]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - net/ipv4/tcp_input.c
tcp: allow to turn tcp timestamp randomization off
[mirror_ubuntu-artful-kernel.git] / net / ipv4 / tcp_input.c
1 /*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
5 *
6 * Implementation of the Transmission Control Protocol(TCP).
7 *
8 * Authors: Ross Biro
9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10 * Mark Evans, <evansmp@uhura.aston.ac.uk>
11 * Corey Minyard <wf-rch!minyard@relay.EU.net>
12 * Florian La Roche, <flla@stud.uni-sb.de>
13 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
14 * Linus Torvalds, <torvalds@cs.helsinki.fi>
15 * Alan Cox, <gw4pts@gw4pts.ampr.org>
16 * Matthew Dillon, <dillon@apollo.west.oic.com>
17 * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
18 * Jorge Cwik, <jorge@laser.satlink.net>
19 */
20
21 /*
22 * Changes:
23 * Pedro Roque : Fast Retransmit/Recovery.
24 * Two receive queues.
25 * Retransmit queue handled by TCP.
26 * Better retransmit timer handling.
27 * New congestion avoidance.
28 * Header prediction.
29 * Variable renaming.
30 *
31 * Eric : Fast Retransmit.
32 * Randy Scott : MSS option defines.
33 * Eric Schenk : Fixes to slow start algorithm.
34 * Eric Schenk : Yet another double ACK bug.
35 * Eric Schenk : Delayed ACK bug fixes.
36 * Eric Schenk : Floyd style fast retrans war avoidance.
37 * David S. Miller : Don't allow zero congestion window.
38 * Eric Schenk : Fix retransmitter so that it sends
39 * next packet on ack of previous packet.
40 * Andi Kleen : Moved open_request checking here
41 * and process RSTs for open_requests.
42 * Andi Kleen : Better prune_queue, and other fixes.
43 * Andrey Savochkin: Fix RTT measurements in the presence of
44 * timestamps.
45 * Andrey Savochkin: Check sequence numbers correctly when
46 * removing SACKs due to in sequence incoming
47 * data segments.
48 * Andi Kleen: Make sure we never ack data there is not
49 * enough room for. Also make this condition
50 * a fatal error if it might still happen.
51 * Andi Kleen: Add tcp_measure_rcv_mss to make
52 * connections with MSS<min(MTU,ann. MSS)
53 * work without delayed acks.
54 * Andi Kleen: Process packets with PSH set in the
55 * fast path.
56 * J Hadi Salim: ECN support
57 * Andrei Gurtov,
58 * Pasi Sarolahti,
59 * Panu Kuhlberg: Experimental audit of TCP (re)transmission
60 * engine. Lots of bugs are found.
61 * Pasi Sarolahti: F-RTO for dealing with spurious RTOs
62 */
63
64 #define pr_fmt(fmt) "TCP: " fmt
65
66 #include <linux/mm.h>
67 #include <linux/slab.h>
68 #include <linux/module.h>
69 #include <linux/sysctl.h>
70 #include <linux/kernel.h>
71 #include <linux/prefetch.h>
72 #include <net/dst.h>
73 #include <net/tcp.h>
74 #include <net/inet_common.h>
75 #include <linux/ipsec.h>
76 #include <asm/unaligned.h>
77 #include <linux/errqueue.h>
78
79 int sysctl_tcp_timestamps __read_mostly = 1;
80 int sysctl_tcp_window_scaling __read_mostly = 1;
81 int sysctl_tcp_sack __read_mostly = 1;
82 int sysctl_tcp_fack __read_mostly = 1;
83 int sysctl_tcp_max_reordering __read_mostly = 300;
84 int sysctl_tcp_dsack __read_mostly = 1;
85 int sysctl_tcp_app_win __read_mostly = 31;
86 int sysctl_tcp_adv_win_scale __read_mostly = 1;
87 EXPORT_SYMBOL(sysctl_tcp_adv_win_scale);
88 EXPORT_SYMBOL(sysctl_tcp_timestamps);
89
90 /* rfc5961 challenge ack rate limiting */
91 int sysctl_tcp_challenge_ack_limit = 1000;
92
93 int sysctl_tcp_stdurg __read_mostly;
94 int sysctl_tcp_rfc1337 __read_mostly;
95 int sysctl_tcp_max_orphans __read_mostly = NR_FILE;
96 int sysctl_tcp_frto __read_mostly = 2;
97 int sysctl_tcp_min_rtt_wlen __read_mostly = 300;
98
99 int sysctl_tcp_thin_dupack __read_mostly;
100
101 int sysctl_tcp_moderate_rcvbuf __read_mostly = 1;
102 int sysctl_tcp_early_retrans __read_mostly = 3;
103 int sysctl_tcp_invalid_ratelimit __read_mostly = HZ/2;
104
105 #define FLAG_DATA 0x01 /* Incoming frame contained data. */
106 #define FLAG_WIN_UPDATE 0x02 /* Incoming ACK was a window update. */
107 #define FLAG_DATA_ACKED 0x04 /* This ACK acknowledged new data. */
108 #define FLAG_RETRANS_DATA_ACKED 0x08 /* "" "" some of which was retransmitted. */
109 #define FLAG_SYN_ACKED 0x10 /* This ACK acknowledged SYN. */
110 #define FLAG_DATA_SACKED 0x20 /* New SACK. */
111 #define FLAG_ECE 0x40 /* ECE in this ACK */
112 #define FLAG_LOST_RETRANS 0x80 /* This ACK marks some retransmission lost */
113 #define FLAG_SLOWPATH 0x100 /* Do not skip RFC checks for window update.*/
114 #define FLAG_ORIG_SACK_ACKED 0x200 /* Never retransmitted data are (s)acked */
115 #define FLAG_SND_UNA_ADVANCED 0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */
116 #define FLAG_DSACKING_ACK 0x800 /* SACK blocks contained D-SACK info */
117 #define FLAG_SACK_RENEGING 0x2000 /* snd_una advanced to a sacked seq */
118 #define FLAG_UPDATE_TS_RECENT 0x4000 /* tcp_replace_ts_recent() */
119
120 #define FLAG_ACKED (FLAG_DATA_ACKED|FLAG_SYN_ACKED)
121 #define FLAG_NOT_DUP (FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED)
122 #define FLAG_CA_ALERT (FLAG_DATA_SACKED|FLAG_ECE)
123 #define FLAG_FORWARD_PROGRESS (FLAG_ACKED|FLAG_DATA_SACKED)
124
125 #define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH)
126 #define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH))
127
128 #define REXMIT_NONE 0 /* no loss recovery to do */
129 #define REXMIT_LOST 1 /* retransmit packets marked lost */
130 #define REXMIT_NEW 2 /* FRTO-style transmit of unsent/new packets */
131
132 /* Adapt the MSS value used to make delayed ack decision to the
133 * real world.
134 */
135 static void tcp_measure_rcv_mss(struct sock *sk, const struct sk_buff *skb)
136 {
137 struct inet_connection_sock *icsk = inet_csk(sk);
138 const unsigned int lss = icsk->icsk_ack.last_seg_size;
139 unsigned int len;
140
141 icsk->icsk_ack.last_seg_size = 0;
142
143 /* skb->len may jitter because of SACKs, even if peer
144 * sends good full-sized frames.
145 */
146 len = skb_shinfo(skb)->gso_size ? : skb->len;
147 if (len >= icsk->icsk_ack.rcv_mss) {
148 icsk->icsk_ack.rcv_mss = len;
149 } else {
150 /* Otherwise, we make more careful check taking into account,
151 * that SACKs block is variable.
152 *
153 * "len" is invariant segment length, including TCP header.
154 */
155 len += skb->data - skb_transport_header(skb);
156 if (len >= TCP_MSS_DEFAULT + sizeof(struct tcphdr) ||
157 /* If PSH is not set, packet should be
158 * full sized, provided peer TCP is not badly broken.
159 * This observation (if it is correct 8)) allows
160 * to handle super-low mtu links fairly.
161 */
162 (len >= TCP_MIN_MSS + sizeof(struct tcphdr) &&
163 !(tcp_flag_word(tcp_hdr(skb)) & TCP_REMNANT))) {
164 /* Subtract also invariant (if peer is RFC compliant),
165 * tcp header plus fixed timestamp option length.
166 * Resulting "len" is MSS free of SACK jitter.
167 */
168 len -= tcp_sk(sk)->tcp_header_len;
169 icsk->icsk_ack.last_seg_size = len;
170 if (len == lss) {
171 icsk->icsk_ack.rcv_mss = len;
172 return;
173 }
174 }
175 if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED)
176 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2;
177 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
178 }
179 }
180
181 static void tcp_incr_quickack(struct sock *sk)
182 {
183 struct inet_connection_sock *icsk = inet_csk(sk);
184 unsigned int quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss);
185
186 if (quickacks == 0)
187 quickacks = 2;
188 if (quickacks > icsk->icsk_ack.quick)
189 icsk->icsk_ack.quick = min(quickacks, TCP_MAX_QUICKACKS);
190 }
191
192 static void tcp_enter_quickack_mode(struct sock *sk)
193 {
194 struct inet_connection_sock *icsk = inet_csk(sk);
195 tcp_incr_quickack(sk);
196 icsk->icsk_ack.pingpong = 0;
197 icsk->icsk_ack.ato = TCP_ATO_MIN;
198 }
199
200 /* Send ACKs quickly, if "quick" count is not exhausted
201 * and the session is not interactive.
202 */
203
204 static bool tcp_in_quickack_mode(struct sock *sk)
205 {
206 const struct inet_connection_sock *icsk = inet_csk(sk);
207 const struct dst_entry *dst = __sk_dst_get(sk);
208
209 return (dst && dst_metric(dst, RTAX_QUICKACK)) ||
210 (icsk->icsk_ack.quick && !icsk->icsk_ack.pingpong);
211 }
212
213 static void tcp_ecn_queue_cwr(struct tcp_sock *tp)
214 {
215 if (tp->ecn_flags & TCP_ECN_OK)
216 tp->ecn_flags |= TCP_ECN_QUEUE_CWR;
217 }
218
219 static void tcp_ecn_accept_cwr(struct tcp_sock *tp, const struct sk_buff *skb)
220 {
221 if (tcp_hdr(skb)->cwr)
222 tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
223 }
224
225 static void tcp_ecn_withdraw_cwr(struct tcp_sock *tp)
226 {
227 tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
228 }
229
230 static void __tcp_ecn_check_ce(struct tcp_sock *tp, const struct sk_buff *skb)
231 {
232 switch (TCP_SKB_CB(skb)->ip_dsfield & INET_ECN_MASK) {
233 case INET_ECN_NOT_ECT:
234 /* Funny extension: if ECT is not set on a segment,
235 * and we already seen ECT on a previous segment,
236 * it is probably a retransmit.
237 */
238 if (tp->ecn_flags & TCP_ECN_SEEN)
239 tcp_enter_quickack_mode((struct sock *)tp);
240 break;
241 case INET_ECN_CE:
242 if (tcp_ca_needs_ecn((struct sock *)tp))
243 tcp_ca_event((struct sock *)tp, CA_EVENT_ECN_IS_CE);
244
245 if (!(tp->ecn_flags & TCP_ECN_DEMAND_CWR)) {
246 /* Better not delay acks, sender can have a very low cwnd */
247 tcp_enter_quickack_mode((struct sock *)tp);
248 tp->ecn_flags |= TCP_ECN_DEMAND_CWR;
249 }
250 tp->ecn_flags |= TCP_ECN_SEEN;
251 break;
252 default:
253 if (tcp_ca_needs_ecn((struct sock *)tp))
254 tcp_ca_event((struct sock *)tp, CA_EVENT_ECN_NO_CE);
255 tp->ecn_flags |= TCP_ECN_SEEN;
256 break;
257 }
258 }
259
260 static void tcp_ecn_check_ce(struct tcp_sock *tp, const struct sk_buff *skb)
261 {
262 if (tp->ecn_flags & TCP_ECN_OK)
263 __tcp_ecn_check_ce(tp, skb);
264 }
265
266 static void tcp_ecn_rcv_synack(struct tcp_sock *tp, const struct tcphdr *th)
267 {
268 if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || th->cwr))
269 tp->ecn_flags &= ~TCP_ECN_OK;
270 }
271
272 static void tcp_ecn_rcv_syn(struct tcp_sock *tp, const struct tcphdr *th)
273 {
274 if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || !th->cwr))
275 tp->ecn_flags &= ~TCP_ECN_OK;
276 }
277
278 static bool tcp_ecn_rcv_ecn_echo(const struct tcp_sock *tp, const struct tcphdr *th)
279 {
280 if (th->ece && !th->syn && (tp->ecn_flags & TCP_ECN_OK))
281 return true;
282 return false;
283 }
284
285 /* Buffer size and advertised window tuning.
286 *
287 * 1. Tuning sk->sk_sndbuf, when connection enters established state.
288 */
289
290 static void tcp_sndbuf_expand(struct sock *sk)
291 {
292 const struct tcp_sock *tp = tcp_sk(sk);
293 const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
294 int sndmem, per_mss;
295 u32 nr_segs;
296
297 /* Worst case is non GSO/TSO : each frame consumes one skb
298 * and skb->head is kmalloced using power of two area of memory
299 */
300 per_mss = max_t(u32, tp->rx_opt.mss_clamp, tp->mss_cache) +
301 MAX_TCP_HEADER +
302 SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
303
304 per_mss = roundup_pow_of_two(per_mss) +
305 SKB_DATA_ALIGN(sizeof(struct sk_buff));
306
307 nr_segs = max_t(u32, TCP_INIT_CWND, tp->snd_cwnd);
308 nr_segs = max_t(u32, nr_segs, tp->reordering + 1);
309
310 /* Fast Recovery (RFC 5681 3.2) :
311 * Cubic needs 1.7 factor, rounded to 2 to include
312 * extra cushion (application might react slowly to POLLOUT)
313 */
314 sndmem = ca_ops->sndbuf_expand ? ca_ops->sndbuf_expand(sk) : 2;
315 sndmem *= nr_segs * per_mss;
316
317 if (sk->sk_sndbuf < sndmem)
318 sk->sk_sndbuf = min(sndmem, sysctl_tcp_wmem[2]);
319 }
320
321 /* 2. Tuning advertised window (window_clamp, rcv_ssthresh)
322 *
323 * All tcp_full_space() is split to two parts: "network" buffer, allocated
324 * forward and advertised in receiver window (tp->rcv_wnd) and
325 * "application buffer", required to isolate scheduling/application
326 * latencies from network.
327 * window_clamp is maximal advertised window. It can be less than
328 * tcp_full_space(), in this case tcp_full_space() - window_clamp
329 * is reserved for "application" buffer. The less window_clamp is
330 * the smoother our behaviour from viewpoint of network, but the lower
331 * throughput and the higher sensitivity of the connection to losses. 8)
332 *
333 * rcv_ssthresh is more strict window_clamp used at "slow start"
334 * phase to predict further behaviour of this connection.
335 * It is used for two goals:
336 * - to enforce header prediction at sender, even when application
337 * requires some significant "application buffer". It is check #1.
338 * - to prevent pruning of receive queue because of misprediction
339 * of receiver window. Check #2.
340 *
341 * The scheme does not work when sender sends good segments opening
342 * window and then starts to feed us spaghetti. But it should work
343 * in common situations. Otherwise, we have to rely on queue collapsing.
344 */
345
346 /* Slow part of check#2. */
347 static int __tcp_grow_window(const struct sock *sk, const struct sk_buff *skb)
348 {
349 struct tcp_sock *tp = tcp_sk(sk);
350 /* Optimize this! */
351 int truesize = tcp_win_from_space(skb->truesize) >> 1;
352 int window = tcp_win_from_space(sysctl_tcp_rmem[2]) >> 1;
353
354 while (tp->rcv_ssthresh <= window) {
355 if (truesize <= skb->len)
356 return 2 * inet_csk(sk)->icsk_ack.rcv_mss;
357
358 truesize >>= 1;
359 window >>= 1;
360 }
361 return 0;
362 }
363
364 static void tcp_grow_window(struct sock *sk, const struct sk_buff *skb)
365 {
366 struct tcp_sock *tp = tcp_sk(sk);
367
368 /* Check #1 */
369 if (tp->rcv_ssthresh < tp->window_clamp &&
370 (int)tp->rcv_ssthresh < tcp_space(sk) &&
371 !tcp_under_memory_pressure(sk)) {
372 int incr;
373
374 /* Check #2. Increase window, if skb with such overhead
375 * will fit to rcvbuf in future.
376 */
377 if (tcp_win_from_space(skb->truesize) <= skb->len)
378 incr = 2 * tp->advmss;
379 else
380 incr = __tcp_grow_window(sk, skb);
381
382 if (incr) {
383 incr = max_t(int, incr, 2 * skb->len);
384 tp->rcv_ssthresh = min(tp->rcv_ssthresh + incr,
385 tp->window_clamp);
386 inet_csk(sk)->icsk_ack.quick |= 1;
387 }
388 }
389 }
390
391 /* 3. Tuning rcvbuf, when connection enters established state. */
392 static void tcp_fixup_rcvbuf(struct sock *sk)
393 {
394 u32 mss = tcp_sk(sk)->advmss;
395 int rcvmem;
396
397 rcvmem = 2 * SKB_TRUESIZE(mss + MAX_TCP_HEADER) *
398 tcp_default_init_rwnd(mss);
399
400 /* Dynamic Right Sizing (DRS) has 2 to 3 RTT latency
401 * Allow enough cushion so that sender is not limited by our window
402 */
403 if (sysctl_tcp_moderate_rcvbuf)
404 rcvmem <<= 2;
405
406 if (sk->sk_rcvbuf < rcvmem)
407 sk->sk_rcvbuf = min(rcvmem, sysctl_tcp_rmem[2]);
408 }
409
410 /* 4. Try to fixup all. It is made immediately after connection enters
411 * established state.
412 */
413 void tcp_init_buffer_space(struct sock *sk)
414 {
415 struct tcp_sock *tp = tcp_sk(sk);
416 int maxwin;
417
418 if (!(sk->sk_userlocks & SOCK_RCVBUF_LOCK))
419 tcp_fixup_rcvbuf(sk);
420 if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK))
421 tcp_sndbuf_expand(sk);
422
423 tp->rcvq_space.space = tp->rcv_wnd;
424 tp->rcvq_space.time = tcp_time_stamp;
425 tp->rcvq_space.seq = tp->copied_seq;
426
427 maxwin = tcp_full_space(sk);
428
429 if (tp->window_clamp >= maxwin) {
430 tp->window_clamp = maxwin;
431
432 if (sysctl_tcp_app_win && maxwin > 4 * tp->advmss)
433 tp->window_clamp = max(maxwin -
434 (maxwin >> sysctl_tcp_app_win),
435 4 * tp->advmss);
436 }
437
438 /* Force reservation of one segment. */
439 if (sysctl_tcp_app_win &&
440 tp->window_clamp > 2 * tp->advmss &&
441 tp->window_clamp + tp->advmss > maxwin)
442 tp->window_clamp = max(2 * tp->advmss, maxwin - tp->advmss);
443
444 tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp);
445 tp->snd_cwnd_stamp = tcp_time_stamp;
446 }
447
448 /* 5. Recalculate window clamp after socket hit its memory bounds. */
449 static void tcp_clamp_window(struct sock *sk)
450 {
451 struct tcp_sock *tp = tcp_sk(sk);
452 struct inet_connection_sock *icsk = inet_csk(sk);
453
454 icsk->icsk_ack.quick = 0;
455
456 if (sk->sk_rcvbuf < sysctl_tcp_rmem[2] &&
457 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) &&
458 !tcp_under_memory_pressure(sk) &&
459 sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0)) {
460 sk->sk_rcvbuf = min(atomic_read(&sk->sk_rmem_alloc),
461 sysctl_tcp_rmem[2]);
462 }
463 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf)
464 tp->rcv_ssthresh = min(tp->window_clamp, 2U * tp->advmss);
465 }
466
467 /* Initialize RCV_MSS value.
468 * RCV_MSS is an our guess about MSS used by the peer.
469 * We haven't any direct information about the MSS.
470 * It's better to underestimate the RCV_MSS rather than overestimate.
471 * Overestimations make us ACKing less frequently than needed.
472 * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss().
473 */
474 void tcp_initialize_rcv_mss(struct sock *sk)
475 {
476 const struct tcp_sock *tp = tcp_sk(sk);
477 unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache);
478
479 hint = min(hint, tp->rcv_wnd / 2);
480 hint = min(hint, TCP_MSS_DEFAULT);
481 hint = max(hint, TCP_MIN_MSS);
482
483 inet_csk(sk)->icsk_ack.rcv_mss = hint;
484 }
485 EXPORT_SYMBOL(tcp_initialize_rcv_mss);
486
487 /* Receiver "autotuning" code.
488 *
489 * The algorithm for RTT estimation w/o timestamps is based on
490 * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL.
491 * <http://public.lanl.gov/radiant/pubs.html#DRS>
492 *
493 * More detail on this code can be found at
494 * <http://staff.psc.edu/jheffner/>,
495 * though this reference is out of date. A new paper
496 * is pending.
497 */
498 static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep)
499 {
500 u32 new_sample = tp->rcv_rtt_est.rtt;
501 long m = sample;
502
503 if (m == 0)
504 m = 1;
505
506 if (new_sample != 0) {
507 /* If we sample in larger samples in the non-timestamp
508 * case, we could grossly overestimate the RTT especially
509 * with chatty applications or bulk transfer apps which
510 * are stalled on filesystem I/O.
511 *
512 * Also, since we are only going for a minimum in the
513 * non-timestamp case, we do not smooth things out
514 * else with timestamps disabled convergence takes too
515 * long.
516 */
517 if (!win_dep) {
518 m -= (new_sample >> 3);
519 new_sample += m;
520 } else {
521 m <<= 3;
522 if (m < new_sample)
523 new_sample = m;
524 }
525 } else {
526 /* No previous measure. */
527 new_sample = m << 3;
528 }
529
530 if (tp->rcv_rtt_est.rtt != new_sample)
531 tp->rcv_rtt_est.rtt = new_sample;
532 }
533
534 static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp)
535 {
536 if (tp->rcv_rtt_est.time == 0)
537 goto new_measure;
538 if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq))
539 return;
540 tcp_rcv_rtt_update(tp, tcp_time_stamp - tp->rcv_rtt_est.time, 1);
541
542 new_measure:
543 tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd;
544 tp->rcv_rtt_est.time = tcp_time_stamp;
545 }
546
547 static inline void tcp_rcv_rtt_measure_ts(struct sock *sk,
548 const struct sk_buff *skb)
549 {
550 struct tcp_sock *tp = tcp_sk(sk);
551 if (tp->rx_opt.rcv_tsecr &&
552 (TCP_SKB_CB(skb)->end_seq -
553 TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss))
554 tcp_rcv_rtt_update(tp, tcp_time_stamp - tp->rx_opt.rcv_tsecr, 0);
555 }
556
557 /*
558 * This function should be called every time data is copied to user space.
559 * It calculates the appropriate TCP receive buffer space.
560 */
561 void tcp_rcv_space_adjust(struct sock *sk)
562 {
563 struct tcp_sock *tp = tcp_sk(sk);
564 int time;
565 int copied;
566
567 time = tcp_time_stamp - tp->rcvq_space.time;
568 if (time < (tp->rcv_rtt_est.rtt >> 3) || tp->rcv_rtt_est.rtt == 0)
569 return;
570
571 /* Number of bytes copied to user in last RTT */
572 copied = tp->copied_seq - tp->rcvq_space.seq;
573 if (copied <= tp->rcvq_space.space)
574 goto new_measure;
575
576 /* A bit of theory :
577 * copied = bytes received in previous RTT, our base window
578 * To cope with packet losses, we need a 2x factor
579 * To cope with slow start, and sender growing its cwin by 100 %
580 * every RTT, we need a 4x factor, because the ACK we are sending
581 * now is for the next RTT, not the current one :
582 * <prev RTT . ><current RTT .. ><next RTT .... >
583 */
584
585 if (sysctl_tcp_moderate_rcvbuf &&
586 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) {
587 int rcvwin, rcvmem, rcvbuf;
588
589 /* minimal window to cope with packet losses, assuming
590 * steady state. Add some cushion because of small variations.
591 */
592 rcvwin = (copied << 1) + 16 * tp->advmss;
593
594 /* If rate increased by 25%,
595 * assume slow start, rcvwin = 3 * copied
596 * If rate increased by 50%,
597 * assume sender can use 2x growth, rcvwin = 4 * copied
598 */
599 if (copied >=
600 tp->rcvq_space.space + (tp->rcvq_space.space >> 2)) {
601 if (copied >=
602 tp->rcvq_space.space + (tp->rcvq_space.space >> 1))
603 rcvwin <<= 1;
604 else
605 rcvwin += (rcvwin >> 1);
606 }
607
608 rcvmem = SKB_TRUESIZE(tp->advmss + MAX_TCP_HEADER);
609 while (tcp_win_from_space(rcvmem) < tp->advmss)
610 rcvmem += 128;
611
612 rcvbuf = min(rcvwin / tp->advmss * rcvmem, sysctl_tcp_rmem[2]);
613 if (rcvbuf > sk->sk_rcvbuf) {
614 sk->sk_rcvbuf = rcvbuf;
615
616 /* Make the window clamp follow along. */
617 tp->window_clamp = rcvwin;
618 }
619 }
620 tp->rcvq_space.space = copied;
621
622 new_measure:
623 tp->rcvq_space.seq = tp->copied_seq;
624 tp->rcvq_space.time = tcp_time_stamp;
625 }
626
627 /* There is something which you must keep in mind when you analyze the
628 * behavior of the tp->ato delayed ack timeout interval. When a
629 * connection starts up, we want to ack as quickly as possible. The
630 * problem is that "good" TCP's do slow start at the beginning of data
631 * transmission. The means that until we send the first few ACK's the
632 * sender will sit on his end and only queue most of his data, because
633 * he can only send snd_cwnd unacked packets at any given time. For
634 * each ACK we send, he increments snd_cwnd and transmits more of his
635 * queue. -DaveM
636 */
637 static void tcp_event_data_recv(struct sock *sk, struct sk_buff *skb)
638 {
639 struct tcp_sock *tp = tcp_sk(sk);
640 struct inet_connection_sock *icsk = inet_csk(sk);
641 u32 now;
642
643 inet_csk_schedule_ack(sk);
644
645 tcp_measure_rcv_mss(sk, skb);
646
647 tcp_rcv_rtt_measure(tp);
648
649 now = tcp_time_stamp;
650
651 if (!icsk->icsk_ack.ato) {
652 /* The _first_ data packet received, initialize
653 * delayed ACK engine.
654 */
655 tcp_incr_quickack(sk);
656 icsk->icsk_ack.ato = TCP_ATO_MIN;
657 } else {
658 int m = now - icsk->icsk_ack.lrcvtime;
659
660 if (m <= TCP_ATO_MIN / 2) {
661 /* The fastest case is the first. */
662 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2;
663 } else if (m < icsk->icsk_ack.ato) {
664 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m;
665 if (icsk->icsk_ack.ato > icsk->icsk_rto)
666 icsk->icsk_ack.ato = icsk->icsk_rto;
667 } else if (m > icsk->icsk_rto) {
668 /* Too long gap. Apparently sender failed to
669 * restart window, so that we send ACKs quickly.
670 */
671 tcp_incr_quickack(sk);
672 sk_mem_reclaim(sk);
673 }
674 }
675 icsk->icsk_ack.lrcvtime = now;
676
677 tcp_ecn_check_ce(tp, skb);
678
679 if (skb->len >= 128)
680 tcp_grow_window(sk, skb);
681 }
682
683 /* Called to compute a smoothed rtt estimate. The data fed to this
684 * routine either comes from timestamps, or from segments that were
685 * known _not_ to have been retransmitted [see Karn/Partridge
686 * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88
687 * piece by Van Jacobson.
688 * NOTE: the next three routines used to be one big routine.
689 * To save cycles in the RFC 1323 implementation it was better to break
690 * it up into three procedures. -- erics
691 */
692 static void tcp_rtt_estimator(struct sock *sk, long mrtt_us)
693 {
694 struct tcp_sock *tp = tcp_sk(sk);
695 long m = mrtt_us; /* RTT */
696 u32 srtt = tp->srtt_us;
697
698 /* The following amusing code comes from Jacobson's
699 * article in SIGCOMM '88. Note that rtt and mdev
700 * are scaled versions of rtt and mean deviation.
701 * This is designed to be as fast as possible
702 * m stands for "measurement".
703 *
704 * On a 1990 paper the rto value is changed to:
705 * RTO = rtt + 4 * mdev
706 *
707 * Funny. This algorithm seems to be very broken.
708 * These formulae increase RTO, when it should be decreased, increase
709 * too slowly, when it should be increased quickly, decrease too quickly
710 * etc. I guess in BSD RTO takes ONE value, so that it is absolutely
711 * does not matter how to _calculate_ it. Seems, it was trap
712 * that VJ failed to avoid. 8)
713 */
714 if (srtt != 0) {
715 m -= (srtt >> 3); /* m is now error in rtt est */
716 srtt += m; /* rtt = 7/8 rtt + 1/8 new */
717 if (m < 0) {
718 m = -m; /* m is now abs(error) */
719 m -= (tp->mdev_us >> 2); /* similar update on mdev */
720 /* This is similar to one of Eifel findings.
721 * Eifel blocks mdev updates when rtt decreases.
722 * This solution is a bit different: we use finer gain
723 * for mdev in this case (alpha*beta).
724 * Like Eifel it also prevents growth of rto,
725 * but also it limits too fast rto decreases,
726 * happening in pure Eifel.
727 */
728 if (m > 0)
729 m >>= 3;
730 } else {
731 m -= (tp->mdev_us >> 2); /* similar update on mdev */
732 }
733 tp->mdev_us += m; /* mdev = 3/4 mdev + 1/4 new */
734 if (tp->mdev_us > tp->mdev_max_us) {
735 tp->mdev_max_us = tp->mdev_us;
736 if (tp->mdev_max_us > tp->rttvar_us)
737 tp->rttvar_us = tp->mdev_max_us;
738 }
739 if (after(tp->snd_una, tp->rtt_seq)) {
740 if (tp->mdev_max_us < tp->rttvar_us)
741 tp->rttvar_us -= (tp->rttvar_us - tp->mdev_max_us) >> 2;
742 tp->rtt_seq = tp->snd_nxt;
743 tp->mdev_max_us = tcp_rto_min_us(sk);
744 }
745 } else {
746 /* no previous measure. */
747 srtt = m << 3; /* take the measured time to be rtt */
748 tp->mdev_us = m << 1; /* make sure rto = 3*rtt */
749 tp->rttvar_us = max(tp->mdev_us, tcp_rto_min_us(sk));
750 tp->mdev_max_us = tp->rttvar_us;
751 tp->rtt_seq = tp->snd_nxt;
752 }
753 tp->srtt_us = max(1U, srtt);
754 }
755
756 /* Set the sk_pacing_rate to allow proper sizing of TSO packets.
757 * Note: TCP stack does not yet implement pacing.
758 * FQ packet scheduler can be used to implement cheap but effective
759 * TCP pacing, to smooth the burst on large writes when packets
760 * in flight is significantly lower than cwnd (or rwin)
761 */
762 int sysctl_tcp_pacing_ss_ratio __read_mostly = 200;
763 int sysctl_tcp_pacing_ca_ratio __read_mostly = 120;
764
765 static void tcp_update_pacing_rate(struct sock *sk)
766 {
767 const struct tcp_sock *tp = tcp_sk(sk);
768 u64 rate;
769
770 /* set sk_pacing_rate to 200 % of current rate (mss * cwnd / srtt) */
771 rate = (u64)tp->mss_cache * ((USEC_PER_SEC / 100) << 3);
772
773 /* current rate is (cwnd * mss) / srtt
774 * In Slow Start [1], set sk_pacing_rate to 200 % the current rate.
775 * In Congestion Avoidance phase, set it to 120 % the current rate.
776 *
777 * [1] : Normal Slow Start condition is (tp->snd_cwnd < tp->snd_ssthresh)
778 * If snd_cwnd >= (tp->snd_ssthresh / 2), we are approaching
779 * end of slow start and should slow down.
780 */
781 if (tp->snd_cwnd < tp->snd_ssthresh / 2)
782 rate *= sysctl_tcp_pacing_ss_ratio;
783 else
784 rate *= sysctl_tcp_pacing_ca_ratio;
785
786 rate *= max(tp->snd_cwnd, tp->packets_out);
787
788 if (likely(tp->srtt_us))
789 do_div(rate, tp->srtt_us);
790
791 /* ACCESS_ONCE() is needed because sch_fq fetches sk_pacing_rate
792 * without any lock. We want to make sure compiler wont store
793 * intermediate values in this location.
794 */
795 ACCESS_ONCE(sk->sk_pacing_rate) = min_t(u64, rate,
796 sk->sk_max_pacing_rate);
797 }
798
799 /* Calculate rto without backoff. This is the second half of Van Jacobson's
800 * routine referred to above.
801 */
802 static void tcp_set_rto(struct sock *sk)
803 {
804 const struct tcp_sock *tp = tcp_sk(sk);
805 /* Old crap is replaced with new one. 8)
806 *
807 * More seriously:
808 * 1. If rtt variance happened to be less 50msec, it is hallucination.
809 * It cannot be less due to utterly erratic ACK generation made
810 * at least by solaris and freebsd. "Erratic ACKs" has _nothing_
811 * to do with delayed acks, because at cwnd>2 true delack timeout
812 * is invisible. Actually, Linux-2.4 also generates erratic
813 * ACKs in some circumstances.
814 */
815 inet_csk(sk)->icsk_rto = __tcp_set_rto(tp);
816
817 /* 2. Fixups made earlier cannot be right.
818 * If we do not estimate RTO correctly without them,
819 * all the algo is pure shit and should be replaced
820 * with correct one. It is exactly, which we pretend to do.
821 */
822
823 /* NOTE: clamping at TCP_RTO_MIN is not required, current algo
824 * guarantees that rto is higher.
825 */
826 tcp_bound_rto(sk);
827 }
828
829 __u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst)
830 {
831 __u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0);
832
833 if (!cwnd)
834 cwnd = TCP_INIT_CWND;
835 return min_t(__u32, cwnd, tp->snd_cwnd_clamp);
836 }
837
838 /*
839 * Packet counting of FACK is based on in-order assumptions, therefore TCP
840 * disables it when reordering is detected
841 */
842 void tcp_disable_fack(struct tcp_sock *tp)
843 {
844 /* RFC3517 uses different metric in lost marker => reset on change */
845 if (tcp_is_fack(tp))
846 tp->lost_skb_hint = NULL;
847 tp->rx_opt.sack_ok &= ~TCP_FACK_ENABLED;
848 }
849
850 /* Take a notice that peer is sending D-SACKs */
851 static void tcp_dsack_seen(struct tcp_sock *tp)
852 {
853 tp->rx_opt.sack_ok |= TCP_DSACK_SEEN;
854 }
855
856 static void tcp_update_reordering(struct sock *sk, const int metric,
857 const int ts)
858 {
859 struct tcp_sock *tp = tcp_sk(sk);
860 if (metric > tp->reordering) {
861 int mib_idx;
862
863 tp->reordering = min(sysctl_tcp_max_reordering, metric);
864
865 /* This exciting event is worth to be remembered. 8) */
866 if (ts)
867 mib_idx = LINUX_MIB_TCPTSREORDER;
868 else if (tcp_is_reno(tp))
869 mib_idx = LINUX_MIB_TCPRENOREORDER;
870 else if (tcp_is_fack(tp))
871 mib_idx = LINUX_MIB_TCPFACKREORDER;
872 else
873 mib_idx = LINUX_MIB_TCPSACKREORDER;
874
875 NET_INC_STATS(sock_net(sk), mib_idx);
876 #if FASTRETRANS_DEBUG > 1
877 pr_debug("Disorder%d %d %u f%u s%u rr%d\n",
878 tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state,
879 tp->reordering,
880 tp->fackets_out,
881 tp->sacked_out,
882 tp->undo_marker ? tp->undo_retrans : 0);
883 #endif
884 tcp_disable_fack(tp);
885 }
886
887 if (metric > 0)
888 tcp_disable_early_retrans(tp);
889 tp->rack.reord = 1;
890 }
891
892 /* This must be called before lost_out is incremented */
893 static void tcp_verify_retransmit_hint(struct tcp_sock *tp, struct sk_buff *skb)
894 {
895 if (!tp->retransmit_skb_hint ||
896 before(TCP_SKB_CB(skb)->seq,
897 TCP_SKB_CB(tp->retransmit_skb_hint)->seq))
898 tp->retransmit_skb_hint = skb;
899
900 if (!tp->lost_out ||
901 after(TCP_SKB_CB(skb)->end_seq, tp->retransmit_high))
902 tp->retransmit_high = TCP_SKB_CB(skb)->end_seq;
903 }
904
905 /* Sum the number of packets on the wire we have marked as lost.
906 * There are two cases we care about here:
907 * a) Packet hasn't been marked lost (nor retransmitted),
908 * and this is the first loss.
909 * b) Packet has been marked both lost and retransmitted,
910 * and this means we think it was lost again.
911 */
912 static void tcp_sum_lost(struct tcp_sock *tp, struct sk_buff *skb)
913 {
914 __u8 sacked = TCP_SKB_CB(skb)->sacked;
915
916 if (!(sacked & TCPCB_LOST) ||
917 ((sacked & TCPCB_LOST) && (sacked & TCPCB_SACKED_RETRANS)))
918 tp->lost += tcp_skb_pcount(skb);
919 }
920
921 static void tcp_skb_mark_lost(struct tcp_sock *tp, struct sk_buff *skb)
922 {
923 if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
924 tcp_verify_retransmit_hint(tp, skb);
925
926 tp->lost_out += tcp_skb_pcount(skb);
927 tcp_sum_lost(tp, skb);
928 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
929 }
930 }
931
932 void tcp_skb_mark_lost_uncond_verify(struct tcp_sock *tp, struct sk_buff *skb)
933 {
934 tcp_verify_retransmit_hint(tp, skb);
935
936 tcp_sum_lost(tp, skb);
937 if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
938 tp->lost_out += tcp_skb_pcount(skb);
939 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
940 }
941 }
942
943 /* This procedure tags the retransmission queue when SACKs arrive.
944 *
945 * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L).
946 * Packets in queue with these bits set are counted in variables
947 * sacked_out, retrans_out and lost_out, correspondingly.
948 *
949 * Valid combinations are:
950 * Tag InFlight Description
951 * 0 1 - orig segment is in flight.
952 * S 0 - nothing flies, orig reached receiver.
953 * L 0 - nothing flies, orig lost by net.
954 * R 2 - both orig and retransmit are in flight.
955 * L|R 1 - orig is lost, retransmit is in flight.
956 * S|R 1 - orig reached receiver, retrans is still in flight.
957 * (L|S|R is logically valid, it could occur when L|R is sacked,
958 * but it is equivalent to plain S and code short-curcuits it to S.
959 * L|S is logically invalid, it would mean -1 packet in flight 8))
960 *
961 * These 6 states form finite state machine, controlled by the following events:
962 * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue())
963 * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue())
964 * 3. Loss detection event of two flavors:
965 * A. Scoreboard estimator decided the packet is lost.
966 * A'. Reno "three dupacks" marks head of queue lost.
967 * A''. Its FACK modification, head until snd.fack is lost.
968 * B. SACK arrives sacking SND.NXT at the moment, when the
969 * segment was retransmitted.
970 * 4. D-SACK added new rule: D-SACK changes any tag to S.
971 *
972 * It is pleasant to note, that state diagram turns out to be commutative,
973 * so that we are allowed not to be bothered by order of our actions,
974 * when multiple events arrive simultaneously. (see the function below).
975 *
976 * Reordering detection.
977 * --------------------
978 * Reordering metric is maximal distance, which a packet can be displaced
979 * in packet stream. With SACKs we can estimate it:
980 *
981 * 1. SACK fills old hole and the corresponding segment was not
982 * ever retransmitted -> reordering. Alas, we cannot use it
983 * when segment was retransmitted.
984 * 2. The last flaw is solved with D-SACK. D-SACK arrives
985 * for retransmitted and already SACKed segment -> reordering..
986 * Both of these heuristics are not used in Loss state, when we cannot
987 * account for retransmits accurately.
988 *
989 * SACK block validation.
990 * ----------------------
991 *
992 * SACK block range validation checks that the received SACK block fits to
993 * the expected sequence limits, i.e., it is between SND.UNA and SND.NXT.
994 * Note that SND.UNA is not included to the range though being valid because
995 * it means that the receiver is rather inconsistent with itself reporting
996 * SACK reneging when it should advance SND.UNA. Such SACK block this is
997 * perfectly valid, however, in light of RFC2018 which explicitly states
998 * that "SACK block MUST reflect the newest segment. Even if the newest
999 * segment is going to be discarded ...", not that it looks very clever
1000 * in case of head skb. Due to potentional receiver driven attacks, we
1001 * choose to avoid immediate execution of a walk in write queue due to
1002 * reneging and defer head skb's loss recovery to standard loss recovery
1003 * procedure that will eventually trigger (nothing forbids us doing this).
1004 *
1005 * Implements also blockage to start_seq wrap-around. Problem lies in the
1006 * fact that though start_seq (s) is before end_seq (i.e., not reversed),
1007 * there's no guarantee that it will be before snd_nxt (n). The problem
1008 * happens when start_seq resides between end_seq wrap (e_w) and snd_nxt
1009 * wrap (s_w):
1010 *
1011 * <- outs wnd -> <- wrapzone ->
1012 * u e n u_w e_w s n_w
1013 * | | | | | | |
1014 * |<------------+------+----- TCP seqno space --------------+---------->|
1015 * ...-- <2^31 ->| |<--------...
1016 * ...---- >2^31 ------>| |<--------...
1017 *
1018 * Current code wouldn't be vulnerable but it's better still to discard such
1019 * crazy SACK blocks. Doing this check for start_seq alone closes somewhat
1020 * similar case (end_seq after snd_nxt wrap) as earlier reversed check in
1021 * snd_nxt wrap -> snd_una region will then become "well defined", i.e.,
1022 * equal to the ideal case (infinite seqno space without wrap caused issues).
1023 *
1024 * With D-SACK the lower bound is extended to cover sequence space below
1025 * SND.UNA down to undo_marker, which is the last point of interest. Yet
1026 * again, D-SACK block must not to go across snd_una (for the same reason as
1027 * for the normal SACK blocks, explained above). But there all simplicity
1028 * ends, TCP might receive valid D-SACKs below that. As long as they reside
1029 * fully below undo_marker they do not affect behavior in anyway and can
1030 * therefore be safely ignored. In rare cases (which are more or less
1031 * theoretical ones), the D-SACK will nicely cross that boundary due to skb
1032 * fragmentation and packet reordering past skb's retransmission. To consider
1033 * them correctly, the acceptable range must be extended even more though
1034 * the exact amount is rather hard to quantify. However, tp->max_window can
1035 * be used as an exaggerated estimate.
1036 */
1037 static bool tcp_is_sackblock_valid(struct tcp_sock *tp, bool is_dsack,
1038 u32 start_seq, u32 end_seq)
1039 {
1040 /* Too far in future, or reversed (interpretation is ambiguous) */
1041 if (after(end_seq, tp->snd_nxt) || !before(start_seq, end_seq))
1042 return false;
1043
1044 /* Nasty start_seq wrap-around check (see comments above) */
1045 if (!before(start_seq, tp->snd_nxt))
1046 return false;
1047
1048 /* In outstanding window? ...This is valid exit for D-SACKs too.
1049 * start_seq == snd_una is non-sensical (see comments above)
1050 */
1051 if (after(start_seq, tp->snd_una))
1052 return true;
1053
1054 if (!is_dsack || !tp->undo_marker)
1055 return false;
1056
1057 /* ...Then it's D-SACK, and must reside below snd_una completely */
1058 if (after(end_seq, tp->snd_una))
1059 return false;
1060
1061 if (!before(start_seq, tp->undo_marker))
1062 return true;
1063
1064 /* Too old */
1065 if (!after(end_seq, tp->undo_marker))
1066 return false;
1067
1068 /* Undo_marker boundary crossing (overestimates a lot). Known already:
1069 * start_seq < undo_marker and end_seq >= undo_marker.
1070 */
1071 return !before(start_seq, end_seq - tp->max_window);
1072 }
1073
1074 static bool tcp_check_dsack(struct sock *sk, const struct sk_buff *ack_skb,
1075 struct tcp_sack_block_wire *sp, int num_sacks,
1076 u32 prior_snd_una)
1077 {
1078 struct tcp_sock *tp = tcp_sk(sk);
1079 u32 start_seq_0 = get_unaligned_be32(&sp[0].start_seq);
1080 u32 end_seq_0 = get_unaligned_be32(&sp[0].end_seq);
1081 bool dup_sack = false;
1082
1083 if (before(start_seq_0, TCP_SKB_CB(ack_skb)->ack_seq)) {
1084 dup_sack = true;
1085 tcp_dsack_seen(tp);
1086 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKRECV);
1087 } else if (num_sacks > 1) {
1088 u32 end_seq_1 = get_unaligned_be32(&sp[1].end_seq);
1089 u32 start_seq_1 = get_unaligned_be32(&sp[1].start_seq);
1090
1091 if (!after(end_seq_0, end_seq_1) &&
1092 !before(start_seq_0, start_seq_1)) {
1093 dup_sack = true;
1094 tcp_dsack_seen(tp);
1095 NET_INC_STATS(sock_net(sk),
1096 LINUX_MIB_TCPDSACKOFORECV);
1097 }
1098 }
1099
1100 /* D-SACK for already forgotten data... Do dumb counting. */
1101 if (dup_sack && tp->undo_marker && tp->undo_retrans > 0 &&
1102 !after(end_seq_0, prior_snd_una) &&
1103 after(end_seq_0, tp->undo_marker))
1104 tp->undo_retrans--;
1105
1106 return dup_sack;
1107 }
1108
1109 struct tcp_sacktag_state {
1110 int reord;
1111 int fack_count;
1112 /* Timestamps for earliest and latest never-retransmitted segment
1113 * that was SACKed. RTO needs the earliest RTT to stay conservative,
1114 * but congestion control should still get an accurate delay signal.
1115 */
1116 struct skb_mstamp first_sackt;
1117 struct skb_mstamp last_sackt;
1118 struct rate_sample *rate;
1119 int flag;
1120 };
1121
1122 /* Check if skb is fully within the SACK block. In presence of GSO skbs,
1123 * the incoming SACK may not exactly match but we can find smaller MSS
1124 * aligned portion of it that matches. Therefore we might need to fragment
1125 * which may fail and creates some hassle (caller must handle error case
1126 * returns).
1127 *
1128 * FIXME: this could be merged to shift decision code
1129 */
1130 static int tcp_match_skb_to_sack(struct sock *sk, struct sk_buff *skb,
1131 u32 start_seq, u32 end_seq)
1132 {
1133 int err;
1134 bool in_sack;
1135 unsigned int pkt_len;
1136 unsigned int mss;
1137
1138 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1139 !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1140
1141 if (tcp_skb_pcount(skb) > 1 && !in_sack &&
1142 after(TCP_SKB_CB(skb)->end_seq, start_seq)) {
1143 mss = tcp_skb_mss(skb);
1144 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1145
1146 if (!in_sack) {
1147 pkt_len = start_seq - TCP_SKB_CB(skb)->seq;
1148 if (pkt_len < mss)
1149 pkt_len = mss;
1150 } else {
1151 pkt_len = end_seq - TCP_SKB_CB(skb)->seq;
1152 if (pkt_len < mss)
1153 return -EINVAL;
1154 }
1155
1156 /* Round if necessary so that SACKs cover only full MSSes
1157 * and/or the remaining small portion (if present)
1158 */
1159 if (pkt_len > mss) {
1160 unsigned int new_len = (pkt_len / mss) * mss;
1161 if (!in_sack && new_len < pkt_len) {
1162 new_len += mss;
1163 if (new_len >= skb->len)
1164 return 0;
1165 }
1166 pkt_len = new_len;
1167 }
1168 err = tcp_fragment(sk, skb, pkt_len, mss, GFP_ATOMIC);
1169 if (err < 0)
1170 return err;
1171 }
1172
1173 return in_sack;
1174 }
1175
1176 /* Mark the given newly-SACKed range as such, adjusting counters and hints. */
1177 static u8 tcp_sacktag_one(struct sock *sk,
1178 struct tcp_sacktag_state *state, u8 sacked,
1179 u32 start_seq, u32 end_seq,
1180 int dup_sack, int pcount,
1181 const struct skb_mstamp *xmit_time)
1182 {
1183 struct tcp_sock *tp = tcp_sk(sk);
1184 int fack_count = state->fack_count;
1185
1186 /* Account D-SACK for retransmitted packet. */
1187 if (dup_sack && (sacked & TCPCB_RETRANS)) {
1188 if (tp->undo_marker && tp->undo_retrans > 0 &&
1189 after(end_seq, tp->undo_marker))
1190 tp->undo_retrans--;
1191 if (sacked & TCPCB_SACKED_ACKED)
1192 state->reord = min(fack_count, state->reord);
1193 }
1194
1195 /* Nothing to do; acked frame is about to be dropped (was ACKed). */
1196 if (!after(end_seq, tp->snd_una))
1197 return sacked;
1198
1199 if (!(sacked & TCPCB_SACKED_ACKED)) {
1200 tcp_rack_advance(tp, xmit_time, sacked);
1201
1202 if (sacked & TCPCB_SACKED_RETRANS) {
1203 /* If the segment is not tagged as lost,
1204 * we do not clear RETRANS, believing
1205 * that retransmission is still in flight.
1206 */
1207 if (sacked & TCPCB_LOST) {
1208 sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS);
1209 tp->lost_out -= pcount;
1210 tp->retrans_out -= pcount;
1211 }
1212 } else {
1213 if (!(sacked & TCPCB_RETRANS)) {
1214 /* New sack for not retransmitted frame,
1215 * which was in hole. It is reordering.
1216 */
1217 if (before(start_seq,
1218 tcp_highest_sack_seq(tp)))
1219 state->reord = min(fack_count,
1220 state->reord);
1221 if (!after(end_seq, tp->high_seq))
1222 state->flag |= FLAG_ORIG_SACK_ACKED;
1223 if (state->first_sackt.v64 == 0)
1224 state->first_sackt = *xmit_time;
1225 state->last_sackt = *xmit_time;
1226 }
1227
1228 if (sacked & TCPCB_LOST) {
1229 sacked &= ~TCPCB_LOST;
1230 tp->lost_out -= pcount;
1231 }
1232 }
1233
1234 sacked |= TCPCB_SACKED_ACKED;
1235 state->flag |= FLAG_DATA_SACKED;
1236 tp->sacked_out += pcount;
1237 tp->delivered += pcount; /* Out-of-order packets delivered */
1238
1239 fack_count += pcount;
1240
1241 /* Lost marker hint past SACKed? Tweak RFC3517 cnt */
1242 if (!tcp_is_fack(tp) && tp->lost_skb_hint &&
1243 before(start_seq, TCP_SKB_CB(tp->lost_skb_hint)->seq))
1244 tp->lost_cnt_hint += pcount;
1245
1246 if (fack_count > tp->fackets_out)
1247 tp->fackets_out = fack_count;
1248 }
1249
1250 /* D-SACK. We can detect redundant retransmission in S|R and plain R
1251 * frames and clear it. undo_retrans is decreased above, L|R frames
1252 * are accounted above as well.
1253 */
1254 if (dup_sack && (sacked & TCPCB_SACKED_RETRANS)) {
1255 sacked &= ~TCPCB_SACKED_RETRANS;
1256 tp->retrans_out -= pcount;
1257 }
1258
1259 return sacked;
1260 }
1261
1262 /* Shift newly-SACKed bytes from this skb to the immediately previous
1263 * already-SACKed sk_buff. Mark the newly-SACKed bytes as such.
1264 */
1265 static bool tcp_shifted_skb(struct sock *sk, struct sk_buff *skb,
1266 struct tcp_sacktag_state *state,
1267 unsigned int pcount, int shifted, int mss,
1268 bool dup_sack)
1269 {
1270 struct tcp_sock *tp = tcp_sk(sk);
1271 struct sk_buff *prev = tcp_write_queue_prev(sk, skb);
1272 u32 start_seq = TCP_SKB_CB(skb)->seq; /* start of newly-SACKed */
1273 u32 end_seq = start_seq + shifted; /* end of newly-SACKed */
1274
1275 BUG_ON(!pcount);
1276
1277 /* Adjust counters and hints for the newly sacked sequence
1278 * range but discard the return value since prev is already
1279 * marked. We must tag the range first because the seq
1280 * advancement below implicitly advances
1281 * tcp_highest_sack_seq() when skb is highest_sack.
1282 */
1283 tcp_sacktag_one(sk, state, TCP_SKB_CB(skb)->sacked,
1284 start_seq, end_seq, dup_sack, pcount,
1285 &skb->skb_mstamp);
1286 tcp_rate_skb_delivered(sk, skb, state->rate);
1287
1288 if (skb == tp->lost_skb_hint)
1289 tp->lost_cnt_hint += pcount;
1290
1291 TCP_SKB_CB(prev)->end_seq += shifted;
1292 TCP_SKB_CB(skb)->seq += shifted;
1293
1294 tcp_skb_pcount_add(prev, pcount);
1295 BUG_ON(tcp_skb_pcount(skb) < pcount);
1296 tcp_skb_pcount_add(skb, -pcount);
1297
1298 /* When we're adding to gso_segs == 1, gso_size will be zero,
1299 * in theory this shouldn't be necessary but as long as DSACK
1300 * code can come after this skb later on it's better to keep
1301 * setting gso_size to something.
1302 */
1303 if (!TCP_SKB_CB(prev)->tcp_gso_size)
1304 TCP_SKB_CB(prev)->tcp_gso_size = mss;
1305
1306 /* CHECKME: To clear or not to clear? Mimics normal skb currently */
1307 if (tcp_skb_pcount(skb) <= 1)
1308 TCP_SKB_CB(skb)->tcp_gso_size = 0;
1309
1310 /* Difference in this won't matter, both ACKed by the same cumul. ACK */
1311 TCP_SKB_CB(prev)->sacked |= (TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS);
1312
1313 if (skb->len > 0) {
1314 BUG_ON(!tcp_skb_pcount(skb));
1315 NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKSHIFTED);
1316 return false;
1317 }
1318
1319 /* Whole SKB was eaten :-) */
1320
1321 if (skb == tp->retransmit_skb_hint)
1322 tp->retransmit_skb_hint = prev;
1323 if (skb == tp->lost_skb_hint) {
1324 tp->lost_skb_hint = prev;
1325 tp->lost_cnt_hint -= tcp_skb_pcount(prev);
1326 }
1327
1328 TCP_SKB_CB(prev)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags;
1329 TCP_SKB_CB(prev)->eor = TCP_SKB_CB(skb)->eor;
1330 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
1331 TCP_SKB_CB(prev)->end_seq++;
1332
1333 if (skb == tcp_highest_sack(sk))
1334 tcp_advance_highest_sack(sk, skb);
1335
1336 tcp_skb_collapse_tstamp(prev, skb);
1337 if (unlikely(TCP_SKB_CB(prev)->tx.delivered_mstamp.v64))
1338 TCP_SKB_CB(prev)->tx.delivered_mstamp.v64 = 0;
1339
1340 tcp_unlink_write_queue(skb, sk);
1341 sk_wmem_free_skb(sk, skb);
1342
1343 NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKMERGED);
1344
1345 return true;
1346 }
1347
1348 /* I wish gso_size would have a bit more sane initialization than
1349 * something-or-zero which complicates things
1350 */
1351 static int tcp_skb_seglen(const struct sk_buff *skb)
1352 {
1353 return tcp_skb_pcount(skb) == 1 ? skb->len : tcp_skb_mss(skb);
1354 }
1355
1356 /* Shifting pages past head area doesn't work */
1357 static int skb_can_shift(const struct sk_buff *skb)
1358 {
1359 return !skb_headlen(skb) && skb_is_nonlinear(skb);
1360 }
1361
1362 /* Try collapsing SACK blocks spanning across multiple skbs to a single
1363 * skb.
1364 */
1365 static struct sk_buff *tcp_shift_skb_data(struct sock *sk, struct sk_buff *skb,
1366 struct tcp_sacktag_state *state,
1367 u32 start_seq, u32 end_seq,
1368 bool dup_sack)
1369 {
1370 struct tcp_sock *tp = tcp_sk(sk);
1371 struct sk_buff *prev;
1372 int mss;
1373 int pcount = 0;
1374 int len;
1375 int in_sack;
1376
1377 if (!sk_can_gso(sk))
1378 goto fallback;
1379
1380 /* Normally R but no L won't result in plain S */
1381 if (!dup_sack &&
1382 (TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_RETRANS)) == TCPCB_SACKED_RETRANS)
1383 goto fallback;
1384 if (!skb_can_shift(skb))
1385 goto fallback;
1386 /* This frame is about to be dropped (was ACKed). */
1387 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1388 goto fallback;
1389
1390 /* Can only happen with delayed DSACK + discard craziness */
1391 if (unlikely(skb == tcp_write_queue_head(sk)))
1392 goto fallback;
1393 prev = tcp_write_queue_prev(sk, skb);
1394
1395 if ((TCP_SKB_CB(prev)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED)
1396 goto fallback;
1397
1398 if (!tcp_skb_can_collapse_to(prev))
1399 goto fallback;
1400
1401 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1402 !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1403
1404 if (in_sack) {
1405 len = skb->len;
1406 pcount = tcp_skb_pcount(skb);
1407 mss = tcp_skb_seglen(skb);
1408
1409 /* TODO: Fix DSACKs to not fragment already SACKed and we can
1410 * drop this restriction as unnecessary
1411 */
1412 if (mss != tcp_skb_seglen(prev))
1413 goto fallback;
1414 } else {
1415 if (!after(TCP_SKB_CB(skb)->end_seq, start_seq))
1416 goto noop;
1417 /* CHECKME: This is non-MSS split case only?, this will
1418 * cause skipped skbs due to advancing loop btw, original
1419 * has that feature too
1420 */
1421 if (tcp_skb_pcount(skb) <= 1)
1422 goto noop;
1423
1424 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1425 if (!in_sack) {
1426 /* TODO: head merge to next could be attempted here
1427 * if (!after(TCP_SKB_CB(skb)->end_seq, end_seq)),
1428 * though it might not be worth of the additional hassle
1429 *
1430 * ...we can probably just fallback to what was done
1431 * previously. We could try merging non-SACKed ones
1432 * as well but it probably isn't going to buy off
1433 * because later SACKs might again split them, and
1434 * it would make skb timestamp tracking considerably
1435 * harder problem.
1436 */
1437 goto fallback;
1438 }
1439
1440 len = end_seq - TCP_SKB_CB(skb)->seq;
1441 BUG_ON(len < 0);
1442 BUG_ON(len > skb->len);
1443
1444 /* MSS boundaries should be honoured or else pcount will
1445 * severely break even though it makes things bit trickier.
1446 * Optimize common case to avoid most of the divides
1447 */
1448 mss = tcp_skb_mss(skb);
1449
1450 /* TODO: Fix DSACKs to not fragment already SACKed and we can
1451 * drop this restriction as unnecessary
1452 */
1453 if (mss != tcp_skb_seglen(prev))
1454 goto fallback;
1455
1456 if (len == mss) {
1457 pcount = 1;
1458 } else if (len < mss) {
1459 goto noop;
1460 } else {
1461 pcount = len / mss;
1462 len = pcount * mss;
1463 }
1464 }
1465
1466 /* tcp_sacktag_one() won't SACK-tag ranges below snd_una */
1467 if (!after(TCP_SKB_CB(skb)->seq + len, tp->snd_una))
1468 goto fallback;
1469
1470 if (!skb_shift(prev, skb, len))
1471 goto fallback;
1472 if (!tcp_shifted_skb(sk, skb, state, pcount, len, mss, dup_sack))
1473 goto out;
1474
1475 /* Hole filled allows collapsing with the next as well, this is very
1476 * useful when hole on every nth skb pattern happens
1477 */
1478 if (prev == tcp_write_queue_tail(sk))
1479 goto out;
1480 skb = tcp_write_queue_next(sk, prev);
1481
1482 if (!skb_can_shift(skb) ||
1483 (skb == tcp_send_head(sk)) ||
1484 ((TCP_SKB_CB(skb)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) ||
1485 (mss != tcp_skb_seglen(skb)))
1486 goto out;
1487
1488 len = skb->len;
1489 if (skb_shift(prev, skb, len)) {
1490 pcount += tcp_skb_pcount(skb);
1491 tcp_shifted_skb(sk, skb, state, tcp_skb_pcount(skb), len, mss, 0);
1492 }
1493
1494 out:
1495 state->fack_count += pcount;
1496 return prev;
1497
1498 noop:
1499 return skb;
1500
1501 fallback:
1502 NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKSHIFTFALLBACK);
1503 return NULL;
1504 }
1505
1506 static struct sk_buff *tcp_sacktag_walk(struct sk_buff *skb, struct sock *sk,
1507 struct tcp_sack_block *next_dup,
1508 struct tcp_sacktag_state *state,
1509 u32 start_seq, u32 end_seq,
1510 bool dup_sack_in)
1511 {
1512 struct tcp_sock *tp = tcp_sk(sk);
1513 struct sk_buff *tmp;
1514
1515 tcp_for_write_queue_from(skb, sk) {
1516 int in_sack = 0;
1517 bool dup_sack = dup_sack_in;
1518
1519 if (skb == tcp_send_head(sk))
1520 break;
1521
1522 /* queue is in-order => we can short-circuit the walk early */
1523 if (!before(TCP_SKB_CB(skb)->seq, end_seq))
1524 break;
1525
1526 if (next_dup &&
1527 before(TCP_SKB_CB(skb)->seq, next_dup->end_seq)) {
1528 in_sack = tcp_match_skb_to_sack(sk, skb,
1529 next_dup->start_seq,
1530 next_dup->end_seq);
1531 if (in_sack > 0)
1532 dup_sack = true;
1533 }
1534
1535 /* skb reference here is a bit tricky to get right, since
1536 * shifting can eat and free both this skb and the next,
1537 * so not even _safe variant of the loop is enough.
1538 */
1539 if (in_sack <= 0) {
1540 tmp = tcp_shift_skb_data(sk, skb, state,
1541 start_seq, end_seq, dup_sack);
1542 if (tmp) {
1543 if (tmp != skb) {
1544 skb = tmp;
1545 continue;
1546 }
1547
1548 in_sack = 0;
1549 } else {
1550 in_sack = tcp_match_skb_to_sack(sk, skb,
1551 start_seq,
1552 end_seq);
1553 }
1554 }
1555
1556 if (unlikely(in_sack < 0))
1557 break;
1558
1559 if (in_sack) {
1560 TCP_SKB_CB(skb)->sacked =
1561 tcp_sacktag_one(sk,
1562 state,
1563 TCP_SKB_CB(skb)->sacked,
1564 TCP_SKB_CB(skb)->seq,
1565 TCP_SKB_CB(skb)->end_seq,
1566 dup_sack,
1567 tcp_skb_pcount(skb),
1568 &skb->skb_mstamp);
1569 tcp_rate_skb_delivered(sk, skb, state->rate);
1570
1571 if (!before(TCP_SKB_CB(skb)->seq,
1572 tcp_highest_sack_seq(tp)))
1573 tcp_advance_highest_sack(sk, skb);
1574 }
1575
1576 state->fack_count += tcp_skb_pcount(skb);
1577 }
1578 return skb;
1579 }
1580
1581 /* Avoid all extra work that is being done by sacktag while walking in
1582 * a normal way
1583 */
1584 static struct sk_buff *tcp_sacktag_skip(struct sk_buff *skb, struct sock *sk,
1585 struct tcp_sacktag_state *state,
1586 u32 skip_to_seq)
1587 {
1588 tcp_for_write_queue_from(skb, sk) {
1589 if (skb == tcp_send_head(sk))
1590 break;
1591
1592 if (after(TCP_SKB_CB(skb)->end_seq, skip_to_seq))
1593 break;
1594
1595 state->fack_count += tcp_skb_pcount(skb);
1596 }
1597 return skb;
1598 }
1599
1600 static struct sk_buff *tcp_maybe_skipping_dsack(struct sk_buff *skb,
1601 struct sock *sk,
1602 struct tcp_sack_block *next_dup,
1603 struct tcp_sacktag_state *state,
1604 u32 skip_to_seq)
1605 {
1606 if (!next_dup)
1607 return skb;
1608
1609 if (before(next_dup->start_seq, skip_to_seq)) {
1610 skb = tcp_sacktag_skip(skb, sk, state, next_dup->start_seq);
1611 skb = tcp_sacktag_walk(skb, sk, NULL, state,
1612 next_dup->start_seq, next_dup->end_seq,
1613 1);
1614 }
1615
1616 return skb;
1617 }
1618
1619 static int tcp_sack_cache_ok(const struct tcp_sock *tp, const struct tcp_sack_block *cache)
1620 {
1621 return cache < tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1622 }
1623
1624 static int
1625 tcp_sacktag_write_queue(struct sock *sk, const struct sk_buff *ack_skb,
1626 u32 prior_snd_una, struct tcp_sacktag_state *state)
1627 {
1628 struct tcp_sock *tp = tcp_sk(sk);
1629 const unsigned char *ptr = (skb_transport_header(ack_skb) +
1630 TCP_SKB_CB(ack_skb)->sacked);
1631 struct tcp_sack_block_wire *sp_wire = (struct tcp_sack_block_wire *)(ptr+2);
1632 struct tcp_sack_block sp[TCP_NUM_SACKS];
1633 struct tcp_sack_block *cache;
1634 struct sk_buff *skb;
1635 int num_sacks = min(TCP_NUM_SACKS, (ptr[1] - TCPOLEN_SACK_BASE) >> 3);
1636 int used_sacks;
1637 bool found_dup_sack = false;
1638 int i, j;
1639 int first_sack_index;
1640
1641 state->flag = 0;
1642 state->reord = tp->packets_out;
1643
1644 if (!tp->sacked_out) {
1645 if (WARN_ON(tp->fackets_out))
1646 tp->fackets_out = 0;
1647 tcp_highest_sack_reset(sk);
1648 }
1649
1650 found_dup_sack = tcp_check_dsack(sk, ack_skb, sp_wire,
1651 num_sacks, prior_snd_una);
1652 if (found_dup_sack) {
1653 state->flag |= FLAG_DSACKING_ACK;
1654 tp->delivered++; /* A spurious retransmission is delivered */
1655 }
1656
1657 /* Eliminate too old ACKs, but take into
1658 * account more or less fresh ones, they can
1659 * contain valid SACK info.
1660 */
1661 if (before(TCP_SKB_CB(ack_skb)->ack_seq, prior_snd_una - tp->max_window))
1662 return 0;
1663
1664 if (!tp->packets_out)
1665 goto out;
1666
1667 used_sacks = 0;
1668 first_sack_index = 0;
1669 for (i = 0; i < num_sacks; i++) {
1670 bool dup_sack = !i && found_dup_sack;
1671
1672 sp[used_sacks].start_seq = get_unaligned_be32(&sp_wire[i].start_seq);
1673 sp[used_sacks].end_seq = get_unaligned_be32(&sp_wire[i].end_seq);
1674
1675 if (!tcp_is_sackblock_valid(tp, dup_sack,
1676 sp[used_sacks].start_seq,
1677 sp[used_sacks].end_seq)) {
1678 int mib_idx;
1679
1680 if (dup_sack) {
1681 if (!tp->undo_marker)
1682 mib_idx = LINUX_MIB_TCPDSACKIGNOREDNOUNDO;
1683 else
1684 mib_idx = LINUX_MIB_TCPDSACKIGNOREDOLD;
1685 } else {
1686 /* Don't count olds caused by ACK reordering */
1687 if ((TCP_SKB_CB(ack_skb)->ack_seq != tp->snd_una) &&
1688 !after(sp[used_sacks].end_seq, tp->snd_una))
1689 continue;
1690 mib_idx = LINUX_MIB_TCPSACKDISCARD;
1691 }
1692
1693 NET_INC_STATS(sock_net(sk), mib_idx);
1694 if (i == 0)
1695 first_sack_index = -1;
1696 continue;
1697 }
1698
1699 /* Ignore very old stuff early */
1700 if (!after(sp[used_sacks].end_seq, prior_snd_una))
1701 continue;
1702
1703 used_sacks++;
1704 }
1705
1706 /* order SACK blocks to allow in order walk of the retrans queue */
1707 for (i = used_sacks - 1; i > 0; i--) {
1708 for (j = 0; j < i; j++) {
1709 if (after(sp[j].start_seq, sp[j + 1].start_seq)) {
1710 swap(sp[j], sp[j + 1]);
1711
1712 /* Track where the first SACK block goes to */
1713 if (j == first_sack_index)
1714 first_sack_index = j + 1;
1715 }
1716 }
1717 }
1718
1719 skb = tcp_write_queue_head(sk);
1720 state->fack_count = 0;
1721 i = 0;
1722
1723 if (!tp->sacked_out) {
1724 /* It's already past, so skip checking against it */
1725 cache = tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1726 } else {
1727 cache = tp->recv_sack_cache;
1728 /* Skip empty blocks in at head of the cache */
1729 while (tcp_sack_cache_ok(tp, cache) && !cache->start_seq &&
1730 !cache->end_seq)
1731 cache++;
1732 }
1733
1734 while (i < used_sacks) {
1735 u32 start_seq = sp[i].start_seq;
1736 u32 end_seq = sp[i].end_seq;
1737 bool dup_sack = (found_dup_sack && (i == first_sack_index));
1738 struct tcp_sack_block *next_dup = NULL;
1739
1740 if (found_dup_sack && ((i + 1) == first_sack_index))
1741 next_dup = &sp[i + 1];
1742
1743 /* Skip too early cached blocks */
1744 while (tcp_sack_cache_ok(tp, cache) &&
1745 !before(start_seq, cache->end_seq))
1746 cache++;
1747
1748 /* Can skip some work by looking recv_sack_cache? */
1749 if (tcp_sack_cache_ok(tp, cache) && !dup_sack &&
1750 after(end_seq, cache->start_seq)) {
1751
1752 /* Head todo? */
1753 if (before(start_seq, cache->start_seq)) {
1754 skb = tcp_sacktag_skip(skb, sk, state,
1755 start_seq);
1756 skb = tcp_sacktag_walk(skb, sk, next_dup,
1757 state,
1758 start_seq,
1759 cache->start_seq,
1760 dup_sack);
1761 }
1762
1763 /* Rest of the block already fully processed? */
1764 if (!after(end_seq, cache->end_seq))
1765 goto advance_sp;
1766
1767 skb = tcp_maybe_skipping_dsack(skb, sk, next_dup,
1768 state,
1769 cache->end_seq);
1770
1771 /* ...tail remains todo... */
1772 if (tcp_highest_sack_seq(tp) == cache->end_seq) {
1773 /* ...but better entrypoint exists! */
1774 skb = tcp_highest_sack(sk);
1775 if (!skb)
1776 break;
1777 state->fack_count = tp->fackets_out;
1778 cache++;
1779 goto walk;
1780 }
1781
1782 skb = tcp_sacktag_skip(skb, sk, state, cache->end_seq);
1783 /* Check overlap against next cached too (past this one already) */
1784 cache++;
1785 continue;
1786 }
1787
1788 if (!before(start_seq, tcp_highest_sack_seq(tp))) {
1789 skb = tcp_highest_sack(sk);
1790 if (!skb)
1791 break;
1792 state->fack_count = tp->fackets_out;
1793 }
1794 skb = tcp_sacktag_skip(skb, sk, state, start_seq);
1795
1796 walk:
1797 skb = tcp_sacktag_walk(skb, sk, next_dup, state,
1798 start_seq, end_seq, dup_sack);
1799
1800 advance_sp:
1801 i++;
1802 }
1803
1804 /* Clear the head of the cache sack blocks so we can skip it next time */
1805 for (i = 0; i < ARRAY_SIZE(tp->recv_sack_cache) - used_sacks; i++) {
1806 tp->recv_sack_cache[i].start_seq = 0;
1807 tp->recv_sack_cache[i].end_seq = 0;
1808 }
1809 for (j = 0; j < used_sacks; j++)
1810 tp->recv_sack_cache[i++] = sp[j];
1811
1812 if ((state->reord < tp->fackets_out) &&
1813 ((inet_csk(sk)->icsk_ca_state != TCP_CA_Loss) || tp->undo_marker))
1814 tcp_update_reordering(sk, tp->fackets_out - state->reord, 0);
1815
1816 tcp_verify_left_out(tp);
1817 out:
1818
1819 #if FASTRETRANS_DEBUG > 0
1820 WARN_ON((int)tp->sacked_out < 0);
1821 WARN_ON((int)tp->lost_out < 0);
1822 WARN_ON((int)tp->retrans_out < 0);
1823 WARN_ON((int)tcp_packets_in_flight(tp) < 0);
1824 #endif
1825 return state->flag;
1826 }
1827
1828 /* Limits sacked_out so that sum with lost_out isn't ever larger than
1829 * packets_out. Returns false if sacked_out adjustement wasn't necessary.
1830 */
1831 static bool tcp_limit_reno_sacked(struct tcp_sock *tp)
1832 {
1833 u32 holes;
1834
1835 holes = max(tp->lost_out, 1U);
1836 holes = min(holes, tp->packets_out);
1837
1838 if ((tp->sacked_out + holes) > tp->packets_out) {
1839 tp->sacked_out = tp->packets_out - holes;
1840 return true;
1841 }
1842 return false;
1843 }
1844
1845 /* If we receive more dupacks than we expected counting segments
1846 * in assumption of absent reordering, interpret this as reordering.
1847 * The only another reason could be bug in receiver TCP.
1848 */
1849 static void tcp_check_reno_reordering(struct sock *sk, const int addend)
1850 {
1851 struct tcp_sock *tp = tcp_sk(sk);
1852 if (tcp_limit_reno_sacked(tp))
1853 tcp_update_reordering(sk, tp->packets_out + addend, 0);
1854 }
1855
1856 /* Emulate SACKs for SACKless connection: account for a new dupack. */
1857
1858 static void tcp_add_reno_sack(struct sock *sk)
1859 {
1860 struct tcp_sock *tp = tcp_sk(sk);
1861 u32 prior_sacked = tp->sacked_out;
1862
1863 tp->sacked_out++;
1864 tcp_check_reno_reordering(sk, 0);
1865 if (tp->sacked_out > prior_sacked)
1866 tp->delivered++; /* Some out-of-order packet is delivered */
1867 tcp_verify_left_out(tp);
1868 }
1869
1870 /* Account for ACK, ACKing some data in Reno Recovery phase. */
1871
1872 static void tcp_remove_reno_sacks(struct sock *sk, int acked)
1873 {
1874 struct tcp_sock *tp = tcp_sk(sk);
1875
1876 if (acked > 0) {
1877 /* One ACK acked hole. The rest eat duplicate ACKs. */
1878 tp->delivered += max_t(int, acked - tp->sacked_out, 1);
1879 if (acked - 1 >= tp->sacked_out)
1880 tp->sacked_out = 0;
1881 else
1882 tp->sacked_out -= acked - 1;
1883 }
1884 tcp_check_reno_reordering(sk, acked);
1885 tcp_verify_left_out(tp);
1886 }
1887
1888 static inline void tcp_reset_reno_sack(struct tcp_sock *tp)
1889 {
1890 tp->sacked_out = 0;
1891 }
1892
1893 void tcp_clear_retrans(struct tcp_sock *tp)
1894 {
1895 tp->retrans_out = 0;
1896 tp->lost_out = 0;
1897 tp->undo_marker = 0;
1898 tp->undo_retrans = -1;
1899 tp->fackets_out = 0;
1900 tp->sacked_out = 0;
1901 }
1902
1903 static inline void tcp_init_undo(struct tcp_sock *tp)
1904 {
1905 tp->undo_marker = tp->snd_una;
1906 /* Retransmission still in flight may cause DSACKs later. */
1907 tp->undo_retrans = tp->retrans_out ? : -1;
1908 }
1909
1910 /* Enter Loss state. If we detect SACK reneging, forget all SACK information
1911 * and reset tags completely, otherwise preserve SACKs. If receiver
1912 * dropped its ofo queue, we will know this due to reneging detection.
1913 */
1914 void tcp_enter_loss(struct sock *sk)
1915 {
1916 const struct inet_connection_sock *icsk = inet_csk(sk);
1917 struct tcp_sock *tp = tcp_sk(sk);
1918 struct net *net = sock_net(sk);
1919 struct sk_buff *skb;
1920 bool new_recovery = icsk->icsk_ca_state < TCP_CA_Recovery;
1921 bool is_reneg; /* is receiver reneging on SACKs? */
1922 bool mark_lost;
1923
1924 /* Reduce ssthresh if it has not yet been made inside this window. */
1925 if (icsk->icsk_ca_state <= TCP_CA_Disorder ||
1926 !after(tp->high_seq, tp->snd_una) ||
1927 (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) {
1928 tp->prior_ssthresh = tcp_current_ssthresh(sk);
1929 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
1930 tcp_ca_event(sk, CA_EVENT_LOSS);
1931 tcp_init_undo(tp);
1932 }
1933 tp->snd_cwnd = 1;
1934 tp->snd_cwnd_cnt = 0;
1935 tp->snd_cwnd_stamp = tcp_time_stamp;
1936
1937 tp->retrans_out = 0;
1938 tp->lost_out = 0;
1939
1940 if (tcp_is_reno(tp))
1941 tcp_reset_reno_sack(tp);
1942
1943 skb = tcp_write_queue_head(sk);
1944 is_reneg = skb && (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED);
1945 if (is_reneg) {
1946 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSACKRENEGING);
1947 tp->sacked_out = 0;
1948 tp->fackets_out = 0;
1949 }
1950 tcp_clear_all_retrans_hints(tp);
1951
1952 tcp_for_write_queue(skb, sk) {
1953 if (skb == tcp_send_head(sk))
1954 break;
1955
1956 mark_lost = (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) ||
1957 is_reneg);
1958 if (mark_lost)
1959 tcp_sum_lost(tp, skb);
1960 TCP_SKB_CB(skb)->sacked &= (~TCPCB_TAGBITS)|TCPCB_SACKED_ACKED;
1961 if (mark_lost) {
1962 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_ACKED;
1963 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1964 tp->lost_out += tcp_skb_pcount(skb);
1965 tp->retransmit_high = TCP_SKB_CB(skb)->end_seq;
1966 }
1967 }
1968 tcp_verify_left_out(tp);
1969
1970 /* Timeout in disordered state after receiving substantial DUPACKs
1971 * suggests that the degree of reordering is over-estimated.
1972 */
1973 if (icsk->icsk_ca_state <= TCP_CA_Disorder &&
1974 tp->sacked_out >= net->ipv4.sysctl_tcp_reordering)
1975 tp->reordering = min_t(unsigned int, tp->reordering,
1976 net->ipv4.sysctl_tcp_reordering);
1977 tcp_set_ca_state(sk, TCP_CA_Loss);
1978 tp->high_seq = tp->snd_nxt;
1979 tcp_ecn_queue_cwr(tp);
1980
1981 /* F-RTO RFC5682 sec 3.1 step 1: retransmit SND.UNA if no previous
1982 * loss recovery is underway except recurring timeout(s) on
1983 * the same SND.UNA (sec 3.2). Disable F-RTO on path MTU probing
1984 */
1985 tp->frto = sysctl_tcp_frto &&
1986 (new_recovery || icsk->icsk_retransmits) &&
1987 !inet_csk(sk)->icsk_mtup.probe_size;
1988 }
1989
1990 /* If ACK arrived pointing to a remembered SACK, it means that our
1991 * remembered SACKs do not reflect real state of receiver i.e.
1992 * receiver _host_ is heavily congested (or buggy).
1993 *
1994 * To avoid big spurious retransmission bursts due to transient SACK
1995 * scoreboard oddities that look like reneging, we give the receiver a
1996 * little time (max(RTT/2, 10ms)) to send us some more ACKs that will
1997 * restore sanity to the SACK scoreboard. If the apparent reneging
1998 * persists until this RTO then we'll clear the SACK scoreboard.
1999 */
2000 static bool tcp_check_sack_reneging(struct sock *sk, int flag)
2001 {
2002 if (flag & FLAG_SACK_RENEGING) {
2003 struct tcp_sock *tp = tcp_sk(sk);
2004 unsigned long delay = max(usecs_to_jiffies(tp->srtt_us >> 4),
2005 msecs_to_jiffies(10));
2006
2007 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
2008 delay, TCP_RTO_MAX);
2009 return true;
2010 }
2011 return false;
2012 }
2013
2014 static inline int tcp_fackets_out(const struct tcp_sock *tp)
2015 {
2016 return tcp_is_reno(tp) ? tp->sacked_out + 1 : tp->fackets_out;
2017 }
2018
2019 /* Heurestics to calculate number of duplicate ACKs. There's no dupACKs
2020 * counter when SACK is enabled (without SACK, sacked_out is used for
2021 * that purpose).
2022 *
2023 * Instead, with FACK TCP uses fackets_out that includes both SACKed
2024 * segments up to the highest received SACK block so far and holes in
2025 * between them.
2026 *
2027 * With reordering, holes may still be in flight, so RFC3517 recovery
2028 * uses pure sacked_out (total number of SACKed segments) even though
2029 * it violates the RFC that uses duplicate ACKs, often these are equal
2030 * but when e.g. out-of-window ACKs or packet duplication occurs,
2031 * they differ. Since neither occurs due to loss, TCP should really
2032 * ignore them.
2033 */
2034 static inline int tcp_dupack_heuristics(const struct tcp_sock *tp)
2035 {
2036 return tcp_is_fack(tp) ? tp->fackets_out : tp->sacked_out + 1;
2037 }
2038
2039 static bool tcp_pause_early_retransmit(struct sock *sk, int flag)
2040 {
2041 struct tcp_sock *tp = tcp_sk(sk);
2042 unsigned long delay;
2043
2044 /* Delay early retransmit and entering fast recovery for
2045 * max(RTT/4, 2msec) unless ack has ECE mark, no RTT samples
2046 * available, or RTO is scheduled to fire first.
2047 */
2048 if (sysctl_tcp_early_retrans < 2 || sysctl_tcp_early_retrans > 3 ||
2049 (flag & FLAG_ECE) || !tp->srtt_us)
2050 return false;
2051
2052 delay = max(usecs_to_jiffies(tp->srtt_us >> 5),
2053 msecs_to_jiffies(2));
2054
2055 if (!time_after(inet_csk(sk)->icsk_timeout, (jiffies + delay)))
2056 return false;
2057
2058 inet_csk_reset_xmit_timer(sk, ICSK_TIME_EARLY_RETRANS, delay,
2059 TCP_RTO_MAX);
2060 return true;
2061 }
2062
2063 /* Linux NewReno/SACK/FACK/ECN state machine.
2064 * --------------------------------------
2065 *
2066 * "Open" Normal state, no dubious events, fast path.
2067 * "Disorder" In all the respects it is "Open",
2068 * but requires a bit more attention. It is entered when
2069 * we see some SACKs or dupacks. It is split of "Open"
2070 * mainly to move some processing from fast path to slow one.
2071 * "CWR" CWND was reduced due to some Congestion Notification event.
2072 * It can be ECN, ICMP source quench, local device congestion.
2073 * "Recovery" CWND was reduced, we are fast-retransmitting.
2074 * "Loss" CWND was reduced due to RTO timeout or SACK reneging.
2075 *
2076 * tcp_fastretrans_alert() is entered:
2077 * - each incoming ACK, if state is not "Open"
2078 * - when arrived ACK is unusual, namely:
2079 * * SACK
2080 * * Duplicate ACK.
2081 * * ECN ECE.
2082 *
2083 * Counting packets in flight is pretty simple.
2084 *
2085 * in_flight = packets_out - left_out + retrans_out
2086 *
2087 * packets_out is SND.NXT-SND.UNA counted in packets.
2088 *
2089 * retrans_out is number of retransmitted segments.
2090 *
2091 * left_out is number of segments left network, but not ACKed yet.
2092 *
2093 * left_out = sacked_out + lost_out
2094 *
2095 * sacked_out: Packets, which arrived to receiver out of order
2096 * and hence not ACKed. With SACKs this number is simply
2097 * amount of SACKed data. Even without SACKs
2098 * it is easy to give pretty reliable estimate of this number,
2099 * counting duplicate ACKs.
2100 *
2101 * lost_out: Packets lost by network. TCP has no explicit
2102 * "loss notification" feedback from network (for now).
2103 * It means that this number can be only _guessed_.
2104 * Actually, it is the heuristics to predict lossage that
2105 * distinguishes different algorithms.
2106 *
2107 * F.e. after RTO, when all the queue is considered as lost,
2108 * lost_out = packets_out and in_flight = retrans_out.
2109 *
2110 * Essentially, we have now two algorithms counting
2111 * lost packets.
2112 *
2113 * FACK: It is the simplest heuristics. As soon as we decided
2114 * that something is lost, we decide that _all_ not SACKed
2115 * packets until the most forward SACK are lost. I.e.
2116 * lost_out = fackets_out - sacked_out and left_out = fackets_out.
2117 * It is absolutely correct estimate, if network does not reorder
2118 * packets. And it loses any connection to reality when reordering
2119 * takes place. We use FACK by default until reordering
2120 * is suspected on the path to this destination.
2121 *
2122 * NewReno: when Recovery is entered, we assume that one segment
2123 * is lost (classic Reno). While we are in Recovery and
2124 * a partial ACK arrives, we assume that one more packet
2125 * is lost (NewReno). This heuristics are the same in NewReno
2126 * and SACK.
2127 *
2128 * Imagine, that's all! Forget about all this shamanism about CWND inflation
2129 * deflation etc. CWND is real congestion window, never inflated, changes
2130 * only according to classic VJ rules.
2131 *
2132 * Really tricky (and requiring careful tuning) part of algorithm
2133 * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue().
2134 * The first determines the moment _when_ we should reduce CWND and,
2135 * hence, slow down forward transmission. In fact, it determines the moment
2136 * when we decide that hole is caused by loss, rather than by a reorder.
2137 *
2138 * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill
2139 * holes, caused by lost packets.
2140 *
2141 * And the most logically complicated part of algorithm is undo
2142 * heuristics. We detect false retransmits due to both too early
2143 * fast retransmit (reordering) and underestimated RTO, analyzing
2144 * timestamps and D-SACKs. When we detect that some segments were
2145 * retransmitted by mistake and CWND reduction was wrong, we undo
2146 * window reduction and abort recovery phase. This logic is hidden
2147 * inside several functions named tcp_try_undo_<something>.
2148 */
2149
2150 /* This function decides, when we should leave Disordered state
2151 * and enter Recovery phase, reducing congestion window.
2152 *
2153 * Main question: may we further continue forward transmission
2154 * with the same cwnd?
2155 */
2156 static bool tcp_time_to_recover(struct sock *sk, int flag)
2157 {
2158 struct tcp_sock *tp = tcp_sk(sk);
2159 __u32 packets_out;
2160 int tcp_reordering = sock_net(sk)->ipv4.sysctl_tcp_reordering;
2161
2162 /* Trick#1: The loss is proven. */
2163 if (tp->lost_out)
2164 return true;
2165
2166 /* Not-A-Trick#2 : Classic rule... */
2167 if (tcp_dupack_heuristics(tp) > tp->reordering)
2168 return true;
2169
2170 /* Trick#4: It is still not OK... But will it be useful to delay
2171 * recovery more?
2172 */
2173 packets_out = tp->packets_out;
2174 if (packets_out <= tp->reordering &&
2175 tp->sacked_out >= max_t(__u32, packets_out/2, tcp_reordering) &&
2176 !tcp_may_send_now(sk)) {
2177 /* We have nothing to send. This connection is limited
2178 * either by receiver window or by application.
2179 */
2180 return true;
2181 }
2182
2183 /* If a thin stream is detected, retransmit after first
2184 * received dupack. Employ only if SACK is supported in order
2185 * to avoid possible corner-case series of spurious retransmissions
2186 * Use only if there are no unsent data.
2187 */
2188 if ((tp->thin_dupack || sysctl_tcp_thin_dupack) &&
2189 tcp_stream_is_thin(tp) && tcp_dupack_heuristics(tp) > 1 &&
2190 tcp_is_sack(tp) && !tcp_send_head(sk))
2191 return true;
2192
2193 /* Trick#6: TCP early retransmit, per RFC5827. To avoid spurious
2194 * retransmissions due to small network reorderings, we implement
2195 * Mitigation A.3 in the RFC and delay the retransmission for a short
2196 * interval if appropriate.
2197 */
2198 if (tp->do_early_retrans && !tp->retrans_out && tp->sacked_out &&
2199 (tp->packets_out >= (tp->sacked_out + 1) && tp->packets_out < 4) &&
2200 !tcp_may_send_now(sk))
2201 return !tcp_pause_early_retransmit(sk, flag);
2202
2203 return false;
2204 }
2205
2206 /* Detect loss in event "A" above by marking head of queue up as lost.
2207 * For FACK or non-SACK(Reno) senders, the first "packets" number of segments
2208 * are considered lost. For RFC3517 SACK, a segment is considered lost if it
2209 * has at least tp->reordering SACKed seqments above it; "packets" refers to
2210 * the maximum SACKed segments to pass before reaching this limit.
2211 */
2212 static void tcp_mark_head_lost(struct sock *sk, int packets, int mark_head)
2213 {
2214 struct tcp_sock *tp = tcp_sk(sk);
2215 struct sk_buff *skb;
2216 int cnt, oldcnt, lost;
2217 unsigned int mss;
2218 /* Use SACK to deduce losses of new sequences sent during recovery */
2219 const u32 loss_high = tcp_is_sack(tp) ? tp->snd_nxt : tp->high_seq;
2220
2221 WARN_ON(packets > tp->packets_out);
2222 if (tp->lost_skb_hint) {
2223 skb = tp->lost_skb_hint;
2224 cnt = tp->lost_cnt_hint;
2225 /* Head already handled? */
2226 if (mark_head && skb != tcp_write_queue_head(sk))
2227 return;
2228 } else {
2229 skb = tcp_write_queue_head(sk);
2230 cnt = 0;
2231 }
2232
2233 tcp_for_write_queue_from(skb, sk) {
2234 if (skb == tcp_send_head(sk))
2235 break;
2236 /* TODO: do this better */
2237 /* this is not the most efficient way to do this... */
2238 tp->lost_skb_hint = skb;
2239 tp->lost_cnt_hint = cnt;
2240
2241 if (after(TCP_SKB_CB(skb)->end_seq, loss_high))
2242 break;
2243
2244 oldcnt = cnt;
2245 if (tcp_is_fack(tp) || tcp_is_reno(tp) ||
2246 (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
2247 cnt += tcp_skb_pcount(skb);
2248
2249 if (cnt > packets) {
2250 if ((tcp_is_sack(tp) && !tcp_is_fack(tp)) ||
2251 (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) ||
2252 (oldcnt >= packets))
2253 break;
2254
2255 mss = tcp_skb_mss(skb);
2256 /* If needed, chop off the prefix to mark as lost. */
2257 lost = (packets - oldcnt) * mss;
2258 if (lost < skb->len &&
2259 tcp_fragment(sk, skb, lost, mss, GFP_ATOMIC) < 0)
2260 break;
2261 cnt = packets;
2262 }
2263
2264 tcp_skb_mark_lost(tp, skb);
2265
2266 if (mark_head)
2267 break;
2268 }
2269 tcp_verify_left_out(tp);
2270 }
2271
2272 /* Account newly detected lost packet(s) */
2273
2274 static void tcp_update_scoreboard(struct sock *sk, int fast_rexmit)
2275 {
2276 struct tcp_sock *tp = tcp_sk(sk);
2277
2278 if (tcp_is_reno(tp)) {
2279 tcp_mark_head_lost(sk, 1, 1);
2280 } else if (tcp_is_fack(tp)) {
2281 int lost = tp->fackets_out - tp->reordering;
2282 if (lost <= 0)
2283 lost = 1;
2284 tcp_mark_head_lost(sk, lost, 0);
2285 } else {
2286 int sacked_upto = tp->sacked_out - tp->reordering;
2287 if (sacked_upto >= 0)
2288 tcp_mark_head_lost(sk, sacked_upto, 0);
2289 else if (fast_rexmit)
2290 tcp_mark_head_lost(sk, 1, 1);
2291 }
2292 }
2293
2294 static bool tcp_tsopt_ecr_before(const struct tcp_sock *tp, u32 when)
2295 {
2296 return tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
2297 before(tp->rx_opt.rcv_tsecr, when);
2298 }
2299
2300 /* skb is spurious retransmitted if the returned timestamp echo
2301 * reply is prior to the skb transmission time
2302 */
2303 static bool tcp_skb_spurious_retrans(const struct tcp_sock *tp,
2304 const struct sk_buff *skb)
2305 {
2306 return (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS) &&
2307 tcp_tsopt_ecr_before(tp, tcp_skb_timestamp(skb));
2308 }
2309
2310 /* Nothing was retransmitted or returned timestamp is less
2311 * than timestamp of the first retransmission.
2312 */
2313 static inline bool tcp_packet_delayed(const struct tcp_sock *tp)
2314 {
2315 return !tp->retrans_stamp ||
2316 tcp_tsopt_ecr_before(tp, tp->retrans_stamp);
2317 }
2318
2319 /* Undo procedures. */
2320
2321 /* We can clear retrans_stamp when there are no retransmissions in the
2322 * window. It would seem that it is trivially available for us in
2323 * tp->retrans_out, however, that kind of assumptions doesn't consider
2324 * what will happen if errors occur when sending retransmission for the
2325 * second time. ...It could the that such segment has only
2326 * TCPCB_EVER_RETRANS set at the present time. It seems that checking
2327 * the head skb is enough except for some reneging corner cases that
2328 * are not worth the effort.
2329 *
2330 * Main reason for all this complexity is the fact that connection dying
2331 * time now depends on the validity of the retrans_stamp, in particular,
2332 * that successive retransmissions of a segment must not advance
2333 * retrans_stamp under any conditions.
2334 */
2335 static bool tcp_any_retrans_done(const struct sock *sk)
2336 {
2337 const struct tcp_sock *tp = tcp_sk(sk);
2338 struct sk_buff *skb;
2339
2340 if (tp->retrans_out)
2341 return true;
2342
2343 skb = tcp_write_queue_head(sk);
2344 if (unlikely(skb && TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS))
2345 return true;
2346
2347 return false;
2348 }
2349
2350 #if FASTRETRANS_DEBUG > 1
2351 static void DBGUNDO(struct sock *sk, const char *msg)
2352 {
2353 struct tcp_sock *tp = tcp_sk(sk);
2354 struct inet_sock *inet = inet_sk(sk);
2355
2356 if (sk->sk_family == AF_INET) {
2357 pr_debug("Undo %s %pI4/%u c%u l%u ss%u/%u p%u\n",
2358 msg,
2359 &inet->inet_daddr, ntohs(inet->inet_dport),
2360 tp->snd_cwnd, tcp_left_out(tp),
2361 tp->snd_ssthresh, tp->prior_ssthresh,
2362 tp->packets_out);
2363 }
2364 #if IS_ENABLED(CONFIG_IPV6)
2365 else if (sk->sk_family == AF_INET6) {
2366 pr_debug("Undo %s %pI6/%u c%u l%u ss%u/%u p%u\n",
2367 msg,
2368 &sk->sk_v6_daddr, ntohs(inet->inet_dport),
2369 tp->snd_cwnd, tcp_left_out(tp),
2370 tp->snd_ssthresh, tp->prior_ssthresh,
2371 tp->packets_out);
2372 }
2373 #endif
2374 }
2375 #else
2376 #define DBGUNDO(x...) do { } while (0)
2377 #endif
2378
2379 static void tcp_undo_cwnd_reduction(struct sock *sk, bool unmark_loss)
2380 {
2381 struct tcp_sock *tp = tcp_sk(sk);
2382
2383 if (unmark_loss) {
2384 struct sk_buff *skb;
2385
2386 tcp_for_write_queue(skb, sk) {
2387 if (skb == tcp_send_head(sk))
2388 break;
2389 TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
2390 }
2391 tp->lost_out = 0;
2392 tcp_clear_all_retrans_hints(tp);
2393 }
2394
2395 if (tp->prior_ssthresh) {
2396 const struct inet_connection_sock *icsk = inet_csk(sk);
2397
2398 tp->snd_cwnd = icsk->icsk_ca_ops->undo_cwnd(sk);
2399
2400 if (tp->prior_ssthresh > tp->snd_ssthresh) {
2401 tp->snd_ssthresh = tp->prior_ssthresh;
2402 tcp_ecn_withdraw_cwr(tp);
2403 }
2404 }
2405 tp->snd_cwnd_stamp = tcp_time_stamp;
2406 tp->undo_marker = 0;
2407 }
2408
2409 static inline bool tcp_may_undo(const struct tcp_sock *tp)
2410 {
2411 return tp->undo_marker && (!tp->undo_retrans || tcp_packet_delayed(tp));
2412 }
2413
2414 /* People celebrate: "We love our President!" */
2415 static bool tcp_try_undo_recovery(struct sock *sk)
2416 {
2417 struct tcp_sock *tp = tcp_sk(sk);
2418
2419 if (tcp_may_undo(tp)) {
2420 int mib_idx;
2421
2422 /* Happy end! We did not retransmit anything
2423 * or our original transmission succeeded.
2424 */
2425 DBGUNDO(sk, inet_csk(sk)->icsk_ca_state == TCP_CA_Loss ? "loss" : "retrans");
2426 tcp_undo_cwnd_reduction(sk, false);
2427 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss)
2428 mib_idx = LINUX_MIB_TCPLOSSUNDO;
2429 else
2430 mib_idx = LINUX_MIB_TCPFULLUNDO;
2431
2432 NET_INC_STATS(sock_net(sk), mib_idx);
2433 }
2434 if (tp->snd_una == tp->high_seq && tcp_is_reno(tp)) {
2435 /* Hold old state until something *above* high_seq
2436 * is ACKed. For Reno it is MUST to prevent false
2437 * fast retransmits (RFC2582). SACK TCP is safe. */
2438 if (!tcp_any_retrans_done(sk))
2439 tp->retrans_stamp = 0;
2440 return true;
2441 }
2442 tcp_set_ca_state(sk, TCP_CA_Open);
2443 return false;
2444 }
2445
2446 /* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */
2447 static bool tcp_try_undo_dsack(struct sock *sk)
2448 {
2449 struct tcp_sock *tp = tcp_sk(sk);
2450
2451 if (tp->undo_marker && !tp->undo_retrans) {
2452 DBGUNDO(sk, "D-SACK");
2453 tcp_undo_cwnd_reduction(sk, false);
2454 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKUNDO);
2455 return true;
2456 }
2457 return false;
2458 }
2459
2460 /* Undo during loss recovery after partial ACK or using F-RTO. */
2461 static bool tcp_try_undo_loss(struct sock *sk, bool frto_undo)
2462 {
2463 struct tcp_sock *tp = tcp_sk(sk);
2464
2465 if (frto_undo || tcp_may_undo(tp)) {
2466 tcp_undo_cwnd_reduction(sk, true);
2467
2468 DBGUNDO(sk, "partial loss");
2469 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPLOSSUNDO);
2470 if (frto_undo)
2471 NET_INC_STATS(sock_net(sk),
2472 LINUX_MIB_TCPSPURIOUSRTOS);
2473 inet_csk(sk)->icsk_retransmits = 0;
2474 if (frto_undo || tcp_is_sack(tp))
2475 tcp_set_ca_state(sk, TCP_CA_Open);
2476 return true;
2477 }
2478 return false;
2479 }
2480
2481 /* The cwnd reduction in CWR and Recovery uses the PRR algorithm in RFC 6937.
2482 * It computes the number of packets to send (sndcnt) based on packets newly
2483 * delivered:
2484 * 1) If the packets in flight is larger than ssthresh, PRR spreads the
2485 * cwnd reductions across a full RTT.
2486 * 2) Otherwise PRR uses packet conservation to send as much as delivered.
2487 * But when the retransmits are acked without further losses, PRR
2488 * slow starts cwnd up to ssthresh to speed up the recovery.
2489 */
2490 static void tcp_init_cwnd_reduction(struct sock *sk)
2491 {
2492 struct tcp_sock *tp = tcp_sk(sk);
2493
2494 tp->high_seq = tp->snd_nxt;
2495 tp->tlp_high_seq = 0;
2496 tp->snd_cwnd_cnt = 0;
2497 tp->prior_cwnd = tp->snd_cwnd;
2498 tp->prr_delivered = 0;
2499 tp->prr_out = 0;
2500 tp->snd_ssthresh = inet_csk(sk)->icsk_ca_ops->ssthresh(sk);
2501 tcp_ecn_queue_cwr(tp);
2502 }
2503
2504 static void tcp_cwnd_reduction(struct sock *sk, int newly_acked_sacked,
2505 int flag)
2506 {
2507 struct tcp_sock *tp = tcp_sk(sk);
2508 int sndcnt = 0;
2509 int delta = tp->snd_ssthresh - tcp_packets_in_flight(tp);
2510
2511 if (newly_acked_sacked <= 0 || WARN_ON_ONCE(!tp->prior_cwnd))
2512 return;
2513
2514 tp->prr_delivered += newly_acked_sacked;
2515 if (delta < 0) {
2516 u64 dividend = (u64)tp->snd_ssthresh * tp->prr_delivered +
2517 tp->prior_cwnd - 1;
2518 sndcnt = div_u64(dividend, tp->prior_cwnd) - tp->prr_out;
2519 } else if ((flag & FLAG_RETRANS_DATA_ACKED) &&
2520 !(flag & FLAG_LOST_RETRANS)) {
2521 sndcnt = min_t(int, delta,
2522 max_t(int, tp->prr_delivered - tp->prr_out,
2523 newly_acked_sacked) + 1);
2524 } else {
2525 sndcnt = min(delta, newly_acked_sacked);
2526 }
2527 /* Force a fast retransmit upon entering fast recovery */
2528 sndcnt = max(sndcnt, (tp->prr_out ? 0 : 1));
2529 tp->snd_cwnd = tcp_packets_in_flight(tp) + sndcnt;
2530 }
2531
2532 static inline void tcp_end_cwnd_reduction(struct sock *sk)
2533 {
2534 struct tcp_sock *tp = tcp_sk(sk);
2535
2536 if (inet_csk(sk)->icsk_ca_ops->cong_control)
2537 return;
2538
2539 /* Reset cwnd to ssthresh in CWR or Recovery (unless it's undone) */
2540 if (inet_csk(sk)->icsk_ca_state == TCP_CA_CWR ||
2541 (tp->undo_marker && tp->snd_ssthresh < TCP_INFINITE_SSTHRESH)) {
2542 tp->snd_cwnd = tp->snd_ssthresh;
2543 tp->snd_cwnd_stamp = tcp_time_stamp;
2544 }
2545 tcp_ca_event(sk, CA_EVENT_COMPLETE_CWR);
2546 }
2547
2548 /* Enter CWR state. Disable cwnd undo since congestion is proven with ECN */
2549 void tcp_enter_cwr(struct sock *sk)
2550 {
2551 struct tcp_sock *tp = tcp_sk(sk);
2552
2553 tp->prior_ssthresh = 0;
2554 if (inet_csk(sk)->icsk_ca_state < TCP_CA_CWR) {
2555 tp->undo_marker = 0;
2556 tcp_init_cwnd_reduction(sk);
2557 tcp_set_ca_state(sk, TCP_CA_CWR);
2558 }
2559 }
2560 EXPORT_SYMBOL(tcp_enter_cwr);
2561
2562 static void tcp_try_keep_open(struct sock *sk)
2563 {
2564 struct tcp_sock *tp = tcp_sk(sk);
2565 int state = TCP_CA_Open;
2566
2567 if (tcp_left_out(tp) || tcp_any_retrans_done(sk))
2568 state = TCP_CA_Disorder;
2569
2570 if (inet_csk(sk)->icsk_ca_state != state) {
2571 tcp_set_ca_state(sk, state);
2572 tp->high_seq = tp->snd_nxt;
2573 }
2574 }
2575
2576 static void tcp_try_to_open(struct sock *sk, int flag)
2577 {
2578 struct tcp_sock *tp = tcp_sk(sk);
2579
2580 tcp_verify_left_out(tp);
2581
2582 if (!tcp_any_retrans_done(sk))
2583 tp->retrans_stamp = 0;
2584
2585 if (flag & FLAG_ECE)
2586 tcp_enter_cwr(sk);
2587
2588 if (inet_csk(sk)->icsk_ca_state != TCP_CA_CWR) {
2589 tcp_try_keep_open(sk);
2590 }
2591 }
2592
2593 static void tcp_mtup_probe_failed(struct sock *sk)
2594 {
2595 struct inet_connection_sock *icsk = inet_csk(sk);
2596
2597 icsk->icsk_mtup.search_high = icsk->icsk_mtup.probe_size - 1;
2598 icsk->icsk_mtup.probe_size = 0;
2599 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMTUPFAIL);
2600 }
2601
2602 static void tcp_mtup_probe_success(struct sock *sk)
2603 {
2604 struct tcp_sock *tp = tcp_sk(sk);
2605 struct inet_connection_sock *icsk = inet_csk(sk);
2606
2607 /* FIXME: breaks with very large cwnd */
2608 tp->prior_ssthresh = tcp_current_ssthresh(sk);
2609 tp->snd_cwnd = tp->snd_cwnd *
2610 tcp_mss_to_mtu(sk, tp->mss_cache) /
2611 icsk->icsk_mtup.probe_size;
2612 tp->snd_cwnd_cnt = 0;
2613 tp->snd_cwnd_stamp = tcp_time_stamp;
2614 tp->snd_ssthresh = tcp_current_ssthresh(sk);
2615
2616 icsk->icsk_mtup.search_low = icsk->icsk_mtup.probe_size;
2617 icsk->icsk_mtup.probe_size = 0;
2618 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
2619 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMTUPSUCCESS);
2620 }
2621
2622 /* Do a simple retransmit without using the backoff mechanisms in
2623 * tcp_timer. This is used for path mtu discovery.
2624 * The socket is already locked here.
2625 */
2626 void tcp_simple_retransmit(struct sock *sk)
2627 {
2628 const struct inet_connection_sock *icsk = inet_csk(sk);
2629 struct tcp_sock *tp = tcp_sk(sk);
2630 struct sk_buff *skb;
2631 unsigned int mss = tcp_current_mss(sk);
2632 u32 prior_lost = tp->lost_out;
2633
2634 tcp_for_write_queue(skb, sk) {
2635 if (skb == tcp_send_head(sk))
2636 break;
2637 if (tcp_skb_seglen(skb) > mss &&
2638 !(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) {
2639 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
2640 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
2641 tp->retrans_out -= tcp_skb_pcount(skb);
2642 }
2643 tcp_skb_mark_lost_uncond_verify(tp, skb);
2644 }
2645 }
2646
2647 tcp_clear_retrans_hints_partial(tp);
2648
2649 if (prior_lost == tp->lost_out)
2650 return;
2651
2652 if (tcp_is_reno(tp))
2653 tcp_limit_reno_sacked(tp);
2654
2655 tcp_verify_left_out(tp);
2656
2657 /* Don't muck with the congestion window here.
2658 * Reason is that we do not increase amount of _data_
2659 * in network, but units changed and effective
2660 * cwnd/ssthresh really reduced now.
2661 */
2662 if (icsk->icsk_ca_state != TCP_CA_Loss) {
2663 tp->high_seq = tp->snd_nxt;
2664 tp->snd_ssthresh = tcp_current_ssthresh(sk);
2665 tp->prior_ssthresh = 0;
2666 tp->undo_marker = 0;
2667 tcp_set_ca_state(sk, TCP_CA_Loss);
2668 }
2669 tcp_xmit_retransmit_queue(sk);
2670 }
2671 EXPORT_SYMBOL(tcp_simple_retransmit);
2672
2673 static void tcp_enter_recovery(struct sock *sk, bool ece_ack)
2674 {
2675 struct tcp_sock *tp = tcp_sk(sk);
2676 int mib_idx;
2677
2678 if (tcp_is_reno(tp))
2679 mib_idx = LINUX_MIB_TCPRENORECOVERY;
2680 else
2681 mib_idx = LINUX_MIB_TCPSACKRECOVERY;
2682
2683 NET_INC_STATS(sock_net(sk), mib_idx);
2684
2685 tp->prior_ssthresh = 0;
2686 tcp_init_undo(tp);
2687
2688 if (!tcp_in_cwnd_reduction(sk)) {
2689 if (!ece_ack)
2690 tp->prior_ssthresh = tcp_current_ssthresh(sk);
2691 tcp_init_cwnd_reduction(sk);
2692 }
2693 tcp_set_ca_state(sk, TCP_CA_Recovery);
2694 }
2695
2696 /* Process an ACK in CA_Loss state. Move to CA_Open if lost data are
2697 * recovered or spurious. Otherwise retransmits more on partial ACKs.
2698 */
2699 static void tcp_process_loss(struct sock *sk, int flag, bool is_dupack,
2700 int *rexmit)
2701 {
2702 struct tcp_sock *tp = tcp_sk(sk);
2703 bool recovered = !before(tp->snd_una, tp->high_seq);
2704
2705 if ((flag & FLAG_SND_UNA_ADVANCED) &&
2706 tcp_try_undo_loss(sk, false))
2707 return;
2708
2709 if (tp->frto) { /* F-RTO RFC5682 sec 3.1 (sack enhanced version). */
2710 /* Step 3.b. A timeout is spurious if not all data are
2711 * lost, i.e., never-retransmitted data are (s)acked.
2712 */
2713 if ((flag & FLAG_ORIG_SACK_ACKED) &&
2714 tcp_try_undo_loss(sk, true))
2715 return;
2716
2717 if (after(tp->snd_nxt, tp->high_seq)) {
2718 if (flag & FLAG_DATA_SACKED || is_dupack)
2719 tp->frto = 0; /* Step 3.a. loss was real */
2720 } else if (flag & FLAG_SND_UNA_ADVANCED && !recovered) {
2721 tp->high_seq = tp->snd_nxt;
2722 /* Step 2.b. Try send new data (but deferred until cwnd
2723 * is updated in tcp_ack()). Otherwise fall back to
2724 * the conventional recovery.
2725 */
2726 if (tcp_send_head(sk) &&
2727 after(tcp_wnd_end(tp), tp->snd_nxt)) {
2728 *rexmit = REXMIT_NEW;
2729 return;
2730 }
2731 tp->frto = 0;
2732 }
2733 }
2734
2735 if (recovered) {
2736 /* F-RTO RFC5682 sec 3.1 step 2.a and 1st part of step 3.a */
2737 tcp_try_undo_recovery(sk);
2738 return;
2739 }
2740 if (tcp_is_reno(tp)) {
2741 /* A Reno DUPACK means new data in F-RTO step 2.b above are
2742 * delivered. Lower inflight to clock out (re)tranmissions.
2743 */
2744 if (after(tp->snd_nxt, tp->high_seq) && is_dupack)
2745 tcp_add_reno_sack(sk);
2746 else if (flag & FLAG_SND_UNA_ADVANCED)
2747 tcp_reset_reno_sack(tp);
2748 }
2749 *rexmit = REXMIT_LOST;
2750 }
2751
2752 /* Undo during fast recovery after partial ACK. */
2753 static bool tcp_try_undo_partial(struct sock *sk, const int acked)
2754 {
2755 struct tcp_sock *tp = tcp_sk(sk);
2756
2757 if (tp->undo_marker && tcp_packet_delayed(tp)) {
2758 /* Plain luck! Hole if filled with delayed
2759 * packet, rather than with a retransmit.
2760 */
2761 tcp_update_reordering(sk, tcp_fackets_out(tp) + acked, 1);
2762
2763 /* We are getting evidence that the reordering degree is higher
2764 * than we realized. If there are no retransmits out then we
2765 * can undo. Otherwise we clock out new packets but do not
2766 * mark more packets lost or retransmit more.
2767 */
2768 if (tp->retrans_out)
2769 return true;
2770
2771 if (!tcp_any_retrans_done(sk))
2772 tp->retrans_stamp = 0;
2773
2774 DBGUNDO(sk, "partial recovery");
2775 tcp_undo_cwnd_reduction(sk, true);
2776 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPPARTIALUNDO);
2777 tcp_try_keep_open(sk);
2778 return true;
2779 }
2780 return false;
2781 }
2782
2783 /* Process an event, which can update packets-in-flight not trivially.
2784 * Main goal of this function is to calculate new estimate for left_out,
2785 * taking into account both packets sitting in receiver's buffer and
2786 * packets lost by network.
2787 *
2788 * Besides that it updates the congestion state when packet loss or ECN
2789 * is detected. But it does not reduce the cwnd, it is done by the
2790 * congestion control later.
2791 *
2792 * It does _not_ decide what to send, it is made in function
2793 * tcp_xmit_retransmit_queue().
2794 */
2795 static void tcp_fastretrans_alert(struct sock *sk, const int acked,
2796 bool is_dupack, int *ack_flag, int *rexmit)
2797 {
2798 struct inet_connection_sock *icsk = inet_csk(sk);
2799 struct tcp_sock *tp = tcp_sk(sk);
2800 int fast_rexmit = 0, flag = *ack_flag;
2801 bool do_lost = is_dupack || ((flag & FLAG_DATA_SACKED) &&
2802 (tcp_fackets_out(tp) > tp->reordering));
2803
2804 if (WARN_ON(!tp->packets_out && tp->sacked_out))
2805 tp->sacked_out = 0;
2806 if (WARN_ON(!tp->sacked_out && tp->fackets_out))
2807 tp->fackets_out = 0;
2808
2809 /* Now state machine starts.
2810 * A. ECE, hence prohibit cwnd undoing, the reduction is required. */
2811 if (flag & FLAG_ECE)
2812 tp->prior_ssthresh = 0;
2813
2814 /* B. In all the states check for reneging SACKs. */
2815 if (tcp_check_sack_reneging(sk, flag))
2816 return;
2817
2818 /* C. Check consistency of the current state. */
2819 tcp_verify_left_out(tp);
2820
2821 /* D. Check state exit conditions. State can be terminated
2822 * when high_seq is ACKed. */
2823 if (icsk->icsk_ca_state == TCP_CA_Open) {
2824 WARN_ON(tp->retrans_out != 0);
2825 tp->retrans_stamp = 0;
2826 } else if (!before(tp->snd_una, tp->high_seq)) {
2827 switch (icsk->icsk_ca_state) {
2828 case TCP_CA_CWR:
2829 /* CWR is to be held something *above* high_seq
2830 * is ACKed for CWR bit to reach receiver. */
2831 if (tp->snd_una != tp->high_seq) {
2832 tcp_end_cwnd_reduction(sk);
2833 tcp_set_ca_state(sk, TCP_CA_Open);
2834 }
2835 break;
2836
2837 case TCP_CA_Recovery:
2838 if (tcp_is_reno(tp))
2839 tcp_reset_reno_sack(tp);
2840 if (tcp_try_undo_recovery(sk))
2841 return;
2842 tcp_end_cwnd_reduction(sk);
2843 break;
2844 }
2845 }
2846
2847 /* Use RACK to detect loss */
2848 if (sysctl_tcp_recovery & TCP_RACK_LOST_RETRANS &&
2849 tcp_rack_mark_lost(sk)) {
2850 flag |= FLAG_LOST_RETRANS;
2851 *ack_flag |= FLAG_LOST_RETRANS;
2852 }
2853
2854 /* E. Process state. */
2855 switch (icsk->icsk_ca_state) {
2856 case TCP_CA_Recovery:
2857 if (!(flag & FLAG_SND_UNA_ADVANCED)) {
2858 if (tcp_is_reno(tp) && is_dupack)
2859 tcp_add_reno_sack(sk);
2860 } else {
2861 if (tcp_try_undo_partial(sk, acked))
2862 return;
2863 /* Partial ACK arrived. Force fast retransmit. */
2864 do_lost = tcp_is_reno(tp) ||
2865 tcp_fackets_out(tp) > tp->reordering;
2866 }
2867 if (tcp_try_undo_dsack(sk)) {
2868 tcp_try_keep_open(sk);
2869 return;
2870 }
2871 break;
2872 case TCP_CA_Loss:
2873 tcp_process_loss(sk, flag, is_dupack, rexmit);
2874 if (icsk->icsk_ca_state != TCP_CA_Open &&
2875 !(flag & FLAG_LOST_RETRANS))
2876 return;
2877 /* Change state if cwnd is undone or retransmits are lost */
2878 default:
2879 if (tcp_is_reno(tp)) {
2880 if (flag & FLAG_SND_UNA_ADVANCED)
2881 tcp_reset_reno_sack(tp);
2882 if (is_dupack)
2883 tcp_add_reno_sack(sk);
2884 }
2885
2886 if (icsk->icsk_ca_state <= TCP_CA_Disorder)
2887 tcp_try_undo_dsack(sk);
2888
2889 if (!tcp_time_to_recover(sk, flag)) {
2890 tcp_try_to_open(sk, flag);
2891 return;
2892 }
2893
2894 /* MTU probe failure: don't reduce cwnd */
2895 if (icsk->icsk_ca_state < TCP_CA_CWR &&
2896 icsk->icsk_mtup.probe_size &&
2897 tp->snd_una == tp->mtu_probe.probe_seq_start) {
2898 tcp_mtup_probe_failed(sk);
2899 /* Restores the reduction we did in tcp_mtup_probe() */
2900 tp->snd_cwnd++;
2901 tcp_simple_retransmit(sk);
2902 return;
2903 }
2904
2905 /* Otherwise enter Recovery state */
2906 tcp_enter_recovery(sk, (flag & FLAG_ECE));
2907 fast_rexmit = 1;
2908 }
2909
2910 if (do_lost)
2911 tcp_update_scoreboard(sk, fast_rexmit);
2912 *rexmit = REXMIT_LOST;
2913 }
2914
2915 static void tcp_update_rtt_min(struct sock *sk, u32 rtt_us)
2916 {
2917 struct tcp_sock *tp = tcp_sk(sk);
2918 u32 wlen = sysctl_tcp_min_rtt_wlen * HZ;
2919
2920 minmax_running_min(&tp->rtt_min, wlen, tcp_time_stamp,
2921 rtt_us ? : jiffies_to_usecs(1));
2922 }
2923
2924 static inline bool tcp_ack_update_rtt(struct sock *sk, const int flag,
2925 long seq_rtt_us, long sack_rtt_us,
2926 long ca_rtt_us)
2927 {
2928 const struct tcp_sock *tp = tcp_sk(sk);
2929
2930 /* Prefer RTT measured from ACK's timing to TS-ECR. This is because
2931 * broken middle-boxes or peers may corrupt TS-ECR fields. But
2932 * Karn's algorithm forbids taking RTT if some retransmitted data
2933 * is acked (RFC6298).
2934 */
2935 if (seq_rtt_us < 0)
2936 seq_rtt_us = sack_rtt_us;
2937
2938 /* RTTM Rule: A TSecr value received in a segment is used to
2939 * update the averaged RTT measurement only if the segment
2940 * acknowledges some new data, i.e., only if it advances the
2941 * left edge of the send window.
2942 * See draft-ietf-tcplw-high-performance-00, section 3.3.
2943 */
2944 if (seq_rtt_us < 0 && tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
2945 flag & FLAG_ACKED)
2946 seq_rtt_us = ca_rtt_us = jiffies_to_usecs(tcp_time_stamp -
2947 tp->rx_opt.rcv_tsecr);
2948 if (seq_rtt_us < 0)
2949 return false;
2950
2951 /* ca_rtt_us >= 0 is counting on the invariant that ca_rtt_us is
2952 * always taken together with ACK, SACK, or TS-opts. Any negative
2953 * values will be skipped with the seq_rtt_us < 0 check above.
2954 */
2955 tcp_update_rtt_min(sk, ca_rtt_us);
2956 tcp_rtt_estimator(sk, seq_rtt_us);
2957 tcp_set_rto(sk);
2958
2959 /* RFC6298: only reset backoff on valid RTT measurement. */
2960 inet_csk(sk)->icsk_backoff = 0;
2961 return true;
2962 }
2963
2964 /* Compute time elapsed between (last) SYNACK and the ACK completing 3WHS. */
2965 void tcp_synack_rtt_meas(struct sock *sk, struct request_sock *req)
2966 {
2967 long rtt_us = -1L;
2968
2969 if (req && !req->num_retrans && tcp_rsk(req)->snt_synack.v64) {
2970 struct skb_mstamp now;
2971
2972 skb_mstamp_get(&now);
2973 rtt_us = skb_mstamp_us_delta(&now, &tcp_rsk(req)->snt_synack);
2974 }
2975
2976 tcp_ack_update_rtt(sk, FLAG_SYN_ACKED, rtt_us, -1L, rtt_us);
2977 }
2978
2979
2980 static void tcp_cong_avoid(struct sock *sk, u32 ack, u32 acked)
2981 {
2982 const struct inet_connection_sock *icsk = inet_csk(sk);
2983
2984 icsk->icsk_ca_ops->cong_avoid(sk, ack, acked);
2985 tcp_sk(sk)->snd_cwnd_stamp = tcp_time_stamp;
2986 }
2987
2988 /* Restart timer after forward progress on connection.
2989 * RFC2988 recommends to restart timer to now+rto.
2990 */
2991 void tcp_rearm_rto(struct sock *sk)
2992 {
2993 const struct inet_connection_sock *icsk = inet_csk(sk);
2994 struct tcp_sock *tp = tcp_sk(sk);
2995
2996 /* If the retrans timer is currently being used by Fast Open
2997 * for SYN-ACK retrans purpose, stay put.
2998 */
2999 if (tp->fastopen_rsk)
3000 return;
3001
3002 if (!tp->packets_out) {
3003 inet_csk_clear_xmit_timer(sk, ICSK_TIME_RETRANS);
3004 } else {
3005 u32 rto = inet_csk(sk)->icsk_rto;
3006 /* Offset the time elapsed after installing regular RTO */
3007 if (icsk->icsk_pending == ICSK_TIME_EARLY_RETRANS ||
3008 icsk->icsk_pending == ICSK_TIME_LOSS_PROBE) {
3009 struct sk_buff *skb = tcp_write_queue_head(sk);
3010 const u32 rto_time_stamp =
3011 tcp_skb_timestamp(skb) + rto;
3012 s32 delta = (s32)(rto_time_stamp - tcp_time_stamp);
3013 /* delta may not be positive if the socket is locked
3014 * when the retrans timer fires and is rescheduled.
3015 */
3016 if (delta > 0)
3017 rto = delta;
3018 }
3019 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, rto,
3020 TCP_RTO_MAX);
3021 }
3022 }
3023
3024 /* This function is called when the delayed ER timer fires. TCP enters
3025 * fast recovery and performs fast-retransmit.
3026 */
3027 void tcp_resume_early_retransmit(struct sock *sk)
3028 {
3029 struct tcp_sock *tp = tcp_sk(sk);
3030
3031 tcp_rearm_rto(sk);
3032
3033 /* Stop if ER is disabled after the delayed ER timer is scheduled */
3034 if (!tp->do_early_retrans)
3035 return;
3036
3037 tcp_enter_recovery(sk, false);
3038 tcp_update_scoreboard(sk, 1);
3039 tcp_xmit_retransmit_queue(sk);
3040 }
3041
3042 /* If we get here, the whole TSO packet has not been acked. */
3043 static u32 tcp_tso_acked(struct sock *sk, struct sk_buff *skb)
3044 {
3045 struct tcp_sock *tp = tcp_sk(sk);
3046 u32 packets_acked;
3047
3048 BUG_ON(!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una));
3049
3050 packets_acked = tcp_skb_pcount(skb);
3051 if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq))
3052 return 0;
3053 packets_acked -= tcp_skb_pcount(skb);
3054
3055 if (packets_acked) {
3056 BUG_ON(tcp_skb_pcount(skb) == 0);
3057 BUG_ON(!before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq));
3058 }
3059
3060 return packets_acked;
3061 }
3062
3063 static void tcp_ack_tstamp(struct sock *sk, struct sk_buff *skb,
3064 u32 prior_snd_una)
3065 {
3066 const struct skb_shared_info *shinfo;
3067
3068 /* Avoid cache line misses to get skb_shinfo() and shinfo->tx_flags */
3069 if (likely(!TCP_SKB_CB(skb)->txstamp_ack))
3070 return;
3071
3072 shinfo = skb_shinfo(skb);
3073 if (!before(shinfo->tskey, prior_snd_una) &&
3074 before(shinfo->tskey, tcp_sk(sk)->snd_una))
3075 __skb_tstamp_tx(skb, NULL, sk, SCM_TSTAMP_ACK);
3076 }
3077
3078 /* Remove acknowledged frames from the retransmission queue. If our packet
3079 * is before the ack sequence we can discard it as it's confirmed to have
3080 * arrived at the other end.
3081 */
3082 static int tcp_clean_rtx_queue(struct sock *sk, int prior_fackets,
3083 u32 prior_snd_una, int *acked,
3084 struct tcp_sacktag_state *sack,
3085 struct skb_mstamp *now)
3086 {
3087 const struct inet_connection_sock *icsk = inet_csk(sk);
3088 struct skb_mstamp first_ackt, last_ackt;
3089 struct tcp_sock *tp = tcp_sk(sk);
3090 u32 prior_sacked = tp->sacked_out;
3091 u32 reord = tp->packets_out;
3092 bool fully_acked = true;
3093 long sack_rtt_us = -1L;
3094 long seq_rtt_us = -1L;
3095 long ca_rtt_us = -1L;
3096 struct sk_buff *skb;
3097 u32 pkts_acked = 0;
3098 u32 last_in_flight = 0;
3099 bool rtt_update;
3100 int flag = 0;
3101
3102 first_ackt.v64 = 0;
3103
3104 while ((skb = tcp_write_queue_head(sk)) && skb != tcp_send_head(sk)) {
3105 struct tcp_skb_cb *scb = TCP_SKB_CB(skb);
3106 u8 sacked = scb->sacked;
3107 u32 acked_pcount;
3108
3109 tcp_ack_tstamp(sk, skb, prior_snd_una);
3110
3111 /* Determine how many packets and what bytes were acked, tso and else */
3112 if (after(scb->end_seq, tp->snd_una)) {
3113 if (tcp_skb_pcount(skb) == 1 ||
3114 !after(tp->snd_una, scb->seq))
3115 break;
3116
3117 acked_pcount = tcp_tso_acked(sk, skb);
3118 if (!acked_pcount)
3119 break;
3120 fully_acked = false;
3121 } else {
3122 /* Speedup tcp_unlink_write_queue() and next loop */
3123 prefetchw(skb->next);
3124 acked_pcount = tcp_skb_pcount(skb);
3125 }
3126
3127 if (unlikely(sacked & TCPCB_RETRANS)) {
3128 if (sacked & TCPCB_SACKED_RETRANS)
3129 tp->retrans_out -= acked_pcount;
3130 flag |= FLAG_RETRANS_DATA_ACKED;
3131 } else if (!(sacked & TCPCB_SACKED_ACKED)) {
3132 last_ackt = skb->skb_mstamp;
3133 WARN_ON_ONCE(last_ackt.v64 == 0);
3134 if (!first_ackt.v64)
3135 first_ackt = last_ackt;
3136
3137 last_in_flight = TCP_SKB_CB(skb)->tx.in_flight;
3138 reord = min(pkts_acked, reord);
3139 if (!after(scb->end_seq, tp->high_seq))
3140 flag |= FLAG_ORIG_SACK_ACKED;
3141 }
3142
3143 if (sacked & TCPCB_SACKED_ACKED) {
3144 tp->sacked_out -= acked_pcount;
3145 } else if (tcp_is_sack(tp)) {
3146 tp->delivered += acked_pcount;
3147 if (!tcp_skb_spurious_retrans(tp, skb))
3148 tcp_rack_advance(tp, &skb->skb_mstamp, sacked);
3149 }
3150 if (sacked & TCPCB_LOST)
3151 tp->lost_out -= acked_pcount;
3152
3153 tp->packets_out -= acked_pcount;
3154 pkts_acked += acked_pcount;
3155 tcp_rate_skb_delivered(sk, skb, sack->rate);
3156
3157 /* Initial outgoing SYN's get put onto the write_queue
3158 * just like anything else we transmit. It is not
3159 * true data, and if we misinform our callers that
3160 * this ACK acks real data, we will erroneously exit
3161 * connection startup slow start one packet too
3162 * quickly. This is severely frowned upon behavior.
3163 */
3164 if (likely(!(scb->tcp_flags & TCPHDR_SYN))) {
3165 flag |= FLAG_DATA_ACKED;
3166 } else {
3167 flag |= FLAG_SYN_ACKED;
3168 tp->retrans_stamp = 0;
3169 }
3170
3171 if (!fully_acked)
3172 break;
3173
3174 tcp_unlink_write_queue(skb, sk);
3175 sk_wmem_free_skb(sk, skb);
3176 if (unlikely(skb == tp->retransmit_skb_hint))
3177 tp->retransmit_skb_hint = NULL;
3178 if (unlikely(skb == tp->lost_skb_hint))
3179 tp->lost_skb_hint = NULL;
3180 }
3181
3182 if (!skb)
3183 tcp_chrono_stop(sk, TCP_CHRONO_BUSY);
3184
3185 if (likely(between(tp->snd_up, prior_snd_una, tp->snd_una)))
3186 tp->snd_up = tp->snd_una;
3187
3188 if (skb && (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
3189 flag |= FLAG_SACK_RENEGING;
3190
3191 if (likely(first_ackt.v64) && !(flag & FLAG_RETRANS_DATA_ACKED)) {
3192 seq_rtt_us = skb_mstamp_us_delta(now, &first_ackt);
3193 ca_rtt_us = skb_mstamp_us_delta(now, &last_ackt);
3194 }
3195 if (sack->first_sackt.v64) {
3196 sack_rtt_us = skb_mstamp_us_delta(now, &sack->first_sackt);
3197 ca_rtt_us = skb_mstamp_us_delta(now, &sack->last_sackt);
3198 }
3199 sack->rate->rtt_us = ca_rtt_us; /* RTT of last (S)ACKed packet, or -1 */
3200 rtt_update = tcp_ack_update_rtt(sk, flag, seq_rtt_us, sack_rtt_us,
3201 ca_rtt_us);
3202
3203 if (flag & FLAG_ACKED) {
3204 tcp_rearm_rto(sk);
3205 if (unlikely(icsk->icsk_mtup.probe_size &&
3206 !after(tp->mtu_probe.probe_seq_end, tp->snd_una))) {
3207 tcp_mtup_probe_success(sk);
3208 }
3209
3210 if (tcp_is_reno(tp)) {
3211 tcp_remove_reno_sacks(sk, pkts_acked);
3212 } else {
3213 int delta;
3214
3215 /* Non-retransmitted hole got filled? That's reordering */
3216 if (reord < prior_fackets)
3217 tcp_update_reordering(sk, tp->fackets_out - reord, 0);
3218
3219 delta = tcp_is_fack(tp) ? pkts_acked :
3220 prior_sacked - tp->sacked_out;
3221 tp->lost_cnt_hint -= min(tp->lost_cnt_hint, delta);
3222 }
3223
3224 tp->fackets_out -= min(pkts_acked, tp->fackets_out);
3225
3226 } else if (skb && rtt_update && sack_rtt_us >= 0 &&
3227 sack_rtt_us > skb_mstamp_us_delta(now, &skb->skb_mstamp)) {
3228 /* Do not re-arm RTO if the sack RTT is measured from data sent
3229 * after when the head was last (re)transmitted. Otherwise the
3230 * timeout may continue to extend in loss recovery.
3231 */
3232 tcp_rearm_rto(sk);
3233 }
3234
3235 if (icsk->icsk_ca_ops->pkts_acked) {
3236 struct ack_sample sample = { .pkts_acked = pkts_acked,
3237 .rtt_us = ca_rtt_us,
3238 .in_flight = last_in_flight };
3239
3240 icsk->icsk_ca_ops->pkts_acked(sk, &sample);
3241 }
3242
3243 #if FASTRETRANS_DEBUG > 0
3244 WARN_ON((int)tp->sacked_out < 0);
3245 WARN_ON((int)tp->lost_out < 0);
3246 WARN_ON((int)tp->retrans_out < 0);
3247 if (!tp->packets_out && tcp_is_sack(tp)) {
3248 icsk = inet_csk(sk);
3249 if (tp->lost_out) {
3250 pr_debug("Leak l=%u %d\n",
3251 tp->lost_out, icsk->icsk_ca_state);
3252 tp->lost_out = 0;
3253 }
3254 if (tp->sacked_out) {
3255 pr_debug("Leak s=%u %d\n",
3256 tp->sacked_out, icsk->icsk_ca_state);
3257 tp->sacked_out = 0;
3258 }
3259 if (tp->retrans_out) {
3260 pr_debug("Leak r=%u %d\n",
3261 tp->retrans_out, icsk->icsk_ca_state);
3262 tp->retrans_out = 0;
3263 }
3264 }
3265 #endif
3266 *acked = pkts_acked;
3267 return flag;
3268 }
3269
3270 static void tcp_ack_probe(struct sock *sk)
3271 {
3272 const struct tcp_sock *tp = tcp_sk(sk);
3273 struct inet_connection_sock *icsk = inet_csk(sk);
3274
3275 /* Was it a usable window open? */
3276
3277 if (!after(TCP_SKB_CB(tcp_send_head(sk))->end_seq, tcp_wnd_end(tp))) {
3278 icsk->icsk_backoff = 0;
3279 inet_csk_clear_xmit_timer(sk, ICSK_TIME_PROBE0);
3280 /* Socket must be waked up by subsequent tcp_data_snd_check().
3281 * This function is not for random using!
3282 */
3283 } else {
3284 unsigned long when = tcp_probe0_when(sk, TCP_RTO_MAX);
3285
3286 inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
3287 when, TCP_RTO_MAX);
3288 }
3289 }
3290
3291 static inline bool tcp_ack_is_dubious(const struct sock *sk, const int flag)
3292 {
3293 return !(flag & FLAG_NOT_DUP) || (flag & FLAG_CA_ALERT) ||
3294 inet_csk(sk)->icsk_ca_state != TCP_CA_Open;
3295 }
3296
3297 /* Decide wheather to run the increase function of congestion control. */
3298 static inline bool tcp_may_raise_cwnd(const struct sock *sk, const int flag)
3299 {
3300 /* If reordering is high then always grow cwnd whenever data is
3301 * delivered regardless of its ordering. Otherwise stay conservative
3302 * and only grow cwnd on in-order delivery (RFC5681). A stretched ACK w/
3303 * new SACK or ECE mark may first advance cwnd here and later reduce
3304 * cwnd in tcp_fastretrans_alert() based on more states.
3305 */
3306 if (tcp_sk(sk)->reordering > sock_net(sk)->ipv4.sysctl_tcp_reordering)
3307 return flag & FLAG_FORWARD_PROGRESS;
3308
3309 return flag & FLAG_DATA_ACKED;
3310 }
3311
3312 /* The "ultimate" congestion control function that aims to replace the rigid
3313 * cwnd increase and decrease control (tcp_cong_avoid,tcp_*cwnd_reduction).
3314 * It's called toward the end of processing an ACK with precise rate
3315 * information. All transmission or retransmission are delayed afterwards.
3316 */
3317 static void tcp_cong_control(struct sock *sk, u32 ack, u32 acked_sacked,
3318 int flag, const struct rate_sample *rs)
3319 {
3320 const struct inet_connection_sock *icsk = inet_csk(sk);
3321
3322 if (icsk->icsk_ca_ops->cong_control) {
3323 icsk->icsk_ca_ops->cong_control(sk, rs);
3324 return;
3325 }
3326
3327 if (tcp_in_cwnd_reduction(sk)) {
3328 /* Reduce cwnd if state mandates */
3329 tcp_cwnd_reduction(sk, acked_sacked, flag);
3330 } else if (tcp_may_raise_cwnd(sk, flag)) {
3331 /* Advance cwnd if state allows */
3332 tcp_cong_avoid(sk, ack, acked_sacked);
3333 }
3334 tcp_update_pacing_rate(sk);
3335 }
3336
3337 /* Check that window update is acceptable.
3338 * The function assumes that snd_una<=ack<=snd_next.
3339 */
3340 static inline bool tcp_may_update_window(const struct tcp_sock *tp,
3341 const u32 ack, const u32 ack_seq,
3342 const u32 nwin)
3343 {
3344 return after(ack, tp->snd_una) ||
3345 after(ack_seq, tp->snd_wl1) ||
3346 (ack_seq == tp->snd_wl1 && nwin > tp->snd_wnd);
3347 }
3348
3349 /* If we update tp->snd_una, also update tp->bytes_acked */
3350 static void tcp_snd_una_update(struct tcp_sock *tp, u32 ack)
3351 {
3352 u32 delta = ack - tp->snd_una;
3353
3354 sock_owned_by_me((struct sock *)tp);
3355 tp->bytes_acked += delta;
3356 tp->snd_una = ack;
3357 }
3358
3359 /* If we update tp->rcv_nxt, also update tp->bytes_received */
3360 static void tcp_rcv_nxt_update(struct tcp_sock *tp, u32 seq)
3361 {
3362 u32 delta = seq - tp->rcv_nxt;
3363
3364 sock_owned_by_me((struct sock *)tp);
3365 tp->bytes_received += delta;
3366 tp->rcv_nxt = seq;
3367 }
3368
3369 /* Update our send window.
3370 *
3371 * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2
3372 * and in FreeBSD. NetBSD's one is even worse.) is wrong.
3373 */
3374 static int tcp_ack_update_window(struct sock *sk, const struct sk_buff *skb, u32 ack,
3375 u32 ack_seq)
3376 {
3377 struct tcp_sock *tp = tcp_sk(sk);
3378 int flag = 0;
3379 u32 nwin = ntohs(tcp_hdr(skb)->window);
3380
3381 if (likely(!tcp_hdr(skb)->syn))
3382 nwin <<= tp->rx_opt.snd_wscale;
3383
3384 if (tcp_may_update_window(tp, ack, ack_seq, nwin)) {
3385 flag |= FLAG_WIN_UPDATE;
3386 tcp_update_wl(tp, ack_seq);
3387
3388 if (tp->snd_wnd != nwin) {
3389 tp->snd_wnd = nwin;
3390
3391 /* Note, it is the only place, where
3392 * fast path is recovered for sending TCP.
3393 */
3394 tp->pred_flags = 0;
3395 tcp_fast_path_check(sk);
3396
3397 if (tcp_send_head(sk))
3398 tcp_slow_start_after_idle_check(sk);
3399
3400 if (nwin > tp->max_window) {
3401 tp->max_window = nwin;
3402 tcp_sync_mss(sk, inet_csk(sk)->icsk_pmtu_cookie);
3403 }
3404 }
3405 }
3406
3407 tcp_snd_una_update(tp, ack);
3408
3409 return flag;
3410 }
3411
3412 static bool __tcp_oow_rate_limited(struct net *net, int mib_idx,
3413 u32 *last_oow_ack_time)
3414 {
3415 if (*last_oow_ack_time) {
3416 s32 elapsed = (s32)(tcp_time_stamp - *last_oow_ack_time);
3417
3418 if (0 <= elapsed && elapsed < sysctl_tcp_invalid_ratelimit) {
3419 NET_INC_STATS(net, mib_idx);
3420 return true; /* rate-limited: don't send yet! */
3421 }
3422 }
3423
3424 *last_oow_ack_time = tcp_time_stamp;
3425
3426 return false; /* not rate-limited: go ahead, send dupack now! */
3427 }
3428
3429 /* Return true if we're currently rate-limiting out-of-window ACKs and
3430 * thus shouldn't send a dupack right now. We rate-limit dupacks in
3431 * response to out-of-window SYNs or ACKs to mitigate ACK loops or DoS
3432 * attacks that send repeated SYNs or ACKs for the same connection. To
3433 * do this, we do not send a duplicate SYNACK or ACK if the remote
3434 * endpoint is sending out-of-window SYNs or pure ACKs at a high rate.
3435 */
3436 bool tcp_oow_rate_limited(struct net *net, const struct sk_buff *skb,
3437 int mib_idx, u32 *last_oow_ack_time)
3438 {
3439 /* Data packets without SYNs are not likely part of an ACK loop. */
3440 if ((TCP_SKB_CB(skb)->seq != TCP_SKB_CB(skb)->end_seq) &&
3441 !tcp_hdr(skb)->syn)
3442 return false;
3443
3444 return __tcp_oow_rate_limited(net, mib_idx, last_oow_ack_time);
3445 }
3446
3447 /* RFC 5961 7 [ACK Throttling] */
3448 static void tcp_send_challenge_ack(struct sock *sk, const struct sk_buff *skb)
3449 {
3450 /* unprotected vars, we dont care of overwrites */
3451 static u32 challenge_timestamp;
3452 static unsigned int challenge_count;
3453 struct tcp_sock *tp = tcp_sk(sk);
3454 u32 count, now;
3455
3456 /* First check our per-socket dupack rate limit. */
3457 if (__tcp_oow_rate_limited(sock_net(sk),
3458 LINUX_MIB_TCPACKSKIPPEDCHALLENGE,
3459 &tp->last_oow_ack_time))
3460 return;
3461
3462 /* Then check host-wide RFC 5961 rate limit. */
3463 now = jiffies / HZ;
3464 if (now != challenge_timestamp) {
3465 u32 half = (sysctl_tcp_challenge_ack_limit + 1) >> 1;
3466
3467 challenge_timestamp = now;
3468 WRITE_ONCE(challenge_count, half +
3469 prandom_u32_max(sysctl_tcp_challenge_ack_limit));
3470 }
3471 count = READ_ONCE(challenge_count);
3472 if (count > 0) {
3473 WRITE_ONCE(challenge_count, count - 1);
3474 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPCHALLENGEACK);
3475 tcp_send_ack(sk);
3476 }
3477 }
3478
3479 static void tcp_store_ts_recent(struct tcp_sock *tp)
3480 {
3481 tp->rx_opt.ts_recent = tp->rx_opt.rcv_tsval;
3482 tp->rx_opt.ts_recent_stamp = get_seconds();
3483 }
3484
3485 static void tcp_replace_ts_recent(struct tcp_sock *tp, u32 seq)
3486 {
3487 if (tp->rx_opt.saw_tstamp && !after(seq, tp->rcv_wup)) {
3488 /* PAWS bug workaround wrt. ACK frames, the PAWS discard
3489 * extra check below makes sure this can only happen
3490 * for pure ACK frames. -DaveM
3491 *
3492 * Not only, also it occurs for expired timestamps.
3493 */
3494
3495 if (tcp_paws_check(&tp->rx_opt, 0))
3496 tcp_store_ts_recent(tp);
3497 }
3498 }
3499
3500 /* This routine deals with acks during a TLP episode.
3501 * We mark the end of a TLP episode on receiving TLP dupack or when
3502 * ack is after tlp_high_seq.
3503 * Ref: loss detection algorithm in draft-dukkipati-tcpm-tcp-loss-probe.
3504 */
3505 static void tcp_process_tlp_ack(struct sock *sk, u32 ack, int flag)
3506 {
3507 struct tcp_sock *tp = tcp_sk(sk);
3508
3509 if (before(ack, tp->tlp_high_seq))
3510 return;
3511
3512 if (flag & FLAG_DSACKING_ACK) {
3513 /* This DSACK means original and TLP probe arrived; no loss */
3514 tp->tlp_high_seq = 0;
3515 } else if (after(ack, tp->tlp_high_seq)) {
3516 /* ACK advances: there was a loss, so reduce cwnd. Reset
3517 * tlp_high_seq in tcp_init_cwnd_reduction()
3518 */
3519 tcp_init_cwnd_reduction(sk);
3520 tcp_set_ca_state(sk, TCP_CA_CWR);
3521 tcp_end_cwnd_reduction(sk);
3522 tcp_try_keep_open(sk);
3523 NET_INC_STATS(sock_net(sk),
3524 LINUX_MIB_TCPLOSSPROBERECOVERY);
3525 } else if (!(flag & (FLAG_SND_UNA_ADVANCED |
3526 FLAG_NOT_DUP | FLAG_DATA_SACKED))) {
3527 /* Pure dupack: original and TLP probe arrived; no loss */
3528 tp->tlp_high_seq = 0;
3529 }
3530 }
3531
3532 static inline void tcp_in_ack_event(struct sock *sk, u32 flags)
3533 {
3534 const struct inet_connection_sock *icsk = inet_csk(sk);
3535
3536 if (icsk->icsk_ca_ops->in_ack_event)
3537 icsk->icsk_ca_ops->in_ack_event(sk, flags);
3538 }
3539
3540 /* Congestion control has updated the cwnd already. So if we're in
3541 * loss recovery then now we do any new sends (for FRTO) or
3542 * retransmits (for CA_Loss or CA_recovery) that make sense.
3543 */
3544 static void tcp_xmit_recovery(struct sock *sk, int rexmit)
3545 {
3546 struct tcp_sock *tp = tcp_sk(sk);
3547
3548 if (rexmit == REXMIT_NONE)
3549 return;
3550
3551 if (unlikely(rexmit == 2)) {
3552 __tcp_push_pending_frames(sk, tcp_current_mss(sk),
3553 TCP_NAGLE_OFF);
3554 if (after(tp->snd_nxt, tp->high_seq))
3555 return;
3556 tp->frto = 0;
3557 }
3558 tcp_xmit_retransmit_queue(sk);
3559 }
3560
3561 /* This routine deals with incoming acks, but not outgoing ones. */
3562 static int tcp_ack(struct sock *sk, const struct sk_buff *skb, int flag)
3563 {
3564 struct inet_connection_sock *icsk = inet_csk(sk);
3565 struct tcp_sock *tp = tcp_sk(sk);
3566 struct tcp_sacktag_state sack_state;
3567 struct rate_sample rs = { .prior_delivered = 0 };
3568 u32 prior_snd_una = tp->snd_una;
3569 u32 ack_seq = TCP_SKB_CB(skb)->seq;
3570 u32 ack = TCP_SKB_CB(skb)->ack_seq;
3571 bool is_dupack = false;
3572 u32 prior_fackets;
3573 int prior_packets = tp->packets_out;
3574 u32 delivered = tp->delivered;
3575 u32 lost = tp->lost;
3576 int acked = 0; /* Number of packets newly acked */
3577 int rexmit = REXMIT_NONE; /* Flag to (re)transmit to recover losses */
3578 struct skb_mstamp now;
3579
3580 sack_state.first_sackt.v64 = 0;
3581 sack_state.rate = &rs;
3582
3583 /* We very likely will need to access write queue head. */
3584 prefetchw(sk->sk_write_queue.next);
3585
3586 /* If the ack is older than previous acks
3587 * then we can probably ignore it.
3588 */
3589 if (before(ack, prior_snd_una)) {
3590 /* RFC 5961 5.2 [Blind Data Injection Attack].[Mitigation] */
3591 if (before(ack, prior_snd_una - tp->max_window)) {
3592 tcp_send_challenge_ack(sk, skb);
3593 return -1;
3594 }
3595 goto old_ack;
3596 }
3597
3598 /* If the ack includes data we haven't sent yet, discard
3599 * this segment (RFC793 Section 3.9).
3600 */
3601 if (after(ack, tp->snd_nxt))
3602 goto invalid_ack;
3603
3604 skb_mstamp_get(&now);
3605
3606 if (icsk->icsk_pending == ICSK_TIME_EARLY_RETRANS ||
3607 icsk->icsk_pending == ICSK_TIME_LOSS_PROBE)
3608 tcp_rearm_rto(sk);
3609
3610 if (after(ack, prior_snd_una)) {
3611 flag |= FLAG_SND_UNA_ADVANCED;
3612 icsk->icsk_retransmits = 0;
3613 }
3614
3615 prior_fackets = tp->fackets_out;
3616 rs.prior_in_flight = tcp_packets_in_flight(tp);
3617
3618 /* ts_recent update must be made after we are sure that the packet
3619 * is in window.
3620 */
3621 if (flag & FLAG_UPDATE_TS_RECENT)
3622 tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq);
3623
3624 if (!(flag & FLAG_SLOWPATH) && after(ack, prior_snd_una)) {
3625 /* Window is constant, pure forward advance.
3626 * No more checks are required.
3627 * Note, we use the fact that SND.UNA>=SND.WL2.
3628 */
3629 tcp_update_wl(tp, ack_seq);
3630 tcp_snd_una_update(tp, ack);
3631 flag |= FLAG_WIN_UPDATE;
3632
3633 tcp_in_ack_event(sk, CA_ACK_WIN_UPDATE);
3634
3635 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPHPACKS);
3636 } else {
3637 u32 ack_ev_flags = CA_ACK_SLOWPATH;
3638
3639 if (ack_seq != TCP_SKB_CB(skb)->end_seq)
3640 flag |= FLAG_DATA;
3641 else
3642 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPPUREACKS);
3643
3644 flag |= tcp_ack_update_window(sk, skb, ack, ack_seq);
3645
3646 if (TCP_SKB_CB(skb)->sacked)
3647 flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una,
3648 &sack_state);
3649
3650 if (tcp_ecn_rcv_ecn_echo(tp, tcp_hdr(skb))) {
3651 flag |= FLAG_ECE;
3652 ack_ev_flags |= CA_ACK_ECE;
3653 }
3654
3655 if (flag & FLAG_WIN_UPDATE)
3656 ack_ev_flags |= CA_ACK_WIN_UPDATE;
3657
3658 tcp_in_ack_event(sk, ack_ev_flags);
3659 }
3660
3661 /* We passed data and got it acked, remove any soft error
3662 * log. Something worked...
3663 */
3664 sk->sk_err_soft = 0;
3665 icsk->icsk_probes_out = 0;
3666 tp->rcv_tstamp = tcp_time_stamp;
3667 if (!prior_packets)
3668 goto no_queue;
3669
3670 /* See if we can take anything off of the retransmit queue. */
3671 flag |= tcp_clean_rtx_queue(sk, prior_fackets, prior_snd_una, &acked,
3672 &sack_state, &now);
3673
3674 if (tcp_ack_is_dubious(sk, flag)) {
3675 is_dupack = !(flag & (FLAG_SND_UNA_ADVANCED | FLAG_NOT_DUP));
3676 tcp_fastretrans_alert(sk, acked, is_dupack, &flag, &rexmit);
3677 }
3678 if (tp->tlp_high_seq)
3679 tcp_process_tlp_ack(sk, ack, flag);
3680
3681 if ((flag & FLAG_FORWARD_PROGRESS) || !(flag & FLAG_NOT_DUP)) {
3682 struct dst_entry *dst = __sk_dst_get(sk);
3683 if (dst)
3684 dst_confirm(dst);
3685 }
3686
3687 if (icsk->icsk_pending == ICSK_TIME_RETRANS)
3688 tcp_schedule_loss_probe(sk);
3689 delivered = tp->delivered - delivered; /* freshly ACKed or SACKed */
3690 lost = tp->lost - lost; /* freshly marked lost */
3691 tcp_rate_gen(sk, delivered, lost, &now, &rs);
3692 tcp_cong_control(sk, ack, delivered, flag, &rs);
3693 tcp_xmit_recovery(sk, rexmit);
3694 return 1;
3695
3696 no_queue:
3697 /* If data was DSACKed, see if we can undo a cwnd reduction. */
3698 if (flag & FLAG_DSACKING_ACK)
3699 tcp_fastretrans_alert(sk, acked, is_dupack, &flag, &rexmit);
3700 /* If this ack opens up a zero window, clear backoff. It was
3701 * being used to time the probes, and is probably far higher than
3702 * it needs to be for normal retransmission.
3703 */
3704 if (tcp_send_head(sk))
3705 tcp_ack_probe(sk);
3706
3707 if (tp->tlp_high_seq)
3708 tcp_process_tlp_ack(sk, ack, flag);
3709 return 1;
3710
3711 invalid_ack:
3712 SOCK_DEBUG(sk, "Ack %u after %u:%u\n", ack, tp->snd_una, tp->snd_nxt);
3713 return -1;
3714
3715 old_ack:
3716 /* If data was SACKed, tag it and see if we should send more data.
3717 * If data was DSACKed, see if we can undo a cwnd reduction.
3718 */
3719 if (TCP_SKB_CB(skb)->sacked) {
3720 flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una,
3721 &sack_state);
3722 tcp_fastretrans_alert(sk, acked, is_dupack, &flag, &rexmit);
3723 tcp_xmit_recovery(sk, rexmit);
3724 }
3725
3726 SOCK_DEBUG(sk, "Ack %u before %u:%u\n", ack, tp->snd_una, tp->snd_nxt);
3727 return 0;
3728 }
3729
3730 static void tcp_parse_fastopen_option(int len, const unsigned char *cookie,
3731 bool syn, struct tcp_fastopen_cookie *foc,
3732 bool exp_opt)
3733 {
3734 /* Valid only in SYN or SYN-ACK with an even length. */
3735 if (!foc || !syn || len < 0 || (len & 1))
3736 return;
3737
3738 if (len >= TCP_FASTOPEN_COOKIE_MIN &&
3739 len <= TCP_FASTOPEN_COOKIE_MAX)
3740 memcpy(foc->val, cookie, len);
3741 else if (len != 0)
3742 len = -1;
3743 foc->len = len;
3744 foc->exp = exp_opt;
3745 }
3746
3747 /* Look for tcp options. Normally only called on SYN and SYNACK packets.
3748 * But, this can also be called on packets in the established flow when
3749 * the fast version below fails.
3750 */
3751 void tcp_parse_options(const struct sk_buff *skb,
3752 struct tcp_options_received *opt_rx, int estab,
3753 struct tcp_fastopen_cookie *foc)
3754 {
3755 const unsigned char *ptr;
3756 const struct tcphdr *th = tcp_hdr(skb);
3757 int length = (th->doff * 4) - sizeof(struct tcphdr);
3758
3759 ptr = (const unsigned char *)(th + 1);
3760 opt_rx->saw_tstamp = 0;
3761
3762 while (length > 0) {
3763 int opcode = *ptr++;
3764 int opsize;
3765
3766 switch (opcode) {
3767 case TCPOPT_EOL:
3768 return;
3769 case TCPOPT_NOP: /* Ref: RFC 793 section 3.1 */
3770 length--;
3771 continue;
3772 default:
3773 opsize = *ptr++;
3774 if (opsize < 2) /* "silly options" */
3775 return;
3776 if (opsize > length)
3777 return; /* don't parse partial options */
3778 switch (opcode) {
3779 case TCPOPT_MSS:
3780 if (opsize == TCPOLEN_MSS && th->syn && !estab) {
3781 u16 in_mss = get_unaligned_be16(ptr);
3782 if (in_mss) {
3783 if (opt_rx->user_mss &&
3784 opt_rx->user_mss < in_mss)
3785 in_mss = opt_rx->user_mss;
3786 opt_rx->mss_clamp = in_mss;
3787 }
3788 }
3789 break;
3790 case TCPOPT_WINDOW:
3791 if (opsize == TCPOLEN_WINDOW && th->syn &&
3792 !estab && sysctl_tcp_window_scaling) {
3793 __u8 snd_wscale = *(__u8 *)ptr;
3794 opt_rx->wscale_ok = 1;
3795 if (snd_wscale > 14) {
3796 net_info_ratelimited("%s: Illegal window scaling value %d >14 received\n",
3797 __func__,
3798 snd_wscale);
3799 snd_wscale = 14;
3800 }
3801 opt_rx->snd_wscale = snd_wscale;
3802 }
3803 break;
3804 case TCPOPT_TIMESTAMP:
3805 if ((opsize == TCPOLEN_TIMESTAMP) &&
3806 ((estab && opt_rx->tstamp_ok) ||
3807 (!estab && sysctl_tcp_timestamps))) {
3808 opt_rx->saw_tstamp = 1;
3809 opt_rx->rcv_tsval = get_unaligned_be32(ptr);
3810 opt_rx->rcv_tsecr = get_unaligned_be32(ptr + 4);
3811 }
3812 break;
3813 case TCPOPT_SACK_PERM:
3814 if (opsize == TCPOLEN_SACK_PERM && th->syn &&
3815 !estab && sysctl_tcp_sack) {
3816 opt_rx->sack_ok = TCP_SACK_SEEN;
3817 tcp_sack_reset(opt_rx);
3818 }
3819 break;
3820
3821 case TCPOPT_SACK:
3822 if ((opsize >= (TCPOLEN_SACK_BASE + TCPOLEN_SACK_PERBLOCK)) &&
3823 !((opsize - TCPOLEN_SACK_BASE) % TCPOLEN_SACK_PERBLOCK) &&
3824 opt_rx->sack_ok) {
3825 TCP_SKB_CB(skb)->sacked = (ptr - 2) - (unsigned char *)th;
3826 }
3827 break;
3828 #ifdef CONFIG_TCP_MD5SIG
3829 case TCPOPT_MD5SIG:
3830 /*
3831 * The MD5 Hash has already been
3832 * checked (see tcp_v{4,6}_do_rcv()).
3833 */
3834 break;
3835 #endif
3836 case TCPOPT_FASTOPEN:
3837 tcp_parse_fastopen_option(
3838 opsize - TCPOLEN_FASTOPEN_BASE,
3839 ptr, th->syn, foc, false);
3840 break;
3841
3842 case TCPOPT_EXP:
3843 /* Fast Open option shares code 254 using a
3844 * 16 bits magic number.
3845 */
3846 if (opsize >= TCPOLEN_EXP_FASTOPEN_BASE &&
3847 get_unaligned_be16(ptr) ==
3848 TCPOPT_FASTOPEN_MAGIC)
3849 tcp_parse_fastopen_option(opsize -
3850 TCPOLEN_EXP_FASTOPEN_BASE,
3851 ptr + 2, th->syn, foc, true);
3852 break;
3853
3854 }
3855 ptr += opsize-2;
3856 length -= opsize;
3857 }
3858 }
3859 }
3860 EXPORT_SYMBOL(tcp_parse_options);
3861
3862 static bool tcp_parse_aligned_timestamp(struct tcp_sock *tp, const struct tcphdr *th)
3863 {
3864 const __be32 *ptr = (const __be32 *)(th + 1);
3865
3866 if (*ptr == htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16)
3867 | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) {
3868 tp->rx_opt.saw_tstamp = 1;
3869 ++ptr;
3870 tp->rx_opt.rcv_tsval = ntohl(*ptr);
3871 ++ptr;
3872 if (*ptr)
3873 tp->rx_opt.rcv_tsecr = ntohl(*ptr) - tp->tsoffset;
3874 else
3875 tp->rx_opt.rcv_tsecr = 0;
3876 return true;
3877 }
3878 return false;
3879 }
3880
3881 /* Fast parse options. This hopes to only see timestamps.
3882 * If it is wrong it falls back on tcp_parse_options().
3883 */
3884 static bool tcp_fast_parse_options(const struct sk_buff *skb,
3885 const struct tcphdr *th, struct tcp_sock *tp)
3886 {
3887 /* In the spirit of fast parsing, compare doff directly to constant
3888 * values. Because equality is used, short doff can be ignored here.
3889 */
3890 if (th->doff == (sizeof(*th) / 4)) {
3891 tp->rx_opt.saw_tstamp = 0;
3892 return false;
3893 } else if (tp->rx_opt.tstamp_ok &&
3894 th->doff == ((sizeof(*th) + TCPOLEN_TSTAMP_ALIGNED) / 4)) {
3895 if (tcp_parse_aligned_timestamp(tp, th))
3896 return true;
3897 }
3898
3899 tcp_parse_options(skb, &tp->rx_opt, 1, NULL);
3900 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
3901 tp->rx_opt.rcv_tsecr -= tp->tsoffset;
3902
3903 return true;
3904 }
3905
3906 #ifdef CONFIG_TCP_MD5SIG
3907 /*
3908 * Parse MD5 Signature option
3909 */
3910 const u8 *tcp_parse_md5sig_option(const struct tcphdr *th)
3911 {
3912 int length = (th->doff << 2) - sizeof(*th);
3913 const u8 *ptr = (const u8 *)(th + 1);
3914
3915 /* If the TCP option is too short, we can short cut */
3916 if (length < TCPOLEN_MD5SIG)
3917 return NULL;
3918
3919 while (length > 0) {
3920 int opcode = *ptr++;
3921 int opsize;
3922
3923 switch (opcode) {
3924 case TCPOPT_EOL:
3925 return NULL;
3926 case TCPOPT_NOP:
3927 length--;
3928 continue;
3929 default:
3930 opsize = *ptr++;
3931 if (opsize < 2 || opsize > length)
3932 return NULL;
3933 if (opcode == TCPOPT_MD5SIG)
3934 return opsize == TCPOLEN_MD5SIG ? ptr : NULL;
3935 }
3936 ptr += opsize - 2;
3937 length -= opsize;
3938 }
3939 return NULL;
3940 }
3941 EXPORT_SYMBOL(tcp_parse_md5sig_option);
3942 #endif
3943
3944 /* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM
3945 *
3946 * It is not fatal. If this ACK does _not_ change critical state (seqs, window)
3947 * it can pass through stack. So, the following predicate verifies that
3948 * this segment is not used for anything but congestion avoidance or
3949 * fast retransmit. Moreover, we even are able to eliminate most of such
3950 * second order effects, if we apply some small "replay" window (~RTO)
3951 * to timestamp space.
3952 *
3953 * All these measures still do not guarantee that we reject wrapped ACKs
3954 * on networks with high bandwidth, when sequence space is recycled fastly,
3955 * but it guarantees that such events will be very rare and do not affect
3956 * connection seriously. This doesn't look nice, but alas, PAWS is really
3957 * buggy extension.
3958 *
3959 * [ Later note. Even worse! It is buggy for segments _with_ data. RFC
3960 * states that events when retransmit arrives after original data are rare.
3961 * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is
3962 * the biggest problem on large power networks even with minor reordering.
3963 * OK, let's give it small replay window. If peer clock is even 1hz, it is safe
3964 * up to bandwidth of 18Gigabit/sec. 8) ]
3965 */
3966
3967 static int tcp_disordered_ack(const struct sock *sk, const struct sk_buff *skb)
3968 {
3969 const struct tcp_sock *tp = tcp_sk(sk);
3970 const struct tcphdr *th = tcp_hdr(skb);
3971 u32 seq = TCP_SKB_CB(skb)->seq;
3972 u32 ack = TCP_SKB_CB(skb)->ack_seq;
3973
3974 return (/* 1. Pure ACK with correct sequence number. */
3975 (th->ack && seq == TCP_SKB_CB(skb)->end_seq && seq == tp->rcv_nxt) &&
3976
3977 /* 2. ... and duplicate ACK. */
3978 ack == tp->snd_una &&
3979
3980 /* 3. ... and does not update window. */
3981 !tcp_may_update_window(tp, ack, seq, ntohs(th->window) << tp->rx_opt.snd_wscale) &&
3982
3983 /* 4. ... and sits in replay window. */
3984 (s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) <= (inet_csk(sk)->icsk_rto * 1024) / HZ);
3985 }
3986
3987 static inline bool tcp_paws_discard(const struct sock *sk,
3988 const struct sk_buff *skb)
3989 {
3990 const struct tcp_sock *tp = tcp_sk(sk);
3991
3992 return !tcp_paws_check(&tp->rx_opt, TCP_PAWS_WINDOW) &&
3993 !tcp_disordered_ack(sk, skb);
3994 }
3995
3996 /* Check segment sequence number for validity.
3997 *
3998 * Segment controls are considered valid, if the segment
3999 * fits to the window after truncation to the window. Acceptability
4000 * of data (and SYN, FIN, of course) is checked separately.
4001 * See tcp_data_queue(), for example.
4002 *
4003 * Also, controls (RST is main one) are accepted using RCV.WUP instead
4004 * of RCV.NXT. Peer still did not advance his SND.UNA when we
4005 * delayed ACK, so that hisSND.UNA<=ourRCV.WUP.
4006 * (borrowed from freebsd)
4007 */
4008
4009 static inline bool tcp_sequence(const struct tcp_sock *tp, u32 seq, u32 end_seq)
4010 {
4011 return !before(end_seq, tp->rcv_wup) &&
4012 !after(seq, tp->rcv_nxt + tcp_receive_window(tp));
4013 }
4014
4015 /* When we get a reset we do this. */
4016 void tcp_reset(struct sock *sk)
4017 {
4018 /* We want the right error as BSD sees it (and indeed as we do). */
4019 switch (sk->sk_state) {
4020 case TCP_SYN_SENT:
4021 sk->sk_err = ECONNREFUSED;
4022 break;
4023 case TCP_CLOSE_WAIT:
4024 sk->sk_err = EPIPE;
4025 break;
4026 case TCP_CLOSE:
4027 return;
4028 default:
4029 sk->sk_err = ECONNRESET;
4030 }
4031 /* This barrier is coupled with smp_rmb() in tcp_poll() */
4032 smp_wmb();
4033
4034 if (!sock_flag(sk, SOCK_DEAD))
4035 sk->sk_error_report(sk);
4036
4037 tcp_done(sk);
4038 }
4039
4040 /*
4041 * Process the FIN bit. This now behaves as it is supposed to work
4042 * and the FIN takes effect when it is validly part of sequence
4043 * space. Not before when we get holes.
4044 *
4045 * If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT
4046 * (and thence onto LAST-ACK and finally, CLOSE, we never enter
4047 * TIME-WAIT)
4048 *
4049 * If we are in FINWAIT-1, a received FIN indicates simultaneous
4050 * close and we go into CLOSING (and later onto TIME-WAIT)
4051 *
4052 * If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT.
4053 */
4054 void tcp_fin(struct sock *sk)
4055 {
4056 struct tcp_sock *tp = tcp_sk(sk);
4057
4058 inet_csk_schedule_ack(sk);
4059
4060 sk->sk_shutdown |= RCV_SHUTDOWN;
4061 sock_set_flag(sk, SOCK_DONE);
4062
4063 switch (sk->sk_state) {
4064 case TCP_SYN_RECV:
4065 case TCP_ESTABLISHED:
4066 /* Move to CLOSE_WAIT */
4067 tcp_set_state(sk, TCP_CLOSE_WAIT);
4068 inet_csk(sk)->icsk_ack.pingpong = 1;
4069 break;
4070
4071 case TCP_CLOSE_WAIT:
4072 case TCP_CLOSING:
4073 /* Received a retransmission of the FIN, do
4074 * nothing.
4075 */
4076 break;
4077 case TCP_LAST_ACK:
4078 /* RFC793: Remain in the LAST-ACK state. */
4079 break;
4080
4081 case TCP_FIN_WAIT1:
4082 /* This case occurs when a simultaneous close
4083 * happens, we must ack the received FIN and
4084 * enter the CLOSING state.
4085 */
4086 tcp_send_ack(sk);
4087 tcp_set_state(sk, TCP_CLOSING);
4088 break;
4089 case TCP_FIN_WAIT2:
4090 /* Received a FIN -- send ACK and enter TIME_WAIT. */
4091 tcp_send_ack(sk);
4092 tcp_time_wait(sk, TCP_TIME_WAIT, 0);
4093 break;
4094 default:
4095 /* Only TCP_LISTEN and TCP_CLOSE are left, in these
4096 * cases we should never reach this piece of code.
4097 */
4098 pr_err("%s: Impossible, sk->sk_state=%d\n",
4099 __func__, sk->sk_state);
4100 break;
4101 }
4102
4103 /* It _is_ possible, that we have something out-of-order _after_ FIN.
4104 * Probably, we should reset in this case. For now drop them.
4105 */
4106 skb_rbtree_purge(&tp->out_of_order_queue);
4107 if (tcp_is_sack(tp))
4108 tcp_sack_reset(&tp->rx_opt);
4109 sk_mem_reclaim(sk);
4110
4111 if (!sock_flag(sk, SOCK_DEAD)) {
4112 sk->sk_state_change(sk);
4113
4114 /* Do not send POLL_HUP for half duplex close. */
4115 if (sk->sk_shutdown == SHUTDOWN_MASK ||
4116 sk->sk_state == TCP_CLOSE)
4117 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP);
4118 else
4119 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
4120 }
4121 }
4122
4123 static inline bool tcp_sack_extend(struct tcp_sack_block *sp, u32 seq,
4124 u32 end_seq)
4125 {
4126 if (!after(seq, sp->end_seq) && !after(sp->start_seq, end_seq)) {
4127 if (before(seq, sp->start_seq))
4128 sp->start_seq = seq;
4129 if (after(end_seq, sp->end_seq))
4130 sp->end_seq = end_seq;
4131 return true;
4132 }
4133 return false;
4134 }
4135
4136 static void tcp_dsack_set(struct sock *sk, u32 seq, u32 end_seq)
4137 {
4138 struct tcp_sock *tp = tcp_sk(sk);
4139
4140 if (tcp_is_sack(tp) && sysctl_tcp_dsack) {
4141 int mib_idx;
4142
4143 if (before(seq, tp->rcv_nxt))
4144 mib_idx = LINUX_MIB_TCPDSACKOLDSENT;
4145 else
4146 mib_idx = LINUX_MIB_TCPDSACKOFOSENT;
4147
4148 NET_INC_STATS(sock_net(sk), mib_idx);
4149
4150 tp->rx_opt.dsack = 1;
4151 tp->duplicate_sack[0].start_seq = seq;
4152 tp->duplicate_sack[0].end_seq = end_seq;
4153 }
4154 }
4155
4156 static void tcp_dsack_extend(struct sock *sk, u32 seq, u32 end_seq)
4157 {
4158 struct tcp_sock *tp = tcp_sk(sk);
4159
4160 if (!tp->rx_opt.dsack)
4161 tcp_dsack_set(sk, seq, end_seq);
4162 else
4163 tcp_sack_extend(tp->duplicate_sack, seq, end_seq);
4164 }
4165
4166 static void tcp_send_dupack(struct sock *sk, const struct sk_buff *skb)
4167 {
4168 struct tcp_sock *tp = tcp_sk(sk);
4169
4170 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
4171 before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4172 NET_INC_STATS(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
4173 tcp_enter_quickack_mode(sk);
4174
4175 if (tcp_is_sack(tp) && sysctl_tcp_dsack) {
4176 u32 end_seq = TCP_SKB_CB(skb)->end_seq;
4177
4178 if (after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))
4179 end_seq = tp->rcv_nxt;
4180 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, end_seq);
4181 }
4182 }
4183
4184 tcp_send_ack(sk);
4185 }
4186
4187 /* These routines update the SACK block as out-of-order packets arrive or
4188 * in-order packets close up the sequence space.
4189 */
4190 static void tcp_sack_maybe_coalesce(struct tcp_sock *tp)
4191 {
4192 int this_sack;
4193 struct tcp_sack_block *sp = &tp->selective_acks[0];
4194 struct tcp_sack_block *swalk = sp + 1;
4195
4196 /* See if the recent change to the first SACK eats into
4197 * or hits the sequence space of other SACK blocks, if so coalesce.
4198 */
4199 for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;) {
4200 if (tcp_sack_extend(sp, swalk->start_seq, swalk->end_seq)) {
4201 int i;
4202
4203 /* Zap SWALK, by moving every further SACK up by one slot.
4204 * Decrease num_sacks.
4205 */
4206 tp->rx_opt.num_sacks--;
4207 for (i = this_sack; i < tp->rx_opt.num_sacks; i++)
4208 sp[i] = sp[i + 1];
4209 continue;
4210 }
4211 this_sack++, swalk++;
4212 }
4213 }
4214
4215 static void tcp_sack_new_ofo_skb(struct sock *sk, u32 seq, u32 end_seq)
4216 {
4217 struct tcp_sock *tp = tcp_sk(sk);
4218 struct tcp_sack_block *sp = &tp->selective_acks[0];
4219 int cur_sacks = tp->rx_opt.num_sacks;
4220 int this_sack;
4221
4222 if (!cur_sacks)
4223 goto new_sack;
4224
4225 for (this_sack = 0; this_sack < cur_sacks; this_sack++, sp++) {
4226 if (tcp_sack_extend(sp, seq, end_seq)) {
4227 /* Rotate this_sack to the first one. */
4228 for (; this_sack > 0; this_sack--, sp--)
4229 swap(*sp, *(sp - 1));
4230 if (cur_sacks > 1)
4231 tcp_sack_maybe_coalesce(tp);
4232 return;
4233 }
4234 }
4235
4236 /* Could not find an adjacent existing SACK, build a new one,
4237 * put it at the front, and shift everyone else down. We
4238 * always know there is at least one SACK present already here.
4239 *
4240 * If the sack array is full, forget about the last one.
4241 */
4242 if (this_sack >= TCP_NUM_SACKS) {
4243 this_sack--;
4244 tp->rx_opt.num_sacks--;
4245 sp--;
4246 }
4247 for (; this_sack > 0; this_sack--, sp--)
4248 *sp = *(sp - 1);
4249
4250 new_sack:
4251 /* Build the new head SACK, and we're done. */
4252 sp->start_seq = seq;
4253 sp->end_seq = end_seq;
4254 tp->rx_opt.num_sacks++;
4255 }
4256
4257 /* RCV.NXT advances, some SACKs should be eaten. */
4258
4259 static void tcp_sack_remove(struct tcp_sock *tp)
4260 {
4261 struct tcp_sack_block *sp = &tp->selective_acks[0];
4262 int num_sacks = tp->rx_opt.num_sacks;
4263 int this_sack;
4264
4265 /* Empty ofo queue, hence, all the SACKs are eaten. Clear. */
4266 if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) {
4267 tp->rx_opt.num_sacks = 0;
4268 return;
4269 }
4270
4271 for (this_sack = 0; this_sack < num_sacks;) {
4272 /* Check if the start of the sack is covered by RCV.NXT. */
4273 if (!before(tp->rcv_nxt, sp->start_seq)) {
4274 int i;
4275
4276 /* RCV.NXT must cover all the block! */
4277 WARN_ON(before(tp->rcv_nxt, sp->end_seq));
4278
4279 /* Zap this SACK, by moving forward any other SACKS. */
4280 for (i = this_sack+1; i < num_sacks; i++)
4281 tp->selective_acks[i-1] = tp->selective_acks[i];
4282 num_sacks--;
4283 continue;
4284 }
4285 this_sack++;
4286 sp++;
4287 }
4288 tp->rx_opt.num_sacks = num_sacks;
4289 }
4290
4291 /**
4292 * tcp_try_coalesce - try to merge skb to prior one
4293 * @sk: socket
4294 * @to: prior buffer
4295 * @from: buffer to add in queue
4296 * @fragstolen: pointer to boolean
4297 *
4298 * Before queueing skb @from after @to, try to merge them
4299 * to reduce overall memory use and queue lengths, if cost is small.
4300 * Packets in ofo or receive queues can stay a long time.
4301 * Better try to coalesce them right now to avoid future collapses.
4302 * Returns true if caller should free @from instead of queueing it
4303 */
4304 static bool tcp_try_coalesce(struct sock *sk,
4305 struct sk_buff *to,
4306 struct sk_buff *from,
4307 bool *fragstolen)
4308 {
4309 int delta;
4310
4311 *fragstolen = false;
4312
4313 /* Its possible this segment overlaps with prior segment in queue */
4314 if (TCP_SKB_CB(from)->seq != TCP_SKB_CB(to)->end_seq)
4315 return false;
4316
4317 if (!skb_try_coalesce(to, from, fragstolen, &delta))
4318 return false;
4319
4320 atomic_add(delta, &sk->sk_rmem_alloc);
4321 sk_mem_charge(sk, delta);
4322 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVCOALESCE);
4323 TCP_SKB_CB(to)->end_seq = TCP_SKB_CB(from)->end_seq;
4324 TCP_SKB_CB(to)->ack_seq = TCP_SKB_CB(from)->ack_seq;
4325 TCP_SKB_CB(to)->tcp_flags |= TCP_SKB_CB(from)->tcp_flags;
4326 return true;
4327 }
4328
4329 static void tcp_drop(struct sock *sk, struct sk_buff *skb)
4330 {
4331 sk_drops_add(sk, skb);
4332 __kfree_skb(skb);
4333 }
4334
4335 /* This one checks to see if we can put data from the
4336 * out_of_order queue into the receive_queue.
4337 */
4338 static void tcp_ofo_queue(struct sock *sk)
4339 {
4340 struct tcp_sock *tp = tcp_sk(sk);
4341 __u32 dsack_high = tp->rcv_nxt;
4342 bool fin, fragstolen, eaten;
4343 struct sk_buff *skb, *tail;
4344 struct rb_node *p;
4345
4346 p = rb_first(&tp->out_of_order_queue);
4347 while (p) {
4348 skb = rb_entry(p, struct sk_buff, rbnode);
4349 if (after(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
4350 break;
4351
4352 if (before(TCP_SKB_CB(skb)->seq, dsack_high)) {
4353 __u32 dsack = dsack_high;
4354 if (before(TCP_SKB_CB(skb)->end_seq, dsack_high))
4355 dsack_high = TCP_SKB_CB(skb)->end_seq;
4356 tcp_dsack_extend(sk, TCP_SKB_CB(skb)->seq, dsack);
4357 }
4358 p = rb_next(p);
4359 rb_erase(&skb->rbnode, &tp->out_of_order_queue);
4360
4361 if (unlikely(!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))) {
4362 SOCK_DEBUG(sk, "ofo packet was already received\n");
4363 tcp_drop(sk, skb);
4364 continue;
4365 }
4366 SOCK_DEBUG(sk, "ofo requeuing : rcv_next %X seq %X - %X\n",
4367 tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
4368 TCP_SKB_CB(skb)->end_seq);
4369
4370 tail = skb_peek_tail(&sk->sk_receive_queue);
4371 eaten = tail && tcp_try_coalesce(sk, tail, skb, &fragstolen);
4372 tcp_rcv_nxt_update(tp, TCP_SKB_CB(skb)->end_seq);
4373 fin = TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN;
4374 if (!eaten)
4375 __skb_queue_tail(&sk->sk_receive_queue, skb);
4376 else
4377 kfree_skb_partial(skb, fragstolen);
4378
4379 if (unlikely(fin)) {
4380 tcp_fin(sk);
4381 /* tcp_fin() purges tp->out_of_order_queue,
4382 * so we must end this loop right now.
4383 */
4384 break;
4385 }
4386 }
4387 }
4388
4389 static bool tcp_prune_ofo_queue(struct sock *sk);
4390 static int tcp_prune_queue(struct sock *sk);
4391
4392 static int tcp_try_rmem_schedule(struct sock *sk, struct sk_buff *skb,
4393 unsigned int size)
4394 {
4395 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
4396 !sk_rmem_schedule(sk, skb, size)) {
4397
4398 if (tcp_prune_queue(sk) < 0)
4399 return -1;
4400
4401 while (!sk_rmem_schedule(sk, skb, size)) {
4402 if (!tcp_prune_ofo_queue(sk))
4403 return -1;
4404 }
4405 }
4406 return 0;
4407 }
4408
4409 static void tcp_data_queue_ofo(struct sock *sk, struct sk_buff *skb)
4410 {
4411 struct tcp_sock *tp = tcp_sk(sk);
4412 struct rb_node **p, *q, *parent;
4413 struct sk_buff *skb1;
4414 u32 seq, end_seq;
4415 bool fragstolen;
4416
4417 tcp_ecn_check_ce(tp, skb);
4418
4419 if (unlikely(tcp_try_rmem_schedule(sk, skb, skb->truesize))) {
4420 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFODROP);
4421 tcp_drop(sk, skb);
4422 return;
4423 }
4424
4425 /* Disable header prediction. */
4426 tp->pred_flags = 0;
4427 inet_csk_schedule_ack(sk);
4428
4429 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFOQUEUE);
4430 seq = TCP_SKB_CB(skb)->seq;
4431 end_seq = TCP_SKB_CB(skb)->end_seq;
4432 SOCK_DEBUG(sk, "out of order segment: rcv_next %X seq %X - %X\n",
4433 tp->rcv_nxt, seq, end_seq);
4434
4435 p = &tp->out_of_order_queue.rb_node;
4436 if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) {
4437 /* Initial out of order segment, build 1 SACK. */
4438 if (tcp_is_sack(tp)) {
4439 tp->rx_opt.num_sacks = 1;
4440 tp->selective_acks[0].start_seq = seq;
4441 tp->selective_acks[0].end_seq = end_seq;
4442 }
4443 rb_link_node(&skb->rbnode, NULL, p);
4444 rb_insert_color(&skb->rbnode, &tp->out_of_order_queue);
4445 tp->ooo_last_skb = skb;
4446 goto end;
4447 }
4448
4449 /* In the typical case, we are adding an skb to the end of the list.
4450 * Use of ooo_last_skb avoids the O(Log(N)) rbtree lookup.
4451 */
4452 if (tcp_try_coalesce(sk, tp->ooo_last_skb, skb, &fragstolen)) {
4453 coalesce_done:
4454 tcp_grow_window(sk, skb);
4455 kfree_skb_partial(skb, fragstolen);
4456 skb = NULL;
4457 goto add_sack;
4458 }
4459 /* Can avoid an rbtree lookup if we are adding skb after ooo_last_skb */
4460 if (!before(seq, TCP_SKB_CB(tp->ooo_last_skb)->end_seq)) {
4461 parent = &tp->ooo_last_skb->rbnode;
4462 p = &parent->rb_right;
4463 goto insert;
4464 }
4465
4466 /* Find place to insert this segment. Handle overlaps on the way. */
4467 parent = NULL;
4468 while (*p) {
4469 parent = *p;
4470 skb1 = rb_entry(parent, struct sk_buff, rbnode);
4471 if (before(seq, TCP_SKB_CB(skb1)->seq)) {
4472 p = &parent->rb_left;
4473 continue;
4474 }
4475 if (before(seq, TCP_SKB_CB(skb1)->end_seq)) {
4476 if (!after(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4477 /* All the bits are present. Drop. */
4478 NET_INC_STATS(sock_net(sk),
4479 LINUX_MIB_TCPOFOMERGE);
4480 __kfree_skb(skb);
4481 skb = NULL;
4482 tcp_dsack_set(sk, seq, end_seq);
4483 goto add_sack;
4484 }
4485 if (after(seq, TCP_SKB_CB(skb1)->seq)) {
4486 /* Partial overlap. */
4487 tcp_dsack_set(sk, seq, TCP_SKB_CB(skb1)->end_seq);
4488 } else {
4489 /* skb's seq == skb1's seq and skb covers skb1.
4490 * Replace skb1 with skb.
4491 */
4492 rb_replace_node(&skb1->rbnode, &skb->rbnode,
4493 &tp->out_of_order_queue);
4494 tcp_dsack_extend(sk,
4495 TCP_SKB_CB(skb1)->seq,
4496 TCP_SKB_CB(skb1)->end_seq);
4497 NET_INC_STATS(sock_net(sk),
4498 LINUX_MIB_TCPOFOMERGE);
4499 __kfree_skb(skb1);
4500 goto merge_right;
4501 }
4502 } else if (tcp_try_coalesce(sk, skb1, skb, &fragstolen)) {
4503 goto coalesce_done;
4504 }
4505 p = &parent->rb_right;
4506 }
4507 insert:
4508 /* Insert segment into RB tree. */
4509 rb_link_node(&skb->rbnode, parent, p);
4510 rb_insert_color(&skb->rbnode, &tp->out_of_order_queue);
4511
4512 merge_right:
4513 /* Remove other segments covered by skb. */
4514 while ((q = rb_next(&skb->rbnode)) != NULL) {
4515 skb1 = rb_entry(q, struct sk_buff, rbnode);
4516
4517 if (!after(end_seq, TCP_SKB_CB(skb1)->seq))
4518 break;
4519 if (before(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4520 tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
4521 end_seq);
4522 break;
4523 }
4524 rb_erase(&skb1->rbnode, &tp->out_of_order_queue);
4525 tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
4526 TCP_SKB_CB(skb1)->end_seq);
4527 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFOMERGE);
4528 tcp_drop(sk, skb1);
4529 }
4530 /* If there is no skb after us, we are the last_skb ! */
4531 if (!q)
4532 tp->ooo_last_skb = skb;
4533
4534 add_sack:
4535 if (tcp_is_sack(tp))
4536 tcp_sack_new_ofo_skb(sk, seq, end_seq);
4537 end:
4538 if (skb) {
4539 tcp_grow_window(sk, skb);
4540 skb_set_owner_r(skb, sk);
4541 }
4542 }
4543
4544 static int __must_check tcp_queue_rcv(struct sock *sk, struct sk_buff *skb, int hdrlen,
4545 bool *fragstolen)
4546 {
4547 int eaten;
4548 struct sk_buff *tail = skb_peek_tail(&sk->sk_receive_queue);
4549
4550 __skb_pull(skb, hdrlen);
4551 eaten = (tail &&
4552 tcp_try_coalesce(sk, tail, skb, fragstolen)) ? 1 : 0;
4553 tcp_rcv_nxt_update(tcp_sk(sk), TCP_SKB_CB(skb)->end_seq);
4554 if (!eaten) {
4555 __skb_queue_tail(&sk->sk_receive_queue, skb);
4556 skb_set_owner_r(skb, sk);
4557 }
4558 return eaten;
4559 }
4560
4561 int tcp_send_rcvq(struct sock *sk, struct msghdr *msg, size_t size)
4562 {
4563 struct sk_buff *skb;
4564 int err = -ENOMEM;
4565 int data_len = 0;
4566 bool fragstolen;
4567
4568 if (size == 0)
4569 return 0;
4570
4571 if (size > PAGE_SIZE) {
4572 int npages = min_t(size_t, size >> PAGE_SHIFT, MAX_SKB_FRAGS);
4573
4574 data_len = npages << PAGE_SHIFT;
4575 size = data_len + (size & ~PAGE_MASK);
4576 }
4577 skb = alloc_skb_with_frags(size - data_len, data_len,
4578 PAGE_ALLOC_COSTLY_ORDER,
4579 &err, sk->sk_allocation);
4580 if (!skb)
4581 goto err;
4582
4583 skb_put(skb, size - data_len);
4584 skb->data_len = data_len;
4585 skb->len = size;
4586
4587 if (tcp_try_rmem_schedule(sk, skb, skb->truesize))
4588 goto err_free;
4589
4590 err = skb_copy_datagram_from_iter(skb, 0, &msg->msg_iter, size);
4591 if (err)
4592 goto err_free;
4593
4594 TCP_SKB_CB(skb)->seq = tcp_sk(sk)->rcv_nxt;
4595 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(skb)->seq + size;
4596 TCP_SKB_CB(skb)->ack_seq = tcp_sk(sk)->snd_una - 1;
4597
4598 if (tcp_queue_rcv(sk, skb, 0, &fragstolen)) {
4599 WARN_ON_ONCE(fragstolen); /* should not happen */
4600 __kfree_skb(skb);
4601 }
4602 return size;
4603
4604 err_free:
4605 kfree_skb(skb);
4606 err:
4607 return err;
4608
4609 }
4610
4611 static void tcp_data_queue(struct sock *sk, struct sk_buff *skb)
4612 {
4613 struct tcp_sock *tp = tcp_sk(sk);
4614 bool fragstolen = false;
4615 int eaten = -1;
4616
4617 if (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq) {
4618 __kfree_skb(skb);
4619 return;
4620 }
4621 skb_dst_drop(skb);
4622 __skb_pull(skb, tcp_hdr(skb)->doff * 4);
4623
4624 tcp_ecn_accept_cwr(tp, skb);
4625
4626 tp->rx_opt.dsack = 0;
4627
4628 /* Queue data for delivery to the user.
4629 * Packets in sequence go to the receive queue.
4630 * Out of sequence packets to the out_of_order_queue.
4631 */
4632 if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
4633 if (tcp_receive_window(tp) == 0)
4634 goto out_of_window;
4635
4636 /* Ok. In sequence. In window. */
4637 if (tp->ucopy.task == current &&
4638 tp->copied_seq == tp->rcv_nxt && tp->ucopy.len &&
4639 sock_owned_by_user(sk) && !tp->urg_data) {
4640 int chunk = min_t(unsigned int, skb->len,
4641 tp->ucopy.len);
4642
4643 __set_current_state(TASK_RUNNING);
4644
4645 if (!skb_copy_datagram_msg(skb, 0, tp->ucopy.msg, chunk)) {
4646 tp->ucopy.len -= chunk;
4647 tp->copied_seq += chunk;
4648 eaten = (chunk == skb->len);
4649 tcp_rcv_space_adjust(sk);
4650 }
4651 }
4652
4653 if (eaten <= 0) {
4654 queue_and_out:
4655 if (eaten < 0) {
4656 if (skb_queue_len(&sk->sk_receive_queue) == 0)
4657 sk_forced_mem_schedule(sk, skb->truesize);
4658 else if (tcp_try_rmem_schedule(sk, skb, skb->truesize))
4659 goto drop;
4660 }
4661 eaten = tcp_queue_rcv(sk, skb, 0, &fragstolen);
4662 }
4663 tcp_rcv_nxt_update(tp, TCP_SKB_CB(skb)->end_seq);
4664 if (skb->len)
4665 tcp_event_data_recv(sk, skb);
4666 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
4667 tcp_fin(sk);
4668
4669 if (!RB_EMPTY_ROOT(&tp->out_of_order_queue)) {
4670 tcp_ofo_queue(sk);
4671
4672 /* RFC2581. 4.2. SHOULD send immediate ACK, when
4673 * gap in queue is filled.
4674 */
4675 if (RB_EMPTY_ROOT(&tp->out_of_order_queue))
4676 inet_csk(sk)->icsk_ack.pingpong = 0;
4677 }
4678
4679 if (tp->rx_opt.num_sacks)
4680 tcp_sack_remove(tp);
4681
4682 tcp_fast_path_check(sk);
4683
4684 if (eaten > 0)
4685 kfree_skb_partial(skb, fragstolen);
4686 if (!sock_flag(sk, SOCK_DEAD))
4687 sk->sk_data_ready(sk);
4688 return;
4689 }
4690
4691 if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
4692 /* A retransmit, 2nd most common case. Force an immediate ack. */
4693 NET_INC_STATS(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
4694 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
4695
4696 out_of_window:
4697 tcp_enter_quickack_mode(sk);
4698 inet_csk_schedule_ack(sk);
4699 drop:
4700 tcp_drop(sk, skb);
4701 return;
4702 }
4703
4704 /* Out of window. F.e. zero window probe. */
4705 if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt + tcp_receive_window(tp)))
4706 goto out_of_window;
4707
4708 tcp_enter_quickack_mode(sk);
4709
4710 if (before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4711 /* Partial packet, seq < rcv_next < end_seq */
4712 SOCK_DEBUG(sk, "partial packet: rcv_next %X seq %X - %X\n",
4713 tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
4714 TCP_SKB_CB(skb)->end_seq);
4715
4716 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, tp->rcv_nxt);
4717
4718 /* If window is closed, drop tail of packet. But after
4719 * remembering D-SACK for its head made in previous line.
4720 */
4721 if (!tcp_receive_window(tp))
4722 goto out_of_window;
4723 goto queue_and_out;
4724 }
4725
4726 tcp_data_queue_ofo(sk, skb);
4727 }
4728
4729 static struct sk_buff *tcp_skb_next(struct sk_buff *skb, struct sk_buff_head *list)
4730 {
4731 if (list)
4732 return !skb_queue_is_last(list, skb) ? skb->next : NULL;
4733
4734 return rb_entry_safe(rb_next(&skb->rbnode), struct sk_buff, rbnode);
4735 }
4736
4737 static struct sk_buff *tcp_collapse_one(struct sock *sk, struct sk_buff *skb,
4738 struct sk_buff_head *list,
4739 struct rb_root *root)
4740 {
4741 struct sk_buff *next = tcp_skb_next(skb, list);
4742
4743 if (list)
4744 __skb_unlink(skb, list);
4745 else
4746 rb_erase(&skb->rbnode, root);
4747
4748 __kfree_skb(skb);
4749 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVCOLLAPSED);
4750
4751 return next;
4752 }
4753
4754 /* Insert skb into rb tree, ordered by TCP_SKB_CB(skb)->seq */
4755 static void tcp_rbtree_insert(struct rb_root *root, struct sk_buff *skb)
4756 {
4757 struct rb_node **p = &root->rb_node;
4758 struct rb_node *parent = NULL;
4759 struct sk_buff *skb1;
4760
4761 while (*p) {
4762 parent = *p;
4763 skb1 = rb_entry(parent, struct sk_buff, rbnode);
4764 if (before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb1)->seq))
4765 p = &parent->rb_left;
4766 else
4767 p = &parent->rb_right;
4768 }
4769 rb_link_node(&skb->rbnode, parent, p);
4770 rb_insert_color(&skb->rbnode, root);
4771 }
4772
4773 /* Collapse contiguous sequence of skbs head..tail with
4774 * sequence numbers start..end.
4775 *
4776 * If tail is NULL, this means until the end of the queue.
4777 *
4778 * Segments with FIN/SYN are not collapsed (only because this
4779 * simplifies code)
4780 */
4781 static void
4782 tcp_collapse(struct sock *sk, struct sk_buff_head *list, struct rb_root *root,
4783 struct sk_buff *head, struct sk_buff *tail, u32 start, u32 end)
4784 {
4785 struct sk_buff *skb = head, *n;
4786 struct sk_buff_head tmp;
4787 bool end_of_skbs;
4788
4789 /* First, check that queue is collapsible and find
4790 * the point where collapsing can be useful.
4791 */
4792 restart:
4793 for (end_of_skbs = true; skb != NULL && skb != tail; skb = n) {
4794 n = tcp_skb_next(skb, list);
4795
4796 /* No new bits? It is possible on ofo queue. */
4797 if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
4798 skb = tcp_collapse_one(sk, skb, list, root);
4799 if (!skb)
4800 break;
4801 goto restart;
4802 }
4803
4804 /* The first skb to collapse is:
4805 * - not SYN/FIN and
4806 * - bloated or contains data before "start" or
4807 * overlaps to the next one.
4808 */
4809 if (!(TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)) &&
4810 (tcp_win_from_space(skb->truesize) > skb->len ||
4811 before(TCP_SKB_CB(skb)->seq, start))) {
4812 end_of_skbs = false;
4813 break;
4814 }
4815
4816 if (n && n != tail &&
4817 TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(n)->seq) {
4818 end_of_skbs = false;
4819 break;
4820 }
4821
4822 /* Decided to skip this, advance start seq. */
4823 start = TCP_SKB_CB(skb)->end_seq;
4824 }
4825 if (end_of_skbs ||
4826 (TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)))
4827 return;
4828
4829 __skb_queue_head_init(&tmp);
4830
4831 while (before(start, end)) {
4832 int copy = min_t(int, SKB_MAX_ORDER(0, 0), end - start);
4833 struct sk_buff *nskb;
4834
4835 nskb = alloc_skb(copy, GFP_ATOMIC);
4836 if (!nskb)
4837 break;
4838
4839 memcpy(nskb->cb, skb->cb, sizeof(skb->cb));
4840 TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(nskb)->end_seq = start;
4841 if (list)
4842 __skb_queue_before(list, skb, nskb);
4843 else
4844 __skb_queue_tail(&tmp, nskb); /* defer rbtree insertion */
4845 skb_set_owner_r(nskb, sk);
4846
4847 /* Copy data, releasing collapsed skbs. */
4848 while (copy > 0) {
4849 int offset = start - TCP_SKB_CB(skb)->seq;
4850 int size = TCP_SKB_CB(skb)->end_seq - start;
4851
4852 BUG_ON(offset < 0);
4853 if (size > 0) {
4854 size = min(copy, size);
4855 if (skb_copy_bits(skb, offset, skb_put(nskb, size), size))
4856 BUG();
4857 TCP_SKB_CB(nskb)->end_seq += size;
4858 copy -= size;
4859 start += size;
4860 }
4861 if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
4862 skb = tcp_collapse_one(sk, skb, list, root);
4863 if (!skb ||
4864 skb == tail ||
4865 (TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)))
4866 goto end;
4867 }
4868 }
4869 }
4870 end:
4871 skb_queue_walk_safe(&tmp, skb, n)
4872 tcp_rbtree_insert(root, skb);
4873 }
4874
4875 /* Collapse ofo queue. Algorithm: select contiguous sequence of skbs
4876 * and tcp_collapse() them until all the queue is collapsed.
4877 */
4878 static void tcp_collapse_ofo_queue(struct sock *sk)
4879 {
4880 struct tcp_sock *tp = tcp_sk(sk);
4881 struct sk_buff *skb, *head;
4882 struct rb_node *p;
4883 u32 start, end;
4884
4885 p = rb_first(&tp->out_of_order_queue);
4886 skb = rb_entry_safe(p, struct sk_buff, rbnode);
4887 new_range:
4888 if (!skb) {
4889 p = rb_last(&tp->out_of_order_queue);
4890 /* Note: This is possible p is NULL here. We do not
4891 * use rb_entry_safe(), as ooo_last_skb is valid only
4892 * if rbtree is not empty.
4893 */
4894 tp->ooo_last_skb = rb_entry(p, struct sk_buff, rbnode);
4895 return;
4896 }
4897 start = TCP_SKB_CB(skb)->seq;
4898 end = TCP_SKB_CB(skb)->end_seq;
4899
4900 for (head = skb;;) {
4901 skb = tcp_skb_next(skb, NULL);
4902
4903 /* Range is terminated when we see a gap or when
4904 * we are at the queue end.
4905 */
4906 if (!skb ||
4907 after(TCP_SKB_CB(skb)->seq, end) ||
4908 before(TCP_SKB_CB(skb)->end_seq, start)) {
4909 tcp_collapse(sk, NULL, &tp->out_of_order_queue,
4910 head, skb, start, end);
4911 goto new_range;
4912 }
4913
4914 if (unlikely(before(TCP_SKB_CB(skb)->seq, start)))
4915 start = TCP_SKB_CB(skb)->seq;
4916 if (after(TCP_SKB_CB(skb)->end_seq, end))
4917 end = TCP_SKB_CB(skb)->end_seq;
4918 }
4919 }
4920
4921 /*
4922 * Clean the out-of-order queue to make room.
4923 * We drop high sequences packets to :
4924 * 1) Let a chance for holes to be filled.
4925 * 2) not add too big latencies if thousands of packets sit there.
4926 * (But if application shrinks SO_RCVBUF, we could still end up
4927 * freeing whole queue here)
4928 *
4929 * Return true if queue has shrunk.
4930 */
4931 static bool tcp_prune_ofo_queue(struct sock *sk)
4932 {
4933 struct tcp_sock *tp = tcp_sk(sk);
4934 struct rb_node *node, *prev;
4935
4936 if (RB_EMPTY_ROOT(&tp->out_of_order_queue))
4937 return false;
4938
4939 NET_INC_STATS(sock_net(sk), LINUX_MIB_OFOPRUNED);
4940 node = &tp->ooo_last_skb->rbnode;
4941 do {
4942 prev = rb_prev(node);
4943 rb_erase(node, &tp->out_of_order_queue);
4944 tcp_drop(sk, rb_entry(node, struct sk_buff, rbnode));
4945 sk_mem_reclaim(sk);
4946 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf &&
4947 !tcp_under_memory_pressure(sk))
4948 break;
4949 node = prev;
4950 } while (node);
4951 tp->ooo_last_skb = rb_entry(prev, struct sk_buff, rbnode);
4952
4953 /* Reset SACK state. A conforming SACK implementation will
4954 * do the same at a timeout based retransmit. When a connection
4955 * is in a sad state like this, we care only about integrity
4956 * of the connection not performance.
4957 */
4958 if (tp->rx_opt.sack_ok)
4959 tcp_sack_reset(&tp->rx_opt);
4960 return true;
4961 }
4962
4963 /* Reduce allocated memory if we can, trying to get
4964 * the socket within its memory limits again.
4965 *
4966 * Return less than zero if we should start dropping frames
4967 * until the socket owning process reads some of the data
4968 * to stabilize the situation.
4969 */
4970 static int tcp_prune_queue(struct sock *sk)
4971 {
4972 struct tcp_sock *tp = tcp_sk(sk);
4973
4974 SOCK_DEBUG(sk, "prune_queue: c=%x\n", tp->copied_seq);
4975
4976 NET_INC_STATS(sock_net(sk), LINUX_MIB_PRUNECALLED);
4977
4978 if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf)
4979 tcp_clamp_window(sk);
4980 else if (tcp_under_memory_pressure(sk))
4981 tp->rcv_ssthresh = min(tp->rcv_ssthresh, 4U * tp->advmss);
4982
4983 tcp_collapse_ofo_queue(sk);
4984 if (!skb_queue_empty(&sk->sk_receive_queue))
4985 tcp_collapse(sk, &sk->sk_receive_queue, NULL,
4986 skb_peek(&sk->sk_receive_queue),
4987 NULL,
4988 tp->copied_seq, tp->rcv_nxt);
4989 sk_mem_reclaim(sk);
4990
4991 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
4992 return 0;
4993
4994 /* Collapsing did not help, destructive actions follow.
4995 * This must not ever occur. */
4996
4997 tcp_prune_ofo_queue(sk);
4998
4999 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
5000 return 0;
5001
5002 /* If we are really being abused, tell the caller to silently
5003 * drop receive data on the floor. It will get retransmitted
5004 * and hopefully then we'll have sufficient space.
5005 */
5006 NET_INC_STATS(sock_net(sk), LINUX_MIB_RCVPRUNED);
5007
5008 /* Massive buffer overcommit. */
5009 tp->pred_flags = 0;
5010 return -1;
5011 }
5012
5013 static bool tcp_should_expand_sndbuf(const struct sock *sk)
5014 {
5015 const struct tcp_sock *tp = tcp_sk(sk);
5016
5017 /* If the user specified a specific send buffer setting, do
5018 * not modify it.
5019 */
5020 if (sk->sk_userlocks & SOCK_SNDBUF_LOCK)
5021 return false;
5022
5023 /* If we are under global TCP memory pressure, do not expand. */
5024 if (tcp_under_memory_pressure(sk))
5025 return false;
5026
5027 /* If we are under soft global TCP memory pressure, do not expand. */
5028 if (sk_memory_allocated(sk) >= sk_prot_mem_limits(sk, 0))
5029 return false;
5030
5031 /* If we filled the congestion window, do not expand. */
5032 if (tcp_packets_in_flight(tp) >= tp->snd_cwnd)
5033 return false;
5034
5035 return true;
5036 }
5037
5038 /* When incoming ACK allowed to free some skb from write_queue,
5039 * we remember this event in flag SOCK_QUEUE_SHRUNK and wake up socket
5040 * on the exit from tcp input handler.
5041 *
5042 * PROBLEM: sndbuf expansion does not work well with largesend.
5043 */
5044 static void tcp_new_space(struct sock *sk)
5045 {
5046 struct tcp_sock *tp = tcp_sk(sk);
5047
5048 if (tcp_should_expand_sndbuf(sk)) {
5049 tcp_sndbuf_expand(sk);
5050 tp->snd_cwnd_stamp = tcp_time_stamp;
5051 }
5052
5053 sk->sk_write_space(sk);
5054 }
5055
5056 static void tcp_check_space(struct sock *sk)
5057 {
5058 if (sock_flag(sk, SOCK_QUEUE_SHRUNK)) {
5059 sock_reset_flag(sk, SOCK_QUEUE_SHRUNK);
5060 /* pairs with tcp_poll() */
5061 smp_mb__after_atomic();
5062 if (sk->sk_socket &&
5063 test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
5064 tcp_new_space(sk);
5065 if (!test_bit(SOCK_NOSPACE, &sk->sk_socket->flags))
5066 tcp_chrono_stop(sk, TCP_CHRONO_SNDBUF_LIMITED);
5067 }
5068 }
5069 }
5070
5071 static inline void tcp_data_snd_check(struct sock *sk)
5072 {
5073 tcp_push_pending_frames(sk);
5074 tcp_check_space(sk);
5075 }
5076
5077 /*
5078 * Check if sending an ack is needed.
5079 */
5080 static void __tcp_ack_snd_check(struct sock *sk, int ofo_possible)
5081 {
5082 struct tcp_sock *tp = tcp_sk(sk);
5083
5084 /* More than one full frame received... */
5085 if (((tp->rcv_nxt - tp->rcv_wup) > inet_csk(sk)->icsk_ack.rcv_mss &&
5086 /* ... and right edge of window advances far enough.
5087 * (tcp_recvmsg() will send ACK otherwise). Or...
5088 */
5089 __tcp_select_window(sk) >= tp->rcv_wnd) ||
5090 /* We ACK each frame or... */
5091 tcp_in_quickack_mode(sk) ||
5092 /* We have out of order data. */
5093 (ofo_possible && !RB_EMPTY_ROOT(&tp->out_of_order_queue))) {
5094 /* Then ack it now */
5095 tcp_send_ack(sk);
5096 } else {
5097 /* Else, send delayed ack. */
5098 tcp_send_delayed_ack(sk);
5099 }
5100 }
5101
5102 static inline void tcp_ack_snd_check(struct sock *sk)
5103 {
5104 if (!inet_csk_ack_scheduled(sk)) {
5105 /* We sent a data segment already. */
5106 return;
5107 }
5108 __tcp_ack_snd_check(sk, 1);
5109 }
5110
5111 /*
5112 * This routine is only called when we have urgent data
5113 * signaled. Its the 'slow' part of tcp_urg. It could be
5114 * moved inline now as tcp_urg is only called from one
5115 * place. We handle URGent data wrong. We have to - as
5116 * BSD still doesn't use the correction from RFC961.
5117 * For 1003.1g we should support a new option TCP_STDURG to permit
5118 * either form (or just set the sysctl tcp_stdurg).
5119 */
5120
5121 static void tcp_check_urg(struct sock *sk, const struct tcphdr *th)
5122 {
5123 struct tcp_sock *tp = tcp_sk(sk);
5124 u32 ptr = ntohs(th->urg_ptr);
5125
5126 if (ptr && !sysctl_tcp_stdurg)
5127 ptr--;
5128 ptr += ntohl(th->seq);
5129
5130 /* Ignore urgent data that we've already seen and read. */
5131 if (after(tp->copied_seq, ptr))
5132 return;
5133
5134 /* Do not replay urg ptr.
5135 *
5136 * NOTE: interesting situation not covered by specs.
5137 * Misbehaving sender may send urg ptr, pointing to segment,
5138 * which we already have in ofo queue. We are not able to fetch
5139 * such data and will stay in TCP_URG_NOTYET until will be eaten
5140 * by recvmsg(). Seems, we are not obliged to handle such wicked
5141 * situations. But it is worth to think about possibility of some
5142 * DoSes using some hypothetical application level deadlock.
5143 */
5144 if (before(ptr, tp->rcv_nxt))
5145 return;
5146
5147 /* Do we already have a newer (or duplicate) urgent pointer? */
5148 if (tp->urg_data && !after(ptr, tp->urg_seq))
5149 return;
5150
5151 /* Tell the world about our new urgent pointer. */
5152 sk_send_sigurg(sk);
5153
5154 /* We may be adding urgent data when the last byte read was
5155 * urgent. To do this requires some care. We cannot just ignore
5156 * tp->copied_seq since we would read the last urgent byte again
5157 * as data, nor can we alter copied_seq until this data arrives
5158 * or we break the semantics of SIOCATMARK (and thus sockatmark())
5159 *
5160 * NOTE. Double Dutch. Rendering to plain English: author of comment
5161 * above did something sort of send("A", MSG_OOB); send("B", MSG_OOB);
5162 * and expect that both A and B disappear from stream. This is _wrong_.
5163 * Though this happens in BSD with high probability, this is occasional.
5164 * Any application relying on this is buggy. Note also, that fix "works"
5165 * only in this artificial test. Insert some normal data between A and B and we will
5166 * decline of BSD again. Verdict: it is better to remove to trap
5167 * buggy users.
5168 */
5169 if (tp->urg_seq == tp->copied_seq && tp->urg_data &&
5170 !sock_flag(sk, SOCK_URGINLINE) && tp->copied_seq != tp->rcv_nxt) {
5171 struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
5172 tp->copied_seq++;
5173 if (skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq)) {
5174 __skb_unlink(skb, &sk->sk_receive_queue);
5175 __kfree_skb(skb);
5176 }
5177 }
5178
5179 tp->urg_data = TCP_URG_NOTYET;
5180 tp->urg_seq = ptr;
5181
5182 /* Disable header prediction. */
5183 tp->pred_flags = 0;
5184 }
5185
5186 /* This is the 'fast' part of urgent handling. */
5187 static void tcp_urg(struct sock *sk, struct sk_buff *skb, const struct tcphdr *th)
5188 {
5189 struct tcp_sock *tp = tcp_sk(sk);
5190
5191 /* Check if we get a new urgent pointer - normally not. */
5192 if (th->urg)
5193 tcp_check_urg(sk, th);
5194
5195 /* Do we wait for any urgent data? - normally not... */
5196 if (tp->urg_data == TCP_URG_NOTYET) {
5197 u32 ptr = tp->urg_seq - ntohl(th->seq) + (th->doff * 4) -
5198 th->syn;
5199
5200 /* Is the urgent pointer pointing into this packet? */
5201 if (ptr < skb->len) {
5202 u8 tmp;
5203 if (skb_copy_bits(skb, ptr, &tmp, 1))
5204 BUG();
5205 tp->urg_data = TCP_URG_VALID | tmp;
5206 if (!sock_flag(sk, SOCK_DEAD))
5207 sk->sk_data_ready(sk);
5208 }
5209 }
5210 }
5211
5212 static int tcp_copy_to_iovec(struct sock *sk, struct sk_buff *skb, int hlen)
5213 {
5214 struct tcp_sock *tp = tcp_sk(sk);
5215 int chunk = skb->len - hlen;
5216 int err;
5217
5218 if (skb_csum_unnecessary(skb))
5219 err = skb_copy_datagram_msg(skb, hlen, tp->ucopy.msg, chunk);
5220 else
5221 err = skb_copy_and_csum_datagram_msg(skb, hlen, tp->ucopy.msg);
5222
5223 if (!err) {
5224 tp->ucopy.len -= chunk;
5225 tp->copied_seq += chunk;
5226 tcp_rcv_space_adjust(sk);
5227 }
5228
5229 return err;
5230 }
5231
5232 /* Does PAWS and seqno based validation of an incoming segment, flags will
5233 * play significant role here.
5234 */
5235 static bool tcp_validate_incoming(struct sock *sk, struct sk_buff *skb,
5236 const struct tcphdr *th, int syn_inerr)
5237 {
5238 struct tcp_sock *tp = tcp_sk(sk);
5239 bool rst_seq_match = false;
5240
5241 /* RFC1323: H1. Apply PAWS check first. */
5242 if (tcp_fast_parse_options(skb, th, tp) && tp->rx_opt.saw_tstamp &&
5243 tcp_paws_discard(sk, skb)) {
5244 if (!th->rst) {
5245 NET_INC_STATS(sock_net(sk), LINUX_MIB_PAWSESTABREJECTED);
5246 if (!tcp_oow_rate_limited(sock_net(sk), skb,
5247 LINUX_MIB_TCPACKSKIPPEDPAWS,
5248 &tp->last_oow_ack_time))
5249 tcp_send_dupack(sk, skb);
5250 goto discard;
5251 }
5252 /* Reset is accepted even if it did not pass PAWS. */
5253 }
5254
5255 /* Step 1: check sequence number */
5256 if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) {
5257 /* RFC793, page 37: "In all states except SYN-SENT, all reset
5258 * (RST) segments are validated by checking their SEQ-fields."
5259 * And page 69: "If an incoming segment is not acceptable,
5260 * an acknowledgment should be sent in reply (unless the RST
5261 * bit is set, if so drop the segment and return)".
5262 */
5263 if (!th->rst) {
5264 if (th->syn)
5265 goto syn_challenge;
5266 if (!tcp_oow_rate_limited(sock_net(sk), skb,
5267 LINUX_MIB_TCPACKSKIPPEDSEQ,
5268 &tp->last_oow_ack_time))
5269 tcp_send_dupack(sk, skb);
5270 }
5271 goto discard;
5272 }
5273
5274 /* Step 2: check RST bit */
5275 if (th->rst) {
5276 /* RFC 5961 3.2 (extend to match against SACK too if available):
5277 * If seq num matches RCV.NXT or the right-most SACK block,
5278 * then
5279 * RESET the connection
5280 * else
5281 * Send a challenge ACK
5282 */
5283 if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
5284 rst_seq_match = true;
5285 } else if (tcp_is_sack(tp) && tp->rx_opt.num_sacks > 0) {
5286 struct tcp_sack_block *sp = &tp->selective_acks[0];
5287 int max_sack = sp[0].end_seq;
5288 int this_sack;
5289
5290 for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;
5291 ++this_sack) {
5292 max_sack = after(sp[this_sack].end_seq,
5293 max_sack) ?
5294 sp[this_sack].end_seq : max_sack;
5295 }
5296
5297 if (TCP_SKB_CB(skb)->seq == max_sack)
5298 rst_seq_match = true;
5299 }
5300
5301 if (rst_seq_match)
5302 tcp_reset(sk);
5303 else
5304 tcp_send_challenge_ack(sk, skb);
5305 goto discard;
5306 }
5307
5308 /* step 3: check security and precedence [ignored] */
5309
5310 /* step 4: Check for a SYN
5311 * RFC 5961 4.2 : Send a challenge ack
5312 */
5313 if (th->syn) {
5314 syn_challenge:
5315 if (syn_inerr)
5316 TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS);
5317 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSYNCHALLENGE);
5318 tcp_send_challenge_ack(sk, skb);
5319 goto discard;
5320 }
5321
5322 return true;
5323
5324 discard:
5325 tcp_drop(sk, skb);
5326 return false;
5327 }
5328
5329 /*
5330 * TCP receive function for the ESTABLISHED state.
5331 *
5332 * It is split into a fast path and a slow path. The fast path is
5333 * disabled when:
5334 * - A zero window was announced from us - zero window probing
5335 * is only handled properly in the slow path.
5336 * - Out of order segments arrived.
5337 * - Urgent data is expected.
5338 * - There is no buffer space left
5339 * - Unexpected TCP flags/window values/header lengths are received
5340 * (detected by checking the TCP header against pred_flags)
5341 * - Data is sent in both directions. Fast path only supports pure senders
5342 * or pure receivers (this means either the sequence number or the ack
5343 * value must stay constant)
5344 * - Unexpected TCP option.
5345 *
5346 * When these conditions are not satisfied it drops into a standard
5347 * receive procedure patterned after RFC793 to handle all cases.
5348 * The first three cases are guaranteed by proper pred_flags setting,
5349 * the rest is checked inline. Fast processing is turned on in
5350 * tcp_data_queue when everything is OK.
5351 */
5352 void tcp_rcv_established(struct sock *sk, struct sk_buff *skb,
5353 const struct tcphdr *th, unsigned int len)
5354 {
5355 struct tcp_sock *tp = tcp_sk(sk);
5356
5357 if (unlikely(!sk->sk_rx_dst))
5358 inet_csk(sk)->icsk_af_ops->sk_rx_dst_set(sk, skb);
5359 /*
5360 * Header prediction.
5361 * The code loosely follows the one in the famous
5362 * "30 instruction TCP receive" Van Jacobson mail.
5363 *
5364 * Van's trick is to deposit buffers into socket queue
5365 * on a device interrupt, to call tcp_recv function
5366 * on the receive process context and checksum and copy
5367 * the buffer to user space. smart...
5368 *
5369 * Our current scheme is not silly either but we take the
5370 * extra cost of the net_bh soft interrupt processing...
5371 * We do checksum and copy also but from device to kernel.
5372 */
5373
5374 tp->rx_opt.saw_tstamp = 0;
5375
5376 /* pred_flags is 0xS?10 << 16 + snd_wnd
5377 * if header_prediction is to be made
5378 * 'S' will always be tp->tcp_header_len >> 2
5379 * '?' will be 0 for the fast path, otherwise pred_flags is 0 to
5380 * turn it off (when there are holes in the receive
5381 * space for instance)
5382 * PSH flag is ignored.
5383 */
5384
5385 if ((tcp_flag_word(th) & TCP_HP_BITS) == tp->pred_flags &&
5386 TCP_SKB_CB(skb)->seq == tp->rcv_nxt &&
5387 !after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) {
5388 int tcp_header_len = tp->tcp_header_len;
5389
5390 /* Timestamp header prediction: tcp_header_len
5391 * is automatically equal to th->doff*4 due to pred_flags
5392 * match.
5393 */
5394
5395 /* Check timestamp */
5396 if (tcp_header_len == sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) {
5397 /* No? Slow path! */
5398 if (!tcp_parse_aligned_timestamp(tp, th))
5399 goto slow_path;
5400
5401 /* If PAWS failed, check it more carefully in slow path */
5402 if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) < 0)
5403 goto slow_path;
5404
5405 /* DO NOT update ts_recent here, if checksum fails
5406 * and timestamp was corrupted part, it will result
5407 * in a hung connection since we will drop all
5408 * future packets due to the PAWS test.
5409 */
5410 }
5411
5412 if (len <= tcp_header_len) {
5413 /* Bulk data transfer: sender */
5414 if (len == tcp_header_len) {
5415 /* Predicted packet is in window by definition.
5416 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5417 * Hence, check seq<=rcv_wup reduces to:
5418 */
5419 if (tcp_header_len ==
5420 (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
5421 tp->rcv_nxt == tp->rcv_wup)
5422 tcp_store_ts_recent(tp);
5423
5424 /* We know that such packets are checksummed
5425 * on entry.
5426 */
5427 tcp_ack(sk, skb, 0);
5428 __kfree_skb(skb);
5429 tcp_data_snd_check(sk);
5430 return;
5431 } else { /* Header too small */
5432 TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS);
5433 goto discard;
5434 }
5435 } else {
5436 int eaten = 0;
5437 bool fragstolen = false;
5438
5439 if (tp->ucopy.task == current &&
5440 tp->copied_seq == tp->rcv_nxt &&
5441 len - tcp_header_len <= tp->ucopy.len &&
5442 sock_owned_by_user(sk)) {
5443 __set_current_state(TASK_RUNNING);
5444
5445 if (!tcp_copy_to_iovec(sk, skb, tcp_header_len)) {
5446 /* Predicted packet is in window by definition.
5447 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5448 * Hence, check seq<=rcv_wup reduces to:
5449 */
5450 if (tcp_header_len ==
5451 (sizeof(struct tcphdr) +
5452 TCPOLEN_TSTAMP_ALIGNED) &&
5453 tp->rcv_nxt == tp->rcv_wup)
5454 tcp_store_ts_recent(tp);
5455
5456 tcp_rcv_rtt_measure_ts(sk, skb);
5457
5458 __skb_pull(skb, tcp_header_len);
5459 tcp_rcv_nxt_update(tp, TCP_SKB_CB(skb)->end_seq);
5460 NET_INC_STATS(sock_net(sk),
5461 LINUX_MIB_TCPHPHITSTOUSER);
5462 eaten = 1;
5463 }
5464 }
5465 if (!eaten) {
5466 if (tcp_checksum_complete(skb))
5467 goto csum_error;
5468
5469 if ((int)skb->truesize > sk->sk_forward_alloc)
5470 goto step5;
5471
5472 /* Predicted packet is in window by definition.
5473 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5474 * Hence, check seq<=rcv_wup reduces to:
5475 */
5476 if (tcp_header_len ==
5477 (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
5478 tp->rcv_nxt == tp->rcv_wup)
5479 tcp_store_ts_recent(tp);
5480
5481 tcp_rcv_rtt_measure_ts(sk, skb);
5482
5483 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPHPHITS);
5484
5485 /* Bulk data transfer: receiver */
5486 eaten = tcp_queue_rcv(sk, skb, tcp_header_len,
5487 &fragstolen);
5488 }
5489
5490 tcp_event_data_recv(sk, skb);
5491
5492 if (TCP_SKB_CB(skb)->ack_seq != tp->snd_una) {
5493 /* Well, only one small jumplet in fast path... */
5494 tcp_ack(sk, skb, FLAG_DATA);
5495 tcp_data_snd_check(sk);
5496 if (!inet_csk_ack_scheduled(sk))
5497 goto no_ack;
5498 }
5499
5500 __tcp_ack_snd_check(sk, 0);
5501 no_ack:
5502 if (eaten)
5503 kfree_skb_partial(skb, fragstolen);
5504 sk->sk_data_ready(sk);
5505 return;
5506 }
5507 }
5508
5509 slow_path:
5510 if (len < (th->doff << 2) || tcp_checksum_complete(skb))
5511 goto csum_error;
5512
5513 if (!th->ack && !th->rst && !th->syn)
5514 goto discard;
5515
5516 /*
5517 * Standard slow path.
5518 */
5519
5520 if (!tcp_validate_incoming(sk, skb, th, 1))
5521 return;
5522
5523 step5:
5524 if (tcp_ack(sk, skb, FLAG_SLOWPATH | FLAG_UPDATE_TS_RECENT) < 0)
5525 goto discard;
5526
5527 tcp_rcv_rtt_measure_ts(sk, skb);
5528
5529 /* Process urgent data. */
5530 tcp_urg(sk, skb, th);
5531
5532 /* step 7: process the segment text */
5533 tcp_data_queue(sk, skb);
5534
5535 tcp_data_snd_check(sk);
5536 tcp_ack_snd_check(sk);
5537 return;
5538
5539 csum_error:
5540 TCP_INC_STATS(sock_net(sk), TCP_MIB_CSUMERRORS);
5541 TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS);
5542
5543 discard:
5544 tcp_drop(sk, skb);
5545 }
5546 EXPORT_SYMBOL(tcp_rcv_established);
5547
5548 void tcp_finish_connect(struct sock *sk, struct sk_buff *skb)
5549 {
5550 struct tcp_sock *tp = tcp_sk(sk);
5551 struct inet_connection_sock *icsk = inet_csk(sk);
5552
5553 tcp_set_state(sk, TCP_ESTABLISHED);
5554
5555 if (skb) {
5556 icsk->icsk_af_ops->sk_rx_dst_set(sk, skb);
5557 security_inet_conn_established(sk, skb);
5558 }
5559
5560 /* Make sure socket is routed, for correct metrics. */
5561 icsk->icsk_af_ops->rebuild_header(sk);
5562
5563 tcp_init_metrics(sk);
5564
5565 tcp_init_congestion_control(sk);
5566
5567 /* Prevent spurious tcp_cwnd_restart() on first data
5568 * packet.
5569 */
5570 tp->lsndtime = tcp_time_stamp;
5571
5572 tcp_init_buffer_space(sk);
5573
5574 if (sock_flag(sk, SOCK_KEEPOPEN))
5575 inet_csk_reset_keepalive_timer(sk, keepalive_time_when(tp));
5576
5577 if (!tp->rx_opt.snd_wscale)
5578 __tcp_fast_path_on(tp, tp->snd_wnd);
5579 else
5580 tp->pred_flags = 0;
5581
5582 if (!sock_flag(sk, SOCK_DEAD)) {
5583 sk->sk_state_change(sk);
5584 sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);
5585 }
5586 }
5587
5588 static bool tcp_rcv_fastopen_synack(struct sock *sk, struct sk_buff *synack,
5589 struct tcp_fastopen_cookie *cookie)
5590 {
5591 struct tcp_sock *tp = tcp_sk(sk);
5592 struct sk_buff *data = tp->syn_data ? tcp_write_queue_head(sk) : NULL;
5593 u16 mss = tp->rx_opt.mss_clamp, try_exp = 0;
5594 bool syn_drop = false;
5595
5596 if (mss == tp->rx_opt.user_mss) {
5597 struct tcp_options_received opt;
5598
5599 /* Get original SYNACK MSS value if user MSS sets mss_clamp */
5600 tcp_clear_options(&opt);
5601 opt.user_mss = opt.mss_clamp = 0;
5602 tcp_parse_options(synack, &opt, 0, NULL);
5603 mss = opt.mss_clamp;
5604 }
5605
5606 if (!tp->syn_fastopen) {
5607 /* Ignore an unsolicited cookie */
5608 cookie->len = -1;
5609 } else if (tp->total_retrans) {
5610 /* SYN timed out and the SYN-ACK neither has a cookie nor
5611 * acknowledges data. Presumably the remote received only
5612 * the retransmitted (regular) SYNs: either the original
5613 * SYN-data or the corresponding SYN-ACK was dropped.
5614 */
5615 syn_drop = (cookie->len < 0 && data);
5616 } else if (cookie->len < 0 && !tp->syn_data) {
5617 /* We requested a cookie but didn't get it. If we did not use
5618 * the (old) exp opt format then try so next time (try_exp=1).
5619 * Otherwise we go back to use the RFC7413 opt (try_exp=2).
5620 */
5621 try_exp = tp->syn_fastopen_exp ? 2 : 1;
5622 }
5623
5624 tcp_fastopen_cache_set(sk, mss, cookie, syn_drop, try_exp);
5625
5626 if (data) { /* Retransmit unacked data in SYN */
5627 tcp_for_write_queue_from(data, sk) {
5628 if (data == tcp_send_head(sk) ||
5629 __tcp_retransmit_skb(sk, data, 1))
5630 break;
5631 }
5632 tcp_rearm_rto(sk);
5633 NET_INC_STATS(sock_net(sk),
5634 LINUX_MIB_TCPFASTOPENACTIVEFAIL);
5635 return true;
5636 }
5637 tp->syn_data_acked = tp->syn_data;
5638 if (tp->syn_data_acked)
5639 NET_INC_STATS(sock_net(sk),
5640 LINUX_MIB_TCPFASTOPENACTIVE);
5641
5642 tcp_fastopen_add_skb(sk, synack);
5643
5644 return false;
5645 }
5646
5647 static int tcp_rcv_synsent_state_process(struct sock *sk, struct sk_buff *skb,
5648 const struct tcphdr *th)
5649 {
5650 struct inet_connection_sock *icsk = inet_csk(sk);
5651 struct tcp_sock *tp = tcp_sk(sk);
5652 struct tcp_fastopen_cookie foc = { .len = -1 };
5653 int saved_clamp = tp->rx_opt.mss_clamp;
5654
5655 tcp_parse_options(skb, &tp->rx_opt, 0, &foc);
5656 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
5657 tp->rx_opt.rcv_tsecr -= tp->tsoffset;
5658
5659 if (th->ack) {
5660 /* rfc793:
5661 * "If the state is SYN-SENT then
5662 * first check the ACK bit
5663 * If the ACK bit is set
5664 * If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send
5665 * a reset (unless the RST bit is set, if so drop
5666 * the segment and return)"
5667 */
5668 if (!after(TCP_SKB_CB(skb)->ack_seq, tp->snd_una) ||
5669 after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt))
5670 goto reset_and_undo;
5671
5672 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
5673 !between(tp->rx_opt.rcv_tsecr, tp->retrans_stamp,
5674 tcp_time_stamp)) {
5675 NET_INC_STATS(sock_net(sk),
5676 LINUX_MIB_PAWSACTIVEREJECTED);
5677 goto reset_and_undo;
5678 }
5679
5680 /* Now ACK is acceptable.
5681 *
5682 * "If the RST bit is set
5683 * If the ACK was acceptable then signal the user "error:
5684 * connection reset", drop the segment, enter CLOSED state,
5685 * delete TCB, and return."
5686 */
5687
5688 if (th->rst) {
5689 tcp_reset(sk);
5690 goto discard;
5691 }
5692
5693 /* rfc793:
5694 * "fifth, if neither of the SYN or RST bits is set then
5695 * drop the segment and return."
5696 *
5697 * See note below!
5698 * --ANK(990513)
5699 */
5700 if (!th->syn)
5701 goto discard_and_undo;
5702
5703 /* rfc793:
5704 * "If the SYN bit is on ...
5705 * are acceptable then ...
5706 * (our SYN has been ACKed), change the connection
5707 * state to ESTABLISHED..."
5708 */
5709
5710 tcp_ecn_rcv_synack(tp, th);
5711
5712 tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
5713 tcp_ack(sk, skb, FLAG_SLOWPATH);
5714
5715 /* Ok.. it's good. Set up sequence numbers and
5716 * move to established.
5717 */
5718 tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
5719 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
5720
5721 /* RFC1323: The window in SYN & SYN/ACK segments is
5722 * never scaled.
5723 */
5724 tp->snd_wnd = ntohs(th->window);
5725
5726 if (!tp->rx_opt.wscale_ok) {
5727 tp->rx_opt.snd_wscale = tp->rx_opt.rcv_wscale = 0;
5728 tp->window_clamp = min(tp->window_clamp, 65535U);
5729 }
5730
5731 if (tp->rx_opt.saw_tstamp) {
5732 tp->rx_opt.tstamp_ok = 1;
5733 tp->tcp_header_len =
5734 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
5735 tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
5736 tcp_store_ts_recent(tp);
5737 } else {
5738 tp->tcp_header_len = sizeof(struct tcphdr);
5739 }
5740
5741 if (tcp_is_sack(tp) && sysctl_tcp_fack)
5742 tcp_enable_fack(tp);
5743
5744 tcp_mtup_init(sk);
5745 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
5746 tcp_initialize_rcv_mss(sk);
5747
5748 /* Remember, tcp_poll() does not lock socket!
5749 * Change state from SYN-SENT only after copied_seq
5750 * is initialized. */
5751 tp->copied_seq = tp->rcv_nxt;
5752
5753 smp_mb();
5754
5755 tcp_finish_connect(sk, skb);
5756
5757 if ((tp->syn_fastopen || tp->syn_data) &&
5758 tcp_rcv_fastopen_synack(sk, skb, &foc))
5759 return -1;
5760
5761 if (sk->sk_write_pending ||
5762 icsk->icsk_accept_queue.rskq_defer_accept ||
5763 icsk->icsk_ack.pingpong) {
5764 /* Save one ACK. Data will be ready after
5765 * several ticks, if write_pending is set.
5766 *
5767 * It may be deleted, but with this feature tcpdumps
5768 * look so _wonderfully_ clever, that I was not able
5769 * to stand against the temptation 8) --ANK
5770 */
5771 inet_csk_schedule_ack(sk);
5772 icsk->icsk_ack.lrcvtime = tcp_time_stamp;
5773 tcp_enter_quickack_mode(sk);
5774 inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
5775 TCP_DELACK_MAX, TCP_RTO_MAX);
5776
5777 discard:
5778 tcp_drop(sk, skb);
5779 return 0;
5780 } else {
5781 tcp_send_ack(sk);
5782 }
5783 return -1;
5784 }
5785
5786 /* No ACK in the segment */
5787
5788 if (th->rst) {
5789 /* rfc793:
5790 * "If the RST bit is set
5791 *
5792 * Otherwise (no ACK) drop the segment and return."
5793 */
5794
5795 goto discard_and_undo;
5796 }
5797
5798 /* PAWS check. */
5799 if (tp->rx_opt.ts_recent_stamp && tp->rx_opt.saw_tstamp &&
5800 tcp_paws_reject(&tp->rx_opt, 0))
5801 goto discard_and_undo;
5802
5803 if (th->syn) {
5804 /* We see SYN without ACK. It is attempt of
5805 * simultaneous connect with crossed SYNs.
5806 * Particularly, it can be connect to self.
5807 */
5808 tcp_set_state(sk, TCP_SYN_RECV);
5809
5810 if (tp->rx_opt.saw_tstamp) {
5811 tp->rx_opt.tstamp_ok = 1;
5812 tcp_store_ts_recent(tp);
5813 tp->tcp_header_len =
5814 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
5815 } else {
5816 tp->tcp_header_len = sizeof(struct tcphdr);
5817 }
5818
5819 tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
5820 tp->copied_seq = tp->rcv_nxt;
5821 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
5822
5823 /* RFC1323: The window in SYN & SYN/ACK segments is
5824 * never scaled.
5825 */
5826 tp->snd_wnd = ntohs(th->window);
5827 tp->snd_wl1 = TCP_SKB_CB(skb)->seq;
5828 tp->max_window = tp->snd_wnd;
5829
5830 tcp_ecn_rcv_syn(tp, th);
5831
5832 tcp_mtup_init(sk);
5833 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
5834 tcp_initialize_rcv_mss(sk);
5835
5836 tcp_send_synack(sk);
5837 #if 0
5838 /* Note, we could accept data and URG from this segment.
5839 * There are no obstacles to make this (except that we must
5840 * either change tcp_recvmsg() to prevent it from returning data
5841 * before 3WHS completes per RFC793, or employ TCP Fast Open).
5842 *
5843 * However, if we ignore data in ACKless segments sometimes,
5844 * we have no reasons to accept it sometimes.
5845 * Also, seems the code doing it in step6 of tcp_rcv_state_process
5846 * is not flawless. So, discard packet for sanity.
5847 * Uncomment this return to process the data.
5848 */
5849 return -1;
5850 #else
5851 goto discard;
5852 #endif
5853 }
5854 /* "fifth, if neither of the SYN or RST bits is set then
5855 * drop the segment and return."
5856 */
5857
5858 discard_and_undo:
5859 tcp_clear_options(&tp->rx_opt);
5860 tp->rx_opt.mss_clamp = saved_clamp;
5861 goto discard;
5862
5863 reset_and_undo:
5864 tcp_clear_options(&tp->rx_opt);
5865 tp->rx_opt.mss_clamp = saved_clamp;
5866 return 1;
5867 }
5868
5869 /*
5870 * This function implements the receiving procedure of RFC 793 for
5871 * all states except ESTABLISHED and TIME_WAIT.
5872 * It's called from both tcp_v4_rcv and tcp_v6_rcv and should be
5873 * address independent.
5874 */
5875
5876 int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb)
5877 {
5878 struct tcp_sock *tp = tcp_sk(sk);
5879 struct inet_connection_sock *icsk = inet_csk(sk);
5880 const struct tcphdr *th = tcp_hdr(skb);
5881 struct request_sock *req;
5882 int queued = 0;
5883 bool acceptable;
5884
5885 switch (sk->sk_state) {
5886 case TCP_CLOSE:
5887 goto discard;
5888
5889 case TCP_LISTEN:
5890 if (th->ack)
5891 return 1;
5892
5893 if (th->rst)
5894 goto discard;
5895
5896 if (th->syn) {
5897 if (th->fin)
5898 goto discard;
5899 if (icsk->icsk_af_ops->conn_request(sk, skb) < 0)
5900 return 1;
5901
5902 consume_skb(skb);
5903 return 0;
5904 }
5905 goto discard;
5906
5907 case TCP_SYN_SENT:
5908 tp->rx_opt.saw_tstamp = 0;
5909 queued = tcp_rcv_synsent_state_process(sk, skb, th);
5910 if (queued >= 0)
5911 return queued;
5912
5913 /* Do step6 onward by hand. */
5914 tcp_urg(sk, skb, th);
5915 __kfree_skb(skb);
5916 tcp_data_snd_check(sk);
5917 return 0;
5918 }
5919
5920 tp->rx_opt.saw_tstamp = 0;
5921 req = tp->fastopen_rsk;
5922 if (req) {
5923 WARN_ON_ONCE(sk->sk_state != TCP_SYN_RECV &&
5924 sk->sk_state != TCP_FIN_WAIT1);
5925
5926 if (!tcp_check_req(sk, skb, req, true))
5927 goto discard;
5928 }
5929
5930 if (!th->ack && !th->rst && !th->syn)
5931 goto discard;
5932
5933 if (!tcp_validate_incoming(sk, skb, th, 0))
5934 return 0;
5935
5936 /* step 5: check the ACK field */
5937 acceptable = tcp_ack(sk, skb, FLAG_SLOWPATH |
5938 FLAG_UPDATE_TS_RECENT) > 0;
5939
5940 switch (sk->sk_state) {
5941 case TCP_SYN_RECV:
5942 if (!acceptable)
5943 return 1;
5944
5945 if (!tp->srtt_us)
5946 tcp_synack_rtt_meas(sk, req);
5947
5948 /* Once we leave TCP_SYN_RECV, we no longer need req
5949 * so release it.
5950 */
5951 if (req) {
5952 inet_csk(sk)->icsk_retransmits = 0;
5953 reqsk_fastopen_remove(sk, req, false);
5954 } else {
5955 /* Make sure socket is routed, for correct metrics. */
5956 icsk->icsk_af_ops->rebuild_header(sk);
5957 tcp_init_congestion_control(sk);
5958
5959 tcp_mtup_init(sk);
5960 tp->copied_seq = tp->rcv_nxt;
5961 tcp_init_buffer_space(sk);
5962 }
5963 smp_mb();
5964 tcp_set_state(sk, TCP_ESTABLISHED);
5965 sk->sk_state_change(sk);
5966
5967 /* Note, that this wakeup is only for marginal crossed SYN case.
5968 * Passively open sockets are not waked up, because
5969 * sk->sk_sleep == NULL and sk->sk_socket == NULL.
5970 */
5971 if (sk->sk_socket)
5972 sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);
5973
5974 tp->snd_una = TCP_SKB_CB(skb)->ack_seq;
5975 tp->snd_wnd = ntohs(th->window) << tp->rx_opt.snd_wscale;
5976 tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
5977
5978 if (tp->rx_opt.tstamp_ok)
5979 tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
5980
5981 if (req) {
5982 /* Re-arm the timer because data may have been sent out.
5983 * This is similar to the regular data transmission case
5984 * when new data has just been ack'ed.
5985 *
5986 * (TFO) - we could try to be more aggressive and
5987 * retransmitting any data sooner based on when they
5988 * are sent out.
5989 */
5990 tcp_rearm_rto(sk);
5991 } else
5992 tcp_init_metrics(sk);
5993
5994 if (!inet_csk(sk)->icsk_ca_ops->cong_control)
5995 tcp_update_pacing_rate(sk);
5996
5997 /* Prevent spurious tcp_cwnd_restart() on first data packet */
5998 tp->lsndtime = tcp_time_stamp;
5999
6000 tcp_initialize_rcv_mss(sk);
6001 tcp_fast_path_on(tp);
6002 break;
6003
6004 case TCP_FIN_WAIT1: {
6005 struct dst_entry *dst;
6006 int tmo;
6007
6008 /* If we enter the TCP_FIN_WAIT1 state and we are a
6009 * Fast Open socket and this is the first acceptable
6010 * ACK we have received, this would have acknowledged
6011 * our SYNACK so stop the SYNACK timer.
6012 */
6013 if (req) {
6014 /* Return RST if ack_seq is invalid.
6015 * Note that RFC793 only says to generate a
6016 * DUPACK for it but for TCP Fast Open it seems
6017 * better to treat this case like TCP_SYN_RECV
6018 * above.
6019 */
6020 if (!acceptable)
6021 return 1;
6022 /* We no longer need the request sock. */
6023 reqsk_fastopen_remove(sk, req, false);
6024 tcp_rearm_rto(sk);
6025 }
6026 if (tp->snd_una != tp->write_seq)
6027 break;
6028
6029 tcp_set_state(sk, TCP_FIN_WAIT2);
6030 sk->sk_shutdown |= SEND_SHUTDOWN;
6031
6032 dst = __sk_dst_get(sk);
6033 if (dst)
6034 dst_confirm(dst);
6035
6036 if (!sock_flag(sk, SOCK_DEAD)) {
6037 /* Wake up lingering close() */
6038 sk->sk_state_change(sk);
6039 break;
6040 }
6041
6042 if (tp->linger2 < 0 ||
6043 (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
6044 after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt))) {
6045 tcp_done(sk);
6046 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
6047 return 1;
6048 }
6049
6050 tmo = tcp_fin_time(sk);
6051 if (tmo > TCP_TIMEWAIT_LEN) {
6052 inet_csk_reset_keepalive_timer(sk, tmo - TCP_TIMEWAIT_LEN);
6053 } else if (th->fin || sock_owned_by_user(sk)) {
6054 /* Bad case. We could lose such FIN otherwise.
6055 * It is not a big problem, but it looks confusing
6056 * and not so rare event. We still can lose it now,
6057 * if it spins in bh_lock_sock(), but it is really
6058 * marginal case.
6059 */
6060 inet_csk_reset_keepalive_timer(sk, tmo);
6061 } else {
6062 tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
6063 goto discard;
6064 }
6065 break;
6066 }
6067
6068 case TCP_CLOSING:
6069 if (tp->snd_una == tp->write_seq) {
6070 tcp_time_wait(sk, TCP_TIME_WAIT, 0);
6071 goto discard;
6072 }
6073 break;
6074
6075 case TCP_LAST_ACK:
6076 if (tp->snd_una == tp->write_seq) {
6077 tcp_update_metrics(sk);
6078 tcp_done(sk);
6079 goto discard;
6080 }
6081 break;
6082 }
6083
6084 /* step 6: check the URG bit */
6085 tcp_urg(sk, skb, th);
6086
6087 /* step 7: process the segment text */
6088 switch (sk->sk_state) {
6089 case TCP_CLOSE_WAIT:
6090 case TCP_CLOSING:
6091 case TCP_LAST_ACK:
6092 if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
6093 break;
6094 case TCP_FIN_WAIT1:
6095 case TCP_FIN_WAIT2:
6096 /* RFC 793 says to queue data in these states,
6097 * RFC 1122 says we MUST send a reset.
6098 * BSD 4.4 also does reset.
6099 */
6100 if (sk->sk_shutdown & RCV_SHUTDOWN) {
6101 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
6102 after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
6103 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
6104 tcp_reset(sk);
6105 return 1;
6106 }
6107 }
6108 /* Fall through */
6109 case TCP_ESTABLISHED:
6110 tcp_data_queue(sk, skb);
6111 queued = 1;
6112 break;
6113 }
6114
6115 /* tcp_data could move socket to TIME-WAIT */
6116 if (sk->sk_state != TCP_CLOSE) {
6117 tcp_data_snd_check(sk);
6118 tcp_ack_snd_check(sk);
6119 }
6120
6121 if (!queued) {
6122 discard:
6123 tcp_drop(sk, skb);
6124 }
6125 return 0;
6126 }
6127 EXPORT_SYMBOL(tcp_rcv_state_process);
6128
6129 static inline void pr_drop_req(struct request_sock *req, __u16 port, int family)
6130 {
6131 struct inet_request_sock *ireq = inet_rsk(req);
6132
6133 if (family == AF_INET)
6134 net_dbg_ratelimited("drop open request from %pI4/%u\n",
6135 &ireq->ir_rmt_addr, port);
6136 #if IS_ENABLED(CONFIG_IPV6)
6137 else if (family == AF_INET6)
6138 net_dbg_ratelimited("drop open request from %pI6/%u\n",
6139 &ireq->ir_v6_rmt_addr, port);
6140 #endif
6141 }
6142
6143 /* RFC3168 : 6.1.1 SYN packets must not have ECT/ECN bits set
6144 *
6145 * If we receive a SYN packet with these bits set, it means a
6146 * network is playing bad games with TOS bits. In order to
6147 * avoid possible false congestion notifications, we disable
6148 * TCP ECN negotiation.
6149 *
6150 * Exception: tcp_ca wants ECN. This is required for DCTCP
6151 * congestion control: Linux DCTCP asserts ECT on all packets,
6152 * including SYN, which is most optimal solution; however,
6153 * others, such as FreeBSD do not.
6154 */
6155 static void tcp_ecn_create_request(struct request_sock *req,
6156 const struct sk_buff *skb,
6157 const struct sock *listen_sk,
6158 const struct dst_entry *dst)
6159 {
6160 const struct tcphdr *th = tcp_hdr(skb);
6161 const struct net *net = sock_net(listen_sk);
6162 bool th_ecn = th->ece && th->cwr;
6163 bool ect, ecn_ok;
6164 u32 ecn_ok_dst;
6165
6166 if (!th_ecn)
6167 return;
6168
6169 ect = !INET_ECN_is_not_ect(TCP_SKB_CB(skb)->ip_dsfield);
6170 ecn_ok_dst = dst_feature(dst, DST_FEATURE_ECN_MASK);
6171 ecn_ok = net->ipv4.sysctl_tcp_ecn || ecn_ok_dst;
6172
6173 if ((!ect && ecn_ok) || tcp_ca_needs_ecn(listen_sk) ||
6174 (ecn_ok_dst & DST_FEATURE_ECN_CA))
6175 inet_rsk(req)->ecn_ok = 1;
6176 }
6177
6178 static void tcp_openreq_init(struct request_sock *req,
6179 const struct tcp_options_received *rx_opt,
6180 struct sk_buff *skb, const struct sock *sk)
6181 {
6182 struct inet_request_sock *ireq = inet_rsk(req);
6183
6184 req->rsk_rcv_wnd = 0; /* So that tcp_send_synack() knows! */
6185 req->cookie_ts = 0;
6186 tcp_rsk(req)->rcv_isn = TCP_SKB_CB(skb)->seq;
6187 tcp_rsk(req)->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
6188 skb_mstamp_get(&tcp_rsk(req)->snt_synack);
6189 tcp_rsk(req)->last_oow_ack_time = 0;
6190 req->mss = rx_opt->mss_clamp;
6191 req->ts_recent = rx_opt->saw_tstamp ? rx_opt->rcv_tsval : 0;
6192 ireq->tstamp_ok = rx_opt->tstamp_ok;
6193 ireq->sack_ok = rx_opt->sack_ok;
6194 ireq->snd_wscale = rx_opt->snd_wscale;
6195 ireq->wscale_ok = rx_opt->wscale_ok;
6196 ireq->acked = 0;
6197 ireq->ecn_ok = 0;
6198 ireq->ir_rmt_port = tcp_hdr(skb)->source;
6199 ireq->ir_num = ntohs(tcp_hdr(skb)->dest);
6200 ireq->ir_mark = inet_request_mark(sk, skb);
6201 }
6202
6203 struct request_sock *inet_reqsk_alloc(const struct request_sock_ops *ops,
6204 struct sock *sk_listener,
6205 bool attach_listener)
6206 {
6207 struct request_sock *req = reqsk_alloc(ops, sk_listener,
6208 attach_listener);
6209
6210 if (req) {
6211 struct inet_request_sock *ireq = inet_rsk(req);
6212
6213 kmemcheck_annotate_bitfield(ireq, flags);
6214 ireq->opt = NULL;
6215 #if IS_ENABLED(CONFIG_IPV6)
6216 ireq->pktopts = NULL;
6217 #endif
6218 atomic64_set(&ireq->ir_cookie, 0);
6219 ireq->ireq_state = TCP_NEW_SYN_RECV;
6220 write_pnet(&ireq->ireq_net, sock_net(sk_listener));
6221 ireq->ireq_family = sk_listener->sk_family;
6222 }
6223
6224 return req;
6225 }
6226 EXPORT_SYMBOL(inet_reqsk_alloc);
6227
6228 /*
6229 * Return true if a syncookie should be sent
6230 */
6231 static bool tcp_syn_flood_action(const struct sock *sk,
6232 const struct sk_buff *skb,
6233 const char *proto)
6234 {
6235 struct request_sock_queue *queue = &inet_csk(sk)->icsk_accept_queue;
6236 const char *msg = "Dropping request";
6237 bool want_cookie = false;
6238 struct net *net = sock_net(sk);
6239
6240 #ifdef CONFIG_SYN_COOKIES
6241 if (net->ipv4.sysctl_tcp_syncookies) {
6242 msg = "Sending cookies";
6243 want_cookie = true;
6244 __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPREQQFULLDOCOOKIES);
6245 } else
6246 #endif
6247 __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPREQQFULLDROP);
6248
6249 if (!queue->synflood_warned &&
6250 net->ipv4.sysctl_tcp_syncookies != 2 &&
6251 xchg(&queue->synflood_warned, 1) == 0)
6252 pr_info("%s: Possible SYN flooding on port %d. %s. Check SNMP counters.\n",
6253 proto, ntohs(tcp_hdr(skb)->dest), msg);
6254
6255 return want_cookie;
6256 }
6257
6258 static void tcp_reqsk_record_syn(const struct sock *sk,
6259 struct request_sock *req,
6260 const struct sk_buff *skb)
6261 {
6262 if (tcp_sk(sk)->save_syn) {
6263 u32 len = skb_network_header_len(skb) + tcp_hdrlen(skb);
6264 u32 *copy;
6265
6266 copy = kmalloc(len + sizeof(u32), GFP_ATOMIC);
6267 if (copy) {
6268 copy[0] = len;
6269 memcpy(&copy[1], skb_network_header(skb), len);
6270 req->saved_syn = copy;
6271 }
6272 }
6273 }
6274
6275 int tcp_conn_request(struct request_sock_ops *rsk_ops,
6276 const struct tcp_request_sock_ops *af_ops,
6277 struct sock *sk, struct sk_buff *skb)
6278 {
6279 struct tcp_fastopen_cookie foc = { .len = -1 };
6280 __u32 isn = TCP_SKB_CB(skb)->tcp_tw_isn;
6281 struct tcp_options_received tmp_opt;
6282 struct tcp_sock *tp = tcp_sk(sk);
6283 struct net *net = sock_net(sk);
6284 struct sock *fastopen_sk = NULL;
6285 struct dst_entry *dst = NULL;
6286 struct request_sock *req;
6287 bool want_cookie = false;
6288 struct flowi fl;
6289
6290 /* TW buckets are converted to open requests without
6291 * limitations, they conserve resources and peer is
6292 * evidently real one.
6293 */
6294 if ((net->ipv4.sysctl_tcp_syncookies == 2 ||
6295 inet_csk_reqsk_queue_is_full(sk)) && !isn) {
6296 want_cookie = tcp_syn_flood_action(sk, skb, rsk_ops->slab_name);
6297 if (!want_cookie)
6298 goto drop;
6299 }
6300
6301 if (sk_acceptq_is_full(sk)) {
6302 NET_INC_STATS(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS);
6303 goto drop;
6304 }
6305
6306 req = inet_reqsk_alloc(rsk_ops, sk, !want_cookie);
6307 if (!req)
6308 goto drop;
6309
6310 tcp_rsk(req)->af_specific = af_ops;
6311 tcp_rsk(req)->ts_off = 0;
6312
6313 tcp_clear_options(&tmp_opt);
6314 tmp_opt.mss_clamp = af_ops->mss_clamp;
6315 tmp_opt.user_mss = tp->rx_opt.user_mss;
6316 tcp_parse_options(skb, &tmp_opt, 0, want_cookie ? NULL : &foc);
6317
6318 if (want_cookie && !tmp_opt.saw_tstamp)
6319 tcp_clear_options(&tmp_opt);
6320
6321 tmp_opt.tstamp_ok = tmp_opt.saw_tstamp;
6322 tcp_openreq_init(req, &tmp_opt, skb, sk);
6323 inet_rsk(req)->no_srccheck = inet_sk(sk)->transparent;
6324
6325 /* Note: tcp_v6_init_req() might override ir_iif for link locals */
6326 inet_rsk(req)->ir_iif = inet_request_bound_dev_if(sk, skb);
6327
6328 af_ops->init_req(req, sk, skb);
6329
6330 if (security_inet_conn_request(sk, skb, req))
6331 goto drop_and_free;
6332
6333 if (isn && tmp_opt.tstamp_ok)
6334 af_ops->init_seq(skb, &tcp_rsk(req)->ts_off);
6335
6336 if (!want_cookie && !isn) {
6337 /* VJ's idea. We save last timestamp seen
6338 * from the destination in peer table, when entering
6339 * state TIME-WAIT, and check against it before
6340 * accepting new connection request.
6341 *
6342 * If "isn" is not zero, this request hit alive
6343 * timewait bucket, so that all the necessary checks
6344 * are made in the function processing timewait state.
6345 */
6346 if (tcp_death_row.sysctl_tw_recycle) {
6347 bool strict;
6348
6349 dst = af_ops->route_req(sk, &fl, req, &strict);
6350
6351 if (dst && strict &&
6352 !tcp_peer_is_proven(req, dst, true,
6353 tmp_opt.saw_tstamp)) {
6354 NET_INC_STATS(sock_net(sk), LINUX_MIB_PAWSPASSIVEREJECTED);
6355 goto drop_and_release;
6356 }
6357 }
6358 /* Kill the following clause, if you dislike this way. */
6359 else if (!net->ipv4.sysctl_tcp_syncookies &&
6360 (sysctl_max_syn_backlog - inet_csk_reqsk_queue_len(sk) <
6361 (sysctl_max_syn_backlog >> 2)) &&
6362 !tcp_peer_is_proven(req, dst, false,
6363 tmp_opt.saw_tstamp)) {
6364 /* Without syncookies last quarter of
6365 * backlog is filled with destinations,
6366 * proven to be alive.
6367 * It means that we continue to communicate
6368 * to destinations, already remembered
6369 * to the moment of synflood.
6370 */
6371 pr_drop_req(req, ntohs(tcp_hdr(skb)->source),
6372 rsk_ops->family);
6373 goto drop_and_release;
6374 }
6375
6376 isn = af_ops->init_seq(skb, &tcp_rsk(req)->ts_off);
6377 }
6378 if (!dst) {
6379 dst = af_ops->route_req(sk, &fl, req, NULL);
6380 if (!dst)
6381 goto drop_and_free;
6382 }
6383
6384 tcp_ecn_create_request(req, skb, sk, dst);
6385
6386 if (want_cookie) {
6387 isn = cookie_init_sequence(af_ops, sk, skb, &req->mss);
6388 tcp_rsk(req)->ts_off = 0;
6389 req->cookie_ts = tmp_opt.tstamp_ok;
6390 if (!tmp_opt.tstamp_ok)
6391 inet_rsk(req)->ecn_ok = 0;
6392 }
6393
6394 tcp_rsk(req)->snt_isn = isn;
6395 tcp_rsk(req)->txhash = net_tx_rndhash();
6396 tcp_openreq_init_rwin(req, sk, dst);
6397 if (!want_cookie) {
6398 tcp_reqsk_record_syn(sk, req, skb);
6399 fastopen_sk = tcp_try_fastopen(sk, skb, req, &foc, dst);
6400 }
6401 if (fastopen_sk) {
6402 af_ops->send_synack(fastopen_sk, dst, &fl, req,
6403 &foc, TCP_SYNACK_FASTOPEN);
6404 /* Add the child socket directly into the accept queue */
6405 inet_csk_reqsk_queue_add(sk, req, fastopen_sk);
6406 sk->sk_data_ready(sk);
6407 bh_unlock_sock(fastopen_sk);
6408 sock_put(fastopen_sk);
6409 } else {
6410 tcp_rsk(req)->tfo_listener = false;
6411 if (!want_cookie)
6412 inet_csk_reqsk_queue_hash_add(sk, req, TCP_TIMEOUT_INIT);
6413 af_ops->send_synack(sk, dst, &fl, req, &foc,
6414 !want_cookie ? TCP_SYNACK_NORMAL :
6415 TCP_SYNACK_COOKIE);
6416 if (want_cookie) {
6417 reqsk_free(req);
6418 return 0;
6419 }
6420 }
6421 reqsk_put(req);
6422 return 0;
6423
6424 drop_and_release:
6425 dst_release(dst);
6426 drop_and_free:
6427 reqsk_free(req);
6428 drop:
6429 tcp_listendrop(sk);
6430 return 0;
6431 }
6432 EXPORT_SYMBOL(tcp_conn_request);