]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - net/bluetooth/hci_sock.c
libnvdimm/bus: Prepare the nd_ioctl() path to be re-entrant
[mirror_ubuntu-bionic-kernel.git] / net / bluetooth / hci_sock.c
1 /*
2 BlueZ - Bluetooth protocol stack for Linux
3 Copyright (C) 2000-2001 Qualcomm Incorporated
4
5 Written 2000,2001 by Maxim Krasnyansky <maxk@qualcomm.com>
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License version 2 as
9 published by the Free Software Foundation;
10
11 THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
12 OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
13 FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT OF THIRD PARTY RIGHTS.
14 IN NO EVENT SHALL THE COPYRIGHT HOLDER(S) AND AUTHOR(S) BE LIABLE FOR ANY
15 CLAIM, OR ANY SPECIAL INDIRECT OR CONSEQUENTIAL DAMAGES, OR ANY DAMAGES
16 WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
17 ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
18 OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
19
20 ALL LIABILITY, INCLUDING LIABILITY FOR INFRINGEMENT OF ANY PATENTS,
21 COPYRIGHTS, TRADEMARKS OR OTHER RIGHTS, RELATING TO USE OF THIS
22 SOFTWARE IS DISCLAIMED.
23 */
24
25 /* Bluetooth HCI sockets. */
26
27 #include <linux/export.h>
28 #include <linux/utsname.h>
29 #include <linux/sched.h>
30 #include <asm/unaligned.h>
31
32 #include <net/bluetooth/bluetooth.h>
33 #include <net/bluetooth/hci_core.h>
34 #include <net/bluetooth/hci_mon.h>
35 #include <net/bluetooth/mgmt.h>
36
37 #include "mgmt_util.h"
38
39 static LIST_HEAD(mgmt_chan_list);
40 static DEFINE_MUTEX(mgmt_chan_list_lock);
41
42 static DEFINE_IDA(sock_cookie_ida);
43
44 static atomic_t monitor_promisc = ATOMIC_INIT(0);
45
46 /* ----- HCI socket interface ----- */
47
48 /* Socket info */
49 #define hci_pi(sk) ((struct hci_pinfo *) sk)
50
51 struct hci_pinfo {
52 struct bt_sock bt;
53 struct hci_dev *hdev;
54 struct hci_filter filter;
55 __u32 cmsg_mask;
56 unsigned short channel;
57 unsigned long flags;
58 __u32 cookie;
59 char comm[TASK_COMM_LEN];
60 };
61
62 void hci_sock_set_flag(struct sock *sk, int nr)
63 {
64 set_bit(nr, &hci_pi(sk)->flags);
65 }
66
67 void hci_sock_clear_flag(struct sock *sk, int nr)
68 {
69 clear_bit(nr, &hci_pi(sk)->flags);
70 }
71
72 int hci_sock_test_flag(struct sock *sk, int nr)
73 {
74 return test_bit(nr, &hci_pi(sk)->flags);
75 }
76
77 unsigned short hci_sock_get_channel(struct sock *sk)
78 {
79 return hci_pi(sk)->channel;
80 }
81
82 u32 hci_sock_get_cookie(struct sock *sk)
83 {
84 return hci_pi(sk)->cookie;
85 }
86
87 static bool hci_sock_gen_cookie(struct sock *sk)
88 {
89 int id = hci_pi(sk)->cookie;
90
91 if (!id) {
92 id = ida_simple_get(&sock_cookie_ida, 1, 0, GFP_KERNEL);
93 if (id < 0)
94 id = 0xffffffff;
95
96 hci_pi(sk)->cookie = id;
97 get_task_comm(hci_pi(sk)->comm, current);
98 return true;
99 }
100
101 return false;
102 }
103
104 static void hci_sock_free_cookie(struct sock *sk)
105 {
106 int id = hci_pi(sk)->cookie;
107
108 if (id) {
109 hci_pi(sk)->cookie = 0xffffffff;
110 ida_simple_remove(&sock_cookie_ida, id);
111 }
112 }
113
114 static inline int hci_test_bit(int nr, const void *addr)
115 {
116 return *((const __u32 *) addr + (nr >> 5)) & ((__u32) 1 << (nr & 31));
117 }
118
119 /* Security filter */
120 #define HCI_SFLT_MAX_OGF 5
121
122 struct hci_sec_filter {
123 __u32 type_mask;
124 __u32 event_mask[2];
125 __u32 ocf_mask[HCI_SFLT_MAX_OGF + 1][4];
126 };
127
128 static const struct hci_sec_filter hci_sec_filter = {
129 /* Packet types */
130 0x10,
131 /* Events */
132 { 0x1000d9fe, 0x0000b00c },
133 /* Commands */
134 {
135 { 0x0 },
136 /* OGF_LINK_CTL */
137 { 0xbe000006, 0x00000001, 0x00000000, 0x00 },
138 /* OGF_LINK_POLICY */
139 { 0x00005200, 0x00000000, 0x00000000, 0x00 },
140 /* OGF_HOST_CTL */
141 { 0xaab00200, 0x2b402aaa, 0x05220154, 0x00 },
142 /* OGF_INFO_PARAM */
143 { 0x000002be, 0x00000000, 0x00000000, 0x00 },
144 /* OGF_STATUS_PARAM */
145 { 0x000000ea, 0x00000000, 0x00000000, 0x00 }
146 }
147 };
148
149 static struct bt_sock_list hci_sk_list = {
150 .lock = __RW_LOCK_UNLOCKED(hci_sk_list.lock)
151 };
152
153 static bool is_filtered_packet(struct sock *sk, struct sk_buff *skb)
154 {
155 struct hci_filter *flt;
156 int flt_type, flt_event;
157
158 /* Apply filter */
159 flt = &hci_pi(sk)->filter;
160
161 flt_type = hci_skb_pkt_type(skb) & HCI_FLT_TYPE_BITS;
162
163 if (!test_bit(flt_type, &flt->type_mask))
164 return true;
165
166 /* Extra filter for event packets only */
167 if (hci_skb_pkt_type(skb) != HCI_EVENT_PKT)
168 return false;
169
170 flt_event = (*(__u8 *)skb->data & HCI_FLT_EVENT_BITS);
171
172 if (!hci_test_bit(flt_event, &flt->event_mask))
173 return true;
174
175 /* Check filter only when opcode is set */
176 if (!flt->opcode)
177 return false;
178
179 if (flt_event == HCI_EV_CMD_COMPLETE &&
180 flt->opcode != get_unaligned((__le16 *)(skb->data + 3)))
181 return true;
182
183 if (flt_event == HCI_EV_CMD_STATUS &&
184 flt->opcode != get_unaligned((__le16 *)(skb->data + 4)))
185 return true;
186
187 return false;
188 }
189
190 /* Send frame to RAW socket */
191 void hci_send_to_sock(struct hci_dev *hdev, struct sk_buff *skb)
192 {
193 struct sock *sk;
194 struct sk_buff *skb_copy = NULL;
195
196 BT_DBG("hdev %p len %d", hdev, skb->len);
197
198 read_lock(&hci_sk_list.lock);
199
200 sk_for_each(sk, &hci_sk_list.head) {
201 struct sk_buff *nskb;
202
203 if (sk->sk_state != BT_BOUND || hci_pi(sk)->hdev != hdev)
204 continue;
205
206 /* Don't send frame to the socket it came from */
207 if (skb->sk == sk)
208 continue;
209
210 if (hci_pi(sk)->channel == HCI_CHANNEL_RAW) {
211 if (hci_skb_pkt_type(skb) != HCI_COMMAND_PKT &&
212 hci_skb_pkt_type(skb) != HCI_EVENT_PKT &&
213 hci_skb_pkt_type(skb) != HCI_ACLDATA_PKT &&
214 hci_skb_pkt_type(skb) != HCI_SCODATA_PKT)
215 continue;
216 if (is_filtered_packet(sk, skb))
217 continue;
218 } else if (hci_pi(sk)->channel == HCI_CHANNEL_USER) {
219 if (!bt_cb(skb)->incoming)
220 continue;
221 if (hci_skb_pkt_type(skb) != HCI_EVENT_PKT &&
222 hci_skb_pkt_type(skb) != HCI_ACLDATA_PKT &&
223 hci_skb_pkt_type(skb) != HCI_SCODATA_PKT)
224 continue;
225 } else {
226 /* Don't send frame to other channel types */
227 continue;
228 }
229
230 if (!skb_copy) {
231 /* Create a private copy with headroom */
232 skb_copy = __pskb_copy_fclone(skb, 1, GFP_ATOMIC, true);
233 if (!skb_copy)
234 continue;
235
236 /* Put type byte before the data */
237 memcpy(skb_push(skb_copy, 1), &hci_skb_pkt_type(skb), 1);
238 }
239
240 nskb = skb_clone(skb_copy, GFP_ATOMIC);
241 if (!nskb)
242 continue;
243
244 if (sock_queue_rcv_skb(sk, nskb))
245 kfree_skb(nskb);
246 }
247
248 read_unlock(&hci_sk_list.lock);
249
250 kfree_skb(skb_copy);
251 }
252
253 /* Send frame to sockets with specific channel */
254 static void __hci_send_to_channel(unsigned short channel, struct sk_buff *skb,
255 int flag, struct sock *skip_sk)
256 {
257 struct sock *sk;
258
259 BT_DBG("channel %u len %d", channel, skb->len);
260
261 sk_for_each(sk, &hci_sk_list.head) {
262 struct sk_buff *nskb;
263
264 /* Ignore socket without the flag set */
265 if (!hci_sock_test_flag(sk, flag))
266 continue;
267
268 /* Skip the original socket */
269 if (sk == skip_sk)
270 continue;
271
272 if (sk->sk_state != BT_BOUND)
273 continue;
274
275 if (hci_pi(sk)->channel != channel)
276 continue;
277
278 nskb = skb_clone(skb, GFP_ATOMIC);
279 if (!nskb)
280 continue;
281
282 if (sock_queue_rcv_skb(sk, nskb))
283 kfree_skb(nskb);
284 }
285
286 }
287
288 void hci_send_to_channel(unsigned short channel, struct sk_buff *skb,
289 int flag, struct sock *skip_sk)
290 {
291 read_lock(&hci_sk_list.lock);
292 __hci_send_to_channel(channel, skb, flag, skip_sk);
293 read_unlock(&hci_sk_list.lock);
294 }
295
296 /* Send frame to monitor socket */
297 void hci_send_to_monitor(struct hci_dev *hdev, struct sk_buff *skb)
298 {
299 struct sk_buff *skb_copy = NULL;
300 struct hci_mon_hdr *hdr;
301 __le16 opcode;
302
303 if (!atomic_read(&monitor_promisc))
304 return;
305
306 BT_DBG("hdev %p len %d", hdev, skb->len);
307
308 switch (hci_skb_pkt_type(skb)) {
309 case HCI_COMMAND_PKT:
310 opcode = cpu_to_le16(HCI_MON_COMMAND_PKT);
311 break;
312 case HCI_EVENT_PKT:
313 opcode = cpu_to_le16(HCI_MON_EVENT_PKT);
314 break;
315 case HCI_ACLDATA_PKT:
316 if (bt_cb(skb)->incoming)
317 opcode = cpu_to_le16(HCI_MON_ACL_RX_PKT);
318 else
319 opcode = cpu_to_le16(HCI_MON_ACL_TX_PKT);
320 break;
321 case HCI_SCODATA_PKT:
322 if (bt_cb(skb)->incoming)
323 opcode = cpu_to_le16(HCI_MON_SCO_RX_PKT);
324 else
325 opcode = cpu_to_le16(HCI_MON_SCO_TX_PKT);
326 break;
327 case HCI_DIAG_PKT:
328 opcode = cpu_to_le16(HCI_MON_VENDOR_DIAG);
329 break;
330 default:
331 return;
332 }
333
334 /* Create a private copy with headroom */
335 skb_copy = __pskb_copy_fclone(skb, HCI_MON_HDR_SIZE, GFP_ATOMIC, true);
336 if (!skb_copy)
337 return;
338
339 /* Put header before the data */
340 hdr = skb_push(skb_copy, HCI_MON_HDR_SIZE);
341 hdr->opcode = opcode;
342 hdr->index = cpu_to_le16(hdev->id);
343 hdr->len = cpu_to_le16(skb->len);
344
345 hci_send_to_channel(HCI_CHANNEL_MONITOR, skb_copy,
346 HCI_SOCK_TRUSTED, NULL);
347 kfree_skb(skb_copy);
348 }
349
350 void hci_send_monitor_ctrl_event(struct hci_dev *hdev, u16 event,
351 void *data, u16 data_len, ktime_t tstamp,
352 int flag, struct sock *skip_sk)
353 {
354 struct sock *sk;
355 __le16 index;
356
357 if (hdev)
358 index = cpu_to_le16(hdev->id);
359 else
360 index = cpu_to_le16(MGMT_INDEX_NONE);
361
362 read_lock(&hci_sk_list.lock);
363
364 sk_for_each(sk, &hci_sk_list.head) {
365 struct hci_mon_hdr *hdr;
366 struct sk_buff *skb;
367
368 if (hci_pi(sk)->channel != HCI_CHANNEL_CONTROL)
369 continue;
370
371 /* Ignore socket without the flag set */
372 if (!hci_sock_test_flag(sk, flag))
373 continue;
374
375 /* Skip the original socket */
376 if (sk == skip_sk)
377 continue;
378
379 skb = bt_skb_alloc(6 + data_len, GFP_ATOMIC);
380 if (!skb)
381 continue;
382
383 put_unaligned_le32(hci_pi(sk)->cookie, skb_put(skb, 4));
384 put_unaligned_le16(event, skb_put(skb, 2));
385
386 if (data)
387 skb_put_data(skb, data, data_len);
388
389 skb->tstamp = tstamp;
390
391 hdr = skb_push(skb, HCI_MON_HDR_SIZE);
392 hdr->opcode = cpu_to_le16(HCI_MON_CTRL_EVENT);
393 hdr->index = index;
394 hdr->len = cpu_to_le16(skb->len - HCI_MON_HDR_SIZE);
395
396 __hci_send_to_channel(HCI_CHANNEL_MONITOR, skb,
397 HCI_SOCK_TRUSTED, NULL);
398 kfree_skb(skb);
399 }
400
401 read_unlock(&hci_sk_list.lock);
402 }
403
404 static struct sk_buff *create_monitor_event(struct hci_dev *hdev, int event)
405 {
406 struct hci_mon_hdr *hdr;
407 struct hci_mon_new_index *ni;
408 struct hci_mon_index_info *ii;
409 struct sk_buff *skb;
410 __le16 opcode;
411
412 switch (event) {
413 case HCI_DEV_REG:
414 skb = bt_skb_alloc(HCI_MON_NEW_INDEX_SIZE, GFP_ATOMIC);
415 if (!skb)
416 return NULL;
417
418 ni = skb_put(skb, HCI_MON_NEW_INDEX_SIZE);
419 ni->type = hdev->dev_type;
420 ni->bus = hdev->bus;
421 bacpy(&ni->bdaddr, &hdev->bdaddr);
422 memcpy(ni->name, hdev->name, 8);
423
424 opcode = cpu_to_le16(HCI_MON_NEW_INDEX);
425 break;
426
427 case HCI_DEV_UNREG:
428 skb = bt_skb_alloc(0, GFP_ATOMIC);
429 if (!skb)
430 return NULL;
431
432 opcode = cpu_to_le16(HCI_MON_DEL_INDEX);
433 break;
434
435 case HCI_DEV_SETUP:
436 if (hdev->manufacturer == 0xffff)
437 return NULL;
438
439 /* fall through */
440
441 case HCI_DEV_UP:
442 skb = bt_skb_alloc(HCI_MON_INDEX_INFO_SIZE, GFP_ATOMIC);
443 if (!skb)
444 return NULL;
445
446 ii = skb_put(skb, HCI_MON_INDEX_INFO_SIZE);
447 bacpy(&ii->bdaddr, &hdev->bdaddr);
448 ii->manufacturer = cpu_to_le16(hdev->manufacturer);
449
450 opcode = cpu_to_le16(HCI_MON_INDEX_INFO);
451 break;
452
453 case HCI_DEV_OPEN:
454 skb = bt_skb_alloc(0, GFP_ATOMIC);
455 if (!skb)
456 return NULL;
457
458 opcode = cpu_to_le16(HCI_MON_OPEN_INDEX);
459 break;
460
461 case HCI_DEV_CLOSE:
462 skb = bt_skb_alloc(0, GFP_ATOMIC);
463 if (!skb)
464 return NULL;
465
466 opcode = cpu_to_le16(HCI_MON_CLOSE_INDEX);
467 break;
468
469 default:
470 return NULL;
471 }
472
473 __net_timestamp(skb);
474
475 hdr = skb_push(skb, HCI_MON_HDR_SIZE);
476 hdr->opcode = opcode;
477 hdr->index = cpu_to_le16(hdev->id);
478 hdr->len = cpu_to_le16(skb->len - HCI_MON_HDR_SIZE);
479
480 return skb;
481 }
482
483 static struct sk_buff *create_monitor_ctrl_open(struct sock *sk)
484 {
485 struct hci_mon_hdr *hdr;
486 struct sk_buff *skb;
487 u16 format;
488 u8 ver[3];
489 u32 flags;
490
491 /* No message needed when cookie is not present */
492 if (!hci_pi(sk)->cookie)
493 return NULL;
494
495 switch (hci_pi(sk)->channel) {
496 case HCI_CHANNEL_RAW:
497 format = 0x0000;
498 ver[0] = BT_SUBSYS_VERSION;
499 put_unaligned_le16(BT_SUBSYS_REVISION, ver + 1);
500 break;
501 case HCI_CHANNEL_USER:
502 format = 0x0001;
503 ver[0] = BT_SUBSYS_VERSION;
504 put_unaligned_le16(BT_SUBSYS_REVISION, ver + 1);
505 break;
506 case HCI_CHANNEL_CONTROL:
507 format = 0x0002;
508 mgmt_fill_version_info(ver);
509 break;
510 default:
511 /* No message for unsupported format */
512 return NULL;
513 }
514
515 skb = bt_skb_alloc(14 + TASK_COMM_LEN , GFP_ATOMIC);
516 if (!skb)
517 return NULL;
518
519 flags = hci_sock_test_flag(sk, HCI_SOCK_TRUSTED) ? 0x1 : 0x0;
520
521 put_unaligned_le32(hci_pi(sk)->cookie, skb_put(skb, 4));
522 put_unaligned_le16(format, skb_put(skb, 2));
523 skb_put_data(skb, ver, sizeof(ver));
524 put_unaligned_le32(flags, skb_put(skb, 4));
525 skb_put_u8(skb, TASK_COMM_LEN);
526 skb_put_data(skb, hci_pi(sk)->comm, TASK_COMM_LEN);
527
528 __net_timestamp(skb);
529
530 hdr = skb_push(skb, HCI_MON_HDR_SIZE);
531 hdr->opcode = cpu_to_le16(HCI_MON_CTRL_OPEN);
532 if (hci_pi(sk)->hdev)
533 hdr->index = cpu_to_le16(hci_pi(sk)->hdev->id);
534 else
535 hdr->index = cpu_to_le16(HCI_DEV_NONE);
536 hdr->len = cpu_to_le16(skb->len - HCI_MON_HDR_SIZE);
537
538 return skb;
539 }
540
541 static struct sk_buff *create_monitor_ctrl_close(struct sock *sk)
542 {
543 struct hci_mon_hdr *hdr;
544 struct sk_buff *skb;
545
546 /* No message needed when cookie is not present */
547 if (!hci_pi(sk)->cookie)
548 return NULL;
549
550 switch (hci_pi(sk)->channel) {
551 case HCI_CHANNEL_RAW:
552 case HCI_CHANNEL_USER:
553 case HCI_CHANNEL_CONTROL:
554 break;
555 default:
556 /* No message for unsupported format */
557 return NULL;
558 }
559
560 skb = bt_skb_alloc(4, GFP_ATOMIC);
561 if (!skb)
562 return NULL;
563
564 put_unaligned_le32(hci_pi(sk)->cookie, skb_put(skb, 4));
565
566 __net_timestamp(skb);
567
568 hdr = skb_push(skb, HCI_MON_HDR_SIZE);
569 hdr->opcode = cpu_to_le16(HCI_MON_CTRL_CLOSE);
570 if (hci_pi(sk)->hdev)
571 hdr->index = cpu_to_le16(hci_pi(sk)->hdev->id);
572 else
573 hdr->index = cpu_to_le16(HCI_DEV_NONE);
574 hdr->len = cpu_to_le16(skb->len - HCI_MON_HDR_SIZE);
575
576 return skb;
577 }
578
579 static struct sk_buff *create_monitor_ctrl_command(struct sock *sk, u16 index,
580 u16 opcode, u16 len,
581 const void *buf)
582 {
583 struct hci_mon_hdr *hdr;
584 struct sk_buff *skb;
585
586 skb = bt_skb_alloc(6 + len, GFP_ATOMIC);
587 if (!skb)
588 return NULL;
589
590 put_unaligned_le32(hci_pi(sk)->cookie, skb_put(skb, 4));
591 put_unaligned_le16(opcode, skb_put(skb, 2));
592
593 if (buf)
594 skb_put_data(skb, buf, len);
595
596 __net_timestamp(skb);
597
598 hdr = skb_push(skb, HCI_MON_HDR_SIZE);
599 hdr->opcode = cpu_to_le16(HCI_MON_CTRL_COMMAND);
600 hdr->index = cpu_to_le16(index);
601 hdr->len = cpu_to_le16(skb->len - HCI_MON_HDR_SIZE);
602
603 return skb;
604 }
605
606 static void __printf(2, 3)
607 send_monitor_note(struct sock *sk, const char *fmt, ...)
608 {
609 size_t len;
610 struct hci_mon_hdr *hdr;
611 struct sk_buff *skb;
612 va_list args;
613
614 va_start(args, fmt);
615 len = vsnprintf(NULL, 0, fmt, args);
616 va_end(args);
617
618 skb = bt_skb_alloc(len + 1, GFP_ATOMIC);
619 if (!skb)
620 return;
621
622 va_start(args, fmt);
623 vsprintf(skb_put(skb, len), fmt, args);
624 *(u8 *)skb_put(skb, 1) = 0;
625 va_end(args);
626
627 __net_timestamp(skb);
628
629 hdr = (void *)skb_push(skb, HCI_MON_HDR_SIZE);
630 hdr->opcode = cpu_to_le16(HCI_MON_SYSTEM_NOTE);
631 hdr->index = cpu_to_le16(HCI_DEV_NONE);
632 hdr->len = cpu_to_le16(skb->len - HCI_MON_HDR_SIZE);
633
634 if (sock_queue_rcv_skb(sk, skb))
635 kfree_skb(skb);
636 }
637
638 static void send_monitor_replay(struct sock *sk)
639 {
640 struct hci_dev *hdev;
641
642 read_lock(&hci_dev_list_lock);
643
644 list_for_each_entry(hdev, &hci_dev_list, list) {
645 struct sk_buff *skb;
646
647 skb = create_monitor_event(hdev, HCI_DEV_REG);
648 if (!skb)
649 continue;
650
651 if (sock_queue_rcv_skb(sk, skb))
652 kfree_skb(skb);
653
654 if (!test_bit(HCI_RUNNING, &hdev->flags))
655 continue;
656
657 skb = create_monitor_event(hdev, HCI_DEV_OPEN);
658 if (!skb)
659 continue;
660
661 if (sock_queue_rcv_skb(sk, skb))
662 kfree_skb(skb);
663
664 if (test_bit(HCI_UP, &hdev->flags))
665 skb = create_monitor_event(hdev, HCI_DEV_UP);
666 else if (hci_dev_test_flag(hdev, HCI_SETUP))
667 skb = create_monitor_event(hdev, HCI_DEV_SETUP);
668 else
669 skb = NULL;
670
671 if (skb) {
672 if (sock_queue_rcv_skb(sk, skb))
673 kfree_skb(skb);
674 }
675 }
676
677 read_unlock(&hci_dev_list_lock);
678 }
679
680 static void send_monitor_control_replay(struct sock *mon_sk)
681 {
682 struct sock *sk;
683
684 read_lock(&hci_sk_list.lock);
685
686 sk_for_each(sk, &hci_sk_list.head) {
687 struct sk_buff *skb;
688
689 skb = create_monitor_ctrl_open(sk);
690 if (!skb)
691 continue;
692
693 if (sock_queue_rcv_skb(mon_sk, skb))
694 kfree_skb(skb);
695 }
696
697 read_unlock(&hci_sk_list.lock);
698 }
699
700 /* Generate internal stack event */
701 static void hci_si_event(struct hci_dev *hdev, int type, int dlen, void *data)
702 {
703 struct hci_event_hdr *hdr;
704 struct hci_ev_stack_internal *ev;
705 struct sk_buff *skb;
706
707 skb = bt_skb_alloc(HCI_EVENT_HDR_SIZE + sizeof(*ev) + dlen, GFP_ATOMIC);
708 if (!skb)
709 return;
710
711 hdr = skb_put(skb, HCI_EVENT_HDR_SIZE);
712 hdr->evt = HCI_EV_STACK_INTERNAL;
713 hdr->plen = sizeof(*ev) + dlen;
714
715 ev = skb_put(skb, sizeof(*ev) + dlen);
716 ev->type = type;
717 memcpy(ev->data, data, dlen);
718
719 bt_cb(skb)->incoming = 1;
720 __net_timestamp(skb);
721
722 hci_skb_pkt_type(skb) = HCI_EVENT_PKT;
723 hci_send_to_sock(hdev, skb);
724 kfree_skb(skb);
725 }
726
727 void hci_sock_dev_event(struct hci_dev *hdev, int event)
728 {
729 BT_DBG("hdev %s event %d", hdev->name, event);
730
731 if (atomic_read(&monitor_promisc)) {
732 struct sk_buff *skb;
733
734 /* Send event to monitor */
735 skb = create_monitor_event(hdev, event);
736 if (skb) {
737 hci_send_to_channel(HCI_CHANNEL_MONITOR, skb,
738 HCI_SOCK_TRUSTED, NULL);
739 kfree_skb(skb);
740 }
741 }
742
743 if (event <= HCI_DEV_DOWN) {
744 struct hci_ev_si_device ev;
745
746 /* Send event to sockets */
747 ev.event = event;
748 ev.dev_id = hdev->id;
749 hci_si_event(NULL, HCI_EV_SI_DEVICE, sizeof(ev), &ev);
750 }
751
752 if (event == HCI_DEV_UNREG) {
753 struct sock *sk;
754
755 /* Detach sockets from device */
756 read_lock(&hci_sk_list.lock);
757 sk_for_each(sk, &hci_sk_list.head) {
758 bh_lock_sock_nested(sk);
759 if (hci_pi(sk)->hdev == hdev) {
760 hci_pi(sk)->hdev = NULL;
761 sk->sk_err = EPIPE;
762 sk->sk_state = BT_OPEN;
763 sk->sk_state_change(sk);
764
765 hci_dev_put(hdev);
766 }
767 bh_unlock_sock(sk);
768 }
769 read_unlock(&hci_sk_list.lock);
770 }
771 }
772
773 static struct hci_mgmt_chan *__hci_mgmt_chan_find(unsigned short channel)
774 {
775 struct hci_mgmt_chan *c;
776
777 list_for_each_entry(c, &mgmt_chan_list, list) {
778 if (c->channel == channel)
779 return c;
780 }
781
782 return NULL;
783 }
784
785 static struct hci_mgmt_chan *hci_mgmt_chan_find(unsigned short channel)
786 {
787 struct hci_mgmt_chan *c;
788
789 mutex_lock(&mgmt_chan_list_lock);
790 c = __hci_mgmt_chan_find(channel);
791 mutex_unlock(&mgmt_chan_list_lock);
792
793 return c;
794 }
795
796 int hci_mgmt_chan_register(struct hci_mgmt_chan *c)
797 {
798 if (c->channel < HCI_CHANNEL_CONTROL)
799 return -EINVAL;
800
801 mutex_lock(&mgmt_chan_list_lock);
802 if (__hci_mgmt_chan_find(c->channel)) {
803 mutex_unlock(&mgmt_chan_list_lock);
804 return -EALREADY;
805 }
806
807 list_add_tail(&c->list, &mgmt_chan_list);
808
809 mutex_unlock(&mgmt_chan_list_lock);
810
811 return 0;
812 }
813 EXPORT_SYMBOL(hci_mgmt_chan_register);
814
815 void hci_mgmt_chan_unregister(struct hci_mgmt_chan *c)
816 {
817 mutex_lock(&mgmt_chan_list_lock);
818 list_del(&c->list);
819 mutex_unlock(&mgmt_chan_list_lock);
820 }
821 EXPORT_SYMBOL(hci_mgmt_chan_unregister);
822
823 static int hci_sock_release(struct socket *sock)
824 {
825 struct sock *sk = sock->sk;
826 struct hci_dev *hdev;
827 struct sk_buff *skb;
828
829 BT_DBG("sock %p sk %p", sock, sk);
830
831 if (!sk)
832 return 0;
833
834 switch (hci_pi(sk)->channel) {
835 case HCI_CHANNEL_MONITOR:
836 atomic_dec(&monitor_promisc);
837 break;
838 case HCI_CHANNEL_RAW:
839 case HCI_CHANNEL_USER:
840 case HCI_CHANNEL_CONTROL:
841 /* Send event to monitor */
842 skb = create_monitor_ctrl_close(sk);
843 if (skb) {
844 hci_send_to_channel(HCI_CHANNEL_MONITOR, skb,
845 HCI_SOCK_TRUSTED, NULL);
846 kfree_skb(skb);
847 }
848
849 hci_sock_free_cookie(sk);
850 break;
851 }
852
853 bt_sock_unlink(&hci_sk_list, sk);
854
855 hdev = hci_pi(sk)->hdev;
856 if (hdev) {
857 if (hci_pi(sk)->channel == HCI_CHANNEL_USER) {
858 /* When releasing a user channel exclusive access,
859 * call hci_dev_do_close directly instead of calling
860 * hci_dev_close to ensure the exclusive access will
861 * be released and the controller brought back down.
862 *
863 * The checking of HCI_AUTO_OFF is not needed in this
864 * case since it will have been cleared already when
865 * opening the user channel.
866 */
867 hci_dev_do_close(hdev);
868 hci_dev_clear_flag(hdev, HCI_USER_CHANNEL);
869 mgmt_index_added(hdev);
870 }
871
872 atomic_dec(&hdev->promisc);
873 hci_dev_put(hdev);
874 }
875
876 sock_orphan(sk);
877
878 skb_queue_purge(&sk->sk_receive_queue);
879 skb_queue_purge(&sk->sk_write_queue);
880
881 sock_put(sk);
882 return 0;
883 }
884
885 static int hci_sock_blacklist_add(struct hci_dev *hdev, void __user *arg)
886 {
887 bdaddr_t bdaddr;
888 int err;
889
890 if (copy_from_user(&bdaddr, arg, sizeof(bdaddr)))
891 return -EFAULT;
892
893 hci_dev_lock(hdev);
894
895 err = hci_bdaddr_list_add(&hdev->blacklist, &bdaddr, BDADDR_BREDR);
896
897 hci_dev_unlock(hdev);
898
899 return err;
900 }
901
902 static int hci_sock_blacklist_del(struct hci_dev *hdev, void __user *arg)
903 {
904 bdaddr_t bdaddr;
905 int err;
906
907 if (copy_from_user(&bdaddr, arg, sizeof(bdaddr)))
908 return -EFAULT;
909
910 hci_dev_lock(hdev);
911
912 err = hci_bdaddr_list_del(&hdev->blacklist, &bdaddr, BDADDR_BREDR);
913
914 hci_dev_unlock(hdev);
915
916 return err;
917 }
918
919 /* Ioctls that require bound socket */
920 static int hci_sock_bound_ioctl(struct sock *sk, unsigned int cmd,
921 unsigned long arg)
922 {
923 struct hci_dev *hdev = hci_pi(sk)->hdev;
924
925 if (!hdev)
926 return -EBADFD;
927
928 if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL))
929 return -EBUSY;
930
931 if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED))
932 return -EOPNOTSUPP;
933
934 if (hdev->dev_type != HCI_PRIMARY)
935 return -EOPNOTSUPP;
936
937 switch (cmd) {
938 case HCISETRAW:
939 if (!capable(CAP_NET_ADMIN))
940 return -EPERM;
941 return -EOPNOTSUPP;
942
943 case HCIGETCONNINFO:
944 return hci_get_conn_info(hdev, (void __user *)arg);
945
946 case HCIGETAUTHINFO:
947 return hci_get_auth_info(hdev, (void __user *)arg);
948
949 case HCIBLOCKADDR:
950 if (!capable(CAP_NET_ADMIN))
951 return -EPERM;
952 return hci_sock_blacklist_add(hdev, (void __user *)arg);
953
954 case HCIUNBLOCKADDR:
955 if (!capable(CAP_NET_ADMIN))
956 return -EPERM;
957 return hci_sock_blacklist_del(hdev, (void __user *)arg);
958 }
959
960 return -ENOIOCTLCMD;
961 }
962
963 static int hci_sock_ioctl(struct socket *sock, unsigned int cmd,
964 unsigned long arg)
965 {
966 void __user *argp = (void __user *)arg;
967 struct sock *sk = sock->sk;
968 int err;
969
970 BT_DBG("cmd %x arg %lx", cmd, arg);
971
972 lock_sock(sk);
973
974 if (hci_pi(sk)->channel != HCI_CHANNEL_RAW) {
975 err = -EBADFD;
976 goto done;
977 }
978
979 /* When calling an ioctl on an unbound raw socket, then ensure
980 * that the monitor gets informed. Ensure that the resulting event
981 * is only send once by checking if the cookie exists or not. The
982 * socket cookie will be only ever generated once for the lifetime
983 * of a given socket.
984 */
985 if (hci_sock_gen_cookie(sk)) {
986 struct sk_buff *skb;
987
988 if (capable(CAP_NET_ADMIN))
989 hci_sock_set_flag(sk, HCI_SOCK_TRUSTED);
990
991 /* Send event to monitor */
992 skb = create_monitor_ctrl_open(sk);
993 if (skb) {
994 hci_send_to_channel(HCI_CHANNEL_MONITOR, skb,
995 HCI_SOCK_TRUSTED, NULL);
996 kfree_skb(skb);
997 }
998 }
999
1000 release_sock(sk);
1001
1002 switch (cmd) {
1003 case HCIGETDEVLIST:
1004 return hci_get_dev_list(argp);
1005
1006 case HCIGETDEVINFO:
1007 return hci_get_dev_info(argp);
1008
1009 case HCIGETCONNLIST:
1010 return hci_get_conn_list(argp);
1011
1012 case HCIDEVUP:
1013 if (!capable(CAP_NET_ADMIN))
1014 return -EPERM;
1015 return hci_dev_open(arg);
1016
1017 case HCIDEVDOWN:
1018 if (!capable(CAP_NET_ADMIN))
1019 return -EPERM;
1020 return hci_dev_close(arg);
1021
1022 case HCIDEVRESET:
1023 if (!capable(CAP_NET_ADMIN))
1024 return -EPERM;
1025 return hci_dev_reset(arg);
1026
1027 case HCIDEVRESTAT:
1028 if (!capable(CAP_NET_ADMIN))
1029 return -EPERM;
1030 return hci_dev_reset_stat(arg);
1031
1032 case HCISETSCAN:
1033 case HCISETAUTH:
1034 case HCISETENCRYPT:
1035 case HCISETPTYPE:
1036 case HCISETLINKPOL:
1037 case HCISETLINKMODE:
1038 case HCISETACLMTU:
1039 case HCISETSCOMTU:
1040 if (!capable(CAP_NET_ADMIN))
1041 return -EPERM;
1042 return hci_dev_cmd(cmd, argp);
1043
1044 case HCIINQUIRY:
1045 return hci_inquiry(argp);
1046 }
1047
1048 lock_sock(sk);
1049
1050 err = hci_sock_bound_ioctl(sk, cmd, arg);
1051
1052 done:
1053 release_sock(sk);
1054 return err;
1055 }
1056
1057 static int hci_sock_bind(struct socket *sock, struct sockaddr *addr,
1058 int addr_len)
1059 {
1060 struct sockaddr_hci haddr;
1061 struct sock *sk = sock->sk;
1062 struct hci_dev *hdev = NULL;
1063 struct sk_buff *skb;
1064 int len, err = 0;
1065
1066 BT_DBG("sock %p sk %p", sock, sk);
1067
1068 if (!addr)
1069 return -EINVAL;
1070
1071 memset(&haddr, 0, sizeof(haddr));
1072 len = min_t(unsigned int, sizeof(haddr), addr_len);
1073 memcpy(&haddr, addr, len);
1074
1075 if (haddr.hci_family != AF_BLUETOOTH)
1076 return -EINVAL;
1077
1078 lock_sock(sk);
1079
1080 if (sk->sk_state == BT_BOUND) {
1081 err = -EALREADY;
1082 goto done;
1083 }
1084
1085 switch (haddr.hci_channel) {
1086 case HCI_CHANNEL_RAW:
1087 if (hci_pi(sk)->hdev) {
1088 err = -EALREADY;
1089 goto done;
1090 }
1091
1092 if (haddr.hci_dev != HCI_DEV_NONE) {
1093 hdev = hci_dev_get(haddr.hci_dev);
1094 if (!hdev) {
1095 err = -ENODEV;
1096 goto done;
1097 }
1098
1099 atomic_inc(&hdev->promisc);
1100 }
1101
1102 hci_pi(sk)->channel = haddr.hci_channel;
1103
1104 if (!hci_sock_gen_cookie(sk)) {
1105 /* In the case when a cookie has already been assigned,
1106 * then there has been already an ioctl issued against
1107 * an unbound socket and with that triggerd an open
1108 * notification. Send a close notification first to
1109 * allow the state transition to bounded.
1110 */
1111 skb = create_monitor_ctrl_close(sk);
1112 if (skb) {
1113 hci_send_to_channel(HCI_CHANNEL_MONITOR, skb,
1114 HCI_SOCK_TRUSTED, NULL);
1115 kfree_skb(skb);
1116 }
1117 }
1118
1119 if (capable(CAP_NET_ADMIN))
1120 hci_sock_set_flag(sk, HCI_SOCK_TRUSTED);
1121
1122 hci_pi(sk)->hdev = hdev;
1123
1124 /* Send event to monitor */
1125 skb = create_monitor_ctrl_open(sk);
1126 if (skb) {
1127 hci_send_to_channel(HCI_CHANNEL_MONITOR, skb,
1128 HCI_SOCK_TRUSTED, NULL);
1129 kfree_skb(skb);
1130 }
1131 break;
1132
1133 case HCI_CHANNEL_USER:
1134 if (hci_pi(sk)->hdev) {
1135 err = -EALREADY;
1136 goto done;
1137 }
1138
1139 if (haddr.hci_dev == HCI_DEV_NONE) {
1140 err = -EINVAL;
1141 goto done;
1142 }
1143
1144 if (!capable(CAP_NET_ADMIN)) {
1145 err = -EPERM;
1146 goto done;
1147 }
1148
1149 hdev = hci_dev_get(haddr.hci_dev);
1150 if (!hdev) {
1151 err = -ENODEV;
1152 goto done;
1153 }
1154
1155 if (test_bit(HCI_INIT, &hdev->flags) ||
1156 hci_dev_test_flag(hdev, HCI_SETUP) ||
1157 hci_dev_test_flag(hdev, HCI_CONFIG) ||
1158 (!hci_dev_test_flag(hdev, HCI_AUTO_OFF) &&
1159 test_bit(HCI_UP, &hdev->flags))) {
1160 err = -EBUSY;
1161 hci_dev_put(hdev);
1162 goto done;
1163 }
1164
1165 if (hci_dev_test_and_set_flag(hdev, HCI_USER_CHANNEL)) {
1166 err = -EUSERS;
1167 hci_dev_put(hdev);
1168 goto done;
1169 }
1170
1171 mgmt_index_removed(hdev);
1172
1173 err = hci_dev_open(hdev->id);
1174 if (err) {
1175 if (err == -EALREADY) {
1176 /* In case the transport is already up and
1177 * running, clear the error here.
1178 *
1179 * This can happen when opening a user
1180 * channel and HCI_AUTO_OFF grace period
1181 * is still active.
1182 */
1183 err = 0;
1184 } else {
1185 hci_dev_clear_flag(hdev, HCI_USER_CHANNEL);
1186 mgmt_index_added(hdev);
1187 hci_dev_put(hdev);
1188 goto done;
1189 }
1190 }
1191
1192 hci_pi(sk)->channel = haddr.hci_channel;
1193
1194 if (!hci_sock_gen_cookie(sk)) {
1195 /* In the case when a cookie has already been assigned,
1196 * this socket will transition from a raw socket into
1197 * a user channel socket. For a clean transition, send
1198 * the close notification first.
1199 */
1200 skb = create_monitor_ctrl_close(sk);
1201 if (skb) {
1202 hci_send_to_channel(HCI_CHANNEL_MONITOR, skb,
1203 HCI_SOCK_TRUSTED, NULL);
1204 kfree_skb(skb);
1205 }
1206 }
1207
1208 /* The user channel is restricted to CAP_NET_ADMIN
1209 * capabilities and with that implicitly trusted.
1210 */
1211 hci_sock_set_flag(sk, HCI_SOCK_TRUSTED);
1212
1213 hci_pi(sk)->hdev = hdev;
1214
1215 /* Send event to monitor */
1216 skb = create_monitor_ctrl_open(sk);
1217 if (skb) {
1218 hci_send_to_channel(HCI_CHANNEL_MONITOR, skb,
1219 HCI_SOCK_TRUSTED, NULL);
1220 kfree_skb(skb);
1221 }
1222
1223 atomic_inc(&hdev->promisc);
1224 break;
1225
1226 case HCI_CHANNEL_MONITOR:
1227 if (haddr.hci_dev != HCI_DEV_NONE) {
1228 err = -EINVAL;
1229 goto done;
1230 }
1231
1232 if (!capable(CAP_NET_RAW)) {
1233 err = -EPERM;
1234 goto done;
1235 }
1236
1237 hci_pi(sk)->channel = haddr.hci_channel;
1238
1239 /* The monitor interface is restricted to CAP_NET_RAW
1240 * capabilities and with that implicitly trusted.
1241 */
1242 hci_sock_set_flag(sk, HCI_SOCK_TRUSTED);
1243
1244 send_monitor_note(sk, "Linux version %s (%s)",
1245 init_utsname()->release,
1246 init_utsname()->machine);
1247 send_monitor_note(sk, "Bluetooth subsystem version %u.%u",
1248 BT_SUBSYS_VERSION, BT_SUBSYS_REVISION);
1249 send_monitor_replay(sk);
1250 send_monitor_control_replay(sk);
1251
1252 atomic_inc(&monitor_promisc);
1253 break;
1254
1255 case HCI_CHANNEL_LOGGING:
1256 if (haddr.hci_dev != HCI_DEV_NONE) {
1257 err = -EINVAL;
1258 goto done;
1259 }
1260
1261 if (!capable(CAP_NET_ADMIN)) {
1262 err = -EPERM;
1263 goto done;
1264 }
1265
1266 hci_pi(sk)->channel = haddr.hci_channel;
1267 break;
1268
1269 default:
1270 if (!hci_mgmt_chan_find(haddr.hci_channel)) {
1271 err = -EINVAL;
1272 goto done;
1273 }
1274
1275 if (haddr.hci_dev != HCI_DEV_NONE) {
1276 err = -EINVAL;
1277 goto done;
1278 }
1279
1280 /* Users with CAP_NET_ADMIN capabilities are allowed
1281 * access to all management commands and events. For
1282 * untrusted users the interface is restricted and
1283 * also only untrusted events are sent.
1284 */
1285 if (capable(CAP_NET_ADMIN))
1286 hci_sock_set_flag(sk, HCI_SOCK_TRUSTED);
1287
1288 hci_pi(sk)->channel = haddr.hci_channel;
1289
1290 /* At the moment the index and unconfigured index events
1291 * are enabled unconditionally. Setting them on each
1292 * socket when binding keeps this functionality. They
1293 * however might be cleared later and then sending of these
1294 * events will be disabled, but that is then intentional.
1295 *
1296 * This also enables generic events that are safe to be
1297 * received by untrusted users. Example for such events
1298 * are changes to settings, class of device, name etc.
1299 */
1300 if (hci_pi(sk)->channel == HCI_CHANNEL_CONTROL) {
1301 if (!hci_sock_gen_cookie(sk)) {
1302 /* In the case when a cookie has already been
1303 * assigned, this socket will transtion from
1304 * a raw socket into a control socket. To
1305 * allow for a clean transtion, send the
1306 * close notification first.
1307 */
1308 skb = create_monitor_ctrl_close(sk);
1309 if (skb) {
1310 hci_send_to_channel(HCI_CHANNEL_MONITOR, skb,
1311 HCI_SOCK_TRUSTED, NULL);
1312 kfree_skb(skb);
1313 }
1314 }
1315
1316 /* Send event to monitor */
1317 skb = create_monitor_ctrl_open(sk);
1318 if (skb) {
1319 hci_send_to_channel(HCI_CHANNEL_MONITOR, skb,
1320 HCI_SOCK_TRUSTED, NULL);
1321 kfree_skb(skb);
1322 }
1323
1324 hci_sock_set_flag(sk, HCI_MGMT_INDEX_EVENTS);
1325 hci_sock_set_flag(sk, HCI_MGMT_UNCONF_INDEX_EVENTS);
1326 hci_sock_set_flag(sk, HCI_MGMT_OPTION_EVENTS);
1327 hci_sock_set_flag(sk, HCI_MGMT_SETTING_EVENTS);
1328 hci_sock_set_flag(sk, HCI_MGMT_DEV_CLASS_EVENTS);
1329 hci_sock_set_flag(sk, HCI_MGMT_LOCAL_NAME_EVENTS);
1330 }
1331 break;
1332 }
1333
1334 sk->sk_state = BT_BOUND;
1335
1336 done:
1337 release_sock(sk);
1338 return err;
1339 }
1340
1341 static int hci_sock_getname(struct socket *sock, struct sockaddr *addr,
1342 int *addr_len, int peer)
1343 {
1344 struct sockaddr_hci *haddr = (struct sockaddr_hci *)addr;
1345 struct sock *sk = sock->sk;
1346 struct hci_dev *hdev;
1347 int err = 0;
1348
1349 BT_DBG("sock %p sk %p", sock, sk);
1350
1351 if (peer)
1352 return -EOPNOTSUPP;
1353
1354 lock_sock(sk);
1355
1356 hdev = hci_pi(sk)->hdev;
1357 if (!hdev) {
1358 err = -EBADFD;
1359 goto done;
1360 }
1361
1362 *addr_len = sizeof(*haddr);
1363 haddr->hci_family = AF_BLUETOOTH;
1364 haddr->hci_dev = hdev->id;
1365 haddr->hci_channel= hci_pi(sk)->channel;
1366
1367 done:
1368 release_sock(sk);
1369 return err;
1370 }
1371
1372 static void hci_sock_cmsg(struct sock *sk, struct msghdr *msg,
1373 struct sk_buff *skb)
1374 {
1375 __u32 mask = hci_pi(sk)->cmsg_mask;
1376
1377 if (mask & HCI_CMSG_DIR) {
1378 int incoming = bt_cb(skb)->incoming;
1379 put_cmsg(msg, SOL_HCI, HCI_CMSG_DIR, sizeof(incoming),
1380 &incoming);
1381 }
1382
1383 if (mask & HCI_CMSG_TSTAMP) {
1384 #ifdef CONFIG_COMPAT
1385 struct compat_timeval ctv;
1386 #endif
1387 struct timeval tv;
1388 void *data;
1389 int len;
1390
1391 skb_get_timestamp(skb, &tv);
1392
1393 data = &tv;
1394 len = sizeof(tv);
1395 #ifdef CONFIG_COMPAT
1396 if (!COMPAT_USE_64BIT_TIME &&
1397 (msg->msg_flags & MSG_CMSG_COMPAT)) {
1398 ctv.tv_sec = tv.tv_sec;
1399 ctv.tv_usec = tv.tv_usec;
1400 data = &ctv;
1401 len = sizeof(ctv);
1402 }
1403 #endif
1404
1405 put_cmsg(msg, SOL_HCI, HCI_CMSG_TSTAMP, len, data);
1406 }
1407 }
1408
1409 static int hci_sock_recvmsg(struct socket *sock, struct msghdr *msg,
1410 size_t len, int flags)
1411 {
1412 int noblock = flags & MSG_DONTWAIT;
1413 struct sock *sk = sock->sk;
1414 struct sk_buff *skb;
1415 int copied, err;
1416 unsigned int skblen;
1417
1418 BT_DBG("sock %p, sk %p", sock, sk);
1419
1420 if (flags & MSG_OOB)
1421 return -EOPNOTSUPP;
1422
1423 if (hci_pi(sk)->channel == HCI_CHANNEL_LOGGING)
1424 return -EOPNOTSUPP;
1425
1426 if (sk->sk_state == BT_CLOSED)
1427 return 0;
1428
1429 skb = skb_recv_datagram(sk, flags, noblock, &err);
1430 if (!skb)
1431 return err;
1432
1433 skblen = skb->len;
1434 copied = skb->len;
1435 if (len < copied) {
1436 msg->msg_flags |= MSG_TRUNC;
1437 copied = len;
1438 }
1439
1440 skb_reset_transport_header(skb);
1441 err = skb_copy_datagram_msg(skb, 0, msg, copied);
1442
1443 switch (hci_pi(sk)->channel) {
1444 case HCI_CHANNEL_RAW:
1445 hci_sock_cmsg(sk, msg, skb);
1446 break;
1447 case HCI_CHANNEL_USER:
1448 case HCI_CHANNEL_MONITOR:
1449 sock_recv_timestamp(msg, sk, skb);
1450 break;
1451 default:
1452 if (hci_mgmt_chan_find(hci_pi(sk)->channel))
1453 sock_recv_timestamp(msg, sk, skb);
1454 break;
1455 }
1456
1457 skb_free_datagram(sk, skb);
1458
1459 if (flags & MSG_TRUNC)
1460 copied = skblen;
1461
1462 return err ? : copied;
1463 }
1464
1465 static int hci_mgmt_cmd(struct hci_mgmt_chan *chan, struct sock *sk,
1466 struct msghdr *msg, size_t msglen)
1467 {
1468 void *buf;
1469 u8 *cp;
1470 struct mgmt_hdr *hdr;
1471 u16 opcode, index, len;
1472 struct hci_dev *hdev = NULL;
1473 const struct hci_mgmt_handler *handler;
1474 bool var_len, no_hdev;
1475 int err;
1476
1477 BT_DBG("got %zu bytes", msglen);
1478
1479 if (msglen < sizeof(*hdr))
1480 return -EINVAL;
1481
1482 buf = kmalloc(msglen, GFP_KERNEL);
1483 if (!buf)
1484 return -ENOMEM;
1485
1486 if (memcpy_from_msg(buf, msg, msglen)) {
1487 err = -EFAULT;
1488 goto done;
1489 }
1490
1491 hdr = buf;
1492 opcode = __le16_to_cpu(hdr->opcode);
1493 index = __le16_to_cpu(hdr->index);
1494 len = __le16_to_cpu(hdr->len);
1495
1496 if (len != msglen - sizeof(*hdr)) {
1497 err = -EINVAL;
1498 goto done;
1499 }
1500
1501 if (chan->channel == HCI_CHANNEL_CONTROL) {
1502 struct sk_buff *skb;
1503
1504 /* Send event to monitor */
1505 skb = create_monitor_ctrl_command(sk, index, opcode, len,
1506 buf + sizeof(*hdr));
1507 if (skb) {
1508 hci_send_to_channel(HCI_CHANNEL_MONITOR, skb,
1509 HCI_SOCK_TRUSTED, NULL);
1510 kfree_skb(skb);
1511 }
1512 }
1513
1514 if (opcode >= chan->handler_count ||
1515 chan->handlers[opcode].func == NULL) {
1516 BT_DBG("Unknown op %u", opcode);
1517 err = mgmt_cmd_status(sk, index, opcode,
1518 MGMT_STATUS_UNKNOWN_COMMAND);
1519 goto done;
1520 }
1521
1522 handler = &chan->handlers[opcode];
1523
1524 if (!hci_sock_test_flag(sk, HCI_SOCK_TRUSTED) &&
1525 !(handler->flags & HCI_MGMT_UNTRUSTED)) {
1526 err = mgmt_cmd_status(sk, index, opcode,
1527 MGMT_STATUS_PERMISSION_DENIED);
1528 goto done;
1529 }
1530
1531 if (index != MGMT_INDEX_NONE) {
1532 hdev = hci_dev_get(index);
1533 if (!hdev) {
1534 err = mgmt_cmd_status(sk, index, opcode,
1535 MGMT_STATUS_INVALID_INDEX);
1536 goto done;
1537 }
1538
1539 if (hci_dev_test_flag(hdev, HCI_SETUP) ||
1540 hci_dev_test_flag(hdev, HCI_CONFIG) ||
1541 hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
1542 err = mgmt_cmd_status(sk, index, opcode,
1543 MGMT_STATUS_INVALID_INDEX);
1544 goto done;
1545 }
1546
1547 if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED) &&
1548 !(handler->flags & HCI_MGMT_UNCONFIGURED)) {
1549 err = mgmt_cmd_status(sk, index, opcode,
1550 MGMT_STATUS_INVALID_INDEX);
1551 goto done;
1552 }
1553 }
1554
1555 no_hdev = (handler->flags & HCI_MGMT_NO_HDEV);
1556 if (no_hdev != !hdev) {
1557 err = mgmt_cmd_status(sk, index, opcode,
1558 MGMT_STATUS_INVALID_INDEX);
1559 goto done;
1560 }
1561
1562 var_len = (handler->flags & HCI_MGMT_VAR_LEN);
1563 if ((var_len && len < handler->data_len) ||
1564 (!var_len && len != handler->data_len)) {
1565 err = mgmt_cmd_status(sk, index, opcode,
1566 MGMT_STATUS_INVALID_PARAMS);
1567 goto done;
1568 }
1569
1570 if (hdev && chan->hdev_init)
1571 chan->hdev_init(sk, hdev);
1572
1573 cp = buf + sizeof(*hdr);
1574
1575 err = handler->func(sk, hdev, cp, len);
1576 if (err < 0)
1577 goto done;
1578
1579 err = msglen;
1580
1581 done:
1582 if (hdev)
1583 hci_dev_put(hdev);
1584
1585 kfree(buf);
1586 return err;
1587 }
1588
1589 static int hci_logging_frame(struct sock *sk, struct msghdr *msg, int len)
1590 {
1591 struct hci_mon_hdr *hdr;
1592 struct sk_buff *skb;
1593 struct hci_dev *hdev;
1594 u16 index;
1595 int err;
1596
1597 /* The logging frame consists at minimum of the standard header,
1598 * the priority byte, the ident length byte and at least one string
1599 * terminator NUL byte. Anything shorter are invalid packets.
1600 */
1601 if (len < sizeof(*hdr) + 3)
1602 return -EINVAL;
1603
1604 skb = bt_skb_send_alloc(sk, len, msg->msg_flags & MSG_DONTWAIT, &err);
1605 if (!skb)
1606 return err;
1607
1608 if (memcpy_from_msg(skb_put(skb, len), msg, len)) {
1609 err = -EFAULT;
1610 goto drop;
1611 }
1612
1613 hdr = (void *)skb->data;
1614
1615 if (__le16_to_cpu(hdr->len) != len - sizeof(*hdr)) {
1616 err = -EINVAL;
1617 goto drop;
1618 }
1619
1620 if (__le16_to_cpu(hdr->opcode) == 0x0000) {
1621 __u8 priority = skb->data[sizeof(*hdr)];
1622 __u8 ident_len = skb->data[sizeof(*hdr) + 1];
1623
1624 /* Only the priorities 0-7 are valid and with that any other
1625 * value results in an invalid packet.
1626 *
1627 * The priority byte is followed by an ident length byte and
1628 * the NUL terminated ident string. Check that the ident
1629 * length is not overflowing the packet and also that the
1630 * ident string itself is NUL terminated. In case the ident
1631 * length is zero, the length value actually doubles as NUL
1632 * terminator identifier.
1633 *
1634 * The message follows the ident string (if present) and
1635 * must be NUL terminated. Otherwise it is not a valid packet.
1636 */
1637 if (priority > 7 || skb->data[len - 1] != 0x00 ||
1638 ident_len > len - sizeof(*hdr) - 3 ||
1639 skb->data[sizeof(*hdr) + ident_len + 1] != 0x00) {
1640 err = -EINVAL;
1641 goto drop;
1642 }
1643 } else {
1644 err = -EINVAL;
1645 goto drop;
1646 }
1647
1648 index = __le16_to_cpu(hdr->index);
1649
1650 if (index != MGMT_INDEX_NONE) {
1651 hdev = hci_dev_get(index);
1652 if (!hdev) {
1653 err = -ENODEV;
1654 goto drop;
1655 }
1656 } else {
1657 hdev = NULL;
1658 }
1659
1660 hdr->opcode = cpu_to_le16(HCI_MON_USER_LOGGING);
1661
1662 hci_send_to_channel(HCI_CHANNEL_MONITOR, skb, HCI_SOCK_TRUSTED, NULL);
1663 err = len;
1664
1665 if (hdev)
1666 hci_dev_put(hdev);
1667
1668 drop:
1669 kfree_skb(skb);
1670 return err;
1671 }
1672
1673 static int hci_sock_sendmsg(struct socket *sock, struct msghdr *msg,
1674 size_t len)
1675 {
1676 struct sock *sk = sock->sk;
1677 struct hci_mgmt_chan *chan;
1678 struct hci_dev *hdev;
1679 struct sk_buff *skb;
1680 int err;
1681
1682 BT_DBG("sock %p sk %p", sock, sk);
1683
1684 if (msg->msg_flags & MSG_OOB)
1685 return -EOPNOTSUPP;
1686
1687 if (msg->msg_flags & ~(MSG_DONTWAIT|MSG_NOSIGNAL|MSG_ERRQUEUE|
1688 MSG_CMSG_COMPAT))
1689 return -EINVAL;
1690
1691 if (len < 4 || len > HCI_MAX_FRAME_SIZE)
1692 return -EINVAL;
1693
1694 lock_sock(sk);
1695
1696 switch (hci_pi(sk)->channel) {
1697 case HCI_CHANNEL_RAW:
1698 case HCI_CHANNEL_USER:
1699 break;
1700 case HCI_CHANNEL_MONITOR:
1701 err = -EOPNOTSUPP;
1702 goto done;
1703 case HCI_CHANNEL_LOGGING:
1704 err = hci_logging_frame(sk, msg, len);
1705 goto done;
1706 default:
1707 mutex_lock(&mgmt_chan_list_lock);
1708 chan = __hci_mgmt_chan_find(hci_pi(sk)->channel);
1709 if (chan)
1710 err = hci_mgmt_cmd(chan, sk, msg, len);
1711 else
1712 err = -EINVAL;
1713
1714 mutex_unlock(&mgmt_chan_list_lock);
1715 goto done;
1716 }
1717
1718 hdev = hci_pi(sk)->hdev;
1719 if (!hdev) {
1720 err = -EBADFD;
1721 goto done;
1722 }
1723
1724 if (!test_bit(HCI_UP, &hdev->flags)) {
1725 err = -ENETDOWN;
1726 goto done;
1727 }
1728
1729 skb = bt_skb_send_alloc(sk, len, msg->msg_flags & MSG_DONTWAIT, &err);
1730 if (!skb)
1731 goto done;
1732
1733 if (memcpy_from_msg(skb_put(skb, len), msg, len)) {
1734 err = -EFAULT;
1735 goto drop;
1736 }
1737
1738 hci_skb_pkt_type(skb) = skb->data[0];
1739 skb_pull(skb, 1);
1740
1741 if (hci_pi(sk)->channel == HCI_CHANNEL_USER) {
1742 /* No permission check is needed for user channel
1743 * since that gets enforced when binding the socket.
1744 *
1745 * However check that the packet type is valid.
1746 */
1747 if (hci_skb_pkt_type(skb) != HCI_COMMAND_PKT &&
1748 hci_skb_pkt_type(skb) != HCI_ACLDATA_PKT &&
1749 hci_skb_pkt_type(skb) != HCI_SCODATA_PKT) {
1750 err = -EINVAL;
1751 goto drop;
1752 }
1753
1754 skb_queue_tail(&hdev->raw_q, skb);
1755 queue_work(hdev->workqueue, &hdev->tx_work);
1756 } else if (hci_skb_pkt_type(skb) == HCI_COMMAND_PKT) {
1757 u16 opcode = get_unaligned_le16(skb->data);
1758 u16 ogf = hci_opcode_ogf(opcode);
1759 u16 ocf = hci_opcode_ocf(opcode);
1760
1761 if (((ogf > HCI_SFLT_MAX_OGF) ||
1762 !hci_test_bit(ocf & HCI_FLT_OCF_BITS,
1763 &hci_sec_filter.ocf_mask[ogf])) &&
1764 !capable(CAP_NET_RAW)) {
1765 err = -EPERM;
1766 goto drop;
1767 }
1768
1769 /* Since the opcode has already been extracted here, store
1770 * a copy of the value for later use by the drivers.
1771 */
1772 hci_skb_opcode(skb) = opcode;
1773
1774 if (ogf == 0x3f) {
1775 skb_queue_tail(&hdev->raw_q, skb);
1776 queue_work(hdev->workqueue, &hdev->tx_work);
1777 } else {
1778 /* Stand-alone HCI commands must be flagged as
1779 * single-command requests.
1780 */
1781 bt_cb(skb)->hci.req_flags |= HCI_REQ_START;
1782
1783 skb_queue_tail(&hdev->cmd_q, skb);
1784 queue_work(hdev->workqueue, &hdev->cmd_work);
1785 }
1786 } else {
1787 if (!capable(CAP_NET_RAW)) {
1788 err = -EPERM;
1789 goto drop;
1790 }
1791
1792 if (hci_skb_pkt_type(skb) != HCI_ACLDATA_PKT &&
1793 hci_skb_pkt_type(skb) != HCI_SCODATA_PKT) {
1794 err = -EINVAL;
1795 goto drop;
1796 }
1797
1798 skb_queue_tail(&hdev->raw_q, skb);
1799 queue_work(hdev->workqueue, &hdev->tx_work);
1800 }
1801
1802 err = len;
1803
1804 done:
1805 release_sock(sk);
1806 return err;
1807
1808 drop:
1809 kfree_skb(skb);
1810 goto done;
1811 }
1812
1813 static int hci_sock_setsockopt(struct socket *sock, int level, int optname,
1814 char __user *optval, unsigned int len)
1815 {
1816 struct hci_ufilter uf = { .opcode = 0 };
1817 struct sock *sk = sock->sk;
1818 int err = 0, opt = 0;
1819
1820 BT_DBG("sk %p, opt %d", sk, optname);
1821
1822 if (level != SOL_HCI)
1823 return -ENOPROTOOPT;
1824
1825 lock_sock(sk);
1826
1827 if (hci_pi(sk)->channel != HCI_CHANNEL_RAW) {
1828 err = -EBADFD;
1829 goto done;
1830 }
1831
1832 switch (optname) {
1833 case HCI_DATA_DIR:
1834 if (get_user(opt, (int __user *)optval)) {
1835 err = -EFAULT;
1836 break;
1837 }
1838
1839 if (opt)
1840 hci_pi(sk)->cmsg_mask |= HCI_CMSG_DIR;
1841 else
1842 hci_pi(sk)->cmsg_mask &= ~HCI_CMSG_DIR;
1843 break;
1844
1845 case HCI_TIME_STAMP:
1846 if (get_user(opt, (int __user *)optval)) {
1847 err = -EFAULT;
1848 break;
1849 }
1850
1851 if (opt)
1852 hci_pi(sk)->cmsg_mask |= HCI_CMSG_TSTAMP;
1853 else
1854 hci_pi(sk)->cmsg_mask &= ~HCI_CMSG_TSTAMP;
1855 break;
1856
1857 case HCI_FILTER:
1858 {
1859 struct hci_filter *f = &hci_pi(sk)->filter;
1860
1861 uf.type_mask = f->type_mask;
1862 uf.opcode = f->opcode;
1863 uf.event_mask[0] = *((u32 *) f->event_mask + 0);
1864 uf.event_mask[1] = *((u32 *) f->event_mask + 1);
1865 }
1866
1867 len = min_t(unsigned int, len, sizeof(uf));
1868 if (copy_from_user(&uf, optval, len)) {
1869 err = -EFAULT;
1870 break;
1871 }
1872
1873 if (!capable(CAP_NET_RAW)) {
1874 uf.type_mask &= hci_sec_filter.type_mask;
1875 uf.event_mask[0] &= *((u32 *) hci_sec_filter.event_mask + 0);
1876 uf.event_mask[1] &= *((u32 *) hci_sec_filter.event_mask + 1);
1877 }
1878
1879 {
1880 struct hci_filter *f = &hci_pi(sk)->filter;
1881
1882 f->type_mask = uf.type_mask;
1883 f->opcode = uf.opcode;
1884 *((u32 *) f->event_mask + 0) = uf.event_mask[0];
1885 *((u32 *) f->event_mask + 1) = uf.event_mask[1];
1886 }
1887 break;
1888
1889 default:
1890 err = -ENOPROTOOPT;
1891 break;
1892 }
1893
1894 done:
1895 release_sock(sk);
1896 return err;
1897 }
1898
1899 static int hci_sock_getsockopt(struct socket *sock, int level, int optname,
1900 char __user *optval, int __user *optlen)
1901 {
1902 struct hci_ufilter uf;
1903 struct sock *sk = sock->sk;
1904 int len, opt, err = 0;
1905
1906 BT_DBG("sk %p, opt %d", sk, optname);
1907
1908 if (level != SOL_HCI)
1909 return -ENOPROTOOPT;
1910
1911 if (get_user(len, optlen))
1912 return -EFAULT;
1913
1914 lock_sock(sk);
1915
1916 if (hci_pi(sk)->channel != HCI_CHANNEL_RAW) {
1917 err = -EBADFD;
1918 goto done;
1919 }
1920
1921 switch (optname) {
1922 case HCI_DATA_DIR:
1923 if (hci_pi(sk)->cmsg_mask & HCI_CMSG_DIR)
1924 opt = 1;
1925 else
1926 opt = 0;
1927
1928 if (put_user(opt, optval))
1929 err = -EFAULT;
1930 break;
1931
1932 case HCI_TIME_STAMP:
1933 if (hci_pi(sk)->cmsg_mask & HCI_CMSG_TSTAMP)
1934 opt = 1;
1935 else
1936 opt = 0;
1937
1938 if (put_user(opt, optval))
1939 err = -EFAULT;
1940 break;
1941
1942 case HCI_FILTER:
1943 {
1944 struct hci_filter *f = &hci_pi(sk)->filter;
1945
1946 memset(&uf, 0, sizeof(uf));
1947 uf.type_mask = f->type_mask;
1948 uf.opcode = f->opcode;
1949 uf.event_mask[0] = *((u32 *) f->event_mask + 0);
1950 uf.event_mask[1] = *((u32 *) f->event_mask + 1);
1951 }
1952
1953 len = min_t(unsigned int, len, sizeof(uf));
1954 if (copy_to_user(optval, &uf, len))
1955 err = -EFAULT;
1956 break;
1957
1958 default:
1959 err = -ENOPROTOOPT;
1960 break;
1961 }
1962
1963 done:
1964 release_sock(sk);
1965 return err;
1966 }
1967
1968 static const struct proto_ops hci_sock_ops = {
1969 .family = PF_BLUETOOTH,
1970 .owner = THIS_MODULE,
1971 .release = hci_sock_release,
1972 .bind = hci_sock_bind,
1973 .getname = hci_sock_getname,
1974 .sendmsg = hci_sock_sendmsg,
1975 .recvmsg = hci_sock_recvmsg,
1976 .ioctl = hci_sock_ioctl,
1977 .poll = datagram_poll,
1978 .listen = sock_no_listen,
1979 .shutdown = sock_no_shutdown,
1980 .setsockopt = hci_sock_setsockopt,
1981 .getsockopt = hci_sock_getsockopt,
1982 .connect = sock_no_connect,
1983 .socketpair = sock_no_socketpair,
1984 .accept = sock_no_accept,
1985 .mmap = sock_no_mmap
1986 };
1987
1988 static struct proto hci_sk_proto = {
1989 .name = "HCI",
1990 .owner = THIS_MODULE,
1991 .obj_size = sizeof(struct hci_pinfo)
1992 };
1993
1994 static int hci_sock_create(struct net *net, struct socket *sock, int protocol,
1995 int kern)
1996 {
1997 struct sock *sk;
1998
1999 BT_DBG("sock %p", sock);
2000
2001 if (sock->type != SOCK_RAW)
2002 return -ESOCKTNOSUPPORT;
2003
2004 sock->ops = &hci_sock_ops;
2005
2006 sk = sk_alloc(net, PF_BLUETOOTH, GFP_ATOMIC, &hci_sk_proto, kern);
2007 if (!sk)
2008 return -ENOMEM;
2009
2010 sock_init_data(sock, sk);
2011
2012 sock_reset_flag(sk, SOCK_ZAPPED);
2013
2014 sk->sk_protocol = protocol;
2015
2016 sock->state = SS_UNCONNECTED;
2017 sk->sk_state = BT_OPEN;
2018
2019 bt_sock_link(&hci_sk_list, sk);
2020 return 0;
2021 }
2022
2023 static const struct net_proto_family hci_sock_family_ops = {
2024 .family = PF_BLUETOOTH,
2025 .owner = THIS_MODULE,
2026 .create = hci_sock_create,
2027 };
2028
2029 int __init hci_sock_init(void)
2030 {
2031 int err;
2032
2033 BUILD_BUG_ON(sizeof(struct sockaddr_hci) > sizeof(struct sockaddr));
2034
2035 err = proto_register(&hci_sk_proto, 0);
2036 if (err < 0)
2037 return err;
2038
2039 err = bt_sock_register(BTPROTO_HCI, &hci_sock_family_ops);
2040 if (err < 0) {
2041 BT_ERR("HCI socket registration failed");
2042 goto error;
2043 }
2044
2045 err = bt_procfs_init(&init_net, "hci", &hci_sk_list, NULL);
2046 if (err < 0) {
2047 BT_ERR("Failed to create HCI proc file");
2048 bt_sock_unregister(BTPROTO_HCI);
2049 goto error;
2050 }
2051
2052 BT_INFO("HCI socket layer initialized");
2053
2054 return 0;
2055
2056 error:
2057 proto_unregister(&hci_sk_proto);
2058 return err;
2059 }
2060
2061 void hci_sock_cleanup(void)
2062 {
2063 bt_procfs_cleanup(&init_net, "hci");
2064 bt_sock_unregister(BTPROTO_HCI);
2065 proto_unregister(&hci_sk_proto);
2066 }