]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - net/ipv4/tcp_input.c
Merge remote-tracking branch 'asoc/fix/intel' into asoc-linus
[mirror_ubuntu-artful-kernel.git] / net / ipv4 / tcp_input.c
1 /*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
5 *
6 * Implementation of the Transmission Control Protocol(TCP).
7 *
8 * Authors: Ross Biro
9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10 * Mark Evans, <evansmp@uhura.aston.ac.uk>
11 * Corey Minyard <wf-rch!minyard@relay.EU.net>
12 * Florian La Roche, <flla@stud.uni-sb.de>
13 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
14 * Linus Torvalds, <torvalds@cs.helsinki.fi>
15 * Alan Cox, <gw4pts@gw4pts.ampr.org>
16 * Matthew Dillon, <dillon@apollo.west.oic.com>
17 * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
18 * Jorge Cwik, <jorge@laser.satlink.net>
19 */
20
21 /*
22 * Changes:
23 * Pedro Roque : Fast Retransmit/Recovery.
24 * Two receive queues.
25 * Retransmit queue handled by TCP.
26 * Better retransmit timer handling.
27 * New congestion avoidance.
28 * Header prediction.
29 * Variable renaming.
30 *
31 * Eric : Fast Retransmit.
32 * Randy Scott : MSS option defines.
33 * Eric Schenk : Fixes to slow start algorithm.
34 * Eric Schenk : Yet another double ACK bug.
35 * Eric Schenk : Delayed ACK bug fixes.
36 * Eric Schenk : Floyd style fast retrans war avoidance.
37 * David S. Miller : Don't allow zero congestion window.
38 * Eric Schenk : Fix retransmitter so that it sends
39 * next packet on ack of previous packet.
40 * Andi Kleen : Moved open_request checking here
41 * and process RSTs for open_requests.
42 * Andi Kleen : Better prune_queue, and other fixes.
43 * Andrey Savochkin: Fix RTT measurements in the presence of
44 * timestamps.
45 * Andrey Savochkin: Check sequence numbers correctly when
46 * removing SACKs due to in sequence incoming
47 * data segments.
48 * Andi Kleen: Make sure we never ack data there is not
49 * enough room for. Also make this condition
50 * a fatal error if it might still happen.
51 * Andi Kleen: Add tcp_measure_rcv_mss to make
52 * connections with MSS<min(MTU,ann. MSS)
53 * work without delayed acks.
54 * Andi Kleen: Process packets with PSH set in the
55 * fast path.
56 * J Hadi Salim: ECN support
57 * Andrei Gurtov,
58 * Pasi Sarolahti,
59 * Panu Kuhlberg: Experimental audit of TCP (re)transmission
60 * engine. Lots of bugs are found.
61 * Pasi Sarolahti: F-RTO for dealing with spurious RTOs
62 */
63
64 #define pr_fmt(fmt) "TCP: " fmt
65
66 #include <linux/mm.h>
67 #include <linux/slab.h>
68 #include <linux/module.h>
69 #include <linux/sysctl.h>
70 #include <linux/kernel.h>
71 #include <linux/prefetch.h>
72 #include <net/dst.h>
73 #include <net/tcp.h>
74 #include <net/inet_common.h>
75 #include <linux/ipsec.h>
76 #include <asm/unaligned.h>
77 #include <linux/errqueue.h>
78
79 int sysctl_tcp_timestamps __read_mostly = 1;
80 int sysctl_tcp_window_scaling __read_mostly = 1;
81 int sysctl_tcp_sack __read_mostly = 1;
82 int sysctl_tcp_fack __read_mostly = 1;
83 int sysctl_tcp_max_reordering __read_mostly = 300;
84 int sysctl_tcp_dsack __read_mostly = 1;
85 int sysctl_tcp_app_win __read_mostly = 31;
86 int sysctl_tcp_adv_win_scale __read_mostly = 1;
87 EXPORT_SYMBOL(sysctl_tcp_adv_win_scale);
88
89 /* rfc5961 challenge ack rate limiting */
90 int sysctl_tcp_challenge_ack_limit = 1000;
91
92 int sysctl_tcp_stdurg __read_mostly;
93 int sysctl_tcp_rfc1337 __read_mostly;
94 int sysctl_tcp_max_orphans __read_mostly = NR_FILE;
95 int sysctl_tcp_frto __read_mostly = 2;
96 int sysctl_tcp_min_rtt_wlen __read_mostly = 300;
97
98 int sysctl_tcp_thin_dupack __read_mostly;
99
100 int sysctl_tcp_moderate_rcvbuf __read_mostly = 1;
101 int sysctl_tcp_early_retrans __read_mostly = 3;
102 int sysctl_tcp_invalid_ratelimit __read_mostly = HZ/2;
103
104 #define FLAG_DATA 0x01 /* Incoming frame contained data. */
105 #define FLAG_WIN_UPDATE 0x02 /* Incoming ACK was a window update. */
106 #define FLAG_DATA_ACKED 0x04 /* This ACK acknowledged new data. */
107 #define FLAG_RETRANS_DATA_ACKED 0x08 /* "" "" some of which was retransmitted. */
108 #define FLAG_SYN_ACKED 0x10 /* This ACK acknowledged SYN. */
109 #define FLAG_DATA_SACKED 0x20 /* New SACK. */
110 #define FLAG_ECE 0x40 /* ECE in this ACK */
111 #define FLAG_LOST_RETRANS 0x80 /* This ACK marks some retransmission lost */
112 #define FLAG_SLOWPATH 0x100 /* Do not skip RFC checks for window update.*/
113 #define FLAG_ORIG_SACK_ACKED 0x200 /* Never retransmitted data are (s)acked */
114 #define FLAG_SND_UNA_ADVANCED 0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */
115 #define FLAG_DSACKING_ACK 0x800 /* SACK blocks contained D-SACK info */
116 #define FLAG_SACK_RENEGING 0x2000 /* snd_una advanced to a sacked seq */
117 #define FLAG_UPDATE_TS_RECENT 0x4000 /* tcp_replace_ts_recent() */
118
119 #define FLAG_ACKED (FLAG_DATA_ACKED|FLAG_SYN_ACKED)
120 #define FLAG_NOT_DUP (FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED)
121 #define FLAG_CA_ALERT (FLAG_DATA_SACKED|FLAG_ECE)
122 #define FLAG_FORWARD_PROGRESS (FLAG_ACKED|FLAG_DATA_SACKED)
123
124 #define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH)
125 #define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH))
126
127 #define REXMIT_NONE 0 /* no loss recovery to do */
128 #define REXMIT_LOST 1 /* retransmit packets marked lost */
129 #define REXMIT_NEW 2 /* FRTO-style transmit of unsent/new packets */
130
131 /* Adapt the MSS value used to make delayed ack decision to the
132 * real world.
133 */
134 static void tcp_measure_rcv_mss(struct sock *sk, const struct sk_buff *skb)
135 {
136 struct inet_connection_sock *icsk = inet_csk(sk);
137 const unsigned int lss = icsk->icsk_ack.last_seg_size;
138 unsigned int len;
139
140 icsk->icsk_ack.last_seg_size = 0;
141
142 /* skb->len may jitter because of SACKs, even if peer
143 * sends good full-sized frames.
144 */
145 len = skb_shinfo(skb)->gso_size ? : skb->len;
146 if (len >= icsk->icsk_ack.rcv_mss) {
147 icsk->icsk_ack.rcv_mss = len;
148 } else {
149 /* Otherwise, we make more careful check taking into account,
150 * that SACKs block is variable.
151 *
152 * "len" is invariant segment length, including TCP header.
153 */
154 len += skb->data - skb_transport_header(skb);
155 if (len >= TCP_MSS_DEFAULT + sizeof(struct tcphdr) ||
156 /* If PSH is not set, packet should be
157 * full sized, provided peer TCP is not badly broken.
158 * This observation (if it is correct 8)) allows
159 * to handle super-low mtu links fairly.
160 */
161 (len >= TCP_MIN_MSS + sizeof(struct tcphdr) &&
162 !(tcp_flag_word(tcp_hdr(skb)) & TCP_REMNANT))) {
163 /* Subtract also invariant (if peer is RFC compliant),
164 * tcp header plus fixed timestamp option length.
165 * Resulting "len" is MSS free of SACK jitter.
166 */
167 len -= tcp_sk(sk)->tcp_header_len;
168 icsk->icsk_ack.last_seg_size = len;
169 if (len == lss) {
170 icsk->icsk_ack.rcv_mss = len;
171 return;
172 }
173 }
174 if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED)
175 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2;
176 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
177 }
178 }
179
180 static void tcp_incr_quickack(struct sock *sk)
181 {
182 struct inet_connection_sock *icsk = inet_csk(sk);
183 unsigned int quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss);
184
185 if (quickacks == 0)
186 quickacks = 2;
187 if (quickacks > icsk->icsk_ack.quick)
188 icsk->icsk_ack.quick = min(quickacks, TCP_MAX_QUICKACKS);
189 }
190
191 static void tcp_enter_quickack_mode(struct sock *sk)
192 {
193 struct inet_connection_sock *icsk = inet_csk(sk);
194 tcp_incr_quickack(sk);
195 icsk->icsk_ack.pingpong = 0;
196 icsk->icsk_ack.ato = TCP_ATO_MIN;
197 }
198
199 /* Send ACKs quickly, if "quick" count is not exhausted
200 * and the session is not interactive.
201 */
202
203 static bool tcp_in_quickack_mode(struct sock *sk)
204 {
205 const struct inet_connection_sock *icsk = inet_csk(sk);
206 const struct dst_entry *dst = __sk_dst_get(sk);
207
208 return (dst && dst_metric(dst, RTAX_QUICKACK)) ||
209 (icsk->icsk_ack.quick && !icsk->icsk_ack.pingpong);
210 }
211
212 static void tcp_ecn_queue_cwr(struct tcp_sock *tp)
213 {
214 if (tp->ecn_flags & TCP_ECN_OK)
215 tp->ecn_flags |= TCP_ECN_QUEUE_CWR;
216 }
217
218 static void tcp_ecn_accept_cwr(struct tcp_sock *tp, const struct sk_buff *skb)
219 {
220 if (tcp_hdr(skb)->cwr)
221 tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
222 }
223
224 static void tcp_ecn_withdraw_cwr(struct tcp_sock *tp)
225 {
226 tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
227 }
228
229 static void __tcp_ecn_check_ce(struct tcp_sock *tp, const struct sk_buff *skb)
230 {
231 switch (TCP_SKB_CB(skb)->ip_dsfield & INET_ECN_MASK) {
232 case INET_ECN_NOT_ECT:
233 /* Funny extension: if ECT is not set on a segment,
234 * and we already seen ECT on a previous segment,
235 * it is probably a retransmit.
236 */
237 if (tp->ecn_flags & TCP_ECN_SEEN)
238 tcp_enter_quickack_mode((struct sock *)tp);
239 break;
240 case INET_ECN_CE:
241 if (tcp_ca_needs_ecn((struct sock *)tp))
242 tcp_ca_event((struct sock *)tp, CA_EVENT_ECN_IS_CE);
243
244 if (!(tp->ecn_flags & TCP_ECN_DEMAND_CWR)) {
245 /* Better not delay acks, sender can have a very low cwnd */
246 tcp_enter_quickack_mode((struct sock *)tp);
247 tp->ecn_flags |= TCP_ECN_DEMAND_CWR;
248 }
249 tp->ecn_flags |= TCP_ECN_SEEN;
250 break;
251 default:
252 if (tcp_ca_needs_ecn((struct sock *)tp))
253 tcp_ca_event((struct sock *)tp, CA_EVENT_ECN_NO_CE);
254 tp->ecn_flags |= TCP_ECN_SEEN;
255 break;
256 }
257 }
258
259 static void tcp_ecn_check_ce(struct tcp_sock *tp, const struct sk_buff *skb)
260 {
261 if (tp->ecn_flags & TCP_ECN_OK)
262 __tcp_ecn_check_ce(tp, skb);
263 }
264
265 static void tcp_ecn_rcv_synack(struct tcp_sock *tp, const struct tcphdr *th)
266 {
267 if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || th->cwr))
268 tp->ecn_flags &= ~TCP_ECN_OK;
269 }
270
271 static void tcp_ecn_rcv_syn(struct tcp_sock *tp, const struct tcphdr *th)
272 {
273 if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || !th->cwr))
274 tp->ecn_flags &= ~TCP_ECN_OK;
275 }
276
277 static bool tcp_ecn_rcv_ecn_echo(const struct tcp_sock *tp, const struct tcphdr *th)
278 {
279 if (th->ece && !th->syn && (tp->ecn_flags & TCP_ECN_OK))
280 return true;
281 return false;
282 }
283
284 /* Buffer size and advertised window tuning.
285 *
286 * 1. Tuning sk->sk_sndbuf, when connection enters established state.
287 */
288
289 static void tcp_sndbuf_expand(struct sock *sk)
290 {
291 const struct tcp_sock *tp = tcp_sk(sk);
292 const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
293 int sndmem, per_mss;
294 u32 nr_segs;
295
296 /* Worst case is non GSO/TSO : each frame consumes one skb
297 * and skb->head is kmalloced using power of two area of memory
298 */
299 per_mss = max_t(u32, tp->rx_opt.mss_clamp, tp->mss_cache) +
300 MAX_TCP_HEADER +
301 SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
302
303 per_mss = roundup_pow_of_two(per_mss) +
304 SKB_DATA_ALIGN(sizeof(struct sk_buff));
305
306 nr_segs = max_t(u32, TCP_INIT_CWND, tp->snd_cwnd);
307 nr_segs = max_t(u32, nr_segs, tp->reordering + 1);
308
309 /* Fast Recovery (RFC 5681 3.2) :
310 * Cubic needs 1.7 factor, rounded to 2 to include
311 * extra cushion (application might react slowly to POLLOUT)
312 */
313 sndmem = ca_ops->sndbuf_expand ? ca_ops->sndbuf_expand(sk) : 2;
314 sndmem *= nr_segs * per_mss;
315
316 if (sk->sk_sndbuf < sndmem)
317 sk->sk_sndbuf = min(sndmem, sysctl_tcp_wmem[2]);
318 }
319
320 /* 2. Tuning advertised window (window_clamp, rcv_ssthresh)
321 *
322 * All tcp_full_space() is split to two parts: "network" buffer, allocated
323 * forward and advertised in receiver window (tp->rcv_wnd) and
324 * "application buffer", required to isolate scheduling/application
325 * latencies from network.
326 * window_clamp is maximal advertised window. It can be less than
327 * tcp_full_space(), in this case tcp_full_space() - window_clamp
328 * is reserved for "application" buffer. The less window_clamp is
329 * the smoother our behaviour from viewpoint of network, but the lower
330 * throughput and the higher sensitivity of the connection to losses. 8)
331 *
332 * rcv_ssthresh is more strict window_clamp used at "slow start"
333 * phase to predict further behaviour of this connection.
334 * It is used for two goals:
335 * - to enforce header prediction at sender, even when application
336 * requires some significant "application buffer". It is check #1.
337 * - to prevent pruning of receive queue because of misprediction
338 * of receiver window. Check #2.
339 *
340 * The scheme does not work when sender sends good segments opening
341 * window and then starts to feed us spaghetti. But it should work
342 * in common situations. Otherwise, we have to rely on queue collapsing.
343 */
344
345 /* Slow part of check#2. */
346 static int __tcp_grow_window(const struct sock *sk, const struct sk_buff *skb)
347 {
348 struct tcp_sock *tp = tcp_sk(sk);
349 /* Optimize this! */
350 int truesize = tcp_win_from_space(skb->truesize) >> 1;
351 int window = tcp_win_from_space(sysctl_tcp_rmem[2]) >> 1;
352
353 while (tp->rcv_ssthresh <= window) {
354 if (truesize <= skb->len)
355 return 2 * inet_csk(sk)->icsk_ack.rcv_mss;
356
357 truesize >>= 1;
358 window >>= 1;
359 }
360 return 0;
361 }
362
363 static void tcp_grow_window(struct sock *sk, const struct sk_buff *skb)
364 {
365 struct tcp_sock *tp = tcp_sk(sk);
366
367 /* Check #1 */
368 if (tp->rcv_ssthresh < tp->window_clamp &&
369 (int)tp->rcv_ssthresh < tcp_space(sk) &&
370 !tcp_under_memory_pressure(sk)) {
371 int incr;
372
373 /* Check #2. Increase window, if skb with such overhead
374 * will fit to rcvbuf in future.
375 */
376 if (tcp_win_from_space(skb->truesize) <= skb->len)
377 incr = 2 * tp->advmss;
378 else
379 incr = __tcp_grow_window(sk, skb);
380
381 if (incr) {
382 incr = max_t(int, incr, 2 * skb->len);
383 tp->rcv_ssthresh = min(tp->rcv_ssthresh + incr,
384 tp->window_clamp);
385 inet_csk(sk)->icsk_ack.quick |= 1;
386 }
387 }
388 }
389
390 /* 3. Tuning rcvbuf, when connection enters established state. */
391 static void tcp_fixup_rcvbuf(struct sock *sk)
392 {
393 u32 mss = tcp_sk(sk)->advmss;
394 int rcvmem;
395
396 rcvmem = 2 * SKB_TRUESIZE(mss + MAX_TCP_HEADER) *
397 tcp_default_init_rwnd(mss);
398
399 /* Dynamic Right Sizing (DRS) has 2 to 3 RTT latency
400 * Allow enough cushion so that sender is not limited by our window
401 */
402 if (sysctl_tcp_moderate_rcvbuf)
403 rcvmem <<= 2;
404
405 if (sk->sk_rcvbuf < rcvmem)
406 sk->sk_rcvbuf = min(rcvmem, sysctl_tcp_rmem[2]);
407 }
408
409 /* 4. Try to fixup all. It is made immediately after connection enters
410 * established state.
411 */
412 void tcp_init_buffer_space(struct sock *sk)
413 {
414 struct tcp_sock *tp = tcp_sk(sk);
415 int maxwin;
416
417 if (!(sk->sk_userlocks & SOCK_RCVBUF_LOCK))
418 tcp_fixup_rcvbuf(sk);
419 if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK))
420 tcp_sndbuf_expand(sk);
421
422 tp->rcvq_space.space = tp->rcv_wnd;
423 tp->rcvq_space.time = tcp_time_stamp;
424 tp->rcvq_space.seq = tp->copied_seq;
425
426 maxwin = tcp_full_space(sk);
427
428 if (tp->window_clamp >= maxwin) {
429 tp->window_clamp = maxwin;
430
431 if (sysctl_tcp_app_win && maxwin > 4 * tp->advmss)
432 tp->window_clamp = max(maxwin -
433 (maxwin >> sysctl_tcp_app_win),
434 4 * tp->advmss);
435 }
436
437 /* Force reservation of one segment. */
438 if (sysctl_tcp_app_win &&
439 tp->window_clamp > 2 * tp->advmss &&
440 tp->window_clamp + tp->advmss > maxwin)
441 tp->window_clamp = max(2 * tp->advmss, maxwin - tp->advmss);
442
443 tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp);
444 tp->snd_cwnd_stamp = tcp_time_stamp;
445 }
446
447 /* 5. Recalculate window clamp after socket hit its memory bounds. */
448 static void tcp_clamp_window(struct sock *sk)
449 {
450 struct tcp_sock *tp = tcp_sk(sk);
451 struct inet_connection_sock *icsk = inet_csk(sk);
452
453 icsk->icsk_ack.quick = 0;
454
455 if (sk->sk_rcvbuf < sysctl_tcp_rmem[2] &&
456 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) &&
457 !tcp_under_memory_pressure(sk) &&
458 sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0)) {
459 sk->sk_rcvbuf = min(atomic_read(&sk->sk_rmem_alloc),
460 sysctl_tcp_rmem[2]);
461 }
462 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf)
463 tp->rcv_ssthresh = min(tp->window_clamp, 2U * tp->advmss);
464 }
465
466 /* Initialize RCV_MSS value.
467 * RCV_MSS is an our guess about MSS used by the peer.
468 * We haven't any direct information about the MSS.
469 * It's better to underestimate the RCV_MSS rather than overestimate.
470 * Overestimations make us ACKing less frequently than needed.
471 * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss().
472 */
473 void tcp_initialize_rcv_mss(struct sock *sk)
474 {
475 const struct tcp_sock *tp = tcp_sk(sk);
476 unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache);
477
478 hint = min(hint, tp->rcv_wnd / 2);
479 hint = min(hint, TCP_MSS_DEFAULT);
480 hint = max(hint, TCP_MIN_MSS);
481
482 inet_csk(sk)->icsk_ack.rcv_mss = hint;
483 }
484 EXPORT_SYMBOL(tcp_initialize_rcv_mss);
485
486 /* Receiver "autotuning" code.
487 *
488 * The algorithm for RTT estimation w/o timestamps is based on
489 * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL.
490 * <http://public.lanl.gov/radiant/pubs.html#DRS>
491 *
492 * More detail on this code can be found at
493 * <http://staff.psc.edu/jheffner/>,
494 * though this reference is out of date. A new paper
495 * is pending.
496 */
497 static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep)
498 {
499 u32 new_sample = tp->rcv_rtt_est.rtt;
500 long m = sample;
501
502 if (m == 0)
503 m = 1;
504
505 if (new_sample != 0) {
506 /* If we sample in larger samples in the non-timestamp
507 * case, we could grossly overestimate the RTT especially
508 * with chatty applications or bulk transfer apps which
509 * are stalled on filesystem I/O.
510 *
511 * Also, since we are only going for a minimum in the
512 * non-timestamp case, we do not smooth things out
513 * else with timestamps disabled convergence takes too
514 * long.
515 */
516 if (!win_dep) {
517 m -= (new_sample >> 3);
518 new_sample += m;
519 } else {
520 m <<= 3;
521 if (m < new_sample)
522 new_sample = m;
523 }
524 } else {
525 /* No previous measure. */
526 new_sample = m << 3;
527 }
528
529 if (tp->rcv_rtt_est.rtt != new_sample)
530 tp->rcv_rtt_est.rtt = new_sample;
531 }
532
533 static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp)
534 {
535 if (tp->rcv_rtt_est.time == 0)
536 goto new_measure;
537 if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq))
538 return;
539 tcp_rcv_rtt_update(tp, tcp_time_stamp - tp->rcv_rtt_est.time, 1);
540
541 new_measure:
542 tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd;
543 tp->rcv_rtt_est.time = tcp_time_stamp;
544 }
545
546 static inline void tcp_rcv_rtt_measure_ts(struct sock *sk,
547 const struct sk_buff *skb)
548 {
549 struct tcp_sock *tp = tcp_sk(sk);
550 if (tp->rx_opt.rcv_tsecr &&
551 (TCP_SKB_CB(skb)->end_seq -
552 TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss))
553 tcp_rcv_rtt_update(tp, tcp_time_stamp - tp->rx_opt.rcv_tsecr, 0);
554 }
555
556 /*
557 * This function should be called every time data is copied to user space.
558 * It calculates the appropriate TCP receive buffer space.
559 */
560 void tcp_rcv_space_adjust(struct sock *sk)
561 {
562 struct tcp_sock *tp = tcp_sk(sk);
563 int time;
564 int copied;
565
566 time = tcp_time_stamp - tp->rcvq_space.time;
567 if (time < (tp->rcv_rtt_est.rtt >> 3) || tp->rcv_rtt_est.rtt == 0)
568 return;
569
570 /* Number of bytes copied to user in last RTT */
571 copied = tp->copied_seq - tp->rcvq_space.seq;
572 if (copied <= tp->rcvq_space.space)
573 goto new_measure;
574
575 /* A bit of theory :
576 * copied = bytes received in previous RTT, our base window
577 * To cope with packet losses, we need a 2x factor
578 * To cope with slow start, and sender growing its cwin by 100 %
579 * every RTT, we need a 4x factor, because the ACK we are sending
580 * now is for the next RTT, not the current one :
581 * <prev RTT . ><current RTT .. ><next RTT .... >
582 */
583
584 if (sysctl_tcp_moderate_rcvbuf &&
585 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) {
586 int rcvwin, rcvmem, rcvbuf;
587
588 /* minimal window to cope with packet losses, assuming
589 * steady state. Add some cushion because of small variations.
590 */
591 rcvwin = (copied << 1) + 16 * tp->advmss;
592
593 /* If rate increased by 25%,
594 * assume slow start, rcvwin = 3 * copied
595 * If rate increased by 50%,
596 * assume sender can use 2x growth, rcvwin = 4 * copied
597 */
598 if (copied >=
599 tp->rcvq_space.space + (tp->rcvq_space.space >> 2)) {
600 if (copied >=
601 tp->rcvq_space.space + (tp->rcvq_space.space >> 1))
602 rcvwin <<= 1;
603 else
604 rcvwin += (rcvwin >> 1);
605 }
606
607 rcvmem = SKB_TRUESIZE(tp->advmss + MAX_TCP_HEADER);
608 while (tcp_win_from_space(rcvmem) < tp->advmss)
609 rcvmem += 128;
610
611 rcvbuf = min(rcvwin / tp->advmss * rcvmem, sysctl_tcp_rmem[2]);
612 if (rcvbuf > sk->sk_rcvbuf) {
613 sk->sk_rcvbuf = rcvbuf;
614
615 /* Make the window clamp follow along. */
616 tp->window_clamp = rcvwin;
617 }
618 }
619 tp->rcvq_space.space = copied;
620
621 new_measure:
622 tp->rcvq_space.seq = tp->copied_seq;
623 tp->rcvq_space.time = tcp_time_stamp;
624 }
625
626 /* There is something which you must keep in mind when you analyze the
627 * behavior of the tp->ato delayed ack timeout interval. When a
628 * connection starts up, we want to ack as quickly as possible. The
629 * problem is that "good" TCP's do slow start at the beginning of data
630 * transmission. The means that until we send the first few ACK's the
631 * sender will sit on his end and only queue most of his data, because
632 * he can only send snd_cwnd unacked packets at any given time. For
633 * each ACK we send, he increments snd_cwnd and transmits more of his
634 * queue. -DaveM
635 */
636 static void tcp_event_data_recv(struct sock *sk, struct sk_buff *skb)
637 {
638 struct tcp_sock *tp = tcp_sk(sk);
639 struct inet_connection_sock *icsk = inet_csk(sk);
640 u32 now;
641
642 inet_csk_schedule_ack(sk);
643
644 tcp_measure_rcv_mss(sk, skb);
645
646 tcp_rcv_rtt_measure(tp);
647
648 now = tcp_time_stamp;
649
650 if (!icsk->icsk_ack.ato) {
651 /* The _first_ data packet received, initialize
652 * delayed ACK engine.
653 */
654 tcp_incr_quickack(sk);
655 icsk->icsk_ack.ato = TCP_ATO_MIN;
656 } else {
657 int m = now - icsk->icsk_ack.lrcvtime;
658
659 if (m <= TCP_ATO_MIN / 2) {
660 /* The fastest case is the first. */
661 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2;
662 } else if (m < icsk->icsk_ack.ato) {
663 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m;
664 if (icsk->icsk_ack.ato > icsk->icsk_rto)
665 icsk->icsk_ack.ato = icsk->icsk_rto;
666 } else if (m > icsk->icsk_rto) {
667 /* Too long gap. Apparently sender failed to
668 * restart window, so that we send ACKs quickly.
669 */
670 tcp_incr_quickack(sk);
671 sk_mem_reclaim(sk);
672 }
673 }
674 icsk->icsk_ack.lrcvtime = now;
675
676 tcp_ecn_check_ce(tp, skb);
677
678 if (skb->len >= 128)
679 tcp_grow_window(sk, skb);
680 }
681
682 /* Called to compute a smoothed rtt estimate. The data fed to this
683 * routine either comes from timestamps, or from segments that were
684 * known _not_ to have been retransmitted [see Karn/Partridge
685 * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88
686 * piece by Van Jacobson.
687 * NOTE: the next three routines used to be one big routine.
688 * To save cycles in the RFC 1323 implementation it was better to break
689 * it up into three procedures. -- erics
690 */
691 static void tcp_rtt_estimator(struct sock *sk, long mrtt_us)
692 {
693 struct tcp_sock *tp = tcp_sk(sk);
694 long m = mrtt_us; /* RTT */
695 u32 srtt = tp->srtt_us;
696
697 /* The following amusing code comes from Jacobson's
698 * article in SIGCOMM '88. Note that rtt and mdev
699 * are scaled versions of rtt and mean deviation.
700 * This is designed to be as fast as possible
701 * m stands for "measurement".
702 *
703 * On a 1990 paper the rto value is changed to:
704 * RTO = rtt + 4 * mdev
705 *
706 * Funny. This algorithm seems to be very broken.
707 * These formulae increase RTO, when it should be decreased, increase
708 * too slowly, when it should be increased quickly, decrease too quickly
709 * etc. I guess in BSD RTO takes ONE value, so that it is absolutely
710 * does not matter how to _calculate_ it. Seems, it was trap
711 * that VJ failed to avoid. 8)
712 */
713 if (srtt != 0) {
714 m -= (srtt >> 3); /* m is now error in rtt est */
715 srtt += m; /* rtt = 7/8 rtt + 1/8 new */
716 if (m < 0) {
717 m = -m; /* m is now abs(error) */
718 m -= (tp->mdev_us >> 2); /* similar update on mdev */
719 /* This is similar to one of Eifel findings.
720 * Eifel blocks mdev updates when rtt decreases.
721 * This solution is a bit different: we use finer gain
722 * for mdev in this case (alpha*beta).
723 * Like Eifel it also prevents growth of rto,
724 * but also it limits too fast rto decreases,
725 * happening in pure Eifel.
726 */
727 if (m > 0)
728 m >>= 3;
729 } else {
730 m -= (tp->mdev_us >> 2); /* similar update on mdev */
731 }
732 tp->mdev_us += m; /* mdev = 3/4 mdev + 1/4 new */
733 if (tp->mdev_us > tp->mdev_max_us) {
734 tp->mdev_max_us = tp->mdev_us;
735 if (tp->mdev_max_us > tp->rttvar_us)
736 tp->rttvar_us = tp->mdev_max_us;
737 }
738 if (after(tp->snd_una, tp->rtt_seq)) {
739 if (tp->mdev_max_us < tp->rttvar_us)
740 tp->rttvar_us -= (tp->rttvar_us - tp->mdev_max_us) >> 2;
741 tp->rtt_seq = tp->snd_nxt;
742 tp->mdev_max_us = tcp_rto_min_us(sk);
743 }
744 } else {
745 /* no previous measure. */
746 srtt = m << 3; /* take the measured time to be rtt */
747 tp->mdev_us = m << 1; /* make sure rto = 3*rtt */
748 tp->rttvar_us = max(tp->mdev_us, tcp_rto_min_us(sk));
749 tp->mdev_max_us = tp->rttvar_us;
750 tp->rtt_seq = tp->snd_nxt;
751 }
752 tp->srtt_us = max(1U, srtt);
753 }
754
755 /* Set the sk_pacing_rate to allow proper sizing of TSO packets.
756 * Note: TCP stack does not yet implement pacing.
757 * FQ packet scheduler can be used to implement cheap but effective
758 * TCP pacing, to smooth the burst on large writes when packets
759 * in flight is significantly lower than cwnd (or rwin)
760 */
761 int sysctl_tcp_pacing_ss_ratio __read_mostly = 200;
762 int sysctl_tcp_pacing_ca_ratio __read_mostly = 120;
763
764 static void tcp_update_pacing_rate(struct sock *sk)
765 {
766 const struct tcp_sock *tp = tcp_sk(sk);
767 u64 rate;
768
769 /* set sk_pacing_rate to 200 % of current rate (mss * cwnd / srtt) */
770 rate = (u64)tp->mss_cache * ((USEC_PER_SEC / 100) << 3);
771
772 /* current rate is (cwnd * mss) / srtt
773 * In Slow Start [1], set sk_pacing_rate to 200 % the current rate.
774 * In Congestion Avoidance phase, set it to 120 % the current rate.
775 *
776 * [1] : Normal Slow Start condition is (tp->snd_cwnd < tp->snd_ssthresh)
777 * If snd_cwnd >= (tp->snd_ssthresh / 2), we are approaching
778 * end of slow start and should slow down.
779 */
780 if (tp->snd_cwnd < tp->snd_ssthresh / 2)
781 rate *= sysctl_tcp_pacing_ss_ratio;
782 else
783 rate *= sysctl_tcp_pacing_ca_ratio;
784
785 rate *= max(tp->snd_cwnd, tp->packets_out);
786
787 if (likely(tp->srtt_us))
788 do_div(rate, tp->srtt_us);
789
790 /* ACCESS_ONCE() is needed because sch_fq fetches sk_pacing_rate
791 * without any lock. We want to make sure compiler wont store
792 * intermediate values in this location.
793 */
794 ACCESS_ONCE(sk->sk_pacing_rate) = min_t(u64, rate,
795 sk->sk_max_pacing_rate);
796 }
797
798 /* Calculate rto without backoff. This is the second half of Van Jacobson's
799 * routine referred to above.
800 */
801 static void tcp_set_rto(struct sock *sk)
802 {
803 const struct tcp_sock *tp = tcp_sk(sk);
804 /* Old crap is replaced with new one. 8)
805 *
806 * More seriously:
807 * 1. If rtt variance happened to be less 50msec, it is hallucination.
808 * It cannot be less due to utterly erratic ACK generation made
809 * at least by solaris and freebsd. "Erratic ACKs" has _nothing_
810 * to do with delayed acks, because at cwnd>2 true delack timeout
811 * is invisible. Actually, Linux-2.4 also generates erratic
812 * ACKs in some circumstances.
813 */
814 inet_csk(sk)->icsk_rto = __tcp_set_rto(tp);
815
816 /* 2. Fixups made earlier cannot be right.
817 * If we do not estimate RTO correctly without them,
818 * all the algo is pure shit and should be replaced
819 * with correct one. It is exactly, which we pretend to do.
820 */
821
822 /* NOTE: clamping at TCP_RTO_MIN is not required, current algo
823 * guarantees that rto is higher.
824 */
825 tcp_bound_rto(sk);
826 }
827
828 __u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst)
829 {
830 __u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0);
831
832 if (!cwnd)
833 cwnd = TCP_INIT_CWND;
834 return min_t(__u32, cwnd, tp->snd_cwnd_clamp);
835 }
836
837 /*
838 * Packet counting of FACK is based on in-order assumptions, therefore TCP
839 * disables it when reordering is detected
840 */
841 void tcp_disable_fack(struct tcp_sock *tp)
842 {
843 /* RFC3517 uses different metric in lost marker => reset on change */
844 if (tcp_is_fack(tp))
845 tp->lost_skb_hint = NULL;
846 tp->rx_opt.sack_ok &= ~TCP_FACK_ENABLED;
847 }
848
849 /* Take a notice that peer is sending D-SACKs */
850 static void tcp_dsack_seen(struct tcp_sock *tp)
851 {
852 tp->rx_opt.sack_ok |= TCP_DSACK_SEEN;
853 }
854
855 static void tcp_update_reordering(struct sock *sk, const int metric,
856 const int ts)
857 {
858 struct tcp_sock *tp = tcp_sk(sk);
859 if (metric > tp->reordering) {
860 int mib_idx;
861
862 tp->reordering = min(sysctl_tcp_max_reordering, metric);
863
864 /* This exciting event is worth to be remembered. 8) */
865 if (ts)
866 mib_idx = LINUX_MIB_TCPTSREORDER;
867 else if (tcp_is_reno(tp))
868 mib_idx = LINUX_MIB_TCPRENOREORDER;
869 else if (tcp_is_fack(tp))
870 mib_idx = LINUX_MIB_TCPFACKREORDER;
871 else
872 mib_idx = LINUX_MIB_TCPSACKREORDER;
873
874 NET_INC_STATS(sock_net(sk), mib_idx);
875 #if FASTRETRANS_DEBUG > 1
876 pr_debug("Disorder%d %d %u f%u s%u rr%d\n",
877 tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state,
878 tp->reordering,
879 tp->fackets_out,
880 tp->sacked_out,
881 tp->undo_marker ? tp->undo_retrans : 0);
882 #endif
883 tcp_disable_fack(tp);
884 }
885
886 if (metric > 0)
887 tcp_disable_early_retrans(tp);
888 tp->rack.reord = 1;
889 }
890
891 /* This must be called before lost_out is incremented */
892 static void tcp_verify_retransmit_hint(struct tcp_sock *tp, struct sk_buff *skb)
893 {
894 if (!tp->retransmit_skb_hint ||
895 before(TCP_SKB_CB(skb)->seq,
896 TCP_SKB_CB(tp->retransmit_skb_hint)->seq))
897 tp->retransmit_skb_hint = skb;
898
899 if (!tp->lost_out ||
900 after(TCP_SKB_CB(skb)->end_seq, tp->retransmit_high))
901 tp->retransmit_high = TCP_SKB_CB(skb)->end_seq;
902 }
903
904 /* Sum the number of packets on the wire we have marked as lost.
905 * There are two cases we care about here:
906 * a) Packet hasn't been marked lost (nor retransmitted),
907 * and this is the first loss.
908 * b) Packet has been marked both lost and retransmitted,
909 * and this means we think it was lost again.
910 */
911 static void tcp_sum_lost(struct tcp_sock *tp, struct sk_buff *skb)
912 {
913 __u8 sacked = TCP_SKB_CB(skb)->sacked;
914
915 if (!(sacked & TCPCB_LOST) ||
916 ((sacked & TCPCB_LOST) && (sacked & TCPCB_SACKED_RETRANS)))
917 tp->lost += tcp_skb_pcount(skb);
918 }
919
920 static void tcp_skb_mark_lost(struct tcp_sock *tp, struct sk_buff *skb)
921 {
922 if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
923 tcp_verify_retransmit_hint(tp, skb);
924
925 tp->lost_out += tcp_skb_pcount(skb);
926 tcp_sum_lost(tp, skb);
927 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
928 }
929 }
930
931 void tcp_skb_mark_lost_uncond_verify(struct tcp_sock *tp, struct sk_buff *skb)
932 {
933 tcp_verify_retransmit_hint(tp, skb);
934
935 tcp_sum_lost(tp, skb);
936 if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
937 tp->lost_out += tcp_skb_pcount(skb);
938 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
939 }
940 }
941
942 /* This procedure tags the retransmission queue when SACKs arrive.
943 *
944 * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L).
945 * Packets in queue with these bits set are counted in variables
946 * sacked_out, retrans_out and lost_out, correspondingly.
947 *
948 * Valid combinations are:
949 * Tag InFlight Description
950 * 0 1 - orig segment is in flight.
951 * S 0 - nothing flies, orig reached receiver.
952 * L 0 - nothing flies, orig lost by net.
953 * R 2 - both orig and retransmit are in flight.
954 * L|R 1 - orig is lost, retransmit is in flight.
955 * S|R 1 - orig reached receiver, retrans is still in flight.
956 * (L|S|R is logically valid, it could occur when L|R is sacked,
957 * but it is equivalent to plain S and code short-curcuits it to S.
958 * L|S is logically invalid, it would mean -1 packet in flight 8))
959 *
960 * These 6 states form finite state machine, controlled by the following events:
961 * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue())
962 * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue())
963 * 3. Loss detection event of two flavors:
964 * A. Scoreboard estimator decided the packet is lost.
965 * A'. Reno "three dupacks" marks head of queue lost.
966 * A''. Its FACK modification, head until snd.fack is lost.
967 * B. SACK arrives sacking SND.NXT at the moment, when the
968 * segment was retransmitted.
969 * 4. D-SACK added new rule: D-SACK changes any tag to S.
970 *
971 * It is pleasant to note, that state diagram turns out to be commutative,
972 * so that we are allowed not to be bothered by order of our actions,
973 * when multiple events arrive simultaneously. (see the function below).
974 *
975 * Reordering detection.
976 * --------------------
977 * Reordering metric is maximal distance, which a packet can be displaced
978 * in packet stream. With SACKs we can estimate it:
979 *
980 * 1. SACK fills old hole and the corresponding segment was not
981 * ever retransmitted -> reordering. Alas, we cannot use it
982 * when segment was retransmitted.
983 * 2. The last flaw is solved with D-SACK. D-SACK arrives
984 * for retransmitted and already SACKed segment -> reordering..
985 * Both of these heuristics are not used in Loss state, when we cannot
986 * account for retransmits accurately.
987 *
988 * SACK block validation.
989 * ----------------------
990 *
991 * SACK block range validation checks that the received SACK block fits to
992 * the expected sequence limits, i.e., it is between SND.UNA and SND.NXT.
993 * Note that SND.UNA is not included to the range though being valid because
994 * it means that the receiver is rather inconsistent with itself reporting
995 * SACK reneging when it should advance SND.UNA. Such SACK block this is
996 * perfectly valid, however, in light of RFC2018 which explicitly states
997 * that "SACK block MUST reflect the newest segment. Even if the newest
998 * segment is going to be discarded ...", not that it looks very clever
999 * in case of head skb. Due to potentional receiver driven attacks, we
1000 * choose to avoid immediate execution of a walk in write queue due to
1001 * reneging and defer head skb's loss recovery to standard loss recovery
1002 * procedure that will eventually trigger (nothing forbids us doing this).
1003 *
1004 * Implements also blockage to start_seq wrap-around. Problem lies in the
1005 * fact that though start_seq (s) is before end_seq (i.e., not reversed),
1006 * there's no guarantee that it will be before snd_nxt (n). The problem
1007 * happens when start_seq resides between end_seq wrap (e_w) and snd_nxt
1008 * wrap (s_w):
1009 *
1010 * <- outs wnd -> <- wrapzone ->
1011 * u e n u_w e_w s n_w
1012 * | | | | | | |
1013 * |<------------+------+----- TCP seqno space --------------+---------->|
1014 * ...-- <2^31 ->| |<--------...
1015 * ...---- >2^31 ------>| |<--------...
1016 *
1017 * Current code wouldn't be vulnerable but it's better still to discard such
1018 * crazy SACK blocks. Doing this check for start_seq alone closes somewhat
1019 * similar case (end_seq after snd_nxt wrap) as earlier reversed check in
1020 * snd_nxt wrap -> snd_una region will then become "well defined", i.e.,
1021 * equal to the ideal case (infinite seqno space without wrap caused issues).
1022 *
1023 * With D-SACK the lower bound is extended to cover sequence space below
1024 * SND.UNA down to undo_marker, which is the last point of interest. Yet
1025 * again, D-SACK block must not to go across snd_una (for the same reason as
1026 * for the normal SACK blocks, explained above). But there all simplicity
1027 * ends, TCP might receive valid D-SACKs below that. As long as they reside
1028 * fully below undo_marker they do not affect behavior in anyway and can
1029 * therefore be safely ignored. In rare cases (which are more or less
1030 * theoretical ones), the D-SACK will nicely cross that boundary due to skb
1031 * fragmentation and packet reordering past skb's retransmission. To consider
1032 * them correctly, the acceptable range must be extended even more though
1033 * the exact amount is rather hard to quantify. However, tp->max_window can
1034 * be used as an exaggerated estimate.
1035 */
1036 static bool tcp_is_sackblock_valid(struct tcp_sock *tp, bool is_dsack,
1037 u32 start_seq, u32 end_seq)
1038 {
1039 /* Too far in future, or reversed (interpretation is ambiguous) */
1040 if (after(end_seq, tp->snd_nxt) || !before(start_seq, end_seq))
1041 return false;
1042
1043 /* Nasty start_seq wrap-around check (see comments above) */
1044 if (!before(start_seq, tp->snd_nxt))
1045 return false;
1046
1047 /* In outstanding window? ...This is valid exit for D-SACKs too.
1048 * start_seq == snd_una is non-sensical (see comments above)
1049 */
1050 if (after(start_seq, tp->snd_una))
1051 return true;
1052
1053 if (!is_dsack || !tp->undo_marker)
1054 return false;
1055
1056 /* ...Then it's D-SACK, and must reside below snd_una completely */
1057 if (after(end_seq, tp->snd_una))
1058 return false;
1059
1060 if (!before(start_seq, tp->undo_marker))
1061 return true;
1062
1063 /* Too old */
1064 if (!after(end_seq, tp->undo_marker))
1065 return false;
1066
1067 /* Undo_marker boundary crossing (overestimates a lot). Known already:
1068 * start_seq < undo_marker and end_seq >= undo_marker.
1069 */
1070 return !before(start_seq, end_seq - tp->max_window);
1071 }
1072
1073 static bool tcp_check_dsack(struct sock *sk, const struct sk_buff *ack_skb,
1074 struct tcp_sack_block_wire *sp, int num_sacks,
1075 u32 prior_snd_una)
1076 {
1077 struct tcp_sock *tp = tcp_sk(sk);
1078 u32 start_seq_0 = get_unaligned_be32(&sp[0].start_seq);
1079 u32 end_seq_0 = get_unaligned_be32(&sp[0].end_seq);
1080 bool dup_sack = false;
1081
1082 if (before(start_seq_0, TCP_SKB_CB(ack_skb)->ack_seq)) {
1083 dup_sack = true;
1084 tcp_dsack_seen(tp);
1085 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKRECV);
1086 } else if (num_sacks > 1) {
1087 u32 end_seq_1 = get_unaligned_be32(&sp[1].end_seq);
1088 u32 start_seq_1 = get_unaligned_be32(&sp[1].start_seq);
1089
1090 if (!after(end_seq_0, end_seq_1) &&
1091 !before(start_seq_0, start_seq_1)) {
1092 dup_sack = true;
1093 tcp_dsack_seen(tp);
1094 NET_INC_STATS(sock_net(sk),
1095 LINUX_MIB_TCPDSACKOFORECV);
1096 }
1097 }
1098
1099 /* D-SACK for already forgotten data... Do dumb counting. */
1100 if (dup_sack && tp->undo_marker && tp->undo_retrans > 0 &&
1101 !after(end_seq_0, prior_snd_una) &&
1102 after(end_seq_0, tp->undo_marker))
1103 tp->undo_retrans--;
1104
1105 return dup_sack;
1106 }
1107
1108 struct tcp_sacktag_state {
1109 int reord;
1110 int fack_count;
1111 /* Timestamps for earliest and latest never-retransmitted segment
1112 * that was SACKed. RTO needs the earliest RTT to stay conservative,
1113 * but congestion control should still get an accurate delay signal.
1114 */
1115 struct skb_mstamp first_sackt;
1116 struct skb_mstamp last_sackt;
1117 struct rate_sample *rate;
1118 int flag;
1119 };
1120
1121 /* Check if skb is fully within the SACK block. In presence of GSO skbs,
1122 * the incoming SACK may not exactly match but we can find smaller MSS
1123 * aligned portion of it that matches. Therefore we might need to fragment
1124 * which may fail and creates some hassle (caller must handle error case
1125 * returns).
1126 *
1127 * FIXME: this could be merged to shift decision code
1128 */
1129 static int tcp_match_skb_to_sack(struct sock *sk, struct sk_buff *skb,
1130 u32 start_seq, u32 end_seq)
1131 {
1132 int err;
1133 bool in_sack;
1134 unsigned int pkt_len;
1135 unsigned int mss;
1136
1137 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1138 !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1139
1140 if (tcp_skb_pcount(skb) > 1 && !in_sack &&
1141 after(TCP_SKB_CB(skb)->end_seq, start_seq)) {
1142 mss = tcp_skb_mss(skb);
1143 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1144
1145 if (!in_sack) {
1146 pkt_len = start_seq - TCP_SKB_CB(skb)->seq;
1147 if (pkt_len < mss)
1148 pkt_len = mss;
1149 } else {
1150 pkt_len = end_seq - TCP_SKB_CB(skb)->seq;
1151 if (pkt_len < mss)
1152 return -EINVAL;
1153 }
1154
1155 /* Round if necessary so that SACKs cover only full MSSes
1156 * and/or the remaining small portion (if present)
1157 */
1158 if (pkt_len > mss) {
1159 unsigned int new_len = (pkt_len / mss) * mss;
1160 if (!in_sack && new_len < pkt_len) {
1161 new_len += mss;
1162 if (new_len >= skb->len)
1163 return 0;
1164 }
1165 pkt_len = new_len;
1166 }
1167 err = tcp_fragment(sk, skb, pkt_len, mss, GFP_ATOMIC);
1168 if (err < 0)
1169 return err;
1170 }
1171
1172 return in_sack;
1173 }
1174
1175 /* Mark the given newly-SACKed range as such, adjusting counters and hints. */
1176 static u8 tcp_sacktag_one(struct sock *sk,
1177 struct tcp_sacktag_state *state, u8 sacked,
1178 u32 start_seq, u32 end_seq,
1179 int dup_sack, int pcount,
1180 const struct skb_mstamp *xmit_time)
1181 {
1182 struct tcp_sock *tp = tcp_sk(sk);
1183 int fack_count = state->fack_count;
1184
1185 /* Account D-SACK for retransmitted packet. */
1186 if (dup_sack && (sacked & TCPCB_RETRANS)) {
1187 if (tp->undo_marker && tp->undo_retrans > 0 &&
1188 after(end_seq, tp->undo_marker))
1189 tp->undo_retrans--;
1190 if (sacked & TCPCB_SACKED_ACKED)
1191 state->reord = min(fack_count, state->reord);
1192 }
1193
1194 /* Nothing to do; acked frame is about to be dropped (was ACKed). */
1195 if (!after(end_seq, tp->snd_una))
1196 return sacked;
1197
1198 if (!(sacked & TCPCB_SACKED_ACKED)) {
1199 tcp_rack_advance(tp, xmit_time, sacked);
1200
1201 if (sacked & TCPCB_SACKED_RETRANS) {
1202 /* If the segment is not tagged as lost,
1203 * we do not clear RETRANS, believing
1204 * that retransmission is still in flight.
1205 */
1206 if (sacked & TCPCB_LOST) {
1207 sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS);
1208 tp->lost_out -= pcount;
1209 tp->retrans_out -= pcount;
1210 }
1211 } else {
1212 if (!(sacked & TCPCB_RETRANS)) {
1213 /* New sack for not retransmitted frame,
1214 * which was in hole. It is reordering.
1215 */
1216 if (before(start_seq,
1217 tcp_highest_sack_seq(tp)))
1218 state->reord = min(fack_count,
1219 state->reord);
1220 if (!after(end_seq, tp->high_seq))
1221 state->flag |= FLAG_ORIG_SACK_ACKED;
1222 if (state->first_sackt.v64 == 0)
1223 state->first_sackt = *xmit_time;
1224 state->last_sackt = *xmit_time;
1225 }
1226
1227 if (sacked & TCPCB_LOST) {
1228 sacked &= ~TCPCB_LOST;
1229 tp->lost_out -= pcount;
1230 }
1231 }
1232
1233 sacked |= TCPCB_SACKED_ACKED;
1234 state->flag |= FLAG_DATA_SACKED;
1235 tp->sacked_out += pcount;
1236 tp->delivered += pcount; /* Out-of-order packets delivered */
1237
1238 fack_count += pcount;
1239
1240 /* Lost marker hint past SACKed? Tweak RFC3517 cnt */
1241 if (!tcp_is_fack(tp) && tp->lost_skb_hint &&
1242 before(start_seq, TCP_SKB_CB(tp->lost_skb_hint)->seq))
1243 tp->lost_cnt_hint += pcount;
1244
1245 if (fack_count > tp->fackets_out)
1246 tp->fackets_out = fack_count;
1247 }
1248
1249 /* D-SACK. We can detect redundant retransmission in S|R and plain R
1250 * frames and clear it. undo_retrans is decreased above, L|R frames
1251 * are accounted above as well.
1252 */
1253 if (dup_sack && (sacked & TCPCB_SACKED_RETRANS)) {
1254 sacked &= ~TCPCB_SACKED_RETRANS;
1255 tp->retrans_out -= pcount;
1256 }
1257
1258 return sacked;
1259 }
1260
1261 /* Shift newly-SACKed bytes from this skb to the immediately previous
1262 * already-SACKed sk_buff. Mark the newly-SACKed bytes as such.
1263 */
1264 static bool tcp_shifted_skb(struct sock *sk, struct sk_buff *skb,
1265 struct tcp_sacktag_state *state,
1266 unsigned int pcount, int shifted, int mss,
1267 bool dup_sack)
1268 {
1269 struct tcp_sock *tp = tcp_sk(sk);
1270 struct sk_buff *prev = tcp_write_queue_prev(sk, skb);
1271 u32 start_seq = TCP_SKB_CB(skb)->seq; /* start of newly-SACKed */
1272 u32 end_seq = start_seq + shifted; /* end of newly-SACKed */
1273
1274 BUG_ON(!pcount);
1275
1276 /* Adjust counters and hints for the newly sacked sequence
1277 * range but discard the return value since prev is already
1278 * marked. We must tag the range first because the seq
1279 * advancement below implicitly advances
1280 * tcp_highest_sack_seq() when skb is highest_sack.
1281 */
1282 tcp_sacktag_one(sk, state, TCP_SKB_CB(skb)->sacked,
1283 start_seq, end_seq, dup_sack, pcount,
1284 &skb->skb_mstamp);
1285 tcp_rate_skb_delivered(sk, skb, state->rate);
1286
1287 if (skb == tp->lost_skb_hint)
1288 tp->lost_cnt_hint += pcount;
1289
1290 TCP_SKB_CB(prev)->end_seq += shifted;
1291 TCP_SKB_CB(skb)->seq += shifted;
1292
1293 tcp_skb_pcount_add(prev, pcount);
1294 BUG_ON(tcp_skb_pcount(skb) < pcount);
1295 tcp_skb_pcount_add(skb, -pcount);
1296
1297 /* When we're adding to gso_segs == 1, gso_size will be zero,
1298 * in theory this shouldn't be necessary but as long as DSACK
1299 * code can come after this skb later on it's better to keep
1300 * setting gso_size to something.
1301 */
1302 if (!TCP_SKB_CB(prev)->tcp_gso_size)
1303 TCP_SKB_CB(prev)->tcp_gso_size = mss;
1304
1305 /* CHECKME: To clear or not to clear? Mimics normal skb currently */
1306 if (tcp_skb_pcount(skb) <= 1)
1307 TCP_SKB_CB(skb)->tcp_gso_size = 0;
1308
1309 /* Difference in this won't matter, both ACKed by the same cumul. ACK */
1310 TCP_SKB_CB(prev)->sacked |= (TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS);
1311
1312 if (skb->len > 0) {
1313 BUG_ON(!tcp_skb_pcount(skb));
1314 NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKSHIFTED);
1315 return false;
1316 }
1317
1318 /* Whole SKB was eaten :-) */
1319
1320 if (skb == tp->retransmit_skb_hint)
1321 tp->retransmit_skb_hint = prev;
1322 if (skb == tp->lost_skb_hint) {
1323 tp->lost_skb_hint = prev;
1324 tp->lost_cnt_hint -= tcp_skb_pcount(prev);
1325 }
1326
1327 TCP_SKB_CB(prev)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags;
1328 TCP_SKB_CB(prev)->eor = TCP_SKB_CB(skb)->eor;
1329 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
1330 TCP_SKB_CB(prev)->end_seq++;
1331
1332 if (skb == tcp_highest_sack(sk))
1333 tcp_advance_highest_sack(sk, skb);
1334
1335 tcp_skb_collapse_tstamp(prev, skb);
1336 if (unlikely(TCP_SKB_CB(prev)->tx.delivered_mstamp.v64))
1337 TCP_SKB_CB(prev)->tx.delivered_mstamp.v64 = 0;
1338
1339 tcp_unlink_write_queue(skb, sk);
1340 sk_wmem_free_skb(sk, skb);
1341
1342 NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKMERGED);
1343
1344 return true;
1345 }
1346
1347 /* I wish gso_size would have a bit more sane initialization than
1348 * something-or-zero which complicates things
1349 */
1350 static int tcp_skb_seglen(const struct sk_buff *skb)
1351 {
1352 return tcp_skb_pcount(skb) == 1 ? skb->len : tcp_skb_mss(skb);
1353 }
1354
1355 /* Shifting pages past head area doesn't work */
1356 static int skb_can_shift(const struct sk_buff *skb)
1357 {
1358 return !skb_headlen(skb) && skb_is_nonlinear(skb);
1359 }
1360
1361 /* Try collapsing SACK blocks spanning across multiple skbs to a single
1362 * skb.
1363 */
1364 static struct sk_buff *tcp_shift_skb_data(struct sock *sk, struct sk_buff *skb,
1365 struct tcp_sacktag_state *state,
1366 u32 start_seq, u32 end_seq,
1367 bool dup_sack)
1368 {
1369 struct tcp_sock *tp = tcp_sk(sk);
1370 struct sk_buff *prev;
1371 int mss;
1372 int pcount = 0;
1373 int len;
1374 int in_sack;
1375
1376 if (!sk_can_gso(sk))
1377 goto fallback;
1378
1379 /* Normally R but no L won't result in plain S */
1380 if (!dup_sack &&
1381 (TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_RETRANS)) == TCPCB_SACKED_RETRANS)
1382 goto fallback;
1383 if (!skb_can_shift(skb))
1384 goto fallback;
1385 /* This frame is about to be dropped (was ACKed). */
1386 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1387 goto fallback;
1388
1389 /* Can only happen with delayed DSACK + discard craziness */
1390 if (unlikely(skb == tcp_write_queue_head(sk)))
1391 goto fallback;
1392 prev = tcp_write_queue_prev(sk, skb);
1393
1394 if ((TCP_SKB_CB(prev)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED)
1395 goto fallback;
1396
1397 if (!tcp_skb_can_collapse_to(prev))
1398 goto fallback;
1399
1400 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1401 !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1402
1403 if (in_sack) {
1404 len = skb->len;
1405 pcount = tcp_skb_pcount(skb);
1406 mss = tcp_skb_seglen(skb);
1407
1408 /* TODO: Fix DSACKs to not fragment already SACKed and we can
1409 * drop this restriction as unnecessary
1410 */
1411 if (mss != tcp_skb_seglen(prev))
1412 goto fallback;
1413 } else {
1414 if (!after(TCP_SKB_CB(skb)->end_seq, start_seq))
1415 goto noop;
1416 /* CHECKME: This is non-MSS split case only?, this will
1417 * cause skipped skbs due to advancing loop btw, original
1418 * has that feature too
1419 */
1420 if (tcp_skb_pcount(skb) <= 1)
1421 goto noop;
1422
1423 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1424 if (!in_sack) {
1425 /* TODO: head merge to next could be attempted here
1426 * if (!after(TCP_SKB_CB(skb)->end_seq, end_seq)),
1427 * though it might not be worth of the additional hassle
1428 *
1429 * ...we can probably just fallback to what was done
1430 * previously. We could try merging non-SACKed ones
1431 * as well but it probably isn't going to buy off
1432 * because later SACKs might again split them, and
1433 * it would make skb timestamp tracking considerably
1434 * harder problem.
1435 */
1436 goto fallback;
1437 }
1438
1439 len = end_seq - TCP_SKB_CB(skb)->seq;
1440 BUG_ON(len < 0);
1441 BUG_ON(len > skb->len);
1442
1443 /* MSS boundaries should be honoured or else pcount will
1444 * severely break even though it makes things bit trickier.
1445 * Optimize common case to avoid most of the divides
1446 */
1447 mss = tcp_skb_mss(skb);
1448
1449 /* TODO: Fix DSACKs to not fragment already SACKed and we can
1450 * drop this restriction as unnecessary
1451 */
1452 if (mss != tcp_skb_seglen(prev))
1453 goto fallback;
1454
1455 if (len == mss) {
1456 pcount = 1;
1457 } else if (len < mss) {
1458 goto noop;
1459 } else {
1460 pcount = len / mss;
1461 len = pcount * mss;
1462 }
1463 }
1464
1465 /* tcp_sacktag_one() won't SACK-tag ranges below snd_una */
1466 if (!after(TCP_SKB_CB(skb)->seq + len, tp->snd_una))
1467 goto fallback;
1468
1469 if (!skb_shift(prev, skb, len))
1470 goto fallback;
1471 if (!tcp_shifted_skb(sk, skb, state, pcount, len, mss, dup_sack))
1472 goto out;
1473
1474 /* Hole filled allows collapsing with the next as well, this is very
1475 * useful when hole on every nth skb pattern happens
1476 */
1477 if (prev == tcp_write_queue_tail(sk))
1478 goto out;
1479 skb = tcp_write_queue_next(sk, prev);
1480
1481 if (!skb_can_shift(skb) ||
1482 (skb == tcp_send_head(sk)) ||
1483 ((TCP_SKB_CB(skb)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) ||
1484 (mss != tcp_skb_seglen(skb)))
1485 goto out;
1486
1487 len = skb->len;
1488 if (skb_shift(prev, skb, len)) {
1489 pcount += tcp_skb_pcount(skb);
1490 tcp_shifted_skb(sk, skb, state, tcp_skb_pcount(skb), len, mss, 0);
1491 }
1492
1493 out:
1494 state->fack_count += pcount;
1495 return prev;
1496
1497 noop:
1498 return skb;
1499
1500 fallback:
1501 NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKSHIFTFALLBACK);
1502 return NULL;
1503 }
1504
1505 static struct sk_buff *tcp_sacktag_walk(struct sk_buff *skb, struct sock *sk,
1506 struct tcp_sack_block *next_dup,
1507 struct tcp_sacktag_state *state,
1508 u32 start_seq, u32 end_seq,
1509 bool dup_sack_in)
1510 {
1511 struct tcp_sock *tp = tcp_sk(sk);
1512 struct sk_buff *tmp;
1513
1514 tcp_for_write_queue_from(skb, sk) {
1515 int in_sack = 0;
1516 bool dup_sack = dup_sack_in;
1517
1518 if (skb == tcp_send_head(sk))
1519 break;
1520
1521 /* queue is in-order => we can short-circuit the walk early */
1522 if (!before(TCP_SKB_CB(skb)->seq, end_seq))
1523 break;
1524
1525 if (next_dup &&
1526 before(TCP_SKB_CB(skb)->seq, next_dup->end_seq)) {
1527 in_sack = tcp_match_skb_to_sack(sk, skb,
1528 next_dup->start_seq,
1529 next_dup->end_seq);
1530 if (in_sack > 0)
1531 dup_sack = true;
1532 }
1533
1534 /* skb reference here is a bit tricky to get right, since
1535 * shifting can eat and free both this skb and the next,
1536 * so not even _safe variant of the loop is enough.
1537 */
1538 if (in_sack <= 0) {
1539 tmp = tcp_shift_skb_data(sk, skb, state,
1540 start_seq, end_seq, dup_sack);
1541 if (tmp) {
1542 if (tmp != skb) {
1543 skb = tmp;
1544 continue;
1545 }
1546
1547 in_sack = 0;
1548 } else {
1549 in_sack = tcp_match_skb_to_sack(sk, skb,
1550 start_seq,
1551 end_seq);
1552 }
1553 }
1554
1555 if (unlikely(in_sack < 0))
1556 break;
1557
1558 if (in_sack) {
1559 TCP_SKB_CB(skb)->sacked =
1560 tcp_sacktag_one(sk,
1561 state,
1562 TCP_SKB_CB(skb)->sacked,
1563 TCP_SKB_CB(skb)->seq,
1564 TCP_SKB_CB(skb)->end_seq,
1565 dup_sack,
1566 tcp_skb_pcount(skb),
1567 &skb->skb_mstamp);
1568 tcp_rate_skb_delivered(sk, skb, state->rate);
1569
1570 if (!before(TCP_SKB_CB(skb)->seq,
1571 tcp_highest_sack_seq(tp)))
1572 tcp_advance_highest_sack(sk, skb);
1573 }
1574
1575 state->fack_count += tcp_skb_pcount(skb);
1576 }
1577 return skb;
1578 }
1579
1580 /* Avoid all extra work that is being done by sacktag while walking in
1581 * a normal way
1582 */
1583 static struct sk_buff *tcp_sacktag_skip(struct sk_buff *skb, struct sock *sk,
1584 struct tcp_sacktag_state *state,
1585 u32 skip_to_seq)
1586 {
1587 tcp_for_write_queue_from(skb, sk) {
1588 if (skb == tcp_send_head(sk))
1589 break;
1590
1591 if (after(TCP_SKB_CB(skb)->end_seq, skip_to_seq))
1592 break;
1593
1594 state->fack_count += tcp_skb_pcount(skb);
1595 }
1596 return skb;
1597 }
1598
1599 static struct sk_buff *tcp_maybe_skipping_dsack(struct sk_buff *skb,
1600 struct sock *sk,
1601 struct tcp_sack_block *next_dup,
1602 struct tcp_sacktag_state *state,
1603 u32 skip_to_seq)
1604 {
1605 if (!next_dup)
1606 return skb;
1607
1608 if (before(next_dup->start_seq, skip_to_seq)) {
1609 skb = tcp_sacktag_skip(skb, sk, state, next_dup->start_seq);
1610 skb = tcp_sacktag_walk(skb, sk, NULL, state,
1611 next_dup->start_seq, next_dup->end_seq,
1612 1);
1613 }
1614
1615 return skb;
1616 }
1617
1618 static int tcp_sack_cache_ok(const struct tcp_sock *tp, const struct tcp_sack_block *cache)
1619 {
1620 return cache < tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1621 }
1622
1623 static int
1624 tcp_sacktag_write_queue(struct sock *sk, const struct sk_buff *ack_skb,
1625 u32 prior_snd_una, struct tcp_sacktag_state *state)
1626 {
1627 struct tcp_sock *tp = tcp_sk(sk);
1628 const unsigned char *ptr = (skb_transport_header(ack_skb) +
1629 TCP_SKB_CB(ack_skb)->sacked);
1630 struct tcp_sack_block_wire *sp_wire = (struct tcp_sack_block_wire *)(ptr+2);
1631 struct tcp_sack_block sp[TCP_NUM_SACKS];
1632 struct tcp_sack_block *cache;
1633 struct sk_buff *skb;
1634 int num_sacks = min(TCP_NUM_SACKS, (ptr[1] - TCPOLEN_SACK_BASE) >> 3);
1635 int used_sacks;
1636 bool found_dup_sack = false;
1637 int i, j;
1638 int first_sack_index;
1639
1640 state->flag = 0;
1641 state->reord = tp->packets_out;
1642
1643 if (!tp->sacked_out) {
1644 if (WARN_ON(tp->fackets_out))
1645 tp->fackets_out = 0;
1646 tcp_highest_sack_reset(sk);
1647 }
1648
1649 found_dup_sack = tcp_check_dsack(sk, ack_skb, sp_wire,
1650 num_sacks, prior_snd_una);
1651 if (found_dup_sack) {
1652 state->flag |= FLAG_DSACKING_ACK;
1653 tp->delivered++; /* A spurious retransmission is delivered */
1654 }
1655
1656 /* Eliminate too old ACKs, but take into
1657 * account more or less fresh ones, they can
1658 * contain valid SACK info.
1659 */
1660 if (before(TCP_SKB_CB(ack_skb)->ack_seq, prior_snd_una - tp->max_window))
1661 return 0;
1662
1663 if (!tp->packets_out)
1664 goto out;
1665
1666 used_sacks = 0;
1667 first_sack_index = 0;
1668 for (i = 0; i < num_sacks; i++) {
1669 bool dup_sack = !i && found_dup_sack;
1670
1671 sp[used_sacks].start_seq = get_unaligned_be32(&sp_wire[i].start_seq);
1672 sp[used_sacks].end_seq = get_unaligned_be32(&sp_wire[i].end_seq);
1673
1674 if (!tcp_is_sackblock_valid(tp, dup_sack,
1675 sp[used_sacks].start_seq,
1676 sp[used_sacks].end_seq)) {
1677 int mib_idx;
1678
1679 if (dup_sack) {
1680 if (!tp->undo_marker)
1681 mib_idx = LINUX_MIB_TCPDSACKIGNOREDNOUNDO;
1682 else
1683 mib_idx = LINUX_MIB_TCPDSACKIGNOREDOLD;
1684 } else {
1685 /* Don't count olds caused by ACK reordering */
1686 if ((TCP_SKB_CB(ack_skb)->ack_seq != tp->snd_una) &&
1687 !after(sp[used_sacks].end_seq, tp->snd_una))
1688 continue;
1689 mib_idx = LINUX_MIB_TCPSACKDISCARD;
1690 }
1691
1692 NET_INC_STATS(sock_net(sk), mib_idx);
1693 if (i == 0)
1694 first_sack_index = -1;
1695 continue;
1696 }
1697
1698 /* Ignore very old stuff early */
1699 if (!after(sp[used_sacks].end_seq, prior_snd_una))
1700 continue;
1701
1702 used_sacks++;
1703 }
1704
1705 /* order SACK blocks to allow in order walk of the retrans queue */
1706 for (i = used_sacks - 1; i > 0; i--) {
1707 for (j = 0; j < i; j++) {
1708 if (after(sp[j].start_seq, sp[j + 1].start_seq)) {
1709 swap(sp[j], sp[j + 1]);
1710
1711 /* Track where the first SACK block goes to */
1712 if (j == first_sack_index)
1713 first_sack_index = j + 1;
1714 }
1715 }
1716 }
1717
1718 skb = tcp_write_queue_head(sk);
1719 state->fack_count = 0;
1720 i = 0;
1721
1722 if (!tp->sacked_out) {
1723 /* It's already past, so skip checking against it */
1724 cache = tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1725 } else {
1726 cache = tp->recv_sack_cache;
1727 /* Skip empty blocks in at head of the cache */
1728 while (tcp_sack_cache_ok(tp, cache) && !cache->start_seq &&
1729 !cache->end_seq)
1730 cache++;
1731 }
1732
1733 while (i < used_sacks) {
1734 u32 start_seq = sp[i].start_seq;
1735 u32 end_seq = sp[i].end_seq;
1736 bool dup_sack = (found_dup_sack && (i == first_sack_index));
1737 struct tcp_sack_block *next_dup = NULL;
1738
1739 if (found_dup_sack && ((i + 1) == first_sack_index))
1740 next_dup = &sp[i + 1];
1741
1742 /* Skip too early cached blocks */
1743 while (tcp_sack_cache_ok(tp, cache) &&
1744 !before(start_seq, cache->end_seq))
1745 cache++;
1746
1747 /* Can skip some work by looking recv_sack_cache? */
1748 if (tcp_sack_cache_ok(tp, cache) && !dup_sack &&
1749 after(end_seq, cache->start_seq)) {
1750
1751 /* Head todo? */
1752 if (before(start_seq, cache->start_seq)) {
1753 skb = tcp_sacktag_skip(skb, sk, state,
1754 start_seq);
1755 skb = tcp_sacktag_walk(skb, sk, next_dup,
1756 state,
1757 start_seq,
1758 cache->start_seq,
1759 dup_sack);
1760 }
1761
1762 /* Rest of the block already fully processed? */
1763 if (!after(end_seq, cache->end_seq))
1764 goto advance_sp;
1765
1766 skb = tcp_maybe_skipping_dsack(skb, sk, next_dup,
1767 state,
1768 cache->end_seq);
1769
1770 /* ...tail remains todo... */
1771 if (tcp_highest_sack_seq(tp) == cache->end_seq) {
1772 /* ...but better entrypoint exists! */
1773 skb = tcp_highest_sack(sk);
1774 if (!skb)
1775 break;
1776 state->fack_count = tp->fackets_out;
1777 cache++;
1778 goto walk;
1779 }
1780
1781 skb = tcp_sacktag_skip(skb, sk, state, cache->end_seq);
1782 /* Check overlap against next cached too (past this one already) */
1783 cache++;
1784 continue;
1785 }
1786
1787 if (!before(start_seq, tcp_highest_sack_seq(tp))) {
1788 skb = tcp_highest_sack(sk);
1789 if (!skb)
1790 break;
1791 state->fack_count = tp->fackets_out;
1792 }
1793 skb = tcp_sacktag_skip(skb, sk, state, start_seq);
1794
1795 walk:
1796 skb = tcp_sacktag_walk(skb, sk, next_dup, state,
1797 start_seq, end_seq, dup_sack);
1798
1799 advance_sp:
1800 i++;
1801 }
1802
1803 /* Clear the head of the cache sack blocks so we can skip it next time */
1804 for (i = 0; i < ARRAY_SIZE(tp->recv_sack_cache) - used_sacks; i++) {
1805 tp->recv_sack_cache[i].start_seq = 0;
1806 tp->recv_sack_cache[i].end_seq = 0;
1807 }
1808 for (j = 0; j < used_sacks; j++)
1809 tp->recv_sack_cache[i++] = sp[j];
1810
1811 if ((state->reord < tp->fackets_out) &&
1812 ((inet_csk(sk)->icsk_ca_state != TCP_CA_Loss) || tp->undo_marker))
1813 tcp_update_reordering(sk, tp->fackets_out - state->reord, 0);
1814
1815 tcp_verify_left_out(tp);
1816 out:
1817
1818 #if FASTRETRANS_DEBUG > 0
1819 WARN_ON((int)tp->sacked_out < 0);
1820 WARN_ON((int)tp->lost_out < 0);
1821 WARN_ON((int)tp->retrans_out < 0);
1822 WARN_ON((int)tcp_packets_in_flight(tp) < 0);
1823 #endif
1824 return state->flag;
1825 }
1826
1827 /* Limits sacked_out so that sum with lost_out isn't ever larger than
1828 * packets_out. Returns false if sacked_out adjustement wasn't necessary.
1829 */
1830 static bool tcp_limit_reno_sacked(struct tcp_sock *tp)
1831 {
1832 u32 holes;
1833
1834 holes = max(tp->lost_out, 1U);
1835 holes = min(holes, tp->packets_out);
1836
1837 if ((tp->sacked_out + holes) > tp->packets_out) {
1838 tp->sacked_out = tp->packets_out - holes;
1839 return true;
1840 }
1841 return false;
1842 }
1843
1844 /* If we receive more dupacks than we expected counting segments
1845 * in assumption of absent reordering, interpret this as reordering.
1846 * The only another reason could be bug in receiver TCP.
1847 */
1848 static void tcp_check_reno_reordering(struct sock *sk, const int addend)
1849 {
1850 struct tcp_sock *tp = tcp_sk(sk);
1851 if (tcp_limit_reno_sacked(tp))
1852 tcp_update_reordering(sk, tp->packets_out + addend, 0);
1853 }
1854
1855 /* Emulate SACKs for SACKless connection: account for a new dupack. */
1856
1857 static void tcp_add_reno_sack(struct sock *sk)
1858 {
1859 struct tcp_sock *tp = tcp_sk(sk);
1860 u32 prior_sacked = tp->sacked_out;
1861
1862 tp->sacked_out++;
1863 tcp_check_reno_reordering(sk, 0);
1864 if (tp->sacked_out > prior_sacked)
1865 tp->delivered++; /* Some out-of-order packet is delivered */
1866 tcp_verify_left_out(tp);
1867 }
1868
1869 /* Account for ACK, ACKing some data in Reno Recovery phase. */
1870
1871 static void tcp_remove_reno_sacks(struct sock *sk, int acked)
1872 {
1873 struct tcp_sock *tp = tcp_sk(sk);
1874
1875 if (acked > 0) {
1876 /* One ACK acked hole. The rest eat duplicate ACKs. */
1877 tp->delivered += max_t(int, acked - tp->sacked_out, 1);
1878 if (acked - 1 >= tp->sacked_out)
1879 tp->sacked_out = 0;
1880 else
1881 tp->sacked_out -= acked - 1;
1882 }
1883 tcp_check_reno_reordering(sk, acked);
1884 tcp_verify_left_out(tp);
1885 }
1886
1887 static inline void tcp_reset_reno_sack(struct tcp_sock *tp)
1888 {
1889 tp->sacked_out = 0;
1890 }
1891
1892 void tcp_clear_retrans(struct tcp_sock *tp)
1893 {
1894 tp->retrans_out = 0;
1895 tp->lost_out = 0;
1896 tp->undo_marker = 0;
1897 tp->undo_retrans = -1;
1898 tp->fackets_out = 0;
1899 tp->sacked_out = 0;
1900 }
1901
1902 static inline void tcp_init_undo(struct tcp_sock *tp)
1903 {
1904 tp->undo_marker = tp->snd_una;
1905 /* Retransmission still in flight may cause DSACKs later. */
1906 tp->undo_retrans = tp->retrans_out ? : -1;
1907 }
1908
1909 /* Enter Loss state. If we detect SACK reneging, forget all SACK information
1910 * and reset tags completely, otherwise preserve SACKs. If receiver
1911 * dropped its ofo queue, we will know this due to reneging detection.
1912 */
1913 void tcp_enter_loss(struct sock *sk)
1914 {
1915 const struct inet_connection_sock *icsk = inet_csk(sk);
1916 struct tcp_sock *tp = tcp_sk(sk);
1917 struct net *net = sock_net(sk);
1918 struct sk_buff *skb;
1919 bool new_recovery = icsk->icsk_ca_state < TCP_CA_Recovery;
1920 bool is_reneg; /* is receiver reneging on SACKs? */
1921 bool mark_lost;
1922
1923 /* Reduce ssthresh if it has not yet been made inside this window. */
1924 if (icsk->icsk_ca_state <= TCP_CA_Disorder ||
1925 !after(tp->high_seq, tp->snd_una) ||
1926 (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) {
1927 tp->prior_ssthresh = tcp_current_ssthresh(sk);
1928 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
1929 tcp_ca_event(sk, CA_EVENT_LOSS);
1930 tcp_init_undo(tp);
1931 }
1932 tp->snd_cwnd = 1;
1933 tp->snd_cwnd_cnt = 0;
1934 tp->snd_cwnd_stamp = tcp_time_stamp;
1935
1936 tp->retrans_out = 0;
1937 tp->lost_out = 0;
1938
1939 if (tcp_is_reno(tp))
1940 tcp_reset_reno_sack(tp);
1941
1942 skb = tcp_write_queue_head(sk);
1943 is_reneg = skb && (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED);
1944 if (is_reneg) {
1945 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSACKRENEGING);
1946 tp->sacked_out = 0;
1947 tp->fackets_out = 0;
1948 }
1949 tcp_clear_all_retrans_hints(tp);
1950
1951 tcp_for_write_queue(skb, sk) {
1952 if (skb == tcp_send_head(sk))
1953 break;
1954
1955 mark_lost = (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) ||
1956 is_reneg);
1957 if (mark_lost)
1958 tcp_sum_lost(tp, skb);
1959 TCP_SKB_CB(skb)->sacked &= (~TCPCB_TAGBITS)|TCPCB_SACKED_ACKED;
1960 if (mark_lost) {
1961 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_ACKED;
1962 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1963 tp->lost_out += tcp_skb_pcount(skb);
1964 tp->retransmit_high = TCP_SKB_CB(skb)->end_seq;
1965 }
1966 }
1967 tcp_verify_left_out(tp);
1968
1969 /* Timeout in disordered state after receiving substantial DUPACKs
1970 * suggests that the degree of reordering is over-estimated.
1971 */
1972 if (icsk->icsk_ca_state <= TCP_CA_Disorder &&
1973 tp->sacked_out >= net->ipv4.sysctl_tcp_reordering)
1974 tp->reordering = min_t(unsigned int, tp->reordering,
1975 net->ipv4.sysctl_tcp_reordering);
1976 tcp_set_ca_state(sk, TCP_CA_Loss);
1977 tp->high_seq = tp->snd_nxt;
1978 tcp_ecn_queue_cwr(tp);
1979
1980 /* F-RTO RFC5682 sec 3.1 step 1: retransmit SND.UNA if no previous
1981 * loss recovery is underway except recurring timeout(s) on
1982 * the same SND.UNA (sec 3.2). Disable F-RTO on path MTU probing
1983 */
1984 tp->frto = sysctl_tcp_frto &&
1985 (new_recovery || icsk->icsk_retransmits) &&
1986 !inet_csk(sk)->icsk_mtup.probe_size;
1987 }
1988
1989 /* If ACK arrived pointing to a remembered SACK, it means that our
1990 * remembered SACKs do not reflect real state of receiver i.e.
1991 * receiver _host_ is heavily congested (or buggy).
1992 *
1993 * To avoid big spurious retransmission bursts due to transient SACK
1994 * scoreboard oddities that look like reneging, we give the receiver a
1995 * little time (max(RTT/2, 10ms)) to send us some more ACKs that will
1996 * restore sanity to the SACK scoreboard. If the apparent reneging
1997 * persists until this RTO then we'll clear the SACK scoreboard.
1998 */
1999 static bool tcp_check_sack_reneging(struct sock *sk, int flag)
2000 {
2001 if (flag & FLAG_SACK_RENEGING) {
2002 struct tcp_sock *tp = tcp_sk(sk);
2003 unsigned long delay = max(usecs_to_jiffies(tp->srtt_us >> 4),
2004 msecs_to_jiffies(10));
2005
2006 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
2007 delay, TCP_RTO_MAX);
2008 return true;
2009 }
2010 return false;
2011 }
2012
2013 static inline int tcp_fackets_out(const struct tcp_sock *tp)
2014 {
2015 return tcp_is_reno(tp) ? tp->sacked_out + 1 : tp->fackets_out;
2016 }
2017
2018 /* Heurestics to calculate number of duplicate ACKs. There's no dupACKs
2019 * counter when SACK is enabled (without SACK, sacked_out is used for
2020 * that purpose).
2021 *
2022 * Instead, with FACK TCP uses fackets_out that includes both SACKed
2023 * segments up to the highest received SACK block so far and holes in
2024 * between them.
2025 *
2026 * With reordering, holes may still be in flight, so RFC3517 recovery
2027 * uses pure sacked_out (total number of SACKed segments) even though
2028 * it violates the RFC that uses duplicate ACKs, often these are equal
2029 * but when e.g. out-of-window ACKs or packet duplication occurs,
2030 * they differ. Since neither occurs due to loss, TCP should really
2031 * ignore them.
2032 */
2033 static inline int tcp_dupack_heuristics(const struct tcp_sock *tp)
2034 {
2035 return tcp_is_fack(tp) ? tp->fackets_out : tp->sacked_out + 1;
2036 }
2037
2038 static bool tcp_pause_early_retransmit(struct sock *sk, int flag)
2039 {
2040 struct tcp_sock *tp = tcp_sk(sk);
2041 unsigned long delay;
2042
2043 /* Delay early retransmit and entering fast recovery for
2044 * max(RTT/4, 2msec) unless ack has ECE mark, no RTT samples
2045 * available, or RTO is scheduled to fire first.
2046 */
2047 if (sysctl_tcp_early_retrans < 2 || sysctl_tcp_early_retrans > 3 ||
2048 (flag & FLAG_ECE) || !tp->srtt_us)
2049 return false;
2050
2051 delay = max(usecs_to_jiffies(tp->srtt_us >> 5),
2052 msecs_to_jiffies(2));
2053
2054 if (!time_after(inet_csk(sk)->icsk_timeout, (jiffies + delay)))
2055 return false;
2056
2057 inet_csk_reset_xmit_timer(sk, ICSK_TIME_EARLY_RETRANS, delay,
2058 TCP_RTO_MAX);
2059 return true;
2060 }
2061
2062 /* Linux NewReno/SACK/FACK/ECN state machine.
2063 * --------------------------------------
2064 *
2065 * "Open" Normal state, no dubious events, fast path.
2066 * "Disorder" In all the respects it is "Open",
2067 * but requires a bit more attention. It is entered when
2068 * we see some SACKs or dupacks. It is split of "Open"
2069 * mainly to move some processing from fast path to slow one.
2070 * "CWR" CWND was reduced due to some Congestion Notification event.
2071 * It can be ECN, ICMP source quench, local device congestion.
2072 * "Recovery" CWND was reduced, we are fast-retransmitting.
2073 * "Loss" CWND was reduced due to RTO timeout or SACK reneging.
2074 *
2075 * tcp_fastretrans_alert() is entered:
2076 * - each incoming ACK, if state is not "Open"
2077 * - when arrived ACK is unusual, namely:
2078 * * SACK
2079 * * Duplicate ACK.
2080 * * ECN ECE.
2081 *
2082 * Counting packets in flight is pretty simple.
2083 *
2084 * in_flight = packets_out - left_out + retrans_out
2085 *
2086 * packets_out is SND.NXT-SND.UNA counted in packets.
2087 *
2088 * retrans_out is number of retransmitted segments.
2089 *
2090 * left_out is number of segments left network, but not ACKed yet.
2091 *
2092 * left_out = sacked_out + lost_out
2093 *
2094 * sacked_out: Packets, which arrived to receiver out of order
2095 * and hence not ACKed. With SACKs this number is simply
2096 * amount of SACKed data. Even without SACKs
2097 * it is easy to give pretty reliable estimate of this number,
2098 * counting duplicate ACKs.
2099 *
2100 * lost_out: Packets lost by network. TCP has no explicit
2101 * "loss notification" feedback from network (for now).
2102 * It means that this number can be only _guessed_.
2103 * Actually, it is the heuristics to predict lossage that
2104 * distinguishes different algorithms.
2105 *
2106 * F.e. after RTO, when all the queue is considered as lost,
2107 * lost_out = packets_out and in_flight = retrans_out.
2108 *
2109 * Essentially, we have now two algorithms counting
2110 * lost packets.
2111 *
2112 * FACK: It is the simplest heuristics. As soon as we decided
2113 * that something is lost, we decide that _all_ not SACKed
2114 * packets until the most forward SACK are lost. I.e.
2115 * lost_out = fackets_out - sacked_out and left_out = fackets_out.
2116 * It is absolutely correct estimate, if network does not reorder
2117 * packets. And it loses any connection to reality when reordering
2118 * takes place. We use FACK by default until reordering
2119 * is suspected on the path to this destination.
2120 *
2121 * NewReno: when Recovery is entered, we assume that one segment
2122 * is lost (classic Reno). While we are in Recovery and
2123 * a partial ACK arrives, we assume that one more packet
2124 * is lost (NewReno). This heuristics are the same in NewReno
2125 * and SACK.
2126 *
2127 * Imagine, that's all! Forget about all this shamanism about CWND inflation
2128 * deflation etc. CWND is real congestion window, never inflated, changes
2129 * only according to classic VJ rules.
2130 *
2131 * Really tricky (and requiring careful tuning) part of algorithm
2132 * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue().
2133 * The first determines the moment _when_ we should reduce CWND and,
2134 * hence, slow down forward transmission. In fact, it determines the moment
2135 * when we decide that hole is caused by loss, rather than by a reorder.
2136 *
2137 * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill
2138 * holes, caused by lost packets.
2139 *
2140 * And the most logically complicated part of algorithm is undo
2141 * heuristics. We detect false retransmits due to both too early
2142 * fast retransmit (reordering) and underestimated RTO, analyzing
2143 * timestamps and D-SACKs. When we detect that some segments were
2144 * retransmitted by mistake and CWND reduction was wrong, we undo
2145 * window reduction and abort recovery phase. This logic is hidden
2146 * inside several functions named tcp_try_undo_<something>.
2147 */
2148
2149 /* This function decides, when we should leave Disordered state
2150 * and enter Recovery phase, reducing congestion window.
2151 *
2152 * Main question: may we further continue forward transmission
2153 * with the same cwnd?
2154 */
2155 static bool tcp_time_to_recover(struct sock *sk, int flag)
2156 {
2157 struct tcp_sock *tp = tcp_sk(sk);
2158 __u32 packets_out;
2159 int tcp_reordering = sock_net(sk)->ipv4.sysctl_tcp_reordering;
2160
2161 /* Trick#1: The loss is proven. */
2162 if (tp->lost_out)
2163 return true;
2164
2165 /* Not-A-Trick#2 : Classic rule... */
2166 if (tcp_dupack_heuristics(tp) > tp->reordering)
2167 return true;
2168
2169 /* Trick#4: It is still not OK... But will it be useful to delay
2170 * recovery more?
2171 */
2172 packets_out = tp->packets_out;
2173 if (packets_out <= tp->reordering &&
2174 tp->sacked_out >= max_t(__u32, packets_out/2, tcp_reordering) &&
2175 !tcp_may_send_now(sk)) {
2176 /* We have nothing to send. This connection is limited
2177 * either by receiver window or by application.
2178 */
2179 return true;
2180 }
2181
2182 /* If a thin stream is detected, retransmit after first
2183 * received dupack. Employ only if SACK is supported in order
2184 * to avoid possible corner-case series of spurious retransmissions
2185 * Use only if there are no unsent data.
2186 */
2187 if ((tp->thin_dupack || sysctl_tcp_thin_dupack) &&
2188 tcp_stream_is_thin(tp) && tcp_dupack_heuristics(tp) > 1 &&
2189 tcp_is_sack(tp) && !tcp_send_head(sk))
2190 return true;
2191
2192 /* Trick#6: TCP early retransmit, per RFC5827. To avoid spurious
2193 * retransmissions due to small network reorderings, we implement
2194 * Mitigation A.3 in the RFC and delay the retransmission for a short
2195 * interval if appropriate.
2196 */
2197 if (tp->do_early_retrans && !tp->retrans_out && tp->sacked_out &&
2198 (tp->packets_out >= (tp->sacked_out + 1) && tp->packets_out < 4) &&
2199 !tcp_may_send_now(sk))
2200 return !tcp_pause_early_retransmit(sk, flag);
2201
2202 return false;
2203 }
2204
2205 /* Detect loss in event "A" above by marking head of queue up as lost.
2206 * For FACK or non-SACK(Reno) senders, the first "packets" number of segments
2207 * are considered lost. For RFC3517 SACK, a segment is considered lost if it
2208 * has at least tp->reordering SACKed seqments above it; "packets" refers to
2209 * the maximum SACKed segments to pass before reaching this limit.
2210 */
2211 static void tcp_mark_head_lost(struct sock *sk, int packets, int mark_head)
2212 {
2213 struct tcp_sock *tp = tcp_sk(sk);
2214 struct sk_buff *skb;
2215 int cnt, oldcnt, lost;
2216 unsigned int mss;
2217 /* Use SACK to deduce losses of new sequences sent during recovery */
2218 const u32 loss_high = tcp_is_sack(tp) ? tp->snd_nxt : tp->high_seq;
2219
2220 WARN_ON(packets > tp->packets_out);
2221 if (tp->lost_skb_hint) {
2222 skb = tp->lost_skb_hint;
2223 cnt = tp->lost_cnt_hint;
2224 /* Head already handled? */
2225 if (mark_head && skb != tcp_write_queue_head(sk))
2226 return;
2227 } else {
2228 skb = tcp_write_queue_head(sk);
2229 cnt = 0;
2230 }
2231
2232 tcp_for_write_queue_from(skb, sk) {
2233 if (skb == tcp_send_head(sk))
2234 break;
2235 /* TODO: do this better */
2236 /* this is not the most efficient way to do this... */
2237 tp->lost_skb_hint = skb;
2238 tp->lost_cnt_hint = cnt;
2239
2240 if (after(TCP_SKB_CB(skb)->end_seq, loss_high))
2241 break;
2242
2243 oldcnt = cnt;
2244 if (tcp_is_fack(tp) || tcp_is_reno(tp) ||
2245 (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
2246 cnt += tcp_skb_pcount(skb);
2247
2248 if (cnt > packets) {
2249 if ((tcp_is_sack(tp) && !tcp_is_fack(tp)) ||
2250 (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) ||
2251 (oldcnt >= packets))
2252 break;
2253
2254 mss = tcp_skb_mss(skb);
2255 /* If needed, chop off the prefix to mark as lost. */
2256 lost = (packets - oldcnt) * mss;
2257 if (lost < skb->len &&
2258 tcp_fragment(sk, skb, lost, mss, GFP_ATOMIC) < 0)
2259 break;
2260 cnt = packets;
2261 }
2262
2263 tcp_skb_mark_lost(tp, skb);
2264
2265 if (mark_head)
2266 break;
2267 }
2268 tcp_verify_left_out(tp);
2269 }
2270
2271 /* Account newly detected lost packet(s) */
2272
2273 static void tcp_update_scoreboard(struct sock *sk, int fast_rexmit)
2274 {
2275 struct tcp_sock *tp = tcp_sk(sk);
2276
2277 if (tcp_is_reno(tp)) {
2278 tcp_mark_head_lost(sk, 1, 1);
2279 } else if (tcp_is_fack(tp)) {
2280 int lost = tp->fackets_out - tp->reordering;
2281 if (lost <= 0)
2282 lost = 1;
2283 tcp_mark_head_lost(sk, lost, 0);
2284 } else {
2285 int sacked_upto = tp->sacked_out - tp->reordering;
2286 if (sacked_upto >= 0)
2287 tcp_mark_head_lost(sk, sacked_upto, 0);
2288 else if (fast_rexmit)
2289 tcp_mark_head_lost(sk, 1, 1);
2290 }
2291 }
2292
2293 static bool tcp_tsopt_ecr_before(const struct tcp_sock *tp, u32 when)
2294 {
2295 return tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
2296 before(tp->rx_opt.rcv_tsecr, when);
2297 }
2298
2299 /* skb is spurious retransmitted if the returned timestamp echo
2300 * reply is prior to the skb transmission time
2301 */
2302 static bool tcp_skb_spurious_retrans(const struct tcp_sock *tp,
2303 const struct sk_buff *skb)
2304 {
2305 return (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS) &&
2306 tcp_tsopt_ecr_before(tp, tcp_skb_timestamp(skb));
2307 }
2308
2309 /* Nothing was retransmitted or returned timestamp is less
2310 * than timestamp of the first retransmission.
2311 */
2312 static inline bool tcp_packet_delayed(const struct tcp_sock *tp)
2313 {
2314 return !tp->retrans_stamp ||
2315 tcp_tsopt_ecr_before(tp, tp->retrans_stamp);
2316 }
2317
2318 /* Undo procedures. */
2319
2320 /* We can clear retrans_stamp when there are no retransmissions in the
2321 * window. It would seem that it is trivially available for us in
2322 * tp->retrans_out, however, that kind of assumptions doesn't consider
2323 * what will happen if errors occur when sending retransmission for the
2324 * second time. ...It could the that such segment has only
2325 * TCPCB_EVER_RETRANS set at the present time. It seems that checking
2326 * the head skb is enough except for some reneging corner cases that
2327 * are not worth the effort.
2328 *
2329 * Main reason for all this complexity is the fact that connection dying
2330 * time now depends on the validity of the retrans_stamp, in particular,
2331 * that successive retransmissions of a segment must not advance
2332 * retrans_stamp under any conditions.
2333 */
2334 static bool tcp_any_retrans_done(const struct sock *sk)
2335 {
2336 const struct tcp_sock *tp = tcp_sk(sk);
2337 struct sk_buff *skb;
2338
2339 if (tp->retrans_out)
2340 return true;
2341
2342 skb = tcp_write_queue_head(sk);
2343 if (unlikely(skb && TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS))
2344 return true;
2345
2346 return false;
2347 }
2348
2349 #if FASTRETRANS_DEBUG > 1
2350 static void DBGUNDO(struct sock *sk, const char *msg)
2351 {
2352 struct tcp_sock *tp = tcp_sk(sk);
2353 struct inet_sock *inet = inet_sk(sk);
2354
2355 if (sk->sk_family == AF_INET) {
2356 pr_debug("Undo %s %pI4/%u c%u l%u ss%u/%u p%u\n",
2357 msg,
2358 &inet->inet_daddr, ntohs(inet->inet_dport),
2359 tp->snd_cwnd, tcp_left_out(tp),
2360 tp->snd_ssthresh, tp->prior_ssthresh,
2361 tp->packets_out);
2362 }
2363 #if IS_ENABLED(CONFIG_IPV6)
2364 else if (sk->sk_family == AF_INET6) {
2365 pr_debug("Undo %s %pI6/%u c%u l%u ss%u/%u p%u\n",
2366 msg,
2367 &sk->sk_v6_daddr, ntohs(inet->inet_dport),
2368 tp->snd_cwnd, tcp_left_out(tp),
2369 tp->snd_ssthresh, tp->prior_ssthresh,
2370 tp->packets_out);
2371 }
2372 #endif
2373 }
2374 #else
2375 #define DBGUNDO(x...) do { } while (0)
2376 #endif
2377
2378 static void tcp_undo_cwnd_reduction(struct sock *sk, bool unmark_loss)
2379 {
2380 struct tcp_sock *tp = tcp_sk(sk);
2381
2382 if (unmark_loss) {
2383 struct sk_buff *skb;
2384
2385 tcp_for_write_queue(skb, sk) {
2386 if (skb == tcp_send_head(sk))
2387 break;
2388 TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
2389 }
2390 tp->lost_out = 0;
2391 tcp_clear_all_retrans_hints(tp);
2392 }
2393
2394 if (tp->prior_ssthresh) {
2395 const struct inet_connection_sock *icsk = inet_csk(sk);
2396
2397 if (icsk->icsk_ca_ops->undo_cwnd)
2398 tp->snd_cwnd = icsk->icsk_ca_ops->undo_cwnd(sk);
2399 else
2400 tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh << 1);
2401
2402 if (tp->prior_ssthresh > tp->snd_ssthresh) {
2403 tp->snd_ssthresh = tp->prior_ssthresh;
2404 tcp_ecn_withdraw_cwr(tp);
2405 }
2406 }
2407 tp->snd_cwnd_stamp = tcp_time_stamp;
2408 tp->undo_marker = 0;
2409 }
2410
2411 static inline bool tcp_may_undo(const struct tcp_sock *tp)
2412 {
2413 return tp->undo_marker && (!tp->undo_retrans || tcp_packet_delayed(tp));
2414 }
2415
2416 /* People celebrate: "We love our President!" */
2417 static bool tcp_try_undo_recovery(struct sock *sk)
2418 {
2419 struct tcp_sock *tp = tcp_sk(sk);
2420
2421 if (tcp_may_undo(tp)) {
2422 int mib_idx;
2423
2424 /* Happy end! We did not retransmit anything
2425 * or our original transmission succeeded.
2426 */
2427 DBGUNDO(sk, inet_csk(sk)->icsk_ca_state == TCP_CA_Loss ? "loss" : "retrans");
2428 tcp_undo_cwnd_reduction(sk, false);
2429 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss)
2430 mib_idx = LINUX_MIB_TCPLOSSUNDO;
2431 else
2432 mib_idx = LINUX_MIB_TCPFULLUNDO;
2433
2434 NET_INC_STATS(sock_net(sk), mib_idx);
2435 }
2436 if (tp->snd_una == tp->high_seq && tcp_is_reno(tp)) {
2437 /* Hold old state until something *above* high_seq
2438 * is ACKed. For Reno it is MUST to prevent false
2439 * fast retransmits (RFC2582). SACK TCP is safe. */
2440 if (!tcp_any_retrans_done(sk))
2441 tp->retrans_stamp = 0;
2442 return true;
2443 }
2444 tcp_set_ca_state(sk, TCP_CA_Open);
2445 return false;
2446 }
2447
2448 /* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */
2449 static bool tcp_try_undo_dsack(struct sock *sk)
2450 {
2451 struct tcp_sock *tp = tcp_sk(sk);
2452
2453 if (tp->undo_marker && !tp->undo_retrans) {
2454 DBGUNDO(sk, "D-SACK");
2455 tcp_undo_cwnd_reduction(sk, false);
2456 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKUNDO);
2457 return true;
2458 }
2459 return false;
2460 }
2461
2462 /* Undo during loss recovery after partial ACK or using F-RTO. */
2463 static bool tcp_try_undo_loss(struct sock *sk, bool frto_undo)
2464 {
2465 struct tcp_sock *tp = tcp_sk(sk);
2466
2467 if (frto_undo || tcp_may_undo(tp)) {
2468 tcp_undo_cwnd_reduction(sk, true);
2469
2470 DBGUNDO(sk, "partial loss");
2471 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPLOSSUNDO);
2472 if (frto_undo)
2473 NET_INC_STATS(sock_net(sk),
2474 LINUX_MIB_TCPSPURIOUSRTOS);
2475 inet_csk(sk)->icsk_retransmits = 0;
2476 if (frto_undo || tcp_is_sack(tp))
2477 tcp_set_ca_state(sk, TCP_CA_Open);
2478 return true;
2479 }
2480 return false;
2481 }
2482
2483 /* The cwnd reduction in CWR and Recovery uses the PRR algorithm in RFC 6937.
2484 * It computes the number of packets to send (sndcnt) based on packets newly
2485 * delivered:
2486 * 1) If the packets in flight is larger than ssthresh, PRR spreads the
2487 * cwnd reductions across a full RTT.
2488 * 2) Otherwise PRR uses packet conservation to send as much as delivered.
2489 * But when the retransmits are acked without further losses, PRR
2490 * slow starts cwnd up to ssthresh to speed up the recovery.
2491 */
2492 static void tcp_init_cwnd_reduction(struct sock *sk)
2493 {
2494 struct tcp_sock *tp = tcp_sk(sk);
2495
2496 tp->high_seq = tp->snd_nxt;
2497 tp->tlp_high_seq = 0;
2498 tp->snd_cwnd_cnt = 0;
2499 tp->prior_cwnd = tp->snd_cwnd;
2500 tp->prr_delivered = 0;
2501 tp->prr_out = 0;
2502 tp->snd_ssthresh = inet_csk(sk)->icsk_ca_ops->ssthresh(sk);
2503 tcp_ecn_queue_cwr(tp);
2504 }
2505
2506 static void tcp_cwnd_reduction(struct sock *sk, int newly_acked_sacked,
2507 int flag)
2508 {
2509 struct tcp_sock *tp = tcp_sk(sk);
2510 int sndcnt = 0;
2511 int delta = tp->snd_ssthresh - tcp_packets_in_flight(tp);
2512
2513 if (newly_acked_sacked <= 0 || WARN_ON_ONCE(!tp->prior_cwnd))
2514 return;
2515
2516 tp->prr_delivered += newly_acked_sacked;
2517 if (delta < 0) {
2518 u64 dividend = (u64)tp->snd_ssthresh * tp->prr_delivered +
2519 tp->prior_cwnd - 1;
2520 sndcnt = div_u64(dividend, tp->prior_cwnd) - tp->prr_out;
2521 } else if ((flag & FLAG_RETRANS_DATA_ACKED) &&
2522 !(flag & FLAG_LOST_RETRANS)) {
2523 sndcnt = min_t(int, delta,
2524 max_t(int, tp->prr_delivered - tp->prr_out,
2525 newly_acked_sacked) + 1);
2526 } else {
2527 sndcnt = min(delta, newly_acked_sacked);
2528 }
2529 /* Force a fast retransmit upon entering fast recovery */
2530 sndcnt = max(sndcnt, (tp->prr_out ? 0 : 1));
2531 tp->snd_cwnd = tcp_packets_in_flight(tp) + sndcnt;
2532 }
2533
2534 static inline void tcp_end_cwnd_reduction(struct sock *sk)
2535 {
2536 struct tcp_sock *tp = tcp_sk(sk);
2537
2538 if (inet_csk(sk)->icsk_ca_ops->cong_control)
2539 return;
2540
2541 /* Reset cwnd to ssthresh in CWR or Recovery (unless it's undone) */
2542 if (inet_csk(sk)->icsk_ca_state == TCP_CA_CWR ||
2543 (tp->undo_marker && tp->snd_ssthresh < TCP_INFINITE_SSTHRESH)) {
2544 tp->snd_cwnd = tp->snd_ssthresh;
2545 tp->snd_cwnd_stamp = tcp_time_stamp;
2546 }
2547 tcp_ca_event(sk, CA_EVENT_COMPLETE_CWR);
2548 }
2549
2550 /* Enter CWR state. Disable cwnd undo since congestion is proven with ECN */
2551 void tcp_enter_cwr(struct sock *sk)
2552 {
2553 struct tcp_sock *tp = tcp_sk(sk);
2554
2555 tp->prior_ssthresh = 0;
2556 if (inet_csk(sk)->icsk_ca_state < TCP_CA_CWR) {
2557 tp->undo_marker = 0;
2558 tcp_init_cwnd_reduction(sk);
2559 tcp_set_ca_state(sk, TCP_CA_CWR);
2560 }
2561 }
2562 EXPORT_SYMBOL(tcp_enter_cwr);
2563
2564 static void tcp_try_keep_open(struct sock *sk)
2565 {
2566 struct tcp_sock *tp = tcp_sk(sk);
2567 int state = TCP_CA_Open;
2568
2569 if (tcp_left_out(tp) || tcp_any_retrans_done(sk))
2570 state = TCP_CA_Disorder;
2571
2572 if (inet_csk(sk)->icsk_ca_state != state) {
2573 tcp_set_ca_state(sk, state);
2574 tp->high_seq = tp->snd_nxt;
2575 }
2576 }
2577
2578 static void tcp_try_to_open(struct sock *sk, int flag)
2579 {
2580 struct tcp_sock *tp = tcp_sk(sk);
2581
2582 tcp_verify_left_out(tp);
2583
2584 if (!tcp_any_retrans_done(sk))
2585 tp->retrans_stamp = 0;
2586
2587 if (flag & FLAG_ECE)
2588 tcp_enter_cwr(sk);
2589
2590 if (inet_csk(sk)->icsk_ca_state != TCP_CA_CWR) {
2591 tcp_try_keep_open(sk);
2592 }
2593 }
2594
2595 static void tcp_mtup_probe_failed(struct sock *sk)
2596 {
2597 struct inet_connection_sock *icsk = inet_csk(sk);
2598
2599 icsk->icsk_mtup.search_high = icsk->icsk_mtup.probe_size - 1;
2600 icsk->icsk_mtup.probe_size = 0;
2601 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMTUPFAIL);
2602 }
2603
2604 static void tcp_mtup_probe_success(struct sock *sk)
2605 {
2606 struct tcp_sock *tp = tcp_sk(sk);
2607 struct inet_connection_sock *icsk = inet_csk(sk);
2608
2609 /* FIXME: breaks with very large cwnd */
2610 tp->prior_ssthresh = tcp_current_ssthresh(sk);
2611 tp->snd_cwnd = tp->snd_cwnd *
2612 tcp_mss_to_mtu(sk, tp->mss_cache) /
2613 icsk->icsk_mtup.probe_size;
2614 tp->snd_cwnd_cnt = 0;
2615 tp->snd_cwnd_stamp = tcp_time_stamp;
2616 tp->snd_ssthresh = tcp_current_ssthresh(sk);
2617
2618 icsk->icsk_mtup.search_low = icsk->icsk_mtup.probe_size;
2619 icsk->icsk_mtup.probe_size = 0;
2620 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
2621 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMTUPSUCCESS);
2622 }
2623
2624 /* Do a simple retransmit without using the backoff mechanisms in
2625 * tcp_timer. This is used for path mtu discovery.
2626 * The socket is already locked here.
2627 */
2628 void tcp_simple_retransmit(struct sock *sk)
2629 {
2630 const struct inet_connection_sock *icsk = inet_csk(sk);
2631 struct tcp_sock *tp = tcp_sk(sk);
2632 struct sk_buff *skb;
2633 unsigned int mss = tcp_current_mss(sk);
2634 u32 prior_lost = tp->lost_out;
2635
2636 tcp_for_write_queue(skb, sk) {
2637 if (skb == tcp_send_head(sk))
2638 break;
2639 if (tcp_skb_seglen(skb) > mss &&
2640 !(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) {
2641 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
2642 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
2643 tp->retrans_out -= tcp_skb_pcount(skb);
2644 }
2645 tcp_skb_mark_lost_uncond_verify(tp, skb);
2646 }
2647 }
2648
2649 tcp_clear_retrans_hints_partial(tp);
2650
2651 if (prior_lost == tp->lost_out)
2652 return;
2653
2654 if (tcp_is_reno(tp))
2655 tcp_limit_reno_sacked(tp);
2656
2657 tcp_verify_left_out(tp);
2658
2659 /* Don't muck with the congestion window here.
2660 * Reason is that we do not increase amount of _data_
2661 * in network, but units changed and effective
2662 * cwnd/ssthresh really reduced now.
2663 */
2664 if (icsk->icsk_ca_state != TCP_CA_Loss) {
2665 tp->high_seq = tp->snd_nxt;
2666 tp->snd_ssthresh = tcp_current_ssthresh(sk);
2667 tp->prior_ssthresh = 0;
2668 tp->undo_marker = 0;
2669 tcp_set_ca_state(sk, TCP_CA_Loss);
2670 }
2671 tcp_xmit_retransmit_queue(sk);
2672 }
2673 EXPORT_SYMBOL(tcp_simple_retransmit);
2674
2675 static void tcp_enter_recovery(struct sock *sk, bool ece_ack)
2676 {
2677 struct tcp_sock *tp = tcp_sk(sk);
2678 int mib_idx;
2679
2680 if (tcp_is_reno(tp))
2681 mib_idx = LINUX_MIB_TCPRENORECOVERY;
2682 else
2683 mib_idx = LINUX_MIB_TCPSACKRECOVERY;
2684
2685 NET_INC_STATS(sock_net(sk), mib_idx);
2686
2687 tp->prior_ssthresh = 0;
2688 tcp_init_undo(tp);
2689
2690 if (!tcp_in_cwnd_reduction(sk)) {
2691 if (!ece_ack)
2692 tp->prior_ssthresh = tcp_current_ssthresh(sk);
2693 tcp_init_cwnd_reduction(sk);
2694 }
2695 tcp_set_ca_state(sk, TCP_CA_Recovery);
2696 }
2697
2698 /* Process an ACK in CA_Loss state. Move to CA_Open if lost data are
2699 * recovered or spurious. Otherwise retransmits more on partial ACKs.
2700 */
2701 static void tcp_process_loss(struct sock *sk, int flag, bool is_dupack,
2702 int *rexmit)
2703 {
2704 struct tcp_sock *tp = tcp_sk(sk);
2705 bool recovered = !before(tp->snd_una, tp->high_seq);
2706
2707 if ((flag & FLAG_SND_UNA_ADVANCED) &&
2708 tcp_try_undo_loss(sk, false))
2709 return;
2710
2711 if (tp->frto) { /* F-RTO RFC5682 sec 3.1 (sack enhanced version). */
2712 /* Step 3.b. A timeout is spurious if not all data are
2713 * lost, i.e., never-retransmitted data are (s)acked.
2714 */
2715 if ((flag & FLAG_ORIG_SACK_ACKED) &&
2716 tcp_try_undo_loss(sk, true))
2717 return;
2718
2719 if (after(tp->snd_nxt, tp->high_seq)) {
2720 if (flag & FLAG_DATA_SACKED || is_dupack)
2721 tp->frto = 0; /* Step 3.a. loss was real */
2722 } else if (flag & FLAG_SND_UNA_ADVANCED && !recovered) {
2723 tp->high_seq = tp->snd_nxt;
2724 /* Step 2.b. Try send new data (but deferred until cwnd
2725 * is updated in tcp_ack()). Otherwise fall back to
2726 * the conventional recovery.
2727 */
2728 if (tcp_send_head(sk) &&
2729 after(tcp_wnd_end(tp), tp->snd_nxt)) {
2730 *rexmit = REXMIT_NEW;
2731 return;
2732 }
2733 tp->frto = 0;
2734 }
2735 }
2736
2737 if (recovered) {
2738 /* F-RTO RFC5682 sec 3.1 step 2.a and 1st part of step 3.a */
2739 tcp_try_undo_recovery(sk);
2740 return;
2741 }
2742 if (tcp_is_reno(tp)) {
2743 /* A Reno DUPACK means new data in F-RTO step 2.b above are
2744 * delivered. Lower inflight to clock out (re)tranmissions.
2745 */
2746 if (after(tp->snd_nxt, tp->high_seq) && is_dupack)
2747 tcp_add_reno_sack(sk);
2748 else if (flag & FLAG_SND_UNA_ADVANCED)
2749 tcp_reset_reno_sack(tp);
2750 }
2751 *rexmit = REXMIT_LOST;
2752 }
2753
2754 /* Undo during fast recovery after partial ACK. */
2755 static bool tcp_try_undo_partial(struct sock *sk, const int acked)
2756 {
2757 struct tcp_sock *tp = tcp_sk(sk);
2758
2759 if (tp->undo_marker && tcp_packet_delayed(tp)) {
2760 /* Plain luck! Hole if filled with delayed
2761 * packet, rather than with a retransmit.
2762 */
2763 tcp_update_reordering(sk, tcp_fackets_out(tp) + acked, 1);
2764
2765 /* We are getting evidence that the reordering degree is higher
2766 * than we realized. If there are no retransmits out then we
2767 * can undo. Otherwise we clock out new packets but do not
2768 * mark more packets lost or retransmit more.
2769 */
2770 if (tp->retrans_out)
2771 return true;
2772
2773 if (!tcp_any_retrans_done(sk))
2774 tp->retrans_stamp = 0;
2775
2776 DBGUNDO(sk, "partial recovery");
2777 tcp_undo_cwnd_reduction(sk, true);
2778 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPPARTIALUNDO);
2779 tcp_try_keep_open(sk);
2780 return true;
2781 }
2782 return false;
2783 }
2784
2785 /* Process an event, which can update packets-in-flight not trivially.
2786 * Main goal of this function is to calculate new estimate for left_out,
2787 * taking into account both packets sitting in receiver's buffer and
2788 * packets lost by network.
2789 *
2790 * Besides that it updates the congestion state when packet loss or ECN
2791 * is detected. But it does not reduce the cwnd, it is done by the
2792 * congestion control later.
2793 *
2794 * It does _not_ decide what to send, it is made in function
2795 * tcp_xmit_retransmit_queue().
2796 */
2797 static void tcp_fastretrans_alert(struct sock *sk, const int acked,
2798 bool is_dupack, int *ack_flag, int *rexmit)
2799 {
2800 struct inet_connection_sock *icsk = inet_csk(sk);
2801 struct tcp_sock *tp = tcp_sk(sk);
2802 int fast_rexmit = 0, flag = *ack_flag;
2803 bool do_lost = is_dupack || ((flag & FLAG_DATA_SACKED) &&
2804 (tcp_fackets_out(tp) > tp->reordering));
2805
2806 if (WARN_ON(!tp->packets_out && tp->sacked_out))
2807 tp->sacked_out = 0;
2808 if (WARN_ON(!tp->sacked_out && tp->fackets_out))
2809 tp->fackets_out = 0;
2810
2811 /* Now state machine starts.
2812 * A. ECE, hence prohibit cwnd undoing, the reduction is required. */
2813 if (flag & FLAG_ECE)
2814 tp->prior_ssthresh = 0;
2815
2816 /* B. In all the states check for reneging SACKs. */
2817 if (tcp_check_sack_reneging(sk, flag))
2818 return;
2819
2820 /* C. Check consistency of the current state. */
2821 tcp_verify_left_out(tp);
2822
2823 /* D. Check state exit conditions. State can be terminated
2824 * when high_seq is ACKed. */
2825 if (icsk->icsk_ca_state == TCP_CA_Open) {
2826 WARN_ON(tp->retrans_out != 0);
2827 tp->retrans_stamp = 0;
2828 } else if (!before(tp->snd_una, tp->high_seq)) {
2829 switch (icsk->icsk_ca_state) {
2830 case TCP_CA_CWR:
2831 /* CWR is to be held something *above* high_seq
2832 * is ACKed for CWR bit to reach receiver. */
2833 if (tp->snd_una != tp->high_seq) {
2834 tcp_end_cwnd_reduction(sk);
2835 tcp_set_ca_state(sk, TCP_CA_Open);
2836 }
2837 break;
2838
2839 case TCP_CA_Recovery:
2840 if (tcp_is_reno(tp))
2841 tcp_reset_reno_sack(tp);
2842 if (tcp_try_undo_recovery(sk))
2843 return;
2844 tcp_end_cwnd_reduction(sk);
2845 break;
2846 }
2847 }
2848
2849 /* Use RACK to detect loss */
2850 if (sysctl_tcp_recovery & TCP_RACK_LOST_RETRANS &&
2851 tcp_rack_mark_lost(sk)) {
2852 flag |= FLAG_LOST_RETRANS;
2853 *ack_flag |= FLAG_LOST_RETRANS;
2854 }
2855
2856 /* E. Process state. */
2857 switch (icsk->icsk_ca_state) {
2858 case TCP_CA_Recovery:
2859 if (!(flag & FLAG_SND_UNA_ADVANCED)) {
2860 if (tcp_is_reno(tp) && is_dupack)
2861 tcp_add_reno_sack(sk);
2862 } else {
2863 if (tcp_try_undo_partial(sk, acked))
2864 return;
2865 /* Partial ACK arrived. Force fast retransmit. */
2866 do_lost = tcp_is_reno(tp) ||
2867 tcp_fackets_out(tp) > tp->reordering;
2868 }
2869 if (tcp_try_undo_dsack(sk)) {
2870 tcp_try_keep_open(sk);
2871 return;
2872 }
2873 break;
2874 case TCP_CA_Loss:
2875 tcp_process_loss(sk, flag, is_dupack, rexmit);
2876 if (icsk->icsk_ca_state != TCP_CA_Open &&
2877 !(flag & FLAG_LOST_RETRANS))
2878 return;
2879 /* Change state if cwnd is undone or retransmits are lost */
2880 default:
2881 if (tcp_is_reno(tp)) {
2882 if (flag & FLAG_SND_UNA_ADVANCED)
2883 tcp_reset_reno_sack(tp);
2884 if (is_dupack)
2885 tcp_add_reno_sack(sk);
2886 }
2887
2888 if (icsk->icsk_ca_state <= TCP_CA_Disorder)
2889 tcp_try_undo_dsack(sk);
2890
2891 if (!tcp_time_to_recover(sk, flag)) {
2892 tcp_try_to_open(sk, flag);
2893 return;
2894 }
2895
2896 /* MTU probe failure: don't reduce cwnd */
2897 if (icsk->icsk_ca_state < TCP_CA_CWR &&
2898 icsk->icsk_mtup.probe_size &&
2899 tp->snd_una == tp->mtu_probe.probe_seq_start) {
2900 tcp_mtup_probe_failed(sk);
2901 /* Restores the reduction we did in tcp_mtup_probe() */
2902 tp->snd_cwnd++;
2903 tcp_simple_retransmit(sk);
2904 return;
2905 }
2906
2907 /* Otherwise enter Recovery state */
2908 tcp_enter_recovery(sk, (flag & FLAG_ECE));
2909 fast_rexmit = 1;
2910 }
2911
2912 if (do_lost)
2913 tcp_update_scoreboard(sk, fast_rexmit);
2914 *rexmit = REXMIT_LOST;
2915 }
2916
2917 static void tcp_update_rtt_min(struct sock *sk, u32 rtt_us)
2918 {
2919 struct tcp_sock *tp = tcp_sk(sk);
2920 u32 wlen = sysctl_tcp_min_rtt_wlen * HZ;
2921
2922 minmax_running_min(&tp->rtt_min, wlen, tcp_time_stamp,
2923 rtt_us ? : jiffies_to_usecs(1));
2924 }
2925
2926 static inline bool tcp_ack_update_rtt(struct sock *sk, const int flag,
2927 long seq_rtt_us, long sack_rtt_us,
2928 long ca_rtt_us)
2929 {
2930 const struct tcp_sock *tp = tcp_sk(sk);
2931
2932 /* Prefer RTT measured from ACK's timing to TS-ECR. This is because
2933 * broken middle-boxes or peers may corrupt TS-ECR fields. But
2934 * Karn's algorithm forbids taking RTT if some retransmitted data
2935 * is acked (RFC6298).
2936 */
2937 if (seq_rtt_us < 0)
2938 seq_rtt_us = sack_rtt_us;
2939
2940 /* RTTM Rule: A TSecr value received in a segment is used to
2941 * update the averaged RTT measurement only if the segment
2942 * acknowledges some new data, i.e., only if it advances the
2943 * left edge of the send window.
2944 * See draft-ietf-tcplw-high-performance-00, section 3.3.
2945 */
2946 if (seq_rtt_us < 0 && tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
2947 flag & FLAG_ACKED)
2948 seq_rtt_us = ca_rtt_us = jiffies_to_usecs(tcp_time_stamp -
2949 tp->rx_opt.rcv_tsecr);
2950 if (seq_rtt_us < 0)
2951 return false;
2952
2953 /* ca_rtt_us >= 0 is counting on the invariant that ca_rtt_us is
2954 * always taken together with ACK, SACK, or TS-opts. Any negative
2955 * values will be skipped with the seq_rtt_us < 0 check above.
2956 */
2957 tcp_update_rtt_min(sk, ca_rtt_us);
2958 tcp_rtt_estimator(sk, seq_rtt_us);
2959 tcp_set_rto(sk);
2960
2961 /* RFC6298: only reset backoff on valid RTT measurement. */
2962 inet_csk(sk)->icsk_backoff = 0;
2963 return true;
2964 }
2965
2966 /* Compute time elapsed between (last) SYNACK and the ACK completing 3WHS. */
2967 void tcp_synack_rtt_meas(struct sock *sk, struct request_sock *req)
2968 {
2969 long rtt_us = -1L;
2970
2971 if (req && !req->num_retrans && tcp_rsk(req)->snt_synack.v64) {
2972 struct skb_mstamp now;
2973
2974 skb_mstamp_get(&now);
2975 rtt_us = skb_mstamp_us_delta(&now, &tcp_rsk(req)->snt_synack);
2976 }
2977
2978 tcp_ack_update_rtt(sk, FLAG_SYN_ACKED, rtt_us, -1L, rtt_us);
2979 }
2980
2981
2982 static void tcp_cong_avoid(struct sock *sk, u32 ack, u32 acked)
2983 {
2984 const struct inet_connection_sock *icsk = inet_csk(sk);
2985
2986 icsk->icsk_ca_ops->cong_avoid(sk, ack, acked);
2987 tcp_sk(sk)->snd_cwnd_stamp = tcp_time_stamp;
2988 }
2989
2990 /* Restart timer after forward progress on connection.
2991 * RFC2988 recommends to restart timer to now+rto.
2992 */
2993 void tcp_rearm_rto(struct sock *sk)
2994 {
2995 const struct inet_connection_sock *icsk = inet_csk(sk);
2996 struct tcp_sock *tp = tcp_sk(sk);
2997
2998 /* If the retrans timer is currently being used by Fast Open
2999 * for SYN-ACK retrans purpose, stay put.
3000 */
3001 if (tp->fastopen_rsk)
3002 return;
3003
3004 if (!tp->packets_out) {
3005 inet_csk_clear_xmit_timer(sk, ICSK_TIME_RETRANS);
3006 } else {
3007 u32 rto = inet_csk(sk)->icsk_rto;
3008 /* Offset the time elapsed after installing regular RTO */
3009 if (icsk->icsk_pending == ICSK_TIME_EARLY_RETRANS ||
3010 icsk->icsk_pending == ICSK_TIME_LOSS_PROBE) {
3011 struct sk_buff *skb = tcp_write_queue_head(sk);
3012 const u32 rto_time_stamp =
3013 tcp_skb_timestamp(skb) + rto;
3014 s32 delta = (s32)(rto_time_stamp - tcp_time_stamp);
3015 /* delta may not be positive if the socket is locked
3016 * when the retrans timer fires and is rescheduled.
3017 */
3018 if (delta > 0)
3019 rto = delta;
3020 }
3021 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, rto,
3022 TCP_RTO_MAX);
3023 }
3024 }
3025
3026 /* This function is called when the delayed ER timer fires. TCP enters
3027 * fast recovery and performs fast-retransmit.
3028 */
3029 void tcp_resume_early_retransmit(struct sock *sk)
3030 {
3031 struct tcp_sock *tp = tcp_sk(sk);
3032
3033 tcp_rearm_rto(sk);
3034
3035 /* Stop if ER is disabled after the delayed ER timer is scheduled */
3036 if (!tp->do_early_retrans)
3037 return;
3038
3039 tcp_enter_recovery(sk, false);
3040 tcp_update_scoreboard(sk, 1);
3041 tcp_xmit_retransmit_queue(sk);
3042 }
3043
3044 /* If we get here, the whole TSO packet has not been acked. */
3045 static u32 tcp_tso_acked(struct sock *sk, struct sk_buff *skb)
3046 {
3047 struct tcp_sock *tp = tcp_sk(sk);
3048 u32 packets_acked;
3049
3050 BUG_ON(!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una));
3051
3052 packets_acked = tcp_skb_pcount(skb);
3053 if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq))
3054 return 0;
3055 packets_acked -= tcp_skb_pcount(skb);
3056
3057 if (packets_acked) {
3058 BUG_ON(tcp_skb_pcount(skb) == 0);
3059 BUG_ON(!before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq));
3060 }
3061
3062 return packets_acked;
3063 }
3064
3065 static void tcp_ack_tstamp(struct sock *sk, struct sk_buff *skb,
3066 u32 prior_snd_una)
3067 {
3068 const struct skb_shared_info *shinfo;
3069
3070 /* Avoid cache line misses to get skb_shinfo() and shinfo->tx_flags */
3071 if (likely(!TCP_SKB_CB(skb)->txstamp_ack))
3072 return;
3073
3074 shinfo = skb_shinfo(skb);
3075 if (!before(shinfo->tskey, prior_snd_una) &&
3076 before(shinfo->tskey, tcp_sk(sk)->snd_una))
3077 __skb_tstamp_tx(skb, NULL, sk, SCM_TSTAMP_ACK);
3078 }
3079
3080 /* Remove acknowledged frames from the retransmission queue. If our packet
3081 * is before the ack sequence we can discard it as it's confirmed to have
3082 * arrived at the other end.
3083 */
3084 static int tcp_clean_rtx_queue(struct sock *sk, int prior_fackets,
3085 u32 prior_snd_una, int *acked,
3086 struct tcp_sacktag_state *sack,
3087 struct skb_mstamp *now)
3088 {
3089 const struct inet_connection_sock *icsk = inet_csk(sk);
3090 struct skb_mstamp first_ackt, last_ackt;
3091 struct tcp_sock *tp = tcp_sk(sk);
3092 u32 prior_sacked = tp->sacked_out;
3093 u32 reord = tp->packets_out;
3094 bool fully_acked = true;
3095 long sack_rtt_us = -1L;
3096 long seq_rtt_us = -1L;
3097 long ca_rtt_us = -1L;
3098 struct sk_buff *skb;
3099 u32 pkts_acked = 0;
3100 u32 last_in_flight = 0;
3101 bool rtt_update;
3102 int flag = 0;
3103
3104 first_ackt.v64 = 0;
3105
3106 while ((skb = tcp_write_queue_head(sk)) && skb != tcp_send_head(sk)) {
3107 struct tcp_skb_cb *scb = TCP_SKB_CB(skb);
3108 u8 sacked = scb->sacked;
3109 u32 acked_pcount;
3110
3111 tcp_ack_tstamp(sk, skb, prior_snd_una);
3112
3113 /* Determine how many packets and what bytes were acked, tso and else */
3114 if (after(scb->end_seq, tp->snd_una)) {
3115 if (tcp_skb_pcount(skb) == 1 ||
3116 !after(tp->snd_una, scb->seq))
3117 break;
3118
3119 acked_pcount = tcp_tso_acked(sk, skb);
3120 if (!acked_pcount)
3121 break;
3122 fully_acked = false;
3123 } else {
3124 /* Speedup tcp_unlink_write_queue() and next loop */
3125 prefetchw(skb->next);
3126 acked_pcount = tcp_skb_pcount(skb);
3127 }
3128
3129 if (unlikely(sacked & TCPCB_RETRANS)) {
3130 if (sacked & TCPCB_SACKED_RETRANS)
3131 tp->retrans_out -= acked_pcount;
3132 flag |= FLAG_RETRANS_DATA_ACKED;
3133 } else if (!(sacked & TCPCB_SACKED_ACKED)) {
3134 last_ackt = skb->skb_mstamp;
3135 WARN_ON_ONCE(last_ackt.v64 == 0);
3136 if (!first_ackt.v64)
3137 first_ackt = last_ackt;
3138
3139 last_in_flight = TCP_SKB_CB(skb)->tx.in_flight;
3140 reord = min(pkts_acked, reord);
3141 if (!after(scb->end_seq, tp->high_seq))
3142 flag |= FLAG_ORIG_SACK_ACKED;
3143 }
3144
3145 if (sacked & TCPCB_SACKED_ACKED) {
3146 tp->sacked_out -= acked_pcount;
3147 } else if (tcp_is_sack(tp)) {
3148 tp->delivered += acked_pcount;
3149 if (!tcp_skb_spurious_retrans(tp, skb))
3150 tcp_rack_advance(tp, &skb->skb_mstamp, sacked);
3151 }
3152 if (sacked & TCPCB_LOST)
3153 tp->lost_out -= acked_pcount;
3154
3155 tp->packets_out -= acked_pcount;
3156 pkts_acked += acked_pcount;
3157 tcp_rate_skb_delivered(sk, skb, sack->rate);
3158
3159 /* Initial outgoing SYN's get put onto the write_queue
3160 * just like anything else we transmit. It is not
3161 * true data, and if we misinform our callers that
3162 * this ACK acks real data, we will erroneously exit
3163 * connection startup slow start one packet too
3164 * quickly. This is severely frowned upon behavior.
3165 */
3166 if (likely(!(scb->tcp_flags & TCPHDR_SYN))) {
3167 flag |= FLAG_DATA_ACKED;
3168 } else {
3169 flag |= FLAG_SYN_ACKED;
3170 tp->retrans_stamp = 0;
3171 }
3172
3173 if (!fully_acked)
3174 break;
3175
3176 tcp_unlink_write_queue(skb, sk);
3177 sk_wmem_free_skb(sk, skb);
3178 if (unlikely(skb == tp->retransmit_skb_hint))
3179 tp->retransmit_skb_hint = NULL;
3180 if (unlikely(skb == tp->lost_skb_hint))
3181 tp->lost_skb_hint = NULL;
3182 }
3183
3184 if (likely(between(tp->snd_up, prior_snd_una, tp->snd_una)))
3185 tp->snd_up = tp->snd_una;
3186
3187 if (skb && (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
3188 flag |= FLAG_SACK_RENEGING;
3189
3190 if (likely(first_ackt.v64) && !(flag & FLAG_RETRANS_DATA_ACKED)) {
3191 seq_rtt_us = skb_mstamp_us_delta(now, &first_ackt);
3192 ca_rtt_us = skb_mstamp_us_delta(now, &last_ackt);
3193 }
3194 if (sack->first_sackt.v64) {
3195 sack_rtt_us = skb_mstamp_us_delta(now, &sack->first_sackt);
3196 ca_rtt_us = skb_mstamp_us_delta(now, &sack->last_sackt);
3197 }
3198 sack->rate->rtt_us = ca_rtt_us; /* RTT of last (S)ACKed packet, or -1 */
3199 rtt_update = tcp_ack_update_rtt(sk, flag, seq_rtt_us, sack_rtt_us,
3200 ca_rtt_us);
3201
3202 if (flag & FLAG_ACKED) {
3203 tcp_rearm_rto(sk);
3204 if (unlikely(icsk->icsk_mtup.probe_size &&
3205 !after(tp->mtu_probe.probe_seq_end, tp->snd_una))) {
3206 tcp_mtup_probe_success(sk);
3207 }
3208
3209 if (tcp_is_reno(tp)) {
3210 tcp_remove_reno_sacks(sk, pkts_acked);
3211 } else {
3212 int delta;
3213
3214 /* Non-retransmitted hole got filled? That's reordering */
3215 if (reord < prior_fackets)
3216 tcp_update_reordering(sk, tp->fackets_out - reord, 0);
3217
3218 delta = tcp_is_fack(tp) ? pkts_acked :
3219 prior_sacked - tp->sacked_out;
3220 tp->lost_cnt_hint -= min(tp->lost_cnt_hint, delta);
3221 }
3222
3223 tp->fackets_out -= min(pkts_acked, tp->fackets_out);
3224
3225 } else if (skb && rtt_update && sack_rtt_us >= 0 &&
3226 sack_rtt_us > skb_mstamp_us_delta(now, &skb->skb_mstamp)) {
3227 /* Do not re-arm RTO if the sack RTT is measured from data sent
3228 * after when the head was last (re)transmitted. Otherwise the
3229 * timeout may continue to extend in loss recovery.
3230 */
3231 tcp_rearm_rto(sk);
3232 }
3233
3234 if (icsk->icsk_ca_ops->pkts_acked) {
3235 struct ack_sample sample = { .pkts_acked = pkts_acked,
3236 .rtt_us = ca_rtt_us,
3237 .in_flight = last_in_flight };
3238
3239 icsk->icsk_ca_ops->pkts_acked(sk, &sample);
3240 }
3241
3242 #if FASTRETRANS_DEBUG > 0
3243 WARN_ON((int)tp->sacked_out < 0);
3244 WARN_ON((int)tp->lost_out < 0);
3245 WARN_ON((int)tp->retrans_out < 0);
3246 if (!tp->packets_out && tcp_is_sack(tp)) {
3247 icsk = inet_csk(sk);
3248 if (tp->lost_out) {
3249 pr_debug("Leak l=%u %d\n",
3250 tp->lost_out, icsk->icsk_ca_state);
3251 tp->lost_out = 0;
3252 }
3253 if (tp->sacked_out) {
3254 pr_debug("Leak s=%u %d\n",
3255 tp->sacked_out, icsk->icsk_ca_state);
3256 tp->sacked_out = 0;
3257 }
3258 if (tp->retrans_out) {
3259 pr_debug("Leak r=%u %d\n",
3260 tp->retrans_out, icsk->icsk_ca_state);
3261 tp->retrans_out = 0;
3262 }
3263 }
3264 #endif
3265 *acked = pkts_acked;
3266 return flag;
3267 }
3268
3269 static void tcp_ack_probe(struct sock *sk)
3270 {
3271 const struct tcp_sock *tp = tcp_sk(sk);
3272 struct inet_connection_sock *icsk = inet_csk(sk);
3273
3274 /* Was it a usable window open? */
3275
3276 if (!after(TCP_SKB_CB(tcp_send_head(sk))->end_seq, tcp_wnd_end(tp))) {
3277 icsk->icsk_backoff = 0;
3278 inet_csk_clear_xmit_timer(sk, ICSK_TIME_PROBE0);
3279 /* Socket must be waked up by subsequent tcp_data_snd_check().
3280 * This function is not for random using!
3281 */
3282 } else {
3283 unsigned long when = tcp_probe0_when(sk, TCP_RTO_MAX);
3284
3285 inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
3286 when, TCP_RTO_MAX);
3287 }
3288 }
3289
3290 static inline bool tcp_ack_is_dubious(const struct sock *sk, const int flag)
3291 {
3292 return !(flag & FLAG_NOT_DUP) || (flag & FLAG_CA_ALERT) ||
3293 inet_csk(sk)->icsk_ca_state != TCP_CA_Open;
3294 }
3295
3296 /* Decide wheather to run the increase function of congestion control. */
3297 static inline bool tcp_may_raise_cwnd(const struct sock *sk, const int flag)
3298 {
3299 /* If reordering is high then always grow cwnd whenever data is
3300 * delivered regardless of its ordering. Otherwise stay conservative
3301 * and only grow cwnd on in-order delivery (RFC5681). A stretched ACK w/
3302 * new SACK or ECE mark may first advance cwnd here and later reduce
3303 * cwnd in tcp_fastretrans_alert() based on more states.
3304 */
3305 if (tcp_sk(sk)->reordering > sock_net(sk)->ipv4.sysctl_tcp_reordering)
3306 return flag & FLAG_FORWARD_PROGRESS;
3307
3308 return flag & FLAG_DATA_ACKED;
3309 }
3310
3311 /* The "ultimate" congestion control function that aims to replace the rigid
3312 * cwnd increase and decrease control (tcp_cong_avoid,tcp_*cwnd_reduction).
3313 * It's called toward the end of processing an ACK with precise rate
3314 * information. All transmission or retransmission are delayed afterwards.
3315 */
3316 static void tcp_cong_control(struct sock *sk, u32 ack, u32 acked_sacked,
3317 int flag, const struct rate_sample *rs)
3318 {
3319 const struct inet_connection_sock *icsk = inet_csk(sk);
3320
3321 if (icsk->icsk_ca_ops->cong_control) {
3322 icsk->icsk_ca_ops->cong_control(sk, rs);
3323 return;
3324 }
3325
3326 if (tcp_in_cwnd_reduction(sk)) {
3327 /* Reduce cwnd if state mandates */
3328 tcp_cwnd_reduction(sk, acked_sacked, flag);
3329 } else if (tcp_may_raise_cwnd(sk, flag)) {
3330 /* Advance cwnd if state allows */
3331 tcp_cong_avoid(sk, ack, acked_sacked);
3332 }
3333 tcp_update_pacing_rate(sk);
3334 }
3335
3336 /* Check that window update is acceptable.
3337 * The function assumes that snd_una<=ack<=snd_next.
3338 */
3339 static inline bool tcp_may_update_window(const struct tcp_sock *tp,
3340 const u32 ack, const u32 ack_seq,
3341 const u32 nwin)
3342 {
3343 return after(ack, tp->snd_una) ||
3344 after(ack_seq, tp->snd_wl1) ||
3345 (ack_seq == tp->snd_wl1 && nwin > tp->snd_wnd);
3346 }
3347
3348 /* If we update tp->snd_una, also update tp->bytes_acked */
3349 static void tcp_snd_una_update(struct tcp_sock *tp, u32 ack)
3350 {
3351 u32 delta = ack - tp->snd_una;
3352
3353 sock_owned_by_me((struct sock *)tp);
3354 u64_stats_update_begin_raw(&tp->syncp);
3355 tp->bytes_acked += delta;
3356 u64_stats_update_end_raw(&tp->syncp);
3357 tp->snd_una = ack;
3358 }
3359
3360 /* If we update tp->rcv_nxt, also update tp->bytes_received */
3361 static void tcp_rcv_nxt_update(struct tcp_sock *tp, u32 seq)
3362 {
3363 u32 delta = seq - tp->rcv_nxt;
3364
3365 sock_owned_by_me((struct sock *)tp);
3366 u64_stats_update_begin_raw(&tp->syncp);
3367 tp->bytes_received += delta;
3368 u64_stats_update_end_raw(&tp->syncp);
3369 tp->rcv_nxt = seq;
3370 }
3371
3372 /* Update our send window.
3373 *
3374 * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2
3375 * and in FreeBSD. NetBSD's one is even worse.) is wrong.
3376 */
3377 static int tcp_ack_update_window(struct sock *sk, const struct sk_buff *skb, u32 ack,
3378 u32 ack_seq)
3379 {
3380 struct tcp_sock *tp = tcp_sk(sk);
3381 int flag = 0;
3382 u32 nwin = ntohs(tcp_hdr(skb)->window);
3383
3384 if (likely(!tcp_hdr(skb)->syn))
3385 nwin <<= tp->rx_opt.snd_wscale;
3386
3387 if (tcp_may_update_window(tp, ack, ack_seq, nwin)) {
3388 flag |= FLAG_WIN_UPDATE;
3389 tcp_update_wl(tp, ack_seq);
3390
3391 if (tp->snd_wnd != nwin) {
3392 tp->snd_wnd = nwin;
3393
3394 /* Note, it is the only place, where
3395 * fast path is recovered for sending TCP.
3396 */
3397 tp->pred_flags = 0;
3398 tcp_fast_path_check(sk);
3399
3400 if (tcp_send_head(sk))
3401 tcp_slow_start_after_idle_check(sk);
3402
3403 if (nwin > tp->max_window) {
3404 tp->max_window = nwin;
3405 tcp_sync_mss(sk, inet_csk(sk)->icsk_pmtu_cookie);
3406 }
3407 }
3408 }
3409
3410 tcp_snd_una_update(tp, ack);
3411
3412 return flag;
3413 }
3414
3415 static bool __tcp_oow_rate_limited(struct net *net, int mib_idx,
3416 u32 *last_oow_ack_time)
3417 {
3418 if (*last_oow_ack_time) {
3419 s32 elapsed = (s32)(tcp_time_stamp - *last_oow_ack_time);
3420
3421 if (0 <= elapsed && elapsed < sysctl_tcp_invalid_ratelimit) {
3422 NET_INC_STATS(net, mib_idx);
3423 return true; /* rate-limited: don't send yet! */
3424 }
3425 }
3426
3427 *last_oow_ack_time = tcp_time_stamp;
3428
3429 return false; /* not rate-limited: go ahead, send dupack now! */
3430 }
3431
3432 /* Return true if we're currently rate-limiting out-of-window ACKs and
3433 * thus shouldn't send a dupack right now. We rate-limit dupacks in
3434 * response to out-of-window SYNs or ACKs to mitigate ACK loops or DoS
3435 * attacks that send repeated SYNs or ACKs for the same connection. To
3436 * do this, we do not send a duplicate SYNACK or ACK if the remote
3437 * endpoint is sending out-of-window SYNs or pure ACKs at a high rate.
3438 */
3439 bool tcp_oow_rate_limited(struct net *net, const struct sk_buff *skb,
3440 int mib_idx, u32 *last_oow_ack_time)
3441 {
3442 /* Data packets without SYNs are not likely part of an ACK loop. */
3443 if ((TCP_SKB_CB(skb)->seq != TCP_SKB_CB(skb)->end_seq) &&
3444 !tcp_hdr(skb)->syn)
3445 return false;
3446
3447 return __tcp_oow_rate_limited(net, mib_idx, last_oow_ack_time);
3448 }
3449
3450 /* RFC 5961 7 [ACK Throttling] */
3451 static void tcp_send_challenge_ack(struct sock *sk, const struct sk_buff *skb)
3452 {
3453 /* unprotected vars, we dont care of overwrites */
3454 static u32 challenge_timestamp;
3455 static unsigned int challenge_count;
3456 struct tcp_sock *tp = tcp_sk(sk);
3457 u32 count, now;
3458
3459 /* First check our per-socket dupack rate limit. */
3460 if (__tcp_oow_rate_limited(sock_net(sk),
3461 LINUX_MIB_TCPACKSKIPPEDCHALLENGE,
3462 &tp->last_oow_ack_time))
3463 return;
3464
3465 /* Then check host-wide RFC 5961 rate limit. */
3466 now = jiffies / HZ;
3467 if (now != challenge_timestamp) {
3468 u32 half = (sysctl_tcp_challenge_ack_limit + 1) >> 1;
3469
3470 challenge_timestamp = now;
3471 WRITE_ONCE(challenge_count, half +
3472 prandom_u32_max(sysctl_tcp_challenge_ack_limit));
3473 }
3474 count = READ_ONCE(challenge_count);
3475 if (count > 0) {
3476 WRITE_ONCE(challenge_count, count - 1);
3477 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPCHALLENGEACK);
3478 tcp_send_ack(sk);
3479 }
3480 }
3481
3482 static void tcp_store_ts_recent(struct tcp_sock *tp)
3483 {
3484 tp->rx_opt.ts_recent = tp->rx_opt.rcv_tsval;
3485 tp->rx_opt.ts_recent_stamp = get_seconds();
3486 }
3487
3488 static void tcp_replace_ts_recent(struct tcp_sock *tp, u32 seq)
3489 {
3490 if (tp->rx_opt.saw_tstamp && !after(seq, tp->rcv_wup)) {
3491 /* PAWS bug workaround wrt. ACK frames, the PAWS discard
3492 * extra check below makes sure this can only happen
3493 * for pure ACK frames. -DaveM
3494 *
3495 * Not only, also it occurs for expired timestamps.
3496 */
3497
3498 if (tcp_paws_check(&tp->rx_opt, 0))
3499 tcp_store_ts_recent(tp);
3500 }
3501 }
3502
3503 /* This routine deals with acks during a TLP episode.
3504 * We mark the end of a TLP episode on receiving TLP dupack or when
3505 * ack is after tlp_high_seq.
3506 * Ref: loss detection algorithm in draft-dukkipati-tcpm-tcp-loss-probe.
3507 */
3508 static void tcp_process_tlp_ack(struct sock *sk, u32 ack, int flag)
3509 {
3510 struct tcp_sock *tp = tcp_sk(sk);
3511
3512 if (before(ack, tp->tlp_high_seq))
3513 return;
3514
3515 if (flag & FLAG_DSACKING_ACK) {
3516 /* This DSACK means original and TLP probe arrived; no loss */
3517 tp->tlp_high_seq = 0;
3518 } else if (after(ack, tp->tlp_high_seq)) {
3519 /* ACK advances: there was a loss, so reduce cwnd. Reset
3520 * tlp_high_seq in tcp_init_cwnd_reduction()
3521 */
3522 tcp_init_cwnd_reduction(sk);
3523 tcp_set_ca_state(sk, TCP_CA_CWR);
3524 tcp_end_cwnd_reduction(sk);
3525 tcp_try_keep_open(sk);
3526 NET_INC_STATS(sock_net(sk),
3527 LINUX_MIB_TCPLOSSPROBERECOVERY);
3528 } else if (!(flag & (FLAG_SND_UNA_ADVANCED |
3529 FLAG_NOT_DUP | FLAG_DATA_SACKED))) {
3530 /* Pure dupack: original and TLP probe arrived; no loss */
3531 tp->tlp_high_seq = 0;
3532 }
3533 }
3534
3535 static inline void tcp_in_ack_event(struct sock *sk, u32 flags)
3536 {
3537 const struct inet_connection_sock *icsk = inet_csk(sk);
3538
3539 if (icsk->icsk_ca_ops->in_ack_event)
3540 icsk->icsk_ca_ops->in_ack_event(sk, flags);
3541 }
3542
3543 /* Congestion control has updated the cwnd already. So if we're in
3544 * loss recovery then now we do any new sends (for FRTO) or
3545 * retransmits (for CA_Loss or CA_recovery) that make sense.
3546 */
3547 static void tcp_xmit_recovery(struct sock *sk, int rexmit)
3548 {
3549 struct tcp_sock *tp = tcp_sk(sk);
3550
3551 if (rexmit == REXMIT_NONE)
3552 return;
3553
3554 if (unlikely(rexmit == 2)) {
3555 __tcp_push_pending_frames(sk, tcp_current_mss(sk),
3556 TCP_NAGLE_OFF);
3557 if (after(tp->snd_nxt, tp->high_seq))
3558 return;
3559 tp->frto = 0;
3560 }
3561 tcp_xmit_retransmit_queue(sk);
3562 }
3563
3564 /* This routine deals with incoming acks, but not outgoing ones. */
3565 static int tcp_ack(struct sock *sk, const struct sk_buff *skb, int flag)
3566 {
3567 struct inet_connection_sock *icsk = inet_csk(sk);
3568 struct tcp_sock *tp = tcp_sk(sk);
3569 struct tcp_sacktag_state sack_state;
3570 struct rate_sample rs = { .prior_delivered = 0 };
3571 u32 prior_snd_una = tp->snd_una;
3572 u32 ack_seq = TCP_SKB_CB(skb)->seq;
3573 u32 ack = TCP_SKB_CB(skb)->ack_seq;
3574 bool is_dupack = false;
3575 u32 prior_fackets;
3576 int prior_packets = tp->packets_out;
3577 u32 delivered = tp->delivered;
3578 u32 lost = tp->lost;
3579 int acked = 0; /* Number of packets newly acked */
3580 int rexmit = REXMIT_NONE; /* Flag to (re)transmit to recover losses */
3581 struct skb_mstamp now;
3582
3583 sack_state.first_sackt.v64 = 0;
3584 sack_state.rate = &rs;
3585
3586 /* We very likely will need to access write queue head. */
3587 prefetchw(sk->sk_write_queue.next);
3588
3589 /* If the ack is older than previous acks
3590 * then we can probably ignore it.
3591 */
3592 if (before(ack, prior_snd_una)) {
3593 /* RFC 5961 5.2 [Blind Data Injection Attack].[Mitigation] */
3594 if (before(ack, prior_snd_una - tp->max_window)) {
3595 tcp_send_challenge_ack(sk, skb);
3596 return -1;
3597 }
3598 goto old_ack;
3599 }
3600
3601 /* If the ack includes data we haven't sent yet, discard
3602 * this segment (RFC793 Section 3.9).
3603 */
3604 if (after(ack, tp->snd_nxt))
3605 goto invalid_ack;
3606
3607 skb_mstamp_get(&now);
3608
3609 if (icsk->icsk_pending == ICSK_TIME_EARLY_RETRANS ||
3610 icsk->icsk_pending == ICSK_TIME_LOSS_PROBE)
3611 tcp_rearm_rto(sk);
3612
3613 if (after(ack, prior_snd_una)) {
3614 flag |= FLAG_SND_UNA_ADVANCED;
3615 icsk->icsk_retransmits = 0;
3616 }
3617
3618 prior_fackets = tp->fackets_out;
3619 rs.prior_in_flight = tcp_packets_in_flight(tp);
3620
3621 /* ts_recent update must be made after we are sure that the packet
3622 * is in window.
3623 */
3624 if (flag & FLAG_UPDATE_TS_RECENT)
3625 tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq);
3626
3627 if (!(flag & FLAG_SLOWPATH) && after(ack, prior_snd_una)) {
3628 /* Window is constant, pure forward advance.
3629 * No more checks are required.
3630 * Note, we use the fact that SND.UNA>=SND.WL2.
3631 */
3632 tcp_update_wl(tp, ack_seq);
3633 tcp_snd_una_update(tp, ack);
3634 flag |= FLAG_WIN_UPDATE;
3635
3636 tcp_in_ack_event(sk, CA_ACK_WIN_UPDATE);
3637
3638 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPHPACKS);
3639 } else {
3640 u32 ack_ev_flags = CA_ACK_SLOWPATH;
3641
3642 if (ack_seq != TCP_SKB_CB(skb)->end_seq)
3643 flag |= FLAG_DATA;
3644 else
3645 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPPUREACKS);
3646
3647 flag |= tcp_ack_update_window(sk, skb, ack, ack_seq);
3648
3649 if (TCP_SKB_CB(skb)->sacked)
3650 flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una,
3651 &sack_state);
3652
3653 if (tcp_ecn_rcv_ecn_echo(tp, tcp_hdr(skb))) {
3654 flag |= FLAG_ECE;
3655 ack_ev_flags |= CA_ACK_ECE;
3656 }
3657
3658 if (flag & FLAG_WIN_UPDATE)
3659 ack_ev_flags |= CA_ACK_WIN_UPDATE;
3660
3661 tcp_in_ack_event(sk, ack_ev_flags);
3662 }
3663
3664 /* We passed data and got it acked, remove any soft error
3665 * log. Something worked...
3666 */
3667 sk->sk_err_soft = 0;
3668 icsk->icsk_probes_out = 0;
3669 tp->rcv_tstamp = tcp_time_stamp;
3670 if (!prior_packets)
3671 goto no_queue;
3672
3673 /* See if we can take anything off of the retransmit queue. */
3674 flag |= tcp_clean_rtx_queue(sk, prior_fackets, prior_snd_una, &acked,
3675 &sack_state, &now);
3676
3677 if (tcp_ack_is_dubious(sk, flag)) {
3678 is_dupack = !(flag & (FLAG_SND_UNA_ADVANCED | FLAG_NOT_DUP));
3679 tcp_fastretrans_alert(sk, acked, is_dupack, &flag, &rexmit);
3680 }
3681 if (tp->tlp_high_seq)
3682 tcp_process_tlp_ack(sk, ack, flag);
3683
3684 if ((flag & FLAG_FORWARD_PROGRESS) || !(flag & FLAG_NOT_DUP)) {
3685 struct dst_entry *dst = __sk_dst_get(sk);
3686 if (dst)
3687 dst_confirm(dst);
3688 }
3689
3690 if (icsk->icsk_pending == ICSK_TIME_RETRANS)
3691 tcp_schedule_loss_probe(sk);
3692 delivered = tp->delivered - delivered; /* freshly ACKed or SACKed */
3693 lost = tp->lost - lost; /* freshly marked lost */
3694 tcp_rate_gen(sk, delivered, lost, &now, &rs);
3695 tcp_cong_control(sk, ack, delivered, flag, &rs);
3696 tcp_xmit_recovery(sk, rexmit);
3697 return 1;
3698
3699 no_queue:
3700 /* If data was DSACKed, see if we can undo a cwnd reduction. */
3701 if (flag & FLAG_DSACKING_ACK)
3702 tcp_fastretrans_alert(sk, acked, is_dupack, &flag, &rexmit);
3703 /* If this ack opens up a zero window, clear backoff. It was
3704 * being used to time the probes, and is probably far higher than
3705 * it needs to be for normal retransmission.
3706 */
3707 if (tcp_send_head(sk))
3708 tcp_ack_probe(sk);
3709
3710 if (tp->tlp_high_seq)
3711 tcp_process_tlp_ack(sk, ack, flag);
3712 return 1;
3713
3714 invalid_ack:
3715 SOCK_DEBUG(sk, "Ack %u after %u:%u\n", ack, tp->snd_una, tp->snd_nxt);
3716 return -1;
3717
3718 old_ack:
3719 /* If data was SACKed, tag it and see if we should send more data.
3720 * If data was DSACKed, see if we can undo a cwnd reduction.
3721 */
3722 if (TCP_SKB_CB(skb)->sacked) {
3723 flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una,
3724 &sack_state);
3725 tcp_fastretrans_alert(sk, acked, is_dupack, &flag, &rexmit);
3726 tcp_xmit_recovery(sk, rexmit);
3727 }
3728
3729 SOCK_DEBUG(sk, "Ack %u before %u:%u\n", ack, tp->snd_una, tp->snd_nxt);
3730 return 0;
3731 }
3732
3733 static void tcp_parse_fastopen_option(int len, const unsigned char *cookie,
3734 bool syn, struct tcp_fastopen_cookie *foc,
3735 bool exp_opt)
3736 {
3737 /* Valid only in SYN or SYN-ACK with an even length. */
3738 if (!foc || !syn || len < 0 || (len & 1))
3739 return;
3740
3741 if (len >= TCP_FASTOPEN_COOKIE_MIN &&
3742 len <= TCP_FASTOPEN_COOKIE_MAX)
3743 memcpy(foc->val, cookie, len);
3744 else if (len != 0)
3745 len = -1;
3746 foc->len = len;
3747 foc->exp = exp_opt;
3748 }
3749
3750 /* Look for tcp options. Normally only called on SYN and SYNACK packets.
3751 * But, this can also be called on packets in the established flow when
3752 * the fast version below fails.
3753 */
3754 void tcp_parse_options(const struct sk_buff *skb,
3755 struct tcp_options_received *opt_rx, int estab,
3756 struct tcp_fastopen_cookie *foc)
3757 {
3758 const unsigned char *ptr;
3759 const struct tcphdr *th = tcp_hdr(skb);
3760 int length = (th->doff * 4) - sizeof(struct tcphdr);
3761
3762 ptr = (const unsigned char *)(th + 1);
3763 opt_rx->saw_tstamp = 0;
3764
3765 while (length > 0) {
3766 int opcode = *ptr++;
3767 int opsize;
3768
3769 switch (opcode) {
3770 case TCPOPT_EOL:
3771 return;
3772 case TCPOPT_NOP: /* Ref: RFC 793 section 3.1 */
3773 length--;
3774 continue;
3775 default:
3776 opsize = *ptr++;
3777 if (opsize < 2) /* "silly options" */
3778 return;
3779 if (opsize > length)
3780 return; /* don't parse partial options */
3781 switch (opcode) {
3782 case TCPOPT_MSS:
3783 if (opsize == TCPOLEN_MSS && th->syn && !estab) {
3784 u16 in_mss = get_unaligned_be16(ptr);
3785 if (in_mss) {
3786 if (opt_rx->user_mss &&
3787 opt_rx->user_mss < in_mss)
3788 in_mss = opt_rx->user_mss;
3789 opt_rx->mss_clamp = in_mss;
3790 }
3791 }
3792 break;
3793 case TCPOPT_WINDOW:
3794 if (opsize == TCPOLEN_WINDOW && th->syn &&
3795 !estab && sysctl_tcp_window_scaling) {
3796 __u8 snd_wscale = *(__u8 *)ptr;
3797 opt_rx->wscale_ok = 1;
3798 if (snd_wscale > 14) {
3799 net_info_ratelimited("%s: Illegal window scaling value %d >14 received\n",
3800 __func__,
3801 snd_wscale);
3802 snd_wscale = 14;
3803 }
3804 opt_rx->snd_wscale = snd_wscale;
3805 }
3806 break;
3807 case TCPOPT_TIMESTAMP:
3808 if ((opsize == TCPOLEN_TIMESTAMP) &&
3809 ((estab && opt_rx->tstamp_ok) ||
3810 (!estab && sysctl_tcp_timestamps))) {
3811 opt_rx->saw_tstamp = 1;
3812 opt_rx->rcv_tsval = get_unaligned_be32(ptr);
3813 opt_rx->rcv_tsecr = get_unaligned_be32(ptr + 4);
3814 }
3815 break;
3816 case TCPOPT_SACK_PERM:
3817 if (opsize == TCPOLEN_SACK_PERM && th->syn &&
3818 !estab && sysctl_tcp_sack) {
3819 opt_rx->sack_ok = TCP_SACK_SEEN;
3820 tcp_sack_reset(opt_rx);
3821 }
3822 break;
3823
3824 case TCPOPT_SACK:
3825 if ((opsize >= (TCPOLEN_SACK_BASE + TCPOLEN_SACK_PERBLOCK)) &&
3826 !((opsize - TCPOLEN_SACK_BASE) % TCPOLEN_SACK_PERBLOCK) &&
3827 opt_rx->sack_ok) {
3828 TCP_SKB_CB(skb)->sacked = (ptr - 2) - (unsigned char *)th;
3829 }
3830 break;
3831 #ifdef CONFIG_TCP_MD5SIG
3832 case TCPOPT_MD5SIG:
3833 /*
3834 * The MD5 Hash has already been
3835 * checked (see tcp_v{4,6}_do_rcv()).
3836 */
3837 break;
3838 #endif
3839 case TCPOPT_FASTOPEN:
3840 tcp_parse_fastopen_option(
3841 opsize - TCPOLEN_FASTOPEN_BASE,
3842 ptr, th->syn, foc, false);
3843 break;
3844
3845 case TCPOPT_EXP:
3846 /* Fast Open option shares code 254 using a
3847 * 16 bits magic number.
3848 */
3849 if (opsize >= TCPOLEN_EXP_FASTOPEN_BASE &&
3850 get_unaligned_be16(ptr) ==
3851 TCPOPT_FASTOPEN_MAGIC)
3852 tcp_parse_fastopen_option(opsize -
3853 TCPOLEN_EXP_FASTOPEN_BASE,
3854 ptr + 2, th->syn, foc, true);
3855 break;
3856
3857 }
3858 ptr += opsize-2;
3859 length -= opsize;
3860 }
3861 }
3862 }
3863 EXPORT_SYMBOL(tcp_parse_options);
3864
3865 static bool tcp_parse_aligned_timestamp(struct tcp_sock *tp, const struct tcphdr *th)
3866 {
3867 const __be32 *ptr = (const __be32 *)(th + 1);
3868
3869 if (*ptr == htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16)
3870 | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) {
3871 tp->rx_opt.saw_tstamp = 1;
3872 ++ptr;
3873 tp->rx_opt.rcv_tsval = ntohl(*ptr);
3874 ++ptr;
3875 if (*ptr)
3876 tp->rx_opt.rcv_tsecr = ntohl(*ptr) - tp->tsoffset;
3877 else
3878 tp->rx_opt.rcv_tsecr = 0;
3879 return true;
3880 }
3881 return false;
3882 }
3883
3884 /* Fast parse options. This hopes to only see timestamps.
3885 * If it is wrong it falls back on tcp_parse_options().
3886 */
3887 static bool tcp_fast_parse_options(const struct sk_buff *skb,
3888 const struct tcphdr *th, struct tcp_sock *tp)
3889 {
3890 /* In the spirit of fast parsing, compare doff directly to constant
3891 * values. Because equality is used, short doff can be ignored here.
3892 */
3893 if (th->doff == (sizeof(*th) / 4)) {
3894 tp->rx_opt.saw_tstamp = 0;
3895 return false;
3896 } else if (tp->rx_opt.tstamp_ok &&
3897 th->doff == ((sizeof(*th) + TCPOLEN_TSTAMP_ALIGNED) / 4)) {
3898 if (tcp_parse_aligned_timestamp(tp, th))
3899 return true;
3900 }
3901
3902 tcp_parse_options(skb, &tp->rx_opt, 1, NULL);
3903 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
3904 tp->rx_opt.rcv_tsecr -= tp->tsoffset;
3905
3906 return true;
3907 }
3908
3909 #ifdef CONFIG_TCP_MD5SIG
3910 /*
3911 * Parse MD5 Signature option
3912 */
3913 const u8 *tcp_parse_md5sig_option(const struct tcphdr *th)
3914 {
3915 int length = (th->doff << 2) - sizeof(*th);
3916 const u8 *ptr = (const u8 *)(th + 1);
3917
3918 /* If the TCP option is too short, we can short cut */
3919 if (length < TCPOLEN_MD5SIG)
3920 return NULL;
3921
3922 while (length > 0) {
3923 int opcode = *ptr++;
3924 int opsize;
3925
3926 switch (opcode) {
3927 case TCPOPT_EOL:
3928 return NULL;
3929 case TCPOPT_NOP:
3930 length--;
3931 continue;
3932 default:
3933 opsize = *ptr++;
3934 if (opsize < 2 || opsize > length)
3935 return NULL;
3936 if (opcode == TCPOPT_MD5SIG)
3937 return opsize == TCPOLEN_MD5SIG ? ptr : NULL;
3938 }
3939 ptr += opsize - 2;
3940 length -= opsize;
3941 }
3942 return NULL;
3943 }
3944 EXPORT_SYMBOL(tcp_parse_md5sig_option);
3945 #endif
3946
3947 /* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM
3948 *
3949 * It is not fatal. If this ACK does _not_ change critical state (seqs, window)
3950 * it can pass through stack. So, the following predicate verifies that
3951 * this segment is not used for anything but congestion avoidance or
3952 * fast retransmit. Moreover, we even are able to eliminate most of such
3953 * second order effects, if we apply some small "replay" window (~RTO)
3954 * to timestamp space.
3955 *
3956 * All these measures still do not guarantee that we reject wrapped ACKs
3957 * on networks with high bandwidth, when sequence space is recycled fastly,
3958 * but it guarantees that such events will be very rare and do not affect
3959 * connection seriously. This doesn't look nice, but alas, PAWS is really
3960 * buggy extension.
3961 *
3962 * [ Later note. Even worse! It is buggy for segments _with_ data. RFC
3963 * states that events when retransmit arrives after original data are rare.
3964 * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is
3965 * the biggest problem on large power networks even with minor reordering.
3966 * OK, let's give it small replay window. If peer clock is even 1hz, it is safe
3967 * up to bandwidth of 18Gigabit/sec. 8) ]
3968 */
3969
3970 static int tcp_disordered_ack(const struct sock *sk, const struct sk_buff *skb)
3971 {
3972 const struct tcp_sock *tp = tcp_sk(sk);
3973 const struct tcphdr *th = tcp_hdr(skb);
3974 u32 seq = TCP_SKB_CB(skb)->seq;
3975 u32 ack = TCP_SKB_CB(skb)->ack_seq;
3976
3977 return (/* 1. Pure ACK with correct sequence number. */
3978 (th->ack && seq == TCP_SKB_CB(skb)->end_seq && seq == tp->rcv_nxt) &&
3979
3980 /* 2. ... and duplicate ACK. */
3981 ack == tp->snd_una &&
3982
3983 /* 3. ... and does not update window. */
3984 !tcp_may_update_window(tp, ack, seq, ntohs(th->window) << tp->rx_opt.snd_wscale) &&
3985
3986 /* 4. ... and sits in replay window. */
3987 (s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) <= (inet_csk(sk)->icsk_rto * 1024) / HZ);
3988 }
3989
3990 static inline bool tcp_paws_discard(const struct sock *sk,
3991 const struct sk_buff *skb)
3992 {
3993 const struct tcp_sock *tp = tcp_sk(sk);
3994
3995 return !tcp_paws_check(&tp->rx_opt, TCP_PAWS_WINDOW) &&
3996 !tcp_disordered_ack(sk, skb);
3997 }
3998
3999 /* Check segment sequence number for validity.
4000 *
4001 * Segment controls are considered valid, if the segment
4002 * fits to the window after truncation to the window. Acceptability
4003 * of data (and SYN, FIN, of course) is checked separately.
4004 * See tcp_data_queue(), for example.
4005 *
4006 * Also, controls (RST is main one) are accepted using RCV.WUP instead
4007 * of RCV.NXT. Peer still did not advance his SND.UNA when we
4008 * delayed ACK, so that hisSND.UNA<=ourRCV.WUP.
4009 * (borrowed from freebsd)
4010 */
4011
4012 static inline bool tcp_sequence(const struct tcp_sock *tp, u32 seq, u32 end_seq)
4013 {
4014 return !before(end_seq, tp->rcv_wup) &&
4015 !after(seq, tp->rcv_nxt + tcp_receive_window(tp));
4016 }
4017
4018 /* When we get a reset we do this. */
4019 void tcp_reset(struct sock *sk)
4020 {
4021 /* We want the right error as BSD sees it (and indeed as we do). */
4022 switch (sk->sk_state) {
4023 case TCP_SYN_SENT:
4024 sk->sk_err = ECONNREFUSED;
4025 break;
4026 case TCP_CLOSE_WAIT:
4027 sk->sk_err = EPIPE;
4028 break;
4029 case TCP_CLOSE:
4030 return;
4031 default:
4032 sk->sk_err = ECONNRESET;
4033 }
4034 /* This barrier is coupled with smp_rmb() in tcp_poll() */
4035 smp_wmb();
4036
4037 if (!sock_flag(sk, SOCK_DEAD))
4038 sk->sk_error_report(sk);
4039
4040 tcp_done(sk);
4041 }
4042
4043 /*
4044 * Process the FIN bit. This now behaves as it is supposed to work
4045 * and the FIN takes effect when it is validly part of sequence
4046 * space. Not before when we get holes.
4047 *
4048 * If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT
4049 * (and thence onto LAST-ACK and finally, CLOSE, we never enter
4050 * TIME-WAIT)
4051 *
4052 * If we are in FINWAIT-1, a received FIN indicates simultaneous
4053 * close and we go into CLOSING (and later onto TIME-WAIT)
4054 *
4055 * If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT.
4056 */
4057 void tcp_fin(struct sock *sk)
4058 {
4059 struct tcp_sock *tp = tcp_sk(sk);
4060
4061 inet_csk_schedule_ack(sk);
4062
4063 sk->sk_shutdown |= RCV_SHUTDOWN;
4064 sock_set_flag(sk, SOCK_DONE);
4065
4066 switch (sk->sk_state) {
4067 case TCP_SYN_RECV:
4068 case TCP_ESTABLISHED:
4069 /* Move to CLOSE_WAIT */
4070 tcp_set_state(sk, TCP_CLOSE_WAIT);
4071 inet_csk(sk)->icsk_ack.pingpong = 1;
4072 break;
4073
4074 case TCP_CLOSE_WAIT:
4075 case TCP_CLOSING:
4076 /* Received a retransmission of the FIN, do
4077 * nothing.
4078 */
4079 break;
4080 case TCP_LAST_ACK:
4081 /* RFC793: Remain in the LAST-ACK state. */
4082 break;
4083
4084 case TCP_FIN_WAIT1:
4085 /* This case occurs when a simultaneous close
4086 * happens, we must ack the received FIN and
4087 * enter the CLOSING state.
4088 */
4089 tcp_send_ack(sk);
4090 tcp_set_state(sk, TCP_CLOSING);
4091 break;
4092 case TCP_FIN_WAIT2:
4093 /* Received a FIN -- send ACK and enter TIME_WAIT. */
4094 tcp_send_ack(sk);
4095 tcp_time_wait(sk, TCP_TIME_WAIT, 0);
4096 break;
4097 default:
4098 /* Only TCP_LISTEN and TCP_CLOSE are left, in these
4099 * cases we should never reach this piece of code.
4100 */
4101 pr_err("%s: Impossible, sk->sk_state=%d\n",
4102 __func__, sk->sk_state);
4103 break;
4104 }
4105
4106 /* It _is_ possible, that we have something out-of-order _after_ FIN.
4107 * Probably, we should reset in this case. For now drop them.
4108 */
4109 skb_rbtree_purge(&tp->out_of_order_queue);
4110 if (tcp_is_sack(tp))
4111 tcp_sack_reset(&tp->rx_opt);
4112 sk_mem_reclaim(sk);
4113
4114 if (!sock_flag(sk, SOCK_DEAD)) {
4115 sk->sk_state_change(sk);
4116
4117 /* Do not send POLL_HUP for half duplex close. */
4118 if (sk->sk_shutdown == SHUTDOWN_MASK ||
4119 sk->sk_state == TCP_CLOSE)
4120 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP);
4121 else
4122 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
4123 }
4124 }
4125
4126 static inline bool tcp_sack_extend(struct tcp_sack_block *sp, u32 seq,
4127 u32 end_seq)
4128 {
4129 if (!after(seq, sp->end_seq) && !after(sp->start_seq, end_seq)) {
4130 if (before(seq, sp->start_seq))
4131 sp->start_seq = seq;
4132 if (after(end_seq, sp->end_seq))
4133 sp->end_seq = end_seq;
4134 return true;
4135 }
4136 return false;
4137 }
4138
4139 static void tcp_dsack_set(struct sock *sk, u32 seq, u32 end_seq)
4140 {
4141 struct tcp_sock *tp = tcp_sk(sk);
4142
4143 if (tcp_is_sack(tp) && sysctl_tcp_dsack) {
4144 int mib_idx;
4145
4146 if (before(seq, tp->rcv_nxt))
4147 mib_idx = LINUX_MIB_TCPDSACKOLDSENT;
4148 else
4149 mib_idx = LINUX_MIB_TCPDSACKOFOSENT;
4150
4151 NET_INC_STATS(sock_net(sk), mib_idx);
4152
4153 tp->rx_opt.dsack = 1;
4154 tp->duplicate_sack[0].start_seq = seq;
4155 tp->duplicate_sack[0].end_seq = end_seq;
4156 }
4157 }
4158
4159 static void tcp_dsack_extend(struct sock *sk, u32 seq, u32 end_seq)
4160 {
4161 struct tcp_sock *tp = tcp_sk(sk);
4162
4163 if (!tp->rx_opt.dsack)
4164 tcp_dsack_set(sk, seq, end_seq);
4165 else
4166 tcp_sack_extend(tp->duplicate_sack, seq, end_seq);
4167 }
4168
4169 static void tcp_send_dupack(struct sock *sk, const struct sk_buff *skb)
4170 {
4171 struct tcp_sock *tp = tcp_sk(sk);
4172
4173 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
4174 before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4175 NET_INC_STATS(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
4176 tcp_enter_quickack_mode(sk);
4177
4178 if (tcp_is_sack(tp) && sysctl_tcp_dsack) {
4179 u32 end_seq = TCP_SKB_CB(skb)->end_seq;
4180
4181 if (after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))
4182 end_seq = tp->rcv_nxt;
4183 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, end_seq);
4184 }
4185 }
4186
4187 tcp_send_ack(sk);
4188 }
4189
4190 /* These routines update the SACK block as out-of-order packets arrive or
4191 * in-order packets close up the sequence space.
4192 */
4193 static void tcp_sack_maybe_coalesce(struct tcp_sock *tp)
4194 {
4195 int this_sack;
4196 struct tcp_sack_block *sp = &tp->selective_acks[0];
4197 struct tcp_sack_block *swalk = sp + 1;
4198
4199 /* See if the recent change to the first SACK eats into
4200 * or hits the sequence space of other SACK blocks, if so coalesce.
4201 */
4202 for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;) {
4203 if (tcp_sack_extend(sp, swalk->start_seq, swalk->end_seq)) {
4204 int i;
4205
4206 /* Zap SWALK, by moving every further SACK up by one slot.
4207 * Decrease num_sacks.
4208 */
4209 tp->rx_opt.num_sacks--;
4210 for (i = this_sack; i < tp->rx_opt.num_sacks; i++)
4211 sp[i] = sp[i + 1];
4212 continue;
4213 }
4214 this_sack++, swalk++;
4215 }
4216 }
4217
4218 static void tcp_sack_new_ofo_skb(struct sock *sk, u32 seq, u32 end_seq)
4219 {
4220 struct tcp_sock *tp = tcp_sk(sk);
4221 struct tcp_sack_block *sp = &tp->selective_acks[0];
4222 int cur_sacks = tp->rx_opt.num_sacks;
4223 int this_sack;
4224
4225 if (!cur_sacks)
4226 goto new_sack;
4227
4228 for (this_sack = 0; this_sack < cur_sacks; this_sack++, sp++) {
4229 if (tcp_sack_extend(sp, seq, end_seq)) {
4230 /* Rotate this_sack to the first one. */
4231 for (; this_sack > 0; this_sack--, sp--)
4232 swap(*sp, *(sp - 1));
4233 if (cur_sacks > 1)
4234 tcp_sack_maybe_coalesce(tp);
4235 return;
4236 }
4237 }
4238
4239 /* Could not find an adjacent existing SACK, build a new one,
4240 * put it at the front, and shift everyone else down. We
4241 * always know there is at least one SACK present already here.
4242 *
4243 * If the sack array is full, forget about the last one.
4244 */
4245 if (this_sack >= TCP_NUM_SACKS) {
4246 this_sack--;
4247 tp->rx_opt.num_sacks--;
4248 sp--;
4249 }
4250 for (; this_sack > 0; this_sack--, sp--)
4251 *sp = *(sp - 1);
4252
4253 new_sack:
4254 /* Build the new head SACK, and we're done. */
4255 sp->start_seq = seq;
4256 sp->end_seq = end_seq;
4257 tp->rx_opt.num_sacks++;
4258 }
4259
4260 /* RCV.NXT advances, some SACKs should be eaten. */
4261
4262 static void tcp_sack_remove(struct tcp_sock *tp)
4263 {
4264 struct tcp_sack_block *sp = &tp->selective_acks[0];
4265 int num_sacks = tp->rx_opt.num_sacks;
4266 int this_sack;
4267
4268 /* Empty ofo queue, hence, all the SACKs are eaten. Clear. */
4269 if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) {
4270 tp->rx_opt.num_sacks = 0;
4271 return;
4272 }
4273
4274 for (this_sack = 0; this_sack < num_sacks;) {
4275 /* Check if the start of the sack is covered by RCV.NXT. */
4276 if (!before(tp->rcv_nxt, sp->start_seq)) {
4277 int i;
4278
4279 /* RCV.NXT must cover all the block! */
4280 WARN_ON(before(tp->rcv_nxt, sp->end_seq));
4281
4282 /* Zap this SACK, by moving forward any other SACKS. */
4283 for (i = this_sack+1; i < num_sacks; i++)
4284 tp->selective_acks[i-1] = tp->selective_acks[i];
4285 num_sacks--;
4286 continue;
4287 }
4288 this_sack++;
4289 sp++;
4290 }
4291 tp->rx_opt.num_sacks = num_sacks;
4292 }
4293
4294 /**
4295 * tcp_try_coalesce - try to merge skb to prior one
4296 * @sk: socket
4297 * @to: prior buffer
4298 * @from: buffer to add in queue
4299 * @fragstolen: pointer to boolean
4300 *
4301 * Before queueing skb @from after @to, try to merge them
4302 * to reduce overall memory use and queue lengths, if cost is small.
4303 * Packets in ofo or receive queues can stay a long time.
4304 * Better try to coalesce them right now to avoid future collapses.
4305 * Returns true if caller should free @from instead of queueing it
4306 */
4307 static bool tcp_try_coalesce(struct sock *sk,
4308 struct sk_buff *to,
4309 struct sk_buff *from,
4310 bool *fragstolen)
4311 {
4312 int delta;
4313
4314 *fragstolen = false;
4315
4316 /* Its possible this segment overlaps with prior segment in queue */
4317 if (TCP_SKB_CB(from)->seq != TCP_SKB_CB(to)->end_seq)
4318 return false;
4319
4320 if (!skb_try_coalesce(to, from, fragstolen, &delta))
4321 return false;
4322
4323 atomic_add(delta, &sk->sk_rmem_alloc);
4324 sk_mem_charge(sk, delta);
4325 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVCOALESCE);
4326 TCP_SKB_CB(to)->end_seq = TCP_SKB_CB(from)->end_seq;
4327 TCP_SKB_CB(to)->ack_seq = TCP_SKB_CB(from)->ack_seq;
4328 TCP_SKB_CB(to)->tcp_flags |= TCP_SKB_CB(from)->tcp_flags;
4329 return true;
4330 }
4331
4332 static void tcp_drop(struct sock *sk, struct sk_buff *skb)
4333 {
4334 sk_drops_add(sk, skb);
4335 __kfree_skb(skb);
4336 }
4337
4338 /* This one checks to see if we can put data from the
4339 * out_of_order queue into the receive_queue.
4340 */
4341 static void tcp_ofo_queue(struct sock *sk)
4342 {
4343 struct tcp_sock *tp = tcp_sk(sk);
4344 __u32 dsack_high = tp->rcv_nxt;
4345 bool fin, fragstolen, eaten;
4346 struct sk_buff *skb, *tail;
4347 struct rb_node *p;
4348
4349 p = rb_first(&tp->out_of_order_queue);
4350 while (p) {
4351 skb = rb_entry(p, struct sk_buff, rbnode);
4352 if (after(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
4353 break;
4354
4355 if (before(TCP_SKB_CB(skb)->seq, dsack_high)) {
4356 __u32 dsack = dsack_high;
4357 if (before(TCP_SKB_CB(skb)->end_seq, dsack_high))
4358 dsack_high = TCP_SKB_CB(skb)->end_seq;
4359 tcp_dsack_extend(sk, TCP_SKB_CB(skb)->seq, dsack);
4360 }
4361 p = rb_next(p);
4362 rb_erase(&skb->rbnode, &tp->out_of_order_queue);
4363
4364 if (unlikely(!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))) {
4365 SOCK_DEBUG(sk, "ofo packet was already received\n");
4366 tcp_drop(sk, skb);
4367 continue;
4368 }
4369 SOCK_DEBUG(sk, "ofo requeuing : rcv_next %X seq %X - %X\n",
4370 tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
4371 TCP_SKB_CB(skb)->end_seq);
4372
4373 tail = skb_peek_tail(&sk->sk_receive_queue);
4374 eaten = tail && tcp_try_coalesce(sk, tail, skb, &fragstolen);
4375 tcp_rcv_nxt_update(tp, TCP_SKB_CB(skb)->end_seq);
4376 fin = TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN;
4377 if (!eaten)
4378 __skb_queue_tail(&sk->sk_receive_queue, skb);
4379 else
4380 kfree_skb_partial(skb, fragstolen);
4381
4382 if (unlikely(fin)) {
4383 tcp_fin(sk);
4384 /* tcp_fin() purges tp->out_of_order_queue,
4385 * so we must end this loop right now.
4386 */
4387 break;
4388 }
4389 }
4390 }
4391
4392 static bool tcp_prune_ofo_queue(struct sock *sk);
4393 static int tcp_prune_queue(struct sock *sk);
4394
4395 static int tcp_try_rmem_schedule(struct sock *sk, struct sk_buff *skb,
4396 unsigned int size)
4397 {
4398 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
4399 !sk_rmem_schedule(sk, skb, size)) {
4400
4401 if (tcp_prune_queue(sk) < 0)
4402 return -1;
4403
4404 while (!sk_rmem_schedule(sk, skb, size)) {
4405 if (!tcp_prune_ofo_queue(sk))
4406 return -1;
4407 }
4408 }
4409 return 0;
4410 }
4411
4412 static void tcp_data_queue_ofo(struct sock *sk, struct sk_buff *skb)
4413 {
4414 struct tcp_sock *tp = tcp_sk(sk);
4415 struct rb_node **p, *q, *parent;
4416 struct sk_buff *skb1;
4417 u32 seq, end_seq;
4418 bool fragstolen;
4419
4420 tcp_ecn_check_ce(tp, skb);
4421
4422 if (unlikely(tcp_try_rmem_schedule(sk, skb, skb->truesize))) {
4423 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFODROP);
4424 tcp_drop(sk, skb);
4425 return;
4426 }
4427
4428 /* Disable header prediction. */
4429 tp->pred_flags = 0;
4430 inet_csk_schedule_ack(sk);
4431
4432 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFOQUEUE);
4433 seq = TCP_SKB_CB(skb)->seq;
4434 end_seq = TCP_SKB_CB(skb)->end_seq;
4435 SOCK_DEBUG(sk, "out of order segment: rcv_next %X seq %X - %X\n",
4436 tp->rcv_nxt, seq, end_seq);
4437
4438 p = &tp->out_of_order_queue.rb_node;
4439 if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) {
4440 /* Initial out of order segment, build 1 SACK. */
4441 if (tcp_is_sack(tp)) {
4442 tp->rx_opt.num_sacks = 1;
4443 tp->selective_acks[0].start_seq = seq;
4444 tp->selective_acks[0].end_seq = end_seq;
4445 }
4446 rb_link_node(&skb->rbnode, NULL, p);
4447 rb_insert_color(&skb->rbnode, &tp->out_of_order_queue);
4448 tp->ooo_last_skb = skb;
4449 goto end;
4450 }
4451
4452 /* In the typical case, we are adding an skb to the end of the list.
4453 * Use of ooo_last_skb avoids the O(Log(N)) rbtree lookup.
4454 */
4455 if (tcp_try_coalesce(sk, tp->ooo_last_skb, skb, &fragstolen)) {
4456 coalesce_done:
4457 tcp_grow_window(sk, skb);
4458 kfree_skb_partial(skb, fragstolen);
4459 skb = NULL;
4460 goto add_sack;
4461 }
4462 /* Can avoid an rbtree lookup if we are adding skb after ooo_last_skb */
4463 if (!before(seq, TCP_SKB_CB(tp->ooo_last_skb)->end_seq)) {
4464 parent = &tp->ooo_last_skb->rbnode;
4465 p = &parent->rb_right;
4466 goto insert;
4467 }
4468
4469 /* Find place to insert this segment. Handle overlaps on the way. */
4470 parent = NULL;
4471 while (*p) {
4472 parent = *p;
4473 skb1 = rb_entry(parent, struct sk_buff, rbnode);
4474 if (before(seq, TCP_SKB_CB(skb1)->seq)) {
4475 p = &parent->rb_left;
4476 continue;
4477 }
4478 if (before(seq, TCP_SKB_CB(skb1)->end_seq)) {
4479 if (!after(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4480 /* All the bits are present. Drop. */
4481 NET_INC_STATS(sock_net(sk),
4482 LINUX_MIB_TCPOFOMERGE);
4483 __kfree_skb(skb);
4484 skb = NULL;
4485 tcp_dsack_set(sk, seq, end_seq);
4486 goto add_sack;
4487 }
4488 if (after(seq, TCP_SKB_CB(skb1)->seq)) {
4489 /* Partial overlap. */
4490 tcp_dsack_set(sk, seq, TCP_SKB_CB(skb1)->end_seq);
4491 } else {
4492 /* skb's seq == skb1's seq and skb covers skb1.
4493 * Replace skb1 with skb.
4494 */
4495 rb_replace_node(&skb1->rbnode, &skb->rbnode,
4496 &tp->out_of_order_queue);
4497 tcp_dsack_extend(sk,
4498 TCP_SKB_CB(skb1)->seq,
4499 TCP_SKB_CB(skb1)->end_seq);
4500 NET_INC_STATS(sock_net(sk),
4501 LINUX_MIB_TCPOFOMERGE);
4502 __kfree_skb(skb1);
4503 goto merge_right;
4504 }
4505 } else if (tcp_try_coalesce(sk, skb1, skb, &fragstolen)) {
4506 goto coalesce_done;
4507 }
4508 p = &parent->rb_right;
4509 }
4510 insert:
4511 /* Insert segment into RB tree. */
4512 rb_link_node(&skb->rbnode, parent, p);
4513 rb_insert_color(&skb->rbnode, &tp->out_of_order_queue);
4514
4515 merge_right:
4516 /* Remove other segments covered by skb. */
4517 while ((q = rb_next(&skb->rbnode)) != NULL) {
4518 skb1 = rb_entry(q, struct sk_buff, rbnode);
4519
4520 if (!after(end_seq, TCP_SKB_CB(skb1)->seq))
4521 break;
4522 if (before(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4523 tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
4524 end_seq);
4525 break;
4526 }
4527 rb_erase(&skb1->rbnode, &tp->out_of_order_queue);
4528 tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
4529 TCP_SKB_CB(skb1)->end_seq);
4530 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFOMERGE);
4531 tcp_drop(sk, skb1);
4532 }
4533 /* If there is no skb after us, we are the last_skb ! */
4534 if (!q)
4535 tp->ooo_last_skb = skb;
4536
4537 add_sack:
4538 if (tcp_is_sack(tp))
4539 tcp_sack_new_ofo_skb(sk, seq, end_seq);
4540 end:
4541 if (skb) {
4542 tcp_grow_window(sk, skb);
4543 skb_set_owner_r(skb, sk);
4544 }
4545 }
4546
4547 static int __must_check tcp_queue_rcv(struct sock *sk, struct sk_buff *skb, int hdrlen,
4548 bool *fragstolen)
4549 {
4550 int eaten;
4551 struct sk_buff *tail = skb_peek_tail(&sk->sk_receive_queue);
4552
4553 __skb_pull(skb, hdrlen);
4554 eaten = (tail &&
4555 tcp_try_coalesce(sk, tail, skb, fragstolen)) ? 1 : 0;
4556 tcp_rcv_nxt_update(tcp_sk(sk), TCP_SKB_CB(skb)->end_seq);
4557 if (!eaten) {
4558 __skb_queue_tail(&sk->sk_receive_queue, skb);
4559 skb_set_owner_r(skb, sk);
4560 }
4561 return eaten;
4562 }
4563
4564 int tcp_send_rcvq(struct sock *sk, struct msghdr *msg, size_t size)
4565 {
4566 struct sk_buff *skb;
4567 int err = -ENOMEM;
4568 int data_len = 0;
4569 bool fragstolen;
4570
4571 if (size == 0)
4572 return 0;
4573
4574 if (size > PAGE_SIZE) {
4575 int npages = min_t(size_t, size >> PAGE_SHIFT, MAX_SKB_FRAGS);
4576
4577 data_len = npages << PAGE_SHIFT;
4578 size = data_len + (size & ~PAGE_MASK);
4579 }
4580 skb = alloc_skb_with_frags(size - data_len, data_len,
4581 PAGE_ALLOC_COSTLY_ORDER,
4582 &err, sk->sk_allocation);
4583 if (!skb)
4584 goto err;
4585
4586 skb_put(skb, size - data_len);
4587 skb->data_len = data_len;
4588 skb->len = size;
4589
4590 if (tcp_try_rmem_schedule(sk, skb, skb->truesize))
4591 goto err_free;
4592
4593 err = skb_copy_datagram_from_iter(skb, 0, &msg->msg_iter, size);
4594 if (err)
4595 goto err_free;
4596
4597 TCP_SKB_CB(skb)->seq = tcp_sk(sk)->rcv_nxt;
4598 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(skb)->seq + size;
4599 TCP_SKB_CB(skb)->ack_seq = tcp_sk(sk)->snd_una - 1;
4600
4601 if (tcp_queue_rcv(sk, skb, 0, &fragstolen)) {
4602 WARN_ON_ONCE(fragstolen); /* should not happen */
4603 __kfree_skb(skb);
4604 }
4605 return size;
4606
4607 err_free:
4608 kfree_skb(skb);
4609 err:
4610 return err;
4611
4612 }
4613
4614 static void tcp_data_queue(struct sock *sk, struct sk_buff *skb)
4615 {
4616 struct tcp_sock *tp = tcp_sk(sk);
4617 bool fragstolen = false;
4618 int eaten = -1;
4619
4620 if (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq) {
4621 __kfree_skb(skb);
4622 return;
4623 }
4624 skb_dst_drop(skb);
4625 __skb_pull(skb, tcp_hdr(skb)->doff * 4);
4626
4627 tcp_ecn_accept_cwr(tp, skb);
4628
4629 tp->rx_opt.dsack = 0;
4630
4631 /* Queue data for delivery to the user.
4632 * Packets in sequence go to the receive queue.
4633 * Out of sequence packets to the out_of_order_queue.
4634 */
4635 if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
4636 if (tcp_receive_window(tp) == 0)
4637 goto out_of_window;
4638
4639 /* Ok. In sequence. In window. */
4640 if (tp->ucopy.task == current &&
4641 tp->copied_seq == tp->rcv_nxt && tp->ucopy.len &&
4642 sock_owned_by_user(sk) && !tp->urg_data) {
4643 int chunk = min_t(unsigned int, skb->len,
4644 tp->ucopy.len);
4645
4646 __set_current_state(TASK_RUNNING);
4647
4648 if (!skb_copy_datagram_msg(skb, 0, tp->ucopy.msg, chunk)) {
4649 tp->ucopy.len -= chunk;
4650 tp->copied_seq += chunk;
4651 eaten = (chunk == skb->len);
4652 tcp_rcv_space_adjust(sk);
4653 }
4654 }
4655
4656 if (eaten <= 0) {
4657 queue_and_out:
4658 if (eaten < 0) {
4659 if (skb_queue_len(&sk->sk_receive_queue) == 0)
4660 sk_forced_mem_schedule(sk, skb->truesize);
4661 else if (tcp_try_rmem_schedule(sk, skb, skb->truesize))
4662 goto drop;
4663 }
4664 eaten = tcp_queue_rcv(sk, skb, 0, &fragstolen);
4665 }
4666 tcp_rcv_nxt_update(tp, TCP_SKB_CB(skb)->end_seq);
4667 if (skb->len)
4668 tcp_event_data_recv(sk, skb);
4669 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
4670 tcp_fin(sk);
4671
4672 if (!RB_EMPTY_ROOT(&tp->out_of_order_queue)) {
4673 tcp_ofo_queue(sk);
4674
4675 /* RFC2581. 4.2. SHOULD send immediate ACK, when
4676 * gap in queue is filled.
4677 */
4678 if (RB_EMPTY_ROOT(&tp->out_of_order_queue))
4679 inet_csk(sk)->icsk_ack.pingpong = 0;
4680 }
4681
4682 if (tp->rx_opt.num_sacks)
4683 tcp_sack_remove(tp);
4684
4685 tcp_fast_path_check(sk);
4686
4687 if (eaten > 0)
4688 kfree_skb_partial(skb, fragstolen);
4689 if (!sock_flag(sk, SOCK_DEAD))
4690 sk->sk_data_ready(sk);
4691 return;
4692 }
4693
4694 if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
4695 /* A retransmit, 2nd most common case. Force an immediate ack. */
4696 NET_INC_STATS(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
4697 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
4698
4699 out_of_window:
4700 tcp_enter_quickack_mode(sk);
4701 inet_csk_schedule_ack(sk);
4702 drop:
4703 tcp_drop(sk, skb);
4704 return;
4705 }
4706
4707 /* Out of window. F.e. zero window probe. */
4708 if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt + tcp_receive_window(tp)))
4709 goto out_of_window;
4710
4711 tcp_enter_quickack_mode(sk);
4712
4713 if (before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4714 /* Partial packet, seq < rcv_next < end_seq */
4715 SOCK_DEBUG(sk, "partial packet: rcv_next %X seq %X - %X\n",
4716 tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
4717 TCP_SKB_CB(skb)->end_seq);
4718
4719 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, tp->rcv_nxt);
4720
4721 /* If window is closed, drop tail of packet. But after
4722 * remembering D-SACK for its head made in previous line.
4723 */
4724 if (!tcp_receive_window(tp))
4725 goto out_of_window;
4726 goto queue_and_out;
4727 }
4728
4729 tcp_data_queue_ofo(sk, skb);
4730 }
4731
4732 static struct sk_buff *tcp_skb_next(struct sk_buff *skb, struct sk_buff_head *list)
4733 {
4734 if (list)
4735 return !skb_queue_is_last(list, skb) ? skb->next : NULL;
4736
4737 return rb_entry_safe(rb_next(&skb->rbnode), struct sk_buff, rbnode);
4738 }
4739
4740 static struct sk_buff *tcp_collapse_one(struct sock *sk, struct sk_buff *skb,
4741 struct sk_buff_head *list,
4742 struct rb_root *root)
4743 {
4744 struct sk_buff *next = tcp_skb_next(skb, list);
4745
4746 if (list)
4747 __skb_unlink(skb, list);
4748 else
4749 rb_erase(&skb->rbnode, root);
4750
4751 __kfree_skb(skb);
4752 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVCOLLAPSED);
4753
4754 return next;
4755 }
4756
4757 /* Insert skb into rb tree, ordered by TCP_SKB_CB(skb)->seq */
4758 static void tcp_rbtree_insert(struct rb_root *root, struct sk_buff *skb)
4759 {
4760 struct rb_node **p = &root->rb_node;
4761 struct rb_node *parent = NULL;
4762 struct sk_buff *skb1;
4763
4764 while (*p) {
4765 parent = *p;
4766 skb1 = rb_entry(parent, struct sk_buff, rbnode);
4767 if (before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb1)->seq))
4768 p = &parent->rb_left;
4769 else
4770 p = &parent->rb_right;
4771 }
4772 rb_link_node(&skb->rbnode, parent, p);
4773 rb_insert_color(&skb->rbnode, root);
4774 }
4775
4776 /* Collapse contiguous sequence of skbs head..tail with
4777 * sequence numbers start..end.
4778 *
4779 * If tail is NULL, this means until the end of the queue.
4780 *
4781 * Segments with FIN/SYN are not collapsed (only because this
4782 * simplifies code)
4783 */
4784 static void
4785 tcp_collapse(struct sock *sk, struct sk_buff_head *list, struct rb_root *root,
4786 struct sk_buff *head, struct sk_buff *tail, u32 start, u32 end)
4787 {
4788 struct sk_buff *skb = head, *n;
4789 struct sk_buff_head tmp;
4790 bool end_of_skbs;
4791
4792 /* First, check that queue is collapsible and find
4793 * the point where collapsing can be useful.
4794 */
4795 restart:
4796 for (end_of_skbs = true; skb != NULL && skb != tail; skb = n) {
4797 n = tcp_skb_next(skb, list);
4798
4799 /* No new bits? It is possible on ofo queue. */
4800 if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
4801 skb = tcp_collapse_one(sk, skb, list, root);
4802 if (!skb)
4803 break;
4804 goto restart;
4805 }
4806
4807 /* The first skb to collapse is:
4808 * - not SYN/FIN and
4809 * - bloated or contains data before "start" or
4810 * overlaps to the next one.
4811 */
4812 if (!(TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)) &&
4813 (tcp_win_from_space(skb->truesize) > skb->len ||
4814 before(TCP_SKB_CB(skb)->seq, start))) {
4815 end_of_skbs = false;
4816 break;
4817 }
4818
4819 if (n && n != tail &&
4820 TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(n)->seq) {
4821 end_of_skbs = false;
4822 break;
4823 }
4824
4825 /* Decided to skip this, advance start seq. */
4826 start = TCP_SKB_CB(skb)->end_seq;
4827 }
4828 if (end_of_skbs ||
4829 (TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)))
4830 return;
4831
4832 __skb_queue_head_init(&tmp);
4833
4834 while (before(start, end)) {
4835 int copy = min_t(int, SKB_MAX_ORDER(0, 0), end - start);
4836 struct sk_buff *nskb;
4837
4838 nskb = alloc_skb(copy, GFP_ATOMIC);
4839 if (!nskb)
4840 break;
4841
4842 memcpy(nskb->cb, skb->cb, sizeof(skb->cb));
4843 TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(nskb)->end_seq = start;
4844 if (list)
4845 __skb_queue_before(list, skb, nskb);
4846 else
4847 __skb_queue_tail(&tmp, nskb); /* defer rbtree insertion */
4848 skb_set_owner_r(nskb, sk);
4849
4850 /* Copy data, releasing collapsed skbs. */
4851 while (copy > 0) {
4852 int offset = start - TCP_SKB_CB(skb)->seq;
4853 int size = TCP_SKB_CB(skb)->end_seq - start;
4854
4855 BUG_ON(offset < 0);
4856 if (size > 0) {
4857 size = min(copy, size);
4858 if (skb_copy_bits(skb, offset, skb_put(nskb, size), size))
4859 BUG();
4860 TCP_SKB_CB(nskb)->end_seq += size;
4861 copy -= size;
4862 start += size;
4863 }
4864 if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
4865 skb = tcp_collapse_one(sk, skb, list, root);
4866 if (!skb ||
4867 skb == tail ||
4868 (TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)))
4869 goto end;
4870 }
4871 }
4872 }
4873 end:
4874 skb_queue_walk_safe(&tmp, skb, n)
4875 tcp_rbtree_insert(root, skb);
4876 }
4877
4878 /* Collapse ofo queue. Algorithm: select contiguous sequence of skbs
4879 * and tcp_collapse() them until all the queue is collapsed.
4880 */
4881 static void tcp_collapse_ofo_queue(struct sock *sk)
4882 {
4883 struct tcp_sock *tp = tcp_sk(sk);
4884 struct sk_buff *skb, *head;
4885 struct rb_node *p;
4886 u32 start, end;
4887
4888 p = rb_first(&tp->out_of_order_queue);
4889 skb = rb_entry_safe(p, struct sk_buff, rbnode);
4890 new_range:
4891 if (!skb) {
4892 p = rb_last(&tp->out_of_order_queue);
4893 /* Note: This is possible p is NULL here. We do not
4894 * use rb_entry_safe(), as ooo_last_skb is valid only
4895 * if rbtree is not empty.
4896 */
4897 tp->ooo_last_skb = rb_entry(p, struct sk_buff, rbnode);
4898 return;
4899 }
4900 start = TCP_SKB_CB(skb)->seq;
4901 end = TCP_SKB_CB(skb)->end_seq;
4902
4903 for (head = skb;;) {
4904 skb = tcp_skb_next(skb, NULL);
4905
4906 /* Range is terminated when we see a gap or when
4907 * we are at the queue end.
4908 */
4909 if (!skb ||
4910 after(TCP_SKB_CB(skb)->seq, end) ||
4911 before(TCP_SKB_CB(skb)->end_seq, start)) {
4912 tcp_collapse(sk, NULL, &tp->out_of_order_queue,
4913 head, skb, start, end);
4914 goto new_range;
4915 }
4916
4917 if (unlikely(before(TCP_SKB_CB(skb)->seq, start)))
4918 start = TCP_SKB_CB(skb)->seq;
4919 if (after(TCP_SKB_CB(skb)->end_seq, end))
4920 end = TCP_SKB_CB(skb)->end_seq;
4921 }
4922 }
4923
4924 /*
4925 * Clean the out-of-order queue to make room.
4926 * We drop high sequences packets to :
4927 * 1) Let a chance for holes to be filled.
4928 * 2) not add too big latencies if thousands of packets sit there.
4929 * (But if application shrinks SO_RCVBUF, we could still end up
4930 * freeing whole queue here)
4931 *
4932 * Return true if queue has shrunk.
4933 */
4934 static bool tcp_prune_ofo_queue(struct sock *sk)
4935 {
4936 struct tcp_sock *tp = tcp_sk(sk);
4937 struct rb_node *node, *prev;
4938
4939 if (RB_EMPTY_ROOT(&tp->out_of_order_queue))
4940 return false;
4941
4942 NET_INC_STATS(sock_net(sk), LINUX_MIB_OFOPRUNED);
4943 node = &tp->ooo_last_skb->rbnode;
4944 do {
4945 prev = rb_prev(node);
4946 rb_erase(node, &tp->out_of_order_queue);
4947 tcp_drop(sk, rb_entry(node, struct sk_buff, rbnode));
4948 sk_mem_reclaim(sk);
4949 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf &&
4950 !tcp_under_memory_pressure(sk))
4951 break;
4952 node = prev;
4953 } while (node);
4954 tp->ooo_last_skb = rb_entry(prev, struct sk_buff, rbnode);
4955
4956 /* Reset SACK state. A conforming SACK implementation will
4957 * do the same at a timeout based retransmit. When a connection
4958 * is in a sad state like this, we care only about integrity
4959 * of the connection not performance.
4960 */
4961 if (tp->rx_opt.sack_ok)
4962 tcp_sack_reset(&tp->rx_opt);
4963 return true;
4964 }
4965
4966 /* Reduce allocated memory if we can, trying to get
4967 * the socket within its memory limits again.
4968 *
4969 * Return less than zero if we should start dropping frames
4970 * until the socket owning process reads some of the data
4971 * to stabilize the situation.
4972 */
4973 static int tcp_prune_queue(struct sock *sk)
4974 {
4975 struct tcp_sock *tp = tcp_sk(sk);
4976
4977 SOCK_DEBUG(sk, "prune_queue: c=%x\n", tp->copied_seq);
4978
4979 NET_INC_STATS(sock_net(sk), LINUX_MIB_PRUNECALLED);
4980
4981 if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf)
4982 tcp_clamp_window(sk);
4983 else if (tcp_under_memory_pressure(sk))
4984 tp->rcv_ssthresh = min(tp->rcv_ssthresh, 4U * tp->advmss);
4985
4986 tcp_collapse_ofo_queue(sk);
4987 if (!skb_queue_empty(&sk->sk_receive_queue))
4988 tcp_collapse(sk, &sk->sk_receive_queue, NULL,
4989 skb_peek(&sk->sk_receive_queue),
4990 NULL,
4991 tp->copied_seq, tp->rcv_nxt);
4992 sk_mem_reclaim(sk);
4993
4994 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
4995 return 0;
4996
4997 /* Collapsing did not help, destructive actions follow.
4998 * This must not ever occur. */
4999
5000 tcp_prune_ofo_queue(sk);
5001
5002 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
5003 return 0;
5004
5005 /* If we are really being abused, tell the caller to silently
5006 * drop receive data on the floor. It will get retransmitted
5007 * and hopefully then we'll have sufficient space.
5008 */
5009 NET_INC_STATS(sock_net(sk), LINUX_MIB_RCVPRUNED);
5010
5011 /* Massive buffer overcommit. */
5012 tp->pred_flags = 0;
5013 return -1;
5014 }
5015
5016 static bool tcp_should_expand_sndbuf(const struct sock *sk)
5017 {
5018 const struct tcp_sock *tp = tcp_sk(sk);
5019
5020 /* If the user specified a specific send buffer setting, do
5021 * not modify it.
5022 */
5023 if (sk->sk_userlocks & SOCK_SNDBUF_LOCK)
5024 return false;
5025
5026 /* If we are under global TCP memory pressure, do not expand. */
5027 if (tcp_under_memory_pressure(sk))
5028 return false;
5029
5030 /* If we are under soft global TCP memory pressure, do not expand. */
5031 if (sk_memory_allocated(sk) >= sk_prot_mem_limits(sk, 0))
5032 return false;
5033
5034 /* If we filled the congestion window, do not expand. */
5035 if (tcp_packets_in_flight(tp) >= tp->snd_cwnd)
5036 return false;
5037
5038 return true;
5039 }
5040
5041 /* When incoming ACK allowed to free some skb from write_queue,
5042 * we remember this event in flag SOCK_QUEUE_SHRUNK and wake up socket
5043 * on the exit from tcp input handler.
5044 *
5045 * PROBLEM: sndbuf expansion does not work well with largesend.
5046 */
5047 static void tcp_new_space(struct sock *sk)
5048 {
5049 struct tcp_sock *tp = tcp_sk(sk);
5050
5051 if (tcp_should_expand_sndbuf(sk)) {
5052 tcp_sndbuf_expand(sk);
5053 tp->snd_cwnd_stamp = tcp_time_stamp;
5054 }
5055
5056 sk->sk_write_space(sk);
5057 }
5058
5059 static void tcp_check_space(struct sock *sk)
5060 {
5061 if (sock_flag(sk, SOCK_QUEUE_SHRUNK)) {
5062 sock_reset_flag(sk, SOCK_QUEUE_SHRUNK);
5063 /* pairs with tcp_poll() */
5064 smp_mb__after_atomic();
5065 if (sk->sk_socket &&
5066 test_bit(SOCK_NOSPACE, &sk->sk_socket->flags))
5067 tcp_new_space(sk);
5068 }
5069 }
5070
5071 static inline void tcp_data_snd_check(struct sock *sk)
5072 {
5073 tcp_push_pending_frames(sk);
5074 tcp_check_space(sk);
5075 }
5076
5077 /*
5078 * Check if sending an ack is needed.
5079 */
5080 static void __tcp_ack_snd_check(struct sock *sk, int ofo_possible)
5081 {
5082 struct tcp_sock *tp = tcp_sk(sk);
5083
5084 /* More than one full frame received... */
5085 if (((tp->rcv_nxt - tp->rcv_wup) > inet_csk(sk)->icsk_ack.rcv_mss &&
5086 /* ... and right edge of window advances far enough.
5087 * (tcp_recvmsg() will send ACK otherwise). Or...
5088 */
5089 __tcp_select_window(sk) >= tp->rcv_wnd) ||
5090 /* We ACK each frame or... */
5091 tcp_in_quickack_mode(sk) ||
5092 /* We have out of order data. */
5093 (ofo_possible && !RB_EMPTY_ROOT(&tp->out_of_order_queue))) {
5094 /* Then ack it now */
5095 tcp_send_ack(sk);
5096 } else {
5097 /* Else, send delayed ack. */
5098 tcp_send_delayed_ack(sk);
5099 }
5100 }
5101
5102 static inline void tcp_ack_snd_check(struct sock *sk)
5103 {
5104 if (!inet_csk_ack_scheduled(sk)) {
5105 /* We sent a data segment already. */
5106 return;
5107 }
5108 __tcp_ack_snd_check(sk, 1);
5109 }
5110
5111 /*
5112 * This routine is only called when we have urgent data
5113 * signaled. Its the 'slow' part of tcp_urg. It could be
5114 * moved inline now as tcp_urg is only called from one
5115 * place. We handle URGent data wrong. We have to - as
5116 * BSD still doesn't use the correction from RFC961.
5117 * For 1003.1g we should support a new option TCP_STDURG to permit
5118 * either form (or just set the sysctl tcp_stdurg).
5119 */
5120
5121 static void tcp_check_urg(struct sock *sk, const struct tcphdr *th)
5122 {
5123 struct tcp_sock *tp = tcp_sk(sk);
5124 u32 ptr = ntohs(th->urg_ptr);
5125
5126 if (ptr && !sysctl_tcp_stdurg)
5127 ptr--;
5128 ptr += ntohl(th->seq);
5129
5130 /* Ignore urgent data that we've already seen and read. */
5131 if (after(tp->copied_seq, ptr))
5132 return;
5133
5134 /* Do not replay urg ptr.
5135 *
5136 * NOTE: interesting situation not covered by specs.
5137 * Misbehaving sender may send urg ptr, pointing to segment,
5138 * which we already have in ofo queue. We are not able to fetch
5139 * such data and will stay in TCP_URG_NOTYET until will be eaten
5140 * by recvmsg(). Seems, we are not obliged to handle such wicked
5141 * situations. But it is worth to think about possibility of some
5142 * DoSes using some hypothetical application level deadlock.
5143 */
5144 if (before(ptr, tp->rcv_nxt))
5145 return;
5146
5147 /* Do we already have a newer (or duplicate) urgent pointer? */
5148 if (tp->urg_data && !after(ptr, tp->urg_seq))
5149 return;
5150
5151 /* Tell the world about our new urgent pointer. */
5152 sk_send_sigurg(sk);
5153
5154 /* We may be adding urgent data when the last byte read was
5155 * urgent. To do this requires some care. We cannot just ignore
5156 * tp->copied_seq since we would read the last urgent byte again
5157 * as data, nor can we alter copied_seq until this data arrives
5158 * or we break the semantics of SIOCATMARK (and thus sockatmark())
5159 *
5160 * NOTE. Double Dutch. Rendering to plain English: author of comment
5161 * above did something sort of send("A", MSG_OOB); send("B", MSG_OOB);
5162 * and expect that both A and B disappear from stream. This is _wrong_.
5163 * Though this happens in BSD with high probability, this is occasional.
5164 * Any application relying on this is buggy. Note also, that fix "works"
5165 * only in this artificial test. Insert some normal data between A and B and we will
5166 * decline of BSD again. Verdict: it is better to remove to trap
5167 * buggy users.
5168 */
5169 if (tp->urg_seq == tp->copied_seq && tp->urg_data &&
5170 !sock_flag(sk, SOCK_URGINLINE) && tp->copied_seq != tp->rcv_nxt) {
5171 struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
5172 tp->copied_seq++;
5173 if (skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq)) {
5174 __skb_unlink(skb, &sk->sk_receive_queue);
5175 __kfree_skb(skb);
5176 }
5177 }
5178
5179 tp->urg_data = TCP_URG_NOTYET;
5180 tp->urg_seq = ptr;
5181
5182 /* Disable header prediction. */
5183 tp->pred_flags = 0;
5184 }
5185
5186 /* This is the 'fast' part of urgent handling. */
5187 static void tcp_urg(struct sock *sk, struct sk_buff *skb, const struct tcphdr *th)
5188 {
5189 struct tcp_sock *tp = tcp_sk(sk);
5190
5191 /* Check if we get a new urgent pointer - normally not. */
5192 if (th->urg)
5193 tcp_check_urg(sk, th);
5194
5195 /* Do we wait for any urgent data? - normally not... */
5196 if (tp->urg_data == TCP_URG_NOTYET) {
5197 u32 ptr = tp->urg_seq - ntohl(th->seq) + (th->doff * 4) -
5198 th->syn;
5199
5200 /* Is the urgent pointer pointing into this packet? */
5201 if (ptr < skb->len) {
5202 u8 tmp;
5203 if (skb_copy_bits(skb, ptr, &tmp, 1))
5204 BUG();
5205 tp->urg_data = TCP_URG_VALID | tmp;
5206 if (!sock_flag(sk, SOCK_DEAD))
5207 sk->sk_data_ready(sk);
5208 }
5209 }
5210 }
5211
5212 static int tcp_copy_to_iovec(struct sock *sk, struct sk_buff *skb, int hlen)
5213 {
5214 struct tcp_sock *tp = tcp_sk(sk);
5215 int chunk = skb->len - hlen;
5216 int err;
5217
5218 if (skb_csum_unnecessary(skb))
5219 err = skb_copy_datagram_msg(skb, hlen, tp->ucopy.msg, chunk);
5220 else
5221 err = skb_copy_and_csum_datagram_msg(skb, hlen, tp->ucopy.msg);
5222
5223 if (!err) {
5224 tp->ucopy.len -= chunk;
5225 tp->copied_seq += chunk;
5226 tcp_rcv_space_adjust(sk);
5227 }
5228
5229 return err;
5230 }
5231
5232 /* Does PAWS and seqno based validation of an incoming segment, flags will
5233 * play significant role here.
5234 */
5235 static bool tcp_validate_incoming(struct sock *sk, struct sk_buff *skb,
5236 const struct tcphdr *th, int syn_inerr)
5237 {
5238 struct tcp_sock *tp = tcp_sk(sk);
5239 bool rst_seq_match = false;
5240
5241 /* RFC1323: H1. Apply PAWS check first. */
5242 if (tcp_fast_parse_options(skb, th, tp) && tp->rx_opt.saw_tstamp &&
5243 tcp_paws_discard(sk, skb)) {
5244 if (!th->rst) {
5245 NET_INC_STATS(sock_net(sk), LINUX_MIB_PAWSESTABREJECTED);
5246 if (!tcp_oow_rate_limited(sock_net(sk), skb,
5247 LINUX_MIB_TCPACKSKIPPEDPAWS,
5248 &tp->last_oow_ack_time))
5249 tcp_send_dupack(sk, skb);
5250 goto discard;
5251 }
5252 /* Reset is accepted even if it did not pass PAWS. */
5253 }
5254
5255 /* Step 1: check sequence number */
5256 if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) {
5257 /* RFC793, page 37: "In all states except SYN-SENT, all reset
5258 * (RST) segments are validated by checking their SEQ-fields."
5259 * And page 69: "If an incoming segment is not acceptable,
5260 * an acknowledgment should be sent in reply (unless the RST
5261 * bit is set, if so drop the segment and return)".
5262 */
5263 if (!th->rst) {
5264 if (th->syn)
5265 goto syn_challenge;
5266 if (!tcp_oow_rate_limited(sock_net(sk), skb,
5267 LINUX_MIB_TCPACKSKIPPEDSEQ,
5268 &tp->last_oow_ack_time))
5269 tcp_send_dupack(sk, skb);
5270 }
5271 goto discard;
5272 }
5273
5274 /* Step 2: check RST bit */
5275 if (th->rst) {
5276 /* RFC 5961 3.2 (extend to match against SACK too if available):
5277 * If seq num matches RCV.NXT or the right-most SACK block,
5278 * then
5279 * RESET the connection
5280 * else
5281 * Send a challenge ACK
5282 */
5283 if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
5284 rst_seq_match = true;
5285 } else if (tcp_is_sack(tp) && tp->rx_opt.num_sacks > 0) {
5286 struct tcp_sack_block *sp = &tp->selective_acks[0];
5287 int max_sack = sp[0].end_seq;
5288 int this_sack;
5289
5290 for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;
5291 ++this_sack) {
5292 max_sack = after(sp[this_sack].end_seq,
5293 max_sack) ?
5294 sp[this_sack].end_seq : max_sack;
5295 }
5296
5297 if (TCP_SKB_CB(skb)->seq == max_sack)
5298 rst_seq_match = true;
5299 }
5300
5301 if (rst_seq_match)
5302 tcp_reset(sk);
5303 else
5304 tcp_send_challenge_ack(sk, skb);
5305 goto discard;
5306 }
5307
5308 /* step 3: check security and precedence [ignored] */
5309
5310 /* step 4: Check for a SYN
5311 * RFC 5961 4.2 : Send a challenge ack
5312 */
5313 if (th->syn) {
5314 syn_challenge:
5315 if (syn_inerr)
5316 TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS);
5317 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSYNCHALLENGE);
5318 tcp_send_challenge_ack(sk, skb);
5319 goto discard;
5320 }
5321
5322 return true;
5323
5324 discard:
5325 tcp_drop(sk, skb);
5326 return false;
5327 }
5328
5329 /*
5330 * TCP receive function for the ESTABLISHED state.
5331 *
5332 * It is split into a fast path and a slow path. The fast path is
5333 * disabled when:
5334 * - A zero window was announced from us - zero window probing
5335 * is only handled properly in the slow path.
5336 * - Out of order segments arrived.
5337 * - Urgent data is expected.
5338 * - There is no buffer space left
5339 * - Unexpected TCP flags/window values/header lengths are received
5340 * (detected by checking the TCP header against pred_flags)
5341 * - Data is sent in both directions. Fast path only supports pure senders
5342 * or pure receivers (this means either the sequence number or the ack
5343 * value must stay constant)
5344 * - Unexpected TCP option.
5345 *
5346 * When these conditions are not satisfied it drops into a standard
5347 * receive procedure patterned after RFC793 to handle all cases.
5348 * The first three cases are guaranteed by proper pred_flags setting,
5349 * the rest is checked inline. Fast processing is turned on in
5350 * tcp_data_queue when everything is OK.
5351 */
5352 void tcp_rcv_established(struct sock *sk, struct sk_buff *skb,
5353 const struct tcphdr *th, unsigned int len)
5354 {
5355 struct tcp_sock *tp = tcp_sk(sk);
5356
5357 if (unlikely(!sk->sk_rx_dst))
5358 inet_csk(sk)->icsk_af_ops->sk_rx_dst_set(sk, skb);
5359 /*
5360 * Header prediction.
5361 * The code loosely follows the one in the famous
5362 * "30 instruction TCP receive" Van Jacobson mail.
5363 *
5364 * Van's trick is to deposit buffers into socket queue
5365 * on a device interrupt, to call tcp_recv function
5366 * on the receive process context and checksum and copy
5367 * the buffer to user space. smart...
5368 *
5369 * Our current scheme is not silly either but we take the
5370 * extra cost of the net_bh soft interrupt processing...
5371 * We do checksum and copy also but from device to kernel.
5372 */
5373
5374 tp->rx_opt.saw_tstamp = 0;
5375
5376 /* pred_flags is 0xS?10 << 16 + snd_wnd
5377 * if header_prediction is to be made
5378 * 'S' will always be tp->tcp_header_len >> 2
5379 * '?' will be 0 for the fast path, otherwise pred_flags is 0 to
5380 * turn it off (when there are holes in the receive
5381 * space for instance)
5382 * PSH flag is ignored.
5383 */
5384
5385 if ((tcp_flag_word(th) & TCP_HP_BITS) == tp->pred_flags &&
5386 TCP_SKB_CB(skb)->seq == tp->rcv_nxt &&
5387 !after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) {
5388 int tcp_header_len = tp->tcp_header_len;
5389
5390 /* Timestamp header prediction: tcp_header_len
5391 * is automatically equal to th->doff*4 due to pred_flags
5392 * match.
5393 */
5394
5395 /* Check timestamp */
5396 if (tcp_header_len == sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) {
5397 /* No? Slow path! */
5398 if (!tcp_parse_aligned_timestamp(tp, th))
5399 goto slow_path;
5400
5401 /* If PAWS failed, check it more carefully in slow path */
5402 if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) < 0)
5403 goto slow_path;
5404
5405 /* DO NOT update ts_recent here, if checksum fails
5406 * and timestamp was corrupted part, it will result
5407 * in a hung connection since we will drop all
5408 * future packets due to the PAWS test.
5409 */
5410 }
5411
5412 if (len <= tcp_header_len) {
5413 /* Bulk data transfer: sender */
5414 if (len == tcp_header_len) {
5415 /* Predicted packet is in window by definition.
5416 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5417 * Hence, check seq<=rcv_wup reduces to:
5418 */
5419 if (tcp_header_len ==
5420 (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
5421 tp->rcv_nxt == tp->rcv_wup)
5422 tcp_store_ts_recent(tp);
5423
5424 /* We know that such packets are checksummed
5425 * on entry.
5426 */
5427 tcp_ack(sk, skb, 0);
5428 __kfree_skb(skb);
5429 tcp_data_snd_check(sk);
5430 return;
5431 } else { /* Header too small */
5432 TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS);
5433 goto discard;
5434 }
5435 } else {
5436 int eaten = 0;
5437 bool fragstolen = false;
5438
5439 if (tp->ucopy.task == current &&
5440 tp->copied_seq == tp->rcv_nxt &&
5441 len - tcp_header_len <= tp->ucopy.len &&
5442 sock_owned_by_user(sk)) {
5443 __set_current_state(TASK_RUNNING);
5444
5445 if (!tcp_copy_to_iovec(sk, skb, tcp_header_len)) {
5446 /* Predicted packet is in window by definition.
5447 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5448 * Hence, check seq<=rcv_wup reduces to:
5449 */
5450 if (tcp_header_len ==
5451 (sizeof(struct tcphdr) +
5452 TCPOLEN_TSTAMP_ALIGNED) &&
5453 tp->rcv_nxt == tp->rcv_wup)
5454 tcp_store_ts_recent(tp);
5455
5456 tcp_rcv_rtt_measure_ts(sk, skb);
5457
5458 __skb_pull(skb, tcp_header_len);
5459 tcp_rcv_nxt_update(tp, TCP_SKB_CB(skb)->end_seq);
5460 NET_INC_STATS(sock_net(sk),
5461 LINUX_MIB_TCPHPHITSTOUSER);
5462 eaten = 1;
5463 }
5464 }
5465 if (!eaten) {
5466 if (tcp_checksum_complete(skb))
5467 goto csum_error;
5468
5469 if ((int)skb->truesize > sk->sk_forward_alloc)
5470 goto step5;
5471
5472 /* Predicted packet is in window by definition.
5473 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5474 * Hence, check seq<=rcv_wup reduces to:
5475 */
5476 if (tcp_header_len ==
5477 (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
5478 tp->rcv_nxt == tp->rcv_wup)
5479 tcp_store_ts_recent(tp);
5480
5481 tcp_rcv_rtt_measure_ts(sk, skb);
5482
5483 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPHPHITS);
5484
5485 /* Bulk data transfer: receiver */
5486 eaten = tcp_queue_rcv(sk, skb, tcp_header_len,
5487 &fragstolen);
5488 }
5489
5490 tcp_event_data_recv(sk, skb);
5491
5492 if (TCP_SKB_CB(skb)->ack_seq != tp->snd_una) {
5493 /* Well, only one small jumplet in fast path... */
5494 tcp_ack(sk, skb, FLAG_DATA);
5495 tcp_data_snd_check(sk);
5496 if (!inet_csk_ack_scheduled(sk))
5497 goto no_ack;
5498 }
5499
5500 __tcp_ack_snd_check(sk, 0);
5501 no_ack:
5502 if (eaten)
5503 kfree_skb_partial(skb, fragstolen);
5504 sk->sk_data_ready(sk);
5505 return;
5506 }
5507 }
5508
5509 slow_path:
5510 if (len < (th->doff << 2) || tcp_checksum_complete(skb))
5511 goto csum_error;
5512
5513 if (!th->ack && !th->rst && !th->syn)
5514 goto discard;
5515
5516 /*
5517 * Standard slow path.
5518 */
5519
5520 if (!tcp_validate_incoming(sk, skb, th, 1))
5521 return;
5522
5523 step5:
5524 if (tcp_ack(sk, skb, FLAG_SLOWPATH | FLAG_UPDATE_TS_RECENT) < 0)
5525 goto discard;
5526
5527 tcp_rcv_rtt_measure_ts(sk, skb);
5528
5529 /* Process urgent data. */
5530 tcp_urg(sk, skb, th);
5531
5532 /* step 7: process the segment text */
5533 tcp_data_queue(sk, skb);
5534
5535 tcp_data_snd_check(sk);
5536 tcp_ack_snd_check(sk);
5537 return;
5538
5539 csum_error:
5540 TCP_INC_STATS(sock_net(sk), TCP_MIB_CSUMERRORS);
5541 TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS);
5542
5543 discard:
5544 tcp_drop(sk, skb);
5545 }
5546 EXPORT_SYMBOL(tcp_rcv_established);
5547
5548 void tcp_finish_connect(struct sock *sk, struct sk_buff *skb)
5549 {
5550 struct tcp_sock *tp = tcp_sk(sk);
5551 struct inet_connection_sock *icsk = inet_csk(sk);
5552
5553 tcp_set_state(sk, TCP_ESTABLISHED);
5554
5555 if (skb) {
5556 icsk->icsk_af_ops->sk_rx_dst_set(sk, skb);
5557 security_inet_conn_established(sk, skb);
5558 }
5559
5560 /* Make sure socket is routed, for correct metrics. */
5561 icsk->icsk_af_ops->rebuild_header(sk);
5562
5563 tcp_init_metrics(sk);
5564
5565 tcp_init_congestion_control(sk);
5566
5567 /* Prevent spurious tcp_cwnd_restart() on first data
5568 * packet.
5569 */
5570 tp->lsndtime = tcp_time_stamp;
5571
5572 tcp_init_buffer_space(sk);
5573
5574 if (sock_flag(sk, SOCK_KEEPOPEN))
5575 inet_csk_reset_keepalive_timer(sk, keepalive_time_when(tp));
5576
5577 if (!tp->rx_opt.snd_wscale)
5578 __tcp_fast_path_on(tp, tp->snd_wnd);
5579 else
5580 tp->pred_flags = 0;
5581
5582 if (!sock_flag(sk, SOCK_DEAD)) {
5583 sk->sk_state_change(sk);
5584 sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);
5585 }
5586 }
5587
5588 static bool tcp_rcv_fastopen_synack(struct sock *sk, struct sk_buff *synack,
5589 struct tcp_fastopen_cookie *cookie)
5590 {
5591 struct tcp_sock *tp = tcp_sk(sk);
5592 struct sk_buff *data = tp->syn_data ? tcp_write_queue_head(sk) : NULL;
5593 u16 mss = tp->rx_opt.mss_clamp, try_exp = 0;
5594 bool syn_drop = false;
5595
5596 if (mss == tp->rx_opt.user_mss) {
5597 struct tcp_options_received opt;
5598
5599 /* Get original SYNACK MSS value if user MSS sets mss_clamp */
5600 tcp_clear_options(&opt);
5601 opt.user_mss = opt.mss_clamp = 0;
5602 tcp_parse_options(synack, &opt, 0, NULL);
5603 mss = opt.mss_clamp;
5604 }
5605
5606 if (!tp->syn_fastopen) {
5607 /* Ignore an unsolicited cookie */
5608 cookie->len = -1;
5609 } else if (tp->total_retrans) {
5610 /* SYN timed out and the SYN-ACK neither has a cookie nor
5611 * acknowledges data. Presumably the remote received only
5612 * the retransmitted (regular) SYNs: either the original
5613 * SYN-data or the corresponding SYN-ACK was dropped.
5614 */
5615 syn_drop = (cookie->len < 0 && data);
5616 } else if (cookie->len < 0 && !tp->syn_data) {
5617 /* We requested a cookie but didn't get it. If we did not use
5618 * the (old) exp opt format then try so next time (try_exp=1).
5619 * Otherwise we go back to use the RFC7413 opt (try_exp=2).
5620 */
5621 try_exp = tp->syn_fastopen_exp ? 2 : 1;
5622 }
5623
5624 tcp_fastopen_cache_set(sk, mss, cookie, syn_drop, try_exp);
5625
5626 if (data) { /* Retransmit unacked data in SYN */
5627 tcp_for_write_queue_from(data, sk) {
5628 if (data == tcp_send_head(sk) ||
5629 __tcp_retransmit_skb(sk, data, 1))
5630 break;
5631 }
5632 tcp_rearm_rto(sk);
5633 NET_INC_STATS(sock_net(sk),
5634 LINUX_MIB_TCPFASTOPENACTIVEFAIL);
5635 return true;
5636 }
5637 tp->syn_data_acked = tp->syn_data;
5638 if (tp->syn_data_acked)
5639 NET_INC_STATS(sock_net(sk),
5640 LINUX_MIB_TCPFASTOPENACTIVE);
5641
5642 tcp_fastopen_add_skb(sk, synack);
5643
5644 return false;
5645 }
5646
5647 static int tcp_rcv_synsent_state_process(struct sock *sk, struct sk_buff *skb,
5648 const struct tcphdr *th)
5649 {
5650 struct inet_connection_sock *icsk = inet_csk(sk);
5651 struct tcp_sock *tp = tcp_sk(sk);
5652 struct tcp_fastopen_cookie foc = { .len = -1 };
5653 int saved_clamp = tp->rx_opt.mss_clamp;
5654
5655 tcp_parse_options(skb, &tp->rx_opt, 0, &foc);
5656 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
5657 tp->rx_opt.rcv_tsecr -= tp->tsoffset;
5658
5659 if (th->ack) {
5660 /* rfc793:
5661 * "If the state is SYN-SENT then
5662 * first check the ACK bit
5663 * If the ACK bit is set
5664 * If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send
5665 * a reset (unless the RST bit is set, if so drop
5666 * the segment and return)"
5667 */
5668 if (!after(TCP_SKB_CB(skb)->ack_seq, tp->snd_una) ||
5669 after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt))
5670 goto reset_and_undo;
5671
5672 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
5673 !between(tp->rx_opt.rcv_tsecr, tp->retrans_stamp,
5674 tcp_time_stamp)) {
5675 NET_INC_STATS(sock_net(sk),
5676 LINUX_MIB_PAWSACTIVEREJECTED);
5677 goto reset_and_undo;
5678 }
5679
5680 /* Now ACK is acceptable.
5681 *
5682 * "If the RST bit is set
5683 * If the ACK was acceptable then signal the user "error:
5684 * connection reset", drop the segment, enter CLOSED state,
5685 * delete TCB, and return."
5686 */
5687
5688 if (th->rst) {
5689 tcp_reset(sk);
5690 goto discard;
5691 }
5692
5693 /* rfc793:
5694 * "fifth, if neither of the SYN or RST bits is set then
5695 * drop the segment and return."
5696 *
5697 * See note below!
5698 * --ANK(990513)
5699 */
5700 if (!th->syn)
5701 goto discard_and_undo;
5702
5703 /* rfc793:
5704 * "If the SYN bit is on ...
5705 * are acceptable then ...
5706 * (our SYN has been ACKed), change the connection
5707 * state to ESTABLISHED..."
5708 */
5709
5710 tcp_ecn_rcv_synack(tp, th);
5711
5712 tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
5713 tcp_ack(sk, skb, FLAG_SLOWPATH);
5714
5715 /* Ok.. it's good. Set up sequence numbers and
5716 * move to established.
5717 */
5718 tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
5719 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
5720
5721 /* RFC1323: The window in SYN & SYN/ACK segments is
5722 * never scaled.
5723 */
5724 tp->snd_wnd = ntohs(th->window);
5725
5726 if (!tp->rx_opt.wscale_ok) {
5727 tp->rx_opt.snd_wscale = tp->rx_opt.rcv_wscale = 0;
5728 tp->window_clamp = min(tp->window_clamp, 65535U);
5729 }
5730
5731 if (tp->rx_opt.saw_tstamp) {
5732 tp->rx_opt.tstamp_ok = 1;
5733 tp->tcp_header_len =
5734 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
5735 tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
5736 tcp_store_ts_recent(tp);
5737 } else {
5738 tp->tcp_header_len = sizeof(struct tcphdr);
5739 }
5740
5741 if (tcp_is_sack(tp) && sysctl_tcp_fack)
5742 tcp_enable_fack(tp);
5743
5744 tcp_mtup_init(sk);
5745 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
5746 tcp_initialize_rcv_mss(sk);
5747
5748 /* Remember, tcp_poll() does not lock socket!
5749 * Change state from SYN-SENT only after copied_seq
5750 * is initialized. */
5751 tp->copied_seq = tp->rcv_nxt;
5752
5753 smp_mb();
5754
5755 tcp_finish_connect(sk, skb);
5756
5757 if ((tp->syn_fastopen || tp->syn_data) &&
5758 tcp_rcv_fastopen_synack(sk, skb, &foc))
5759 return -1;
5760
5761 if (sk->sk_write_pending ||
5762 icsk->icsk_accept_queue.rskq_defer_accept ||
5763 icsk->icsk_ack.pingpong) {
5764 /* Save one ACK. Data will be ready after
5765 * several ticks, if write_pending is set.
5766 *
5767 * It may be deleted, but with this feature tcpdumps
5768 * look so _wonderfully_ clever, that I was not able
5769 * to stand against the temptation 8) --ANK
5770 */
5771 inet_csk_schedule_ack(sk);
5772 icsk->icsk_ack.lrcvtime = tcp_time_stamp;
5773 tcp_enter_quickack_mode(sk);
5774 inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
5775 TCP_DELACK_MAX, TCP_RTO_MAX);
5776
5777 discard:
5778 tcp_drop(sk, skb);
5779 return 0;
5780 } else {
5781 tcp_send_ack(sk);
5782 }
5783 return -1;
5784 }
5785
5786 /* No ACK in the segment */
5787
5788 if (th->rst) {
5789 /* rfc793:
5790 * "If the RST bit is set
5791 *
5792 * Otherwise (no ACK) drop the segment and return."
5793 */
5794
5795 goto discard_and_undo;
5796 }
5797
5798 /* PAWS check. */
5799 if (tp->rx_opt.ts_recent_stamp && tp->rx_opt.saw_tstamp &&
5800 tcp_paws_reject(&tp->rx_opt, 0))
5801 goto discard_and_undo;
5802
5803 if (th->syn) {
5804 /* We see SYN without ACK. It is attempt of
5805 * simultaneous connect with crossed SYNs.
5806 * Particularly, it can be connect to self.
5807 */
5808 tcp_set_state(sk, TCP_SYN_RECV);
5809
5810 if (tp->rx_opt.saw_tstamp) {
5811 tp->rx_opt.tstamp_ok = 1;
5812 tcp_store_ts_recent(tp);
5813 tp->tcp_header_len =
5814 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
5815 } else {
5816 tp->tcp_header_len = sizeof(struct tcphdr);
5817 }
5818
5819 tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
5820 tp->copied_seq = tp->rcv_nxt;
5821 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
5822
5823 /* RFC1323: The window in SYN & SYN/ACK segments is
5824 * never scaled.
5825 */
5826 tp->snd_wnd = ntohs(th->window);
5827 tp->snd_wl1 = TCP_SKB_CB(skb)->seq;
5828 tp->max_window = tp->snd_wnd;
5829
5830 tcp_ecn_rcv_syn(tp, th);
5831
5832 tcp_mtup_init(sk);
5833 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
5834 tcp_initialize_rcv_mss(sk);
5835
5836 tcp_send_synack(sk);
5837 #if 0
5838 /* Note, we could accept data and URG from this segment.
5839 * There are no obstacles to make this (except that we must
5840 * either change tcp_recvmsg() to prevent it from returning data
5841 * before 3WHS completes per RFC793, or employ TCP Fast Open).
5842 *
5843 * However, if we ignore data in ACKless segments sometimes,
5844 * we have no reasons to accept it sometimes.
5845 * Also, seems the code doing it in step6 of tcp_rcv_state_process
5846 * is not flawless. So, discard packet for sanity.
5847 * Uncomment this return to process the data.
5848 */
5849 return -1;
5850 #else
5851 goto discard;
5852 #endif
5853 }
5854 /* "fifth, if neither of the SYN or RST bits is set then
5855 * drop the segment and return."
5856 */
5857
5858 discard_and_undo:
5859 tcp_clear_options(&tp->rx_opt);
5860 tp->rx_opt.mss_clamp = saved_clamp;
5861 goto discard;
5862
5863 reset_and_undo:
5864 tcp_clear_options(&tp->rx_opt);
5865 tp->rx_opt.mss_clamp = saved_clamp;
5866 return 1;
5867 }
5868
5869 /*
5870 * This function implements the receiving procedure of RFC 793 for
5871 * all states except ESTABLISHED and TIME_WAIT.
5872 * It's called from both tcp_v4_rcv and tcp_v6_rcv and should be
5873 * address independent.
5874 */
5875
5876 int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb)
5877 {
5878 struct tcp_sock *tp = tcp_sk(sk);
5879 struct inet_connection_sock *icsk = inet_csk(sk);
5880 const struct tcphdr *th = tcp_hdr(skb);
5881 struct request_sock *req;
5882 int queued = 0;
5883 bool acceptable;
5884
5885 switch (sk->sk_state) {
5886 case TCP_CLOSE:
5887 goto discard;
5888
5889 case TCP_LISTEN:
5890 if (th->ack)
5891 return 1;
5892
5893 if (th->rst)
5894 goto discard;
5895
5896 if (th->syn) {
5897 if (th->fin)
5898 goto discard;
5899 if (icsk->icsk_af_ops->conn_request(sk, skb) < 0)
5900 return 1;
5901
5902 consume_skb(skb);
5903 return 0;
5904 }
5905 goto discard;
5906
5907 case TCP_SYN_SENT:
5908 tp->rx_opt.saw_tstamp = 0;
5909 queued = tcp_rcv_synsent_state_process(sk, skb, th);
5910 if (queued >= 0)
5911 return queued;
5912
5913 /* Do step6 onward by hand. */
5914 tcp_urg(sk, skb, th);
5915 __kfree_skb(skb);
5916 tcp_data_snd_check(sk);
5917 return 0;
5918 }
5919
5920 tp->rx_opt.saw_tstamp = 0;
5921 req = tp->fastopen_rsk;
5922 if (req) {
5923 WARN_ON_ONCE(sk->sk_state != TCP_SYN_RECV &&
5924 sk->sk_state != TCP_FIN_WAIT1);
5925
5926 if (!tcp_check_req(sk, skb, req, true))
5927 goto discard;
5928 }
5929
5930 if (!th->ack && !th->rst && !th->syn)
5931 goto discard;
5932
5933 if (!tcp_validate_incoming(sk, skb, th, 0))
5934 return 0;
5935
5936 /* step 5: check the ACK field */
5937 acceptable = tcp_ack(sk, skb, FLAG_SLOWPATH |
5938 FLAG_UPDATE_TS_RECENT) > 0;
5939
5940 switch (sk->sk_state) {
5941 case TCP_SYN_RECV:
5942 if (!acceptable)
5943 return 1;
5944
5945 if (!tp->srtt_us)
5946 tcp_synack_rtt_meas(sk, req);
5947
5948 /* Once we leave TCP_SYN_RECV, we no longer need req
5949 * so release it.
5950 */
5951 if (req) {
5952 inet_csk(sk)->icsk_retransmits = 0;
5953 reqsk_fastopen_remove(sk, req, false);
5954 } else {
5955 /* Make sure socket is routed, for correct metrics. */
5956 icsk->icsk_af_ops->rebuild_header(sk);
5957 tcp_init_congestion_control(sk);
5958
5959 tcp_mtup_init(sk);
5960 tp->copied_seq = tp->rcv_nxt;
5961 tcp_init_buffer_space(sk);
5962 }
5963 smp_mb();
5964 tcp_set_state(sk, TCP_ESTABLISHED);
5965 sk->sk_state_change(sk);
5966
5967 /* Note, that this wakeup is only for marginal crossed SYN case.
5968 * Passively open sockets are not waked up, because
5969 * sk->sk_sleep == NULL and sk->sk_socket == NULL.
5970 */
5971 if (sk->sk_socket)
5972 sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);
5973
5974 tp->snd_una = TCP_SKB_CB(skb)->ack_seq;
5975 tp->snd_wnd = ntohs(th->window) << tp->rx_opt.snd_wscale;
5976 tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
5977
5978 if (tp->rx_opt.tstamp_ok)
5979 tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
5980
5981 if (req) {
5982 /* Re-arm the timer because data may have been sent out.
5983 * This is similar to the regular data transmission case
5984 * when new data has just been ack'ed.
5985 *
5986 * (TFO) - we could try to be more aggressive and
5987 * retransmitting any data sooner based on when they
5988 * are sent out.
5989 */
5990 tcp_rearm_rto(sk);
5991 } else
5992 tcp_init_metrics(sk);
5993
5994 if (!inet_csk(sk)->icsk_ca_ops->cong_control)
5995 tcp_update_pacing_rate(sk);
5996
5997 /* Prevent spurious tcp_cwnd_restart() on first data packet */
5998 tp->lsndtime = tcp_time_stamp;
5999
6000 tcp_initialize_rcv_mss(sk);
6001 tcp_fast_path_on(tp);
6002 break;
6003
6004 case TCP_FIN_WAIT1: {
6005 struct dst_entry *dst;
6006 int tmo;
6007
6008 /* If we enter the TCP_FIN_WAIT1 state and we are a
6009 * Fast Open socket and this is the first acceptable
6010 * ACK we have received, this would have acknowledged
6011 * our SYNACK so stop the SYNACK timer.
6012 */
6013 if (req) {
6014 /* Return RST if ack_seq is invalid.
6015 * Note that RFC793 only says to generate a
6016 * DUPACK for it but for TCP Fast Open it seems
6017 * better to treat this case like TCP_SYN_RECV
6018 * above.
6019 */
6020 if (!acceptable)
6021 return 1;
6022 /* We no longer need the request sock. */
6023 reqsk_fastopen_remove(sk, req, false);
6024 tcp_rearm_rto(sk);
6025 }
6026 if (tp->snd_una != tp->write_seq)
6027 break;
6028
6029 tcp_set_state(sk, TCP_FIN_WAIT2);
6030 sk->sk_shutdown |= SEND_SHUTDOWN;
6031
6032 dst = __sk_dst_get(sk);
6033 if (dst)
6034 dst_confirm(dst);
6035
6036 if (!sock_flag(sk, SOCK_DEAD)) {
6037 /* Wake up lingering close() */
6038 sk->sk_state_change(sk);
6039 break;
6040 }
6041
6042 if (tp->linger2 < 0 ||
6043 (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
6044 after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt))) {
6045 tcp_done(sk);
6046 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
6047 return 1;
6048 }
6049
6050 tmo = tcp_fin_time(sk);
6051 if (tmo > TCP_TIMEWAIT_LEN) {
6052 inet_csk_reset_keepalive_timer(sk, tmo - TCP_TIMEWAIT_LEN);
6053 } else if (th->fin || sock_owned_by_user(sk)) {
6054 /* Bad case. We could lose such FIN otherwise.
6055 * It is not a big problem, but it looks confusing
6056 * and not so rare event. We still can lose it now,
6057 * if it spins in bh_lock_sock(), but it is really
6058 * marginal case.
6059 */
6060 inet_csk_reset_keepalive_timer(sk, tmo);
6061 } else {
6062 tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
6063 goto discard;
6064 }
6065 break;
6066 }
6067
6068 case TCP_CLOSING:
6069 if (tp->snd_una == tp->write_seq) {
6070 tcp_time_wait(sk, TCP_TIME_WAIT, 0);
6071 goto discard;
6072 }
6073 break;
6074
6075 case TCP_LAST_ACK:
6076 if (tp->snd_una == tp->write_seq) {
6077 tcp_update_metrics(sk);
6078 tcp_done(sk);
6079 goto discard;
6080 }
6081 break;
6082 }
6083
6084 /* step 6: check the URG bit */
6085 tcp_urg(sk, skb, th);
6086
6087 /* step 7: process the segment text */
6088 switch (sk->sk_state) {
6089 case TCP_CLOSE_WAIT:
6090 case TCP_CLOSING:
6091 case TCP_LAST_ACK:
6092 if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
6093 break;
6094 case TCP_FIN_WAIT1:
6095 case TCP_FIN_WAIT2:
6096 /* RFC 793 says to queue data in these states,
6097 * RFC 1122 says we MUST send a reset.
6098 * BSD 4.4 also does reset.
6099 */
6100 if (sk->sk_shutdown & RCV_SHUTDOWN) {
6101 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
6102 after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
6103 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
6104 tcp_reset(sk);
6105 return 1;
6106 }
6107 }
6108 /* Fall through */
6109 case TCP_ESTABLISHED:
6110 tcp_data_queue(sk, skb);
6111 queued = 1;
6112 break;
6113 }
6114
6115 /* tcp_data could move socket to TIME-WAIT */
6116 if (sk->sk_state != TCP_CLOSE) {
6117 tcp_data_snd_check(sk);
6118 tcp_ack_snd_check(sk);
6119 }
6120
6121 if (!queued) {
6122 discard:
6123 tcp_drop(sk, skb);
6124 }
6125 return 0;
6126 }
6127 EXPORT_SYMBOL(tcp_rcv_state_process);
6128
6129 static inline void pr_drop_req(struct request_sock *req, __u16 port, int family)
6130 {
6131 struct inet_request_sock *ireq = inet_rsk(req);
6132
6133 if (family == AF_INET)
6134 net_dbg_ratelimited("drop open request from %pI4/%u\n",
6135 &ireq->ir_rmt_addr, port);
6136 #if IS_ENABLED(CONFIG_IPV6)
6137 else if (family == AF_INET6)
6138 net_dbg_ratelimited("drop open request from %pI6/%u\n",
6139 &ireq->ir_v6_rmt_addr, port);
6140 #endif
6141 }
6142
6143 /* RFC3168 : 6.1.1 SYN packets must not have ECT/ECN bits set
6144 *
6145 * If we receive a SYN packet with these bits set, it means a
6146 * network is playing bad games with TOS bits. In order to
6147 * avoid possible false congestion notifications, we disable
6148 * TCP ECN negotiation.
6149 *
6150 * Exception: tcp_ca wants ECN. This is required for DCTCP
6151 * congestion control: Linux DCTCP asserts ECT on all packets,
6152 * including SYN, which is most optimal solution; however,
6153 * others, such as FreeBSD do not.
6154 */
6155 static void tcp_ecn_create_request(struct request_sock *req,
6156 const struct sk_buff *skb,
6157 const struct sock *listen_sk,
6158 const struct dst_entry *dst)
6159 {
6160 const struct tcphdr *th = tcp_hdr(skb);
6161 const struct net *net = sock_net(listen_sk);
6162 bool th_ecn = th->ece && th->cwr;
6163 bool ect, ecn_ok;
6164 u32 ecn_ok_dst;
6165
6166 if (!th_ecn)
6167 return;
6168
6169 ect = !INET_ECN_is_not_ect(TCP_SKB_CB(skb)->ip_dsfield);
6170 ecn_ok_dst = dst_feature(dst, DST_FEATURE_ECN_MASK);
6171 ecn_ok = net->ipv4.sysctl_tcp_ecn || ecn_ok_dst;
6172
6173 if ((!ect && ecn_ok) || tcp_ca_needs_ecn(listen_sk) ||
6174 (ecn_ok_dst & DST_FEATURE_ECN_CA))
6175 inet_rsk(req)->ecn_ok = 1;
6176 }
6177
6178 static void tcp_openreq_init(struct request_sock *req,
6179 const struct tcp_options_received *rx_opt,
6180 struct sk_buff *skb, const struct sock *sk)
6181 {
6182 struct inet_request_sock *ireq = inet_rsk(req);
6183
6184 req->rsk_rcv_wnd = 0; /* So that tcp_send_synack() knows! */
6185 req->cookie_ts = 0;
6186 tcp_rsk(req)->rcv_isn = TCP_SKB_CB(skb)->seq;
6187 tcp_rsk(req)->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
6188 skb_mstamp_get(&tcp_rsk(req)->snt_synack);
6189 tcp_rsk(req)->last_oow_ack_time = 0;
6190 req->mss = rx_opt->mss_clamp;
6191 req->ts_recent = rx_opt->saw_tstamp ? rx_opt->rcv_tsval : 0;
6192 ireq->tstamp_ok = rx_opt->tstamp_ok;
6193 ireq->sack_ok = rx_opt->sack_ok;
6194 ireq->snd_wscale = rx_opt->snd_wscale;
6195 ireq->wscale_ok = rx_opt->wscale_ok;
6196 ireq->acked = 0;
6197 ireq->ecn_ok = 0;
6198 ireq->ir_rmt_port = tcp_hdr(skb)->source;
6199 ireq->ir_num = ntohs(tcp_hdr(skb)->dest);
6200 ireq->ir_mark = inet_request_mark(sk, skb);
6201 }
6202
6203 struct request_sock *inet_reqsk_alloc(const struct request_sock_ops *ops,
6204 struct sock *sk_listener,
6205 bool attach_listener)
6206 {
6207 struct request_sock *req = reqsk_alloc(ops, sk_listener,
6208 attach_listener);
6209
6210 if (req) {
6211 struct inet_request_sock *ireq = inet_rsk(req);
6212
6213 kmemcheck_annotate_bitfield(ireq, flags);
6214 ireq->opt = NULL;
6215 #if IS_ENABLED(CONFIG_IPV6)
6216 ireq->pktopts = NULL;
6217 #endif
6218 atomic64_set(&ireq->ir_cookie, 0);
6219 ireq->ireq_state = TCP_NEW_SYN_RECV;
6220 write_pnet(&ireq->ireq_net, sock_net(sk_listener));
6221 ireq->ireq_family = sk_listener->sk_family;
6222 }
6223
6224 return req;
6225 }
6226 EXPORT_SYMBOL(inet_reqsk_alloc);
6227
6228 /*
6229 * Return true if a syncookie should be sent
6230 */
6231 static bool tcp_syn_flood_action(const struct sock *sk,
6232 const struct sk_buff *skb,
6233 const char *proto)
6234 {
6235 struct request_sock_queue *queue = &inet_csk(sk)->icsk_accept_queue;
6236 const char *msg = "Dropping request";
6237 bool want_cookie = false;
6238 struct net *net = sock_net(sk);
6239
6240 #ifdef CONFIG_SYN_COOKIES
6241 if (net->ipv4.sysctl_tcp_syncookies) {
6242 msg = "Sending cookies";
6243 want_cookie = true;
6244 __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPREQQFULLDOCOOKIES);
6245 } else
6246 #endif
6247 __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPREQQFULLDROP);
6248
6249 if (!queue->synflood_warned &&
6250 net->ipv4.sysctl_tcp_syncookies != 2 &&
6251 xchg(&queue->synflood_warned, 1) == 0)
6252 pr_info("%s: Possible SYN flooding on port %d. %s. Check SNMP counters.\n",
6253 proto, ntohs(tcp_hdr(skb)->dest), msg);
6254
6255 return want_cookie;
6256 }
6257
6258 static void tcp_reqsk_record_syn(const struct sock *sk,
6259 struct request_sock *req,
6260 const struct sk_buff *skb)
6261 {
6262 if (tcp_sk(sk)->save_syn) {
6263 u32 len = skb_network_header_len(skb) + tcp_hdrlen(skb);
6264 u32 *copy;
6265
6266 copy = kmalloc(len + sizeof(u32), GFP_ATOMIC);
6267 if (copy) {
6268 copy[0] = len;
6269 memcpy(&copy[1], skb_network_header(skb), len);
6270 req->saved_syn = copy;
6271 }
6272 }
6273 }
6274
6275 int tcp_conn_request(struct request_sock_ops *rsk_ops,
6276 const struct tcp_request_sock_ops *af_ops,
6277 struct sock *sk, struct sk_buff *skb)
6278 {
6279 struct tcp_fastopen_cookie foc = { .len = -1 };
6280 __u32 isn = TCP_SKB_CB(skb)->tcp_tw_isn;
6281 struct tcp_options_received tmp_opt;
6282 struct tcp_sock *tp = tcp_sk(sk);
6283 struct net *net = sock_net(sk);
6284 struct sock *fastopen_sk = NULL;
6285 struct dst_entry *dst = NULL;
6286 struct request_sock *req;
6287 bool want_cookie = false;
6288 struct flowi fl;
6289
6290 /* TW buckets are converted to open requests without
6291 * limitations, they conserve resources and peer is
6292 * evidently real one.
6293 */
6294 if ((net->ipv4.sysctl_tcp_syncookies == 2 ||
6295 inet_csk_reqsk_queue_is_full(sk)) && !isn) {
6296 want_cookie = tcp_syn_flood_action(sk, skb, rsk_ops->slab_name);
6297 if (!want_cookie)
6298 goto drop;
6299 }
6300
6301
6302 /* Accept backlog is full. If we have already queued enough
6303 * of warm entries in syn queue, drop request. It is better than
6304 * clogging syn queue with openreqs with exponentially increasing
6305 * timeout.
6306 */
6307 if (sk_acceptq_is_full(sk) && inet_csk_reqsk_queue_young(sk) > 1) {
6308 NET_INC_STATS(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS);
6309 goto drop;
6310 }
6311
6312 req = inet_reqsk_alloc(rsk_ops, sk, !want_cookie);
6313 if (!req)
6314 goto drop;
6315
6316 tcp_rsk(req)->af_specific = af_ops;
6317
6318 tcp_clear_options(&tmp_opt);
6319 tmp_opt.mss_clamp = af_ops->mss_clamp;
6320 tmp_opt.user_mss = tp->rx_opt.user_mss;
6321 tcp_parse_options(skb, &tmp_opt, 0, want_cookie ? NULL : &foc);
6322
6323 if (want_cookie && !tmp_opt.saw_tstamp)
6324 tcp_clear_options(&tmp_opt);
6325
6326 tmp_opt.tstamp_ok = tmp_opt.saw_tstamp;
6327 tcp_openreq_init(req, &tmp_opt, skb, sk);
6328 inet_rsk(req)->no_srccheck = inet_sk(sk)->transparent;
6329
6330 /* Note: tcp_v6_init_req() might override ir_iif for link locals */
6331 inet_rsk(req)->ir_iif = inet_request_bound_dev_if(sk, skb);
6332
6333 af_ops->init_req(req, sk, skb);
6334
6335 if (security_inet_conn_request(sk, skb, req))
6336 goto drop_and_free;
6337
6338 if (!want_cookie && !isn) {
6339 /* VJ's idea. We save last timestamp seen
6340 * from the destination in peer table, when entering
6341 * state TIME-WAIT, and check against it before
6342 * accepting new connection request.
6343 *
6344 * If "isn" is not zero, this request hit alive
6345 * timewait bucket, so that all the necessary checks
6346 * are made in the function processing timewait state.
6347 */
6348 if (tcp_death_row.sysctl_tw_recycle) {
6349 bool strict;
6350
6351 dst = af_ops->route_req(sk, &fl, req, &strict);
6352
6353 if (dst && strict &&
6354 !tcp_peer_is_proven(req, dst, true,
6355 tmp_opt.saw_tstamp)) {
6356 NET_INC_STATS(sock_net(sk), LINUX_MIB_PAWSPASSIVEREJECTED);
6357 goto drop_and_release;
6358 }
6359 }
6360 /* Kill the following clause, if you dislike this way. */
6361 else if (!net->ipv4.sysctl_tcp_syncookies &&
6362 (sysctl_max_syn_backlog - inet_csk_reqsk_queue_len(sk) <
6363 (sysctl_max_syn_backlog >> 2)) &&
6364 !tcp_peer_is_proven(req, dst, false,
6365 tmp_opt.saw_tstamp)) {
6366 /* Without syncookies last quarter of
6367 * backlog is filled with destinations,
6368 * proven to be alive.
6369 * It means that we continue to communicate
6370 * to destinations, already remembered
6371 * to the moment of synflood.
6372 */
6373 pr_drop_req(req, ntohs(tcp_hdr(skb)->source),
6374 rsk_ops->family);
6375 goto drop_and_release;
6376 }
6377
6378 isn = af_ops->init_seq(skb);
6379 }
6380 if (!dst) {
6381 dst = af_ops->route_req(sk, &fl, req, NULL);
6382 if (!dst)
6383 goto drop_and_free;
6384 }
6385
6386 tcp_ecn_create_request(req, skb, sk, dst);
6387
6388 if (want_cookie) {
6389 isn = cookie_init_sequence(af_ops, sk, skb, &req->mss);
6390 req->cookie_ts = tmp_opt.tstamp_ok;
6391 if (!tmp_opt.tstamp_ok)
6392 inet_rsk(req)->ecn_ok = 0;
6393 }
6394
6395 tcp_rsk(req)->snt_isn = isn;
6396 tcp_rsk(req)->txhash = net_tx_rndhash();
6397 tcp_openreq_init_rwin(req, sk, dst);
6398 if (!want_cookie) {
6399 tcp_reqsk_record_syn(sk, req, skb);
6400 fastopen_sk = tcp_try_fastopen(sk, skb, req, &foc, dst);
6401 }
6402 if (fastopen_sk) {
6403 af_ops->send_synack(fastopen_sk, dst, &fl, req,
6404 &foc, TCP_SYNACK_FASTOPEN);
6405 /* Add the child socket directly into the accept queue */
6406 inet_csk_reqsk_queue_add(sk, req, fastopen_sk);
6407 sk->sk_data_ready(sk);
6408 bh_unlock_sock(fastopen_sk);
6409 sock_put(fastopen_sk);
6410 } else {
6411 tcp_rsk(req)->tfo_listener = false;
6412 if (!want_cookie)
6413 inet_csk_reqsk_queue_hash_add(sk, req, TCP_TIMEOUT_INIT);
6414 af_ops->send_synack(sk, dst, &fl, req, &foc,
6415 !want_cookie ? TCP_SYNACK_NORMAL :
6416 TCP_SYNACK_COOKIE);
6417 if (want_cookie) {
6418 reqsk_free(req);
6419 return 0;
6420 }
6421 }
6422 reqsk_put(req);
6423 return 0;
6424
6425 drop_and_release:
6426 dst_release(dst);
6427 drop_and_free:
6428 reqsk_free(req);
6429 drop:
6430 tcp_listendrop(sk);
6431 return 0;
6432 }
6433 EXPORT_SYMBOL(tcp_conn_request);