]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - net/core/dev.c
net: Rename NETIF_F_ALL_CSUM to NETIF_F_CSUM_MASK
[mirror_ubuntu-artful-kernel.git] / net / core / dev.c
1 /*
2 * NET3 Protocol independent device support routines.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * as published by the Free Software Foundation; either version
7 * 2 of the License, or (at your option) any later version.
8 *
9 * Derived from the non IP parts of dev.c 1.0.19
10 * Authors: Ross Biro
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Mark Evans, <evansmp@uhura.aston.ac.uk>
13 *
14 * Additional Authors:
15 * Florian la Roche <rzsfl@rz.uni-sb.de>
16 * Alan Cox <gw4pts@gw4pts.ampr.org>
17 * David Hinds <dahinds@users.sourceforge.net>
18 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
19 * Adam Sulmicki <adam@cfar.umd.edu>
20 * Pekka Riikonen <priikone@poesidon.pspt.fi>
21 *
22 * Changes:
23 * D.J. Barrow : Fixed bug where dev->refcnt gets set
24 * to 2 if register_netdev gets called
25 * before net_dev_init & also removed a
26 * few lines of code in the process.
27 * Alan Cox : device private ioctl copies fields back.
28 * Alan Cox : Transmit queue code does relevant
29 * stunts to keep the queue safe.
30 * Alan Cox : Fixed double lock.
31 * Alan Cox : Fixed promisc NULL pointer trap
32 * ???????? : Support the full private ioctl range
33 * Alan Cox : Moved ioctl permission check into
34 * drivers
35 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI
36 * Alan Cox : 100 backlog just doesn't cut it when
37 * you start doing multicast video 8)
38 * Alan Cox : Rewrote net_bh and list manager.
39 * Alan Cox : Fix ETH_P_ALL echoback lengths.
40 * Alan Cox : Took out transmit every packet pass
41 * Saved a few bytes in the ioctl handler
42 * Alan Cox : Network driver sets packet type before
43 * calling netif_rx. Saves a function
44 * call a packet.
45 * Alan Cox : Hashed net_bh()
46 * Richard Kooijman: Timestamp fixes.
47 * Alan Cox : Wrong field in SIOCGIFDSTADDR
48 * Alan Cox : Device lock protection.
49 * Alan Cox : Fixed nasty side effect of device close
50 * changes.
51 * Rudi Cilibrasi : Pass the right thing to
52 * set_mac_address()
53 * Dave Miller : 32bit quantity for the device lock to
54 * make it work out on a Sparc.
55 * Bjorn Ekwall : Added KERNELD hack.
56 * Alan Cox : Cleaned up the backlog initialise.
57 * Craig Metz : SIOCGIFCONF fix if space for under
58 * 1 device.
59 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there
60 * is no device open function.
61 * Andi Kleen : Fix error reporting for SIOCGIFCONF
62 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF
63 * Cyrus Durgin : Cleaned for KMOD
64 * Adam Sulmicki : Bug Fix : Network Device Unload
65 * A network device unload needs to purge
66 * the backlog queue.
67 * Paul Rusty Russell : SIOCSIFNAME
68 * Pekka Riikonen : Netdev boot-time settings code
69 * Andrew Morton : Make unregister_netdevice wait
70 * indefinitely on dev->refcnt
71 * J Hadi Salim : - Backlog queue sampling
72 * - netif_rx() feedback
73 */
74
75 #include <asm/uaccess.h>
76 #include <linux/bitops.h>
77 #include <linux/capability.h>
78 #include <linux/cpu.h>
79 #include <linux/types.h>
80 #include <linux/kernel.h>
81 #include <linux/hash.h>
82 #include <linux/slab.h>
83 #include <linux/sched.h>
84 #include <linux/mutex.h>
85 #include <linux/string.h>
86 #include <linux/mm.h>
87 #include <linux/socket.h>
88 #include <linux/sockios.h>
89 #include <linux/errno.h>
90 #include <linux/interrupt.h>
91 #include <linux/if_ether.h>
92 #include <linux/netdevice.h>
93 #include <linux/etherdevice.h>
94 #include <linux/ethtool.h>
95 #include <linux/notifier.h>
96 #include <linux/skbuff.h>
97 #include <net/net_namespace.h>
98 #include <net/sock.h>
99 #include <net/busy_poll.h>
100 #include <linux/rtnetlink.h>
101 #include <linux/stat.h>
102 #include <net/dst.h>
103 #include <net/dst_metadata.h>
104 #include <net/pkt_sched.h>
105 #include <net/checksum.h>
106 #include <net/xfrm.h>
107 #include <linux/highmem.h>
108 #include <linux/init.h>
109 #include <linux/module.h>
110 #include <linux/netpoll.h>
111 #include <linux/rcupdate.h>
112 #include <linux/delay.h>
113 #include <net/iw_handler.h>
114 #include <asm/current.h>
115 #include <linux/audit.h>
116 #include <linux/dmaengine.h>
117 #include <linux/err.h>
118 #include <linux/ctype.h>
119 #include <linux/if_arp.h>
120 #include <linux/if_vlan.h>
121 #include <linux/ip.h>
122 #include <net/ip.h>
123 #include <net/mpls.h>
124 #include <linux/ipv6.h>
125 #include <linux/in.h>
126 #include <linux/jhash.h>
127 #include <linux/random.h>
128 #include <trace/events/napi.h>
129 #include <trace/events/net.h>
130 #include <trace/events/skb.h>
131 #include <linux/pci.h>
132 #include <linux/inetdevice.h>
133 #include <linux/cpu_rmap.h>
134 #include <linux/static_key.h>
135 #include <linux/hashtable.h>
136 #include <linux/vmalloc.h>
137 #include <linux/if_macvlan.h>
138 #include <linux/errqueue.h>
139 #include <linux/hrtimer.h>
140 #include <linux/netfilter_ingress.h>
141
142 #include "net-sysfs.h"
143
144 /* Instead of increasing this, you should create a hash table. */
145 #define MAX_GRO_SKBS 8
146
147 /* This should be increased if a protocol with a bigger head is added. */
148 #define GRO_MAX_HEAD (MAX_HEADER + 128)
149
150 static DEFINE_SPINLOCK(ptype_lock);
151 static DEFINE_SPINLOCK(offload_lock);
152 struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
153 struct list_head ptype_all __read_mostly; /* Taps */
154 static struct list_head offload_base __read_mostly;
155
156 static int netif_rx_internal(struct sk_buff *skb);
157 static int call_netdevice_notifiers_info(unsigned long val,
158 struct net_device *dev,
159 struct netdev_notifier_info *info);
160
161 /*
162 * The @dev_base_head list is protected by @dev_base_lock and the rtnl
163 * semaphore.
164 *
165 * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
166 *
167 * Writers must hold the rtnl semaphore while they loop through the
168 * dev_base_head list, and hold dev_base_lock for writing when they do the
169 * actual updates. This allows pure readers to access the list even
170 * while a writer is preparing to update it.
171 *
172 * To put it another way, dev_base_lock is held for writing only to
173 * protect against pure readers; the rtnl semaphore provides the
174 * protection against other writers.
175 *
176 * See, for example usages, register_netdevice() and
177 * unregister_netdevice(), which must be called with the rtnl
178 * semaphore held.
179 */
180 DEFINE_RWLOCK(dev_base_lock);
181 EXPORT_SYMBOL(dev_base_lock);
182
183 /* protects napi_hash addition/deletion and napi_gen_id */
184 static DEFINE_SPINLOCK(napi_hash_lock);
185
186 static unsigned int napi_gen_id = NR_CPUS;
187 static DEFINE_READ_MOSTLY_HASHTABLE(napi_hash, 8);
188
189 static seqcount_t devnet_rename_seq;
190
191 static inline void dev_base_seq_inc(struct net *net)
192 {
193 while (++net->dev_base_seq == 0);
194 }
195
196 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
197 {
198 unsigned int hash = full_name_hash(name, strnlen(name, IFNAMSIZ));
199
200 return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
201 }
202
203 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
204 {
205 return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
206 }
207
208 static inline void rps_lock(struct softnet_data *sd)
209 {
210 #ifdef CONFIG_RPS
211 spin_lock(&sd->input_pkt_queue.lock);
212 #endif
213 }
214
215 static inline void rps_unlock(struct softnet_data *sd)
216 {
217 #ifdef CONFIG_RPS
218 spin_unlock(&sd->input_pkt_queue.lock);
219 #endif
220 }
221
222 /* Device list insertion */
223 static void list_netdevice(struct net_device *dev)
224 {
225 struct net *net = dev_net(dev);
226
227 ASSERT_RTNL();
228
229 write_lock_bh(&dev_base_lock);
230 list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
231 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
232 hlist_add_head_rcu(&dev->index_hlist,
233 dev_index_hash(net, dev->ifindex));
234 write_unlock_bh(&dev_base_lock);
235
236 dev_base_seq_inc(net);
237 }
238
239 /* Device list removal
240 * caller must respect a RCU grace period before freeing/reusing dev
241 */
242 static void unlist_netdevice(struct net_device *dev)
243 {
244 ASSERT_RTNL();
245
246 /* Unlink dev from the device chain */
247 write_lock_bh(&dev_base_lock);
248 list_del_rcu(&dev->dev_list);
249 hlist_del_rcu(&dev->name_hlist);
250 hlist_del_rcu(&dev->index_hlist);
251 write_unlock_bh(&dev_base_lock);
252
253 dev_base_seq_inc(dev_net(dev));
254 }
255
256 /*
257 * Our notifier list
258 */
259
260 static RAW_NOTIFIER_HEAD(netdev_chain);
261
262 /*
263 * Device drivers call our routines to queue packets here. We empty the
264 * queue in the local softnet handler.
265 */
266
267 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
268 EXPORT_PER_CPU_SYMBOL(softnet_data);
269
270 #ifdef CONFIG_LOCKDEP
271 /*
272 * register_netdevice() inits txq->_xmit_lock and sets lockdep class
273 * according to dev->type
274 */
275 static const unsigned short netdev_lock_type[] =
276 {ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
277 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
278 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
279 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
280 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
281 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
282 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
283 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
284 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
285 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
286 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
287 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
288 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
289 ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
290 ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
291
292 static const char *const netdev_lock_name[] =
293 {"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
294 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
295 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
296 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
297 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
298 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
299 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
300 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
301 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
302 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
303 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
304 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
305 "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
306 "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
307 "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
308
309 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
310 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
311
312 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
313 {
314 int i;
315
316 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
317 if (netdev_lock_type[i] == dev_type)
318 return i;
319 /* the last key is used by default */
320 return ARRAY_SIZE(netdev_lock_type) - 1;
321 }
322
323 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
324 unsigned short dev_type)
325 {
326 int i;
327
328 i = netdev_lock_pos(dev_type);
329 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
330 netdev_lock_name[i]);
331 }
332
333 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
334 {
335 int i;
336
337 i = netdev_lock_pos(dev->type);
338 lockdep_set_class_and_name(&dev->addr_list_lock,
339 &netdev_addr_lock_key[i],
340 netdev_lock_name[i]);
341 }
342 #else
343 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
344 unsigned short dev_type)
345 {
346 }
347 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
348 {
349 }
350 #endif
351
352 /*******************************************************************************
353
354 Protocol management and registration routines
355
356 *******************************************************************************/
357
358 /*
359 * Add a protocol ID to the list. Now that the input handler is
360 * smarter we can dispense with all the messy stuff that used to be
361 * here.
362 *
363 * BEWARE!!! Protocol handlers, mangling input packets,
364 * MUST BE last in hash buckets and checking protocol handlers
365 * MUST start from promiscuous ptype_all chain in net_bh.
366 * It is true now, do not change it.
367 * Explanation follows: if protocol handler, mangling packet, will
368 * be the first on list, it is not able to sense, that packet
369 * is cloned and should be copied-on-write, so that it will
370 * change it and subsequent readers will get broken packet.
371 * --ANK (980803)
372 */
373
374 static inline struct list_head *ptype_head(const struct packet_type *pt)
375 {
376 if (pt->type == htons(ETH_P_ALL))
377 return pt->dev ? &pt->dev->ptype_all : &ptype_all;
378 else
379 return pt->dev ? &pt->dev->ptype_specific :
380 &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
381 }
382
383 /**
384 * dev_add_pack - add packet handler
385 * @pt: packet type declaration
386 *
387 * Add a protocol handler to the networking stack. The passed &packet_type
388 * is linked into kernel lists and may not be freed until it has been
389 * removed from the kernel lists.
390 *
391 * This call does not sleep therefore it can not
392 * guarantee all CPU's that are in middle of receiving packets
393 * will see the new packet type (until the next received packet).
394 */
395
396 void dev_add_pack(struct packet_type *pt)
397 {
398 struct list_head *head = ptype_head(pt);
399
400 spin_lock(&ptype_lock);
401 list_add_rcu(&pt->list, head);
402 spin_unlock(&ptype_lock);
403 }
404 EXPORT_SYMBOL(dev_add_pack);
405
406 /**
407 * __dev_remove_pack - remove packet handler
408 * @pt: packet type declaration
409 *
410 * Remove a protocol handler that was previously added to the kernel
411 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
412 * from the kernel lists and can be freed or reused once this function
413 * returns.
414 *
415 * The packet type might still be in use by receivers
416 * and must not be freed until after all the CPU's have gone
417 * through a quiescent state.
418 */
419 void __dev_remove_pack(struct packet_type *pt)
420 {
421 struct list_head *head = ptype_head(pt);
422 struct packet_type *pt1;
423
424 spin_lock(&ptype_lock);
425
426 list_for_each_entry(pt1, head, list) {
427 if (pt == pt1) {
428 list_del_rcu(&pt->list);
429 goto out;
430 }
431 }
432
433 pr_warn("dev_remove_pack: %p not found\n", pt);
434 out:
435 spin_unlock(&ptype_lock);
436 }
437 EXPORT_SYMBOL(__dev_remove_pack);
438
439 /**
440 * dev_remove_pack - remove packet handler
441 * @pt: packet type declaration
442 *
443 * Remove a protocol handler that was previously added to the kernel
444 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
445 * from the kernel lists and can be freed or reused once this function
446 * returns.
447 *
448 * This call sleeps to guarantee that no CPU is looking at the packet
449 * type after return.
450 */
451 void dev_remove_pack(struct packet_type *pt)
452 {
453 __dev_remove_pack(pt);
454
455 synchronize_net();
456 }
457 EXPORT_SYMBOL(dev_remove_pack);
458
459
460 /**
461 * dev_add_offload - register offload handlers
462 * @po: protocol offload declaration
463 *
464 * Add protocol offload handlers to the networking stack. The passed
465 * &proto_offload is linked into kernel lists and may not be freed until
466 * it has been removed from the kernel lists.
467 *
468 * This call does not sleep therefore it can not
469 * guarantee all CPU's that are in middle of receiving packets
470 * will see the new offload handlers (until the next received packet).
471 */
472 void dev_add_offload(struct packet_offload *po)
473 {
474 struct packet_offload *elem;
475
476 spin_lock(&offload_lock);
477 list_for_each_entry(elem, &offload_base, list) {
478 if (po->priority < elem->priority)
479 break;
480 }
481 list_add_rcu(&po->list, elem->list.prev);
482 spin_unlock(&offload_lock);
483 }
484 EXPORT_SYMBOL(dev_add_offload);
485
486 /**
487 * __dev_remove_offload - remove offload handler
488 * @po: packet offload declaration
489 *
490 * Remove a protocol offload handler that was previously added to the
491 * kernel offload handlers by dev_add_offload(). The passed &offload_type
492 * is removed from the kernel lists and can be freed or reused once this
493 * function returns.
494 *
495 * The packet type might still be in use by receivers
496 * and must not be freed until after all the CPU's have gone
497 * through a quiescent state.
498 */
499 static void __dev_remove_offload(struct packet_offload *po)
500 {
501 struct list_head *head = &offload_base;
502 struct packet_offload *po1;
503
504 spin_lock(&offload_lock);
505
506 list_for_each_entry(po1, head, list) {
507 if (po == po1) {
508 list_del_rcu(&po->list);
509 goto out;
510 }
511 }
512
513 pr_warn("dev_remove_offload: %p not found\n", po);
514 out:
515 spin_unlock(&offload_lock);
516 }
517
518 /**
519 * dev_remove_offload - remove packet offload handler
520 * @po: packet offload declaration
521 *
522 * Remove a packet offload handler that was previously added to the kernel
523 * offload handlers by dev_add_offload(). The passed &offload_type is
524 * removed from the kernel lists and can be freed or reused once this
525 * function returns.
526 *
527 * This call sleeps to guarantee that no CPU is looking at the packet
528 * type after return.
529 */
530 void dev_remove_offload(struct packet_offload *po)
531 {
532 __dev_remove_offload(po);
533
534 synchronize_net();
535 }
536 EXPORT_SYMBOL(dev_remove_offload);
537
538 /******************************************************************************
539
540 Device Boot-time Settings Routines
541
542 *******************************************************************************/
543
544 /* Boot time configuration table */
545 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
546
547 /**
548 * netdev_boot_setup_add - add new setup entry
549 * @name: name of the device
550 * @map: configured settings for the device
551 *
552 * Adds new setup entry to the dev_boot_setup list. The function
553 * returns 0 on error and 1 on success. This is a generic routine to
554 * all netdevices.
555 */
556 static int netdev_boot_setup_add(char *name, struct ifmap *map)
557 {
558 struct netdev_boot_setup *s;
559 int i;
560
561 s = dev_boot_setup;
562 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
563 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
564 memset(s[i].name, 0, sizeof(s[i].name));
565 strlcpy(s[i].name, name, IFNAMSIZ);
566 memcpy(&s[i].map, map, sizeof(s[i].map));
567 break;
568 }
569 }
570
571 return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
572 }
573
574 /**
575 * netdev_boot_setup_check - check boot time settings
576 * @dev: the netdevice
577 *
578 * Check boot time settings for the device.
579 * The found settings are set for the device to be used
580 * later in the device probing.
581 * Returns 0 if no settings found, 1 if they are.
582 */
583 int netdev_boot_setup_check(struct net_device *dev)
584 {
585 struct netdev_boot_setup *s = dev_boot_setup;
586 int i;
587
588 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
589 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
590 !strcmp(dev->name, s[i].name)) {
591 dev->irq = s[i].map.irq;
592 dev->base_addr = s[i].map.base_addr;
593 dev->mem_start = s[i].map.mem_start;
594 dev->mem_end = s[i].map.mem_end;
595 return 1;
596 }
597 }
598 return 0;
599 }
600 EXPORT_SYMBOL(netdev_boot_setup_check);
601
602
603 /**
604 * netdev_boot_base - get address from boot time settings
605 * @prefix: prefix for network device
606 * @unit: id for network device
607 *
608 * Check boot time settings for the base address of device.
609 * The found settings are set for the device to be used
610 * later in the device probing.
611 * Returns 0 if no settings found.
612 */
613 unsigned long netdev_boot_base(const char *prefix, int unit)
614 {
615 const struct netdev_boot_setup *s = dev_boot_setup;
616 char name[IFNAMSIZ];
617 int i;
618
619 sprintf(name, "%s%d", prefix, unit);
620
621 /*
622 * If device already registered then return base of 1
623 * to indicate not to probe for this interface
624 */
625 if (__dev_get_by_name(&init_net, name))
626 return 1;
627
628 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
629 if (!strcmp(name, s[i].name))
630 return s[i].map.base_addr;
631 return 0;
632 }
633
634 /*
635 * Saves at boot time configured settings for any netdevice.
636 */
637 int __init netdev_boot_setup(char *str)
638 {
639 int ints[5];
640 struct ifmap map;
641
642 str = get_options(str, ARRAY_SIZE(ints), ints);
643 if (!str || !*str)
644 return 0;
645
646 /* Save settings */
647 memset(&map, 0, sizeof(map));
648 if (ints[0] > 0)
649 map.irq = ints[1];
650 if (ints[0] > 1)
651 map.base_addr = ints[2];
652 if (ints[0] > 2)
653 map.mem_start = ints[3];
654 if (ints[0] > 3)
655 map.mem_end = ints[4];
656
657 /* Add new entry to the list */
658 return netdev_boot_setup_add(str, &map);
659 }
660
661 __setup("netdev=", netdev_boot_setup);
662
663 /*******************************************************************************
664
665 Device Interface Subroutines
666
667 *******************************************************************************/
668
669 /**
670 * dev_get_iflink - get 'iflink' value of a interface
671 * @dev: targeted interface
672 *
673 * Indicates the ifindex the interface is linked to.
674 * Physical interfaces have the same 'ifindex' and 'iflink' values.
675 */
676
677 int dev_get_iflink(const struct net_device *dev)
678 {
679 if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink)
680 return dev->netdev_ops->ndo_get_iflink(dev);
681
682 return dev->ifindex;
683 }
684 EXPORT_SYMBOL(dev_get_iflink);
685
686 /**
687 * dev_fill_metadata_dst - Retrieve tunnel egress information.
688 * @dev: targeted interface
689 * @skb: The packet.
690 *
691 * For better visibility of tunnel traffic OVS needs to retrieve
692 * egress tunnel information for a packet. Following API allows
693 * user to get this info.
694 */
695 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb)
696 {
697 struct ip_tunnel_info *info;
698
699 if (!dev->netdev_ops || !dev->netdev_ops->ndo_fill_metadata_dst)
700 return -EINVAL;
701
702 info = skb_tunnel_info_unclone(skb);
703 if (!info)
704 return -ENOMEM;
705 if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX)))
706 return -EINVAL;
707
708 return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb);
709 }
710 EXPORT_SYMBOL_GPL(dev_fill_metadata_dst);
711
712 /**
713 * __dev_get_by_name - find a device by its name
714 * @net: the applicable net namespace
715 * @name: name to find
716 *
717 * Find an interface by name. Must be called under RTNL semaphore
718 * or @dev_base_lock. If the name is found a pointer to the device
719 * is returned. If the name is not found then %NULL is returned. The
720 * reference counters are not incremented so the caller must be
721 * careful with locks.
722 */
723
724 struct net_device *__dev_get_by_name(struct net *net, const char *name)
725 {
726 struct net_device *dev;
727 struct hlist_head *head = dev_name_hash(net, name);
728
729 hlist_for_each_entry(dev, head, name_hlist)
730 if (!strncmp(dev->name, name, IFNAMSIZ))
731 return dev;
732
733 return NULL;
734 }
735 EXPORT_SYMBOL(__dev_get_by_name);
736
737 /**
738 * dev_get_by_name_rcu - find a device by its name
739 * @net: the applicable net namespace
740 * @name: name to find
741 *
742 * Find an interface by name.
743 * If the name is found a pointer to the device is returned.
744 * If the name is not found then %NULL is returned.
745 * The reference counters are not incremented so the caller must be
746 * careful with locks. The caller must hold RCU lock.
747 */
748
749 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
750 {
751 struct net_device *dev;
752 struct hlist_head *head = dev_name_hash(net, name);
753
754 hlist_for_each_entry_rcu(dev, head, name_hlist)
755 if (!strncmp(dev->name, name, IFNAMSIZ))
756 return dev;
757
758 return NULL;
759 }
760 EXPORT_SYMBOL(dev_get_by_name_rcu);
761
762 /**
763 * dev_get_by_name - find a device by its name
764 * @net: the applicable net namespace
765 * @name: name to find
766 *
767 * Find an interface by name. This can be called from any
768 * context and does its own locking. The returned handle has
769 * the usage count incremented and the caller must use dev_put() to
770 * release it when it is no longer needed. %NULL is returned if no
771 * matching device is found.
772 */
773
774 struct net_device *dev_get_by_name(struct net *net, const char *name)
775 {
776 struct net_device *dev;
777
778 rcu_read_lock();
779 dev = dev_get_by_name_rcu(net, name);
780 if (dev)
781 dev_hold(dev);
782 rcu_read_unlock();
783 return dev;
784 }
785 EXPORT_SYMBOL(dev_get_by_name);
786
787 /**
788 * __dev_get_by_index - find a device by its ifindex
789 * @net: the applicable net namespace
790 * @ifindex: index of device
791 *
792 * Search for an interface by index. Returns %NULL if the device
793 * is not found or a pointer to the device. The device has not
794 * had its reference counter increased so the caller must be careful
795 * about locking. The caller must hold either the RTNL semaphore
796 * or @dev_base_lock.
797 */
798
799 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
800 {
801 struct net_device *dev;
802 struct hlist_head *head = dev_index_hash(net, ifindex);
803
804 hlist_for_each_entry(dev, head, index_hlist)
805 if (dev->ifindex == ifindex)
806 return dev;
807
808 return NULL;
809 }
810 EXPORT_SYMBOL(__dev_get_by_index);
811
812 /**
813 * dev_get_by_index_rcu - find a device by its ifindex
814 * @net: the applicable net namespace
815 * @ifindex: index of device
816 *
817 * Search for an interface by index. Returns %NULL if the device
818 * is not found or a pointer to the device. The device has not
819 * had its reference counter increased so the caller must be careful
820 * about locking. The caller must hold RCU lock.
821 */
822
823 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
824 {
825 struct net_device *dev;
826 struct hlist_head *head = dev_index_hash(net, ifindex);
827
828 hlist_for_each_entry_rcu(dev, head, index_hlist)
829 if (dev->ifindex == ifindex)
830 return dev;
831
832 return NULL;
833 }
834 EXPORT_SYMBOL(dev_get_by_index_rcu);
835
836
837 /**
838 * dev_get_by_index - find a device by its ifindex
839 * @net: the applicable net namespace
840 * @ifindex: index of device
841 *
842 * Search for an interface by index. Returns NULL if the device
843 * is not found or a pointer to the device. The device returned has
844 * had a reference added and the pointer is safe until the user calls
845 * dev_put to indicate they have finished with it.
846 */
847
848 struct net_device *dev_get_by_index(struct net *net, int ifindex)
849 {
850 struct net_device *dev;
851
852 rcu_read_lock();
853 dev = dev_get_by_index_rcu(net, ifindex);
854 if (dev)
855 dev_hold(dev);
856 rcu_read_unlock();
857 return dev;
858 }
859 EXPORT_SYMBOL(dev_get_by_index);
860
861 /**
862 * netdev_get_name - get a netdevice name, knowing its ifindex.
863 * @net: network namespace
864 * @name: a pointer to the buffer where the name will be stored.
865 * @ifindex: the ifindex of the interface to get the name from.
866 *
867 * The use of raw_seqcount_begin() and cond_resched() before
868 * retrying is required as we want to give the writers a chance
869 * to complete when CONFIG_PREEMPT is not set.
870 */
871 int netdev_get_name(struct net *net, char *name, int ifindex)
872 {
873 struct net_device *dev;
874 unsigned int seq;
875
876 retry:
877 seq = raw_seqcount_begin(&devnet_rename_seq);
878 rcu_read_lock();
879 dev = dev_get_by_index_rcu(net, ifindex);
880 if (!dev) {
881 rcu_read_unlock();
882 return -ENODEV;
883 }
884
885 strcpy(name, dev->name);
886 rcu_read_unlock();
887 if (read_seqcount_retry(&devnet_rename_seq, seq)) {
888 cond_resched();
889 goto retry;
890 }
891
892 return 0;
893 }
894
895 /**
896 * dev_getbyhwaddr_rcu - find a device by its hardware address
897 * @net: the applicable net namespace
898 * @type: media type of device
899 * @ha: hardware address
900 *
901 * Search for an interface by MAC address. Returns NULL if the device
902 * is not found or a pointer to the device.
903 * The caller must hold RCU or RTNL.
904 * The returned device has not had its ref count increased
905 * and the caller must therefore be careful about locking
906 *
907 */
908
909 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
910 const char *ha)
911 {
912 struct net_device *dev;
913
914 for_each_netdev_rcu(net, dev)
915 if (dev->type == type &&
916 !memcmp(dev->dev_addr, ha, dev->addr_len))
917 return dev;
918
919 return NULL;
920 }
921 EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
922
923 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
924 {
925 struct net_device *dev;
926
927 ASSERT_RTNL();
928 for_each_netdev(net, dev)
929 if (dev->type == type)
930 return dev;
931
932 return NULL;
933 }
934 EXPORT_SYMBOL(__dev_getfirstbyhwtype);
935
936 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
937 {
938 struct net_device *dev, *ret = NULL;
939
940 rcu_read_lock();
941 for_each_netdev_rcu(net, dev)
942 if (dev->type == type) {
943 dev_hold(dev);
944 ret = dev;
945 break;
946 }
947 rcu_read_unlock();
948 return ret;
949 }
950 EXPORT_SYMBOL(dev_getfirstbyhwtype);
951
952 /**
953 * __dev_get_by_flags - find any device with given flags
954 * @net: the applicable net namespace
955 * @if_flags: IFF_* values
956 * @mask: bitmask of bits in if_flags to check
957 *
958 * Search for any interface with the given flags. Returns NULL if a device
959 * is not found or a pointer to the device. Must be called inside
960 * rtnl_lock(), and result refcount is unchanged.
961 */
962
963 struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags,
964 unsigned short mask)
965 {
966 struct net_device *dev, *ret;
967
968 ASSERT_RTNL();
969
970 ret = NULL;
971 for_each_netdev(net, dev) {
972 if (((dev->flags ^ if_flags) & mask) == 0) {
973 ret = dev;
974 break;
975 }
976 }
977 return ret;
978 }
979 EXPORT_SYMBOL(__dev_get_by_flags);
980
981 /**
982 * dev_valid_name - check if name is okay for network device
983 * @name: name string
984 *
985 * Network device names need to be valid file names to
986 * to allow sysfs to work. We also disallow any kind of
987 * whitespace.
988 */
989 bool dev_valid_name(const char *name)
990 {
991 if (*name == '\0')
992 return false;
993 if (strlen(name) >= IFNAMSIZ)
994 return false;
995 if (!strcmp(name, ".") || !strcmp(name, ".."))
996 return false;
997
998 while (*name) {
999 if (*name == '/' || *name == ':' || isspace(*name))
1000 return false;
1001 name++;
1002 }
1003 return true;
1004 }
1005 EXPORT_SYMBOL(dev_valid_name);
1006
1007 /**
1008 * __dev_alloc_name - allocate a name for a device
1009 * @net: network namespace to allocate the device name in
1010 * @name: name format string
1011 * @buf: scratch buffer and result name string
1012 *
1013 * Passed a format string - eg "lt%d" it will try and find a suitable
1014 * id. It scans list of devices to build up a free map, then chooses
1015 * the first empty slot. The caller must hold the dev_base or rtnl lock
1016 * while allocating the name and adding the device in order to avoid
1017 * duplicates.
1018 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1019 * Returns the number of the unit assigned or a negative errno code.
1020 */
1021
1022 static int __dev_alloc_name(struct net *net, const char *name, char *buf)
1023 {
1024 int i = 0;
1025 const char *p;
1026 const int max_netdevices = 8*PAGE_SIZE;
1027 unsigned long *inuse;
1028 struct net_device *d;
1029
1030 p = strnchr(name, IFNAMSIZ-1, '%');
1031 if (p) {
1032 /*
1033 * Verify the string as this thing may have come from
1034 * the user. There must be either one "%d" and no other "%"
1035 * characters.
1036 */
1037 if (p[1] != 'd' || strchr(p + 2, '%'))
1038 return -EINVAL;
1039
1040 /* Use one page as a bit array of possible slots */
1041 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
1042 if (!inuse)
1043 return -ENOMEM;
1044
1045 for_each_netdev(net, d) {
1046 if (!sscanf(d->name, name, &i))
1047 continue;
1048 if (i < 0 || i >= max_netdevices)
1049 continue;
1050
1051 /* avoid cases where sscanf is not exact inverse of printf */
1052 snprintf(buf, IFNAMSIZ, name, i);
1053 if (!strncmp(buf, d->name, IFNAMSIZ))
1054 set_bit(i, inuse);
1055 }
1056
1057 i = find_first_zero_bit(inuse, max_netdevices);
1058 free_page((unsigned long) inuse);
1059 }
1060
1061 if (buf != name)
1062 snprintf(buf, IFNAMSIZ, name, i);
1063 if (!__dev_get_by_name(net, buf))
1064 return i;
1065
1066 /* It is possible to run out of possible slots
1067 * when the name is long and there isn't enough space left
1068 * for the digits, or if all bits are used.
1069 */
1070 return -ENFILE;
1071 }
1072
1073 /**
1074 * dev_alloc_name - allocate a name for a device
1075 * @dev: device
1076 * @name: name format string
1077 *
1078 * Passed a format string - eg "lt%d" it will try and find a suitable
1079 * id. It scans list of devices to build up a free map, then chooses
1080 * the first empty slot. The caller must hold the dev_base or rtnl lock
1081 * while allocating the name and adding the device in order to avoid
1082 * duplicates.
1083 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1084 * Returns the number of the unit assigned or a negative errno code.
1085 */
1086
1087 int dev_alloc_name(struct net_device *dev, const char *name)
1088 {
1089 char buf[IFNAMSIZ];
1090 struct net *net;
1091 int ret;
1092
1093 BUG_ON(!dev_net(dev));
1094 net = dev_net(dev);
1095 ret = __dev_alloc_name(net, name, buf);
1096 if (ret >= 0)
1097 strlcpy(dev->name, buf, IFNAMSIZ);
1098 return ret;
1099 }
1100 EXPORT_SYMBOL(dev_alloc_name);
1101
1102 static int dev_alloc_name_ns(struct net *net,
1103 struct net_device *dev,
1104 const char *name)
1105 {
1106 char buf[IFNAMSIZ];
1107 int ret;
1108
1109 ret = __dev_alloc_name(net, name, buf);
1110 if (ret >= 0)
1111 strlcpy(dev->name, buf, IFNAMSIZ);
1112 return ret;
1113 }
1114
1115 static int dev_get_valid_name(struct net *net,
1116 struct net_device *dev,
1117 const char *name)
1118 {
1119 BUG_ON(!net);
1120
1121 if (!dev_valid_name(name))
1122 return -EINVAL;
1123
1124 if (strchr(name, '%'))
1125 return dev_alloc_name_ns(net, dev, name);
1126 else if (__dev_get_by_name(net, name))
1127 return -EEXIST;
1128 else if (dev->name != name)
1129 strlcpy(dev->name, name, IFNAMSIZ);
1130
1131 return 0;
1132 }
1133
1134 /**
1135 * dev_change_name - change name of a device
1136 * @dev: device
1137 * @newname: name (or format string) must be at least IFNAMSIZ
1138 *
1139 * Change name of a device, can pass format strings "eth%d".
1140 * for wildcarding.
1141 */
1142 int dev_change_name(struct net_device *dev, const char *newname)
1143 {
1144 unsigned char old_assign_type;
1145 char oldname[IFNAMSIZ];
1146 int err = 0;
1147 int ret;
1148 struct net *net;
1149
1150 ASSERT_RTNL();
1151 BUG_ON(!dev_net(dev));
1152
1153 net = dev_net(dev);
1154 if (dev->flags & IFF_UP)
1155 return -EBUSY;
1156
1157 write_seqcount_begin(&devnet_rename_seq);
1158
1159 if (strncmp(newname, dev->name, IFNAMSIZ) == 0) {
1160 write_seqcount_end(&devnet_rename_seq);
1161 return 0;
1162 }
1163
1164 memcpy(oldname, dev->name, IFNAMSIZ);
1165
1166 err = dev_get_valid_name(net, dev, newname);
1167 if (err < 0) {
1168 write_seqcount_end(&devnet_rename_seq);
1169 return err;
1170 }
1171
1172 if (oldname[0] && !strchr(oldname, '%'))
1173 netdev_info(dev, "renamed from %s\n", oldname);
1174
1175 old_assign_type = dev->name_assign_type;
1176 dev->name_assign_type = NET_NAME_RENAMED;
1177
1178 rollback:
1179 ret = device_rename(&dev->dev, dev->name);
1180 if (ret) {
1181 memcpy(dev->name, oldname, IFNAMSIZ);
1182 dev->name_assign_type = old_assign_type;
1183 write_seqcount_end(&devnet_rename_seq);
1184 return ret;
1185 }
1186
1187 write_seqcount_end(&devnet_rename_seq);
1188
1189 netdev_adjacent_rename_links(dev, oldname);
1190
1191 write_lock_bh(&dev_base_lock);
1192 hlist_del_rcu(&dev->name_hlist);
1193 write_unlock_bh(&dev_base_lock);
1194
1195 synchronize_rcu();
1196
1197 write_lock_bh(&dev_base_lock);
1198 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
1199 write_unlock_bh(&dev_base_lock);
1200
1201 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1202 ret = notifier_to_errno(ret);
1203
1204 if (ret) {
1205 /* err >= 0 after dev_alloc_name() or stores the first errno */
1206 if (err >= 0) {
1207 err = ret;
1208 write_seqcount_begin(&devnet_rename_seq);
1209 memcpy(dev->name, oldname, IFNAMSIZ);
1210 memcpy(oldname, newname, IFNAMSIZ);
1211 dev->name_assign_type = old_assign_type;
1212 old_assign_type = NET_NAME_RENAMED;
1213 goto rollback;
1214 } else {
1215 pr_err("%s: name change rollback failed: %d\n",
1216 dev->name, ret);
1217 }
1218 }
1219
1220 return err;
1221 }
1222
1223 /**
1224 * dev_set_alias - change ifalias of a device
1225 * @dev: device
1226 * @alias: name up to IFALIASZ
1227 * @len: limit of bytes to copy from info
1228 *
1229 * Set ifalias for a device,
1230 */
1231 int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1232 {
1233 char *new_ifalias;
1234
1235 ASSERT_RTNL();
1236
1237 if (len >= IFALIASZ)
1238 return -EINVAL;
1239
1240 if (!len) {
1241 kfree(dev->ifalias);
1242 dev->ifalias = NULL;
1243 return 0;
1244 }
1245
1246 new_ifalias = krealloc(dev->ifalias, len + 1, GFP_KERNEL);
1247 if (!new_ifalias)
1248 return -ENOMEM;
1249 dev->ifalias = new_ifalias;
1250
1251 strlcpy(dev->ifalias, alias, len+1);
1252 return len;
1253 }
1254
1255
1256 /**
1257 * netdev_features_change - device changes features
1258 * @dev: device to cause notification
1259 *
1260 * Called to indicate a device has changed features.
1261 */
1262 void netdev_features_change(struct net_device *dev)
1263 {
1264 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1265 }
1266 EXPORT_SYMBOL(netdev_features_change);
1267
1268 /**
1269 * netdev_state_change - device changes state
1270 * @dev: device to cause notification
1271 *
1272 * Called to indicate a device has changed state. This function calls
1273 * the notifier chains for netdev_chain and sends a NEWLINK message
1274 * to the routing socket.
1275 */
1276 void netdev_state_change(struct net_device *dev)
1277 {
1278 if (dev->flags & IFF_UP) {
1279 struct netdev_notifier_change_info change_info;
1280
1281 change_info.flags_changed = 0;
1282 call_netdevice_notifiers_info(NETDEV_CHANGE, dev,
1283 &change_info.info);
1284 rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL);
1285 }
1286 }
1287 EXPORT_SYMBOL(netdev_state_change);
1288
1289 /**
1290 * netdev_notify_peers - notify network peers about existence of @dev
1291 * @dev: network device
1292 *
1293 * Generate traffic such that interested network peers are aware of
1294 * @dev, such as by generating a gratuitous ARP. This may be used when
1295 * a device wants to inform the rest of the network about some sort of
1296 * reconfiguration such as a failover event or virtual machine
1297 * migration.
1298 */
1299 void netdev_notify_peers(struct net_device *dev)
1300 {
1301 rtnl_lock();
1302 call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1303 rtnl_unlock();
1304 }
1305 EXPORT_SYMBOL(netdev_notify_peers);
1306
1307 static int __dev_open(struct net_device *dev)
1308 {
1309 const struct net_device_ops *ops = dev->netdev_ops;
1310 int ret;
1311
1312 ASSERT_RTNL();
1313
1314 if (!netif_device_present(dev))
1315 return -ENODEV;
1316
1317 /* Block netpoll from trying to do any rx path servicing.
1318 * If we don't do this there is a chance ndo_poll_controller
1319 * or ndo_poll may be running while we open the device
1320 */
1321 netpoll_poll_disable(dev);
1322
1323 ret = call_netdevice_notifiers(NETDEV_PRE_UP, dev);
1324 ret = notifier_to_errno(ret);
1325 if (ret)
1326 return ret;
1327
1328 set_bit(__LINK_STATE_START, &dev->state);
1329
1330 if (ops->ndo_validate_addr)
1331 ret = ops->ndo_validate_addr(dev);
1332
1333 if (!ret && ops->ndo_open)
1334 ret = ops->ndo_open(dev);
1335
1336 netpoll_poll_enable(dev);
1337
1338 if (ret)
1339 clear_bit(__LINK_STATE_START, &dev->state);
1340 else {
1341 dev->flags |= IFF_UP;
1342 dev_set_rx_mode(dev);
1343 dev_activate(dev);
1344 add_device_randomness(dev->dev_addr, dev->addr_len);
1345 }
1346
1347 return ret;
1348 }
1349
1350 /**
1351 * dev_open - prepare an interface for use.
1352 * @dev: device to open
1353 *
1354 * Takes a device from down to up state. The device's private open
1355 * function is invoked and then the multicast lists are loaded. Finally
1356 * the device is moved into the up state and a %NETDEV_UP message is
1357 * sent to the netdev notifier chain.
1358 *
1359 * Calling this function on an active interface is a nop. On a failure
1360 * a negative errno code is returned.
1361 */
1362 int dev_open(struct net_device *dev)
1363 {
1364 int ret;
1365
1366 if (dev->flags & IFF_UP)
1367 return 0;
1368
1369 ret = __dev_open(dev);
1370 if (ret < 0)
1371 return ret;
1372
1373 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1374 call_netdevice_notifiers(NETDEV_UP, dev);
1375
1376 return ret;
1377 }
1378 EXPORT_SYMBOL(dev_open);
1379
1380 static int __dev_close_many(struct list_head *head)
1381 {
1382 struct net_device *dev;
1383
1384 ASSERT_RTNL();
1385 might_sleep();
1386
1387 list_for_each_entry(dev, head, close_list) {
1388 /* Temporarily disable netpoll until the interface is down */
1389 netpoll_poll_disable(dev);
1390
1391 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1392
1393 clear_bit(__LINK_STATE_START, &dev->state);
1394
1395 /* Synchronize to scheduled poll. We cannot touch poll list, it
1396 * can be even on different cpu. So just clear netif_running().
1397 *
1398 * dev->stop() will invoke napi_disable() on all of it's
1399 * napi_struct instances on this device.
1400 */
1401 smp_mb__after_atomic(); /* Commit netif_running(). */
1402 }
1403
1404 dev_deactivate_many(head);
1405
1406 list_for_each_entry(dev, head, close_list) {
1407 const struct net_device_ops *ops = dev->netdev_ops;
1408
1409 /*
1410 * Call the device specific close. This cannot fail.
1411 * Only if device is UP
1412 *
1413 * We allow it to be called even after a DETACH hot-plug
1414 * event.
1415 */
1416 if (ops->ndo_stop)
1417 ops->ndo_stop(dev);
1418
1419 dev->flags &= ~IFF_UP;
1420 netpoll_poll_enable(dev);
1421 }
1422
1423 return 0;
1424 }
1425
1426 static int __dev_close(struct net_device *dev)
1427 {
1428 int retval;
1429 LIST_HEAD(single);
1430
1431 list_add(&dev->close_list, &single);
1432 retval = __dev_close_many(&single);
1433 list_del(&single);
1434
1435 return retval;
1436 }
1437
1438 int dev_close_many(struct list_head *head, bool unlink)
1439 {
1440 struct net_device *dev, *tmp;
1441
1442 /* Remove the devices that don't need to be closed */
1443 list_for_each_entry_safe(dev, tmp, head, close_list)
1444 if (!(dev->flags & IFF_UP))
1445 list_del_init(&dev->close_list);
1446
1447 __dev_close_many(head);
1448
1449 list_for_each_entry_safe(dev, tmp, head, close_list) {
1450 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1451 call_netdevice_notifiers(NETDEV_DOWN, dev);
1452 if (unlink)
1453 list_del_init(&dev->close_list);
1454 }
1455
1456 return 0;
1457 }
1458 EXPORT_SYMBOL(dev_close_many);
1459
1460 /**
1461 * dev_close - shutdown an interface.
1462 * @dev: device to shutdown
1463 *
1464 * This function moves an active device into down state. A
1465 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1466 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1467 * chain.
1468 */
1469 int dev_close(struct net_device *dev)
1470 {
1471 if (dev->flags & IFF_UP) {
1472 LIST_HEAD(single);
1473
1474 list_add(&dev->close_list, &single);
1475 dev_close_many(&single, true);
1476 list_del(&single);
1477 }
1478 return 0;
1479 }
1480 EXPORT_SYMBOL(dev_close);
1481
1482
1483 /**
1484 * dev_disable_lro - disable Large Receive Offload on a device
1485 * @dev: device
1486 *
1487 * Disable Large Receive Offload (LRO) on a net device. Must be
1488 * called under RTNL. This is needed if received packets may be
1489 * forwarded to another interface.
1490 */
1491 void dev_disable_lro(struct net_device *dev)
1492 {
1493 struct net_device *lower_dev;
1494 struct list_head *iter;
1495
1496 dev->wanted_features &= ~NETIF_F_LRO;
1497 netdev_update_features(dev);
1498
1499 if (unlikely(dev->features & NETIF_F_LRO))
1500 netdev_WARN(dev, "failed to disable LRO!\n");
1501
1502 netdev_for_each_lower_dev(dev, lower_dev, iter)
1503 dev_disable_lro(lower_dev);
1504 }
1505 EXPORT_SYMBOL(dev_disable_lro);
1506
1507 static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
1508 struct net_device *dev)
1509 {
1510 struct netdev_notifier_info info;
1511
1512 netdev_notifier_info_init(&info, dev);
1513 return nb->notifier_call(nb, val, &info);
1514 }
1515
1516 static int dev_boot_phase = 1;
1517
1518 /**
1519 * register_netdevice_notifier - register a network notifier block
1520 * @nb: notifier
1521 *
1522 * Register a notifier to be called when network device events occur.
1523 * The notifier passed is linked into the kernel structures and must
1524 * not be reused until it has been unregistered. A negative errno code
1525 * is returned on a failure.
1526 *
1527 * When registered all registration and up events are replayed
1528 * to the new notifier to allow device to have a race free
1529 * view of the network device list.
1530 */
1531
1532 int register_netdevice_notifier(struct notifier_block *nb)
1533 {
1534 struct net_device *dev;
1535 struct net_device *last;
1536 struct net *net;
1537 int err;
1538
1539 rtnl_lock();
1540 err = raw_notifier_chain_register(&netdev_chain, nb);
1541 if (err)
1542 goto unlock;
1543 if (dev_boot_phase)
1544 goto unlock;
1545 for_each_net(net) {
1546 for_each_netdev(net, dev) {
1547 err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
1548 err = notifier_to_errno(err);
1549 if (err)
1550 goto rollback;
1551
1552 if (!(dev->flags & IFF_UP))
1553 continue;
1554
1555 call_netdevice_notifier(nb, NETDEV_UP, dev);
1556 }
1557 }
1558
1559 unlock:
1560 rtnl_unlock();
1561 return err;
1562
1563 rollback:
1564 last = dev;
1565 for_each_net(net) {
1566 for_each_netdev(net, dev) {
1567 if (dev == last)
1568 goto outroll;
1569
1570 if (dev->flags & IFF_UP) {
1571 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1572 dev);
1573 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1574 }
1575 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1576 }
1577 }
1578
1579 outroll:
1580 raw_notifier_chain_unregister(&netdev_chain, nb);
1581 goto unlock;
1582 }
1583 EXPORT_SYMBOL(register_netdevice_notifier);
1584
1585 /**
1586 * unregister_netdevice_notifier - unregister a network notifier block
1587 * @nb: notifier
1588 *
1589 * Unregister a notifier previously registered by
1590 * register_netdevice_notifier(). The notifier is unlinked into the
1591 * kernel structures and may then be reused. A negative errno code
1592 * is returned on a failure.
1593 *
1594 * After unregistering unregister and down device events are synthesized
1595 * for all devices on the device list to the removed notifier to remove
1596 * the need for special case cleanup code.
1597 */
1598
1599 int unregister_netdevice_notifier(struct notifier_block *nb)
1600 {
1601 struct net_device *dev;
1602 struct net *net;
1603 int err;
1604
1605 rtnl_lock();
1606 err = raw_notifier_chain_unregister(&netdev_chain, nb);
1607 if (err)
1608 goto unlock;
1609
1610 for_each_net(net) {
1611 for_each_netdev(net, dev) {
1612 if (dev->flags & IFF_UP) {
1613 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1614 dev);
1615 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1616 }
1617 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1618 }
1619 }
1620 unlock:
1621 rtnl_unlock();
1622 return err;
1623 }
1624 EXPORT_SYMBOL(unregister_netdevice_notifier);
1625
1626 /**
1627 * call_netdevice_notifiers_info - call all network notifier blocks
1628 * @val: value passed unmodified to notifier function
1629 * @dev: net_device pointer passed unmodified to notifier function
1630 * @info: notifier information data
1631 *
1632 * Call all network notifier blocks. Parameters and return value
1633 * are as for raw_notifier_call_chain().
1634 */
1635
1636 static int call_netdevice_notifiers_info(unsigned long val,
1637 struct net_device *dev,
1638 struct netdev_notifier_info *info)
1639 {
1640 ASSERT_RTNL();
1641 netdev_notifier_info_init(info, dev);
1642 return raw_notifier_call_chain(&netdev_chain, val, info);
1643 }
1644
1645 /**
1646 * call_netdevice_notifiers - call all network notifier blocks
1647 * @val: value passed unmodified to notifier function
1648 * @dev: net_device pointer passed unmodified to notifier function
1649 *
1650 * Call all network notifier blocks. Parameters and return value
1651 * are as for raw_notifier_call_chain().
1652 */
1653
1654 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1655 {
1656 struct netdev_notifier_info info;
1657
1658 return call_netdevice_notifiers_info(val, dev, &info);
1659 }
1660 EXPORT_SYMBOL(call_netdevice_notifiers);
1661
1662 #ifdef CONFIG_NET_INGRESS
1663 static struct static_key ingress_needed __read_mostly;
1664
1665 void net_inc_ingress_queue(void)
1666 {
1667 static_key_slow_inc(&ingress_needed);
1668 }
1669 EXPORT_SYMBOL_GPL(net_inc_ingress_queue);
1670
1671 void net_dec_ingress_queue(void)
1672 {
1673 static_key_slow_dec(&ingress_needed);
1674 }
1675 EXPORT_SYMBOL_GPL(net_dec_ingress_queue);
1676 #endif
1677
1678 static struct static_key netstamp_needed __read_mostly;
1679 #ifdef HAVE_JUMP_LABEL
1680 /* We are not allowed to call static_key_slow_dec() from irq context
1681 * If net_disable_timestamp() is called from irq context, defer the
1682 * static_key_slow_dec() calls.
1683 */
1684 static atomic_t netstamp_needed_deferred;
1685 #endif
1686
1687 void net_enable_timestamp(void)
1688 {
1689 #ifdef HAVE_JUMP_LABEL
1690 int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
1691
1692 if (deferred) {
1693 while (--deferred)
1694 static_key_slow_dec(&netstamp_needed);
1695 return;
1696 }
1697 #endif
1698 static_key_slow_inc(&netstamp_needed);
1699 }
1700 EXPORT_SYMBOL(net_enable_timestamp);
1701
1702 void net_disable_timestamp(void)
1703 {
1704 #ifdef HAVE_JUMP_LABEL
1705 if (in_interrupt()) {
1706 atomic_inc(&netstamp_needed_deferred);
1707 return;
1708 }
1709 #endif
1710 static_key_slow_dec(&netstamp_needed);
1711 }
1712 EXPORT_SYMBOL(net_disable_timestamp);
1713
1714 static inline void net_timestamp_set(struct sk_buff *skb)
1715 {
1716 skb->tstamp.tv64 = 0;
1717 if (static_key_false(&netstamp_needed))
1718 __net_timestamp(skb);
1719 }
1720
1721 #define net_timestamp_check(COND, SKB) \
1722 if (static_key_false(&netstamp_needed)) { \
1723 if ((COND) && !(SKB)->tstamp.tv64) \
1724 __net_timestamp(SKB); \
1725 } \
1726
1727 bool is_skb_forwardable(struct net_device *dev, struct sk_buff *skb)
1728 {
1729 unsigned int len;
1730
1731 if (!(dev->flags & IFF_UP))
1732 return false;
1733
1734 len = dev->mtu + dev->hard_header_len + VLAN_HLEN;
1735 if (skb->len <= len)
1736 return true;
1737
1738 /* if TSO is enabled, we don't care about the length as the packet
1739 * could be forwarded without being segmented before
1740 */
1741 if (skb_is_gso(skb))
1742 return true;
1743
1744 return false;
1745 }
1746 EXPORT_SYMBOL_GPL(is_skb_forwardable);
1747
1748 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1749 {
1750 if (skb_orphan_frags(skb, GFP_ATOMIC) ||
1751 unlikely(!is_skb_forwardable(dev, skb))) {
1752 atomic_long_inc(&dev->rx_dropped);
1753 kfree_skb(skb);
1754 return NET_RX_DROP;
1755 }
1756
1757 skb_scrub_packet(skb, true);
1758 skb->priority = 0;
1759 skb->protocol = eth_type_trans(skb, dev);
1760 skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN);
1761
1762 return 0;
1763 }
1764 EXPORT_SYMBOL_GPL(__dev_forward_skb);
1765
1766 /**
1767 * dev_forward_skb - loopback an skb to another netif
1768 *
1769 * @dev: destination network device
1770 * @skb: buffer to forward
1771 *
1772 * return values:
1773 * NET_RX_SUCCESS (no congestion)
1774 * NET_RX_DROP (packet was dropped, but freed)
1775 *
1776 * dev_forward_skb can be used for injecting an skb from the
1777 * start_xmit function of one device into the receive queue
1778 * of another device.
1779 *
1780 * The receiving device may be in another namespace, so
1781 * we have to clear all information in the skb that could
1782 * impact namespace isolation.
1783 */
1784 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1785 {
1786 return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb);
1787 }
1788 EXPORT_SYMBOL_GPL(dev_forward_skb);
1789
1790 static inline int deliver_skb(struct sk_buff *skb,
1791 struct packet_type *pt_prev,
1792 struct net_device *orig_dev)
1793 {
1794 if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC)))
1795 return -ENOMEM;
1796 atomic_inc(&skb->users);
1797 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
1798 }
1799
1800 static inline void deliver_ptype_list_skb(struct sk_buff *skb,
1801 struct packet_type **pt,
1802 struct net_device *orig_dev,
1803 __be16 type,
1804 struct list_head *ptype_list)
1805 {
1806 struct packet_type *ptype, *pt_prev = *pt;
1807
1808 list_for_each_entry_rcu(ptype, ptype_list, list) {
1809 if (ptype->type != type)
1810 continue;
1811 if (pt_prev)
1812 deliver_skb(skb, pt_prev, orig_dev);
1813 pt_prev = ptype;
1814 }
1815 *pt = pt_prev;
1816 }
1817
1818 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
1819 {
1820 if (!ptype->af_packet_priv || !skb->sk)
1821 return false;
1822
1823 if (ptype->id_match)
1824 return ptype->id_match(ptype, skb->sk);
1825 else if ((struct sock *)ptype->af_packet_priv == skb->sk)
1826 return true;
1827
1828 return false;
1829 }
1830
1831 /*
1832 * Support routine. Sends outgoing frames to any network
1833 * taps currently in use.
1834 */
1835
1836 static void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
1837 {
1838 struct packet_type *ptype;
1839 struct sk_buff *skb2 = NULL;
1840 struct packet_type *pt_prev = NULL;
1841 struct list_head *ptype_list = &ptype_all;
1842
1843 rcu_read_lock();
1844 again:
1845 list_for_each_entry_rcu(ptype, ptype_list, list) {
1846 /* Never send packets back to the socket
1847 * they originated from - MvS (miquels@drinkel.ow.org)
1848 */
1849 if (skb_loop_sk(ptype, skb))
1850 continue;
1851
1852 if (pt_prev) {
1853 deliver_skb(skb2, pt_prev, skb->dev);
1854 pt_prev = ptype;
1855 continue;
1856 }
1857
1858 /* need to clone skb, done only once */
1859 skb2 = skb_clone(skb, GFP_ATOMIC);
1860 if (!skb2)
1861 goto out_unlock;
1862
1863 net_timestamp_set(skb2);
1864
1865 /* skb->nh should be correctly
1866 * set by sender, so that the second statement is
1867 * just protection against buggy protocols.
1868 */
1869 skb_reset_mac_header(skb2);
1870
1871 if (skb_network_header(skb2) < skb2->data ||
1872 skb_network_header(skb2) > skb_tail_pointer(skb2)) {
1873 net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
1874 ntohs(skb2->protocol),
1875 dev->name);
1876 skb_reset_network_header(skb2);
1877 }
1878
1879 skb2->transport_header = skb2->network_header;
1880 skb2->pkt_type = PACKET_OUTGOING;
1881 pt_prev = ptype;
1882 }
1883
1884 if (ptype_list == &ptype_all) {
1885 ptype_list = &dev->ptype_all;
1886 goto again;
1887 }
1888 out_unlock:
1889 if (pt_prev)
1890 pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
1891 rcu_read_unlock();
1892 }
1893
1894 /**
1895 * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
1896 * @dev: Network device
1897 * @txq: number of queues available
1898 *
1899 * If real_num_tx_queues is changed the tc mappings may no longer be
1900 * valid. To resolve this verify the tc mapping remains valid and if
1901 * not NULL the mapping. With no priorities mapping to this
1902 * offset/count pair it will no longer be used. In the worst case TC0
1903 * is invalid nothing can be done so disable priority mappings. If is
1904 * expected that drivers will fix this mapping if they can before
1905 * calling netif_set_real_num_tx_queues.
1906 */
1907 static void netif_setup_tc(struct net_device *dev, unsigned int txq)
1908 {
1909 int i;
1910 struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
1911
1912 /* If TC0 is invalidated disable TC mapping */
1913 if (tc->offset + tc->count > txq) {
1914 pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
1915 dev->num_tc = 0;
1916 return;
1917 }
1918
1919 /* Invalidated prio to tc mappings set to TC0 */
1920 for (i = 1; i < TC_BITMASK + 1; i++) {
1921 int q = netdev_get_prio_tc_map(dev, i);
1922
1923 tc = &dev->tc_to_txq[q];
1924 if (tc->offset + tc->count > txq) {
1925 pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
1926 i, q);
1927 netdev_set_prio_tc_map(dev, i, 0);
1928 }
1929 }
1930 }
1931
1932 #ifdef CONFIG_XPS
1933 static DEFINE_MUTEX(xps_map_mutex);
1934 #define xmap_dereference(P) \
1935 rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
1936
1937 static struct xps_map *remove_xps_queue(struct xps_dev_maps *dev_maps,
1938 int cpu, u16 index)
1939 {
1940 struct xps_map *map = NULL;
1941 int pos;
1942
1943 if (dev_maps)
1944 map = xmap_dereference(dev_maps->cpu_map[cpu]);
1945
1946 for (pos = 0; map && pos < map->len; pos++) {
1947 if (map->queues[pos] == index) {
1948 if (map->len > 1) {
1949 map->queues[pos] = map->queues[--map->len];
1950 } else {
1951 RCU_INIT_POINTER(dev_maps->cpu_map[cpu], NULL);
1952 kfree_rcu(map, rcu);
1953 map = NULL;
1954 }
1955 break;
1956 }
1957 }
1958
1959 return map;
1960 }
1961
1962 static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
1963 {
1964 struct xps_dev_maps *dev_maps;
1965 int cpu, i;
1966 bool active = false;
1967
1968 mutex_lock(&xps_map_mutex);
1969 dev_maps = xmap_dereference(dev->xps_maps);
1970
1971 if (!dev_maps)
1972 goto out_no_maps;
1973
1974 for_each_possible_cpu(cpu) {
1975 for (i = index; i < dev->num_tx_queues; i++) {
1976 if (!remove_xps_queue(dev_maps, cpu, i))
1977 break;
1978 }
1979 if (i == dev->num_tx_queues)
1980 active = true;
1981 }
1982
1983 if (!active) {
1984 RCU_INIT_POINTER(dev->xps_maps, NULL);
1985 kfree_rcu(dev_maps, rcu);
1986 }
1987
1988 for (i = index; i < dev->num_tx_queues; i++)
1989 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, i),
1990 NUMA_NO_NODE);
1991
1992 out_no_maps:
1993 mutex_unlock(&xps_map_mutex);
1994 }
1995
1996 static struct xps_map *expand_xps_map(struct xps_map *map,
1997 int cpu, u16 index)
1998 {
1999 struct xps_map *new_map;
2000 int alloc_len = XPS_MIN_MAP_ALLOC;
2001 int i, pos;
2002
2003 for (pos = 0; map && pos < map->len; pos++) {
2004 if (map->queues[pos] != index)
2005 continue;
2006 return map;
2007 }
2008
2009 /* Need to add queue to this CPU's existing map */
2010 if (map) {
2011 if (pos < map->alloc_len)
2012 return map;
2013
2014 alloc_len = map->alloc_len * 2;
2015 }
2016
2017 /* Need to allocate new map to store queue on this CPU's map */
2018 new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
2019 cpu_to_node(cpu));
2020 if (!new_map)
2021 return NULL;
2022
2023 for (i = 0; i < pos; i++)
2024 new_map->queues[i] = map->queues[i];
2025 new_map->alloc_len = alloc_len;
2026 new_map->len = pos;
2027
2028 return new_map;
2029 }
2030
2031 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
2032 u16 index)
2033 {
2034 struct xps_dev_maps *dev_maps, *new_dev_maps = NULL;
2035 struct xps_map *map, *new_map;
2036 int maps_sz = max_t(unsigned int, XPS_DEV_MAPS_SIZE, L1_CACHE_BYTES);
2037 int cpu, numa_node_id = -2;
2038 bool active = false;
2039
2040 mutex_lock(&xps_map_mutex);
2041
2042 dev_maps = xmap_dereference(dev->xps_maps);
2043
2044 /* allocate memory for queue storage */
2045 for_each_online_cpu(cpu) {
2046 if (!cpumask_test_cpu(cpu, mask))
2047 continue;
2048
2049 if (!new_dev_maps)
2050 new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
2051 if (!new_dev_maps) {
2052 mutex_unlock(&xps_map_mutex);
2053 return -ENOMEM;
2054 }
2055
2056 map = dev_maps ? xmap_dereference(dev_maps->cpu_map[cpu]) :
2057 NULL;
2058
2059 map = expand_xps_map(map, cpu, index);
2060 if (!map)
2061 goto error;
2062
2063 RCU_INIT_POINTER(new_dev_maps->cpu_map[cpu], map);
2064 }
2065
2066 if (!new_dev_maps)
2067 goto out_no_new_maps;
2068
2069 for_each_possible_cpu(cpu) {
2070 if (cpumask_test_cpu(cpu, mask) && cpu_online(cpu)) {
2071 /* add queue to CPU maps */
2072 int pos = 0;
2073
2074 map = xmap_dereference(new_dev_maps->cpu_map[cpu]);
2075 while ((pos < map->len) && (map->queues[pos] != index))
2076 pos++;
2077
2078 if (pos == map->len)
2079 map->queues[map->len++] = index;
2080 #ifdef CONFIG_NUMA
2081 if (numa_node_id == -2)
2082 numa_node_id = cpu_to_node(cpu);
2083 else if (numa_node_id != cpu_to_node(cpu))
2084 numa_node_id = -1;
2085 #endif
2086 } else if (dev_maps) {
2087 /* fill in the new device map from the old device map */
2088 map = xmap_dereference(dev_maps->cpu_map[cpu]);
2089 RCU_INIT_POINTER(new_dev_maps->cpu_map[cpu], map);
2090 }
2091
2092 }
2093
2094 rcu_assign_pointer(dev->xps_maps, new_dev_maps);
2095
2096 /* Cleanup old maps */
2097 if (dev_maps) {
2098 for_each_possible_cpu(cpu) {
2099 new_map = xmap_dereference(new_dev_maps->cpu_map[cpu]);
2100 map = xmap_dereference(dev_maps->cpu_map[cpu]);
2101 if (map && map != new_map)
2102 kfree_rcu(map, rcu);
2103 }
2104
2105 kfree_rcu(dev_maps, rcu);
2106 }
2107
2108 dev_maps = new_dev_maps;
2109 active = true;
2110
2111 out_no_new_maps:
2112 /* update Tx queue numa node */
2113 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
2114 (numa_node_id >= 0) ? numa_node_id :
2115 NUMA_NO_NODE);
2116
2117 if (!dev_maps)
2118 goto out_no_maps;
2119
2120 /* removes queue from unused CPUs */
2121 for_each_possible_cpu(cpu) {
2122 if (cpumask_test_cpu(cpu, mask) && cpu_online(cpu))
2123 continue;
2124
2125 if (remove_xps_queue(dev_maps, cpu, index))
2126 active = true;
2127 }
2128
2129 /* free map if not active */
2130 if (!active) {
2131 RCU_INIT_POINTER(dev->xps_maps, NULL);
2132 kfree_rcu(dev_maps, rcu);
2133 }
2134
2135 out_no_maps:
2136 mutex_unlock(&xps_map_mutex);
2137
2138 return 0;
2139 error:
2140 /* remove any maps that we added */
2141 for_each_possible_cpu(cpu) {
2142 new_map = xmap_dereference(new_dev_maps->cpu_map[cpu]);
2143 map = dev_maps ? xmap_dereference(dev_maps->cpu_map[cpu]) :
2144 NULL;
2145 if (new_map && new_map != map)
2146 kfree(new_map);
2147 }
2148
2149 mutex_unlock(&xps_map_mutex);
2150
2151 kfree(new_dev_maps);
2152 return -ENOMEM;
2153 }
2154 EXPORT_SYMBOL(netif_set_xps_queue);
2155
2156 #endif
2157 /*
2158 * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
2159 * greater then real_num_tx_queues stale skbs on the qdisc must be flushed.
2160 */
2161 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
2162 {
2163 int rc;
2164
2165 if (txq < 1 || txq > dev->num_tx_queues)
2166 return -EINVAL;
2167
2168 if (dev->reg_state == NETREG_REGISTERED ||
2169 dev->reg_state == NETREG_UNREGISTERING) {
2170 ASSERT_RTNL();
2171
2172 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
2173 txq);
2174 if (rc)
2175 return rc;
2176
2177 if (dev->num_tc)
2178 netif_setup_tc(dev, txq);
2179
2180 if (txq < dev->real_num_tx_queues) {
2181 qdisc_reset_all_tx_gt(dev, txq);
2182 #ifdef CONFIG_XPS
2183 netif_reset_xps_queues_gt(dev, txq);
2184 #endif
2185 }
2186 }
2187
2188 dev->real_num_tx_queues = txq;
2189 return 0;
2190 }
2191 EXPORT_SYMBOL(netif_set_real_num_tx_queues);
2192
2193 #ifdef CONFIG_SYSFS
2194 /**
2195 * netif_set_real_num_rx_queues - set actual number of RX queues used
2196 * @dev: Network device
2197 * @rxq: Actual number of RX queues
2198 *
2199 * This must be called either with the rtnl_lock held or before
2200 * registration of the net device. Returns 0 on success, or a
2201 * negative error code. If called before registration, it always
2202 * succeeds.
2203 */
2204 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
2205 {
2206 int rc;
2207
2208 if (rxq < 1 || rxq > dev->num_rx_queues)
2209 return -EINVAL;
2210
2211 if (dev->reg_state == NETREG_REGISTERED) {
2212 ASSERT_RTNL();
2213
2214 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
2215 rxq);
2216 if (rc)
2217 return rc;
2218 }
2219
2220 dev->real_num_rx_queues = rxq;
2221 return 0;
2222 }
2223 EXPORT_SYMBOL(netif_set_real_num_rx_queues);
2224 #endif
2225
2226 /**
2227 * netif_get_num_default_rss_queues - default number of RSS queues
2228 *
2229 * This routine should set an upper limit on the number of RSS queues
2230 * used by default by multiqueue devices.
2231 */
2232 int netif_get_num_default_rss_queues(void)
2233 {
2234 return min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus());
2235 }
2236 EXPORT_SYMBOL(netif_get_num_default_rss_queues);
2237
2238 static inline void __netif_reschedule(struct Qdisc *q)
2239 {
2240 struct softnet_data *sd;
2241 unsigned long flags;
2242
2243 local_irq_save(flags);
2244 sd = this_cpu_ptr(&softnet_data);
2245 q->next_sched = NULL;
2246 *sd->output_queue_tailp = q;
2247 sd->output_queue_tailp = &q->next_sched;
2248 raise_softirq_irqoff(NET_TX_SOFTIRQ);
2249 local_irq_restore(flags);
2250 }
2251
2252 void __netif_schedule(struct Qdisc *q)
2253 {
2254 if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
2255 __netif_reschedule(q);
2256 }
2257 EXPORT_SYMBOL(__netif_schedule);
2258
2259 struct dev_kfree_skb_cb {
2260 enum skb_free_reason reason;
2261 };
2262
2263 static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb)
2264 {
2265 return (struct dev_kfree_skb_cb *)skb->cb;
2266 }
2267
2268 void netif_schedule_queue(struct netdev_queue *txq)
2269 {
2270 rcu_read_lock();
2271 if (!(txq->state & QUEUE_STATE_ANY_XOFF)) {
2272 struct Qdisc *q = rcu_dereference(txq->qdisc);
2273
2274 __netif_schedule(q);
2275 }
2276 rcu_read_unlock();
2277 }
2278 EXPORT_SYMBOL(netif_schedule_queue);
2279
2280 /**
2281 * netif_wake_subqueue - allow sending packets on subqueue
2282 * @dev: network device
2283 * @queue_index: sub queue index
2284 *
2285 * Resume individual transmit queue of a device with multiple transmit queues.
2286 */
2287 void netif_wake_subqueue(struct net_device *dev, u16 queue_index)
2288 {
2289 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
2290
2291 if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &txq->state)) {
2292 struct Qdisc *q;
2293
2294 rcu_read_lock();
2295 q = rcu_dereference(txq->qdisc);
2296 __netif_schedule(q);
2297 rcu_read_unlock();
2298 }
2299 }
2300 EXPORT_SYMBOL(netif_wake_subqueue);
2301
2302 void netif_tx_wake_queue(struct netdev_queue *dev_queue)
2303 {
2304 if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) {
2305 struct Qdisc *q;
2306
2307 rcu_read_lock();
2308 q = rcu_dereference(dev_queue->qdisc);
2309 __netif_schedule(q);
2310 rcu_read_unlock();
2311 }
2312 }
2313 EXPORT_SYMBOL(netif_tx_wake_queue);
2314
2315 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason)
2316 {
2317 unsigned long flags;
2318
2319 if (likely(atomic_read(&skb->users) == 1)) {
2320 smp_rmb();
2321 atomic_set(&skb->users, 0);
2322 } else if (likely(!atomic_dec_and_test(&skb->users))) {
2323 return;
2324 }
2325 get_kfree_skb_cb(skb)->reason = reason;
2326 local_irq_save(flags);
2327 skb->next = __this_cpu_read(softnet_data.completion_queue);
2328 __this_cpu_write(softnet_data.completion_queue, skb);
2329 raise_softirq_irqoff(NET_TX_SOFTIRQ);
2330 local_irq_restore(flags);
2331 }
2332 EXPORT_SYMBOL(__dev_kfree_skb_irq);
2333
2334 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason)
2335 {
2336 if (in_irq() || irqs_disabled())
2337 __dev_kfree_skb_irq(skb, reason);
2338 else
2339 dev_kfree_skb(skb);
2340 }
2341 EXPORT_SYMBOL(__dev_kfree_skb_any);
2342
2343
2344 /**
2345 * netif_device_detach - mark device as removed
2346 * @dev: network device
2347 *
2348 * Mark device as removed from system and therefore no longer available.
2349 */
2350 void netif_device_detach(struct net_device *dev)
2351 {
2352 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
2353 netif_running(dev)) {
2354 netif_tx_stop_all_queues(dev);
2355 }
2356 }
2357 EXPORT_SYMBOL(netif_device_detach);
2358
2359 /**
2360 * netif_device_attach - mark device as attached
2361 * @dev: network device
2362 *
2363 * Mark device as attached from system and restart if needed.
2364 */
2365 void netif_device_attach(struct net_device *dev)
2366 {
2367 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
2368 netif_running(dev)) {
2369 netif_tx_wake_all_queues(dev);
2370 __netdev_watchdog_up(dev);
2371 }
2372 }
2373 EXPORT_SYMBOL(netif_device_attach);
2374
2375 /*
2376 * Returns a Tx hash based on the given packet descriptor a Tx queues' number
2377 * to be used as a distribution range.
2378 */
2379 u16 __skb_tx_hash(const struct net_device *dev, struct sk_buff *skb,
2380 unsigned int num_tx_queues)
2381 {
2382 u32 hash;
2383 u16 qoffset = 0;
2384 u16 qcount = num_tx_queues;
2385
2386 if (skb_rx_queue_recorded(skb)) {
2387 hash = skb_get_rx_queue(skb);
2388 while (unlikely(hash >= num_tx_queues))
2389 hash -= num_tx_queues;
2390 return hash;
2391 }
2392
2393 if (dev->num_tc) {
2394 u8 tc = netdev_get_prio_tc_map(dev, skb->priority);
2395 qoffset = dev->tc_to_txq[tc].offset;
2396 qcount = dev->tc_to_txq[tc].count;
2397 }
2398
2399 return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset;
2400 }
2401 EXPORT_SYMBOL(__skb_tx_hash);
2402
2403 static void skb_warn_bad_offload(const struct sk_buff *skb)
2404 {
2405 static const netdev_features_t null_features = 0;
2406 struct net_device *dev = skb->dev;
2407 const char *name = "";
2408
2409 if (!net_ratelimit())
2410 return;
2411
2412 if (dev) {
2413 if (dev->dev.parent)
2414 name = dev_driver_string(dev->dev.parent);
2415 else
2416 name = netdev_name(dev);
2417 }
2418 WARN(1, "%s: caps=(%pNF, %pNF) len=%d data_len=%d gso_size=%d "
2419 "gso_type=%d ip_summed=%d\n",
2420 name, dev ? &dev->features : &null_features,
2421 skb->sk ? &skb->sk->sk_route_caps : &null_features,
2422 skb->len, skb->data_len, skb_shinfo(skb)->gso_size,
2423 skb_shinfo(skb)->gso_type, skb->ip_summed);
2424 }
2425
2426 /*
2427 * Invalidate hardware checksum when packet is to be mangled, and
2428 * complete checksum manually on outgoing path.
2429 */
2430 int skb_checksum_help(struct sk_buff *skb)
2431 {
2432 __wsum csum;
2433 int ret = 0, offset;
2434
2435 if (skb->ip_summed == CHECKSUM_COMPLETE)
2436 goto out_set_summed;
2437
2438 if (unlikely(skb_shinfo(skb)->gso_size)) {
2439 skb_warn_bad_offload(skb);
2440 return -EINVAL;
2441 }
2442
2443 /* Before computing a checksum, we should make sure no frag could
2444 * be modified by an external entity : checksum could be wrong.
2445 */
2446 if (skb_has_shared_frag(skb)) {
2447 ret = __skb_linearize(skb);
2448 if (ret)
2449 goto out;
2450 }
2451
2452 offset = skb_checksum_start_offset(skb);
2453 BUG_ON(offset >= skb_headlen(skb));
2454 csum = skb_checksum(skb, offset, skb->len - offset, 0);
2455
2456 offset += skb->csum_offset;
2457 BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
2458
2459 if (skb_cloned(skb) &&
2460 !skb_clone_writable(skb, offset + sizeof(__sum16))) {
2461 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2462 if (ret)
2463 goto out;
2464 }
2465
2466 *(__sum16 *)(skb->data + offset) = csum_fold(csum);
2467 out_set_summed:
2468 skb->ip_summed = CHECKSUM_NONE;
2469 out:
2470 return ret;
2471 }
2472 EXPORT_SYMBOL(skb_checksum_help);
2473
2474 __be16 skb_network_protocol(struct sk_buff *skb, int *depth)
2475 {
2476 __be16 type = skb->protocol;
2477
2478 /* Tunnel gso handlers can set protocol to ethernet. */
2479 if (type == htons(ETH_P_TEB)) {
2480 struct ethhdr *eth;
2481
2482 if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
2483 return 0;
2484
2485 eth = (struct ethhdr *)skb_mac_header(skb);
2486 type = eth->h_proto;
2487 }
2488
2489 return __vlan_get_protocol(skb, type, depth);
2490 }
2491
2492 /**
2493 * skb_mac_gso_segment - mac layer segmentation handler.
2494 * @skb: buffer to segment
2495 * @features: features for the output path (see dev->features)
2496 */
2497 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
2498 netdev_features_t features)
2499 {
2500 struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
2501 struct packet_offload *ptype;
2502 int vlan_depth = skb->mac_len;
2503 __be16 type = skb_network_protocol(skb, &vlan_depth);
2504
2505 if (unlikely(!type))
2506 return ERR_PTR(-EINVAL);
2507
2508 __skb_pull(skb, vlan_depth);
2509
2510 rcu_read_lock();
2511 list_for_each_entry_rcu(ptype, &offload_base, list) {
2512 if (ptype->type == type && ptype->callbacks.gso_segment) {
2513 segs = ptype->callbacks.gso_segment(skb, features);
2514 break;
2515 }
2516 }
2517 rcu_read_unlock();
2518
2519 __skb_push(skb, skb->data - skb_mac_header(skb));
2520
2521 return segs;
2522 }
2523 EXPORT_SYMBOL(skb_mac_gso_segment);
2524
2525
2526 /* openvswitch calls this on rx path, so we need a different check.
2527 */
2528 static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path)
2529 {
2530 if (tx_path)
2531 return skb->ip_summed != CHECKSUM_PARTIAL;
2532 else
2533 return skb->ip_summed == CHECKSUM_NONE;
2534 }
2535
2536 /**
2537 * __skb_gso_segment - Perform segmentation on skb.
2538 * @skb: buffer to segment
2539 * @features: features for the output path (see dev->features)
2540 * @tx_path: whether it is called in TX path
2541 *
2542 * This function segments the given skb and returns a list of segments.
2543 *
2544 * It may return NULL if the skb requires no segmentation. This is
2545 * only possible when GSO is used for verifying header integrity.
2546 */
2547 struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
2548 netdev_features_t features, bool tx_path)
2549 {
2550 if (unlikely(skb_needs_check(skb, tx_path))) {
2551 int err;
2552
2553 skb_warn_bad_offload(skb);
2554
2555 err = skb_cow_head(skb, 0);
2556 if (err < 0)
2557 return ERR_PTR(err);
2558 }
2559
2560 SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb);
2561 SKB_GSO_CB(skb)->encap_level = 0;
2562
2563 skb_reset_mac_header(skb);
2564 skb_reset_mac_len(skb);
2565
2566 return skb_mac_gso_segment(skb, features);
2567 }
2568 EXPORT_SYMBOL(__skb_gso_segment);
2569
2570 /* Take action when hardware reception checksum errors are detected. */
2571 #ifdef CONFIG_BUG
2572 void netdev_rx_csum_fault(struct net_device *dev)
2573 {
2574 if (net_ratelimit()) {
2575 pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>");
2576 dump_stack();
2577 }
2578 }
2579 EXPORT_SYMBOL(netdev_rx_csum_fault);
2580 #endif
2581
2582 /* Actually, we should eliminate this check as soon as we know, that:
2583 * 1. IOMMU is present and allows to map all the memory.
2584 * 2. No high memory really exists on this machine.
2585 */
2586
2587 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
2588 {
2589 #ifdef CONFIG_HIGHMEM
2590 int i;
2591 if (!(dev->features & NETIF_F_HIGHDMA)) {
2592 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2593 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2594 if (PageHighMem(skb_frag_page(frag)))
2595 return 1;
2596 }
2597 }
2598
2599 if (PCI_DMA_BUS_IS_PHYS) {
2600 struct device *pdev = dev->dev.parent;
2601
2602 if (!pdev)
2603 return 0;
2604 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2605 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2606 dma_addr_t addr = page_to_phys(skb_frag_page(frag));
2607 if (!pdev->dma_mask || addr + PAGE_SIZE - 1 > *pdev->dma_mask)
2608 return 1;
2609 }
2610 }
2611 #endif
2612 return 0;
2613 }
2614
2615 /* If MPLS offload request, verify we are testing hardware MPLS features
2616 * instead of standard features for the netdev.
2617 */
2618 #if IS_ENABLED(CONFIG_NET_MPLS_GSO)
2619 static netdev_features_t net_mpls_features(struct sk_buff *skb,
2620 netdev_features_t features,
2621 __be16 type)
2622 {
2623 if (eth_p_mpls(type))
2624 features &= skb->dev->mpls_features;
2625
2626 return features;
2627 }
2628 #else
2629 static netdev_features_t net_mpls_features(struct sk_buff *skb,
2630 netdev_features_t features,
2631 __be16 type)
2632 {
2633 return features;
2634 }
2635 #endif
2636
2637 static netdev_features_t harmonize_features(struct sk_buff *skb,
2638 netdev_features_t features)
2639 {
2640 int tmp;
2641 __be16 type;
2642
2643 type = skb_network_protocol(skb, &tmp);
2644 features = net_mpls_features(skb, features, type);
2645
2646 if (skb->ip_summed != CHECKSUM_NONE &&
2647 !can_checksum_protocol(features, type)) {
2648 features &= ~NETIF_F_CSUM_MASK;
2649 } else if (illegal_highdma(skb->dev, skb)) {
2650 features &= ~NETIF_F_SG;
2651 }
2652
2653 return features;
2654 }
2655
2656 netdev_features_t passthru_features_check(struct sk_buff *skb,
2657 struct net_device *dev,
2658 netdev_features_t features)
2659 {
2660 return features;
2661 }
2662 EXPORT_SYMBOL(passthru_features_check);
2663
2664 static netdev_features_t dflt_features_check(const struct sk_buff *skb,
2665 struct net_device *dev,
2666 netdev_features_t features)
2667 {
2668 return vlan_features_check(skb, features);
2669 }
2670
2671 netdev_features_t netif_skb_features(struct sk_buff *skb)
2672 {
2673 struct net_device *dev = skb->dev;
2674 netdev_features_t features = dev->features;
2675 u16 gso_segs = skb_shinfo(skb)->gso_segs;
2676
2677 if (gso_segs > dev->gso_max_segs || gso_segs < dev->gso_min_segs)
2678 features &= ~NETIF_F_GSO_MASK;
2679
2680 /* If encapsulation offload request, verify we are testing
2681 * hardware encapsulation features instead of standard
2682 * features for the netdev
2683 */
2684 if (skb->encapsulation)
2685 features &= dev->hw_enc_features;
2686
2687 if (skb_vlan_tagged(skb))
2688 features = netdev_intersect_features(features,
2689 dev->vlan_features |
2690 NETIF_F_HW_VLAN_CTAG_TX |
2691 NETIF_F_HW_VLAN_STAG_TX);
2692
2693 if (dev->netdev_ops->ndo_features_check)
2694 features &= dev->netdev_ops->ndo_features_check(skb, dev,
2695 features);
2696 else
2697 features &= dflt_features_check(skb, dev, features);
2698
2699 return harmonize_features(skb, features);
2700 }
2701 EXPORT_SYMBOL(netif_skb_features);
2702
2703 static int xmit_one(struct sk_buff *skb, struct net_device *dev,
2704 struct netdev_queue *txq, bool more)
2705 {
2706 unsigned int len;
2707 int rc;
2708
2709 if (!list_empty(&ptype_all) || !list_empty(&dev->ptype_all))
2710 dev_queue_xmit_nit(skb, dev);
2711
2712 len = skb->len;
2713 trace_net_dev_start_xmit(skb, dev);
2714 rc = netdev_start_xmit(skb, dev, txq, more);
2715 trace_net_dev_xmit(skb, rc, dev, len);
2716
2717 return rc;
2718 }
2719
2720 struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev,
2721 struct netdev_queue *txq, int *ret)
2722 {
2723 struct sk_buff *skb = first;
2724 int rc = NETDEV_TX_OK;
2725
2726 while (skb) {
2727 struct sk_buff *next = skb->next;
2728
2729 skb->next = NULL;
2730 rc = xmit_one(skb, dev, txq, next != NULL);
2731 if (unlikely(!dev_xmit_complete(rc))) {
2732 skb->next = next;
2733 goto out;
2734 }
2735
2736 skb = next;
2737 if (netif_xmit_stopped(txq) && skb) {
2738 rc = NETDEV_TX_BUSY;
2739 break;
2740 }
2741 }
2742
2743 out:
2744 *ret = rc;
2745 return skb;
2746 }
2747
2748 static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb,
2749 netdev_features_t features)
2750 {
2751 if (skb_vlan_tag_present(skb) &&
2752 !vlan_hw_offload_capable(features, skb->vlan_proto))
2753 skb = __vlan_hwaccel_push_inside(skb);
2754 return skb;
2755 }
2756
2757 static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev)
2758 {
2759 netdev_features_t features;
2760
2761 if (skb->next)
2762 return skb;
2763
2764 features = netif_skb_features(skb);
2765 skb = validate_xmit_vlan(skb, features);
2766 if (unlikely(!skb))
2767 goto out_null;
2768
2769 if (netif_needs_gso(skb, features)) {
2770 struct sk_buff *segs;
2771
2772 segs = skb_gso_segment(skb, features);
2773 if (IS_ERR(segs)) {
2774 goto out_kfree_skb;
2775 } else if (segs) {
2776 consume_skb(skb);
2777 skb = segs;
2778 }
2779 } else {
2780 if (skb_needs_linearize(skb, features) &&
2781 __skb_linearize(skb))
2782 goto out_kfree_skb;
2783
2784 /* If packet is not checksummed and device does not
2785 * support checksumming for this protocol, complete
2786 * checksumming here.
2787 */
2788 if (skb->ip_summed == CHECKSUM_PARTIAL) {
2789 if (skb->encapsulation)
2790 skb_set_inner_transport_header(skb,
2791 skb_checksum_start_offset(skb));
2792 else
2793 skb_set_transport_header(skb,
2794 skb_checksum_start_offset(skb));
2795 if (!(features & NETIF_F_CSUM_MASK) &&
2796 skb_checksum_help(skb))
2797 goto out_kfree_skb;
2798 }
2799 }
2800
2801 return skb;
2802
2803 out_kfree_skb:
2804 kfree_skb(skb);
2805 out_null:
2806 return NULL;
2807 }
2808
2809 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev)
2810 {
2811 struct sk_buff *next, *head = NULL, *tail;
2812
2813 for (; skb != NULL; skb = next) {
2814 next = skb->next;
2815 skb->next = NULL;
2816
2817 /* in case skb wont be segmented, point to itself */
2818 skb->prev = skb;
2819
2820 skb = validate_xmit_skb(skb, dev);
2821 if (!skb)
2822 continue;
2823
2824 if (!head)
2825 head = skb;
2826 else
2827 tail->next = skb;
2828 /* If skb was segmented, skb->prev points to
2829 * the last segment. If not, it still contains skb.
2830 */
2831 tail = skb->prev;
2832 }
2833 return head;
2834 }
2835
2836 static void qdisc_pkt_len_init(struct sk_buff *skb)
2837 {
2838 const struct skb_shared_info *shinfo = skb_shinfo(skb);
2839
2840 qdisc_skb_cb(skb)->pkt_len = skb->len;
2841
2842 /* To get more precise estimation of bytes sent on wire,
2843 * we add to pkt_len the headers size of all segments
2844 */
2845 if (shinfo->gso_size) {
2846 unsigned int hdr_len;
2847 u16 gso_segs = shinfo->gso_segs;
2848
2849 /* mac layer + network layer */
2850 hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
2851
2852 /* + transport layer */
2853 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)))
2854 hdr_len += tcp_hdrlen(skb);
2855 else
2856 hdr_len += sizeof(struct udphdr);
2857
2858 if (shinfo->gso_type & SKB_GSO_DODGY)
2859 gso_segs = DIV_ROUND_UP(skb->len - hdr_len,
2860 shinfo->gso_size);
2861
2862 qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
2863 }
2864 }
2865
2866 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
2867 struct net_device *dev,
2868 struct netdev_queue *txq)
2869 {
2870 spinlock_t *root_lock = qdisc_lock(q);
2871 bool contended;
2872 int rc;
2873
2874 qdisc_pkt_len_init(skb);
2875 qdisc_calculate_pkt_len(skb, q);
2876 /*
2877 * Heuristic to force contended enqueues to serialize on a
2878 * separate lock before trying to get qdisc main lock.
2879 * This permits __QDISC___STATE_RUNNING owner to get the lock more
2880 * often and dequeue packets faster.
2881 */
2882 contended = qdisc_is_running(q);
2883 if (unlikely(contended))
2884 spin_lock(&q->busylock);
2885
2886 spin_lock(root_lock);
2887 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
2888 kfree_skb(skb);
2889 rc = NET_XMIT_DROP;
2890 } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
2891 qdisc_run_begin(q)) {
2892 /*
2893 * This is a work-conserving queue; there are no old skbs
2894 * waiting to be sent out; and the qdisc is not running -
2895 * xmit the skb directly.
2896 */
2897
2898 qdisc_bstats_update(q, skb);
2899
2900 if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) {
2901 if (unlikely(contended)) {
2902 spin_unlock(&q->busylock);
2903 contended = false;
2904 }
2905 __qdisc_run(q);
2906 } else
2907 qdisc_run_end(q);
2908
2909 rc = NET_XMIT_SUCCESS;
2910 } else {
2911 rc = q->enqueue(skb, q) & NET_XMIT_MASK;
2912 if (qdisc_run_begin(q)) {
2913 if (unlikely(contended)) {
2914 spin_unlock(&q->busylock);
2915 contended = false;
2916 }
2917 __qdisc_run(q);
2918 }
2919 }
2920 spin_unlock(root_lock);
2921 if (unlikely(contended))
2922 spin_unlock(&q->busylock);
2923 return rc;
2924 }
2925
2926 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
2927 static void skb_update_prio(struct sk_buff *skb)
2928 {
2929 struct netprio_map *map = rcu_dereference_bh(skb->dev->priomap);
2930
2931 if (!skb->priority && skb->sk && map) {
2932 unsigned int prioidx =
2933 sock_cgroup_prioidx(&skb->sk->sk_cgrp_data);
2934
2935 if (prioidx < map->priomap_len)
2936 skb->priority = map->priomap[prioidx];
2937 }
2938 }
2939 #else
2940 #define skb_update_prio(skb)
2941 #endif
2942
2943 DEFINE_PER_CPU(int, xmit_recursion);
2944 EXPORT_SYMBOL(xmit_recursion);
2945
2946 #define RECURSION_LIMIT 10
2947
2948 /**
2949 * dev_loopback_xmit - loop back @skb
2950 * @net: network namespace this loopback is happening in
2951 * @sk: sk needed to be a netfilter okfn
2952 * @skb: buffer to transmit
2953 */
2954 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb)
2955 {
2956 skb_reset_mac_header(skb);
2957 __skb_pull(skb, skb_network_offset(skb));
2958 skb->pkt_type = PACKET_LOOPBACK;
2959 skb->ip_summed = CHECKSUM_UNNECESSARY;
2960 WARN_ON(!skb_dst(skb));
2961 skb_dst_force(skb);
2962 netif_rx_ni(skb);
2963 return 0;
2964 }
2965 EXPORT_SYMBOL(dev_loopback_xmit);
2966
2967 static inline int get_xps_queue(struct net_device *dev, struct sk_buff *skb)
2968 {
2969 #ifdef CONFIG_XPS
2970 struct xps_dev_maps *dev_maps;
2971 struct xps_map *map;
2972 int queue_index = -1;
2973
2974 rcu_read_lock();
2975 dev_maps = rcu_dereference(dev->xps_maps);
2976 if (dev_maps) {
2977 map = rcu_dereference(
2978 dev_maps->cpu_map[skb->sender_cpu - 1]);
2979 if (map) {
2980 if (map->len == 1)
2981 queue_index = map->queues[0];
2982 else
2983 queue_index = map->queues[reciprocal_scale(skb_get_hash(skb),
2984 map->len)];
2985 if (unlikely(queue_index >= dev->real_num_tx_queues))
2986 queue_index = -1;
2987 }
2988 }
2989 rcu_read_unlock();
2990
2991 return queue_index;
2992 #else
2993 return -1;
2994 #endif
2995 }
2996
2997 static u16 __netdev_pick_tx(struct net_device *dev, struct sk_buff *skb)
2998 {
2999 struct sock *sk = skb->sk;
3000 int queue_index = sk_tx_queue_get(sk);
3001
3002 if (queue_index < 0 || skb->ooo_okay ||
3003 queue_index >= dev->real_num_tx_queues) {
3004 int new_index = get_xps_queue(dev, skb);
3005 if (new_index < 0)
3006 new_index = skb_tx_hash(dev, skb);
3007
3008 if (queue_index != new_index && sk &&
3009 sk_fullsock(sk) &&
3010 rcu_access_pointer(sk->sk_dst_cache))
3011 sk_tx_queue_set(sk, new_index);
3012
3013 queue_index = new_index;
3014 }
3015
3016 return queue_index;
3017 }
3018
3019 struct netdev_queue *netdev_pick_tx(struct net_device *dev,
3020 struct sk_buff *skb,
3021 void *accel_priv)
3022 {
3023 int queue_index = 0;
3024
3025 #ifdef CONFIG_XPS
3026 u32 sender_cpu = skb->sender_cpu - 1;
3027
3028 if (sender_cpu >= (u32)NR_CPUS)
3029 skb->sender_cpu = raw_smp_processor_id() + 1;
3030 #endif
3031
3032 if (dev->real_num_tx_queues != 1) {
3033 const struct net_device_ops *ops = dev->netdev_ops;
3034 if (ops->ndo_select_queue)
3035 queue_index = ops->ndo_select_queue(dev, skb, accel_priv,
3036 __netdev_pick_tx);
3037 else
3038 queue_index = __netdev_pick_tx(dev, skb);
3039
3040 if (!accel_priv)
3041 queue_index = netdev_cap_txqueue(dev, queue_index);
3042 }
3043
3044 skb_set_queue_mapping(skb, queue_index);
3045 return netdev_get_tx_queue(dev, queue_index);
3046 }
3047
3048 /**
3049 * __dev_queue_xmit - transmit a buffer
3050 * @skb: buffer to transmit
3051 * @accel_priv: private data used for L2 forwarding offload
3052 *
3053 * Queue a buffer for transmission to a network device. The caller must
3054 * have set the device and priority and built the buffer before calling
3055 * this function. The function can be called from an interrupt.
3056 *
3057 * A negative errno code is returned on a failure. A success does not
3058 * guarantee the frame will be transmitted as it may be dropped due
3059 * to congestion or traffic shaping.
3060 *
3061 * -----------------------------------------------------------------------------------
3062 * I notice this method can also return errors from the queue disciplines,
3063 * including NET_XMIT_DROP, which is a positive value. So, errors can also
3064 * be positive.
3065 *
3066 * Regardless of the return value, the skb is consumed, so it is currently
3067 * difficult to retry a send to this method. (You can bump the ref count
3068 * before sending to hold a reference for retry if you are careful.)
3069 *
3070 * When calling this method, interrupts MUST be enabled. This is because
3071 * the BH enable code must have IRQs enabled so that it will not deadlock.
3072 * --BLG
3073 */
3074 static int __dev_queue_xmit(struct sk_buff *skb, void *accel_priv)
3075 {
3076 struct net_device *dev = skb->dev;
3077 struct netdev_queue *txq;
3078 struct Qdisc *q;
3079 int rc = -ENOMEM;
3080
3081 skb_reset_mac_header(skb);
3082
3083 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP))
3084 __skb_tstamp_tx(skb, NULL, skb->sk, SCM_TSTAMP_SCHED);
3085
3086 /* Disable soft irqs for various locks below. Also
3087 * stops preemption for RCU.
3088 */
3089 rcu_read_lock_bh();
3090
3091 skb_update_prio(skb);
3092
3093 /* If device/qdisc don't need skb->dst, release it right now while
3094 * its hot in this cpu cache.
3095 */
3096 if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
3097 skb_dst_drop(skb);
3098 else
3099 skb_dst_force(skb);
3100
3101 #ifdef CONFIG_NET_SWITCHDEV
3102 /* Don't forward if offload device already forwarded */
3103 if (skb->offload_fwd_mark &&
3104 skb->offload_fwd_mark == dev->offload_fwd_mark) {
3105 consume_skb(skb);
3106 rc = NET_XMIT_SUCCESS;
3107 goto out;
3108 }
3109 #endif
3110
3111 txq = netdev_pick_tx(dev, skb, accel_priv);
3112 q = rcu_dereference_bh(txq->qdisc);
3113
3114 #ifdef CONFIG_NET_CLS_ACT
3115 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_EGRESS);
3116 #endif
3117 trace_net_dev_queue(skb);
3118 if (q->enqueue) {
3119 rc = __dev_xmit_skb(skb, q, dev, txq);
3120 goto out;
3121 }
3122
3123 /* The device has no queue. Common case for software devices:
3124 loopback, all the sorts of tunnels...
3125
3126 Really, it is unlikely that netif_tx_lock protection is necessary
3127 here. (f.e. loopback and IP tunnels are clean ignoring statistics
3128 counters.)
3129 However, it is possible, that they rely on protection
3130 made by us here.
3131
3132 Check this and shot the lock. It is not prone from deadlocks.
3133 Either shot noqueue qdisc, it is even simpler 8)
3134 */
3135 if (dev->flags & IFF_UP) {
3136 int cpu = smp_processor_id(); /* ok because BHs are off */
3137
3138 if (txq->xmit_lock_owner != cpu) {
3139
3140 if (__this_cpu_read(xmit_recursion) > RECURSION_LIMIT)
3141 goto recursion_alert;
3142
3143 skb = validate_xmit_skb(skb, dev);
3144 if (!skb)
3145 goto drop;
3146
3147 HARD_TX_LOCK(dev, txq, cpu);
3148
3149 if (!netif_xmit_stopped(txq)) {
3150 __this_cpu_inc(xmit_recursion);
3151 skb = dev_hard_start_xmit(skb, dev, txq, &rc);
3152 __this_cpu_dec(xmit_recursion);
3153 if (dev_xmit_complete(rc)) {
3154 HARD_TX_UNLOCK(dev, txq);
3155 goto out;
3156 }
3157 }
3158 HARD_TX_UNLOCK(dev, txq);
3159 net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
3160 dev->name);
3161 } else {
3162 /* Recursion is detected! It is possible,
3163 * unfortunately
3164 */
3165 recursion_alert:
3166 net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
3167 dev->name);
3168 }
3169 }
3170
3171 rc = -ENETDOWN;
3172 drop:
3173 rcu_read_unlock_bh();
3174
3175 atomic_long_inc(&dev->tx_dropped);
3176 kfree_skb_list(skb);
3177 return rc;
3178 out:
3179 rcu_read_unlock_bh();
3180 return rc;
3181 }
3182
3183 int dev_queue_xmit(struct sk_buff *skb)
3184 {
3185 return __dev_queue_xmit(skb, NULL);
3186 }
3187 EXPORT_SYMBOL(dev_queue_xmit);
3188
3189 int dev_queue_xmit_accel(struct sk_buff *skb, void *accel_priv)
3190 {
3191 return __dev_queue_xmit(skb, accel_priv);
3192 }
3193 EXPORT_SYMBOL(dev_queue_xmit_accel);
3194
3195
3196 /*=======================================================================
3197 Receiver routines
3198 =======================================================================*/
3199
3200 int netdev_max_backlog __read_mostly = 1000;
3201 EXPORT_SYMBOL(netdev_max_backlog);
3202
3203 int netdev_tstamp_prequeue __read_mostly = 1;
3204 int netdev_budget __read_mostly = 300;
3205 int weight_p __read_mostly = 64; /* old backlog weight */
3206
3207 /* Called with irq disabled */
3208 static inline void ____napi_schedule(struct softnet_data *sd,
3209 struct napi_struct *napi)
3210 {
3211 list_add_tail(&napi->poll_list, &sd->poll_list);
3212 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
3213 }
3214
3215 #ifdef CONFIG_RPS
3216
3217 /* One global table that all flow-based protocols share. */
3218 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
3219 EXPORT_SYMBOL(rps_sock_flow_table);
3220 u32 rps_cpu_mask __read_mostly;
3221 EXPORT_SYMBOL(rps_cpu_mask);
3222
3223 struct static_key rps_needed __read_mostly;
3224
3225 static struct rps_dev_flow *
3226 set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
3227 struct rps_dev_flow *rflow, u16 next_cpu)
3228 {
3229 if (next_cpu < nr_cpu_ids) {
3230 #ifdef CONFIG_RFS_ACCEL
3231 struct netdev_rx_queue *rxqueue;
3232 struct rps_dev_flow_table *flow_table;
3233 struct rps_dev_flow *old_rflow;
3234 u32 flow_id;
3235 u16 rxq_index;
3236 int rc;
3237
3238 /* Should we steer this flow to a different hardware queue? */
3239 if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
3240 !(dev->features & NETIF_F_NTUPLE))
3241 goto out;
3242 rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
3243 if (rxq_index == skb_get_rx_queue(skb))
3244 goto out;
3245
3246 rxqueue = dev->_rx + rxq_index;
3247 flow_table = rcu_dereference(rxqueue->rps_flow_table);
3248 if (!flow_table)
3249 goto out;
3250 flow_id = skb_get_hash(skb) & flow_table->mask;
3251 rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
3252 rxq_index, flow_id);
3253 if (rc < 0)
3254 goto out;
3255 old_rflow = rflow;
3256 rflow = &flow_table->flows[flow_id];
3257 rflow->filter = rc;
3258 if (old_rflow->filter == rflow->filter)
3259 old_rflow->filter = RPS_NO_FILTER;
3260 out:
3261 #endif
3262 rflow->last_qtail =
3263 per_cpu(softnet_data, next_cpu).input_queue_head;
3264 }
3265
3266 rflow->cpu = next_cpu;
3267 return rflow;
3268 }
3269
3270 /*
3271 * get_rps_cpu is called from netif_receive_skb and returns the target
3272 * CPU from the RPS map of the receiving queue for a given skb.
3273 * rcu_read_lock must be held on entry.
3274 */
3275 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
3276 struct rps_dev_flow **rflowp)
3277 {
3278 const struct rps_sock_flow_table *sock_flow_table;
3279 struct netdev_rx_queue *rxqueue = dev->_rx;
3280 struct rps_dev_flow_table *flow_table;
3281 struct rps_map *map;
3282 int cpu = -1;
3283 u32 tcpu;
3284 u32 hash;
3285
3286 if (skb_rx_queue_recorded(skb)) {
3287 u16 index = skb_get_rx_queue(skb);
3288
3289 if (unlikely(index >= dev->real_num_rx_queues)) {
3290 WARN_ONCE(dev->real_num_rx_queues > 1,
3291 "%s received packet on queue %u, but number "
3292 "of RX queues is %u\n",
3293 dev->name, index, dev->real_num_rx_queues);
3294 goto done;
3295 }
3296 rxqueue += index;
3297 }
3298
3299 /* Avoid computing hash if RFS/RPS is not active for this rxqueue */
3300
3301 flow_table = rcu_dereference(rxqueue->rps_flow_table);
3302 map = rcu_dereference(rxqueue->rps_map);
3303 if (!flow_table && !map)
3304 goto done;
3305
3306 skb_reset_network_header(skb);
3307 hash = skb_get_hash(skb);
3308 if (!hash)
3309 goto done;
3310
3311 sock_flow_table = rcu_dereference(rps_sock_flow_table);
3312 if (flow_table && sock_flow_table) {
3313 struct rps_dev_flow *rflow;
3314 u32 next_cpu;
3315 u32 ident;
3316
3317 /* First check into global flow table if there is a match */
3318 ident = sock_flow_table->ents[hash & sock_flow_table->mask];
3319 if ((ident ^ hash) & ~rps_cpu_mask)
3320 goto try_rps;
3321
3322 next_cpu = ident & rps_cpu_mask;
3323
3324 /* OK, now we know there is a match,
3325 * we can look at the local (per receive queue) flow table
3326 */
3327 rflow = &flow_table->flows[hash & flow_table->mask];
3328 tcpu = rflow->cpu;
3329
3330 /*
3331 * If the desired CPU (where last recvmsg was done) is
3332 * different from current CPU (one in the rx-queue flow
3333 * table entry), switch if one of the following holds:
3334 * - Current CPU is unset (>= nr_cpu_ids).
3335 * - Current CPU is offline.
3336 * - The current CPU's queue tail has advanced beyond the
3337 * last packet that was enqueued using this table entry.
3338 * This guarantees that all previous packets for the flow
3339 * have been dequeued, thus preserving in order delivery.
3340 */
3341 if (unlikely(tcpu != next_cpu) &&
3342 (tcpu >= nr_cpu_ids || !cpu_online(tcpu) ||
3343 ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
3344 rflow->last_qtail)) >= 0)) {
3345 tcpu = next_cpu;
3346 rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
3347 }
3348
3349 if (tcpu < nr_cpu_ids && cpu_online(tcpu)) {
3350 *rflowp = rflow;
3351 cpu = tcpu;
3352 goto done;
3353 }
3354 }
3355
3356 try_rps:
3357
3358 if (map) {
3359 tcpu = map->cpus[reciprocal_scale(hash, map->len)];
3360 if (cpu_online(tcpu)) {
3361 cpu = tcpu;
3362 goto done;
3363 }
3364 }
3365
3366 done:
3367 return cpu;
3368 }
3369
3370 #ifdef CONFIG_RFS_ACCEL
3371
3372 /**
3373 * rps_may_expire_flow - check whether an RFS hardware filter may be removed
3374 * @dev: Device on which the filter was set
3375 * @rxq_index: RX queue index
3376 * @flow_id: Flow ID passed to ndo_rx_flow_steer()
3377 * @filter_id: Filter ID returned by ndo_rx_flow_steer()
3378 *
3379 * Drivers that implement ndo_rx_flow_steer() should periodically call
3380 * this function for each installed filter and remove the filters for
3381 * which it returns %true.
3382 */
3383 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
3384 u32 flow_id, u16 filter_id)
3385 {
3386 struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
3387 struct rps_dev_flow_table *flow_table;
3388 struct rps_dev_flow *rflow;
3389 bool expire = true;
3390 unsigned int cpu;
3391
3392 rcu_read_lock();
3393 flow_table = rcu_dereference(rxqueue->rps_flow_table);
3394 if (flow_table && flow_id <= flow_table->mask) {
3395 rflow = &flow_table->flows[flow_id];
3396 cpu = ACCESS_ONCE(rflow->cpu);
3397 if (rflow->filter == filter_id && cpu < nr_cpu_ids &&
3398 ((int)(per_cpu(softnet_data, cpu).input_queue_head -
3399 rflow->last_qtail) <
3400 (int)(10 * flow_table->mask)))
3401 expire = false;
3402 }
3403 rcu_read_unlock();
3404 return expire;
3405 }
3406 EXPORT_SYMBOL(rps_may_expire_flow);
3407
3408 #endif /* CONFIG_RFS_ACCEL */
3409
3410 /* Called from hardirq (IPI) context */
3411 static void rps_trigger_softirq(void *data)
3412 {
3413 struct softnet_data *sd = data;
3414
3415 ____napi_schedule(sd, &sd->backlog);
3416 sd->received_rps++;
3417 }
3418
3419 #endif /* CONFIG_RPS */
3420
3421 /*
3422 * Check if this softnet_data structure is another cpu one
3423 * If yes, queue it to our IPI list and return 1
3424 * If no, return 0
3425 */
3426 static int rps_ipi_queued(struct softnet_data *sd)
3427 {
3428 #ifdef CONFIG_RPS
3429 struct softnet_data *mysd = this_cpu_ptr(&softnet_data);
3430
3431 if (sd != mysd) {
3432 sd->rps_ipi_next = mysd->rps_ipi_list;
3433 mysd->rps_ipi_list = sd;
3434
3435 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
3436 return 1;
3437 }
3438 #endif /* CONFIG_RPS */
3439 return 0;
3440 }
3441
3442 #ifdef CONFIG_NET_FLOW_LIMIT
3443 int netdev_flow_limit_table_len __read_mostly = (1 << 12);
3444 #endif
3445
3446 static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen)
3447 {
3448 #ifdef CONFIG_NET_FLOW_LIMIT
3449 struct sd_flow_limit *fl;
3450 struct softnet_data *sd;
3451 unsigned int old_flow, new_flow;
3452
3453 if (qlen < (netdev_max_backlog >> 1))
3454 return false;
3455
3456 sd = this_cpu_ptr(&softnet_data);
3457
3458 rcu_read_lock();
3459 fl = rcu_dereference(sd->flow_limit);
3460 if (fl) {
3461 new_flow = skb_get_hash(skb) & (fl->num_buckets - 1);
3462 old_flow = fl->history[fl->history_head];
3463 fl->history[fl->history_head] = new_flow;
3464
3465 fl->history_head++;
3466 fl->history_head &= FLOW_LIMIT_HISTORY - 1;
3467
3468 if (likely(fl->buckets[old_flow]))
3469 fl->buckets[old_flow]--;
3470
3471 if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
3472 fl->count++;
3473 rcu_read_unlock();
3474 return true;
3475 }
3476 }
3477 rcu_read_unlock();
3478 #endif
3479 return false;
3480 }
3481
3482 /*
3483 * enqueue_to_backlog is called to queue an skb to a per CPU backlog
3484 * queue (may be a remote CPU queue).
3485 */
3486 static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
3487 unsigned int *qtail)
3488 {
3489 struct softnet_data *sd;
3490 unsigned long flags;
3491 unsigned int qlen;
3492
3493 sd = &per_cpu(softnet_data, cpu);
3494
3495 local_irq_save(flags);
3496
3497 rps_lock(sd);
3498 if (!netif_running(skb->dev))
3499 goto drop;
3500 qlen = skb_queue_len(&sd->input_pkt_queue);
3501 if (qlen <= netdev_max_backlog && !skb_flow_limit(skb, qlen)) {
3502 if (qlen) {
3503 enqueue:
3504 __skb_queue_tail(&sd->input_pkt_queue, skb);
3505 input_queue_tail_incr_save(sd, qtail);
3506 rps_unlock(sd);
3507 local_irq_restore(flags);
3508 return NET_RX_SUCCESS;
3509 }
3510
3511 /* Schedule NAPI for backlog device
3512 * We can use non atomic operation since we own the queue lock
3513 */
3514 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) {
3515 if (!rps_ipi_queued(sd))
3516 ____napi_schedule(sd, &sd->backlog);
3517 }
3518 goto enqueue;
3519 }
3520
3521 drop:
3522 sd->dropped++;
3523 rps_unlock(sd);
3524
3525 local_irq_restore(flags);
3526
3527 atomic_long_inc(&skb->dev->rx_dropped);
3528 kfree_skb(skb);
3529 return NET_RX_DROP;
3530 }
3531
3532 static int netif_rx_internal(struct sk_buff *skb)
3533 {
3534 int ret;
3535
3536 net_timestamp_check(netdev_tstamp_prequeue, skb);
3537
3538 trace_netif_rx(skb);
3539 #ifdef CONFIG_RPS
3540 if (static_key_false(&rps_needed)) {
3541 struct rps_dev_flow voidflow, *rflow = &voidflow;
3542 int cpu;
3543
3544 preempt_disable();
3545 rcu_read_lock();
3546
3547 cpu = get_rps_cpu(skb->dev, skb, &rflow);
3548 if (cpu < 0)
3549 cpu = smp_processor_id();
3550
3551 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
3552
3553 rcu_read_unlock();
3554 preempt_enable();
3555 } else
3556 #endif
3557 {
3558 unsigned int qtail;
3559 ret = enqueue_to_backlog(skb, get_cpu(), &qtail);
3560 put_cpu();
3561 }
3562 return ret;
3563 }
3564
3565 /**
3566 * netif_rx - post buffer to the network code
3567 * @skb: buffer to post
3568 *
3569 * This function receives a packet from a device driver and queues it for
3570 * the upper (protocol) levels to process. It always succeeds. The buffer
3571 * may be dropped during processing for congestion control or by the
3572 * protocol layers.
3573 *
3574 * return values:
3575 * NET_RX_SUCCESS (no congestion)
3576 * NET_RX_DROP (packet was dropped)
3577 *
3578 */
3579
3580 int netif_rx(struct sk_buff *skb)
3581 {
3582 trace_netif_rx_entry(skb);
3583
3584 return netif_rx_internal(skb);
3585 }
3586 EXPORT_SYMBOL(netif_rx);
3587
3588 int netif_rx_ni(struct sk_buff *skb)
3589 {
3590 int err;
3591
3592 trace_netif_rx_ni_entry(skb);
3593
3594 preempt_disable();
3595 err = netif_rx_internal(skb);
3596 if (local_softirq_pending())
3597 do_softirq();
3598 preempt_enable();
3599
3600 return err;
3601 }
3602 EXPORT_SYMBOL(netif_rx_ni);
3603
3604 static void net_tx_action(struct softirq_action *h)
3605 {
3606 struct softnet_data *sd = this_cpu_ptr(&softnet_data);
3607
3608 if (sd->completion_queue) {
3609 struct sk_buff *clist;
3610
3611 local_irq_disable();
3612 clist = sd->completion_queue;
3613 sd->completion_queue = NULL;
3614 local_irq_enable();
3615
3616 while (clist) {
3617 struct sk_buff *skb = clist;
3618 clist = clist->next;
3619
3620 WARN_ON(atomic_read(&skb->users));
3621 if (likely(get_kfree_skb_cb(skb)->reason == SKB_REASON_CONSUMED))
3622 trace_consume_skb(skb);
3623 else
3624 trace_kfree_skb(skb, net_tx_action);
3625 __kfree_skb(skb);
3626 }
3627 }
3628
3629 if (sd->output_queue) {
3630 struct Qdisc *head;
3631
3632 local_irq_disable();
3633 head = sd->output_queue;
3634 sd->output_queue = NULL;
3635 sd->output_queue_tailp = &sd->output_queue;
3636 local_irq_enable();
3637
3638 while (head) {
3639 struct Qdisc *q = head;
3640 spinlock_t *root_lock;
3641
3642 head = head->next_sched;
3643
3644 root_lock = qdisc_lock(q);
3645 if (spin_trylock(root_lock)) {
3646 smp_mb__before_atomic();
3647 clear_bit(__QDISC_STATE_SCHED,
3648 &q->state);
3649 qdisc_run(q);
3650 spin_unlock(root_lock);
3651 } else {
3652 if (!test_bit(__QDISC_STATE_DEACTIVATED,
3653 &q->state)) {
3654 __netif_reschedule(q);
3655 } else {
3656 smp_mb__before_atomic();
3657 clear_bit(__QDISC_STATE_SCHED,
3658 &q->state);
3659 }
3660 }
3661 }
3662 }
3663 }
3664
3665 #if (defined(CONFIG_BRIDGE) || defined(CONFIG_BRIDGE_MODULE)) && \
3666 (defined(CONFIG_ATM_LANE) || defined(CONFIG_ATM_LANE_MODULE))
3667 /* This hook is defined here for ATM LANE */
3668 int (*br_fdb_test_addr_hook)(struct net_device *dev,
3669 unsigned char *addr) __read_mostly;
3670 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
3671 #endif
3672
3673 static inline struct sk_buff *handle_ing(struct sk_buff *skb,
3674 struct packet_type **pt_prev,
3675 int *ret, struct net_device *orig_dev)
3676 {
3677 #ifdef CONFIG_NET_CLS_ACT
3678 struct tcf_proto *cl = rcu_dereference_bh(skb->dev->ingress_cl_list);
3679 struct tcf_result cl_res;
3680
3681 /* If there's at least one ingress present somewhere (so
3682 * we get here via enabled static key), remaining devices
3683 * that are not configured with an ingress qdisc will bail
3684 * out here.
3685 */
3686 if (!cl)
3687 return skb;
3688 if (*pt_prev) {
3689 *ret = deliver_skb(skb, *pt_prev, orig_dev);
3690 *pt_prev = NULL;
3691 }
3692
3693 qdisc_skb_cb(skb)->pkt_len = skb->len;
3694 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_INGRESS);
3695 qdisc_bstats_cpu_update(cl->q, skb);
3696
3697 switch (tc_classify(skb, cl, &cl_res, false)) {
3698 case TC_ACT_OK:
3699 case TC_ACT_RECLASSIFY:
3700 skb->tc_index = TC_H_MIN(cl_res.classid);
3701 break;
3702 case TC_ACT_SHOT:
3703 qdisc_qstats_cpu_drop(cl->q);
3704 case TC_ACT_STOLEN:
3705 case TC_ACT_QUEUED:
3706 kfree_skb(skb);
3707 return NULL;
3708 case TC_ACT_REDIRECT:
3709 /* skb_mac_header check was done by cls/act_bpf, so
3710 * we can safely push the L2 header back before
3711 * redirecting to another netdev
3712 */
3713 __skb_push(skb, skb->mac_len);
3714 skb_do_redirect(skb);
3715 return NULL;
3716 default:
3717 break;
3718 }
3719 #endif /* CONFIG_NET_CLS_ACT */
3720 return skb;
3721 }
3722
3723 /**
3724 * netdev_rx_handler_register - register receive handler
3725 * @dev: device to register a handler for
3726 * @rx_handler: receive handler to register
3727 * @rx_handler_data: data pointer that is used by rx handler
3728 *
3729 * Register a receive handler for a device. This handler will then be
3730 * called from __netif_receive_skb. A negative errno code is returned
3731 * on a failure.
3732 *
3733 * The caller must hold the rtnl_mutex.
3734 *
3735 * For a general description of rx_handler, see enum rx_handler_result.
3736 */
3737 int netdev_rx_handler_register(struct net_device *dev,
3738 rx_handler_func_t *rx_handler,
3739 void *rx_handler_data)
3740 {
3741 ASSERT_RTNL();
3742
3743 if (dev->rx_handler)
3744 return -EBUSY;
3745
3746 /* Note: rx_handler_data must be set before rx_handler */
3747 rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
3748 rcu_assign_pointer(dev->rx_handler, rx_handler);
3749
3750 return 0;
3751 }
3752 EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
3753
3754 /**
3755 * netdev_rx_handler_unregister - unregister receive handler
3756 * @dev: device to unregister a handler from
3757 *
3758 * Unregister a receive handler from a device.
3759 *
3760 * The caller must hold the rtnl_mutex.
3761 */
3762 void netdev_rx_handler_unregister(struct net_device *dev)
3763 {
3764
3765 ASSERT_RTNL();
3766 RCU_INIT_POINTER(dev->rx_handler, NULL);
3767 /* a reader seeing a non NULL rx_handler in a rcu_read_lock()
3768 * section has a guarantee to see a non NULL rx_handler_data
3769 * as well.
3770 */
3771 synchronize_net();
3772 RCU_INIT_POINTER(dev->rx_handler_data, NULL);
3773 }
3774 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
3775
3776 /*
3777 * Limit the use of PFMEMALLOC reserves to those protocols that implement
3778 * the special handling of PFMEMALLOC skbs.
3779 */
3780 static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
3781 {
3782 switch (skb->protocol) {
3783 case htons(ETH_P_ARP):
3784 case htons(ETH_P_IP):
3785 case htons(ETH_P_IPV6):
3786 case htons(ETH_P_8021Q):
3787 case htons(ETH_P_8021AD):
3788 return true;
3789 default:
3790 return false;
3791 }
3792 }
3793
3794 static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev,
3795 int *ret, struct net_device *orig_dev)
3796 {
3797 #ifdef CONFIG_NETFILTER_INGRESS
3798 if (nf_hook_ingress_active(skb)) {
3799 if (*pt_prev) {
3800 *ret = deliver_skb(skb, *pt_prev, orig_dev);
3801 *pt_prev = NULL;
3802 }
3803
3804 return nf_hook_ingress(skb);
3805 }
3806 #endif /* CONFIG_NETFILTER_INGRESS */
3807 return 0;
3808 }
3809
3810 static int __netif_receive_skb_core(struct sk_buff *skb, bool pfmemalloc)
3811 {
3812 struct packet_type *ptype, *pt_prev;
3813 rx_handler_func_t *rx_handler;
3814 struct net_device *orig_dev;
3815 bool deliver_exact = false;
3816 int ret = NET_RX_DROP;
3817 __be16 type;
3818
3819 net_timestamp_check(!netdev_tstamp_prequeue, skb);
3820
3821 trace_netif_receive_skb(skb);
3822
3823 orig_dev = skb->dev;
3824
3825 skb_reset_network_header(skb);
3826 if (!skb_transport_header_was_set(skb))
3827 skb_reset_transport_header(skb);
3828 skb_reset_mac_len(skb);
3829
3830 pt_prev = NULL;
3831
3832 another_round:
3833 skb->skb_iif = skb->dev->ifindex;
3834
3835 __this_cpu_inc(softnet_data.processed);
3836
3837 if (skb->protocol == cpu_to_be16(ETH_P_8021Q) ||
3838 skb->protocol == cpu_to_be16(ETH_P_8021AD)) {
3839 skb = skb_vlan_untag(skb);
3840 if (unlikely(!skb))
3841 goto out;
3842 }
3843
3844 #ifdef CONFIG_NET_CLS_ACT
3845 if (skb->tc_verd & TC_NCLS) {
3846 skb->tc_verd = CLR_TC_NCLS(skb->tc_verd);
3847 goto ncls;
3848 }
3849 #endif
3850
3851 if (pfmemalloc)
3852 goto skip_taps;
3853
3854 list_for_each_entry_rcu(ptype, &ptype_all, list) {
3855 if (pt_prev)
3856 ret = deliver_skb(skb, pt_prev, orig_dev);
3857 pt_prev = ptype;
3858 }
3859
3860 list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) {
3861 if (pt_prev)
3862 ret = deliver_skb(skb, pt_prev, orig_dev);
3863 pt_prev = ptype;
3864 }
3865
3866 skip_taps:
3867 #ifdef CONFIG_NET_INGRESS
3868 if (static_key_false(&ingress_needed)) {
3869 skb = handle_ing(skb, &pt_prev, &ret, orig_dev);
3870 if (!skb)
3871 goto out;
3872
3873 if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0)
3874 goto out;
3875 }
3876 #endif
3877 #ifdef CONFIG_NET_CLS_ACT
3878 skb->tc_verd = 0;
3879 ncls:
3880 #endif
3881 if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
3882 goto drop;
3883
3884 if (skb_vlan_tag_present(skb)) {
3885 if (pt_prev) {
3886 ret = deliver_skb(skb, pt_prev, orig_dev);
3887 pt_prev = NULL;
3888 }
3889 if (vlan_do_receive(&skb))
3890 goto another_round;
3891 else if (unlikely(!skb))
3892 goto out;
3893 }
3894
3895 rx_handler = rcu_dereference(skb->dev->rx_handler);
3896 if (rx_handler) {
3897 if (pt_prev) {
3898 ret = deliver_skb(skb, pt_prev, orig_dev);
3899 pt_prev = NULL;
3900 }
3901 switch (rx_handler(&skb)) {
3902 case RX_HANDLER_CONSUMED:
3903 ret = NET_RX_SUCCESS;
3904 goto out;
3905 case RX_HANDLER_ANOTHER:
3906 goto another_round;
3907 case RX_HANDLER_EXACT:
3908 deliver_exact = true;
3909 case RX_HANDLER_PASS:
3910 break;
3911 default:
3912 BUG();
3913 }
3914 }
3915
3916 if (unlikely(skb_vlan_tag_present(skb))) {
3917 if (skb_vlan_tag_get_id(skb))
3918 skb->pkt_type = PACKET_OTHERHOST;
3919 /* Note: we might in the future use prio bits
3920 * and set skb->priority like in vlan_do_receive()
3921 * For the time being, just ignore Priority Code Point
3922 */
3923 skb->vlan_tci = 0;
3924 }
3925
3926 type = skb->protocol;
3927
3928 /* deliver only exact match when indicated */
3929 if (likely(!deliver_exact)) {
3930 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
3931 &ptype_base[ntohs(type) &
3932 PTYPE_HASH_MASK]);
3933 }
3934
3935 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
3936 &orig_dev->ptype_specific);
3937
3938 if (unlikely(skb->dev != orig_dev)) {
3939 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
3940 &skb->dev->ptype_specific);
3941 }
3942
3943 if (pt_prev) {
3944 if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC)))
3945 goto drop;
3946 else
3947 ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
3948 } else {
3949 drop:
3950 atomic_long_inc(&skb->dev->rx_dropped);
3951 kfree_skb(skb);
3952 /* Jamal, now you will not able to escape explaining
3953 * me how you were going to use this. :-)
3954 */
3955 ret = NET_RX_DROP;
3956 }
3957
3958 out:
3959 return ret;
3960 }
3961
3962 static int __netif_receive_skb(struct sk_buff *skb)
3963 {
3964 int ret;
3965
3966 if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
3967 unsigned long pflags = current->flags;
3968
3969 /*
3970 * PFMEMALLOC skbs are special, they should
3971 * - be delivered to SOCK_MEMALLOC sockets only
3972 * - stay away from userspace
3973 * - have bounded memory usage
3974 *
3975 * Use PF_MEMALLOC as this saves us from propagating the allocation
3976 * context down to all allocation sites.
3977 */
3978 current->flags |= PF_MEMALLOC;
3979 ret = __netif_receive_skb_core(skb, true);
3980 tsk_restore_flags(current, pflags, PF_MEMALLOC);
3981 } else
3982 ret = __netif_receive_skb_core(skb, false);
3983
3984 return ret;
3985 }
3986
3987 static int netif_receive_skb_internal(struct sk_buff *skb)
3988 {
3989 int ret;
3990
3991 net_timestamp_check(netdev_tstamp_prequeue, skb);
3992
3993 if (skb_defer_rx_timestamp(skb))
3994 return NET_RX_SUCCESS;
3995
3996 rcu_read_lock();
3997
3998 #ifdef CONFIG_RPS
3999 if (static_key_false(&rps_needed)) {
4000 struct rps_dev_flow voidflow, *rflow = &voidflow;
4001 int cpu = get_rps_cpu(skb->dev, skb, &rflow);
4002
4003 if (cpu >= 0) {
4004 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
4005 rcu_read_unlock();
4006 return ret;
4007 }
4008 }
4009 #endif
4010 ret = __netif_receive_skb(skb);
4011 rcu_read_unlock();
4012 return ret;
4013 }
4014
4015 /**
4016 * netif_receive_skb - process receive buffer from network
4017 * @skb: buffer to process
4018 *
4019 * netif_receive_skb() is the main receive data processing function.
4020 * It always succeeds. The buffer may be dropped during processing
4021 * for congestion control or by the protocol layers.
4022 *
4023 * This function may only be called from softirq context and interrupts
4024 * should be enabled.
4025 *
4026 * Return values (usually ignored):
4027 * NET_RX_SUCCESS: no congestion
4028 * NET_RX_DROP: packet was dropped
4029 */
4030 int netif_receive_skb(struct sk_buff *skb)
4031 {
4032 trace_netif_receive_skb_entry(skb);
4033
4034 return netif_receive_skb_internal(skb);
4035 }
4036 EXPORT_SYMBOL(netif_receive_skb);
4037
4038 /* Network device is going away, flush any packets still pending
4039 * Called with irqs disabled.
4040 */
4041 static void flush_backlog(void *arg)
4042 {
4043 struct net_device *dev = arg;
4044 struct softnet_data *sd = this_cpu_ptr(&softnet_data);
4045 struct sk_buff *skb, *tmp;
4046
4047 rps_lock(sd);
4048 skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
4049 if (skb->dev == dev) {
4050 __skb_unlink(skb, &sd->input_pkt_queue);
4051 kfree_skb(skb);
4052 input_queue_head_incr(sd);
4053 }
4054 }
4055 rps_unlock(sd);
4056
4057 skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
4058 if (skb->dev == dev) {
4059 __skb_unlink(skb, &sd->process_queue);
4060 kfree_skb(skb);
4061 input_queue_head_incr(sd);
4062 }
4063 }
4064 }
4065
4066 static int napi_gro_complete(struct sk_buff *skb)
4067 {
4068 struct packet_offload *ptype;
4069 __be16 type = skb->protocol;
4070 struct list_head *head = &offload_base;
4071 int err = -ENOENT;
4072
4073 BUILD_BUG_ON(sizeof(struct napi_gro_cb) > sizeof(skb->cb));
4074
4075 if (NAPI_GRO_CB(skb)->count == 1) {
4076 skb_shinfo(skb)->gso_size = 0;
4077 goto out;
4078 }
4079
4080 rcu_read_lock();
4081 list_for_each_entry_rcu(ptype, head, list) {
4082 if (ptype->type != type || !ptype->callbacks.gro_complete)
4083 continue;
4084
4085 err = ptype->callbacks.gro_complete(skb, 0);
4086 break;
4087 }
4088 rcu_read_unlock();
4089
4090 if (err) {
4091 WARN_ON(&ptype->list == head);
4092 kfree_skb(skb);
4093 return NET_RX_SUCCESS;
4094 }
4095
4096 out:
4097 return netif_receive_skb_internal(skb);
4098 }
4099
4100 /* napi->gro_list contains packets ordered by age.
4101 * youngest packets at the head of it.
4102 * Complete skbs in reverse order to reduce latencies.
4103 */
4104 void napi_gro_flush(struct napi_struct *napi, bool flush_old)
4105 {
4106 struct sk_buff *skb, *prev = NULL;
4107
4108 /* scan list and build reverse chain */
4109 for (skb = napi->gro_list; skb != NULL; skb = skb->next) {
4110 skb->prev = prev;
4111 prev = skb;
4112 }
4113
4114 for (skb = prev; skb; skb = prev) {
4115 skb->next = NULL;
4116
4117 if (flush_old && NAPI_GRO_CB(skb)->age == jiffies)
4118 return;
4119
4120 prev = skb->prev;
4121 napi_gro_complete(skb);
4122 napi->gro_count--;
4123 }
4124
4125 napi->gro_list = NULL;
4126 }
4127 EXPORT_SYMBOL(napi_gro_flush);
4128
4129 static void gro_list_prepare(struct napi_struct *napi, struct sk_buff *skb)
4130 {
4131 struct sk_buff *p;
4132 unsigned int maclen = skb->dev->hard_header_len;
4133 u32 hash = skb_get_hash_raw(skb);
4134
4135 for (p = napi->gro_list; p; p = p->next) {
4136 unsigned long diffs;
4137
4138 NAPI_GRO_CB(p)->flush = 0;
4139
4140 if (hash != skb_get_hash_raw(p)) {
4141 NAPI_GRO_CB(p)->same_flow = 0;
4142 continue;
4143 }
4144
4145 diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev;
4146 diffs |= p->vlan_tci ^ skb->vlan_tci;
4147 if (maclen == ETH_HLEN)
4148 diffs |= compare_ether_header(skb_mac_header(p),
4149 skb_mac_header(skb));
4150 else if (!diffs)
4151 diffs = memcmp(skb_mac_header(p),
4152 skb_mac_header(skb),
4153 maclen);
4154 NAPI_GRO_CB(p)->same_flow = !diffs;
4155 }
4156 }
4157
4158 static void skb_gro_reset_offset(struct sk_buff *skb)
4159 {
4160 const struct skb_shared_info *pinfo = skb_shinfo(skb);
4161 const skb_frag_t *frag0 = &pinfo->frags[0];
4162
4163 NAPI_GRO_CB(skb)->data_offset = 0;
4164 NAPI_GRO_CB(skb)->frag0 = NULL;
4165 NAPI_GRO_CB(skb)->frag0_len = 0;
4166
4167 if (skb_mac_header(skb) == skb_tail_pointer(skb) &&
4168 pinfo->nr_frags &&
4169 !PageHighMem(skb_frag_page(frag0))) {
4170 NAPI_GRO_CB(skb)->frag0 = skb_frag_address(frag0);
4171 NAPI_GRO_CB(skb)->frag0_len = skb_frag_size(frag0);
4172 }
4173 }
4174
4175 static void gro_pull_from_frag0(struct sk_buff *skb, int grow)
4176 {
4177 struct skb_shared_info *pinfo = skb_shinfo(skb);
4178
4179 BUG_ON(skb->end - skb->tail < grow);
4180
4181 memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
4182
4183 skb->data_len -= grow;
4184 skb->tail += grow;
4185
4186 pinfo->frags[0].page_offset += grow;
4187 skb_frag_size_sub(&pinfo->frags[0], grow);
4188
4189 if (unlikely(!skb_frag_size(&pinfo->frags[0]))) {
4190 skb_frag_unref(skb, 0);
4191 memmove(pinfo->frags, pinfo->frags + 1,
4192 --pinfo->nr_frags * sizeof(pinfo->frags[0]));
4193 }
4194 }
4195
4196 static enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
4197 {
4198 struct sk_buff **pp = NULL;
4199 struct packet_offload *ptype;
4200 __be16 type = skb->protocol;
4201 struct list_head *head = &offload_base;
4202 int same_flow;
4203 enum gro_result ret;
4204 int grow;
4205
4206 if (!(skb->dev->features & NETIF_F_GRO))
4207 goto normal;
4208
4209 if (skb_is_gso(skb) || skb_has_frag_list(skb) || skb->csum_bad)
4210 goto normal;
4211
4212 gro_list_prepare(napi, skb);
4213
4214 rcu_read_lock();
4215 list_for_each_entry_rcu(ptype, head, list) {
4216 if (ptype->type != type || !ptype->callbacks.gro_receive)
4217 continue;
4218
4219 skb_set_network_header(skb, skb_gro_offset(skb));
4220 skb_reset_mac_len(skb);
4221 NAPI_GRO_CB(skb)->same_flow = 0;
4222 NAPI_GRO_CB(skb)->flush = 0;
4223 NAPI_GRO_CB(skb)->free = 0;
4224 NAPI_GRO_CB(skb)->udp_mark = 0;
4225 NAPI_GRO_CB(skb)->gro_remcsum_start = 0;
4226
4227 /* Setup for GRO checksum validation */
4228 switch (skb->ip_summed) {
4229 case CHECKSUM_COMPLETE:
4230 NAPI_GRO_CB(skb)->csum = skb->csum;
4231 NAPI_GRO_CB(skb)->csum_valid = 1;
4232 NAPI_GRO_CB(skb)->csum_cnt = 0;
4233 break;
4234 case CHECKSUM_UNNECESSARY:
4235 NAPI_GRO_CB(skb)->csum_cnt = skb->csum_level + 1;
4236 NAPI_GRO_CB(skb)->csum_valid = 0;
4237 break;
4238 default:
4239 NAPI_GRO_CB(skb)->csum_cnt = 0;
4240 NAPI_GRO_CB(skb)->csum_valid = 0;
4241 }
4242
4243 pp = ptype->callbacks.gro_receive(&napi->gro_list, skb);
4244 break;
4245 }
4246 rcu_read_unlock();
4247
4248 if (&ptype->list == head)
4249 goto normal;
4250
4251 same_flow = NAPI_GRO_CB(skb)->same_flow;
4252 ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
4253
4254 if (pp) {
4255 struct sk_buff *nskb = *pp;
4256
4257 *pp = nskb->next;
4258 nskb->next = NULL;
4259 napi_gro_complete(nskb);
4260 napi->gro_count--;
4261 }
4262
4263 if (same_flow)
4264 goto ok;
4265
4266 if (NAPI_GRO_CB(skb)->flush)
4267 goto normal;
4268
4269 if (unlikely(napi->gro_count >= MAX_GRO_SKBS)) {
4270 struct sk_buff *nskb = napi->gro_list;
4271
4272 /* locate the end of the list to select the 'oldest' flow */
4273 while (nskb->next) {
4274 pp = &nskb->next;
4275 nskb = *pp;
4276 }
4277 *pp = NULL;
4278 nskb->next = NULL;
4279 napi_gro_complete(nskb);
4280 } else {
4281 napi->gro_count++;
4282 }
4283 NAPI_GRO_CB(skb)->count = 1;
4284 NAPI_GRO_CB(skb)->age = jiffies;
4285 NAPI_GRO_CB(skb)->last = skb;
4286 skb_shinfo(skb)->gso_size = skb_gro_len(skb);
4287 skb->next = napi->gro_list;
4288 napi->gro_list = skb;
4289 ret = GRO_HELD;
4290
4291 pull:
4292 grow = skb_gro_offset(skb) - skb_headlen(skb);
4293 if (grow > 0)
4294 gro_pull_from_frag0(skb, grow);
4295 ok:
4296 return ret;
4297
4298 normal:
4299 ret = GRO_NORMAL;
4300 goto pull;
4301 }
4302
4303 struct packet_offload *gro_find_receive_by_type(__be16 type)
4304 {
4305 struct list_head *offload_head = &offload_base;
4306 struct packet_offload *ptype;
4307
4308 list_for_each_entry_rcu(ptype, offload_head, list) {
4309 if (ptype->type != type || !ptype->callbacks.gro_receive)
4310 continue;
4311 return ptype;
4312 }
4313 return NULL;
4314 }
4315 EXPORT_SYMBOL(gro_find_receive_by_type);
4316
4317 struct packet_offload *gro_find_complete_by_type(__be16 type)
4318 {
4319 struct list_head *offload_head = &offload_base;
4320 struct packet_offload *ptype;
4321
4322 list_for_each_entry_rcu(ptype, offload_head, list) {
4323 if (ptype->type != type || !ptype->callbacks.gro_complete)
4324 continue;
4325 return ptype;
4326 }
4327 return NULL;
4328 }
4329 EXPORT_SYMBOL(gro_find_complete_by_type);
4330
4331 static gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb)
4332 {
4333 switch (ret) {
4334 case GRO_NORMAL:
4335 if (netif_receive_skb_internal(skb))
4336 ret = GRO_DROP;
4337 break;
4338
4339 case GRO_DROP:
4340 kfree_skb(skb);
4341 break;
4342
4343 case GRO_MERGED_FREE:
4344 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
4345 kmem_cache_free(skbuff_head_cache, skb);
4346 else
4347 __kfree_skb(skb);
4348 break;
4349
4350 case GRO_HELD:
4351 case GRO_MERGED:
4352 break;
4353 }
4354
4355 return ret;
4356 }
4357
4358 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
4359 {
4360 skb_mark_napi_id(skb, napi);
4361 trace_napi_gro_receive_entry(skb);
4362
4363 skb_gro_reset_offset(skb);
4364
4365 return napi_skb_finish(dev_gro_receive(napi, skb), skb);
4366 }
4367 EXPORT_SYMBOL(napi_gro_receive);
4368
4369 static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
4370 {
4371 if (unlikely(skb->pfmemalloc)) {
4372 consume_skb(skb);
4373 return;
4374 }
4375 __skb_pull(skb, skb_headlen(skb));
4376 /* restore the reserve we had after netdev_alloc_skb_ip_align() */
4377 skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb));
4378 skb->vlan_tci = 0;
4379 skb->dev = napi->dev;
4380 skb->skb_iif = 0;
4381 skb->encapsulation = 0;
4382 skb_shinfo(skb)->gso_type = 0;
4383 skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
4384
4385 napi->skb = skb;
4386 }
4387
4388 struct sk_buff *napi_get_frags(struct napi_struct *napi)
4389 {
4390 struct sk_buff *skb = napi->skb;
4391
4392 if (!skb) {
4393 skb = napi_alloc_skb(napi, GRO_MAX_HEAD);
4394 if (skb) {
4395 napi->skb = skb;
4396 skb_mark_napi_id(skb, napi);
4397 }
4398 }
4399 return skb;
4400 }
4401 EXPORT_SYMBOL(napi_get_frags);
4402
4403 static gro_result_t napi_frags_finish(struct napi_struct *napi,
4404 struct sk_buff *skb,
4405 gro_result_t ret)
4406 {
4407 switch (ret) {
4408 case GRO_NORMAL:
4409 case GRO_HELD:
4410 __skb_push(skb, ETH_HLEN);
4411 skb->protocol = eth_type_trans(skb, skb->dev);
4412 if (ret == GRO_NORMAL && netif_receive_skb_internal(skb))
4413 ret = GRO_DROP;
4414 break;
4415
4416 case GRO_DROP:
4417 case GRO_MERGED_FREE:
4418 napi_reuse_skb(napi, skb);
4419 break;
4420
4421 case GRO_MERGED:
4422 break;
4423 }
4424
4425 return ret;
4426 }
4427
4428 /* Upper GRO stack assumes network header starts at gro_offset=0
4429 * Drivers could call both napi_gro_frags() and napi_gro_receive()
4430 * We copy ethernet header into skb->data to have a common layout.
4431 */
4432 static struct sk_buff *napi_frags_skb(struct napi_struct *napi)
4433 {
4434 struct sk_buff *skb = napi->skb;
4435 const struct ethhdr *eth;
4436 unsigned int hlen = sizeof(*eth);
4437
4438 napi->skb = NULL;
4439
4440 skb_reset_mac_header(skb);
4441 skb_gro_reset_offset(skb);
4442
4443 eth = skb_gro_header_fast(skb, 0);
4444 if (unlikely(skb_gro_header_hard(skb, hlen))) {
4445 eth = skb_gro_header_slow(skb, hlen, 0);
4446 if (unlikely(!eth)) {
4447 napi_reuse_skb(napi, skb);
4448 return NULL;
4449 }
4450 } else {
4451 gro_pull_from_frag0(skb, hlen);
4452 NAPI_GRO_CB(skb)->frag0 += hlen;
4453 NAPI_GRO_CB(skb)->frag0_len -= hlen;
4454 }
4455 __skb_pull(skb, hlen);
4456
4457 /*
4458 * This works because the only protocols we care about don't require
4459 * special handling.
4460 * We'll fix it up properly in napi_frags_finish()
4461 */
4462 skb->protocol = eth->h_proto;
4463
4464 return skb;
4465 }
4466
4467 gro_result_t napi_gro_frags(struct napi_struct *napi)
4468 {
4469 struct sk_buff *skb = napi_frags_skb(napi);
4470
4471 if (!skb)
4472 return GRO_DROP;
4473
4474 trace_napi_gro_frags_entry(skb);
4475
4476 return napi_frags_finish(napi, skb, dev_gro_receive(napi, skb));
4477 }
4478 EXPORT_SYMBOL(napi_gro_frags);
4479
4480 /* Compute the checksum from gro_offset and return the folded value
4481 * after adding in any pseudo checksum.
4482 */
4483 __sum16 __skb_gro_checksum_complete(struct sk_buff *skb)
4484 {
4485 __wsum wsum;
4486 __sum16 sum;
4487
4488 wsum = skb_checksum(skb, skb_gro_offset(skb), skb_gro_len(skb), 0);
4489
4490 /* NAPI_GRO_CB(skb)->csum holds pseudo checksum */
4491 sum = csum_fold(csum_add(NAPI_GRO_CB(skb)->csum, wsum));
4492 if (likely(!sum)) {
4493 if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
4494 !skb->csum_complete_sw)
4495 netdev_rx_csum_fault(skb->dev);
4496 }
4497
4498 NAPI_GRO_CB(skb)->csum = wsum;
4499 NAPI_GRO_CB(skb)->csum_valid = 1;
4500
4501 return sum;
4502 }
4503 EXPORT_SYMBOL(__skb_gro_checksum_complete);
4504
4505 /*
4506 * net_rps_action_and_irq_enable sends any pending IPI's for rps.
4507 * Note: called with local irq disabled, but exits with local irq enabled.
4508 */
4509 static void net_rps_action_and_irq_enable(struct softnet_data *sd)
4510 {
4511 #ifdef CONFIG_RPS
4512 struct softnet_data *remsd = sd->rps_ipi_list;
4513
4514 if (remsd) {
4515 sd->rps_ipi_list = NULL;
4516
4517 local_irq_enable();
4518
4519 /* Send pending IPI's to kick RPS processing on remote cpus. */
4520 while (remsd) {
4521 struct softnet_data *next = remsd->rps_ipi_next;
4522
4523 if (cpu_online(remsd->cpu))
4524 smp_call_function_single_async(remsd->cpu,
4525 &remsd->csd);
4526 remsd = next;
4527 }
4528 } else
4529 #endif
4530 local_irq_enable();
4531 }
4532
4533 static bool sd_has_rps_ipi_waiting(struct softnet_data *sd)
4534 {
4535 #ifdef CONFIG_RPS
4536 return sd->rps_ipi_list != NULL;
4537 #else
4538 return false;
4539 #endif
4540 }
4541
4542 static int process_backlog(struct napi_struct *napi, int quota)
4543 {
4544 int work = 0;
4545 struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
4546
4547 /* Check if we have pending ipi, its better to send them now,
4548 * not waiting net_rx_action() end.
4549 */
4550 if (sd_has_rps_ipi_waiting(sd)) {
4551 local_irq_disable();
4552 net_rps_action_and_irq_enable(sd);
4553 }
4554
4555 napi->weight = weight_p;
4556 local_irq_disable();
4557 while (1) {
4558 struct sk_buff *skb;
4559
4560 while ((skb = __skb_dequeue(&sd->process_queue))) {
4561 rcu_read_lock();
4562 local_irq_enable();
4563 __netif_receive_skb(skb);
4564 rcu_read_unlock();
4565 local_irq_disable();
4566 input_queue_head_incr(sd);
4567 if (++work >= quota) {
4568 local_irq_enable();
4569 return work;
4570 }
4571 }
4572
4573 rps_lock(sd);
4574 if (skb_queue_empty(&sd->input_pkt_queue)) {
4575 /*
4576 * Inline a custom version of __napi_complete().
4577 * only current cpu owns and manipulates this napi,
4578 * and NAPI_STATE_SCHED is the only possible flag set
4579 * on backlog.
4580 * We can use a plain write instead of clear_bit(),
4581 * and we dont need an smp_mb() memory barrier.
4582 */
4583 napi->state = 0;
4584 rps_unlock(sd);
4585
4586 break;
4587 }
4588
4589 skb_queue_splice_tail_init(&sd->input_pkt_queue,
4590 &sd->process_queue);
4591 rps_unlock(sd);
4592 }
4593 local_irq_enable();
4594
4595 return work;
4596 }
4597
4598 /**
4599 * __napi_schedule - schedule for receive
4600 * @n: entry to schedule
4601 *
4602 * The entry's receive function will be scheduled to run.
4603 * Consider using __napi_schedule_irqoff() if hard irqs are masked.
4604 */
4605 void __napi_schedule(struct napi_struct *n)
4606 {
4607 unsigned long flags;
4608
4609 local_irq_save(flags);
4610 ____napi_schedule(this_cpu_ptr(&softnet_data), n);
4611 local_irq_restore(flags);
4612 }
4613 EXPORT_SYMBOL(__napi_schedule);
4614
4615 /**
4616 * __napi_schedule_irqoff - schedule for receive
4617 * @n: entry to schedule
4618 *
4619 * Variant of __napi_schedule() assuming hard irqs are masked
4620 */
4621 void __napi_schedule_irqoff(struct napi_struct *n)
4622 {
4623 ____napi_schedule(this_cpu_ptr(&softnet_data), n);
4624 }
4625 EXPORT_SYMBOL(__napi_schedule_irqoff);
4626
4627 void __napi_complete(struct napi_struct *n)
4628 {
4629 BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
4630
4631 list_del_init(&n->poll_list);
4632 smp_mb__before_atomic();
4633 clear_bit(NAPI_STATE_SCHED, &n->state);
4634 }
4635 EXPORT_SYMBOL(__napi_complete);
4636
4637 void napi_complete_done(struct napi_struct *n, int work_done)
4638 {
4639 unsigned long flags;
4640
4641 /*
4642 * don't let napi dequeue from the cpu poll list
4643 * just in case its running on a different cpu
4644 */
4645 if (unlikely(test_bit(NAPI_STATE_NPSVC, &n->state)))
4646 return;
4647
4648 if (n->gro_list) {
4649 unsigned long timeout = 0;
4650
4651 if (work_done)
4652 timeout = n->dev->gro_flush_timeout;
4653
4654 if (timeout)
4655 hrtimer_start(&n->timer, ns_to_ktime(timeout),
4656 HRTIMER_MODE_REL_PINNED);
4657 else
4658 napi_gro_flush(n, false);
4659 }
4660 if (likely(list_empty(&n->poll_list))) {
4661 WARN_ON_ONCE(!test_and_clear_bit(NAPI_STATE_SCHED, &n->state));
4662 } else {
4663 /* If n->poll_list is not empty, we need to mask irqs */
4664 local_irq_save(flags);
4665 __napi_complete(n);
4666 local_irq_restore(flags);
4667 }
4668 }
4669 EXPORT_SYMBOL(napi_complete_done);
4670
4671 /* must be called under rcu_read_lock(), as we dont take a reference */
4672 static struct napi_struct *napi_by_id(unsigned int napi_id)
4673 {
4674 unsigned int hash = napi_id % HASH_SIZE(napi_hash);
4675 struct napi_struct *napi;
4676
4677 hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
4678 if (napi->napi_id == napi_id)
4679 return napi;
4680
4681 return NULL;
4682 }
4683
4684 #if defined(CONFIG_NET_RX_BUSY_POLL)
4685 #define BUSY_POLL_BUDGET 8
4686 bool sk_busy_loop(struct sock *sk, int nonblock)
4687 {
4688 unsigned long end_time = !nonblock ? sk_busy_loop_end_time(sk) : 0;
4689 int (*busy_poll)(struct napi_struct *dev);
4690 struct napi_struct *napi;
4691 int rc = false;
4692
4693 rcu_read_lock();
4694
4695 napi = napi_by_id(sk->sk_napi_id);
4696 if (!napi)
4697 goto out;
4698
4699 /* Note: ndo_busy_poll method is optional in linux-4.5 */
4700 busy_poll = napi->dev->netdev_ops->ndo_busy_poll;
4701
4702 do {
4703 rc = 0;
4704 local_bh_disable();
4705 if (busy_poll) {
4706 rc = busy_poll(napi);
4707 } else if (napi_schedule_prep(napi)) {
4708 void *have = netpoll_poll_lock(napi);
4709
4710 if (test_bit(NAPI_STATE_SCHED, &napi->state)) {
4711 rc = napi->poll(napi, BUSY_POLL_BUDGET);
4712 trace_napi_poll(napi);
4713 if (rc == BUSY_POLL_BUDGET) {
4714 napi_complete_done(napi, rc);
4715 napi_schedule(napi);
4716 }
4717 }
4718 netpoll_poll_unlock(have);
4719 }
4720 if (rc > 0)
4721 NET_ADD_STATS_BH(sock_net(sk),
4722 LINUX_MIB_BUSYPOLLRXPACKETS, rc);
4723 local_bh_enable();
4724
4725 if (rc == LL_FLUSH_FAILED)
4726 break; /* permanent failure */
4727
4728 cpu_relax();
4729 } while (!nonblock && skb_queue_empty(&sk->sk_receive_queue) &&
4730 !need_resched() && !busy_loop_timeout(end_time));
4731
4732 rc = !skb_queue_empty(&sk->sk_receive_queue);
4733 out:
4734 rcu_read_unlock();
4735 return rc;
4736 }
4737 EXPORT_SYMBOL(sk_busy_loop);
4738
4739 #endif /* CONFIG_NET_RX_BUSY_POLL */
4740
4741 void napi_hash_add(struct napi_struct *napi)
4742 {
4743 if (test_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state) ||
4744 test_and_set_bit(NAPI_STATE_HASHED, &napi->state))
4745 return;
4746
4747 spin_lock(&napi_hash_lock);
4748
4749 /* 0..NR_CPUS+1 range is reserved for sender_cpu use */
4750 do {
4751 if (unlikely(++napi_gen_id < NR_CPUS + 1))
4752 napi_gen_id = NR_CPUS + 1;
4753 } while (napi_by_id(napi_gen_id));
4754 napi->napi_id = napi_gen_id;
4755
4756 hlist_add_head_rcu(&napi->napi_hash_node,
4757 &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]);
4758
4759 spin_unlock(&napi_hash_lock);
4760 }
4761 EXPORT_SYMBOL_GPL(napi_hash_add);
4762
4763 /* Warning : caller is responsible to make sure rcu grace period
4764 * is respected before freeing memory containing @napi
4765 */
4766 bool napi_hash_del(struct napi_struct *napi)
4767 {
4768 bool rcu_sync_needed = false;
4769
4770 spin_lock(&napi_hash_lock);
4771
4772 if (test_and_clear_bit(NAPI_STATE_HASHED, &napi->state)) {
4773 rcu_sync_needed = true;
4774 hlist_del_rcu(&napi->napi_hash_node);
4775 }
4776 spin_unlock(&napi_hash_lock);
4777 return rcu_sync_needed;
4778 }
4779 EXPORT_SYMBOL_GPL(napi_hash_del);
4780
4781 static enum hrtimer_restart napi_watchdog(struct hrtimer *timer)
4782 {
4783 struct napi_struct *napi;
4784
4785 napi = container_of(timer, struct napi_struct, timer);
4786 if (napi->gro_list)
4787 napi_schedule(napi);
4788
4789 return HRTIMER_NORESTART;
4790 }
4791
4792 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
4793 int (*poll)(struct napi_struct *, int), int weight)
4794 {
4795 INIT_LIST_HEAD(&napi->poll_list);
4796 hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
4797 napi->timer.function = napi_watchdog;
4798 napi->gro_count = 0;
4799 napi->gro_list = NULL;
4800 napi->skb = NULL;
4801 napi->poll = poll;
4802 if (weight > NAPI_POLL_WEIGHT)
4803 pr_err_once("netif_napi_add() called with weight %d on device %s\n",
4804 weight, dev->name);
4805 napi->weight = weight;
4806 list_add(&napi->dev_list, &dev->napi_list);
4807 napi->dev = dev;
4808 #ifdef CONFIG_NETPOLL
4809 spin_lock_init(&napi->poll_lock);
4810 napi->poll_owner = -1;
4811 #endif
4812 set_bit(NAPI_STATE_SCHED, &napi->state);
4813 napi_hash_add(napi);
4814 }
4815 EXPORT_SYMBOL(netif_napi_add);
4816
4817 void napi_disable(struct napi_struct *n)
4818 {
4819 might_sleep();
4820 set_bit(NAPI_STATE_DISABLE, &n->state);
4821
4822 while (test_and_set_bit(NAPI_STATE_SCHED, &n->state))
4823 msleep(1);
4824 while (test_and_set_bit(NAPI_STATE_NPSVC, &n->state))
4825 msleep(1);
4826
4827 hrtimer_cancel(&n->timer);
4828
4829 clear_bit(NAPI_STATE_DISABLE, &n->state);
4830 }
4831 EXPORT_SYMBOL(napi_disable);
4832
4833 /* Must be called in process context */
4834 void netif_napi_del(struct napi_struct *napi)
4835 {
4836 might_sleep();
4837 if (napi_hash_del(napi))
4838 synchronize_net();
4839 list_del_init(&napi->dev_list);
4840 napi_free_frags(napi);
4841
4842 kfree_skb_list(napi->gro_list);
4843 napi->gro_list = NULL;
4844 napi->gro_count = 0;
4845 }
4846 EXPORT_SYMBOL(netif_napi_del);
4847
4848 static int napi_poll(struct napi_struct *n, struct list_head *repoll)
4849 {
4850 void *have;
4851 int work, weight;
4852
4853 list_del_init(&n->poll_list);
4854
4855 have = netpoll_poll_lock(n);
4856
4857 weight = n->weight;
4858
4859 /* This NAPI_STATE_SCHED test is for avoiding a race
4860 * with netpoll's poll_napi(). Only the entity which
4861 * obtains the lock and sees NAPI_STATE_SCHED set will
4862 * actually make the ->poll() call. Therefore we avoid
4863 * accidentally calling ->poll() when NAPI is not scheduled.
4864 */
4865 work = 0;
4866 if (test_bit(NAPI_STATE_SCHED, &n->state)) {
4867 work = n->poll(n, weight);
4868 trace_napi_poll(n);
4869 }
4870
4871 WARN_ON_ONCE(work > weight);
4872
4873 if (likely(work < weight))
4874 goto out_unlock;
4875
4876 /* Drivers must not modify the NAPI state if they
4877 * consume the entire weight. In such cases this code
4878 * still "owns" the NAPI instance and therefore can
4879 * move the instance around on the list at-will.
4880 */
4881 if (unlikely(napi_disable_pending(n))) {
4882 napi_complete(n);
4883 goto out_unlock;
4884 }
4885
4886 if (n->gro_list) {
4887 /* flush too old packets
4888 * If HZ < 1000, flush all packets.
4889 */
4890 napi_gro_flush(n, HZ >= 1000);
4891 }
4892
4893 /* Some drivers may have called napi_schedule
4894 * prior to exhausting their budget.
4895 */
4896 if (unlikely(!list_empty(&n->poll_list))) {
4897 pr_warn_once("%s: Budget exhausted after napi rescheduled\n",
4898 n->dev ? n->dev->name : "backlog");
4899 goto out_unlock;
4900 }
4901
4902 list_add_tail(&n->poll_list, repoll);
4903
4904 out_unlock:
4905 netpoll_poll_unlock(have);
4906
4907 return work;
4908 }
4909
4910 static void net_rx_action(struct softirq_action *h)
4911 {
4912 struct softnet_data *sd = this_cpu_ptr(&softnet_data);
4913 unsigned long time_limit = jiffies + 2;
4914 int budget = netdev_budget;
4915 LIST_HEAD(list);
4916 LIST_HEAD(repoll);
4917
4918 local_irq_disable();
4919 list_splice_init(&sd->poll_list, &list);
4920 local_irq_enable();
4921
4922 for (;;) {
4923 struct napi_struct *n;
4924
4925 if (list_empty(&list)) {
4926 if (!sd_has_rps_ipi_waiting(sd) && list_empty(&repoll))
4927 return;
4928 break;
4929 }
4930
4931 n = list_first_entry(&list, struct napi_struct, poll_list);
4932 budget -= napi_poll(n, &repoll);
4933
4934 /* If softirq window is exhausted then punt.
4935 * Allow this to run for 2 jiffies since which will allow
4936 * an average latency of 1.5/HZ.
4937 */
4938 if (unlikely(budget <= 0 ||
4939 time_after_eq(jiffies, time_limit))) {
4940 sd->time_squeeze++;
4941 break;
4942 }
4943 }
4944
4945 local_irq_disable();
4946
4947 list_splice_tail_init(&sd->poll_list, &list);
4948 list_splice_tail(&repoll, &list);
4949 list_splice(&list, &sd->poll_list);
4950 if (!list_empty(&sd->poll_list))
4951 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
4952
4953 net_rps_action_and_irq_enable(sd);
4954 }
4955
4956 struct netdev_adjacent {
4957 struct net_device *dev;
4958
4959 /* upper master flag, there can only be one master device per list */
4960 bool master;
4961
4962 /* counter for the number of times this device was added to us */
4963 u16 ref_nr;
4964
4965 /* private field for the users */
4966 void *private;
4967
4968 struct list_head list;
4969 struct rcu_head rcu;
4970 };
4971
4972 static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev,
4973 struct list_head *adj_list)
4974 {
4975 struct netdev_adjacent *adj;
4976
4977 list_for_each_entry(adj, adj_list, list) {
4978 if (adj->dev == adj_dev)
4979 return adj;
4980 }
4981 return NULL;
4982 }
4983
4984 /**
4985 * netdev_has_upper_dev - Check if device is linked to an upper device
4986 * @dev: device
4987 * @upper_dev: upper device to check
4988 *
4989 * Find out if a device is linked to specified upper device and return true
4990 * in case it is. Note that this checks only immediate upper device,
4991 * not through a complete stack of devices. The caller must hold the RTNL lock.
4992 */
4993 bool netdev_has_upper_dev(struct net_device *dev,
4994 struct net_device *upper_dev)
4995 {
4996 ASSERT_RTNL();
4997
4998 return __netdev_find_adj(upper_dev, &dev->all_adj_list.upper);
4999 }
5000 EXPORT_SYMBOL(netdev_has_upper_dev);
5001
5002 /**
5003 * netdev_has_any_upper_dev - Check if device is linked to some device
5004 * @dev: device
5005 *
5006 * Find out if a device is linked to an upper device and return true in case
5007 * it is. The caller must hold the RTNL lock.
5008 */
5009 static bool netdev_has_any_upper_dev(struct net_device *dev)
5010 {
5011 ASSERT_RTNL();
5012
5013 return !list_empty(&dev->all_adj_list.upper);
5014 }
5015
5016 /**
5017 * netdev_master_upper_dev_get - Get master upper device
5018 * @dev: device
5019 *
5020 * Find a master upper device and return pointer to it or NULL in case
5021 * it's not there. The caller must hold the RTNL lock.
5022 */
5023 struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
5024 {
5025 struct netdev_adjacent *upper;
5026
5027 ASSERT_RTNL();
5028
5029 if (list_empty(&dev->adj_list.upper))
5030 return NULL;
5031
5032 upper = list_first_entry(&dev->adj_list.upper,
5033 struct netdev_adjacent, list);
5034 if (likely(upper->master))
5035 return upper->dev;
5036 return NULL;
5037 }
5038 EXPORT_SYMBOL(netdev_master_upper_dev_get);
5039
5040 void *netdev_adjacent_get_private(struct list_head *adj_list)
5041 {
5042 struct netdev_adjacent *adj;
5043
5044 adj = list_entry(adj_list, struct netdev_adjacent, list);
5045
5046 return adj->private;
5047 }
5048 EXPORT_SYMBOL(netdev_adjacent_get_private);
5049
5050 /**
5051 * netdev_upper_get_next_dev_rcu - Get the next dev from upper list
5052 * @dev: device
5053 * @iter: list_head ** of the current position
5054 *
5055 * Gets the next device from the dev's upper list, starting from iter
5056 * position. The caller must hold RCU read lock.
5057 */
5058 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
5059 struct list_head **iter)
5060 {
5061 struct netdev_adjacent *upper;
5062
5063 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
5064
5065 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
5066
5067 if (&upper->list == &dev->adj_list.upper)
5068 return NULL;
5069
5070 *iter = &upper->list;
5071
5072 return upper->dev;
5073 }
5074 EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu);
5075
5076 /**
5077 * netdev_all_upper_get_next_dev_rcu - Get the next dev from upper list
5078 * @dev: device
5079 * @iter: list_head ** of the current position
5080 *
5081 * Gets the next device from the dev's upper list, starting from iter
5082 * position. The caller must hold RCU read lock.
5083 */
5084 struct net_device *netdev_all_upper_get_next_dev_rcu(struct net_device *dev,
5085 struct list_head **iter)
5086 {
5087 struct netdev_adjacent *upper;
5088
5089 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
5090
5091 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
5092
5093 if (&upper->list == &dev->all_adj_list.upper)
5094 return NULL;
5095
5096 *iter = &upper->list;
5097
5098 return upper->dev;
5099 }
5100 EXPORT_SYMBOL(netdev_all_upper_get_next_dev_rcu);
5101
5102 /**
5103 * netdev_lower_get_next_private - Get the next ->private from the
5104 * lower neighbour list
5105 * @dev: device
5106 * @iter: list_head ** of the current position
5107 *
5108 * Gets the next netdev_adjacent->private from the dev's lower neighbour
5109 * list, starting from iter position. The caller must hold either hold the
5110 * RTNL lock or its own locking that guarantees that the neighbour lower
5111 * list will remain unchanged.
5112 */
5113 void *netdev_lower_get_next_private(struct net_device *dev,
5114 struct list_head **iter)
5115 {
5116 struct netdev_adjacent *lower;
5117
5118 lower = list_entry(*iter, struct netdev_adjacent, list);
5119
5120 if (&lower->list == &dev->adj_list.lower)
5121 return NULL;
5122
5123 *iter = lower->list.next;
5124
5125 return lower->private;
5126 }
5127 EXPORT_SYMBOL(netdev_lower_get_next_private);
5128
5129 /**
5130 * netdev_lower_get_next_private_rcu - Get the next ->private from the
5131 * lower neighbour list, RCU
5132 * variant
5133 * @dev: device
5134 * @iter: list_head ** of the current position
5135 *
5136 * Gets the next netdev_adjacent->private from the dev's lower neighbour
5137 * list, starting from iter position. The caller must hold RCU read lock.
5138 */
5139 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
5140 struct list_head **iter)
5141 {
5142 struct netdev_adjacent *lower;
5143
5144 WARN_ON_ONCE(!rcu_read_lock_held());
5145
5146 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
5147
5148 if (&lower->list == &dev->adj_list.lower)
5149 return NULL;
5150
5151 *iter = &lower->list;
5152
5153 return lower->private;
5154 }
5155 EXPORT_SYMBOL(netdev_lower_get_next_private_rcu);
5156
5157 /**
5158 * netdev_lower_get_next - Get the next device from the lower neighbour
5159 * list
5160 * @dev: device
5161 * @iter: list_head ** of the current position
5162 *
5163 * Gets the next netdev_adjacent from the dev's lower neighbour
5164 * list, starting from iter position. The caller must hold RTNL lock or
5165 * its own locking that guarantees that the neighbour lower
5166 * list will remain unchanged.
5167 */
5168 void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter)
5169 {
5170 struct netdev_adjacent *lower;
5171
5172 lower = list_entry((*iter)->next, struct netdev_adjacent, list);
5173
5174 if (&lower->list == &dev->adj_list.lower)
5175 return NULL;
5176
5177 *iter = &lower->list;
5178
5179 return lower->dev;
5180 }
5181 EXPORT_SYMBOL(netdev_lower_get_next);
5182
5183 /**
5184 * netdev_lower_get_first_private_rcu - Get the first ->private from the
5185 * lower neighbour list, RCU
5186 * variant
5187 * @dev: device
5188 *
5189 * Gets the first netdev_adjacent->private from the dev's lower neighbour
5190 * list. The caller must hold RCU read lock.
5191 */
5192 void *netdev_lower_get_first_private_rcu(struct net_device *dev)
5193 {
5194 struct netdev_adjacent *lower;
5195
5196 lower = list_first_or_null_rcu(&dev->adj_list.lower,
5197 struct netdev_adjacent, list);
5198 if (lower)
5199 return lower->private;
5200 return NULL;
5201 }
5202 EXPORT_SYMBOL(netdev_lower_get_first_private_rcu);
5203
5204 /**
5205 * netdev_master_upper_dev_get_rcu - Get master upper device
5206 * @dev: device
5207 *
5208 * Find a master upper device and return pointer to it or NULL in case
5209 * it's not there. The caller must hold the RCU read lock.
5210 */
5211 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
5212 {
5213 struct netdev_adjacent *upper;
5214
5215 upper = list_first_or_null_rcu(&dev->adj_list.upper,
5216 struct netdev_adjacent, list);
5217 if (upper && likely(upper->master))
5218 return upper->dev;
5219 return NULL;
5220 }
5221 EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
5222
5223 static int netdev_adjacent_sysfs_add(struct net_device *dev,
5224 struct net_device *adj_dev,
5225 struct list_head *dev_list)
5226 {
5227 char linkname[IFNAMSIZ+7];
5228 sprintf(linkname, dev_list == &dev->adj_list.upper ?
5229 "upper_%s" : "lower_%s", adj_dev->name);
5230 return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj),
5231 linkname);
5232 }
5233 static void netdev_adjacent_sysfs_del(struct net_device *dev,
5234 char *name,
5235 struct list_head *dev_list)
5236 {
5237 char linkname[IFNAMSIZ+7];
5238 sprintf(linkname, dev_list == &dev->adj_list.upper ?
5239 "upper_%s" : "lower_%s", name);
5240 sysfs_remove_link(&(dev->dev.kobj), linkname);
5241 }
5242
5243 static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev,
5244 struct net_device *adj_dev,
5245 struct list_head *dev_list)
5246 {
5247 return (dev_list == &dev->adj_list.upper ||
5248 dev_list == &dev->adj_list.lower) &&
5249 net_eq(dev_net(dev), dev_net(adj_dev));
5250 }
5251
5252 static int __netdev_adjacent_dev_insert(struct net_device *dev,
5253 struct net_device *adj_dev,
5254 struct list_head *dev_list,
5255 void *private, bool master)
5256 {
5257 struct netdev_adjacent *adj;
5258 int ret;
5259
5260 adj = __netdev_find_adj(adj_dev, dev_list);
5261
5262 if (adj) {
5263 adj->ref_nr++;
5264 return 0;
5265 }
5266
5267 adj = kmalloc(sizeof(*adj), GFP_KERNEL);
5268 if (!adj)
5269 return -ENOMEM;
5270
5271 adj->dev = adj_dev;
5272 adj->master = master;
5273 adj->ref_nr = 1;
5274 adj->private = private;
5275 dev_hold(adj_dev);
5276
5277 pr_debug("dev_hold for %s, because of link added from %s to %s\n",
5278 adj_dev->name, dev->name, adj_dev->name);
5279
5280 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) {
5281 ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list);
5282 if (ret)
5283 goto free_adj;
5284 }
5285
5286 /* Ensure that master link is always the first item in list. */
5287 if (master) {
5288 ret = sysfs_create_link(&(dev->dev.kobj),
5289 &(adj_dev->dev.kobj), "master");
5290 if (ret)
5291 goto remove_symlinks;
5292
5293 list_add_rcu(&adj->list, dev_list);
5294 } else {
5295 list_add_tail_rcu(&adj->list, dev_list);
5296 }
5297
5298 return 0;
5299
5300 remove_symlinks:
5301 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
5302 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
5303 free_adj:
5304 kfree(adj);
5305 dev_put(adj_dev);
5306
5307 return ret;
5308 }
5309
5310 static void __netdev_adjacent_dev_remove(struct net_device *dev,
5311 struct net_device *adj_dev,
5312 struct list_head *dev_list)
5313 {
5314 struct netdev_adjacent *adj;
5315
5316 adj = __netdev_find_adj(adj_dev, dev_list);
5317
5318 if (!adj) {
5319 pr_err("tried to remove device %s from %s\n",
5320 dev->name, adj_dev->name);
5321 BUG();
5322 }
5323
5324 if (adj->ref_nr > 1) {
5325 pr_debug("%s to %s ref_nr-- = %d\n", dev->name, adj_dev->name,
5326 adj->ref_nr-1);
5327 adj->ref_nr--;
5328 return;
5329 }
5330
5331 if (adj->master)
5332 sysfs_remove_link(&(dev->dev.kobj), "master");
5333
5334 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
5335 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
5336
5337 list_del_rcu(&adj->list);
5338 pr_debug("dev_put for %s, because link removed from %s to %s\n",
5339 adj_dev->name, dev->name, adj_dev->name);
5340 dev_put(adj_dev);
5341 kfree_rcu(adj, rcu);
5342 }
5343
5344 static int __netdev_adjacent_dev_link_lists(struct net_device *dev,
5345 struct net_device *upper_dev,
5346 struct list_head *up_list,
5347 struct list_head *down_list,
5348 void *private, bool master)
5349 {
5350 int ret;
5351
5352 ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list, private,
5353 master);
5354 if (ret)
5355 return ret;
5356
5357 ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list, private,
5358 false);
5359 if (ret) {
5360 __netdev_adjacent_dev_remove(dev, upper_dev, up_list);
5361 return ret;
5362 }
5363
5364 return 0;
5365 }
5366
5367 static int __netdev_adjacent_dev_link(struct net_device *dev,
5368 struct net_device *upper_dev)
5369 {
5370 return __netdev_adjacent_dev_link_lists(dev, upper_dev,
5371 &dev->all_adj_list.upper,
5372 &upper_dev->all_adj_list.lower,
5373 NULL, false);
5374 }
5375
5376 static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev,
5377 struct net_device *upper_dev,
5378 struct list_head *up_list,
5379 struct list_head *down_list)
5380 {
5381 __netdev_adjacent_dev_remove(dev, upper_dev, up_list);
5382 __netdev_adjacent_dev_remove(upper_dev, dev, down_list);
5383 }
5384
5385 static void __netdev_adjacent_dev_unlink(struct net_device *dev,
5386 struct net_device *upper_dev)
5387 {
5388 __netdev_adjacent_dev_unlink_lists(dev, upper_dev,
5389 &dev->all_adj_list.upper,
5390 &upper_dev->all_adj_list.lower);
5391 }
5392
5393 static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev,
5394 struct net_device *upper_dev,
5395 void *private, bool master)
5396 {
5397 int ret = __netdev_adjacent_dev_link(dev, upper_dev);
5398
5399 if (ret)
5400 return ret;
5401
5402 ret = __netdev_adjacent_dev_link_lists(dev, upper_dev,
5403 &dev->adj_list.upper,
5404 &upper_dev->adj_list.lower,
5405 private, master);
5406 if (ret) {
5407 __netdev_adjacent_dev_unlink(dev, upper_dev);
5408 return ret;
5409 }
5410
5411 return 0;
5412 }
5413
5414 static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev,
5415 struct net_device *upper_dev)
5416 {
5417 __netdev_adjacent_dev_unlink(dev, upper_dev);
5418 __netdev_adjacent_dev_unlink_lists(dev, upper_dev,
5419 &dev->adj_list.upper,
5420 &upper_dev->adj_list.lower);
5421 }
5422
5423 static int __netdev_upper_dev_link(struct net_device *dev,
5424 struct net_device *upper_dev, bool master,
5425 void *upper_priv, void *upper_info)
5426 {
5427 struct netdev_notifier_changeupper_info changeupper_info;
5428 struct netdev_adjacent *i, *j, *to_i, *to_j;
5429 int ret = 0;
5430
5431 ASSERT_RTNL();
5432
5433 if (dev == upper_dev)
5434 return -EBUSY;
5435
5436 /* To prevent loops, check if dev is not upper device to upper_dev. */
5437 if (__netdev_find_adj(dev, &upper_dev->all_adj_list.upper))
5438 return -EBUSY;
5439
5440 if (__netdev_find_adj(upper_dev, &dev->adj_list.upper))
5441 return -EEXIST;
5442
5443 if (master && netdev_master_upper_dev_get(dev))
5444 return -EBUSY;
5445
5446 changeupper_info.upper_dev = upper_dev;
5447 changeupper_info.master = master;
5448 changeupper_info.linking = true;
5449 changeupper_info.upper_info = upper_info;
5450
5451 ret = call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER, dev,
5452 &changeupper_info.info);
5453 ret = notifier_to_errno(ret);
5454 if (ret)
5455 return ret;
5456
5457 ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, upper_priv,
5458 master);
5459 if (ret)
5460 return ret;
5461
5462 /* Now that we linked these devs, make all the upper_dev's
5463 * all_adj_list.upper visible to every dev's all_adj_list.lower an
5464 * versa, and don't forget the devices itself. All of these
5465 * links are non-neighbours.
5466 */
5467 list_for_each_entry(i, &dev->all_adj_list.lower, list) {
5468 list_for_each_entry(j, &upper_dev->all_adj_list.upper, list) {
5469 pr_debug("Interlinking %s with %s, non-neighbour\n",
5470 i->dev->name, j->dev->name);
5471 ret = __netdev_adjacent_dev_link(i->dev, j->dev);
5472 if (ret)
5473 goto rollback_mesh;
5474 }
5475 }
5476
5477 /* add dev to every upper_dev's upper device */
5478 list_for_each_entry(i, &upper_dev->all_adj_list.upper, list) {
5479 pr_debug("linking %s's upper device %s with %s\n",
5480 upper_dev->name, i->dev->name, dev->name);
5481 ret = __netdev_adjacent_dev_link(dev, i->dev);
5482 if (ret)
5483 goto rollback_upper_mesh;
5484 }
5485
5486 /* add upper_dev to every dev's lower device */
5487 list_for_each_entry(i, &dev->all_adj_list.lower, list) {
5488 pr_debug("linking %s's lower device %s with %s\n", dev->name,
5489 i->dev->name, upper_dev->name);
5490 ret = __netdev_adjacent_dev_link(i->dev, upper_dev);
5491 if (ret)
5492 goto rollback_lower_mesh;
5493 }
5494
5495 ret = call_netdevice_notifiers_info(NETDEV_CHANGEUPPER, dev,
5496 &changeupper_info.info);
5497 ret = notifier_to_errno(ret);
5498 if (ret)
5499 goto rollback_lower_mesh;
5500
5501 return 0;
5502
5503 rollback_lower_mesh:
5504 to_i = i;
5505 list_for_each_entry(i, &dev->all_adj_list.lower, list) {
5506 if (i == to_i)
5507 break;
5508 __netdev_adjacent_dev_unlink(i->dev, upper_dev);
5509 }
5510
5511 i = NULL;
5512
5513 rollback_upper_mesh:
5514 to_i = i;
5515 list_for_each_entry(i, &upper_dev->all_adj_list.upper, list) {
5516 if (i == to_i)
5517 break;
5518 __netdev_adjacent_dev_unlink(dev, i->dev);
5519 }
5520
5521 i = j = NULL;
5522
5523 rollback_mesh:
5524 to_i = i;
5525 to_j = j;
5526 list_for_each_entry(i, &dev->all_adj_list.lower, list) {
5527 list_for_each_entry(j, &upper_dev->all_adj_list.upper, list) {
5528 if (i == to_i && j == to_j)
5529 break;
5530 __netdev_adjacent_dev_unlink(i->dev, j->dev);
5531 }
5532 if (i == to_i)
5533 break;
5534 }
5535
5536 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
5537
5538 return ret;
5539 }
5540
5541 /**
5542 * netdev_upper_dev_link - Add a link to the upper device
5543 * @dev: device
5544 * @upper_dev: new upper device
5545 *
5546 * Adds a link to device which is upper to this one. The caller must hold
5547 * the RTNL lock. On a failure a negative errno code is returned.
5548 * On success the reference counts are adjusted and the function
5549 * returns zero.
5550 */
5551 int netdev_upper_dev_link(struct net_device *dev,
5552 struct net_device *upper_dev)
5553 {
5554 return __netdev_upper_dev_link(dev, upper_dev, false, NULL, NULL);
5555 }
5556 EXPORT_SYMBOL(netdev_upper_dev_link);
5557
5558 /**
5559 * netdev_master_upper_dev_link - Add a master link to the upper device
5560 * @dev: device
5561 * @upper_dev: new upper device
5562 * @upper_priv: upper device private
5563 * @upper_info: upper info to be passed down via notifier
5564 *
5565 * Adds a link to device which is upper to this one. In this case, only
5566 * one master upper device can be linked, although other non-master devices
5567 * might be linked as well. The caller must hold the RTNL lock.
5568 * On a failure a negative errno code is returned. On success the reference
5569 * counts are adjusted and the function returns zero.
5570 */
5571 int netdev_master_upper_dev_link(struct net_device *dev,
5572 struct net_device *upper_dev,
5573 void *upper_priv, void *upper_info)
5574 {
5575 return __netdev_upper_dev_link(dev, upper_dev, true,
5576 upper_priv, upper_info);
5577 }
5578 EXPORT_SYMBOL(netdev_master_upper_dev_link);
5579
5580 /**
5581 * netdev_upper_dev_unlink - Removes a link to upper device
5582 * @dev: device
5583 * @upper_dev: new upper device
5584 *
5585 * Removes a link to device which is upper to this one. The caller must hold
5586 * the RTNL lock.
5587 */
5588 void netdev_upper_dev_unlink(struct net_device *dev,
5589 struct net_device *upper_dev)
5590 {
5591 struct netdev_notifier_changeupper_info changeupper_info;
5592 struct netdev_adjacent *i, *j;
5593 ASSERT_RTNL();
5594
5595 changeupper_info.upper_dev = upper_dev;
5596 changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev;
5597 changeupper_info.linking = false;
5598
5599 call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER, dev,
5600 &changeupper_info.info);
5601
5602 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
5603
5604 /* Here is the tricky part. We must remove all dev's lower
5605 * devices from all upper_dev's upper devices and vice
5606 * versa, to maintain the graph relationship.
5607 */
5608 list_for_each_entry(i, &dev->all_adj_list.lower, list)
5609 list_for_each_entry(j, &upper_dev->all_adj_list.upper, list)
5610 __netdev_adjacent_dev_unlink(i->dev, j->dev);
5611
5612 /* remove also the devices itself from lower/upper device
5613 * list
5614 */
5615 list_for_each_entry(i, &dev->all_adj_list.lower, list)
5616 __netdev_adjacent_dev_unlink(i->dev, upper_dev);
5617
5618 list_for_each_entry(i, &upper_dev->all_adj_list.upper, list)
5619 __netdev_adjacent_dev_unlink(dev, i->dev);
5620
5621 call_netdevice_notifiers_info(NETDEV_CHANGEUPPER, dev,
5622 &changeupper_info.info);
5623 }
5624 EXPORT_SYMBOL(netdev_upper_dev_unlink);
5625
5626 /**
5627 * netdev_bonding_info_change - Dispatch event about slave change
5628 * @dev: device
5629 * @bonding_info: info to dispatch
5630 *
5631 * Send NETDEV_BONDING_INFO to netdev notifiers with info.
5632 * The caller must hold the RTNL lock.
5633 */
5634 void netdev_bonding_info_change(struct net_device *dev,
5635 struct netdev_bonding_info *bonding_info)
5636 {
5637 struct netdev_notifier_bonding_info info;
5638
5639 memcpy(&info.bonding_info, bonding_info,
5640 sizeof(struct netdev_bonding_info));
5641 call_netdevice_notifiers_info(NETDEV_BONDING_INFO, dev,
5642 &info.info);
5643 }
5644 EXPORT_SYMBOL(netdev_bonding_info_change);
5645
5646 static void netdev_adjacent_add_links(struct net_device *dev)
5647 {
5648 struct netdev_adjacent *iter;
5649
5650 struct net *net = dev_net(dev);
5651
5652 list_for_each_entry(iter, &dev->adj_list.upper, list) {
5653 if (!net_eq(net,dev_net(iter->dev)))
5654 continue;
5655 netdev_adjacent_sysfs_add(iter->dev, dev,
5656 &iter->dev->adj_list.lower);
5657 netdev_adjacent_sysfs_add(dev, iter->dev,
5658 &dev->adj_list.upper);
5659 }
5660
5661 list_for_each_entry(iter, &dev->adj_list.lower, list) {
5662 if (!net_eq(net,dev_net(iter->dev)))
5663 continue;
5664 netdev_adjacent_sysfs_add(iter->dev, dev,
5665 &iter->dev->adj_list.upper);
5666 netdev_adjacent_sysfs_add(dev, iter->dev,
5667 &dev->adj_list.lower);
5668 }
5669 }
5670
5671 static void netdev_adjacent_del_links(struct net_device *dev)
5672 {
5673 struct netdev_adjacent *iter;
5674
5675 struct net *net = dev_net(dev);
5676
5677 list_for_each_entry(iter, &dev->adj_list.upper, list) {
5678 if (!net_eq(net,dev_net(iter->dev)))
5679 continue;
5680 netdev_adjacent_sysfs_del(iter->dev, dev->name,
5681 &iter->dev->adj_list.lower);
5682 netdev_adjacent_sysfs_del(dev, iter->dev->name,
5683 &dev->adj_list.upper);
5684 }
5685
5686 list_for_each_entry(iter, &dev->adj_list.lower, list) {
5687 if (!net_eq(net,dev_net(iter->dev)))
5688 continue;
5689 netdev_adjacent_sysfs_del(iter->dev, dev->name,
5690 &iter->dev->adj_list.upper);
5691 netdev_adjacent_sysfs_del(dev, iter->dev->name,
5692 &dev->adj_list.lower);
5693 }
5694 }
5695
5696 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname)
5697 {
5698 struct netdev_adjacent *iter;
5699
5700 struct net *net = dev_net(dev);
5701
5702 list_for_each_entry(iter, &dev->adj_list.upper, list) {
5703 if (!net_eq(net,dev_net(iter->dev)))
5704 continue;
5705 netdev_adjacent_sysfs_del(iter->dev, oldname,
5706 &iter->dev->adj_list.lower);
5707 netdev_adjacent_sysfs_add(iter->dev, dev,
5708 &iter->dev->adj_list.lower);
5709 }
5710
5711 list_for_each_entry(iter, &dev->adj_list.lower, list) {
5712 if (!net_eq(net,dev_net(iter->dev)))
5713 continue;
5714 netdev_adjacent_sysfs_del(iter->dev, oldname,
5715 &iter->dev->adj_list.upper);
5716 netdev_adjacent_sysfs_add(iter->dev, dev,
5717 &iter->dev->adj_list.upper);
5718 }
5719 }
5720
5721 void *netdev_lower_dev_get_private(struct net_device *dev,
5722 struct net_device *lower_dev)
5723 {
5724 struct netdev_adjacent *lower;
5725
5726 if (!lower_dev)
5727 return NULL;
5728 lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower);
5729 if (!lower)
5730 return NULL;
5731
5732 return lower->private;
5733 }
5734 EXPORT_SYMBOL(netdev_lower_dev_get_private);
5735
5736
5737 int dev_get_nest_level(struct net_device *dev,
5738 bool (*type_check)(const struct net_device *dev))
5739 {
5740 struct net_device *lower = NULL;
5741 struct list_head *iter;
5742 int max_nest = -1;
5743 int nest;
5744
5745 ASSERT_RTNL();
5746
5747 netdev_for_each_lower_dev(dev, lower, iter) {
5748 nest = dev_get_nest_level(lower, type_check);
5749 if (max_nest < nest)
5750 max_nest = nest;
5751 }
5752
5753 if (type_check(dev))
5754 max_nest++;
5755
5756 return max_nest;
5757 }
5758 EXPORT_SYMBOL(dev_get_nest_level);
5759
5760 /**
5761 * netdev_lower_change - Dispatch event about lower device state change
5762 * @lower_dev: device
5763 * @lower_state_info: state to dispatch
5764 *
5765 * Send NETDEV_CHANGELOWERSTATE to netdev notifiers with info.
5766 * The caller must hold the RTNL lock.
5767 */
5768 void netdev_lower_state_changed(struct net_device *lower_dev,
5769 void *lower_state_info)
5770 {
5771 struct netdev_notifier_changelowerstate_info changelowerstate_info;
5772
5773 ASSERT_RTNL();
5774 changelowerstate_info.lower_state_info = lower_state_info;
5775 call_netdevice_notifiers_info(NETDEV_CHANGELOWERSTATE, lower_dev,
5776 &changelowerstate_info.info);
5777 }
5778 EXPORT_SYMBOL(netdev_lower_state_changed);
5779
5780 static void dev_change_rx_flags(struct net_device *dev, int flags)
5781 {
5782 const struct net_device_ops *ops = dev->netdev_ops;
5783
5784 if (ops->ndo_change_rx_flags)
5785 ops->ndo_change_rx_flags(dev, flags);
5786 }
5787
5788 static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify)
5789 {
5790 unsigned int old_flags = dev->flags;
5791 kuid_t uid;
5792 kgid_t gid;
5793
5794 ASSERT_RTNL();
5795
5796 dev->flags |= IFF_PROMISC;
5797 dev->promiscuity += inc;
5798 if (dev->promiscuity == 0) {
5799 /*
5800 * Avoid overflow.
5801 * If inc causes overflow, untouch promisc and return error.
5802 */
5803 if (inc < 0)
5804 dev->flags &= ~IFF_PROMISC;
5805 else {
5806 dev->promiscuity -= inc;
5807 pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n",
5808 dev->name);
5809 return -EOVERFLOW;
5810 }
5811 }
5812 if (dev->flags != old_flags) {
5813 pr_info("device %s %s promiscuous mode\n",
5814 dev->name,
5815 dev->flags & IFF_PROMISC ? "entered" : "left");
5816 if (audit_enabled) {
5817 current_uid_gid(&uid, &gid);
5818 audit_log(current->audit_context, GFP_ATOMIC,
5819 AUDIT_ANOM_PROMISCUOUS,
5820 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
5821 dev->name, (dev->flags & IFF_PROMISC),
5822 (old_flags & IFF_PROMISC),
5823 from_kuid(&init_user_ns, audit_get_loginuid(current)),
5824 from_kuid(&init_user_ns, uid),
5825 from_kgid(&init_user_ns, gid),
5826 audit_get_sessionid(current));
5827 }
5828
5829 dev_change_rx_flags(dev, IFF_PROMISC);
5830 }
5831 if (notify)
5832 __dev_notify_flags(dev, old_flags, IFF_PROMISC);
5833 return 0;
5834 }
5835
5836 /**
5837 * dev_set_promiscuity - update promiscuity count on a device
5838 * @dev: device
5839 * @inc: modifier
5840 *
5841 * Add or remove promiscuity from a device. While the count in the device
5842 * remains above zero the interface remains promiscuous. Once it hits zero
5843 * the device reverts back to normal filtering operation. A negative inc
5844 * value is used to drop promiscuity on the device.
5845 * Return 0 if successful or a negative errno code on error.
5846 */
5847 int dev_set_promiscuity(struct net_device *dev, int inc)
5848 {
5849 unsigned int old_flags = dev->flags;
5850 int err;
5851
5852 err = __dev_set_promiscuity(dev, inc, true);
5853 if (err < 0)
5854 return err;
5855 if (dev->flags != old_flags)
5856 dev_set_rx_mode(dev);
5857 return err;
5858 }
5859 EXPORT_SYMBOL(dev_set_promiscuity);
5860
5861 static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify)
5862 {
5863 unsigned int old_flags = dev->flags, old_gflags = dev->gflags;
5864
5865 ASSERT_RTNL();
5866
5867 dev->flags |= IFF_ALLMULTI;
5868 dev->allmulti += inc;
5869 if (dev->allmulti == 0) {
5870 /*
5871 * Avoid overflow.
5872 * If inc causes overflow, untouch allmulti and return error.
5873 */
5874 if (inc < 0)
5875 dev->flags &= ~IFF_ALLMULTI;
5876 else {
5877 dev->allmulti -= inc;
5878 pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n",
5879 dev->name);
5880 return -EOVERFLOW;
5881 }
5882 }
5883 if (dev->flags ^ old_flags) {
5884 dev_change_rx_flags(dev, IFF_ALLMULTI);
5885 dev_set_rx_mode(dev);
5886 if (notify)
5887 __dev_notify_flags(dev, old_flags,
5888 dev->gflags ^ old_gflags);
5889 }
5890 return 0;
5891 }
5892
5893 /**
5894 * dev_set_allmulti - update allmulti count on a device
5895 * @dev: device
5896 * @inc: modifier
5897 *
5898 * Add or remove reception of all multicast frames to a device. While the
5899 * count in the device remains above zero the interface remains listening
5900 * to all interfaces. Once it hits zero the device reverts back to normal
5901 * filtering operation. A negative @inc value is used to drop the counter
5902 * when releasing a resource needing all multicasts.
5903 * Return 0 if successful or a negative errno code on error.
5904 */
5905
5906 int dev_set_allmulti(struct net_device *dev, int inc)
5907 {
5908 return __dev_set_allmulti(dev, inc, true);
5909 }
5910 EXPORT_SYMBOL(dev_set_allmulti);
5911
5912 /*
5913 * Upload unicast and multicast address lists to device and
5914 * configure RX filtering. When the device doesn't support unicast
5915 * filtering it is put in promiscuous mode while unicast addresses
5916 * are present.
5917 */
5918 void __dev_set_rx_mode(struct net_device *dev)
5919 {
5920 const struct net_device_ops *ops = dev->netdev_ops;
5921
5922 /* dev_open will call this function so the list will stay sane. */
5923 if (!(dev->flags&IFF_UP))
5924 return;
5925
5926 if (!netif_device_present(dev))
5927 return;
5928
5929 if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
5930 /* Unicast addresses changes may only happen under the rtnl,
5931 * therefore calling __dev_set_promiscuity here is safe.
5932 */
5933 if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
5934 __dev_set_promiscuity(dev, 1, false);
5935 dev->uc_promisc = true;
5936 } else if (netdev_uc_empty(dev) && dev->uc_promisc) {
5937 __dev_set_promiscuity(dev, -1, false);
5938 dev->uc_promisc = false;
5939 }
5940 }
5941
5942 if (ops->ndo_set_rx_mode)
5943 ops->ndo_set_rx_mode(dev);
5944 }
5945
5946 void dev_set_rx_mode(struct net_device *dev)
5947 {
5948 netif_addr_lock_bh(dev);
5949 __dev_set_rx_mode(dev);
5950 netif_addr_unlock_bh(dev);
5951 }
5952
5953 /**
5954 * dev_get_flags - get flags reported to userspace
5955 * @dev: device
5956 *
5957 * Get the combination of flag bits exported through APIs to userspace.
5958 */
5959 unsigned int dev_get_flags(const struct net_device *dev)
5960 {
5961 unsigned int flags;
5962
5963 flags = (dev->flags & ~(IFF_PROMISC |
5964 IFF_ALLMULTI |
5965 IFF_RUNNING |
5966 IFF_LOWER_UP |
5967 IFF_DORMANT)) |
5968 (dev->gflags & (IFF_PROMISC |
5969 IFF_ALLMULTI));
5970
5971 if (netif_running(dev)) {
5972 if (netif_oper_up(dev))
5973 flags |= IFF_RUNNING;
5974 if (netif_carrier_ok(dev))
5975 flags |= IFF_LOWER_UP;
5976 if (netif_dormant(dev))
5977 flags |= IFF_DORMANT;
5978 }
5979
5980 return flags;
5981 }
5982 EXPORT_SYMBOL(dev_get_flags);
5983
5984 int __dev_change_flags(struct net_device *dev, unsigned int flags)
5985 {
5986 unsigned int old_flags = dev->flags;
5987 int ret;
5988
5989 ASSERT_RTNL();
5990
5991 /*
5992 * Set the flags on our device.
5993 */
5994
5995 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
5996 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
5997 IFF_AUTOMEDIA)) |
5998 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
5999 IFF_ALLMULTI));
6000
6001 /*
6002 * Load in the correct multicast list now the flags have changed.
6003 */
6004
6005 if ((old_flags ^ flags) & IFF_MULTICAST)
6006 dev_change_rx_flags(dev, IFF_MULTICAST);
6007
6008 dev_set_rx_mode(dev);
6009
6010 /*
6011 * Have we downed the interface. We handle IFF_UP ourselves
6012 * according to user attempts to set it, rather than blindly
6013 * setting it.
6014 */
6015
6016 ret = 0;
6017 if ((old_flags ^ flags) & IFF_UP)
6018 ret = ((old_flags & IFF_UP) ? __dev_close : __dev_open)(dev);
6019
6020 if ((flags ^ dev->gflags) & IFF_PROMISC) {
6021 int inc = (flags & IFF_PROMISC) ? 1 : -1;
6022 unsigned int old_flags = dev->flags;
6023
6024 dev->gflags ^= IFF_PROMISC;
6025
6026 if (__dev_set_promiscuity(dev, inc, false) >= 0)
6027 if (dev->flags != old_flags)
6028 dev_set_rx_mode(dev);
6029 }
6030
6031 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
6032 is important. Some (broken) drivers set IFF_PROMISC, when
6033 IFF_ALLMULTI is requested not asking us and not reporting.
6034 */
6035 if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
6036 int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
6037
6038 dev->gflags ^= IFF_ALLMULTI;
6039 __dev_set_allmulti(dev, inc, false);
6040 }
6041
6042 return ret;
6043 }
6044
6045 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags,
6046 unsigned int gchanges)
6047 {
6048 unsigned int changes = dev->flags ^ old_flags;
6049
6050 if (gchanges)
6051 rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC);
6052
6053 if (changes & IFF_UP) {
6054 if (dev->flags & IFF_UP)
6055 call_netdevice_notifiers(NETDEV_UP, dev);
6056 else
6057 call_netdevice_notifiers(NETDEV_DOWN, dev);
6058 }
6059
6060 if (dev->flags & IFF_UP &&
6061 (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) {
6062 struct netdev_notifier_change_info change_info;
6063
6064 change_info.flags_changed = changes;
6065 call_netdevice_notifiers_info(NETDEV_CHANGE, dev,
6066 &change_info.info);
6067 }
6068 }
6069
6070 /**
6071 * dev_change_flags - change device settings
6072 * @dev: device
6073 * @flags: device state flags
6074 *
6075 * Change settings on device based state flags. The flags are
6076 * in the userspace exported format.
6077 */
6078 int dev_change_flags(struct net_device *dev, unsigned int flags)
6079 {
6080 int ret;
6081 unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags;
6082
6083 ret = __dev_change_flags(dev, flags);
6084 if (ret < 0)
6085 return ret;
6086
6087 changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags);
6088 __dev_notify_flags(dev, old_flags, changes);
6089 return ret;
6090 }
6091 EXPORT_SYMBOL(dev_change_flags);
6092
6093 static int __dev_set_mtu(struct net_device *dev, int new_mtu)
6094 {
6095 const struct net_device_ops *ops = dev->netdev_ops;
6096
6097 if (ops->ndo_change_mtu)
6098 return ops->ndo_change_mtu(dev, new_mtu);
6099
6100 dev->mtu = new_mtu;
6101 return 0;
6102 }
6103
6104 /**
6105 * dev_set_mtu - Change maximum transfer unit
6106 * @dev: device
6107 * @new_mtu: new transfer unit
6108 *
6109 * Change the maximum transfer size of the network device.
6110 */
6111 int dev_set_mtu(struct net_device *dev, int new_mtu)
6112 {
6113 int err, orig_mtu;
6114
6115 if (new_mtu == dev->mtu)
6116 return 0;
6117
6118 /* MTU must be positive. */
6119 if (new_mtu < 0)
6120 return -EINVAL;
6121
6122 if (!netif_device_present(dev))
6123 return -ENODEV;
6124
6125 err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev);
6126 err = notifier_to_errno(err);
6127 if (err)
6128 return err;
6129
6130 orig_mtu = dev->mtu;
6131 err = __dev_set_mtu(dev, new_mtu);
6132
6133 if (!err) {
6134 err = call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
6135 err = notifier_to_errno(err);
6136 if (err) {
6137 /* setting mtu back and notifying everyone again,
6138 * so that they have a chance to revert changes.
6139 */
6140 __dev_set_mtu(dev, orig_mtu);
6141 call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
6142 }
6143 }
6144 return err;
6145 }
6146 EXPORT_SYMBOL(dev_set_mtu);
6147
6148 /**
6149 * dev_set_group - Change group this device belongs to
6150 * @dev: device
6151 * @new_group: group this device should belong to
6152 */
6153 void dev_set_group(struct net_device *dev, int new_group)
6154 {
6155 dev->group = new_group;
6156 }
6157 EXPORT_SYMBOL(dev_set_group);
6158
6159 /**
6160 * dev_set_mac_address - Change Media Access Control Address
6161 * @dev: device
6162 * @sa: new address
6163 *
6164 * Change the hardware (MAC) address of the device
6165 */
6166 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa)
6167 {
6168 const struct net_device_ops *ops = dev->netdev_ops;
6169 int err;
6170
6171 if (!ops->ndo_set_mac_address)
6172 return -EOPNOTSUPP;
6173 if (sa->sa_family != dev->type)
6174 return -EINVAL;
6175 if (!netif_device_present(dev))
6176 return -ENODEV;
6177 err = ops->ndo_set_mac_address(dev, sa);
6178 if (err)
6179 return err;
6180 dev->addr_assign_type = NET_ADDR_SET;
6181 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
6182 add_device_randomness(dev->dev_addr, dev->addr_len);
6183 return 0;
6184 }
6185 EXPORT_SYMBOL(dev_set_mac_address);
6186
6187 /**
6188 * dev_change_carrier - Change device carrier
6189 * @dev: device
6190 * @new_carrier: new value
6191 *
6192 * Change device carrier
6193 */
6194 int dev_change_carrier(struct net_device *dev, bool new_carrier)
6195 {
6196 const struct net_device_ops *ops = dev->netdev_ops;
6197
6198 if (!ops->ndo_change_carrier)
6199 return -EOPNOTSUPP;
6200 if (!netif_device_present(dev))
6201 return -ENODEV;
6202 return ops->ndo_change_carrier(dev, new_carrier);
6203 }
6204 EXPORT_SYMBOL(dev_change_carrier);
6205
6206 /**
6207 * dev_get_phys_port_id - Get device physical port ID
6208 * @dev: device
6209 * @ppid: port ID
6210 *
6211 * Get device physical port ID
6212 */
6213 int dev_get_phys_port_id(struct net_device *dev,
6214 struct netdev_phys_item_id *ppid)
6215 {
6216 const struct net_device_ops *ops = dev->netdev_ops;
6217
6218 if (!ops->ndo_get_phys_port_id)
6219 return -EOPNOTSUPP;
6220 return ops->ndo_get_phys_port_id(dev, ppid);
6221 }
6222 EXPORT_SYMBOL(dev_get_phys_port_id);
6223
6224 /**
6225 * dev_get_phys_port_name - Get device physical port name
6226 * @dev: device
6227 * @name: port name
6228 *
6229 * Get device physical port name
6230 */
6231 int dev_get_phys_port_name(struct net_device *dev,
6232 char *name, size_t len)
6233 {
6234 const struct net_device_ops *ops = dev->netdev_ops;
6235
6236 if (!ops->ndo_get_phys_port_name)
6237 return -EOPNOTSUPP;
6238 return ops->ndo_get_phys_port_name(dev, name, len);
6239 }
6240 EXPORT_SYMBOL(dev_get_phys_port_name);
6241
6242 /**
6243 * dev_change_proto_down - update protocol port state information
6244 * @dev: device
6245 * @proto_down: new value
6246 *
6247 * This info can be used by switch drivers to set the phys state of the
6248 * port.
6249 */
6250 int dev_change_proto_down(struct net_device *dev, bool proto_down)
6251 {
6252 const struct net_device_ops *ops = dev->netdev_ops;
6253
6254 if (!ops->ndo_change_proto_down)
6255 return -EOPNOTSUPP;
6256 if (!netif_device_present(dev))
6257 return -ENODEV;
6258 return ops->ndo_change_proto_down(dev, proto_down);
6259 }
6260 EXPORT_SYMBOL(dev_change_proto_down);
6261
6262 /**
6263 * dev_new_index - allocate an ifindex
6264 * @net: the applicable net namespace
6265 *
6266 * Returns a suitable unique value for a new device interface
6267 * number. The caller must hold the rtnl semaphore or the
6268 * dev_base_lock to be sure it remains unique.
6269 */
6270 static int dev_new_index(struct net *net)
6271 {
6272 int ifindex = net->ifindex;
6273 for (;;) {
6274 if (++ifindex <= 0)
6275 ifindex = 1;
6276 if (!__dev_get_by_index(net, ifindex))
6277 return net->ifindex = ifindex;
6278 }
6279 }
6280
6281 /* Delayed registration/unregisteration */
6282 static LIST_HEAD(net_todo_list);
6283 DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq);
6284
6285 static void net_set_todo(struct net_device *dev)
6286 {
6287 list_add_tail(&dev->todo_list, &net_todo_list);
6288 dev_net(dev)->dev_unreg_count++;
6289 }
6290
6291 static void rollback_registered_many(struct list_head *head)
6292 {
6293 struct net_device *dev, *tmp;
6294 LIST_HEAD(close_head);
6295
6296 BUG_ON(dev_boot_phase);
6297 ASSERT_RTNL();
6298
6299 list_for_each_entry_safe(dev, tmp, head, unreg_list) {
6300 /* Some devices call without registering
6301 * for initialization unwind. Remove those
6302 * devices and proceed with the remaining.
6303 */
6304 if (dev->reg_state == NETREG_UNINITIALIZED) {
6305 pr_debug("unregister_netdevice: device %s/%p never was registered\n",
6306 dev->name, dev);
6307
6308 WARN_ON(1);
6309 list_del(&dev->unreg_list);
6310 continue;
6311 }
6312 dev->dismantle = true;
6313 BUG_ON(dev->reg_state != NETREG_REGISTERED);
6314 }
6315
6316 /* If device is running, close it first. */
6317 list_for_each_entry(dev, head, unreg_list)
6318 list_add_tail(&dev->close_list, &close_head);
6319 dev_close_many(&close_head, true);
6320
6321 list_for_each_entry(dev, head, unreg_list) {
6322 /* And unlink it from device chain. */
6323 unlist_netdevice(dev);
6324
6325 dev->reg_state = NETREG_UNREGISTERING;
6326 on_each_cpu(flush_backlog, dev, 1);
6327 }
6328
6329 synchronize_net();
6330
6331 list_for_each_entry(dev, head, unreg_list) {
6332 struct sk_buff *skb = NULL;
6333
6334 /* Shutdown queueing discipline. */
6335 dev_shutdown(dev);
6336
6337
6338 /* Notify protocols, that we are about to destroy
6339 this device. They should clean all the things.
6340 */
6341 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
6342
6343 if (!dev->rtnl_link_ops ||
6344 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
6345 skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U,
6346 GFP_KERNEL);
6347
6348 /*
6349 * Flush the unicast and multicast chains
6350 */
6351 dev_uc_flush(dev);
6352 dev_mc_flush(dev);
6353
6354 if (dev->netdev_ops->ndo_uninit)
6355 dev->netdev_ops->ndo_uninit(dev);
6356
6357 if (skb)
6358 rtmsg_ifinfo_send(skb, dev, GFP_KERNEL);
6359
6360 /* Notifier chain MUST detach us all upper devices. */
6361 WARN_ON(netdev_has_any_upper_dev(dev));
6362
6363 /* Remove entries from kobject tree */
6364 netdev_unregister_kobject(dev);
6365 #ifdef CONFIG_XPS
6366 /* Remove XPS queueing entries */
6367 netif_reset_xps_queues_gt(dev, 0);
6368 #endif
6369 }
6370
6371 synchronize_net();
6372
6373 list_for_each_entry(dev, head, unreg_list)
6374 dev_put(dev);
6375 }
6376
6377 static void rollback_registered(struct net_device *dev)
6378 {
6379 LIST_HEAD(single);
6380
6381 list_add(&dev->unreg_list, &single);
6382 rollback_registered_many(&single);
6383 list_del(&single);
6384 }
6385
6386 static netdev_features_t netdev_sync_upper_features(struct net_device *lower,
6387 struct net_device *upper, netdev_features_t features)
6388 {
6389 netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
6390 netdev_features_t feature;
6391 int feature_bit;
6392
6393 for_each_netdev_feature(&upper_disables, feature_bit) {
6394 feature = __NETIF_F_BIT(feature_bit);
6395 if (!(upper->wanted_features & feature)
6396 && (features & feature)) {
6397 netdev_dbg(lower, "Dropping feature %pNF, upper dev %s has it off.\n",
6398 &feature, upper->name);
6399 features &= ~feature;
6400 }
6401 }
6402
6403 return features;
6404 }
6405
6406 static void netdev_sync_lower_features(struct net_device *upper,
6407 struct net_device *lower, netdev_features_t features)
6408 {
6409 netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
6410 netdev_features_t feature;
6411 int feature_bit;
6412
6413 for_each_netdev_feature(&upper_disables, feature_bit) {
6414 feature = __NETIF_F_BIT(feature_bit);
6415 if (!(features & feature) && (lower->features & feature)) {
6416 netdev_dbg(upper, "Disabling feature %pNF on lower dev %s.\n",
6417 &feature, lower->name);
6418 lower->wanted_features &= ~feature;
6419 netdev_update_features(lower);
6420
6421 if (unlikely(lower->features & feature))
6422 netdev_WARN(upper, "failed to disable %pNF on %s!\n",
6423 &feature, lower->name);
6424 }
6425 }
6426 }
6427
6428 static netdev_features_t netdev_fix_features(struct net_device *dev,
6429 netdev_features_t features)
6430 {
6431 /* Fix illegal checksum combinations */
6432 if ((features & NETIF_F_HW_CSUM) &&
6433 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
6434 netdev_warn(dev, "mixed HW and IP checksum settings.\n");
6435 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
6436 }
6437
6438 /* TSO requires that SG is present as well. */
6439 if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
6440 netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
6441 features &= ~NETIF_F_ALL_TSO;
6442 }
6443
6444 if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
6445 !(features & NETIF_F_IP_CSUM)) {
6446 netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
6447 features &= ~NETIF_F_TSO;
6448 features &= ~NETIF_F_TSO_ECN;
6449 }
6450
6451 if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
6452 !(features & NETIF_F_IPV6_CSUM)) {
6453 netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
6454 features &= ~NETIF_F_TSO6;
6455 }
6456
6457 /* TSO ECN requires that TSO is present as well. */
6458 if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
6459 features &= ~NETIF_F_TSO_ECN;
6460
6461 /* Software GSO depends on SG. */
6462 if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
6463 netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
6464 features &= ~NETIF_F_GSO;
6465 }
6466
6467 /* UFO needs SG and checksumming */
6468 if (features & NETIF_F_UFO) {
6469 /* maybe split UFO into V4 and V6? */
6470 if (!((features & NETIF_F_GEN_CSUM) ||
6471 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))
6472 == (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
6473 netdev_dbg(dev,
6474 "Dropping NETIF_F_UFO since no checksum offload features.\n");
6475 features &= ~NETIF_F_UFO;
6476 }
6477
6478 if (!(features & NETIF_F_SG)) {
6479 netdev_dbg(dev,
6480 "Dropping NETIF_F_UFO since no NETIF_F_SG feature.\n");
6481 features &= ~NETIF_F_UFO;
6482 }
6483 }
6484
6485 #ifdef CONFIG_NET_RX_BUSY_POLL
6486 if (dev->netdev_ops->ndo_busy_poll)
6487 features |= NETIF_F_BUSY_POLL;
6488 else
6489 #endif
6490 features &= ~NETIF_F_BUSY_POLL;
6491
6492 return features;
6493 }
6494
6495 int __netdev_update_features(struct net_device *dev)
6496 {
6497 struct net_device *upper, *lower;
6498 netdev_features_t features;
6499 struct list_head *iter;
6500 int err = -1;
6501
6502 ASSERT_RTNL();
6503
6504 features = netdev_get_wanted_features(dev);
6505
6506 if (dev->netdev_ops->ndo_fix_features)
6507 features = dev->netdev_ops->ndo_fix_features(dev, features);
6508
6509 /* driver might be less strict about feature dependencies */
6510 features = netdev_fix_features(dev, features);
6511
6512 /* some features can't be enabled if they're off an an upper device */
6513 netdev_for_each_upper_dev_rcu(dev, upper, iter)
6514 features = netdev_sync_upper_features(dev, upper, features);
6515
6516 if (dev->features == features)
6517 goto sync_lower;
6518
6519 netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
6520 &dev->features, &features);
6521
6522 if (dev->netdev_ops->ndo_set_features)
6523 err = dev->netdev_ops->ndo_set_features(dev, features);
6524 else
6525 err = 0;
6526
6527 if (unlikely(err < 0)) {
6528 netdev_err(dev,
6529 "set_features() failed (%d); wanted %pNF, left %pNF\n",
6530 err, &features, &dev->features);
6531 /* return non-0 since some features might have changed and
6532 * it's better to fire a spurious notification than miss it
6533 */
6534 return -1;
6535 }
6536
6537 sync_lower:
6538 /* some features must be disabled on lower devices when disabled
6539 * on an upper device (think: bonding master or bridge)
6540 */
6541 netdev_for_each_lower_dev(dev, lower, iter)
6542 netdev_sync_lower_features(dev, lower, features);
6543
6544 if (!err)
6545 dev->features = features;
6546
6547 return err < 0 ? 0 : 1;
6548 }
6549
6550 /**
6551 * netdev_update_features - recalculate device features
6552 * @dev: the device to check
6553 *
6554 * Recalculate dev->features set and send notifications if it
6555 * has changed. Should be called after driver or hardware dependent
6556 * conditions might have changed that influence the features.
6557 */
6558 void netdev_update_features(struct net_device *dev)
6559 {
6560 if (__netdev_update_features(dev))
6561 netdev_features_change(dev);
6562 }
6563 EXPORT_SYMBOL(netdev_update_features);
6564
6565 /**
6566 * netdev_change_features - recalculate device features
6567 * @dev: the device to check
6568 *
6569 * Recalculate dev->features set and send notifications even
6570 * if they have not changed. Should be called instead of
6571 * netdev_update_features() if also dev->vlan_features might
6572 * have changed to allow the changes to be propagated to stacked
6573 * VLAN devices.
6574 */
6575 void netdev_change_features(struct net_device *dev)
6576 {
6577 __netdev_update_features(dev);
6578 netdev_features_change(dev);
6579 }
6580 EXPORT_SYMBOL(netdev_change_features);
6581
6582 /**
6583 * netif_stacked_transfer_operstate - transfer operstate
6584 * @rootdev: the root or lower level device to transfer state from
6585 * @dev: the device to transfer operstate to
6586 *
6587 * Transfer operational state from root to device. This is normally
6588 * called when a stacking relationship exists between the root
6589 * device and the device(a leaf device).
6590 */
6591 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
6592 struct net_device *dev)
6593 {
6594 if (rootdev->operstate == IF_OPER_DORMANT)
6595 netif_dormant_on(dev);
6596 else
6597 netif_dormant_off(dev);
6598
6599 if (netif_carrier_ok(rootdev)) {
6600 if (!netif_carrier_ok(dev))
6601 netif_carrier_on(dev);
6602 } else {
6603 if (netif_carrier_ok(dev))
6604 netif_carrier_off(dev);
6605 }
6606 }
6607 EXPORT_SYMBOL(netif_stacked_transfer_operstate);
6608
6609 #ifdef CONFIG_SYSFS
6610 static int netif_alloc_rx_queues(struct net_device *dev)
6611 {
6612 unsigned int i, count = dev->num_rx_queues;
6613 struct netdev_rx_queue *rx;
6614 size_t sz = count * sizeof(*rx);
6615
6616 BUG_ON(count < 1);
6617
6618 rx = kzalloc(sz, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
6619 if (!rx) {
6620 rx = vzalloc(sz);
6621 if (!rx)
6622 return -ENOMEM;
6623 }
6624 dev->_rx = rx;
6625
6626 for (i = 0; i < count; i++)
6627 rx[i].dev = dev;
6628 return 0;
6629 }
6630 #endif
6631
6632 static void netdev_init_one_queue(struct net_device *dev,
6633 struct netdev_queue *queue, void *_unused)
6634 {
6635 /* Initialize queue lock */
6636 spin_lock_init(&queue->_xmit_lock);
6637 netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
6638 queue->xmit_lock_owner = -1;
6639 netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
6640 queue->dev = dev;
6641 #ifdef CONFIG_BQL
6642 dql_init(&queue->dql, HZ);
6643 #endif
6644 }
6645
6646 static void netif_free_tx_queues(struct net_device *dev)
6647 {
6648 kvfree(dev->_tx);
6649 }
6650
6651 static int netif_alloc_netdev_queues(struct net_device *dev)
6652 {
6653 unsigned int count = dev->num_tx_queues;
6654 struct netdev_queue *tx;
6655 size_t sz = count * sizeof(*tx);
6656
6657 if (count < 1 || count > 0xffff)
6658 return -EINVAL;
6659
6660 tx = kzalloc(sz, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
6661 if (!tx) {
6662 tx = vzalloc(sz);
6663 if (!tx)
6664 return -ENOMEM;
6665 }
6666 dev->_tx = tx;
6667
6668 netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
6669 spin_lock_init(&dev->tx_global_lock);
6670
6671 return 0;
6672 }
6673
6674 void netif_tx_stop_all_queues(struct net_device *dev)
6675 {
6676 unsigned int i;
6677
6678 for (i = 0; i < dev->num_tx_queues; i++) {
6679 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
6680 netif_tx_stop_queue(txq);
6681 }
6682 }
6683 EXPORT_SYMBOL(netif_tx_stop_all_queues);
6684
6685 /**
6686 * register_netdevice - register a network device
6687 * @dev: device to register
6688 *
6689 * Take a completed network device structure and add it to the kernel
6690 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
6691 * chain. 0 is returned on success. A negative errno code is returned
6692 * on a failure to set up the device, or if the name is a duplicate.
6693 *
6694 * Callers must hold the rtnl semaphore. You may want
6695 * register_netdev() instead of this.
6696 *
6697 * BUGS:
6698 * The locking appears insufficient to guarantee two parallel registers
6699 * will not get the same name.
6700 */
6701
6702 int register_netdevice(struct net_device *dev)
6703 {
6704 int ret;
6705 struct net *net = dev_net(dev);
6706
6707 BUG_ON(dev_boot_phase);
6708 ASSERT_RTNL();
6709
6710 might_sleep();
6711
6712 /* When net_device's are persistent, this will be fatal. */
6713 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
6714 BUG_ON(!net);
6715
6716 spin_lock_init(&dev->addr_list_lock);
6717 netdev_set_addr_lockdep_class(dev);
6718
6719 ret = dev_get_valid_name(net, dev, dev->name);
6720 if (ret < 0)
6721 goto out;
6722
6723 /* Init, if this function is available */
6724 if (dev->netdev_ops->ndo_init) {
6725 ret = dev->netdev_ops->ndo_init(dev);
6726 if (ret) {
6727 if (ret > 0)
6728 ret = -EIO;
6729 goto out;
6730 }
6731 }
6732
6733 if (((dev->hw_features | dev->features) &
6734 NETIF_F_HW_VLAN_CTAG_FILTER) &&
6735 (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
6736 !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
6737 netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
6738 ret = -EINVAL;
6739 goto err_uninit;
6740 }
6741
6742 ret = -EBUSY;
6743 if (!dev->ifindex)
6744 dev->ifindex = dev_new_index(net);
6745 else if (__dev_get_by_index(net, dev->ifindex))
6746 goto err_uninit;
6747
6748 /* Transfer changeable features to wanted_features and enable
6749 * software offloads (GSO and GRO).
6750 */
6751 dev->hw_features |= NETIF_F_SOFT_FEATURES;
6752 dev->features |= NETIF_F_SOFT_FEATURES;
6753 dev->wanted_features = dev->features & dev->hw_features;
6754
6755 if (!(dev->flags & IFF_LOOPBACK)) {
6756 dev->hw_features |= NETIF_F_NOCACHE_COPY;
6757 }
6758
6759 /* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
6760 */
6761 dev->vlan_features |= NETIF_F_HIGHDMA;
6762
6763 /* Make NETIF_F_SG inheritable to tunnel devices.
6764 */
6765 dev->hw_enc_features |= NETIF_F_SG;
6766
6767 /* Make NETIF_F_SG inheritable to MPLS.
6768 */
6769 dev->mpls_features |= NETIF_F_SG;
6770
6771 ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
6772 ret = notifier_to_errno(ret);
6773 if (ret)
6774 goto err_uninit;
6775
6776 ret = netdev_register_kobject(dev);
6777 if (ret)
6778 goto err_uninit;
6779 dev->reg_state = NETREG_REGISTERED;
6780
6781 __netdev_update_features(dev);
6782
6783 /*
6784 * Default initial state at registry is that the
6785 * device is present.
6786 */
6787
6788 set_bit(__LINK_STATE_PRESENT, &dev->state);
6789
6790 linkwatch_init_dev(dev);
6791
6792 dev_init_scheduler(dev);
6793 dev_hold(dev);
6794 list_netdevice(dev);
6795 add_device_randomness(dev->dev_addr, dev->addr_len);
6796
6797 /* If the device has permanent device address, driver should
6798 * set dev_addr and also addr_assign_type should be set to
6799 * NET_ADDR_PERM (default value).
6800 */
6801 if (dev->addr_assign_type == NET_ADDR_PERM)
6802 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
6803
6804 /* Notify protocols, that a new device appeared. */
6805 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
6806 ret = notifier_to_errno(ret);
6807 if (ret) {
6808 rollback_registered(dev);
6809 dev->reg_state = NETREG_UNREGISTERED;
6810 }
6811 /*
6812 * Prevent userspace races by waiting until the network
6813 * device is fully setup before sending notifications.
6814 */
6815 if (!dev->rtnl_link_ops ||
6816 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
6817 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
6818
6819 out:
6820 return ret;
6821
6822 err_uninit:
6823 if (dev->netdev_ops->ndo_uninit)
6824 dev->netdev_ops->ndo_uninit(dev);
6825 goto out;
6826 }
6827 EXPORT_SYMBOL(register_netdevice);
6828
6829 /**
6830 * init_dummy_netdev - init a dummy network device for NAPI
6831 * @dev: device to init
6832 *
6833 * This takes a network device structure and initialize the minimum
6834 * amount of fields so it can be used to schedule NAPI polls without
6835 * registering a full blown interface. This is to be used by drivers
6836 * that need to tie several hardware interfaces to a single NAPI
6837 * poll scheduler due to HW limitations.
6838 */
6839 int init_dummy_netdev(struct net_device *dev)
6840 {
6841 /* Clear everything. Note we don't initialize spinlocks
6842 * are they aren't supposed to be taken by any of the
6843 * NAPI code and this dummy netdev is supposed to be
6844 * only ever used for NAPI polls
6845 */
6846 memset(dev, 0, sizeof(struct net_device));
6847
6848 /* make sure we BUG if trying to hit standard
6849 * register/unregister code path
6850 */
6851 dev->reg_state = NETREG_DUMMY;
6852
6853 /* NAPI wants this */
6854 INIT_LIST_HEAD(&dev->napi_list);
6855
6856 /* a dummy interface is started by default */
6857 set_bit(__LINK_STATE_PRESENT, &dev->state);
6858 set_bit(__LINK_STATE_START, &dev->state);
6859
6860 /* Note : We dont allocate pcpu_refcnt for dummy devices,
6861 * because users of this 'device' dont need to change
6862 * its refcount.
6863 */
6864
6865 return 0;
6866 }
6867 EXPORT_SYMBOL_GPL(init_dummy_netdev);
6868
6869
6870 /**
6871 * register_netdev - register a network device
6872 * @dev: device to register
6873 *
6874 * Take a completed network device structure and add it to the kernel
6875 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
6876 * chain. 0 is returned on success. A negative errno code is returned
6877 * on a failure to set up the device, or if the name is a duplicate.
6878 *
6879 * This is a wrapper around register_netdevice that takes the rtnl semaphore
6880 * and expands the device name if you passed a format string to
6881 * alloc_netdev.
6882 */
6883 int register_netdev(struct net_device *dev)
6884 {
6885 int err;
6886
6887 rtnl_lock();
6888 err = register_netdevice(dev);
6889 rtnl_unlock();
6890 return err;
6891 }
6892 EXPORT_SYMBOL(register_netdev);
6893
6894 int netdev_refcnt_read(const struct net_device *dev)
6895 {
6896 int i, refcnt = 0;
6897
6898 for_each_possible_cpu(i)
6899 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
6900 return refcnt;
6901 }
6902 EXPORT_SYMBOL(netdev_refcnt_read);
6903
6904 /**
6905 * netdev_wait_allrefs - wait until all references are gone.
6906 * @dev: target net_device
6907 *
6908 * This is called when unregistering network devices.
6909 *
6910 * Any protocol or device that holds a reference should register
6911 * for netdevice notification, and cleanup and put back the
6912 * reference if they receive an UNREGISTER event.
6913 * We can get stuck here if buggy protocols don't correctly
6914 * call dev_put.
6915 */
6916 static void netdev_wait_allrefs(struct net_device *dev)
6917 {
6918 unsigned long rebroadcast_time, warning_time;
6919 int refcnt;
6920
6921 linkwatch_forget_dev(dev);
6922
6923 rebroadcast_time = warning_time = jiffies;
6924 refcnt = netdev_refcnt_read(dev);
6925
6926 while (refcnt != 0) {
6927 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
6928 rtnl_lock();
6929
6930 /* Rebroadcast unregister notification */
6931 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
6932
6933 __rtnl_unlock();
6934 rcu_barrier();
6935 rtnl_lock();
6936
6937 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
6938 if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
6939 &dev->state)) {
6940 /* We must not have linkwatch events
6941 * pending on unregister. If this
6942 * happens, we simply run the queue
6943 * unscheduled, resulting in a noop
6944 * for this device.
6945 */
6946 linkwatch_run_queue();
6947 }
6948
6949 __rtnl_unlock();
6950
6951 rebroadcast_time = jiffies;
6952 }
6953
6954 msleep(250);
6955
6956 refcnt = netdev_refcnt_read(dev);
6957
6958 if (time_after(jiffies, warning_time + 10 * HZ)) {
6959 pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
6960 dev->name, refcnt);
6961 warning_time = jiffies;
6962 }
6963 }
6964 }
6965
6966 /* The sequence is:
6967 *
6968 * rtnl_lock();
6969 * ...
6970 * register_netdevice(x1);
6971 * register_netdevice(x2);
6972 * ...
6973 * unregister_netdevice(y1);
6974 * unregister_netdevice(y2);
6975 * ...
6976 * rtnl_unlock();
6977 * free_netdev(y1);
6978 * free_netdev(y2);
6979 *
6980 * We are invoked by rtnl_unlock().
6981 * This allows us to deal with problems:
6982 * 1) We can delete sysfs objects which invoke hotplug
6983 * without deadlocking with linkwatch via keventd.
6984 * 2) Since we run with the RTNL semaphore not held, we can sleep
6985 * safely in order to wait for the netdev refcnt to drop to zero.
6986 *
6987 * We must not return until all unregister events added during
6988 * the interval the lock was held have been completed.
6989 */
6990 void netdev_run_todo(void)
6991 {
6992 struct list_head list;
6993
6994 /* Snapshot list, allow later requests */
6995 list_replace_init(&net_todo_list, &list);
6996
6997 __rtnl_unlock();
6998
6999
7000 /* Wait for rcu callbacks to finish before next phase */
7001 if (!list_empty(&list))
7002 rcu_barrier();
7003
7004 while (!list_empty(&list)) {
7005 struct net_device *dev
7006 = list_first_entry(&list, struct net_device, todo_list);
7007 list_del(&dev->todo_list);
7008
7009 rtnl_lock();
7010 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
7011 __rtnl_unlock();
7012
7013 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
7014 pr_err("network todo '%s' but state %d\n",
7015 dev->name, dev->reg_state);
7016 dump_stack();
7017 continue;
7018 }
7019
7020 dev->reg_state = NETREG_UNREGISTERED;
7021
7022 netdev_wait_allrefs(dev);
7023
7024 /* paranoia */
7025 BUG_ON(netdev_refcnt_read(dev));
7026 BUG_ON(!list_empty(&dev->ptype_all));
7027 BUG_ON(!list_empty(&dev->ptype_specific));
7028 WARN_ON(rcu_access_pointer(dev->ip_ptr));
7029 WARN_ON(rcu_access_pointer(dev->ip6_ptr));
7030 WARN_ON(dev->dn_ptr);
7031
7032 if (dev->destructor)
7033 dev->destructor(dev);
7034
7035 /* Report a network device has been unregistered */
7036 rtnl_lock();
7037 dev_net(dev)->dev_unreg_count--;
7038 __rtnl_unlock();
7039 wake_up(&netdev_unregistering_wq);
7040
7041 /* Free network device */
7042 kobject_put(&dev->dev.kobj);
7043 }
7044 }
7045
7046 /* Convert net_device_stats to rtnl_link_stats64. They have the same
7047 * fields in the same order, with only the type differing.
7048 */
7049 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
7050 const struct net_device_stats *netdev_stats)
7051 {
7052 #if BITS_PER_LONG == 64
7053 BUILD_BUG_ON(sizeof(*stats64) != sizeof(*netdev_stats));
7054 memcpy(stats64, netdev_stats, sizeof(*stats64));
7055 #else
7056 size_t i, n = sizeof(*stats64) / sizeof(u64);
7057 const unsigned long *src = (const unsigned long *)netdev_stats;
7058 u64 *dst = (u64 *)stats64;
7059
7060 BUILD_BUG_ON(sizeof(*netdev_stats) / sizeof(unsigned long) !=
7061 sizeof(*stats64) / sizeof(u64));
7062 for (i = 0; i < n; i++)
7063 dst[i] = src[i];
7064 #endif
7065 }
7066 EXPORT_SYMBOL(netdev_stats_to_stats64);
7067
7068 /**
7069 * dev_get_stats - get network device statistics
7070 * @dev: device to get statistics from
7071 * @storage: place to store stats
7072 *
7073 * Get network statistics from device. Return @storage.
7074 * The device driver may provide its own method by setting
7075 * dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
7076 * otherwise the internal statistics structure is used.
7077 */
7078 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
7079 struct rtnl_link_stats64 *storage)
7080 {
7081 const struct net_device_ops *ops = dev->netdev_ops;
7082
7083 if (ops->ndo_get_stats64) {
7084 memset(storage, 0, sizeof(*storage));
7085 ops->ndo_get_stats64(dev, storage);
7086 } else if (ops->ndo_get_stats) {
7087 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
7088 } else {
7089 netdev_stats_to_stats64(storage, &dev->stats);
7090 }
7091 storage->rx_dropped += atomic_long_read(&dev->rx_dropped);
7092 storage->tx_dropped += atomic_long_read(&dev->tx_dropped);
7093 return storage;
7094 }
7095 EXPORT_SYMBOL(dev_get_stats);
7096
7097 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
7098 {
7099 struct netdev_queue *queue = dev_ingress_queue(dev);
7100
7101 #ifdef CONFIG_NET_CLS_ACT
7102 if (queue)
7103 return queue;
7104 queue = kzalloc(sizeof(*queue), GFP_KERNEL);
7105 if (!queue)
7106 return NULL;
7107 netdev_init_one_queue(dev, queue, NULL);
7108 RCU_INIT_POINTER(queue->qdisc, &noop_qdisc);
7109 queue->qdisc_sleeping = &noop_qdisc;
7110 rcu_assign_pointer(dev->ingress_queue, queue);
7111 #endif
7112 return queue;
7113 }
7114
7115 static const struct ethtool_ops default_ethtool_ops;
7116
7117 void netdev_set_default_ethtool_ops(struct net_device *dev,
7118 const struct ethtool_ops *ops)
7119 {
7120 if (dev->ethtool_ops == &default_ethtool_ops)
7121 dev->ethtool_ops = ops;
7122 }
7123 EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
7124
7125 void netdev_freemem(struct net_device *dev)
7126 {
7127 char *addr = (char *)dev - dev->padded;
7128
7129 kvfree(addr);
7130 }
7131
7132 /**
7133 * alloc_netdev_mqs - allocate network device
7134 * @sizeof_priv: size of private data to allocate space for
7135 * @name: device name format string
7136 * @name_assign_type: origin of device name
7137 * @setup: callback to initialize device
7138 * @txqs: the number of TX subqueues to allocate
7139 * @rxqs: the number of RX subqueues to allocate
7140 *
7141 * Allocates a struct net_device with private data area for driver use
7142 * and performs basic initialization. Also allocates subqueue structs
7143 * for each queue on the device.
7144 */
7145 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
7146 unsigned char name_assign_type,
7147 void (*setup)(struct net_device *),
7148 unsigned int txqs, unsigned int rxqs)
7149 {
7150 struct net_device *dev;
7151 size_t alloc_size;
7152 struct net_device *p;
7153
7154 BUG_ON(strlen(name) >= sizeof(dev->name));
7155
7156 if (txqs < 1) {
7157 pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
7158 return NULL;
7159 }
7160
7161 #ifdef CONFIG_SYSFS
7162 if (rxqs < 1) {
7163 pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
7164 return NULL;
7165 }
7166 #endif
7167
7168 alloc_size = sizeof(struct net_device);
7169 if (sizeof_priv) {
7170 /* ensure 32-byte alignment of private area */
7171 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
7172 alloc_size += sizeof_priv;
7173 }
7174 /* ensure 32-byte alignment of whole construct */
7175 alloc_size += NETDEV_ALIGN - 1;
7176
7177 p = kzalloc(alloc_size, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
7178 if (!p)
7179 p = vzalloc(alloc_size);
7180 if (!p)
7181 return NULL;
7182
7183 dev = PTR_ALIGN(p, NETDEV_ALIGN);
7184 dev->padded = (char *)dev - (char *)p;
7185
7186 dev->pcpu_refcnt = alloc_percpu(int);
7187 if (!dev->pcpu_refcnt)
7188 goto free_dev;
7189
7190 if (dev_addr_init(dev))
7191 goto free_pcpu;
7192
7193 dev_mc_init(dev);
7194 dev_uc_init(dev);
7195
7196 dev_net_set(dev, &init_net);
7197
7198 dev->gso_max_size = GSO_MAX_SIZE;
7199 dev->gso_max_segs = GSO_MAX_SEGS;
7200 dev->gso_min_segs = 0;
7201
7202 INIT_LIST_HEAD(&dev->napi_list);
7203 INIT_LIST_HEAD(&dev->unreg_list);
7204 INIT_LIST_HEAD(&dev->close_list);
7205 INIT_LIST_HEAD(&dev->link_watch_list);
7206 INIT_LIST_HEAD(&dev->adj_list.upper);
7207 INIT_LIST_HEAD(&dev->adj_list.lower);
7208 INIT_LIST_HEAD(&dev->all_adj_list.upper);
7209 INIT_LIST_HEAD(&dev->all_adj_list.lower);
7210 INIT_LIST_HEAD(&dev->ptype_all);
7211 INIT_LIST_HEAD(&dev->ptype_specific);
7212 dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM;
7213 setup(dev);
7214
7215 if (!dev->tx_queue_len)
7216 dev->priv_flags |= IFF_NO_QUEUE;
7217
7218 dev->num_tx_queues = txqs;
7219 dev->real_num_tx_queues = txqs;
7220 if (netif_alloc_netdev_queues(dev))
7221 goto free_all;
7222
7223 #ifdef CONFIG_SYSFS
7224 dev->num_rx_queues = rxqs;
7225 dev->real_num_rx_queues = rxqs;
7226 if (netif_alloc_rx_queues(dev))
7227 goto free_all;
7228 #endif
7229
7230 strcpy(dev->name, name);
7231 dev->name_assign_type = name_assign_type;
7232 dev->group = INIT_NETDEV_GROUP;
7233 if (!dev->ethtool_ops)
7234 dev->ethtool_ops = &default_ethtool_ops;
7235
7236 nf_hook_ingress_init(dev);
7237
7238 return dev;
7239
7240 free_all:
7241 free_netdev(dev);
7242 return NULL;
7243
7244 free_pcpu:
7245 free_percpu(dev->pcpu_refcnt);
7246 free_dev:
7247 netdev_freemem(dev);
7248 return NULL;
7249 }
7250 EXPORT_SYMBOL(alloc_netdev_mqs);
7251
7252 /**
7253 * free_netdev - free network device
7254 * @dev: device
7255 *
7256 * This function does the last stage of destroying an allocated device
7257 * interface. The reference to the device object is released.
7258 * If this is the last reference then it will be freed.
7259 * Must be called in process context.
7260 */
7261 void free_netdev(struct net_device *dev)
7262 {
7263 struct napi_struct *p, *n;
7264
7265 might_sleep();
7266 netif_free_tx_queues(dev);
7267 #ifdef CONFIG_SYSFS
7268 kvfree(dev->_rx);
7269 #endif
7270
7271 kfree(rcu_dereference_protected(dev->ingress_queue, 1));
7272
7273 /* Flush device addresses */
7274 dev_addr_flush(dev);
7275
7276 list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
7277 netif_napi_del(p);
7278
7279 free_percpu(dev->pcpu_refcnt);
7280 dev->pcpu_refcnt = NULL;
7281
7282 /* Compatibility with error handling in drivers */
7283 if (dev->reg_state == NETREG_UNINITIALIZED) {
7284 netdev_freemem(dev);
7285 return;
7286 }
7287
7288 BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
7289 dev->reg_state = NETREG_RELEASED;
7290
7291 /* will free via device release */
7292 put_device(&dev->dev);
7293 }
7294 EXPORT_SYMBOL(free_netdev);
7295
7296 /**
7297 * synchronize_net - Synchronize with packet receive processing
7298 *
7299 * Wait for packets currently being received to be done.
7300 * Does not block later packets from starting.
7301 */
7302 void synchronize_net(void)
7303 {
7304 might_sleep();
7305 if (rtnl_is_locked())
7306 synchronize_rcu_expedited();
7307 else
7308 synchronize_rcu();
7309 }
7310 EXPORT_SYMBOL(synchronize_net);
7311
7312 /**
7313 * unregister_netdevice_queue - remove device from the kernel
7314 * @dev: device
7315 * @head: list
7316 *
7317 * This function shuts down a device interface and removes it
7318 * from the kernel tables.
7319 * If head not NULL, device is queued to be unregistered later.
7320 *
7321 * Callers must hold the rtnl semaphore. You may want
7322 * unregister_netdev() instead of this.
7323 */
7324
7325 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
7326 {
7327 ASSERT_RTNL();
7328
7329 if (head) {
7330 list_move_tail(&dev->unreg_list, head);
7331 } else {
7332 rollback_registered(dev);
7333 /* Finish processing unregister after unlock */
7334 net_set_todo(dev);
7335 }
7336 }
7337 EXPORT_SYMBOL(unregister_netdevice_queue);
7338
7339 /**
7340 * unregister_netdevice_many - unregister many devices
7341 * @head: list of devices
7342 *
7343 * Note: As most callers use a stack allocated list_head,
7344 * we force a list_del() to make sure stack wont be corrupted later.
7345 */
7346 void unregister_netdevice_many(struct list_head *head)
7347 {
7348 struct net_device *dev;
7349
7350 if (!list_empty(head)) {
7351 rollback_registered_many(head);
7352 list_for_each_entry(dev, head, unreg_list)
7353 net_set_todo(dev);
7354 list_del(head);
7355 }
7356 }
7357 EXPORT_SYMBOL(unregister_netdevice_many);
7358
7359 /**
7360 * unregister_netdev - remove device from the kernel
7361 * @dev: device
7362 *
7363 * This function shuts down a device interface and removes it
7364 * from the kernel tables.
7365 *
7366 * This is just a wrapper for unregister_netdevice that takes
7367 * the rtnl semaphore. In general you want to use this and not
7368 * unregister_netdevice.
7369 */
7370 void unregister_netdev(struct net_device *dev)
7371 {
7372 rtnl_lock();
7373 unregister_netdevice(dev);
7374 rtnl_unlock();
7375 }
7376 EXPORT_SYMBOL(unregister_netdev);
7377
7378 /**
7379 * dev_change_net_namespace - move device to different nethost namespace
7380 * @dev: device
7381 * @net: network namespace
7382 * @pat: If not NULL name pattern to try if the current device name
7383 * is already taken in the destination network namespace.
7384 *
7385 * This function shuts down a device interface and moves it
7386 * to a new network namespace. On success 0 is returned, on
7387 * a failure a netagive errno code is returned.
7388 *
7389 * Callers must hold the rtnl semaphore.
7390 */
7391
7392 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
7393 {
7394 int err;
7395
7396 ASSERT_RTNL();
7397
7398 /* Don't allow namespace local devices to be moved. */
7399 err = -EINVAL;
7400 if (dev->features & NETIF_F_NETNS_LOCAL)
7401 goto out;
7402
7403 /* Ensure the device has been registrered */
7404 if (dev->reg_state != NETREG_REGISTERED)
7405 goto out;
7406
7407 /* Get out if there is nothing todo */
7408 err = 0;
7409 if (net_eq(dev_net(dev), net))
7410 goto out;
7411
7412 /* Pick the destination device name, and ensure
7413 * we can use it in the destination network namespace.
7414 */
7415 err = -EEXIST;
7416 if (__dev_get_by_name(net, dev->name)) {
7417 /* We get here if we can't use the current device name */
7418 if (!pat)
7419 goto out;
7420 if (dev_get_valid_name(net, dev, pat) < 0)
7421 goto out;
7422 }
7423
7424 /*
7425 * And now a mini version of register_netdevice unregister_netdevice.
7426 */
7427
7428 /* If device is running close it first. */
7429 dev_close(dev);
7430
7431 /* And unlink it from device chain */
7432 err = -ENODEV;
7433 unlist_netdevice(dev);
7434
7435 synchronize_net();
7436
7437 /* Shutdown queueing discipline. */
7438 dev_shutdown(dev);
7439
7440 /* Notify protocols, that we are about to destroy
7441 this device. They should clean all the things.
7442
7443 Note that dev->reg_state stays at NETREG_REGISTERED.
7444 This is wanted because this way 8021q and macvlan know
7445 the device is just moving and can keep their slaves up.
7446 */
7447 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
7448 rcu_barrier();
7449 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
7450 rtmsg_ifinfo(RTM_DELLINK, dev, ~0U, GFP_KERNEL);
7451
7452 /*
7453 * Flush the unicast and multicast chains
7454 */
7455 dev_uc_flush(dev);
7456 dev_mc_flush(dev);
7457
7458 /* Send a netdev-removed uevent to the old namespace */
7459 kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
7460 netdev_adjacent_del_links(dev);
7461
7462 /* Actually switch the network namespace */
7463 dev_net_set(dev, net);
7464
7465 /* If there is an ifindex conflict assign a new one */
7466 if (__dev_get_by_index(net, dev->ifindex))
7467 dev->ifindex = dev_new_index(net);
7468
7469 /* Send a netdev-add uevent to the new namespace */
7470 kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
7471 netdev_adjacent_add_links(dev);
7472
7473 /* Fixup kobjects */
7474 err = device_rename(&dev->dev, dev->name);
7475 WARN_ON(err);
7476
7477 /* Add the device back in the hashes */
7478 list_netdevice(dev);
7479
7480 /* Notify protocols, that a new device appeared. */
7481 call_netdevice_notifiers(NETDEV_REGISTER, dev);
7482
7483 /*
7484 * Prevent userspace races by waiting until the network
7485 * device is fully setup before sending notifications.
7486 */
7487 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
7488
7489 synchronize_net();
7490 err = 0;
7491 out:
7492 return err;
7493 }
7494 EXPORT_SYMBOL_GPL(dev_change_net_namespace);
7495
7496 static int dev_cpu_callback(struct notifier_block *nfb,
7497 unsigned long action,
7498 void *ocpu)
7499 {
7500 struct sk_buff **list_skb;
7501 struct sk_buff *skb;
7502 unsigned int cpu, oldcpu = (unsigned long)ocpu;
7503 struct softnet_data *sd, *oldsd;
7504
7505 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
7506 return NOTIFY_OK;
7507
7508 local_irq_disable();
7509 cpu = smp_processor_id();
7510 sd = &per_cpu(softnet_data, cpu);
7511 oldsd = &per_cpu(softnet_data, oldcpu);
7512
7513 /* Find end of our completion_queue. */
7514 list_skb = &sd->completion_queue;
7515 while (*list_skb)
7516 list_skb = &(*list_skb)->next;
7517 /* Append completion queue from offline CPU. */
7518 *list_skb = oldsd->completion_queue;
7519 oldsd->completion_queue = NULL;
7520
7521 /* Append output queue from offline CPU. */
7522 if (oldsd->output_queue) {
7523 *sd->output_queue_tailp = oldsd->output_queue;
7524 sd->output_queue_tailp = oldsd->output_queue_tailp;
7525 oldsd->output_queue = NULL;
7526 oldsd->output_queue_tailp = &oldsd->output_queue;
7527 }
7528 /* Append NAPI poll list from offline CPU, with one exception :
7529 * process_backlog() must be called by cpu owning percpu backlog.
7530 * We properly handle process_queue & input_pkt_queue later.
7531 */
7532 while (!list_empty(&oldsd->poll_list)) {
7533 struct napi_struct *napi = list_first_entry(&oldsd->poll_list,
7534 struct napi_struct,
7535 poll_list);
7536
7537 list_del_init(&napi->poll_list);
7538 if (napi->poll == process_backlog)
7539 napi->state = 0;
7540 else
7541 ____napi_schedule(sd, napi);
7542 }
7543
7544 raise_softirq_irqoff(NET_TX_SOFTIRQ);
7545 local_irq_enable();
7546
7547 /* Process offline CPU's input_pkt_queue */
7548 while ((skb = __skb_dequeue(&oldsd->process_queue))) {
7549 netif_rx_ni(skb);
7550 input_queue_head_incr(oldsd);
7551 }
7552 while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) {
7553 netif_rx_ni(skb);
7554 input_queue_head_incr(oldsd);
7555 }
7556
7557 return NOTIFY_OK;
7558 }
7559
7560
7561 /**
7562 * netdev_increment_features - increment feature set by one
7563 * @all: current feature set
7564 * @one: new feature set
7565 * @mask: mask feature set
7566 *
7567 * Computes a new feature set after adding a device with feature set
7568 * @one to the master device with current feature set @all. Will not
7569 * enable anything that is off in @mask. Returns the new feature set.
7570 */
7571 netdev_features_t netdev_increment_features(netdev_features_t all,
7572 netdev_features_t one, netdev_features_t mask)
7573 {
7574 if (mask & NETIF_F_GEN_CSUM)
7575 mask |= NETIF_F_CSUM_MASK;
7576 mask |= NETIF_F_VLAN_CHALLENGED;
7577
7578 all |= one & (NETIF_F_ONE_FOR_ALL | NETIF_F_CSUM_MASK) & mask;
7579 all &= one | ~NETIF_F_ALL_FOR_ALL;
7580
7581 /* If one device supports hw checksumming, set for all. */
7582 if (all & NETIF_F_GEN_CSUM)
7583 all &= ~(NETIF_F_CSUM_MASK & ~NETIF_F_GEN_CSUM);
7584
7585 return all;
7586 }
7587 EXPORT_SYMBOL(netdev_increment_features);
7588
7589 static struct hlist_head * __net_init netdev_create_hash(void)
7590 {
7591 int i;
7592 struct hlist_head *hash;
7593
7594 hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL);
7595 if (hash != NULL)
7596 for (i = 0; i < NETDEV_HASHENTRIES; i++)
7597 INIT_HLIST_HEAD(&hash[i]);
7598
7599 return hash;
7600 }
7601
7602 /* Initialize per network namespace state */
7603 static int __net_init netdev_init(struct net *net)
7604 {
7605 if (net != &init_net)
7606 INIT_LIST_HEAD(&net->dev_base_head);
7607
7608 net->dev_name_head = netdev_create_hash();
7609 if (net->dev_name_head == NULL)
7610 goto err_name;
7611
7612 net->dev_index_head = netdev_create_hash();
7613 if (net->dev_index_head == NULL)
7614 goto err_idx;
7615
7616 return 0;
7617
7618 err_idx:
7619 kfree(net->dev_name_head);
7620 err_name:
7621 return -ENOMEM;
7622 }
7623
7624 /**
7625 * netdev_drivername - network driver for the device
7626 * @dev: network device
7627 *
7628 * Determine network driver for device.
7629 */
7630 const char *netdev_drivername(const struct net_device *dev)
7631 {
7632 const struct device_driver *driver;
7633 const struct device *parent;
7634 const char *empty = "";
7635
7636 parent = dev->dev.parent;
7637 if (!parent)
7638 return empty;
7639
7640 driver = parent->driver;
7641 if (driver && driver->name)
7642 return driver->name;
7643 return empty;
7644 }
7645
7646 static void __netdev_printk(const char *level, const struct net_device *dev,
7647 struct va_format *vaf)
7648 {
7649 if (dev && dev->dev.parent) {
7650 dev_printk_emit(level[1] - '0',
7651 dev->dev.parent,
7652 "%s %s %s%s: %pV",
7653 dev_driver_string(dev->dev.parent),
7654 dev_name(dev->dev.parent),
7655 netdev_name(dev), netdev_reg_state(dev),
7656 vaf);
7657 } else if (dev) {
7658 printk("%s%s%s: %pV",
7659 level, netdev_name(dev), netdev_reg_state(dev), vaf);
7660 } else {
7661 printk("%s(NULL net_device): %pV", level, vaf);
7662 }
7663 }
7664
7665 void netdev_printk(const char *level, const struct net_device *dev,
7666 const char *format, ...)
7667 {
7668 struct va_format vaf;
7669 va_list args;
7670
7671 va_start(args, format);
7672
7673 vaf.fmt = format;
7674 vaf.va = &args;
7675
7676 __netdev_printk(level, dev, &vaf);
7677
7678 va_end(args);
7679 }
7680 EXPORT_SYMBOL(netdev_printk);
7681
7682 #define define_netdev_printk_level(func, level) \
7683 void func(const struct net_device *dev, const char *fmt, ...) \
7684 { \
7685 struct va_format vaf; \
7686 va_list args; \
7687 \
7688 va_start(args, fmt); \
7689 \
7690 vaf.fmt = fmt; \
7691 vaf.va = &args; \
7692 \
7693 __netdev_printk(level, dev, &vaf); \
7694 \
7695 va_end(args); \
7696 } \
7697 EXPORT_SYMBOL(func);
7698
7699 define_netdev_printk_level(netdev_emerg, KERN_EMERG);
7700 define_netdev_printk_level(netdev_alert, KERN_ALERT);
7701 define_netdev_printk_level(netdev_crit, KERN_CRIT);
7702 define_netdev_printk_level(netdev_err, KERN_ERR);
7703 define_netdev_printk_level(netdev_warn, KERN_WARNING);
7704 define_netdev_printk_level(netdev_notice, KERN_NOTICE);
7705 define_netdev_printk_level(netdev_info, KERN_INFO);
7706
7707 static void __net_exit netdev_exit(struct net *net)
7708 {
7709 kfree(net->dev_name_head);
7710 kfree(net->dev_index_head);
7711 }
7712
7713 static struct pernet_operations __net_initdata netdev_net_ops = {
7714 .init = netdev_init,
7715 .exit = netdev_exit,
7716 };
7717
7718 static void __net_exit default_device_exit(struct net *net)
7719 {
7720 struct net_device *dev, *aux;
7721 /*
7722 * Push all migratable network devices back to the
7723 * initial network namespace
7724 */
7725 rtnl_lock();
7726 for_each_netdev_safe(net, dev, aux) {
7727 int err;
7728 char fb_name[IFNAMSIZ];
7729
7730 /* Ignore unmoveable devices (i.e. loopback) */
7731 if (dev->features & NETIF_F_NETNS_LOCAL)
7732 continue;
7733
7734 /* Leave virtual devices for the generic cleanup */
7735 if (dev->rtnl_link_ops)
7736 continue;
7737
7738 /* Push remaining network devices to init_net */
7739 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
7740 err = dev_change_net_namespace(dev, &init_net, fb_name);
7741 if (err) {
7742 pr_emerg("%s: failed to move %s to init_net: %d\n",
7743 __func__, dev->name, err);
7744 BUG();
7745 }
7746 }
7747 rtnl_unlock();
7748 }
7749
7750 static void __net_exit rtnl_lock_unregistering(struct list_head *net_list)
7751 {
7752 /* Return with the rtnl_lock held when there are no network
7753 * devices unregistering in any network namespace in net_list.
7754 */
7755 struct net *net;
7756 bool unregistering;
7757 DEFINE_WAIT_FUNC(wait, woken_wake_function);
7758
7759 add_wait_queue(&netdev_unregistering_wq, &wait);
7760 for (;;) {
7761 unregistering = false;
7762 rtnl_lock();
7763 list_for_each_entry(net, net_list, exit_list) {
7764 if (net->dev_unreg_count > 0) {
7765 unregistering = true;
7766 break;
7767 }
7768 }
7769 if (!unregistering)
7770 break;
7771 __rtnl_unlock();
7772
7773 wait_woken(&wait, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
7774 }
7775 remove_wait_queue(&netdev_unregistering_wq, &wait);
7776 }
7777
7778 static void __net_exit default_device_exit_batch(struct list_head *net_list)
7779 {
7780 /* At exit all network devices most be removed from a network
7781 * namespace. Do this in the reverse order of registration.
7782 * Do this across as many network namespaces as possible to
7783 * improve batching efficiency.
7784 */
7785 struct net_device *dev;
7786 struct net *net;
7787 LIST_HEAD(dev_kill_list);
7788
7789 /* To prevent network device cleanup code from dereferencing
7790 * loopback devices or network devices that have been freed
7791 * wait here for all pending unregistrations to complete,
7792 * before unregistring the loopback device and allowing the
7793 * network namespace be freed.
7794 *
7795 * The netdev todo list containing all network devices
7796 * unregistrations that happen in default_device_exit_batch
7797 * will run in the rtnl_unlock() at the end of
7798 * default_device_exit_batch.
7799 */
7800 rtnl_lock_unregistering(net_list);
7801 list_for_each_entry(net, net_list, exit_list) {
7802 for_each_netdev_reverse(net, dev) {
7803 if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink)
7804 dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
7805 else
7806 unregister_netdevice_queue(dev, &dev_kill_list);
7807 }
7808 }
7809 unregister_netdevice_many(&dev_kill_list);
7810 rtnl_unlock();
7811 }
7812
7813 static struct pernet_operations __net_initdata default_device_ops = {
7814 .exit = default_device_exit,
7815 .exit_batch = default_device_exit_batch,
7816 };
7817
7818 /*
7819 * Initialize the DEV module. At boot time this walks the device list and
7820 * unhooks any devices that fail to initialise (normally hardware not
7821 * present) and leaves us with a valid list of present and active devices.
7822 *
7823 */
7824
7825 /*
7826 * This is called single threaded during boot, so no need
7827 * to take the rtnl semaphore.
7828 */
7829 static int __init net_dev_init(void)
7830 {
7831 int i, rc = -ENOMEM;
7832
7833 BUG_ON(!dev_boot_phase);
7834
7835 if (dev_proc_init())
7836 goto out;
7837
7838 if (netdev_kobject_init())
7839 goto out;
7840
7841 INIT_LIST_HEAD(&ptype_all);
7842 for (i = 0; i < PTYPE_HASH_SIZE; i++)
7843 INIT_LIST_HEAD(&ptype_base[i]);
7844
7845 INIT_LIST_HEAD(&offload_base);
7846
7847 if (register_pernet_subsys(&netdev_net_ops))
7848 goto out;
7849
7850 /*
7851 * Initialise the packet receive queues.
7852 */
7853
7854 for_each_possible_cpu(i) {
7855 struct softnet_data *sd = &per_cpu(softnet_data, i);
7856
7857 skb_queue_head_init(&sd->input_pkt_queue);
7858 skb_queue_head_init(&sd->process_queue);
7859 INIT_LIST_HEAD(&sd->poll_list);
7860 sd->output_queue_tailp = &sd->output_queue;
7861 #ifdef CONFIG_RPS
7862 sd->csd.func = rps_trigger_softirq;
7863 sd->csd.info = sd;
7864 sd->cpu = i;
7865 #endif
7866
7867 sd->backlog.poll = process_backlog;
7868 sd->backlog.weight = weight_p;
7869 }
7870
7871 dev_boot_phase = 0;
7872
7873 /* The loopback device is special if any other network devices
7874 * is present in a network namespace the loopback device must
7875 * be present. Since we now dynamically allocate and free the
7876 * loopback device ensure this invariant is maintained by
7877 * keeping the loopback device as the first device on the
7878 * list of network devices. Ensuring the loopback devices
7879 * is the first device that appears and the last network device
7880 * that disappears.
7881 */
7882 if (register_pernet_device(&loopback_net_ops))
7883 goto out;
7884
7885 if (register_pernet_device(&default_device_ops))
7886 goto out;
7887
7888 open_softirq(NET_TX_SOFTIRQ, net_tx_action);
7889 open_softirq(NET_RX_SOFTIRQ, net_rx_action);
7890
7891 hotcpu_notifier(dev_cpu_callback, 0);
7892 dst_subsys_init();
7893 rc = 0;
7894 out:
7895 return rc;
7896 }
7897
7898 subsys_initcall(net_dev_init);