error and generate a logical data ereport.
4149 */
4150 spa_log_error(zio->io_spa, &zio->io_bookmark);
4151 zfs_ereport_post(FM_EREPORT_ZFS_DATA, zio->io_spa,
4152 NULL, &zio->io_bookmark, zio, 0, 0);
4153 }
4154 }
4155
4156 if (zio->io_error && zio == zio->io_logical) {
4157 /*
4158 * Determine whether zio should be reexecuted. This will
4159 * propagate all the way to the root via zio_notify_parent().
4160 */
4161 ASSERT(zio->io_vd == NULL && zio->io_bp != NULL);
4162 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
4163
4164 if (IO_IS_ALLOCATING(zio) &&
4165 !(zio->io_flags & ZIO_FLAG_CANFAIL)) {
4166 if (zio->io_error != ENOSPC)
4167 zio->io_reexecute |= ZIO_REEXECUTE_NOW;
4168 else
4169 zio->io_reexecute |= ZIO_REEXECUTE_SUSPEND;
4170 }
4171
4172 if ((zio->io_type == ZIO_TYPE_READ ||
4173 zio->io_type == ZIO_TYPE_FREE) &&
4174 !(zio->io_flags & ZIO_FLAG_SCAN_THREAD) &&
4175 zio->io_error == ENXIO &&
4176 spa_load_state(zio->io_spa) == SPA_LOAD_NONE &&
4177 spa_get_failmode(zio->io_spa) != ZIO_FAILURE_MODE_CONTINUE)
4178 zio->io_reexecute |= ZIO_REEXECUTE_SUSPEND;
4179
4180 if (!(zio->io_flags & ZIO_FLAG_CANFAIL) && !zio->io_reexecute)
4181 zio->io_reexecute |= ZIO_REEXECUTE_SUSPEND;
4182
4183 /*
4184 * Here is a possibly good place to attempt to do
4185 * either combinatorial reconstruction or error correction
4186 * based on checksums. It also might be a good place
4187 * to send out preliminary ereports before we suspend
4188 * processing.
4189 */
4190 }
4191
4192 /*
4193 * If there were logical child errors, they apply to us now.
4194 * We defer this until now to avoid conflating logical child
4195 * errors with errors that happened to the zio itself when
4196 * updating vdev stats and reporting FMA events above.
4197 */
4198 zio_inherit_child_errors(zio, ZIO_CHILD_LOGICAL);
4199
4200 if ((zio->io_error || zio->io_reexecute) &&
4201 IO_IS_ALLOCATING(zio) && zio->io_gang_leader == zio &&
4202 !(zio->io_flags & (ZIO_FLAG_IO_REWRITE | ZIO_FLAG_NOPWRITE)))
4203 zio_dva_unallocate(zio, zio->io_gang_tree, zio->io_bp);
4204
4205 zio_gang_tree_free(&zio->io_gang_tree);
4206
4207 /*
4208 * Godfather I/Os should never suspend.
4209 */
4210 if ((zio->io_flags & ZIO_FLAG_GODFATHER) &&
4211 (zio->io_reexecute & ZIO_REEXECUTE_SUSPEND))
4212 zio->io_reexecute &= ~ZIO_REEXECUTE_SUSPEND;
4213
4214 if (zio->io_reexecute) {
4215 /*
4216 * This is a logical I/O that wants to reexecute.
4217 *
4218 * Reexecute is top-down. When an i/o fails, if it's not
4219 * the root, it simply notifies its parent and sticks around.
4220 * The parent, seeing that it still has children in zio_done(),
4221 * does the same. This percolates all the way up to the root.
4222 * The root i/o will reexecute or suspend the entire tree.
4223 *
4224 * This approach ensures that zio_reexecute() honors
4225 * all the original i/o dependency relationships, e.g.
4226 * parents not executing until children are ready.
4227 */
4228 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
4229
4230 zio->io_gang_leader = NULL;
4231
4232 mutex_enter(&zio->io_lock);
4233 zio->io_state[ZIO_WAIT_DONE] = 1;
4234 mutex_exit(&zio->io_lock);
4235
4236 /*
4237 * "The Godfather" I/O monitors its children but is
4238 * not a true parent to them. It will track them through
4239 * the pipeline but severs its ties whenever they get into
4240 * trouble (e.g. suspended). This allows "The Godfather"
4241 * I/O to return status without blocking.
4242 */
4243 zl = NULL;
4244 for (pio = zio_walk_parents(zio, &zl); pio != NULL;
4245 pio = pio_next) {
4246 zio_link_t *remove_zl = zl;
4247 pio_next = zio_walk_parents(zio, &zl);
4248
4249 if ((pio->io_flags & ZIO_FLAG_GODFATHER) &&
4250 (zio->io_reexecute & ZIO_REEXECUTE_SUSPEND)) {
4251 zio_remove_child(pio, zio, remove_zl);
4252 zio_notify_parent(pio, zio, ZIO_WAIT_DONE);
4253 }
4254 }
4255
4256 if ((pio = zio_unique_parent(zio)) != NULL) {
4257 /*
4258 * We're not a root i/o, so there's nothing to do
4259 * but notify our parent. Don't propagate errors
4260 * upward since we haven't permanently failed yet.
4261 */
4262 ASSERT(!(zio->io_flags & ZIO_FLAG_GODFATHER));
4263 zio->io_flags |= ZIO_FLAG_DONT_PROPAGATE;
4264 zio_notify_parent(pio, zio, ZIO_WAIT_DONE);
4265 } else if (zio->io_reexecute & ZIO_REEXECUTE_SUSPEND) {
4266 /*
4267 * We'd fail again if we reexecuted now, so suspend
4268 * until conditions improve (e.g. device comes online).
4269 */
4270 zio_suspend(zio->io_spa, zio);
4271 } else {
4272 /*
4273 * Reexecution is potentially a huge amount of work.
4274 * Hand it off to the otherwise-unused claim taskq.
4275 */
4276 ASSERT(taskq_empty_ent(&zio->io_tqent));
4277 spa_taskq_dispatch_ent(zio->io_spa,
4278 ZIO_TYPE_CLAIM, ZIO_TASKQ_ISSUE,
4279 (task_func_t *)zio_reexecute, zio, 0,
4280 &zio->io_tqent);
4281 }
4282 return (ZIO_PIPELINE_STOP);
4283 }
4284
4285 ASSERT(zio->io_child_count == 0);
4286 ASSERT(zio->io_reexecute == 0);
4287 ASSERT(zio->io_error == 0 || (zio->io_flags & ZIO_FLAG_CANFAIL));
4288
4289 /*
4290 * Report any checksum errors, since the I/O is complete.
4291 */
4292 while (zio->io_cksum_report != NULL) {
4293 zio_cksum_report_t *zcr = zio->io_cksum_report;
4294 zio->io_cksum_report = zcr->zcr_next;
4295 zcr->zcr_next = NULL;
4296 zcr->zcr_finish(zcr, NULL);
4297 zfs_ereport_free_checksum(zcr);
4298 }
4299
4300 if (zio->io_flags & ZIO_FLAG_FASTWRITE && zio->io_bp &&
4301 !BP_IS_HOLE(zio->io_bp) && !BP_IS_EMBEDDED(zio->io_bp) &&
4302 !(zio->io_flags & ZIO_FLAG_NOPWRITE)) {
4303 metaslab_fastwrite_unmark(zio->io_spa, zio->io_bp);
4304 }
4305
4306 /*
4307 * It is the responsibility of the done callback to ensure that this
4308 * particular zio is no longer discoverable for adoption, and as
4309 * such, cannot acquire any new parents.
4310 */
4311 if (zio->io_done)
4312 zio->io_done(zio);
4313
4314 mutex_enter(&zio->io_lock);
4315 zio->io_state[ZIO_WAIT_DONE] = 1;
4316 mutex_exit(&zio->io_lock);
4317
4318 zl = NULL;
4319 for (pio = zio_walk_parents(zio, &zl); pio != NULL; pio = pio_next) {
4320 zio_link_t *remove_zl = zl;
4321 pio_next = zio_walk_parents(zio, &zl);
4322 zio_remove_child(pio, zio, remove_zl);
4323 zio_notify_parent(pio, zio, ZIO_WAIT_DONE);
4324 }
4325
4326 if (zio->io_waiter != NULL) {
4327 mutex_enter(&zio->io_lock);
4328 zio->io_executor = NULL;
4329 cv_broadcast(&zio->io_cv);
4330 mutex_exit(&zio->io_lock);
4331 } else {
4332 zio_destroy(zio);
4333 }
4334
4335 return (ZIO_PIPELINE_STOP);
4336 }
4337
4338 /*
4339 * ==========================================================================
4340 * I/O pipeline definition
4341 * ==========================================================================
4342 */
4343 static zio_pipe_stage_t *zio_pipeline[] = {
4344 NULL,
4345 zio_read_bp_init,
4346 zio_write_bp_init,
4347 zio_free_bp_init,
4348 zio_issue_async,
4349 zio_write_compress,
4350 zio_encrypt,
4351 zio_checksum_generate,
4352 zio_nop_write,
4353 zio_ddt_read_start,
4354 zio_ddt_read_done,
4355 zio_ddt_write,
4356 zio_ddt_free,
4357 zio_gang_assemble,
4358 zio_gang_issue,
4359 zio_dva_throttle,
4360 zio_dva_allocate,
4361 zio_dva_free,
4362 zio_dva_claim,
4363 zio_ready,
4364 zio_vdev_io_start,
4365 zio_vdev_io_done,
4366 zio_vdev_io_assess,
4367 zio_checksum_verify,
4368 zio_done
4369 };
4370
4371
4372
4373
4374 /*
4375 * Compare two zbookmark_phys_t's to see which we would reach first in a
4376 * pre-order traversal of the object tree.
4377 *
4378 * This is simple in every case aside from the meta-dnode object. For all other
4379 * objects, we traverse them in order (object 1 before object 2, and so on).
4380 * However, all of these objects are traversed while traversing object 0, since
4381 * the data it points to is the list of objects. Thus, we need to convert to a
4382 * canonical representation so we can compare meta-dnode bookmarks to
4383 * non-meta-dnode bookmarks.
4384 *
4385 * We do this by calculating "equivalents" for each field of the zbookmark.
4386 * zbookmarks outside of the meta-dnode use their own object and level, and
4387 * calculate the level 0 equivalent (the first L0 blkid that is contained in the
4388 * blocks this bookmark refers to) by multiplying their blkid by their span
4389 * (the number of L0 blocks contained within one block at their level).
4390 * zbookmarks inside the meta-dnode calculate their object equivalent
4391 * (which is L0equiv * dnodes per data block), use 0 for their L0equiv, and use
4392 * level + 1<<31 (any value larger than a level could ever be) for their level.
4393 * This causes them to always compare before a bookmark in their object
4394 * equivalent, compare appropriately to bookmarks in other objects, and to
4395 * compare appropriately to other bookmarks in the meta-dnode.
4396 */
4397 int
4398 zbookmark_compare(uint16_t dbss1, uint8_t ibs1, uint16_t dbss2, uint8_t ibs2,
4399 const zbookmark_phys_t *zb1, const zbookmark_phys_t *zb2)
4400 {
4401 /*
4402 * These variables represent the "equivalent" values for the zbookmark,
4403 * after converting zbookmarks inside the meta dnode to their
4404 * normal-object equivalents.
4405 */
4406 uint64_t zb1obj, zb2obj;
4407 uint64_t zb1L0, zb2L0;
4408 uint64_t zb1level, zb2level;
4409
4410 if (zb1->zb_object == zb2->zb_object &&
4411 zb1->zb_level == zb2->zb_level &&
4412 zb1->zb_blkid == zb2->zb_blkid)
4413 return (0);
4414
4415 /*
4416 * BP_SPANB calculates the span in blocks.
4417 */
4418 zb1L0 = (zb1->zb_blkid) * BP_SPANB(ibs1, zb1->zb_level);
4419 zb2L0 = (zb2->zb_blkid) * BP_SPANB(ibs2, zb2->zb_level);
4420
4421 if (zb1->zb_object == DMU_META_DNODE_OBJECT) {
4422 zb1obj = zb1L0 * (dbss1 << (SPA_MINBLOCKSHIFT - DNODE_SHIFT));
4423 zb1L0 = 0;
4424 zb1level = zb1->zb_level + COMPARE_META_LEVEL;
4425 } else {
4426 zb1obj = zb1->zb_object;
4427 zb1level = zb1->zb_level;
4428 }
4429
4430 if (zb2->zb_object == DMU_META_DNODE_OBJECT) {
4431 zb2obj = zb2L0 * (dbss2 << (SPA_MINBLOCKSHIFT - DNODE_SHIFT));
4432 zb2L0 = 0;
4433 zb2level = zb2->zb_level + COMPARE_META_LEVEL;
4434 } else {
4435 zb2obj = zb2->zb_object;
4436 zb2level = zb2->zb_level;
4437 }
4438
4439 /* Now that we have a canonical representation, do the comparison. */
4440 if (zb1obj != zb2obj)
4441 return (zb1obj < zb2obj ? -1 : 1);
4442 else if (zb1L0 != zb2L0)
4443 return (zb1L0 < zb2L0 ? -1 : 1);
4444 else if (zb1level != zb2level)
4445 return (zb1level > zb2level ? -1 : 1);
4446 /*
4447 * This can (theoretically) happen if the bookmarks have the same object
4448 * and level, but different blkids, if the block sizes are not the same.
4449 * There is presently no way to change the indirect block sizes
4450 */
4451 return (0);
4452 }
4453
4454 /*
4455 * This function checks the following: given that last_block is the place that
4456 * our traversal stopped last time, does that guarantee that we've visited
4457 * every node under subtree_root? Therefore, we can't just use the raw output
4458 * of zbookmark_compare. We have to pass in a modified version of
4459 * subtree_root; by incrementing the block id, and then checking whether
4460 * last_block is before or equal to that, we can tell whether or not having
4461 * visited last_block implies that all of subtree_root's children have been
4462 * visited.
4463 */
4464 boolean_t
4465 zbookmark_subtree_completed(const dnode_phys_t *dnp,
4466 const zbookmark_phys_t *subtree_root, const zbookmark_phys_t *last_block)
4467 {
4468 zbookmark_phys_t mod_zb = *subtree_root;
4469 mod_zb.zb_blkid++;
4470 ASSERT(last_block->zb_level == 0);
4471
4472 /* The objset_phys_t isn't before anything. */
4473 if (dnp == NULL)
4474 return (B_FALSE);
4475
4476 /*
4477 * We pass in 1ULL << (DNODE_BLOCK_SHIFT - SPA_MINBLOCKSHIFT) for the
4478 * data block size in sectors, because that variable is only used if
4479 * the bookmark refers to a block in the meta-dnode. Since we don't
4480 * know without examining it what object it refers to, and there's no
4481 * harm in passing in this value in other cases, we always pass it in.
4482 *
4483 * We pass in 0 for the indirect block size shift because zb2 must be
4484 * level 0. The indirect block size is only used to calculate the span
4485 * of the bookmark, but since the bookmark must be level 0, the span is
4486 * always 1, so the math works out.
4487 *
4488 * If you make changes to how the zbookmark_compare code works, be sure
4489 * to make sure that this code still works afterwards.
4490 */
4491 return (zbookmark_compare(dnp->dn_datablkszsec, dnp->dn_indblkshift,
4492 1ULL << (DNODE_BLOCK_SHIFT - SPA_MINBLOCKSHIFT), 0, &mod_zb,
4493 last_block) <= 0);
4494 }
4495
4496 #if defined(_KERNEL) && defined(HAVE_SPL)
4497 EXPORT_SYMBOL(zio_type_name);
4498 EXPORT_SYMBOL(zio_buf_alloc);
4499 EXPORT_SYMBOL(zio_data_buf_alloc);
4500 EXPORT_SYMBOL(zio_buf_free);
4501 EXPORT_SYMBOL(zio_data_buf_free);
4502
4503 module_param(zio_delay_max, int, 0644);
4504 MODULE_PARM_DESC(zio_delay_max, "Max zio millisec delay before posting event");
4505
4506 module_param(zio_requeue_io_start_cut_in_line, int, 0644);
4507 MODULE_PARM_DESC(zio_requeue_io_start_cut_in_line, "Prioritize requeued I/O");
4508
4509 module_param(zfs_sync_pass_deferred_free, int, 0644);
4510 MODULE_PARM_DESC(zfs_sync_pass_deferred_free,
4511 "Defer frees starting in this pass");
4512
4513 module_param(zfs_sync_pass_dont_compress, int, 0644);
4514 MODULE_PARM_DESC(zfs_sync_pass_dont_compress,
4515 "Don't compress starting in this pass");
4516
4517 module_param(zfs_sync_pass_rewrite, int, 0644);
4518 MODULE_PARM_DESC(zfs_sync_pass_rewrite,
4519 "Rewrite new bps starting in this pass");
4520
4521 module_param(zio_dva_throttle_enabled, int, 0644);
4522 MODULE_PARM_DESC(zio_dva_throttle_enabled,
4523 "Throttle block allocations in the ZIO pipeline");
4524 #endif