]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - net/ipv4/tcp_output.c
UBUNTU: Ubuntu-4.15.0-96.97
[mirror_ubuntu-bionic-kernel.git] / net / ipv4 / tcp_output.c
1 /*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
5 *
6 * Implementation of the Transmission Control Protocol(TCP).
7 *
8 * Authors: Ross Biro
9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10 * Mark Evans, <evansmp@uhura.aston.ac.uk>
11 * Corey Minyard <wf-rch!minyard@relay.EU.net>
12 * Florian La Roche, <flla@stud.uni-sb.de>
13 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
14 * Linus Torvalds, <torvalds@cs.helsinki.fi>
15 * Alan Cox, <gw4pts@gw4pts.ampr.org>
16 * Matthew Dillon, <dillon@apollo.west.oic.com>
17 * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
18 * Jorge Cwik, <jorge@laser.satlink.net>
19 */
20
21 /*
22 * Changes: Pedro Roque : Retransmit queue handled by TCP.
23 * : Fragmentation on mtu decrease
24 * : Segment collapse on retransmit
25 * : AF independence
26 *
27 * Linus Torvalds : send_delayed_ack
28 * David S. Miller : Charge memory using the right skb
29 * during syn/ack processing.
30 * David S. Miller : Output engine completely rewritten.
31 * Andrea Arcangeli: SYNACK carry ts_recent in tsecr.
32 * Cacophonix Gaul : draft-minshall-nagle-01
33 * J Hadi Salim : ECN support
34 *
35 */
36
37 #define pr_fmt(fmt) "TCP: " fmt
38
39 #include <net/tcp.h>
40
41 #include <linux/compiler.h>
42 #include <linux/gfp.h>
43 #include <linux/module.h>
44 #include <linux/static_key.h>
45
46 #include <trace/events/tcp.h>
47
48 static bool tcp_write_xmit(struct sock *sk, unsigned int mss_now, int nonagle,
49 int push_one, gfp_t gfp);
50
51 /* Account for new data that has been sent to the network. */
52 static void tcp_event_new_data_sent(struct sock *sk, struct sk_buff *skb)
53 {
54 struct inet_connection_sock *icsk = inet_csk(sk);
55 struct tcp_sock *tp = tcp_sk(sk);
56 unsigned int prior_packets = tp->packets_out;
57
58 tp->snd_nxt = TCP_SKB_CB(skb)->end_seq;
59
60 __skb_unlink(skb, &sk->sk_write_queue);
61 tcp_rbtree_insert(&sk->tcp_rtx_queue, skb);
62
63 if (tp->highest_sack == NULL)
64 tp->highest_sack = skb;
65
66 tp->packets_out += tcp_skb_pcount(skb);
67 if (!prior_packets || icsk->icsk_pending == ICSK_TIME_LOSS_PROBE)
68 tcp_rearm_rto(sk);
69
70 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPORIGDATASENT,
71 tcp_skb_pcount(skb));
72 }
73
74 /* SND.NXT, if window was not shrunk or the amount of shrunk was less than one
75 * window scaling factor due to loss of precision.
76 * If window has been shrunk, what should we make? It is not clear at all.
77 * Using SND.UNA we will fail to open window, SND.NXT is out of window. :-(
78 * Anything in between SND.UNA...SND.UNA+SND.WND also can be already
79 * invalid. OK, let's make this for now:
80 */
81 static inline __u32 tcp_acceptable_seq(const struct sock *sk)
82 {
83 const struct tcp_sock *tp = tcp_sk(sk);
84
85 if (!before(tcp_wnd_end(tp), tp->snd_nxt) ||
86 (tp->rx_opt.wscale_ok &&
87 ((tp->snd_nxt - tcp_wnd_end(tp)) < (1 << tp->rx_opt.rcv_wscale))))
88 return tp->snd_nxt;
89 else
90 return tcp_wnd_end(tp);
91 }
92
93 /* Calculate mss to advertise in SYN segment.
94 * RFC1122, RFC1063, draft-ietf-tcpimpl-pmtud-01 state that:
95 *
96 * 1. It is independent of path mtu.
97 * 2. Ideally, it is maximal possible segment size i.e. 65535-40.
98 * 3. For IPv4 it is reasonable to calculate it from maximal MTU of
99 * attached devices, because some buggy hosts are confused by
100 * large MSS.
101 * 4. We do not make 3, we advertise MSS, calculated from first
102 * hop device mtu, but allow to raise it to ip_rt_min_advmss.
103 * This may be overridden via information stored in routing table.
104 * 5. Value 65535 for MSS is valid in IPv6 and means "as large as possible,
105 * probably even Jumbo".
106 */
107 static __u16 tcp_advertise_mss(struct sock *sk)
108 {
109 struct tcp_sock *tp = tcp_sk(sk);
110 const struct dst_entry *dst = __sk_dst_get(sk);
111 int mss = tp->advmss;
112
113 if (dst) {
114 unsigned int metric = dst_metric_advmss(dst);
115
116 if (metric < mss) {
117 mss = metric;
118 tp->advmss = mss;
119 }
120 }
121
122 return (__u16)mss;
123 }
124
125 /* RFC2861. Reset CWND after idle period longer RTO to "restart window".
126 * This is the first part of cwnd validation mechanism.
127 */
128 void tcp_cwnd_restart(struct sock *sk, s32 delta)
129 {
130 struct tcp_sock *tp = tcp_sk(sk);
131 u32 restart_cwnd = tcp_init_cwnd(tp, __sk_dst_get(sk));
132 u32 cwnd = tp->snd_cwnd;
133
134 tcp_ca_event(sk, CA_EVENT_CWND_RESTART);
135
136 tp->snd_ssthresh = tcp_current_ssthresh(sk);
137 restart_cwnd = min(restart_cwnd, cwnd);
138
139 while ((delta -= inet_csk(sk)->icsk_rto) > 0 && cwnd > restart_cwnd)
140 cwnd >>= 1;
141 tp->snd_cwnd = max(cwnd, restart_cwnd);
142 tp->snd_cwnd_stamp = tcp_jiffies32;
143 tp->snd_cwnd_used = 0;
144 }
145
146 /* Congestion state accounting after a packet has been sent. */
147 static void tcp_event_data_sent(struct tcp_sock *tp,
148 struct sock *sk)
149 {
150 struct inet_connection_sock *icsk = inet_csk(sk);
151 const u32 now = tcp_jiffies32;
152
153 if (tcp_packets_in_flight(tp) == 0)
154 tcp_ca_event(sk, CA_EVENT_TX_START);
155
156 tp->lsndtime = now;
157
158 /* If it is a reply for ato after last received
159 * packet, enter pingpong mode.
160 */
161 if ((u32)(now - icsk->icsk_ack.lrcvtime) < icsk->icsk_ack.ato)
162 icsk->icsk_ack.pingpong = 1;
163 }
164
165 /* Account for an ACK we sent. */
166 static inline void tcp_event_ack_sent(struct sock *sk, unsigned int pkts,
167 u32 rcv_nxt)
168 {
169 struct tcp_sock *tp = tcp_sk(sk);
170
171 if (unlikely(rcv_nxt != tp->rcv_nxt))
172 return; /* Special ACK sent by DCTCP to reflect ECN */
173 tcp_dec_quickack_mode(sk, pkts);
174 inet_csk_clear_xmit_timer(sk, ICSK_TIME_DACK);
175 }
176
177 /* Determine a window scaling and initial window to offer.
178 * Based on the assumption that the given amount of space
179 * will be offered. Store the results in the tp structure.
180 * NOTE: for smooth operation initial space offering should
181 * be a multiple of mss if possible. We assume here that mss >= 1.
182 * This MUST be enforced by all callers.
183 */
184 void tcp_select_initial_window(const struct sock *sk, int __space, __u32 mss,
185 __u32 *rcv_wnd, __u32 *window_clamp,
186 int wscale_ok, __u8 *rcv_wscale,
187 __u32 init_rcv_wnd)
188 {
189 unsigned int space = (__space < 0 ? 0 : __space);
190
191 /* If no clamp set the clamp to the max possible scaled window */
192 if (*window_clamp == 0)
193 (*window_clamp) = (U16_MAX << TCP_MAX_WSCALE);
194 space = min(*window_clamp, space);
195
196 /* Quantize space offering to a multiple of mss if possible. */
197 if (space > mss)
198 space = rounddown(space, mss);
199
200 /* NOTE: offering an initial window larger than 32767
201 * will break some buggy TCP stacks. If the admin tells us
202 * it is likely we could be speaking with such a buggy stack
203 * we will truncate our initial window offering to 32K-1
204 * unless the remote has sent us a window scaling option,
205 * which we interpret as a sign the remote TCP is not
206 * misinterpreting the window field as a signed quantity.
207 */
208 if (sock_net(sk)->ipv4.sysctl_tcp_workaround_signed_windows)
209 (*rcv_wnd) = min(space, MAX_TCP_WINDOW);
210 else
211 (*rcv_wnd) = min_t(u32, space, U16_MAX);
212
213 if (init_rcv_wnd)
214 *rcv_wnd = min(*rcv_wnd, init_rcv_wnd * mss);
215
216 (*rcv_wscale) = 0;
217 if (wscale_ok) {
218 /* Set window scaling on max possible window */
219 space = max_t(u32, space, sock_net(sk)->ipv4.sysctl_tcp_rmem[2]);
220 space = max_t(u32, space, sysctl_rmem_max);
221 space = min_t(u32, space, *window_clamp);
222 while (space > U16_MAX && (*rcv_wscale) < TCP_MAX_WSCALE) {
223 space >>= 1;
224 (*rcv_wscale)++;
225 }
226 }
227
228 /* Set the clamp no higher than max representable value */
229 (*window_clamp) = min_t(__u32, U16_MAX << (*rcv_wscale), *window_clamp);
230 }
231 EXPORT_SYMBOL(tcp_select_initial_window);
232
233 /* Chose a new window to advertise, update state in tcp_sock for the
234 * socket, and return result with RFC1323 scaling applied. The return
235 * value can be stuffed directly into th->window for an outgoing
236 * frame.
237 */
238 static u16 tcp_select_window(struct sock *sk)
239 {
240 struct tcp_sock *tp = tcp_sk(sk);
241 u32 old_win = tp->rcv_wnd;
242 u32 cur_win = tcp_receive_window(tp);
243 u32 new_win = __tcp_select_window(sk);
244
245 /* Never shrink the offered window */
246 if (new_win < cur_win) {
247 /* Danger Will Robinson!
248 * Don't update rcv_wup/rcv_wnd here or else
249 * we will not be able to advertise a zero
250 * window in time. --DaveM
251 *
252 * Relax Will Robinson.
253 */
254 if (new_win == 0)
255 NET_INC_STATS(sock_net(sk),
256 LINUX_MIB_TCPWANTZEROWINDOWADV);
257 new_win = ALIGN(cur_win, 1 << tp->rx_opt.rcv_wscale);
258 }
259 tp->rcv_wnd = new_win;
260 tp->rcv_wup = tp->rcv_nxt;
261
262 /* Make sure we do not exceed the maximum possible
263 * scaled window.
264 */
265 if (!tp->rx_opt.rcv_wscale &&
266 sock_net(sk)->ipv4.sysctl_tcp_workaround_signed_windows)
267 new_win = min(new_win, MAX_TCP_WINDOW);
268 else
269 new_win = min(new_win, (65535U << tp->rx_opt.rcv_wscale));
270
271 /* RFC1323 scaling applied */
272 new_win >>= tp->rx_opt.rcv_wscale;
273
274 /* If we advertise zero window, disable fast path. */
275 if (new_win == 0) {
276 tp->pred_flags = 0;
277 if (old_win)
278 NET_INC_STATS(sock_net(sk),
279 LINUX_MIB_TCPTOZEROWINDOWADV);
280 } else if (old_win == 0) {
281 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPFROMZEROWINDOWADV);
282 }
283
284 return new_win;
285 }
286
287 /* Packet ECN state for a SYN-ACK */
288 static void tcp_ecn_send_synack(struct sock *sk, struct sk_buff *skb)
289 {
290 const struct tcp_sock *tp = tcp_sk(sk);
291
292 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_CWR;
293 if (!(tp->ecn_flags & TCP_ECN_OK))
294 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_ECE;
295 else if (tcp_ca_needs_ecn(sk) ||
296 tcp_bpf_ca_needs_ecn(sk))
297 INET_ECN_xmit(sk);
298 }
299
300 /* Packet ECN state for a SYN. */
301 static void tcp_ecn_send_syn(struct sock *sk, struct sk_buff *skb)
302 {
303 struct tcp_sock *tp = tcp_sk(sk);
304 bool bpf_needs_ecn = tcp_bpf_ca_needs_ecn(sk);
305 bool use_ecn = sock_net(sk)->ipv4.sysctl_tcp_ecn == 1 ||
306 tcp_ca_needs_ecn(sk) || bpf_needs_ecn;
307
308 if (!use_ecn) {
309 const struct dst_entry *dst = __sk_dst_get(sk);
310
311 if (dst && dst_feature(dst, RTAX_FEATURE_ECN))
312 use_ecn = true;
313 }
314
315 tp->ecn_flags = 0;
316
317 if (use_ecn) {
318 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_ECE | TCPHDR_CWR;
319 tp->ecn_flags = TCP_ECN_OK;
320 if (tcp_ca_needs_ecn(sk) || bpf_needs_ecn)
321 INET_ECN_xmit(sk);
322 }
323 }
324
325 static void tcp_ecn_clear_syn(struct sock *sk, struct sk_buff *skb)
326 {
327 if (sock_net(sk)->ipv4.sysctl_tcp_ecn_fallback)
328 /* tp->ecn_flags are cleared at a later point in time when
329 * SYN ACK is ultimatively being received.
330 */
331 TCP_SKB_CB(skb)->tcp_flags &= ~(TCPHDR_ECE | TCPHDR_CWR);
332 }
333
334 static void
335 tcp_ecn_make_synack(const struct request_sock *req, struct tcphdr *th)
336 {
337 if (inet_rsk(req)->ecn_ok)
338 th->ece = 1;
339 }
340
341 /* Set up ECN state for a packet on a ESTABLISHED socket that is about to
342 * be sent.
343 */
344 static void tcp_ecn_send(struct sock *sk, struct sk_buff *skb,
345 struct tcphdr *th, int tcp_header_len)
346 {
347 struct tcp_sock *tp = tcp_sk(sk);
348
349 if (tp->ecn_flags & TCP_ECN_OK) {
350 /* Not-retransmitted data segment: set ECT and inject CWR. */
351 if (skb->len != tcp_header_len &&
352 !before(TCP_SKB_CB(skb)->seq, tp->snd_nxt)) {
353 INET_ECN_xmit(sk);
354 if (tp->ecn_flags & TCP_ECN_QUEUE_CWR) {
355 tp->ecn_flags &= ~TCP_ECN_QUEUE_CWR;
356 th->cwr = 1;
357 skb_shinfo(skb)->gso_type |= SKB_GSO_TCP_ECN;
358 }
359 } else if (!tcp_ca_needs_ecn(sk)) {
360 /* ACK or retransmitted segment: clear ECT|CE */
361 INET_ECN_dontxmit(sk);
362 }
363 if (tp->ecn_flags & TCP_ECN_DEMAND_CWR)
364 th->ece = 1;
365 }
366 }
367
368 /* Constructs common control bits of non-data skb. If SYN/FIN is present,
369 * auto increment end seqno.
370 */
371 static void tcp_init_nondata_skb(struct sk_buff *skb, u32 seq, u8 flags)
372 {
373 skb->ip_summed = CHECKSUM_PARTIAL;
374
375 TCP_SKB_CB(skb)->tcp_flags = flags;
376 TCP_SKB_CB(skb)->sacked = 0;
377
378 tcp_skb_pcount_set(skb, 1);
379
380 TCP_SKB_CB(skb)->seq = seq;
381 if (flags & (TCPHDR_SYN | TCPHDR_FIN))
382 seq++;
383 TCP_SKB_CB(skb)->end_seq = seq;
384 }
385
386 static inline bool tcp_urg_mode(const struct tcp_sock *tp)
387 {
388 return tp->snd_una != tp->snd_up;
389 }
390
391 #define OPTION_SACK_ADVERTISE (1 << 0)
392 #define OPTION_TS (1 << 1)
393 #define OPTION_MD5 (1 << 2)
394 #define OPTION_WSCALE (1 << 3)
395 #define OPTION_FAST_OPEN_COOKIE (1 << 8)
396 #define OPTION_SMC (1 << 9)
397
398 static void smc_options_write(__be32 *ptr, u16 *options)
399 {
400 #if IS_ENABLED(CONFIG_SMC)
401 if (static_branch_unlikely(&tcp_have_smc)) {
402 if (unlikely(OPTION_SMC & *options)) {
403 *ptr++ = htonl((TCPOPT_NOP << 24) |
404 (TCPOPT_NOP << 16) |
405 (TCPOPT_EXP << 8) |
406 (TCPOLEN_EXP_SMC_BASE));
407 *ptr++ = htonl(TCPOPT_SMC_MAGIC);
408 }
409 }
410 #endif
411 }
412
413 struct tcp_out_options {
414 u16 options; /* bit field of OPTION_* */
415 u16 mss; /* 0 to disable */
416 u8 ws; /* window scale, 0 to disable */
417 u8 num_sack_blocks; /* number of SACK blocks to include */
418 u8 hash_size; /* bytes in hash_location */
419 __u8 *hash_location; /* temporary pointer, overloaded */
420 __u32 tsval, tsecr; /* need to include OPTION_TS */
421 struct tcp_fastopen_cookie *fastopen_cookie; /* Fast open cookie */
422 };
423
424 /* Write previously computed TCP options to the packet.
425 *
426 * Beware: Something in the Internet is very sensitive to the ordering of
427 * TCP options, we learned this through the hard way, so be careful here.
428 * Luckily we can at least blame others for their non-compliance but from
429 * inter-operability perspective it seems that we're somewhat stuck with
430 * the ordering which we have been using if we want to keep working with
431 * those broken things (not that it currently hurts anybody as there isn't
432 * particular reason why the ordering would need to be changed).
433 *
434 * At least SACK_PERM as the first option is known to lead to a disaster
435 * (but it may well be that other scenarios fail similarly).
436 */
437 static void tcp_options_write(__be32 *ptr, struct tcp_sock *tp,
438 struct tcp_out_options *opts)
439 {
440 u16 options = opts->options; /* mungable copy */
441
442 if (unlikely(OPTION_MD5 & options)) {
443 *ptr++ = htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) |
444 (TCPOPT_MD5SIG << 8) | TCPOLEN_MD5SIG);
445 /* overload cookie hash location */
446 opts->hash_location = (__u8 *)ptr;
447 ptr += 4;
448 }
449
450 if (unlikely(opts->mss)) {
451 *ptr++ = htonl((TCPOPT_MSS << 24) |
452 (TCPOLEN_MSS << 16) |
453 opts->mss);
454 }
455
456 if (likely(OPTION_TS & options)) {
457 if (unlikely(OPTION_SACK_ADVERTISE & options)) {
458 *ptr++ = htonl((TCPOPT_SACK_PERM << 24) |
459 (TCPOLEN_SACK_PERM << 16) |
460 (TCPOPT_TIMESTAMP << 8) |
461 TCPOLEN_TIMESTAMP);
462 options &= ~OPTION_SACK_ADVERTISE;
463 } else {
464 *ptr++ = htonl((TCPOPT_NOP << 24) |
465 (TCPOPT_NOP << 16) |
466 (TCPOPT_TIMESTAMP << 8) |
467 TCPOLEN_TIMESTAMP);
468 }
469 *ptr++ = htonl(opts->tsval);
470 *ptr++ = htonl(opts->tsecr);
471 }
472
473 if (unlikely(OPTION_SACK_ADVERTISE & options)) {
474 *ptr++ = htonl((TCPOPT_NOP << 24) |
475 (TCPOPT_NOP << 16) |
476 (TCPOPT_SACK_PERM << 8) |
477 TCPOLEN_SACK_PERM);
478 }
479
480 if (unlikely(OPTION_WSCALE & options)) {
481 *ptr++ = htonl((TCPOPT_NOP << 24) |
482 (TCPOPT_WINDOW << 16) |
483 (TCPOLEN_WINDOW << 8) |
484 opts->ws);
485 }
486
487 if (unlikely(opts->num_sack_blocks)) {
488 struct tcp_sack_block *sp = tp->rx_opt.dsack ?
489 tp->duplicate_sack : tp->selective_acks;
490 int this_sack;
491
492 *ptr++ = htonl((TCPOPT_NOP << 24) |
493 (TCPOPT_NOP << 16) |
494 (TCPOPT_SACK << 8) |
495 (TCPOLEN_SACK_BASE + (opts->num_sack_blocks *
496 TCPOLEN_SACK_PERBLOCK)));
497
498 for (this_sack = 0; this_sack < opts->num_sack_blocks;
499 ++this_sack) {
500 *ptr++ = htonl(sp[this_sack].start_seq);
501 *ptr++ = htonl(sp[this_sack].end_seq);
502 }
503
504 tp->rx_opt.dsack = 0;
505 }
506
507 if (unlikely(OPTION_FAST_OPEN_COOKIE & options)) {
508 struct tcp_fastopen_cookie *foc = opts->fastopen_cookie;
509 u8 *p = (u8 *)ptr;
510 u32 len; /* Fast Open option length */
511
512 if (foc->exp) {
513 len = TCPOLEN_EXP_FASTOPEN_BASE + foc->len;
514 *ptr = htonl((TCPOPT_EXP << 24) | (len << 16) |
515 TCPOPT_FASTOPEN_MAGIC);
516 p += TCPOLEN_EXP_FASTOPEN_BASE;
517 } else {
518 len = TCPOLEN_FASTOPEN_BASE + foc->len;
519 *p++ = TCPOPT_FASTOPEN;
520 *p++ = len;
521 }
522
523 memcpy(p, foc->val, foc->len);
524 if ((len & 3) == 2) {
525 p[foc->len] = TCPOPT_NOP;
526 p[foc->len + 1] = TCPOPT_NOP;
527 }
528 ptr += (len + 3) >> 2;
529 }
530
531 smc_options_write(ptr, &options);
532 }
533
534 static void smc_set_option(const struct tcp_sock *tp,
535 struct tcp_out_options *opts,
536 unsigned int *remaining)
537 {
538 #if IS_ENABLED(CONFIG_SMC)
539 if (static_branch_unlikely(&tcp_have_smc)) {
540 if (tp->syn_smc) {
541 if (*remaining >= TCPOLEN_EXP_SMC_BASE_ALIGNED) {
542 opts->options |= OPTION_SMC;
543 *remaining -= TCPOLEN_EXP_SMC_BASE_ALIGNED;
544 }
545 }
546 }
547 #endif
548 }
549
550 static void smc_set_option_cond(const struct tcp_sock *tp,
551 const struct inet_request_sock *ireq,
552 struct tcp_out_options *opts,
553 unsigned int *remaining)
554 {
555 #if IS_ENABLED(CONFIG_SMC)
556 if (static_branch_unlikely(&tcp_have_smc)) {
557 if (tp->syn_smc && ireq->smc_ok) {
558 if (*remaining >= TCPOLEN_EXP_SMC_BASE_ALIGNED) {
559 opts->options |= OPTION_SMC;
560 *remaining -= TCPOLEN_EXP_SMC_BASE_ALIGNED;
561 }
562 }
563 }
564 #endif
565 }
566
567 /* Compute TCP options for SYN packets. This is not the final
568 * network wire format yet.
569 */
570 static unsigned int tcp_syn_options(struct sock *sk, struct sk_buff *skb,
571 struct tcp_out_options *opts,
572 struct tcp_md5sig_key **md5)
573 {
574 struct tcp_sock *tp = tcp_sk(sk);
575 unsigned int remaining = MAX_TCP_OPTION_SPACE;
576 struct tcp_fastopen_request *fastopen = tp->fastopen_req;
577
578 #ifdef CONFIG_TCP_MD5SIG
579 *md5 = tp->af_specific->md5_lookup(sk, sk);
580 if (*md5) {
581 opts->options |= OPTION_MD5;
582 remaining -= TCPOLEN_MD5SIG_ALIGNED;
583 }
584 #else
585 *md5 = NULL;
586 #endif
587
588 /* We always get an MSS option. The option bytes which will be seen in
589 * normal data packets should timestamps be used, must be in the MSS
590 * advertised. But we subtract them from tp->mss_cache so that
591 * calculations in tcp_sendmsg are simpler etc. So account for this
592 * fact here if necessary. If we don't do this correctly, as a
593 * receiver we won't recognize data packets as being full sized when we
594 * should, and thus we won't abide by the delayed ACK rules correctly.
595 * SACKs don't matter, we never delay an ACK when we have any of those
596 * going out. */
597 opts->mss = tcp_advertise_mss(sk);
598 remaining -= TCPOLEN_MSS_ALIGNED;
599
600 if (likely(sock_net(sk)->ipv4.sysctl_tcp_timestamps && !*md5)) {
601 opts->options |= OPTION_TS;
602 opts->tsval = tcp_skb_timestamp(skb) + tp->tsoffset;
603 opts->tsecr = tp->rx_opt.ts_recent;
604 remaining -= TCPOLEN_TSTAMP_ALIGNED;
605 }
606 if (likely(sock_net(sk)->ipv4.sysctl_tcp_window_scaling)) {
607 opts->ws = tp->rx_opt.rcv_wscale;
608 opts->options |= OPTION_WSCALE;
609 remaining -= TCPOLEN_WSCALE_ALIGNED;
610 }
611 if (likely(sock_net(sk)->ipv4.sysctl_tcp_sack)) {
612 opts->options |= OPTION_SACK_ADVERTISE;
613 if (unlikely(!(OPTION_TS & opts->options)))
614 remaining -= TCPOLEN_SACKPERM_ALIGNED;
615 }
616
617 if (fastopen && fastopen->cookie.len >= 0) {
618 u32 need = fastopen->cookie.len;
619
620 need += fastopen->cookie.exp ? TCPOLEN_EXP_FASTOPEN_BASE :
621 TCPOLEN_FASTOPEN_BASE;
622 need = (need + 3) & ~3U; /* Align to 32 bits */
623 if (remaining >= need) {
624 opts->options |= OPTION_FAST_OPEN_COOKIE;
625 opts->fastopen_cookie = &fastopen->cookie;
626 remaining -= need;
627 tp->syn_fastopen = 1;
628 tp->syn_fastopen_exp = fastopen->cookie.exp ? 1 : 0;
629 }
630 }
631
632 smc_set_option(tp, opts, &remaining);
633
634 return MAX_TCP_OPTION_SPACE - remaining;
635 }
636
637 /* Set up TCP options for SYN-ACKs. */
638 static unsigned int tcp_synack_options(const struct sock *sk,
639 struct request_sock *req,
640 unsigned int mss, struct sk_buff *skb,
641 struct tcp_out_options *opts,
642 const struct tcp_md5sig_key *md5,
643 struct tcp_fastopen_cookie *foc)
644 {
645 struct inet_request_sock *ireq = inet_rsk(req);
646 unsigned int remaining = MAX_TCP_OPTION_SPACE;
647
648 #ifdef CONFIG_TCP_MD5SIG
649 if (md5) {
650 opts->options |= OPTION_MD5;
651 remaining -= TCPOLEN_MD5SIG_ALIGNED;
652
653 /* We can't fit any SACK blocks in a packet with MD5 + TS
654 * options. There was discussion about disabling SACK
655 * rather than TS in order to fit in better with old,
656 * buggy kernels, but that was deemed to be unnecessary.
657 */
658 ireq->tstamp_ok &= !ireq->sack_ok;
659 }
660 #endif
661
662 /* We always send an MSS option. */
663 opts->mss = mss;
664 remaining -= TCPOLEN_MSS_ALIGNED;
665
666 if (likely(ireq->wscale_ok)) {
667 opts->ws = ireq->rcv_wscale;
668 opts->options |= OPTION_WSCALE;
669 remaining -= TCPOLEN_WSCALE_ALIGNED;
670 }
671 if (likely(ireq->tstamp_ok)) {
672 opts->options |= OPTION_TS;
673 opts->tsval = tcp_skb_timestamp(skb) + tcp_rsk(req)->ts_off;
674 opts->tsecr = req->ts_recent;
675 remaining -= TCPOLEN_TSTAMP_ALIGNED;
676 }
677 if (likely(ireq->sack_ok)) {
678 opts->options |= OPTION_SACK_ADVERTISE;
679 if (unlikely(!ireq->tstamp_ok))
680 remaining -= TCPOLEN_SACKPERM_ALIGNED;
681 }
682 if (foc != NULL && foc->len >= 0) {
683 u32 need = foc->len;
684
685 need += foc->exp ? TCPOLEN_EXP_FASTOPEN_BASE :
686 TCPOLEN_FASTOPEN_BASE;
687 need = (need + 3) & ~3U; /* Align to 32 bits */
688 if (remaining >= need) {
689 opts->options |= OPTION_FAST_OPEN_COOKIE;
690 opts->fastopen_cookie = foc;
691 remaining -= need;
692 }
693 }
694
695 smc_set_option_cond(tcp_sk(sk), ireq, opts, &remaining);
696
697 return MAX_TCP_OPTION_SPACE - remaining;
698 }
699
700 /* Compute TCP options for ESTABLISHED sockets. This is not the
701 * final wire format yet.
702 */
703 static unsigned int tcp_established_options(struct sock *sk, struct sk_buff *skb,
704 struct tcp_out_options *opts,
705 struct tcp_md5sig_key **md5)
706 {
707 struct tcp_sock *tp = tcp_sk(sk);
708 unsigned int size = 0;
709 unsigned int eff_sacks;
710
711 opts->options = 0;
712
713 #ifdef CONFIG_TCP_MD5SIG
714 *md5 = tp->af_specific->md5_lookup(sk, sk);
715 if (unlikely(*md5)) {
716 opts->options |= OPTION_MD5;
717 size += TCPOLEN_MD5SIG_ALIGNED;
718 }
719 #else
720 *md5 = NULL;
721 #endif
722
723 if (likely(tp->rx_opt.tstamp_ok)) {
724 opts->options |= OPTION_TS;
725 opts->tsval = skb ? tcp_skb_timestamp(skb) + tp->tsoffset : 0;
726 opts->tsecr = tp->rx_opt.ts_recent;
727 size += TCPOLEN_TSTAMP_ALIGNED;
728 }
729
730 eff_sacks = tp->rx_opt.num_sacks + tp->rx_opt.dsack;
731 if (unlikely(eff_sacks)) {
732 const unsigned int remaining = MAX_TCP_OPTION_SPACE - size;
733 opts->num_sack_blocks =
734 min_t(unsigned int, eff_sacks,
735 (remaining - TCPOLEN_SACK_BASE_ALIGNED) /
736 TCPOLEN_SACK_PERBLOCK);
737 if (likely(opts->num_sack_blocks))
738 size += TCPOLEN_SACK_BASE_ALIGNED +
739 opts->num_sack_blocks * TCPOLEN_SACK_PERBLOCK;
740 }
741
742 return size;
743 }
744
745
746 /* TCP SMALL QUEUES (TSQ)
747 *
748 * TSQ goal is to keep small amount of skbs per tcp flow in tx queues (qdisc+dev)
749 * to reduce RTT and bufferbloat.
750 * We do this using a special skb destructor (tcp_wfree).
751 *
752 * Its important tcp_wfree() can be replaced by sock_wfree() in the event skb
753 * needs to be reallocated in a driver.
754 * The invariant being skb->truesize subtracted from sk->sk_wmem_alloc
755 *
756 * Since transmit from skb destructor is forbidden, we use a tasklet
757 * to process all sockets that eventually need to send more skbs.
758 * We use one tasklet per cpu, with its own queue of sockets.
759 */
760 struct tsq_tasklet {
761 struct tasklet_struct tasklet;
762 struct list_head head; /* queue of tcp sockets */
763 };
764 static DEFINE_PER_CPU(struct tsq_tasklet, tsq_tasklet);
765
766 static void tcp_tsq_handler(struct sock *sk)
767 {
768 if ((1 << sk->sk_state) &
769 (TCPF_ESTABLISHED | TCPF_FIN_WAIT1 | TCPF_CLOSING |
770 TCPF_CLOSE_WAIT | TCPF_LAST_ACK)) {
771 struct tcp_sock *tp = tcp_sk(sk);
772
773 if (tp->lost_out > tp->retrans_out &&
774 tp->snd_cwnd > tcp_packets_in_flight(tp)) {
775 tcp_mstamp_refresh(tp);
776 tcp_xmit_retransmit_queue(sk);
777 }
778
779 tcp_write_xmit(sk, tcp_current_mss(sk), tp->nonagle,
780 0, GFP_ATOMIC);
781 }
782 }
783 /*
784 * One tasklet per cpu tries to send more skbs.
785 * We run in tasklet context but need to disable irqs when
786 * transferring tsq->head because tcp_wfree() might
787 * interrupt us (non NAPI drivers)
788 */
789 static void tcp_tasklet_func(unsigned long data)
790 {
791 struct tsq_tasklet *tsq = (struct tsq_tasklet *)data;
792 LIST_HEAD(list);
793 unsigned long flags;
794 struct list_head *q, *n;
795 struct tcp_sock *tp;
796 struct sock *sk;
797
798 local_irq_save(flags);
799 list_splice_init(&tsq->head, &list);
800 local_irq_restore(flags);
801
802 list_for_each_safe(q, n, &list) {
803 tp = list_entry(q, struct tcp_sock, tsq_node);
804 list_del(&tp->tsq_node);
805
806 sk = (struct sock *)tp;
807 smp_mb__before_atomic();
808 clear_bit(TSQ_QUEUED, &sk->sk_tsq_flags);
809
810 if (!sk->sk_lock.owned &&
811 test_bit(TCP_TSQ_DEFERRED, &sk->sk_tsq_flags)) {
812 bh_lock_sock(sk);
813 if (!sock_owned_by_user(sk)) {
814 clear_bit(TCP_TSQ_DEFERRED, &sk->sk_tsq_flags);
815 tcp_tsq_handler(sk);
816 }
817 bh_unlock_sock(sk);
818 }
819
820 sk_free(sk);
821 }
822 }
823
824 #define TCP_DEFERRED_ALL (TCPF_TSQ_DEFERRED | \
825 TCPF_WRITE_TIMER_DEFERRED | \
826 TCPF_DELACK_TIMER_DEFERRED | \
827 TCPF_MTU_REDUCED_DEFERRED)
828 /**
829 * tcp_release_cb - tcp release_sock() callback
830 * @sk: socket
831 *
832 * called from release_sock() to perform protocol dependent
833 * actions before socket release.
834 */
835 void tcp_release_cb(struct sock *sk)
836 {
837 unsigned long flags, nflags;
838
839 /* perform an atomic operation only if at least one flag is set */
840 do {
841 flags = sk->sk_tsq_flags;
842 if (!(flags & TCP_DEFERRED_ALL))
843 return;
844 nflags = flags & ~TCP_DEFERRED_ALL;
845 } while (cmpxchg(&sk->sk_tsq_flags, flags, nflags) != flags);
846
847 if (flags & TCPF_TSQ_DEFERRED)
848 tcp_tsq_handler(sk);
849
850 /* Here begins the tricky part :
851 * We are called from release_sock() with :
852 * 1) BH disabled
853 * 2) sk_lock.slock spinlock held
854 * 3) socket owned by us (sk->sk_lock.owned == 1)
855 *
856 * But following code is meant to be called from BH handlers,
857 * so we should keep BH disabled, but early release socket ownership
858 */
859 sock_release_ownership(sk);
860
861 if (flags & TCPF_WRITE_TIMER_DEFERRED) {
862 tcp_write_timer_handler(sk);
863 __sock_put(sk);
864 }
865 if (flags & TCPF_DELACK_TIMER_DEFERRED) {
866 tcp_delack_timer_handler(sk);
867 __sock_put(sk);
868 }
869 if (flags & TCPF_MTU_REDUCED_DEFERRED) {
870 inet_csk(sk)->icsk_af_ops->mtu_reduced(sk);
871 __sock_put(sk);
872 }
873 }
874 EXPORT_SYMBOL(tcp_release_cb);
875
876 void __init tcp_tasklet_init(void)
877 {
878 int i;
879
880 for_each_possible_cpu(i) {
881 struct tsq_tasklet *tsq = &per_cpu(tsq_tasklet, i);
882
883 INIT_LIST_HEAD(&tsq->head);
884 tasklet_init(&tsq->tasklet,
885 tcp_tasklet_func,
886 (unsigned long)tsq);
887 }
888 }
889
890 /*
891 * Write buffer destructor automatically called from kfree_skb.
892 * We can't xmit new skbs from this context, as we might already
893 * hold qdisc lock.
894 */
895 void tcp_wfree(struct sk_buff *skb)
896 {
897 struct sock *sk = skb->sk;
898 struct tcp_sock *tp = tcp_sk(sk);
899 unsigned long flags, nval, oval;
900
901 /* Keep one reference on sk_wmem_alloc.
902 * Will be released by sk_free() from here or tcp_tasklet_func()
903 */
904 WARN_ON(refcount_sub_and_test(skb->truesize - 1, &sk->sk_wmem_alloc));
905
906 /* If this softirq is serviced by ksoftirqd, we are likely under stress.
907 * Wait until our queues (qdisc + devices) are drained.
908 * This gives :
909 * - less callbacks to tcp_write_xmit(), reducing stress (batches)
910 * - chance for incoming ACK (processed by another cpu maybe)
911 * to migrate this flow (skb->ooo_okay will be eventually set)
912 */
913 if (refcount_read(&sk->sk_wmem_alloc) >= SKB_TRUESIZE(1) && this_cpu_ksoftirqd() == current)
914 goto out;
915
916 for (oval = READ_ONCE(sk->sk_tsq_flags);; oval = nval) {
917 struct tsq_tasklet *tsq;
918 bool empty;
919
920 if (!(oval & TSQF_THROTTLED) || (oval & TSQF_QUEUED))
921 goto out;
922
923 nval = (oval & ~TSQF_THROTTLED) | TSQF_QUEUED | TCPF_TSQ_DEFERRED;
924 nval = cmpxchg(&sk->sk_tsq_flags, oval, nval);
925 if (nval != oval)
926 continue;
927
928 /* queue this socket to tasklet queue */
929 local_irq_save(flags);
930 tsq = this_cpu_ptr(&tsq_tasklet);
931 empty = list_empty(&tsq->head);
932 list_add(&tp->tsq_node, &tsq->head);
933 if (empty)
934 tasklet_schedule(&tsq->tasklet);
935 local_irq_restore(flags);
936 return;
937 }
938 out:
939 sk_free(sk);
940 }
941
942 /* Note: Called under hard irq.
943 * We can not call TCP stack right away.
944 */
945 enum hrtimer_restart tcp_pace_kick(struct hrtimer *timer)
946 {
947 struct tcp_sock *tp = container_of(timer, struct tcp_sock, pacing_timer);
948 struct sock *sk = (struct sock *)tp;
949 unsigned long nval, oval;
950
951 for (oval = READ_ONCE(sk->sk_tsq_flags);; oval = nval) {
952 struct tsq_tasklet *tsq;
953 bool empty;
954
955 if (oval & TSQF_QUEUED)
956 break;
957
958 nval = (oval & ~TSQF_THROTTLED) | TSQF_QUEUED | TCPF_TSQ_DEFERRED;
959 nval = cmpxchg(&sk->sk_tsq_flags, oval, nval);
960 if (nval != oval)
961 continue;
962
963 if (!refcount_inc_not_zero(&sk->sk_wmem_alloc))
964 break;
965 /* queue this socket to tasklet queue */
966 tsq = this_cpu_ptr(&tsq_tasklet);
967 empty = list_empty(&tsq->head);
968 list_add(&tp->tsq_node, &tsq->head);
969 if (empty)
970 tasklet_schedule(&tsq->tasklet);
971 break;
972 }
973 return HRTIMER_NORESTART;
974 }
975
976 /* BBR congestion control needs pacing.
977 * Same remark for SO_MAX_PACING_RATE.
978 * sch_fq packet scheduler is efficiently handling pacing,
979 * but is not always installed/used.
980 * Return true if TCP stack should pace packets itself.
981 */
982 static bool tcp_needs_internal_pacing(const struct sock *sk)
983 {
984 return smp_load_acquire(&sk->sk_pacing_status) == SK_PACING_NEEDED;
985 }
986
987 static void tcp_internal_pacing(struct sock *sk, const struct sk_buff *skb)
988 {
989 u64 len_ns;
990 u32 rate;
991
992 if (!tcp_needs_internal_pacing(sk))
993 return;
994 rate = sk->sk_pacing_rate;
995 if (!rate || rate == ~0U)
996 return;
997
998 /* Should account for header sizes as sch_fq does,
999 * but lets make things simple.
1000 */
1001 len_ns = (u64)skb->len * NSEC_PER_SEC;
1002 do_div(len_ns, rate);
1003 hrtimer_start(&tcp_sk(sk)->pacing_timer,
1004 ktime_add_ns(ktime_get(), len_ns),
1005 HRTIMER_MODE_ABS_PINNED);
1006 }
1007
1008 static void tcp_update_skb_after_send(struct tcp_sock *tp, struct sk_buff *skb)
1009 {
1010 skb->skb_mstamp = tp->tcp_mstamp;
1011 list_move_tail(&skb->tcp_tsorted_anchor, &tp->tsorted_sent_queue);
1012 }
1013
1014 /* This routine actually transmits TCP packets queued in by
1015 * tcp_do_sendmsg(). This is used by both the initial
1016 * transmission and possible later retransmissions.
1017 * All SKB's seen here are completely headerless. It is our
1018 * job to build the TCP header, and pass the packet down to
1019 * IP so it can do the same plus pass the packet off to the
1020 * device.
1021 *
1022 * We are working here with either a clone of the original
1023 * SKB, or a fresh unique copy made by the retransmit engine.
1024 */
1025 static int __tcp_transmit_skb(struct sock *sk, struct sk_buff *skb,
1026 int clone_it, gfp_t gfp_mask, u32 rcv_nxt)
1027 {
1028 const struct inet_connection_sock *icsk = inet_csk(sk);
1029 struct inet_sock *inet;
1030 struct tcp_sock *tp;
1031 struct tcp_skb_cb *tcb;
1032 struct tcp_out_options opts;
1033 unsigned int tcp_options_size, tcp_header_size;
1034 struct sk_buff *oskb = NULL;
1035 struct tcp_md5sig_key *md5;
1036 struct tcphdr *th;
1037 int err;
1038
1039 BUG_ON(!skb || !tcp_skb_pcount(skb));
1040 tp = tcp_sk(sk);
1041
1042 if (clone_it) {
1043 TCP_SKB_CB(skb)->tx.in_flight = TCP_SKB_CB(skb)->end_seq
1044 - tp->snd_una;
1045 oskb = skb;
1046
1047 tcp_skb_tsorted_save(oskb) {
1048 if (unlikely(skb_cloned(oskb)))
1049 skb = pskb_copy(oskb, gfp_mask);
1050 else
1051 skb = skb_clone(oskb, gfp_mask);
1052 } tcp_skb_tsorted_restore(oskb);
1053
1054 if (unlikely(!skb))
1055 return -ENOBUFS;
1056 }
1057 skb->skb_mstamp = tp->tcp_mstamp;
1058
1059 inet = inet_sk(sk);
1060 tcb = TCP_SKB_CB(skb);
1061 memset(&opts, 0, sizeof(opts));
1062
1063 if (unlikely(tcb->tcp_flags & TCPHDR_SYN))
1064 tcp_options_size = tcp_syn_options(sk, skb, &opts, &md5);
1065 else
1066 tcp_options_size = tcp_established_options(sk, skb, &opts,
1067 &md5);
1068 tcp_header_size = tcp_options_size + sizeof(struct tcphdr);
1069
1070 /* if no packet is in qdisc/device queue, then allow XPS to select
1071 * another queue. We can be called from tcp_tsq_handler()
1072 * which holds one reference to sk_wmem_alloc.
1073 *
1074 * TODO: Ideally, in-flight pure ACK packets should not matter here.
1075 * One way to get this would be to set skb->truesize = 2 on them.
1076 */
1077 skb->ooo_okay = sk_wmem_alloc_get(sk) < SKB_TRUESIZE(1);
1078
1079 /* If we had to use memory reserve to allocate this skb,
1080 * this might cause drops if packet is looped back :
1081 * Other socket might not have SOCK_MEMALLOC.
1082 * Packets not looped back do not care about pfmemalloc.
1083 */
1084 skb->pfmemalloc = 0;
1085
1086 skb_push(skb, tcp_header_size);
1087 skb_reset_transport_header(skb);
1088
1089 skb_orphan(skb);
1090 skb->sk = sk;
1091 skb->destructor = skb_is_tcp_pure_ack(skb) ? __sock_wfree : tcp_wfree;
1092 skb_set_hash_from_sk(skb, sk);
1093 refcount_add(skb->truesize, &sk->sk_wmem_alloc);
1094
1095 skb_set_dst_pending_confirm(skb, sk->sk_dst_pending_confirm);
1096
1097 /* Build TCP header and checksum it. */
1098 th = (struct tcphdr *)skb->data;
1099 th->source = inet->inet_sport;
1100 th->dest = inet->inet_dport;
1101 th->seq = htonl(tcb->seq);
1102 th->ack_seq = htonl(rcv_nxt);
1103 *(((__be16 *)th) + 6) = htons(((tcp_header_size >> 2) << 12) |
1104 tcb->tcp_flags);
1105
1106 th->check = 0;
1107 th->urg_ptr = 0;
1108
1109 /* The urg_mode check is necessary during a below snd_una win probe */
1110 if (unlikely(tcp_urg_mode(tp) && before(tcb->seq, tp->snd_up))) {
1111 if (before(tp->snd_up, tcb->seq + 0x10000)) {
1112 th->urg_ptr = htons(tp->snd_up - tcb->seq);
1113 th->urg = 1;
1114 } else if (after(tcb->seq + 0xFFFF, tp->snd_nxt)) {
1115 th->urg_ptr = htons(0xFFFF);
1116 th->urg = 1;
1117 }
1118 }
1119
1120 tcp_options_write((__be32 *)(th + 1), tp, &opts);
1121 skb_shinfo(skb)->gso_type = sk->sk_gso_type;
1122 if (likely(!(tcb->tcp_flags & TCPHDR_SYN))) {
1123 th->window = htons(tcp_select_window(sk));
1124 tcp_ecn_send(sk, skb, th, tcp_header_size);
1125 } else {
1126 /* RFC1323: The window in SYN & SYN/ACK segments
1127 * is never scaled.
1128 */
1129 th->window = htons(min(tp->rcv_wnd, 65535U));
1130 }
1131 #ifdef CONFIG_TCP_MD5SIG
1132 /* Calculate the MD5 hash, as we have all we need now */
1133 if (md5) {
1134 sk_nocaps_add(sk, NETIF_F_GSO_MASK);
1135 tp->af_specific->calc_md5_hash(opts.hash_location,
1136 md5, sk, skb);
1137 }
1138 #endif
1139
1140 icsk->icsk_af_ops->send_check(sk, skb);
1141
1142 if (likely(tcb->tcp_flags & TCPHDR_ACK))
1143 tcp_event_ack_sent(sk, tcp_skb_pcount(skb), rcv_nxt);
1144
1145 if (skb->len != tcp_header_size) {
1146 tcp_event_data_sent(tp, sk);
1147 tp->data_segs_out += tcp_skb_pcount(skb);
1148 tcp_internal_pacing(sk, skb);
1149 }
1150
1151 if (after(tcb->end_seq, tp->snd_nxt) || tcb->seq == tcb->end_seq)
1152 TCP_ADD_STATS(sock_net(sk), TCP_MIB_OUTSEGS,
1153 tcp_skb_pcount(skb));
1154
1155 tp->segs_out += tcp_skb_pcount(skb);
1156 /* OK, its time to fill skb_shinfo(skb)->gso_{segs|size} */
1157 skb_shinfo(skb)->gso_segs = tcp_skb_pcount(skb);
1158 skb_shinfo(skb)->gso_size = tcp_skb_mss(skb);
1159
1160 /* Our usage of tstamp should remain private */
1161 skb->tstamp = 0;
1162
1163 /* Cleanup our debris for IP stacks */
1164 memset(skb->cb, 0, max(sizeof(struct inet_skb_parm),
1165 sizeof(struct inet6_skb_parm)));
1166
1167 err = icsk->icsk_af_ops->queue_xmit(sk, skb, &inet->cork.fl);
1168
1169 if (unlikely(err > 0)) {
1170 tcp_enter_cwr(sk);
1171 err = net_xmit_eval(err);
1172 }
1173 if (!err && oskb) {
1174 tcp_update_skb_after_send(tp, oskb);
1175 tcp_rate_skb_sent(sk, oskb);
1176 }
1177 return err;
1178 }
1179
1180 static int tcp_transmit_skb(struct sock *sk, struct sk_buff *skb, int clone_it,
1181 gfp_t gfp_mask)
1182 {
1183 return __tcp_transmit_skb(sk, skb, clone_it, gfp_mask,
1184 tcp_sk(sk)->rcv_nxt);
1185 }
1186
1187 /* This routine just queues the buffer for sending.
1188 *
1189 * NOTE: probe0 timer is not checked, do not forget tcp_push_pending_frames,
1190 * otherwise socket can stall.
1191 */
1192 static void tcp_queue_skb(struct sock *sk, struct sk_buff *skb)
1193 {
1194 struct tcp_sock *tp = tcp_sk(sk);
1195
1196 /* Advance write_seq and place onto the write_queue. */
1197 tp->write_seq = TCP_SKB_CB(skb)->end_seq;
1198 __skb_header_release(skb);
1199 tcp_add_write_queue_tail(sk, skb);
1200 sk->sk_wmem_queued += skb->truesize;
1201 sk_mem_charge(sk, skb->truesize);
1202 }
1203
1204 /* Initialize TSO segments for a packet. */
1205 static void tcp_set_skb_tso_segs(struct sk_buff *skb, unsigned int mss_now)
1206 {
1207 if (skb->len <= mss_now || skb->ip_summed == CHECKSUM_NONE) {
1208 /* Avoid the costly divide in the normal
1209 * non-TSO case.
1210 */
1211 tcp_skb_pcount_set(skb, 1);
1212 TCP_SKB_CB(skb)->tcp_gso_size = 0;
1213 } else {
1214 tcp_skb_pcount_set(skb, DIV_ROUND_UP(skb->len, mss_now));
1215 TCP_SKB_CB(skb)->tcp_gso_size = mss_now;
1216 }
1217 }
1218
1219 /* Pcount in the middle of the write queue got changed, we need to do various
1220 * tweaks to fix counters
1221 */
1222 static void tcp_adjust_pcount(struct sock *sk, const struct sk_buff *skb, int decr)
1223 {
1224 struct tcp_sock *tp = tcp_sk(sk);
1225
1226 tp->packets_out -= decr;
1227
1228 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
1229 tp->sacked_out -= decr;
1230 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS)
1231 tp->retrans_out -= decr;
1232 if (TCP_SKB_CB(skb)->sacked & TCPCB_LOST)
1233 tp->lost_out -= decr;
1234
1235 /* Reno case is special. Sigh... */
1236 if (tcp_is_reno(tp) && decr > 0)
1237 tp->sacked_out -= min_t(u32, tp->sacked_out, decr);
1238
1239 if (tp->lost_skb_hint &&
1240 before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(tp->lost_skb_hint)->seq) &&
1241 (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
1242 tp->lost_cnt_hint -= decr;
1243
1244 tcp_verify_left_out(tp);
1245 }
1246
1247 static bool tcp_has_tx_tstamp(const struct sk_buff *skb)
1248 {
1249 return TCP_SKB_CB(skb)->txstamp_ack ||
1250 (skb_shinfo(skb)->tx_flags & SKBTX_ANY_TSTAMP);
1251 }
1252
1253 static void tcp_fragment_tstamp(struct sk_buff *skb, struct sk_buff *skb2)
1254 {
1255 struct skb_shared_info *shinfo = skb_shinfo(skb);
1256
1257 if (unlikely(tcp_has_tx_tstamp(skb)) &&
1258 !before(shinfo->tskey, TCP_SKB_CB(skb2)->seq)) {
1259 struct skb_shared_info *shinfo2 = skb_shinfo(skb2);
1260 u8 tsflags = shinfo->tx_flags & SKBTX_ANY_TSTAMP;
1261
1262 shinfo->tx_flags &= ~tsflags;
1263 shinfo2->tx_flags |= tsflags;
1264 swap(shinfo->tskey, shinfo2->tskey);
1265 TCP_SKB_CB(skb2)->txstamp_ack = TCP_SKB_CB(skb)->txstamp_ack;
1266 TCP_SKB_CB(skb)->txstamp_ack = 0;
1267 }
1268 }
1269
1270 static void tcp_skb_fragment_eor(struct sk_buff *skb, struct sk_buff *skb2)
1271 {
1272 TCP_SKB_CB(skb2)->eor = TCP_SKB_CB(skb)->eor;
1273 TCP_SKB_CB(skb)->eor = 0;
1274 }
1275
1276 /* Insert buff after skb on the write or rtx queue of sk. */
1277 static void tcp_insert_write_queue_after(struct sk_buff *skb,
1278 struct sk_buff *buff,
1279 struct sock *sk,
1280 enum tcp_queue tcp_queue)
1281 {
1282 if (tcp_queue == TCP_FRAG_IN_WRITE_QUEUE)
1283 __skb_queue_after(&sk->sk_write_queue, skb, buff);
1284 else
1285 tcp_rbtree_insert(&sk->tcp_rtx_queue, buff);
1286 }
1287
1288 /* Function to create two new TCP segments. Shrinks the given segment
1289 * to the specified size and appends a new segment with the rest of the
1290 * packet to the list. This won't be called frequently, I hope.
1291 * Remember, these are still headerless SKBs at this point.
1292 */
1293 int tcp_fragment(struct sock *sk, enum tcp_queue tcp_queue,
1294 struct sk_buff *skb, u32 len,
1295 unsigned int mss_now, gfp_t gfp)
1296 {
1297 struct tcp_sock *tp = tcp_sk(sk);
1298 struct sk_buff *buff;
1299 int nsize, old_factor;
1300 long limit;
1301 int nlen;
1302 u8 flags;
1303
1304 if (WARN_ON(len > skb->len))
1305 return -EINVAL;
1306
1307 nsize = skb_headlen(skb) - len;
1308 if (nsize < 0)
1309 nsize = 0;
1310
1311 /* tcp_sendmsg() can overshoot sk_wmem_queued by one full size skb.
1312 * We need some allowance to not penalize applications setting small
1313 * SO_SNDBUF values.
1314 * Also allow first and last skb in retransmit queue to be split.
1315 */
1316 limit = sk->sk_sndbuf + 2 * SKB_TRUESIZE(GSO_MAX_SIZE);
1317 if (unlikely((sk->sk_wmem_queued >> 1) > limit &&
1318 tcp_queue != TCP_FRAG_IN_WRITE_QUEUE &&
1319 skb != tcp_rtx_queue_head(sk) &&
1320 skb != tcp_rtx_queue_tail(sk))) {
1321 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPWQUEUETOOBIG);
1322 return -ENOMEM;
1323 }
1324
1325 if (skb_unclone(skb, gfp))
1326 return -ENOMEM;
1327
1328 /* Get a new skb... force flag on. */
1329 buff = sk_stream_alloc_skb(sk, nsize, gfp, true);
1330 if (!buff)
1331 return -ENOMEM; /* We'll just try again later. */
1332
1333 sk->sk_wmem_queued += buff->truesize;
1334 sk_mem_charge(sk, buff->truesize);
1335 nlen = skb->len - len - nsize;
1336 buff->truesize += nlen;
1337 skb->truesize -= nlen;
1338
1339 /* Correct the sequence numbers. */
1340 TCP_SKB_CB(buff)->seq = TCP_SKB_CB(skb)->seq + len;
1341 TCP_SKB_CB(buff)->end_seq = TCP_SKB_CB(skb)->end_seq;
1342 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(buff)->seq;
1343
1344 /* PSH and FIN should only be set in the second packet. */
1345 flags = TCP_SKB_CB(skb)->tcp_flags;
1346 TCP_SKB_CB(skb)->tcp_flags = flags & ~(TCPHDR_FIN | TCPHDR_PSH);
1347 TCP_SKB_CB(buff)->tcp_flags = flags;
1348 TCP_SKB_CB(buff)->sacked = TCP_SKB_CB(skb)->sacked;
1349 tcp_skb_fragment_eor(skb, buff);
1350
1351 if (!skb_shinfo(skb)->nr_frags && skb->ip_summed != CHECKSUM_PARTIAL) {
1352 /* Copy and checksum data tail into the new buffer. */
1353 buff->csum = csum_partial_copy_nocheck(skb->data + len,
1354 skb_put(buff, nsize),
1355 nsize, 0);
1356
1357 skb_trim(skb, len);
1358
1359 skb->csum = csum_block_sub(skb->csum, buff->csum, len);
1360 } else {
1361 skb->ip_summed = CHECKSUM_PARTIAL;
1362 skb_split(skb, buff, len);
1363 }
1364
1365 buff->ip_summed = skb->ip_summed;
1366
1367 buff->tstamp = skb->tstamp;
1368 tcp_fragment_tstamp(skb, buff);
1369
1370 old_factor = tcp_skb_pcount(skb);
1371
1372 /* Fix up tso_factor for both original and new SKB. */
1373 tcp_set_skb_tso_segs(skb, mss_now);
1374 tcp_set_skb_tso_segs(buff, mss_now);
1375
1376 /* Update delivered info for the new segment */
1377 TCP_SKB_CB(buff)->tx = TCP_SKB_CB(skb)->tx;
1378
1379 /* If this packet has been sent out already, we must
1380 * adjust the various packet counters.
1381 */
1382 if (!before(tp->snd_nxt, TCP_SKB_CB(buff)->end_seq)) {
1383 int diff = old_factor - tcp_skb_pcount(skb) -
1384 tcp_skb_pcount(buff);
1385
1386 if (diff)
1387 tcp_adjust_pcount(sk, skb, diff);
1388 }
1389
1390 /* Link BUFF into the send queue. */
1391 __skb_header_release(buff);
1392 tcp_insert_write_queue_after(skb, buff, sk, tcp_queue);
1393 if (tcp_queue == TCP_FRAG_IN_RTX_QUEUE)
1394 list_add(&buff->tcp_tsorted_anchor, &skb->tcp_tsorted_anchor);
1395
1396 return 0;
1397 }
1398
1399 /* This is similar to __pskb_pull_tail(). The difference is that pulled
1400 * data is not copied, but immediately discarded.
1401 */
1402 static int __pskb_trim_head(struct sk_buff *skb, int len)
1403 {
1404 struct skb_shared_info *shinfo;
1405 int i, k, eat;
1406
1407 eat = min_t(int, len, skb_headlen(skb));
1408 if (eat) {
1409 __skb_pull(skb, eat);
1410 len -= eat;
1411 if (!len)
1412 return 0;
1413 }
1414 eat = len;
1415 k = 0;
1416 shinfo = skb_shinfo(skb);
1417 for (i = 0; i < shinfo->nr_frags; i++) {
1418 int size = skb_frag_size(&shinfo->frags[i]);
1419
1420 if (size <= eat) {
1421 skb_frag_unref(skb, i);
1422 eat -= size;
1423 } else {
1424 shinfo->frags[k] = shinfo->frags[i];
1425 if (eat) {
1426 shinfo->frags[k].page_offset += eat;
1427 skb_frag_size_sub(&shinfo->frags[k], eat);
1428 eat = 0;
1429 }
1430 k++;
1431 }
1432 }
1433 shinfo->nr_frags = k;
1434
1435 skb->data_len -= len;
1436 skb->len = skb->data_len;
1437 return len;
1438 }
1439
1440 /* Remove acked data from a packet in the transmit queue. */
1441 int tcp_trim_head(struct sock *sk, struct sk_buff *skb, u32 len)
1442 {
1443 u32 delta_truesize;
1444
1445 if (skb_unclone(skb, GFP_ATOMIC))
1446 return -ENOMEM;
1447
1448 delta_truesize = __pskb_trim_head(skb, len);
1449
1450 TCP_SKB_CB(skb)->seq += len;
1451 skb->ip_summed = CHECKSUM_PARTIAL;
1452
1453 if (delta_truesize) {
1454 skb->truesize -= delta_truesize;
1455 sk->sk_wmem_queued -= delta_truesize;
1456 sk_mem_uncharge(sk, delta_truesize);
1457 sock_set_flag(sk, SOCK_QUEUE_SHRUNK);
1458 }
1459
1460 /* Any change of skb->len requires recalculation of tso factor. */
1461 if (tcp_skb_pcount(skb) > 1)
1462 tcp_set_skb_tso_segs(skb, tcp_skb_mss(skb));
1463
1464 return 0;
1465 }
1466
1467 /* Calculate MSS not accounting any TCP options. */
1468 static inline int __tcp_mtu_to_mss(struct sock *sk, int pmtu)
1469 {
1470 const struct tcp_sock *tp = tcp_sk(sk);
1471 const struct inet_connection_sock *icsk = inet_csk(sk);
1472 int mss_now;
1473
1474 /* Calculate base mss without TCP options:
1475 It is MMS_S - sizeof(tcphdr) of rfc1122
1476 */
1477 mss_now = pmtu - icsk->icsk_af_ops->net_header_len - sizeof(struct tcphdr);
1478
1479 /* IPv6 adds a frag_hdr in case RTAX_FEATURE_ALLFRAG is set */
1480 if (icsk->icsk_af_ops->net_frag_header_len) {
1481 const struct dst_entry *dst = __sk_dst_get(sk);
1482
1483 if (dst && dst_allfrag(dst))
1484 mss_now -= icsk->icsk_af_ops->net_frag_header_len;
1485 }
1486
1487 /* Clamp it (mss_clamp does not include tcp options) */
1488 if (mss_now > tp->rx_opt.mss_clamp)
1489 mss_now = tp->rx_opt.mss_clamp;
1490
1491 /* Now subtract optional transport overhead */
1492 mss_now -= icsk->icsk_ext_hdr_len;
1493
1494 /* Then reserve room for full set of TCP options and 8 bytes of data */
1495 mss_now = max(mss_now, sock_net(sk)->ipv4.sysctl_tcp_min_snd_mss);
1496 return mss_now;
1497 }
1498
1499 /* Calculate MSS. Not accounting for SACKs here. */
1500 int tcp_mtu_to_mss(struct sock *sk, int pmtu)
1501 {
1502 /* Subtract TCP options size, not including SACKs */
1503 return __tcp_mtu_to_mss(sk, pmtu) -
1504 (tcp_sk(sk)->tcp_header_len - sizeof(struct tcphdr));
1505 }
1506
1507 /* Inverse of above */
1508 int tcp_mss_to_mtu(struct sock *sk, int mss)
1509 {
1510 const struct tcp_sock *tp = tcp_sk(sk);
1511 const struct inet_connection_sock *icsk = inet_csk(sk);
1512 int mtu;
1513
1514 mtu = mss +
1515 tp->tcp_header_len +
1516 icsk->icsk_ext_hdr_len +
1517 icsk->icsk_af_ops->net_header_len;
1518
1519 /* IPv6 adds a frag_hdr in case RTAX_FEATURE_ALLFRAG is set */
1520 if (icsk->icsk_af_ops->net_frag_header_len) {
1521 const struct dst_entry *dst = __sk_dst_get(sk);
1522
1523 if (dst && dst_allfrag(dst))
1524 mtu += icsk->icsk_af_ops->net_frag_header_len;
1525 }
1526 return mtu;
1527 }
1528 EXPORT_SYMBOL(tcp_mss_to_mtu);
1529
1530 /* MTU probing init per socket */
1531 void tcp_mtup_init(struct sock *sk)
1532 {
1533 struct tcp_sock *tp = tcp_sk(sk);
1534 struct inet_connection_sock *icsk = inet_csk(sk);
1535 struct net *net = sock_net(sk);
1536
1537 icsk->icsk_mtup.enabled = net->ipv4.sysctl_tcp_mtu_probing > 1;
1538 icsk->icsk_mtup.search_high = tp->rx_opt.mss_clamp + sizeof(struct tcphdr) +
1539 icsk->icsk_af_ops->net_header_len;
1540 icsk->icsk_mtup.search_low = tcp_mss_to_mtu(sk, net->ipv4.sysctl_tcp_base_mss);
1541 icsk->icsk_mtup.probe_size = 0;
1542 if (icsk->icsk_mtup.enabled)
1543 icsk->icsk_mtup.probe_timestamp = tcp_jiffies32;
1544 }
1545 EXPORT_SYMBOL(tcp_mtup_init);
1546
1547 /* This function synchronize snd mss to current pmtu/exthdr set.
1548
1549 tp->rx_opt.user_mss is mss set by user by TCP_MAXSEG. It does NOT counts
1550 for TCP options, but includes only bare TCP header.
1551
1552 tp->rx_opt.mss_clamp is mss negotiated at connection setup.
1553 It is minimum of user_mss and mss received with SYN.
1554 It also does not include TCP options.
1555
1556 inet_csk(sk)->icsk_pmtu_cookie is last pmtu, seen by this function.
1557
1558 tp->mss_cache is current effective sending mss, including
1559 all tcp options except for SACKs. It is evaluated,
1560 taking into account current pmtu, but never exceeds
1561 tp->rx_opt.mss_clamp.
1562
1563 NOTE1. rfc1122 clearly states that advertised MSS
1564 DOES NOT include either tcp or ip options.
1565
1566 NOTE2. inet_csk(sk)->icsk_pmtu_cookie and tp->mss_cache
1567 are READ ONLY outside this function. --ANK (980731)
1568 */
1569 unsigned int tcp_sync_mss(struct sock *sk, u32 pmtu)
1570 {
1571 struct tcp_sock *tp = tcp_sk(sk);
1572 struct inet_connection_sock *icsk = inet_csk(sk);
1573 int mss_now;
1574
1575 if (icsk->icsk_mtup.search_high > pmtu)
1576 icsk->icsk_mtup.search_high = pmtu;
1577
1578 mss_now = tcp_mtu_to_mss(sk, pmtu);
1579 mss_now = tcp_bound_to_half_wnd(tp, mss_now);
1580
1581 /* And store cached results */
1582 icsk->icsk_pmtu_cookie = pmtu;
1583 if (icsk->icsk_mtup.enabled)
1584 mss_now = min(mss_now, tcp_mtu_to_mss(sk, icsk->icsk_mtup.search_low));
1585 tp->mss_cache = mss_now;
1586
1587 return mss_now;
1588 }
1589 EXPORT_SYMBOL(tcp_sync_mss);
1590
1591 /* Compute the current effective MSS, taking SACKs and IP options,
1592 * and even PMTU discovery events into account.
1593 */
1594 unsigned int tcp_current_mss(struct sock *sk)
1595 {
1596 const struct tcp_sock *tp = tcp_sk(sk);
1597 const struct dst_entry *dst = __sk_dst_get(sk);
1598 u32 mss_now;
1599 unsigned int header_len;
1600 struct tcp_out_options opts;
1601 struct tcp_md5sig_key *md5;
1602
1603 mss_now = tp->mss_cache;
1604
1605 if (dst) {
1606 u32 mtu = dst_mtu(dst);
1607 if (mtu != inet_csk(sk)->icsk_pmtu_cookie)
1608 mss_now = tcp_sync_mss(sk, mtu);
1609 }
1610
1611 header_len = tcp_established_options(sk, NULL, &opts, &md5) +
1612 sizeof(struct tcphdr);
1613 /* The mss_cache is sized based on tp->tcp_header_len, which assumes
1614 * some common options. If this is an odd packet (because we have SACK
1615 * blocks etc) then our calculated header_len will be different, and
1616 * we have to adjust mss_now correspondingly */
1617 if (header_len != tp->tcp_header_len) {
1618 int delta = (int) header_len - tp->tcp_header_len;
1619 mss_now -= delta;
1620 }
1621
1622 return mss_now;
1623 }
1624
1625 /* RFC2861, slow part. Adjust cwnd, after it was not full during one rto.
1626 * As additional protections, we do not touch cwnd in retransmission phases,
1627 * and if application hit its sndbuf limit recently.
1628 */
1629 static void tcp_cwnd_application_limited(struct sock *sk)
1630 {
1631 struct tcp_sock *tp = tcp_sk(sk);
1632
1633 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Open &&
1634 sk->sk_socket && !test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
1635 /* Limited by application or receiver window. */
1636 u32 init_win = tcp_init_cwnd(tp, __sk_dst_get(sk));
1637 u32 win_used = max(tp->snd_cwnd_used, init_win);
1638 if (win_used < tp->snd_cwnd) {
1639 tp->snd_ssthresh = tcp_current_ssthresh(sk);
1640 tp->snd_cwnd = (tp->snd_cwnd + win_used) >> 1;
1641 }
1642 tp->snd_cwnd_used = 0;
1643 }
1644 tp->snd_cwnd_stamp = tcp_jiffies32;
1645 }
1646
1647 static void tcp_cwnd_validate(struct sock *sk, bool is_cwnd_limited)
1648 {
1649 const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
1650 struct tcp_sock *tp = tcp_sk(sk);
1651
1652 /* Track the maximum number of outstanding packets in each
1653 * window, and remember whether we were cwnd-limited then.
1654 */
1655 if (!before(tp->snd_una, tp->max_packets_seq) ||
1656 tp->packets_out > tp->max_packets_out) {
1657 tp->max_packets_out = tp->packets_out;
1658 tp->max_packets_seq = tp->snd_nxt;
1659 tp->is_cwnd_limited = is_cwnd_limited;
1660 }
1661
1662 if (tcp_is_cwnd_limited(sk)) {
1663 /* Network is feed fully. */
1664 tp->snd_cwnd_used = 0;
1665 tp->snd_cwnd_stamp = tcp_jiffies32;
1666 } else {
1667 /* Network starves. */
1668 if (tp->packets_out > tp->snd_cwnd_used)
1669 tp->snd_cwnd_used = tp->packets_out;
1670
1671 if (sock_net(sk)->ipv4.sysctl_tcp_slow_start_after_idle &&
1672 (s32)(tcp_jiffies32 - tp->snd_cwnd_stamp) >= inet_csk(sk)->icsk_rto &&
1673 !ca_ops->cong_control)
1674 tcp_cwnd_application_limited(sk);
1675
1676 /* The following conditions together indicate the starvation
1677 * is caused by insufficient sender buffer:
1678 * 1) just sent some data (see tcp_write_xmit)
1679 * 2) not cwnd limited (this else condition)
1680 * 3) no more data to send (tcp_write_queue_empty())
1681 * 4) application is hitting buffer limit (SOCK_NOSPACE)
1682 */
1683 if (tcp_write_queue_empty(sk) && sk->sk_socket &&
1684 test_bit(SOCK_NOSPACE, &sk->sk_socket->flags) &&
1685 (1 << sk->sk_state) & (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT))
1686 tcp_chrono_start(sk, TCP_CHRONO_SNDBUF_LIMITED);
1687 }
1688 }
1689
1690 /* Minshall's variant of the Nagle send check. */
1691 static bool tcp_minshall_check(const struct tcp_sock *tp)
1692 {
1693 return after(tp->snd_sml, tp->snd_una) &&
1694 !after(tp->snd_sml, tp->snd_nxt);
1695 }
1696
1697 /* Update snd_sml if this skb is under mss
1698 * Note that a TSO packet might end with a sub-mss segment
1699 * The test is really :
1700 * if ((skb->len % mss) != 0)
1701 * tp->snd_sml = TCP_SKB_CB(skb)->end_seq;
1702 * But we can avoid doing the divide again given we already have
1703 * skb_pcount = skb->len / mss_now
1704 */
1705 static void tcp_minshall_update(struct tcp_sock *tp, unsigned int mss_now,
1706 const struct sk_buff *skb)
1707 {
1708 if (skb->len < tcp_skb_pcount(skb) * mss_now)
1709 tp->snd_sml = TCP_SKB_CB(skb)->end_seq;
1710 }
1711
1712 /* Return false, if packet can be sent now without violation Nagle's rules:
1713 * 1. It is full sized. (provided by caller in %partial bool)
1714 * 2. Or it contains FIN. (already checked by caller)
1715 * 3. Or TCP_CORK is not set, and TCP_NODELAY is set.
1716 * 4. Or TCP_CORK is not set, and all sent packets are ACKed.
1717 * With Minshall's modification: all sent small packets are ACKed.
1718 */
1719 static bool tcp_nagle_check(bool partial, const struct tcp_sock *tp,
1720 int nonagle)
1721 {
1722 return partial &&
1723 ((nonagle & TCP_NAGLE_CORK) ||
1724 (!nonagle && tp->packets_out && tcp_minshall_check(tp)));
1725 }
1726
1727 /* Return how many segs we'd like on a TSO packet,
1728 * to send one TSO packet per ms
1729 */
1730 u32 tcp_tso_autosize(const struct sock *sk, unsigned int mss_now,
1731 int min_tso_segs)
1732 {
1733 u32 bytes, segs;
1734
1735 bytes = min(sk->sk_pacing_rate >> sk->sk_pacing_shift,
1736 sk->sk_gso_max_size - 1 - MAX_TCP_HEADER);
1737
1738 /* Goal is to send at least one packet per ms,
1739 * not one big TSO packet every 100 ms.
1740 * This preserves ACK clocking and is consistent
1741 * with tcp_tso_should_defer() heuristic.
1742 */
1743 segs = max_t(u32, bytes / mss_now, min_tso_segs);
1744
1745 return segs;
1746 }
1747 EXPORT_SYMBOL(tcp_tso_autosize);
1748
1749 /* Return the number of segments we want in the skb we are transmitting.
1750 * See if congestion control module wants to decide; otherwise, autosize.
1751 */
1752 static u32 tcp_tso_segs(struct sock *sk, unsigned int mss_now)
1753 {
1754 const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
1755 u32 tso_segs = ca_ops->tso_segs_goal ? ca_ops->tso_segs_goal(sk) : 0;
1756
1757 if (!tso_segs)
1758 tso_segs = tcp_tso_autosize(sk, mss_now,
1759 sock_net(sk)->ipv4.sysctl_tcp_min_tso_segs);
1760 return min_t(u32, tso_segs, sk->sk_gso_max_segs);
1761 }
1762
1763 /* Returns the portion of skb which can be sent right away */
1764 static unsigned int tcp_mss_split_point(const struct sock *sk,
1765 const struct sk_buff *skb,
1766 unsigned int mss_now,
1767 unsigned int max_segs,
1768 int nonagle)
1769 {
1770 const struct tcp_sock *tp = tcp_sk(sk);
1771 u32 partial, needed, window, max_len;
1772
1773 window = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq;
1774 max_len = mss_now * max_segs;
1775
1776 if (likely(max_len <= window && skb != tcp_write_queue_tail(sk)))
1777 return max_len;
1778
1779 needed = min(skb->len, window);
1780
1781 if (max_len <= needed)
1782 return max_len;
1783
1784 partial = needed % mss_now;
1785 /* If last segment is not a full MSS, check if Nagle rules allow us
1786 * to include this last segment in this skb.
1787 * Otherwise, we'll split the skb at last MSS boundary
1788 */
1789 if (tcp_nagle_check(partial != 0, tp, nonagle))
1790 return needed - partial;
1791
1792 return needed;
1793 }
1794
1795 /* Can at least one segment of SKB be sent right now, according to the
1796 * congestion window rules? If so, return how many segments are allowed.
1797 */
1798 static inline unsigned int tcp_cwnd_test(const struct tcp_sock *tp,
1799 const struct sk_buff *skb)
1800 {
1801 u32 in_flight, cwnd, halfcwnd;
1802
1803 /* Don't be strict about the congestion window for the final FIN. */
1804 if ((TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) &&
1805 tcp_skb_pcount(skb) == 1)
1806 return 1;
1807
1808 in_flight = tcp_packets_in_flight(tp);
1809 cwnd = tp->snd_cwnd;
1810 if (in_flight >= cwnd)
1811 return 0;
1812
1813 /* For better scheduling, ensure we have at least
1814 * 2 GSO packets in flight.
1815 */
1816 halfcwnd = max(cwnd >> 1, 1U);
1817 return min(halfcwnd, cwnd - in_flight);
1818 }
1819
1820 /* Initialize TSO state of a skb.
1821 * This must be invoked the first time we consider transmitting
1822 * SKB onto the wire.
1823 */
1824 static int tcp_init_tso_segs(struct sk_buff *skb, unsigned int mss_now)
1825 {
1826 int tso_segs = tcp_skb_pcount(skb);
1827
1828 if (!tso_segs || (tso_segs > 1 && tcp_skb_mss(skb) != mss_now)) {
1829 tcp_set_skb_tso_segs(skb, mss_now);
1830 tso_segs = tcp_skb_pcount(skb);
1831 }
1832 return tso_segs;
1833 }
1834
1835
1836 /* Return true if the Nagle test allows this packet to be
1837 * sent now.
1838 */
1839 static inline bool tcp_nagle_test(const struct tcp_sock *tp, const struct sk_buff *skb,
1840 unsigned int cur_mss, int nonagle)
1841 {
1842 /* Nagle rule does not apply to frames, which sit in the middle of the
1843 * write_queue (they have no chances to get new data).
1844 *
1845 * This is implemented in the callers, where they modify the 'nonagle'
1846 * argument based upon the location of SKB in the send queue.
1847 */
1848 if (nonagle & TCP_NAGLE_PUSH)
1849 return true;
1850
1851 /* Don't use the nagle rule for urgent data (or for the final FIN). */
1852 if (tcp_urg_mode(tp) || (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN))
1853 return true;
1854
1855 if (!tcp_nagle_check(skb->len < cur_mss, tp, nonagle))
1856 return true;
1857
1858 return false;
1859 }
1860
1861 /* Does at least the first segment of SKB fit into the send window? */
1862 static bool tcp_snd_wnd_test(const struct tcp_sock *tp,
1863 const struct sk_buff *skb,
1864 unsigned int cur_mss)
1865 {
1866 u32 end_seq = TCP_SKB_CB(skb)->end_seq;
1867
1868 if (skb->len > cur_mss)
1869 end_seq = TCP_SKB_CB(skb)->seq + cur_mss;
1870
1871 return !after(end_seq, tcp_wnd_end(tp));
1872 }
1873
1874 /* Trim TSO SKB to LEN bytes, put the remaining data into a new packet
1875 * which is put after SKB on the list. It is very much like
1876 * tcp_fragment() except that it may make several kinds of assumptions
1877 * in order to speed up the splitting operation. In particular, we
1878 * know that all the data is in scatter-gather pages, and that the
1879 * packet has never been sent out before (and thus is not cloned).
1880 */
1881 static int tso_fragment(struct sock *sk, enum tcp_queue tcp_queue,
1882 struct sk_buff *skb, unsigned int len,
1883 unsigned int mss_now, gfp_t gfp)
1884 {
1885 struct sk_buff *buff;
1886 int nlen = skb->len - len;
1887 u8 flags;
1888
1889 /* All of a TSO frame must be composed of paged data. */
1890 if (skb->len != skb->data_len)
1891 return tcp_fragment(sk, tcp_queue, skb, len, mss_now, gfp);
1892
1893 buff = sk_stream_alloc_skb(sk, 0, gfp, true);
1894 if (unlikely(!buff))
1895 return -ENOMEM;
1896
1897 sk->sk_wmem_queued += buff->truesize;
1898 sk_mem_charge(sk, buff->truesize);
1899 buff->truesize += nlen;
1900 skb->truesize -= nlen;
1901
1902 /* Correct the sequence numbers. */
1903 TCP_SKB_CB(buff)->seq = TCP_SKB_CB(skb)->seq + len;
1904 TCP_SKB_CB(buff)->end_seq = TCP_SKB_CB(skb)->end_seq;
1905 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(buff)->seq;
1906
1907 /* PSH and FIN should only be set in the second packet. */
1908 flags = TCP_SKB_CB(skb)->tcp_flags;
1909 TCP_SKB_CB(skb)->tcp_flags = flags & ~(TCPHDR_FIN | TCPHDR_PSH);
1910 TCP_SKB_CB(buff)->tcp_flags = flags;
1911
1912 /* This packet was never sent out yet, so no SACK bits. */
1913 TCP_SKB_CB(buff)->sacked = 0;
1914
1915 tcp_skb_fragment_eor(skb, buff);
1916
1917 buff->ip_summed = skb->ip_summed = CHECKSUM_PARTIAL;
1918 skb_split(skb, buff, len);
1919 tcp_fragment_tstamp(skb, buff);
1920
1921 /* Fix up tso_factor for both original and new SKB. */
1922 tcp_set_skb_tso_segs(skb, mss_now);
1923 tcp_set_skb_tso_segs(buff, mss_now);
1924
1925 /* Link BUFF into the send queue. */
1926 __skb_header_release(buff);
1927 tcp_insert_write_queue_after(skb, buff, sk, tcp_queue);
1928
1929 return 0;
1930 }
1931
1932 /* Try to defer sending, if possible, in order to minimize the amount
1933 * of TSO splitting we do. View it as a kind of TSO Nagle test.
1934 *
1935 * This algorithm is from John Heffner.
1936 */
1937 static bool tcp_tso_should_defer(struct sock *sk, struct sk_buff *skb,
1938 bool *is_cwnd_limited,
1939 bool *is_rwnd_limited,
1940 u32 max_segs)
1941 {
1942 const struct inet_connection_sock *icsk = inet_csk(sk);
1943 u32 age, send_win, cong_win, limit, in_flight;
1944 struct tcp_sock *tp = tcp_sk(sk);
1945 struct sk_buff *head;
1946 int win_divisor;
1947
1948 if (icsk->icsk_ca_state >= TCP_CA_Recovery)
1949 goto send_now;
1950
1951 /* Avoid bursty behavior by allowing defer
1952 * only if the last write was recent.
1953 */
1954 if ((s32)(tcp_jiffies32 - tp->lsndtime) > 0)
1955 goto send_now;
1956
1957 in_flight = tcp_packets_in_flight(tp);
1958
1959 BUG_ON(tcp_skb_pcount(skb) <= 1 || (tp->snd_cwnd <= in_flight));
1960
1961 send_win = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq;
1962
1963 /* From in_flight test above, we know that cwnd > in_flight. */
1964 cong_win = (tp->snd_cwnd - in_flight) * tp->mss_cache;
1965
1966 limit = min(send_win, cong_win);
1967
1968 /* If a full-sized TSO skb can be sent, do it. */
1969 if (limit >= max_segs * tp->mss_cache)
1970 goto send_now;
1971
1972 /* Middle in queue won't get any more data, full sendable already? */
1973 if ((skb != tcp_write_queue_tail(sk)) && (limit >= skb->len))
1974 goto send_now;
1975
1976 win_divisor = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_tso_win_divisor);
1977 if (win_divisor) {
1978 u32 chunk = min(tp->snd_wnd, tp->snd_cwnd * tp->mss_cache);
1979
1980 /* If at least some fraction of a window is available,
1981 * just use it.
1982 */
1983 chunk /= win_divisor;
1984 if (limit >= chunk)
1985 goto send_now;
1986 } else {
1987 /* Different approach, try not to defer past a single
1988 * ACK. Receiver should ACK every other full sized
1989 * frame, so if we have space for more than 3 frames
1990 * then send now.
1991 */
1992 if (limit > tcp_max_tso_deferred_mss(tp) * tp->mss_cache)
1993 goto send_now;
1994 }
1995
1996 /* TODO : use tsorted_sent_queue ? */
1997 head = tcp_rtx_queue_head(sk);
1998 if (!head)
1999 goto send_now;
2000 age = tcp_stamp_us_delta(tp->tcp_mstamp, head->skb_mstamp);
2001 /* If next ACK is likely to come too late (half srtt), do not defer */
2002 if (age < (tp->srtt_us >> 4))
2003 goto send_now;
2004
2005 /* Ok, it looks like it is advisable to defer.
2006 * Three cases are tracked :
2007 * 1) We are cwnd-limited
2008 * 2) We are rwnd-limited
2009 * 3) We are application limited.
2010 */
2011 if (cong_win < send_win) {
2012 if (cong_win <= skb->len) {
2013 *is_cwnd_limited = true;
2014 return true;
2015 }
2016 } else {
2017 if (send_win <= skb->len) {
2018 *is_rwnd_limited = true;
2019 return true;
2020 }
2021 }
2022
2023 /* If this packet won't get more data, do not wait. */
2024 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
2025 goto send_now;
2026
2027 return true;
2028
2029 send_now:
2030 return false;
2031 }
2032
2033 static inline void tcp_mtu_check_reprobe(struct sock *sk)
2034 {
2035 struct inet_connection_sock *icsk = inet_csk(sk);
2036 struct tcp_sock *tp = tcp_sk(sk);
2037 struct net *net = sock_net(sk);
2038 u32 interval;
2039 s32 delta;
2040
2041 interval = net->ipv4.sysctl_tcp_probe_interval;
2042 delta = tcp_jiffies32 - icsk->icsk_mtup.probe_timestamp;
2043 if (unlikely(delta >= interval * HZ)) {
2044 int mss = tcp_current_mss(sk);
2045
2046 /* Update current search range */
2047 icsk->icsk_mtup.probe_size = 0;
2048 icsk->icsk_mtup.search_high = tp->rx_opt.mss_clamp +
2049 sizeof(struct tcphdr) +
2050 icsk->icsk_af_ops->net_header_len;
2051 icsk->icsk_mtup.search_low = tcp_mss_to_mtu(sk, mss);
2052
2053 /* Update probe time stamp */
2054 icsk->icsk_mtup.probe_timestamp = tcp_jiffies32;
2055 }
2056 }
2057
2058 static bool tcp_can_coalesce_send_queue_head(struct sock *sk, int len)
2059 {
2060 struct sk_buff *skb, *next;
2061
2062 skb = tcp_send_head(sk);
2063 tcp_for_write_queue_from_safe(skb, next, sk) {
2064 if (len <= skb->len)
2065 break;
2066
2067 if (unlikely(TCP_SKB_CB(skb)->eor) || tcp_has_tx_tstamp(skb))
2068 return false;
2069
2070 len -= skb->len;
2071 }
2072
2073 return true;
2074 }
2075
2076 /* Create a new MTU probe if we are ready.
2077 * MTU probe is regularly attempting to increase the path MTU by
2078 * deliberately sending larger packets. This discovers routing
2079 * changes resulting in larger path MTUs.
2080 *
2081 * Returns 0 if we should wait to probe (no cwnd available),
2082 * 1 if a probe was sent,
2083 * -1 otherwise
2084 */
2085 static int tcp_mtu_probe(struct sock *sk)
2086 {
2087 struct inet_connection_sock *icsk = inet_csk(sk);
2088 struct tcp_sock *tp = tcp_sk(sk);
2089 struct sk_buff *skb, *nskb, *next;
2090 struct net *net = sock_net(sk);
2091 int probe_size;
2092 int size_needed;
2093 int copy, len;
2094 int mss_now;
2095 int interval;
2096
2097 /* Not currently probing/verifying,
2098 * not in recovery,
2099 * have enough cwnd, and
2100 * not SACKing (the variable headers throw things off)
2101 */
2102 if (likely(!icsk->icsk_mtup.enabled ||
2103 icsk->icsk_mtup.probe_size ||
2104 inet_csk(sk)->icsk_ca_state != TCP_CA_Open ||
2105 tp->snd_cwnd < 11 ||
2106 tp->rx_opt.num_sacks || tp->rx_opt.dsack))
2107 return -1;
2108
2109 /* Use binary search for probe_size between tcp_mss_base,
2110 * and current mss_clamp. if (search_high - search_low)
2111 * smaller than a threshold, backoff from probing.
2112 */
2113 mss_now = tcp_current_mss(sk);
2114 probe_size = tcp_mtu_to_mss(sk, (icsk->icsk_mtup.search_high +
2115 icsk->icsk_mtup.search_low) >> 1);
2116 size_needed = probe_size + (tp->reordering + 1) * tp->mss_cache;
2117 interval = icsk->icsk_mtup.search_high - icsk->icsk_mtup.search_low;
2118 /* When misfortune happens, we are reprobing actively,
2119 * and then reprobe timer has expired. We stick with current
2120 * probing process by not resetting search range to its orignal.
2121 */
2122 if (probe_size > tcp_mtu_to_mss(sk, icsk->icsk_mtup.search_high) ||
2123 interval < net->ipv4.sysctl_tcp_probe_threshold) {
2124 /* Check whether enough time has elaplased for
2125 * another round of probing.
2126 */
2127 tcp_mtu_check_reprobe(sk);
2128 return -1;
2129 }
2130
2131 /* Have enough data in the send queue to probe? */
2132 if (tp->write_seq - tp->snd_nxt < size_needed)
2133 return -1;
2134
2135 if (tp->snd_wnd < size_needed)
2136 return -1;
2137 if (after(tp->snd_nxt + size_needed, tcp_wnd_end(tp)))
2138 return 0;
2139
2140 /* Do we need to wait to drain cwnd? With none in flight, don't stall */
2141 if (tcp_packets_in_flight(tp) + 2 > tp->snd_cwnd) {
2142 if (!tcp_packets_in_flight(tp))
2143 return -1;
2144 else
2145 return 0;
2146 }
2147
2148 if (!tcp_can_coalesce_send_queue_head(sk, probe_size))
2149 return -1;
2150
2151 /* We're allowed to probe. Build it now. */
2152 nskb = sk_stream_alloc_skb(sk, probe_size, GFP_ATOMIC, false);
2153 if (!nskb)
2154 return -1;
2155 sk->sk_wmem_queued += nskb->truesize;
2156 sk_mem_charge(sk, nskb->truesize);
2157
2158 skb = tcp_send_head(sk);
2159
2160 TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(skb)->seq;
2161 TCP_SKB_CB(nskb)->end_seq = TCP_SKB_CB(skb)->seq + probe_size;
2162 TCP_SKB_CB(nskb)->tcp_flags = TCPHDR_ACK;
2163 TCP_SKB_CB(nskb)->sacked = 0;
2164 nskb->csum = 0;
2165 nskb->ip_summed = skb->ip_summed;
2166
2167 tcp_insert_write_queue_before(nskb, skb, sk);
2168 tcp_highest_sack_replace(sk, skb, nskb);
2169
2170 len = 0;
2171 tcp_for_write_queue_from_safe(skb, next, sk) {
2172 copy = min_t(int, skb->len, probe_size - len);
2173 if (nskb->ip_summed) {
2174 skb_copy_bits(skb, 0, skb_put(nskb, copy), copy);
2175 } else {
2176 __wsum csum = skb_copy_and_csum_bits(skb, 0,
2177 skb_put(nskb, copy),
2178 copy, 0);
2179 nskb->csum = csum_block_add(nskb->csum, csum, len);
2180 }
2181
2182 if (skb->len <= copy) {
2183 /* We've eaten all the data from this skb.
2184 * Throw it away. */
2185 TCP_SKB_CB(nskb)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags;
2186 /* If this is the last SKB we copy and eor is set
2187 * we need to propagate it to the new skb.
2188 */
2189 TCP_SKB_CB(nskb)->eor = TCP_SKB_CB(skb)->eor;
2190 tcp_skb_collapse_tstamp(nskb, skb);
2191 tcp_unlink_write_queue(skb, sk);
2192 sk_wmem_free_skb(sk, skb);
2193 } else {
2194 TCP_SKB_CB(nskb)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags &
2195 ~(TCPHDR_FIN|TCPHDR_PSH);
2196 if (!skb_shinfo(skb)->nr_frags) {
2197 skb_pull(skb, copy);
2198 if (skb->ip_summed != CHECKSUM_PARTIAL)
2199 skb->csum = csum_partial(skb->data,
2200 skb->len, 0);
2201 } else {
2202 __pskb_trim_head(skb, copy);
2203 tcp_set_skb_tso_segs(skb, mss_now);
2204 }
2205 TCP_SKB_CB(skb)->seq += copy;
2206 }
2207
2208 len += copy;
2209
2210 if (len >= probe_size)
2211 break;
2212 }
2213 tcp_init_tso_segs(nskb, nskb->len);
2214
2215 /* We're ready to send. If this fails, the probe will
2216 * be resegmented into mss-sized pieces by tcp_write_xmit().
2217 */
2218 if (!tcp_transmit_skb(sk, nskb, 1, GFP_ATOMIC)) {
2219 /* Decrement cwnd here because we are sending
2220 * effectively two packets. */
2221 tp->snd_cwnd--;
2222 tcp_event_new_data_sent(sk, nskb);
2223
2224 icsk->icsk_mtup.probe_size = tcp_mss_to_mtu(sk, nskb->len);
2225 tp->mtu_probe.probe_seq_start = TCP_SKB_CB(nskb)->seq;
2226 tp->mtu_probe.probe_seq_end = TCP_SKB_CB(nskb)->end_seq;
2227
2228 return 1;
2229 }
2230
2231 return -1;
2232 }
2233
2234 static bool tcp_pacing_check(const struct sock *sk)
2235 {
2236 return tcp_needs_internal_pacing(sk) &&
2237 hrtimer_active(&tcp_sk(sk)->pacing_timer);
2238 }
2239
2240 /* TCP Small Queues :
2241 * Control number of packets in qdisc/devices to two packets / or ~1 ms.
2242 * (These limits are doubled for retransmits)
2243 * This allows for :
2244 * - better RTT estimation and ACK scheduling
2245 * - faster recovery
2246 * - high rates
2247 * Alas, some drivers / subsystems require a fair amount
2248 * of queued bytes to ensure line rate.
2249 * One example is wifi aggregation (802.11 AMPDU)
2250 */
2251 static bool tcp_small_queue_check(struct sock *sk, const struct sk_buff *skb,
2252 unsigned int factor)
2253 {
2254 unsigned int limit;
2255
2256 limit = max(2 * skb->truesize, sk->sk_pacing_rate >> sk->sk_pacing_shift);
2257 limit = min_t(u32, limit,
2258 sock_net(sk)->ipv4.sysctl_tcp_limit_output_bytes);
2259 limit <<= factor;
2260
2261 if (refcount_read(&sk->sk_wmem_alloc) > limit) {
2262 /* Always send skb if rtx queue is empty.
2263 * No need to wait for TX completion to call us back,
2264 * after softirq/tasklet schedule.
2265 * This helps when TX completions are delayed too much.
2266 */
2267 if (tcp_rtx_queue_empty(sk))
2268 return false;
2269
2270 set_bit(TSQ_THROTTLED, &sk->sk_tsq_flags);
2271 /* It is possible TX completion already happened
2272 * before we set TSQ_THROTTLED, so we must
2273 * test again the condition.
2274 */
2275 smp_mb__after_atomic();
2276 if (refcount_read(&sk->sk_wmem_alloc) > limit)
2277 return true;
2278 }
2279 return false;
2280 }
2281
2282 static void tcp_chrono_set(struct tcp_sock *tp, const enum tcp_chrono new)
2283 {
2284 const u32 now = tcp_jiffies32;
2285 enum tcp_chrono old = tp->chrono_type;
2286
2287 if (old > TCP_CHRONO_UNSPEC)
2288 tp->chrono_stat[old - 1] += now - tp->chrono_start;
2289 tp->chrono_start = now;
2290 tp->chrono_type = new;
2291 }
2292
2293 void tcp_chrono_start(struct sock *sk, const enum tcp_chrono type)
2294 {
2295 struct tcp_sock *tp = tcp_sk(sk);
2296
2297 /* If there are multiple conditions worthy of tracking in a
2298 * chronograph then the highest priority enum takes precedence
2299 * over the other conditions. So that if something "more interesting"
2300 * starts happening, stop the previous chrono and start a new one.
2301 */
2302 if (type > tp->chrono_type)
2303 tcp_chrono_set(tp, type);
2304 }
2305
2306 void tcp_chrono_stop(struct sock *sk, const enum tcp_chrono type)
2307 {
2308 struct tcp_sock *tp = tcp_sk(sk);
2309
2310
2311 /* There are multiple conditions worthy of tracking in a
2312 * chronograph, so that the highest priority enum takes
2313 * precedence over the other conditions (see tcp_chrono_start).
2314 * If a condition stops, we only stop chrono tracking if
2315 * it's the "most interesting" or current chrono we are
2316 * tracking and starts busy chrono if we have pending data.
2317 */
2318 if (tcp_rtx_and_write_queues_empty(sk))
2319 tcp_chrono_set(tp, TCP_CHRONO_UNSPEC);
2320 else if (type == tp->chrono_type)
2321 tcp_chrono_set(tp, TCP_CHRONO_BUSY);
2322 }
2323
2324 /* This routine writes packets to the network. It advances the
2325 * send_head. This happens as incoming acks open up the remote
2326 * window for us.
2327 *
2328 * LARGESEND note: !tcp_urg_mode is overkill, only frames between
2329 * snd_up-64k-mss .. snd_up cannot be large. However, taking into
2330 * account rare use of URG, this is not a big flaw.
2331 *
2332 * Send at most one packet when push_one > 0. Temporarily ignore
2333 * cwnd limit to force at most one packet out when push_one == 2.
2334
2335 * Returns true, if no segments are in flight and we have queued segments,
2336 * but cannot send anything now because of SWS or another problem.
2337 */
2338 static bool tcp_write_xmit(struct sock *sk, unsigned int mss_now, int nonagle,
2339 int push_one, gfp_t gfp)
2340 {
2341 struct tcp_sock *tp = tcp_sk(sk);
2342 struct sk_buff *skb;
2343 unsigned int tso_segs, sent_pkts;
2344 int cwnd_quota;
2345 int result;
2346 bool is_cwnd_limited = false, is_rwnd_limited = false;
2347 u32 max_segs;
2348
2349 sent_pkts = 0;
2350
2351 tcp_mstamp_refresh(tp);
2352 if (!push_one) {
2353 /* Do MTU probing. */
2354 result = tcp_mtu_probe(sk);
2355 if (!result) {
2356 return false;
2357 } else if (result > 0) {
2358 sent_pkts = 1;
2359 }
2360 }
2361
2362 max_segs = tcp_tso_segs(sk, mss_now);
2363 while ((skb = tcp_send_head(sk))) {
2364 unsigned int limit;
2365
2366 if (tcp_pacing_check(sk))
2367 break;
2368
2369 tso_segs = tcp_init_tso_segs(skb, mss_now);
2370 BUG_ON(!tso_segs);
2371
2372 if (unlikely(tp->repair) && tp->repair_queue == TCP_SEND_QUEUE) {
2373 /* "skb_mstamp" is used as a start point for the retransmit timer */
2374 tcp_update_skb_after_send(tp, skb);
2375 goto repair; /* Skip network transmission */
2376 }
2377
2378 cwnd_quota = tcp_cwnd_test(tp, skb);
2379 if (!cwnd_quota) {
2380 if (push_one == 2)
2381 /* Force out a loss probe pkt. */
2382 cwnd_quota = 1;
2383 else
2384 break;
2385 }
2386
2387 if (unlikely(!tcp_snd_wnd_test(tp, skb, mss_now))) {
2388 is_rwnd_limited = true;
2389 break;
2390 }
2391
2392 if (tso_segs == 1) {
2393 if (unlikely(!tcp_nagle_test(tp, skb, mss_now,
2394 (tcp_skb_is_last(sk, skb) ?
2395 nonagle : TCP_NAGLE_PUSH))))
2396 break;
2397 } else {
2398 if (!push_one &&
2399 tcp_tso_should_defer(sk, skb, &is_cwnd_limited,
2400 &is_rwnd_limited, max_segs))
2401 break;
2402 }
2403
2404 limit = mss_now;
2405 if (tso_segs > 1 && !tcp_urg_mode(tp))
2406 limit = tcp_mss_split_point(sk, skb, mss_now,
2407 min_t(unsigned int,
2408 cwnd_quota,
2409 max_segs),
2410 nonagle);
2411
2412 if (skb->len > limit &&
2413 unlikely(tso_fragment(sk, TCP_FRAG_IN_WRITE_QUEUE,
2414 skb, limit, mss_now, gfp)))
2415 break;
2416
2417 if (test_bit(TCP_TSQ_DEFERRED, &sk->sk_tsq_flags))
2418 clear_bit(TCP_TSQ_DEFERRED, &sk->sk_tsq_flags);
2419 if (tcp_small_queue_check(sk, skb, 0))
2420 break;
2421
2422 /* Argh, we hit an empty skb(), presumably a thread
2423 * is sleeping in sendmsg()/sk_stream_wait_memory().
2424 * We do not want to send a pure-ack packet and have
2425 * a strange looking rtx queue with empty packet(s).
2426 */
2427 if (TCP_SKB_CB(skb)->end_seq == TCP_SKB_CB(skb)->seq)
2428 break;
2429
2430 if (unlikely(tcp_transmit_skb(sk, skb, 1, gfp)))
2431 break;
2432
2433 repair:
2434 /* Advance the send_head. This one is sent out.
2435 * This call will increment packets_out.
2436 */
2437 tcp_event_new_data_sent(sk, skb);
2438
2439 tcp_minshall_update(tp, mss_now, skb);
2440 sent_pkts += tcp_skb_pcount(skb);
2441
2442 if (push_one)
2443 break;
2444 }
2445
2446 if (is_rwnd_limited)
2447 tcp_chrono_start(sk, TCP_CHRONO_RWND_LIMITED);
2448 else
2449 tcp_chrono_stop(sk, TCP_CHRONO_RWND_LIMITED);
2450
2451 if (likely(sent_pkts)) {
2452 if (tcp_in_cwnd_reduction(sk))
2453 tp->prr_out += sent_pkts;
2454
2455 /* Send one loss probe per tail loss episode. */
2456 if (push_one != 2)
2457 tcp_schedule_loss_probe(sk, false);
2458 is_cwnd_limited |= (tcp_packets_in_flight(tp) >= tp->snd_cwnd);
2459 tcp_cwnd_validate(sk, is_cwnd_limited);
2460 return false;
2461 }
2462 return !tp->packets_out && !tcp_write_queue_empty(sk);
2463 }
2464
2465 bool tcp_schedule_loss_probe(struct sock *sk, bool advancing_rto)
2466 {
2467 struct inet_connection_sock *icsk = inet_csk(sk);
2468 struct tcp_sock *tp = tcp_sk(sk);
2469 u32 timeout, rto_delta_us;
2470 int early_retrans;
2471
2472 /* Don't do any loss probe on a Fast Open connection before 3WHS
2473 * finishes.
2474 */
2475 if (tp->fastopen_rsk)
2476 return false;
2477
2478 early_retrans = sock_net(sk)->ipv4.sysctl_tcp_early_retrans;
2479 /* Schedule a loss probe in 2*RTT for SACK capable connections
2480 * not in loss recovery, that are either limited by cwnd or application.
2481 */
2482 if ((early_retrans != 3 && early_retrans != 4) ||
2483 !tp->packets_out || !tcp_is_sack(tp) ||
2484 (icsk->icsk_ca_state != TCP_CA_Open &&
2485 icsk->icsk_ca_state != TCP_CA_CWR))
2486 return false;
2487
2488 /* Probe timeout is 2*rtt. Add minimum RTO to account
2489 * for delayed ack when there's one outstanding packet. If no RTT
2490 * sample is available then probe after TCP_TIMEOUT_INIT.
2491 */
2492 if (tp->srtt_us) {
2493 timeout = usecs_to_jiffies(tp->srtt_us >> 2);
2494 if (tp->packets_out == 1)
2495 timeout += TCP_RTO_MIN;
2496 else
2497 timeout += TCP_TIMEOUT_MIN;
2498 } else {
2499 timeout = TCP_TIMEOUT_INIT;
2500 }
2501
2502 /* If the RTO formula yields an earlier time, then use that time. */
2503 rto_delta_us = advancing_rto ?
2504 jiffies_to_usecs(inet_csk(sk)->icsk_rto) :
2505 tcp_rto_delta_us(sk); /* How far in future is RTO? */
2506 if (rto_delta_us > 0)
2507 timeout = min_t(u32, timeout, usecs_to_jiffies(rto_delta_us));
2508
2509 inet_csk_reset_xmit_timer(sk, ICSK_TIME_LOSS_PROBE, timeout,
2510 TCP_RTO_MAX);
2511 return true;
2512 }
2513
2514 /* Thanks to skb fast clones, we can detect if a prior transmit of
2515 * a packet is still in a qdisc or driver queue.
2516 * In this case, there is very little point doing a retransmit !
2517 */
2518 static bool skb_still_in_host_queue(const struct sock *sk,
2519 const struct sk_buff *skb)
2520 {
2521 if (unlikely(skb_fclone_busy(sk, skb))) {
2522 NET_INC_STATS(sock_net(sk),
2523 LINUX_MIB_TCPSPURIOUS_RTX_HOSTQUEUES);
2524 return true;
2525 }
2526 return false;
2527 }
2528
2529 /* When probe timeout (PTO) fires, try send a new segment if possible, else
2530 * retransmit the last segment.
2531 */
2532 void tcp_send_loss_probe(struct sock *sk)
2533 {
2534 struct tcp_sock *tp = tcp_sk(sk);
2535 struct sk_buff *skb;
2536 int pcount;
2537 int mss = tcp_current_mss(sk);
2538
2539 skb = tcp_send_head(sk);
2540 if (skb && tcp_snd_wnd_test(tp, skb, mss)) {
2541 pcount = tp->packets_out;
2542 tcp_write_xmit(sk, mss, TCP_NAGLE_OFF, 2, GFP_ATOMIC);
2543 if (tp->packets_out > pcount)
2544 goto probe_sent;
2545 goto rearm_timer;
2546 }
2547 skb = skb_rb_last(&sk->tcp_rtx_queue);
2548
2549 if (unlikely(!skb)) {
2550 WARN_ONCE(tp->packets_out,
2551 "invalid inflight: %u state %u cwnd %u mss %d\n",
2552 tp->packets_out, sk->sk_state, tp->snd_cwnd, mss);
2553 inet_csk(sk)->icsk_pending = 0;
2554 return;
2555 }
2556
2557 /* At most one outstanding TLP retransmission. */
2558 if (tp->tlp_high_seq)
2559 goto rearm_timer;
2560
2561 if (skb_still_in_host_queue(sk, skb))
2562 goto rearm_timer;
2563
2564 pcount = tcp_skb_pcount(skb);
2565 if (WARN_ON(!pcount))
2566 goto rearm_timer;
2567
2568 if ((pcount > 1) && (skb->len > (pcount - 1) * mss)) {
2569 if (unlikely(tcp_fragment(sk, TCP_FRAG_IN_RTX_QUEUE, skb,
2570 (pcount - 1) * mss, mss,
2571 GFP_ATOMIC)))
2572 goto rearm_timer;
2573 skb = skb_rb_next(skb);
2574 }
2575
2576 if (WARN_ON(!skb || !tcp_skb_pcount(skb)))
2577 goto rearm_timer;
2578
2579 if (__tcp_retransmit_skb(sk, skb, 1))
2580 goto rearm_timer;
2581
2582 /* Record snd_nxt for loss detection. */
2583 tp->tlp_high_seq = tp->snd_nxt;
2584
2585 probe_sent:
2586 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPLOSSPROBES);
2587 /* Reset s.t. tcp_rearm_rto will restart timer from now */
2588 inet_csk(sk)->icsk_pending = 0;
2589 rearm_timer:
2590 tcp_rearm_rto(sk);
2591 }
2592
2593 /* Push out any pending frames which were held back due to
2594 * TCP_CORK or attempt at coalescing tiny packets.
2595 * The socket must be locked by the caller.
2596 */
2597 void __tcp_push_pending_frames(struct sock *sk, unsigned int cur_mss,
2598 int nonagle)
2599 {
2600 /* If we are closed, the bytes will have to remain here.
2601 * In time closedown will finish, we empty the write queue and
2602 * all will be happy.
2603 */
2604 if (unlikely(sk->sk_state == TCP_CLOSE))
2605 return;
2606
2607 if (tcp_write_xmit(sk, cur_mss, nonagle, 0,
2608 sk_gfp_mask(sk, GFP_ATOMIC)))
2609 tcp_check_probe_timer(sk);
2610 }
2611
2612 /* Send _single_ skb sitting at the send head. This function requires
2613 * true push pending frames to setup probe timer etc.
2614 */
2615 void tcp_push_one(struct sock *sk, unsigned int mss_now)
2616 {
2617 struct sk_buff *skb = tcp_send_head(sk);
2618
2619 BUG_ON(!skb || skb->len < mss_now);
2620
2621 tcp_write_xmit(sk, mss_now, TCP_NAGLE_PUSH, 1, sk->sk_allocation);
2622 }
2623
2624 /* This function returns the amount that we can raise the
2625 * usable window based on the following constraints
2626 *
2627 * 1. The window can never be shrunk once it is offered (RFC 793)
2628 * 2. We limit memory per socket
2629 *
2630 * RFC 1122:
2631 * "the suggested [SWS] avoidance algorithm for the receiver is to keep
2632 * RECV.NEXT + RCV.WIN fixed until:
2633 * RCV.BUFF - RCV.USER - RCV.WINDOW >= min(1/2 RCV.BUFF, MSS)"
2634 *
2635 * i.e. don't raise the right edge of the window until you can raise
2636 * it at least MSS bytes.
2637 *
2638 * Unfortunately, the recommended algorithm breaks header prediction,
2639 * since header prediction assumes th->window stays fixed.
2640 *
2641 * Strictly speaking, keeping th->window fixed violates the receiver
2642 * side SWS prevention criteria. The problem is that under this rule
2643 * a stream of single byte packets will cause the right side of the
2644 * window to always advance by a single byte.
2645 *
2646 * Of course, if the sender implements sender side SWS prevention
2647 * then this will not be a problem.
2648 *
2649 * BSD seems to make the following compromise:
2650 *
2651 * If the free space is less than the 1/4 of the maximum
2652 * space available and the free space is less than 1/2 mss,
2653 * then set the window to 0.
2654 * [ Actually, bsd uses MSS and 1/4 of maximal _window_ ]
2655 * Otherwise, just prevent the window from shrinking
2656 * and from being larger than the largest representable value.
2657 *
2658 * This prevents incremental opening of the window in the regime
2659 * where TCP is limited by the speed of the reader side taking
2660 * data out of the TCP receive queue. It does nothing about
2661 * those cases where the window is constrained on the sender side
2662 * because the pipeline is full.
2663 *
2664 * BSD also seems to "accidentally" limit itself to windows that are a
2665 * multiple of MSS, at least until the free space gets quite small.
2666 * This would appear to be a side effect of the mbuf implementation.
2667 * Combining these two algorithms results in the observed behavior
2668 * of having a fixed window size at almost all times.
2669 *
2670 * Below we obtain similar behavior by forcing the offered window to
2671 * a multiple of the mss when it is feasible to do so.
2672 *
2673 * Note, we don't "adjust" for TIMESTAMP or SACK option bytes.
2674 * Regular options like TIMESTAMP are taken into account.
2675 */
2676 u32 __tcp_select_window(struct sock *sk)
2677 {
2678 struct inet_connection_sock *icsk = inet_csk(sk);
2679 struct tcp_sock *tp = tcp_sk(sk);
2680 /* MSS for the peer's data. Previous versions used mss_clamp
2681 * here. I don't know if the value based on our guesses
2682 * of peer's MSS is better for the performance. It's more correct
2683 * but may be worse for the performance because of rcv_mss
2684 * fluctuations. --SAW 1998/11/1
2685 */
2686 int mss = icsk->icsk_ack.rcv_mss;
2687 int free_space = tcp_space(sk);
2688 int allowed_space = tcp_full_space(sk);
2689 int full_space = min_t(int, tp->window_clamp, allowed_space);
2690 int window;
2691
2692 if (unlikely(mss > full_space)) {
2693 mss = full_space;
2694 if (mss <= 0)
2695 return 0;
2696 }
2697 if (free_space < (full_space >> 1)) {
2698 icsk->icsk_ack.quick = 0;
2699
2700 if (tcp_under_memory_pressure(sk))
2701 tp->rcv_ssthresh = min(tp->rcv_ssthresh,
2702 4U * tp->advmss);
2703
2704 /* free_space might become our new window, make sure we don't
2705 * increase it due to wscale.
2706 */
2707 free_space = round_down(free_space, 1 << tp->rx_opt.rcv_wscale);
2708
2709 /* if free space is less than mss estimate, or is below 1/16th
2710 * of the maximum allowed, try to move to zero-window, else
2711 * tcp_clamp_window() will grow rcv buf up to tcp_rmem[2], and
2712 * new incoming data is dropped due to memory limits.
2713 * With large window, mss test triggers way too late in order
2714 * to announce zero window in time before rmem limit kicks in.
2715 */
2716 if (free_space < (allowed_space >> 4) || free_space < mss)
2717 return 0;
2718 }
2719
2720 if (free_space > tp->rcv_ssthresh)
2721 free_space = tp->rcv_ssthresh;
2722
2723 /* Don't do rounding if we are using window scaling, since the
2724 * scaled window will not line up with the MSS boundary anyway.
2725 */
2726 if (tp->rx_opt.rcv_wscale) {
2727 window = free_space;
2728
2729 /* Advertise enough space so that it won't get scaled away.
2730 * Import case: prevent zero window announcement if
2731 * 1<<rcv_wscale > mss.
2732 */
2733 window = ALIGN(window, (1 << tp->rx_opt.rcv_wscale));
2734 } else {
2735 window = tp->rcv_wnd;
2736 /* Get the largest window that is a nice multiple of mss.
2737 * Window clamp already applied above.
2738 * If our current window offering is within 1 mss of the
2739 * free space we just keep it. This prevents the divide
2740 * and multiply from happening most of the time.
2741 * We also don't do any window rounding when the free space
2742 * is too small.
2743 */
2744 if (window <= free_space - mss || window > free_space)
2745 window = rounddown(free_space, mss);
2746 else if (mss == full_space &&
2747 free_space > window + (full_space >> 1))
2748 window = free_space;
2749 }
2750
2751 return window;
2752 }
2753
2754 void tcp_skb_collapse_tstamp(struct sk_buff *skb,
2755 const struct sk_buff *next_skb)
2756 {
2757 if (unlikely(tcp_has_tx_tstamp(next_skb))) {
2758 const struct skb_shared_info *next_shinfo =
2759 skb_shinfo(next_skb);
2760 struct skb_shared_info *shinfo = skb_shinfo(skb);
2761
2762 shinfo->tx_flags |= next_shinfo->tx_flags & SKBTX_ANY_TSTAMP;
2763 shinfo->tskey = next_shinfo->tskey;
2764 TCP_SKB_CB(skb)->txstamp_ack |=
2765 TCP_SKB_CB(next_skb)->txstamp_ack;
2766 }
2767 }
2768
2769 /* Collapses two adjacent SKB's during retransmission. */
2770 static bool tcp_collapse_retrans(struct sock *sk, struct sk_buff *skb)
2771 {
2772 struct tcp_sock *tp = tcp_sk(sk);
2773 struct sk_buff *next_skb = skb_rb_next(skb);
2774 int skb_size, next_skb_size;
2775
2776 skb_size = skb->len;
2777 next_skb_size = next_skb->len;
2778
2779 BUG_ON(tcp_skb_pcount(skb) != 1 || tcp_skb_pcount(next_skb) != 1);
2780
2781 if (next_skb_size) {
2782 if (next_skb_size <= skb_availroom(skb))
2783 skb_copy_bits(next_skb, 0, skb_put(skb, next_skb_size),
2784 next_skb_size);
2785 else if (!tcp_skb_shift(skb, next_skb, 1, next_skb_size))
2786 return false;
2787 }
2788 tcp_highest_sack_replace(sk, next_skb, skb);
2789
2790 if (next_skb->ip_summed == CHECKSUM_PARTIAL)
2791 skb->ip_summed = CHECKSUM_PARTIAL;
2792
2793 if (skb->ip_summed != CHECKSUM_PARTIAL)
2794 skb->csum = csum_block_add(skb->csum, next_skb->csum, skb_size);
2795
2796 /* Update sequence range on original skb. */
2797 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(next_skb)->end_seq;
2798
2799 /* Merge over control information. This moves PSH/FIN etc. over */
2800 TCP_SKB_CB(skb)->tcp_flags |= TCP_SKB_CB(next_skb)->tcp_flags;
2801
2802 /* All done, get rid of second SKB and account for it so
2803 * packet counting does not break.
2804 */
2805 TCP_SKB_CB(skb)->sacked |= TCP_SKB_CB(next_skb)->sacked & TCPCB_EVER_RETRANS;
2806 TCP_SKB_CB(skb)->eor = TCP_SKB_CB(next_skb)->eor;
2807
2808 /* changed transmit queue under us so clear hints */
2809 tcp_clear_retrans_hints_partial(tp);
2810 if (next_skb == tp->retransmit_skb_hint)
2811 tp->retransmit_skb_hint = skb;
2812
2813 tcp_adjust_pcount(sk, next_skb, tcp_skb_pcount(next_skb));
2814
2815 tcp_skb_collapse_tstamp(skb, next_skb);
2816
2817 tcp_rtx_queue_unlink_and_free(next_skb, sk);
2818 return true;
2819 }
2820
2821 /* Check if coalescing SKBs is legal. */
2822 static bool tcp_can_collapse(const struct sock *sk, const struct sk_buff *skb)
2823 {
2824 if (tcp_skb_pcount(skb) > 1)
2825 return false;
2826 if (skb_cloned(skb))
2827 return false;
2828 /* Some heuristics for collapsing over SACK'd could be invented */
2829 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
2830 return false;
2831
2832 return true;
2833 }
2834
2835 /* Collapse packets in the retransmit queue to make to create
2836 * less packets on the wire. This is only done on retransmission.
2837 */
2838 static void tcp_retrans_try_collapse(struct sock *sk, struct sk_buff *to,
2839 int space)
2840 {
2841 struct tcp_sock *tp = tcp_sk(sk);
2842 struct sk_buff *skb = to, *tmp;
2843 bool first = true;
2844
2845 if (!sock_net(sk)->ipv4.sysctl_tcp_retrans_collapse)
2846 return;
2847 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)
2848 return;
2849
2850 skb_rbtree_walk_from_safe(skb, tmp) {
2851 if (!tcp_can_collapse(sk, skb))
2852 break;
2853
2854 if (!tcp_skb_can_collapse_to(to))
2855 break;
2856
2857 space -= skb->len;
2858
2859 if (first) {
2860 first = false;
2861 continue;
2862 }
2863
2864 if (space < 0)
2865 break;
2866
2867 if (after(TCP_SKB_CB(skb)->end_seq, tcp_wnd_end(tp)))
2868 break;
2869
2870 if (!tcp_collapse_retrans(sk, to))
2871 break;
2872 }
2873 }
2874
2875 /* This retransmits one SKB. Policy decisions and retransmit queue
2876 * state updates are done by the caller. Returns non-zero if an
2877 * error occurred which prevented the send.
2878 */
2879 int __tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs)
2880 {
2881 struct inet_connection_sock *icsk = inet_csk(sk);
2882 struct tcp_sock *tp = tcp_sk(sk);
2883 unsigned int cur_mss;
2884 int diff, len, err;
2885
2886
2887 /* Inconclusive MTU probe */
2888 if (icsk->icsk_mtup.probe_size)
2889 icsk->icsk_mtup.probe_size = 0;
2890
2891 /* Do not sent more than we queued. 1/4 is reserved for possible
2892 * copying overhead: fragmentation, tunneling, mangling etc.
2893 */
2894 if (refcount_read(&sk->sk_wmem_alloc) >
2895 min_t(u32, sk->sk_wmem_queued + (sk->sk_wmem_queued >> 2),
2896 sk->sk_sndbuf))
2897 return -EAGAIN;
2898
2899 if (skb_still_in_host_queue(sk, skb))
2900 return -EBUSY;
2901
2902 if (before(TCP_SKB_CB(skb)->seq, tp->snd_una)) {
2903 if (unlikely(before(TCP_SKB_CB(skb)->end_seq, tp->snd_una))) {
2904 WARN_ON_ONCE(1);
2905 return -EINVAL;
2906 }
2907 if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq))
2908 return -ENOMEM;
2909 }
2910
2911 if (inet_csk(sk)->icsk_af_ops->rebuild_header(sk))
2912 return -EHOSTUNREACH; /* Routing failure or similar. */
2913
2914 cur_mss = tcp_current_mss(sk);
2915
2916 /* If receiver has shrunk his window, and skb is out of
2917 * new window, do not retransmit it. The exception is the
2918 * case, when window is shrunk to zero. In this case
2919 * our retransmit serves as a zero window probe.
2920 */
2921 if (!before(TCP_SKB_CB(skb)->seq, tcp_wnd_end(tp)) &&
2922 TCP_SKB_CB(skb)->seq != tp->snd_una)
2923 return -EAGAIN;
2924
2925 len = cur_mss * segs;
2926 if (skb->len > len) {
2927 if (tcp_fragment(sk, TCP_FRAG_IN_RTX_QUEUE, skb, len,
2928 cur_mss, GFP_ATOMIC))
2929 return -ENOMEM; /* We'll try again later. */
2930 } else {
2931 if (skb_unclone(skb, GFP_ATOMIC))
2932 return -ENOMEM;
2933
2934 diff = tcp_skb_pcount(skb);
2935 tcp_set_skb_tso_segs(skb, cur_mss);
2936 diff -= tcp_skb_pcount(skb);
2937 if (diff)
2938 tcp_adjust_pcount(sk, skb, diff);
2939 if (skb->len < cur_mss)
2940 tcp_retrans_try_collapse(sk, skb, cur_mss);
2941 }
2942
2943 /* RFC3168, section 6.1.1.1. ECN fallback */
2944 if ((TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN_ECN) == TCPHDR_SYN_ECN)
2945 tcp_ecn_clear_syn(sk, skb);
2946
2947 /* Update global and local TCP statistics. */
2948 segs = tcp_skb_pcount(skb);
2949 TCP_ADD_STATS(sock_net(sk), TCP_MIB_RETRANSSEGS, segs);
2950 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)
2951 __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSYNRETRANS);
2952 tp->total_retrans += segs;
2953
2954 /* make sure skb->data is aligned on arches that require it
2955 * and check if ack-trimming & collapsing extended the headroom
2956 * beyond what csum_start can cover.
2957 */
2958 if (unlikely((NET_IP_ALIGN && ((unsigned long)skb->data & 3)) ||
2959 skb_headroom(skb) >= 0xFFFF)) {
2960 struct sk_buff *nskb;
2961
2962 tcp_skb_tsorted_save(skb) {
2963 nskb = __pskb_copy(skb, MAX_TCP_HEADER, GFP_ATOMIC);
2964 err = nskb ? tcp_transmit_skb(sk, nskb, 0, GFP_ATOMIC) :
2965 -ENOBUFS;
2966 } tcp_skb_tsorted_restore(skb);
2967
2968 if (!err) {
2969 tcp_update_skb_after_send(tp, skb);
2970 tcp_rate_skb_sent(sk, skb);
2971 }
2972 } else {
2973 err = tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC);
2974 }
2975
2976 if (likely(!err)) {
2977 TCP_SKB_CB(skb)->sacked |= TCPCB_EVER_RETRANS;
2978 trace_tcp_retransmit_skb(sk, skb);
2979 } else if (err != -EBUSY) {
2980 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPRETRANSFAIL, segs);
2981 }
2982 return err;
2983 }
2984
2985 int tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs)
2986 {
2987 struct tcp_sock *tp = tcp_sk(sk);
2988 int err = __tcp_retransmit_skb(sk, skb, segs);
2989
2990 if (err == 0) {
2991 #if FASTRETRANS_DEBUG > 0
2992 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
2993 net_dbg_ratelimited("retrans_out leaked\n");
2994 }
2995 #endif
2996 TCP_SKB_CB(skb)->sacked |= TCPCB_RETRANS;
2997 tp->retrans_out += tcp_skb_pcount(skb);
2998
2999 /* Save stamp of the first retransmit. */
3000 if (!tp->retrans_stamp)
3001 tp->retrans_stamp = tcp_skb_timestamp(skb);
3002
3003 }
3004
3005 if (tp->undo_retrans < 0)
3006 tp->undo_retrans = 0;
3007 tp->undo_retrans += tcp_skb_pcount(skb);
3008 return err;
3009 }
3010
3011 /* This gets called after a retransmit timeout, and the initially
3012 * retransmitted data is acknowledged. It tries to continue
3013 * resending the rest of the retransmit queue, until either
3014 * we've sent it all or the congestion window limit is reached.
3015 */
3016 void tcp_xmit_retransmit_queue(struct sock *sk)
3017 {
3018 const struct inet_connection_sock *icsk = inet_csk(sk);
3019 struct sk_buff *skb, *rtx_head, *hole = NULL;
3020 struct tcp_sock *tp = tcp_sk(sk);
3021 u32 max_segs;
3022 int mib_idx;
3023
3024 if (!tp->packets_out)
3025 return;
3026
3027 rtx_head = tcp_rtx_queue_head(sk);
3028 skb = tp->retransmit_skb_hint ?: rtx_head;
3029 max_segs = tcp_tso_segs(sk, tcp_current_mss(sk));
3030 skb_rbtree_walk_from(skb) {
3031 __u8 sacked;
3032 int segs;
3033
3034 if (tcp_pacing_check(sk))
3035 break;
3036
3037 /* we could do better than to assign each time */
3038 if (!hole)
3039 tp->retransmit_skb_hint = skb;
3040
3041 segs = tp->snd_cwnd - tcp_packets_in_flight(tp);
3042 if (segs <= 0)
3043 return;
3044 sacked = TCP_SKB_CB(skb)->sacked;
3045 /* In case tcp_shift_skb_data() have aggregated large skbs,
3046 * we need to make sure not sending too bigs TSO packets
3047 */
3048 segs = min_t(int, segs, max_segs);
3049
3050 if (tp->retrans_out >= tp->lost_out) {
3051 break;
3052 } else if (!(sacked & TCPCB_LOST)) {
3053 if (!hole && !(sacked & (TCPCB_SACKED_RETRANS|TCPCB_SACKED_ACKED)))
3054 hole = skb;
3055 continue;
3056
3057 } else {
3058 if (icsk->icsk_ca_state != TCP_CA_Loss)
3059 mib_idx = LINUX_MIB_TCPFASTRETRANS;
3060 else
3061 mib_idx = LINUX_MIB_TCPSLOWSTARTRETRANS;
3062 }
3063
3064 if (sacked & (TCPCB_SACKED_ACKED|TCPCB_SACKED_RETRANS))
3065 continue;
3066
3067 if (tcp_small_queue_check(sk, skb, 1))
3068 return;
3069
3070 if (tcp_retransmit_skb(sk, skb, segs))
3071 return;
3072
3073 NET_ADD_STATS(sock_net(sk), mib_idx, tcp_skb_pcount(skb));
3074
3075 if (tcp_in_cwnd_reduction(sk))
3076 tp->prr_out += tcp_skb_pcount(skb);
3077
3078 if (skb == rtx_head &&
3079 icsk->icsk_pending != ICSK_TIME_REO_TIMEOUT)
3080 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
3081 inet_csk(sk)->icsk_rto,
3082 TCP_RTO_MAX);
3083 }
3084 }
3085
3086 /* We allow to exceed memory limits for FIN packets to expedite
3087 * connection tear down and (memory) recovery.
3088 * Otherwise tcp_send_fin() could be tempted to either delay FIN
3089 * or even be forced to close flow without any FIN.
3090 * In general, we want to allow one skb per socket to avoid hangs
3091 * with edge trigger epoll()
3092 */
3093 void sk_forced_mem_schedule(struct sock *sk, int size)
3094 {
3095 int amt;
3096
3097 if (size <= sk->sk_forward_alloc)
3098 return;
3099 amt = sk_mem_pages(size);
3100 sk->sk_forward_alloc += amt * SK_MEM_QUANTUM;
3101 sk_memory_allocated_add(sk, amt);
3102
3103 if (mem_cgroup_sockets_enabled && sk->sk_memcg)
3104 mem_cgroup_charge_skmem(sk->sk_memcg, amt);
3105 }
3106
3107 /* Send a FIN. The caller locks the socket for us.
3108 * We should try to send a FIN packet really hard, but eventually give up.
3109 */
3110 void tcp_send_fin(struct sock *sk)
3111 {
3112 struct sk_buff *skb, *tskb = tcp_write_queue_tail(sk);
3113 struct tcp_sock *tp = tcp_sk(sk);
3114
3115 /* Optimization, tack on the FIN if we have one skb in write queue and
3116 * this skb was not yet sent, or we are under memory pressure.
3117 * Note: in the latter case, FIN packet will be sent after a timeout,
3118 * as TCP stack thinks it has already been transmitted.
3119 */
3120 if (!tskb && tcp_under_memory_pressure(sk))
3121 tskb = skb_rb_last(&sk->tcp_rtx_queue);
3122
3123 if (tskb) {
3124 coalesce:
3125 TCP_SKB_CB(tskb)->tcp_flags |= TCPHDR_FIN;
3126 TCP_SKB_CB(tskb)->end_seq++;
3127 tp->write_seq++;
3128 if (tcp_write_queue_empty(sk)) {
3129 /* This means tskb was already sent.
3130 * Pretend we included the FIN on previous transmit.
3131 * We need to set tp->snd_nxt to the value it would have
3132 * if FIN had been sent. This is because retransmit path
3133 * does not change tp->snd_nxt.
3134 */
3135 tp->snd_nxt++;
3136 return;
3137 }
3138 } else {
3139 skb = alloc_skb_fclone(MAX_TCP_HEADER, sk->sk_allocation);
3140 if (unlikely(!skb)) {
3141 if (tskb)
3142 goto coalesce;
3143 return;
3144 }
3145 INIT_LIST_HEAD(&skb->tcp_tsorted_anchor);
3146 skb_reserve(skb, MAX_TCP_HEADER);
3147 sk_forced_mem_schedule(sk, skb->truesize);
3148 /* FIN eats a sequence byte, write_seq advanced by tcp_queue_skb(). */
3149 tcp_init_nondata_skb(skb, tp->write_seq,
3150 TCPHDR_ACK | TCPHDR_FIN);
3151 tcp_queue_skb(sk, skb);
3152 }
3153 __tcp_push_pending_frames(sk, tcp_current_mss(sk), TCP_NAGLE_OFF);
3154 }
3155
3156 /* We get here when a process closes a file descriptor (either due to
3157 * an explicit close() or as a byproduct of exit()'ing) and there
3158 * was unread data in the receive queue. This behavior is recommended
3159 * by RFC 2525, section 2.17. -DaveM
3160 */
3161 void tcp_send_active_reset(struct sock *sk, gfp_t priority)
3162 {
3163 struct sk_buff *skb;
3164
3165 TCP_INC_STATS(sock_net(sk), TCP_MIB_OUTRSTS);
3166
3167 /* NOTE: No TCP options attached and we never retransmit this. */
3168 skb = alloc_skb(MAX_TCP_HEADER, priority);
3169 if (!skb) {
3170 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTFAILED);
3171 return;
3172 }
3173
3174 /* Reserve space for headers and prepare control bits. */
3175 skb_reserve(skb, MAX_TCP_HEADER);
3176 tcp_init_nondata_skb(skb, tcp_acceptable_seq(sk),
3177 TCPHDR_ACK | TCPHDR_RST);
3178 tcp_mstamp_refresh(tcp_sk(sk));
3179 /* Send it off. */
3180 if (tcp_transmit_skb(sk, skb, 0, priority))
3181 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTFAILED);
3182
3183 /* skb of trace_tcp_send_reset() keeps the skb that caused RST,
3184 * skb here is different to the troublesome skb, so use NULL
3185 */
3186 trace_tcp_send_reset(sk, NULL);
3187 }
3188
3189 /* Send a crossed SYN-ACK during socket establishment.
3190 * WARNING: This routine must only be called when we have already sent
3191 * a SYN packet that crossed the incoming SYN that caused this routine
3192 * to get called. If this assumption fails then the initial rcv_wnd
3193 * and rcv_wscale values will not be correct.
3194 */
3195 int tcp_send_synack(struct sock *sk)
3196 {
3197 struct sk_buff *skb;
3198
3199 skb = tcp_rtx_queue_head(sk);
3200 if (!skb || !(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) {
3201 pr_err("%s: wrong queue state\n", __func__);
3202 return -EFAULT;
3203 }
3204 if (!(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_ACK)) {
3205 if (skb_cloned(skb)) {
3206 struct sk_buff *nskb;
3207
3208 tcp_skb_tsorted_save(skb) {
3209 nskb = skb_copy(skb, GFP_ATOMIC);
3210 } tcp_skb_tsorted_restore(skb);
3211 if (!nskb)
3212 return -ENOMEM;
3213 INIT_LIST_HEAD(&nskb->tcp_tsorted_anchor);
3214 tcp_highest_sack_replace(sk, skb, nskb);
3215 tcp_rtx_queue_unlink_and_free(skb, sk);
3216 __skb_header_release(nskb);
3217 tcp_rbtree_insert(&sk->tcp_rtx_queue, nskb);
3218 sk->sk_wmem_queued += nskb->truesize;
3219 sk_mem_charge(sk, nskb->truesize);
3220 skb = nskb;
3221 }
3222
3223 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_ACK;
3224 tcp_ecn_send_synack(sk, skb);
3225 }
3226 return tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC);
3227 }
3228
3229 /**
3230 * tcp_make_synack - Prepare a SYN-ACK.
3231 * sk: listener socket
3232 * dst: dst entry attached to the SYNACK
3233 * req: request_sock pointer
3234 *
3235 * Allocate one skb and build a SYNACK packet.
3236 * @dst is consumed : Caller should not use it again.
3237 */
3238 struct sk_buff *tcp_make_synack(const struct sock *sk, struct dst_entry *dst,
3239 struct request_sock *req,
3240 struct tcp_fastopen_cookie *foc,
3241 enum tcp_synack_type synack_type)
3242 {
3243 struct inet_request_sock *ireq = inet_rsk(req);
3244 const struct tcp_sock *tp = tcp_sk(sk);
3245 struct tcp_md5sig_key *md5 = NULL;
3246 struct tcp_out_options opts;
3247 struct sk_buff *skb;
3248 int tcp_header_size;
3249 struct tcphdr *th;
3250 int mss;
3251
3252 skb = alloc_skb(MAX_TCP_HEADER, GFP_ATOMIC);
3253 if (unlikely(!skb)) {
3254 dst_release(dst);
3255 return NULL;
3256 }
3257 /* Reserve space for headers. */
3258 skb_reserve(skb, MAX_TCP_HEADER);
3259
3260 switch (synack_type) {
3261 case TCP_SYNACK_NORMAL:
3262 skb_set_owner_w(skb, req_to_sk(req));
3263 break;
3264 case TCP_SYNACK_COOKIE:
3265 /* Under synflood, we do not attach skb to a socket,
3266 * to avoid false sharing.
3267 */
3268 break;
3269 case TCP_SYNACK_FASTOPEN:
3270 /* sk is a const pointer, because we want to express multiple
3271 * cpu might call us concurrently.
3272 * sk->sk_wmem_alloc in an atomic, we can promote to rw.
3273 */
3274 skb_set_owner_w(skb, (struct sock *)sk);
3275 break;
3276 }
3277 skb_dst_set(skb, dst);
3278
3279 mss = tcp_mss_clamp(tp, dst_metric_advmss(dst));
3280
3281 memset(&opts, 0, sizeof(opts));
3282 #ifdef CONFIG_SYN_COOKIES
3283 if (unlikely(req->cookie_ts))
3284 skb->skb_mstamp = cookie_init_timestamp(req);
3285 else
3286 #endif
3287 skb->skb_mstamp = tcp_clock_us();
3288
3289 #ifdef CONFIG_TCP_MD5SIG
3290 rcu_read_lock();
3291 md5 = tcp_rsk(req)->af_specific->req_md5_lookup(sk, req_to_sk(req));
3292 #endif
3293 skb_set_hash(skb, tcp_rsk(req)->txhash, PKT_HASH_TYPE_L4);
3294 tcp_header_size = tcp_synack_options(sk, req, mss, skb, &opts, md5,
3295 foc) + sizeof(*th);
3296
3297 skb_push(skb, tcp_header_size);
3298 skb_reset_transport_header(skb);
3299
3300 th = (struct tcphdr *)skb->data;
3301 memset(th, 0, sizeof(struct tcphdr));
3302 th->syn = 1;
3303 th->ack = 1;
3304 tcp_ecn_make_synack(req, th);
3305 th->source = htons(ireq->ir_num);
3306 th->dest = ireq->ir_rmt_port;
3307 skb->mark = ireq->ir_mark;
3308 skb->ip_summed = CHECKSUM_PARTIAL;
3309 th->seq = htonl(tcp_rsk(req)->snt_isn);
3310 /* XXX data is queued and acked as is. No buffer/window check */
3311 th->ack_seq = htonl(tcp_rsk(req)->rcv_nxt);
3312
3313 /* RFC1323: The window in SYN & SYN/ACK segments is never scaled. */
3314 th->window = htons(min(req->rsk_rcv_wnd, 65535U));
3315 tcp_options_write((__be32 *)(th + 1), NULL, &opts);
3316 th->doff = (tcp_header_size >> 2);
3317 __TCP_INC_STATS(sock_net(sk), TCP_MIB_OUTSEGS);
3318
3319 #ifdef CONFIG_TCP_MD5SIG
3320 /* Okay, we have all we need - do the md5 hash if needed */
3321 if (md5)
3322 tcp_rsk(req)->af_specific->calc_md5_hash(opts.hash_location,
3323 md5, req_to_sk(req), skb);
3324 rcu_read_unlock();
3325 #endif
3326
3327 /* Do not fool tcpdump (if any), clean our debris */
3328 skb->tstamp = 0;
3329 return skb;
3330 }
3331 EXPORT_SYMBOL(tcp_make_synack);
3332
3333 static void tcp_ca_dst_init(struct sock *sk, const struct dst_entry *dst)
3334 {
3335 struct inet_connection_sock *icsk = inet_csk(sk);
3336 const struct tcp_congestion_ops *ca;
3337 u32 ca_key = dst_metric(dst, RTAX_CC_ALGO);
3338
3339 if (ca_key == TCP_CA_UNSPEC)
3340 return;
3341
3342 rcu_read_lock();
3343 ca = tcp_ca_find_key(ca_key);
3344 if (likely(ca && try_module_get(ca->owner))) {
3345 module_put(icsk->icsk_ca_ops->owner);
3346 icsk->icsk_ca_dst_locked = tcp_ca_dst_locked(dst);
3347 icsk->icsk_ca_ops = ca;
3348 }
3349 rcu_read_unlock();
3350 }
3351
3352 /* Do all connect socket setups that can be done AF independent. */
3353 static void tcp_connect_init(struct sock *sk)
3354 {
3355 const struct dst_entry *dst = __sk_dst_get(sk);
3356 struct tcp_sock *tp = tcp_sk(sk);
3357 __u8 rcv_wscale;
3358 u32 rcv_wnd;
3359
3360 /* We'll fix this up when we get a response from the other end.
3361 * See tcp_input.c:tcp_rcv_state_process case TCP_SYN_SENT.
3362 */
3363 tp->tcp_header_len = sizeof(struct tcphdr);
3364 if (sock_net(sk)->ipv4.sysctl_tcp_timestamps)
3365 tp->tcp_header_len += TCPOLEN_TSTAMP_ALIGNED;
3366
3367 #ifdef CONFIG_TCP_MD5SIG
3368 if (tp->af_specific->md5_lookup(sk, sk))
3369 tp->tcp_header_len += TCPOLEN_MD5SIG_ALIGNED;
3370 #endif
3371
3372 /* If user gave his TCP_MAXSEG, record it to clamp */
3373 if (tp->rx_opt.user_mss)
3374 tp->rx_opt.mss_clamp = tp->rx_opt.user_mss;
3375 tp->max_window = 0;
3376 tcp_mtup_init(sk);
3377 tcp_sync_mss(sk, dst_mtu(dst));
3378
3379 tcp_ca_dst_init(sk, dst);
3380
3381 if (!tp->window_clamp)
3382 tp->window_clamp = dst_metric(dst, RTAX_WINDOW);
3383 tp->advmss = tcp_mss_clamp(tp, dst_metric_advmss(dst));
3384
3385 tcp_initialize_rcv_mss(sk);
3386
3387 /* limit the window selection if the user enforce a smaller rx buffer */
3388 if (sk->sk_userlocks & SOCK_RCVBUF_LOCK &&
3389 (tp->window_clamp > tcp_full_space(sk) || tp->window_clamp == 0))
3390 tp->window_clamp = tcp_full_space(sk);
3391
3392 rcv_wnd = tcp_rwnd_init_bpf(sk);
3393 if (rcv_wnd == 0)
3394 rcv_wnd = dst_metric(dst, RTAX_INITRWND);
3395
3396 tcp_select_initial_window(sk, tcp_full_space(sk),
3397 tp->advmss - (tp->rx_opt.ts_recent_stamp ? tp->tcp_header_len - sizeof(struct tcphdr) : 0),
3398 &tp->rcv_wnd,
3399 &tp->window_clamp,
3400 sock_net(sk)->ipv4.sysctl_tcp_window_scaling,
3401 &rcv_wscale,
3402 rcv_wnd);
3403
3404 tp->rx_opt.rcv_wscale = rcv_wscale;
3405 tp->rcv_ssthresh = tp->rcv_wnd;
3406
3407 sk->sk_err = 0;
3408 sock_reset_flag(sk, SOCK_DONE);
3409 tp->snd_wnd = 0;
3410 tcp_init_wl(tp, 0);
3411 tcp_write_queue_purge(sk);
3412 tp->snd_una = tp->write_seq;
3413 tp->snd_sml = tp->write_seq;
3414 tp->snd_up = tp->write_seq;
3415 tp->snd_nxt = tp->write_seq;
3416
3417 if (likely(!tp->repair))
3418 tp->rcv_nxt = 0;
3419 else
3420 tp->rcv_tstamp = tcp_jiffies32;
3421 tp->rcv_wup = tp->rcv_nxt;
3422 tp->copied_seq = tp->rcv_nxt;
3423
3424 inet_csk(sk)->icsk_rto = tcp_timeout_init(sk);
3425 inet_csk(sk)->icsk_retransmits = 0;
3426 tcp_clear_retrans(tp);
3427 }
3428
3429 static void tcp_connect_queue_skb(struct sock *sk, struct sk_buff *skb)
3430 {
3431 struct tcp_sock *tp = tcp_sk(sk);
3432 struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
3433
3434 tcb->end_seq += skb->len;
3435 __skb_header_release(skb);
3436 sk->sk_wmem_queued += skb->truesize;
3437 sk_mem_charge(sk, skb->truesize);
3438 tp->write_seq = tcb->end_seq;
3439 tp->packets_out += tcp_skb_pcount(skb);
3440 }
3441
3442 /* Build and send a SYN with data and (cached) Fast Open cookie. However,
3443 * queue a data-only packet after the regular SYN, such that regular SYNs
3444 * are retransmitted on timeouts. Also if the remote SYN-ACK acknowledges
3445 * only the SYN sequence, the data are retransmitted in the first ACK.
3446 * If cookie is not cached or other error occurs, falls back to send a
3447 * regular SYN with Fast Open cookie request option.
3448 */
3449 static int tcp_send_syn_data(struct sock *sk, struct sk_buff *syn)
3450 {
3451 struct tcp_sock *tp = tcp_sk(sk);
3452 struct tcp_fastopen_request *fo = tp->fastopen_req;
3453 int space, err = 0;
3454 struct sk_buff *syn_data;
3455
3456 tp->rx_opt.mss_clamp = tp->advmss; /* If MSS is not cached */
3457 if (!tcp_fastopen_cookie_check(sk, &tp->rx_opt.mss_clamp, &fo->cookie))
3458 goto fallback;
3459
3460 /* MSS for SYN-data is based on cached MSS and bounded by PMTU and
3461 * user-MSS. Reserve maximum option space for middleboxes that add
3462 * private TCP options. The cost is reduced data space in SYN :(
3463 */
3464 tp->rx_opt.mss_clamp = tcp_mss_clamp(tp, tp->rx_opt.mss_clamp);
3465
3466 space = __tcp_mtu_to_mss(sk, inet_csk(sk)->icsk_pmtu_cookie) -
3467 MAX_TCP_OPTION_SPACE;
3468
3469 space = min_t(size_t, space, fo->size);
3470
3471 /* limit to order-0 allocations */
3472 space = min_t(size_t, space, SKB_MAX_HEAD(MAX_TCP_HEADER));
3473
3474 syn_data = sk_stream_alloc_skb(sk, space, sk->sk_allocation, false);
3475 if (!syn_data)
3476 goto fallback;
3477 syn_data->ip_summed = CHECKSUM_PARTIAL;
3478 memcpy(syn_data->cb, syn->cb, sizeof(syn->cb));
3479 if (space) {
3480 int copied = copy_from_iter(skb_put(syn_data, space), space,
3481 &fo->data->msg_iter);
3482 if (unlikely(!copied)) {
3483 tcp_skb_tsorted_anchor_cleanup(syn_data);
3484 kfree_skb(syn_data);
3485 goto fallback;
3486 }
3487 if (copied != space) {
3488 skb_trim(syn_data, copied);
3489 space = copied;
3490 }
3491 }
3492 /* No more data pending in inet_wait_for_connect() */
3493 if (space == fo->size)
3494 fo->data = NULL;
3495 fo->copied = space;
3496
3497 tcp_connect_queue_skb(sk, syn_data);
3498 if (syn_data->len)
3499 tcp_chrono_start(sk, TCP_CHRONO_BUSY);
3500
3501 err = tcp_transmit_skb(sk, syn_data, 1, sk->sk_allocation);
3502
3503 syn->skb_mstamp = syn_data->skb_mstamp;
3504
3505 /* Now full SYN+DATA was cloned and sent (or not),
3506 * remove the SYN from the original skb (syn_data)
3507 * we keep in write queue in case of a retransmit, as we
3508 * also have the SYN packet (with no data) in the same queue.
3509 */
3510 TCP_SKB_CB(syn_data)->seq++;
3511 TCP_SKB_CB(syn_data)->tcp_flags = TCPHDR_ACK | TCPHDR_PSH;
3512 if (!err) {
3513 tp->syn_data = (fo->copied > 0);
3514 tcp_rbtree_insert(&sk->tcp_rtx_queue, syn_data);
3515 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPORIGDATASENT);
3516 goto done;
3517 }
3518
3519 /* data was not sent, put it in write_queue */
3520 __skb_queue_tail(&sk->sk_write_queue, syn_data);
3521 tp->packets_out -= tcp_skb_pcount(syn_data);
3522
3523 fallback:
3524 /* Send a regular SYN with Fast Open cookie request option */
3525 if (fo->cookie.len > 0)
3526 fo->cookie.len = 0;
3527 err = tcp_transmit_skb(sk, syn, 1, sk->sk_allocation);
3528 if (err)
3529 tp->syn_fastopen = 0;
3530 done:
3531 fo->cookie.len = -1; /* Exclude Fast Open option for SYN retries */
3532 return err;
3533 }
3534
3535 /* Build a SYN and send it off. */
3536 int tcp_connect(struct sock *sk)
3537 {
3538 struct tcp_sock *tp = tcp_sk(sk);
3539 struct sk_buff *buff;
3540 int err;
3541
3542 tcp_call_bpf(sk, BPF_SOCK_OPS_TCP_CONNECT_CB);
3543
3544 if (inet_csk(sk)->icsk_af_ops->rebuild_header(sk))
3545 return -EHOSTUNREACH; /* Routing failure or similar. */
3546
3547 tcp_connect_init(sk);
3548
3549 if (unlikely(tp->repair)) {
3550 tcp_finish_connect(sk, NULL);
3551 return 0;
3552 }
3553
3554 buff = sk_stream_alloc_skb(sk, 0, sk->sk_allocation, true);
3555 if (unlikely(!buff))
3556 return -ENOBUFS;
3557
3558 tcp_init_nondata_skb(buff, tp->write_seq++, TCPHDR_SYN);
3559 tcp_mstamp_refresh(tp);
3560 tp->retrans_stamp = tcp_time_stamp(tp);
3561 tcp_connect_queue_skb(sk, buff);
3562 tcp_ecn_send_syn(sk, buff);
3563 tcp_rbtree_insert(&sk->tcp_rtx_queue, buff);
3564
3565 /* Send off SYN; include data in Fast Open. */
3566 err = tp->fastopen_req ? tcp_send_syn_data(sk, buff) :
3567 tcp_transmit_skb(sk, buff, 1, sk->sk_allocation);
3568 if (err == -ECONNREFUSED)
3569 return err;
3570
3571 /* We change tp->snd_nxt after the tcp_transmit_skb() call
3572 * in order to make this packet get counted in tcpOutSegs.
3573 */
3574 tp->snd_nxt = tp->write_seq;
3575 tp->pushed_seq = tp->write_seq;
3576 buff = tcp_send_head(sk);
3577 if (unlikely(buff)) {
3578 tp->snd_nxt = TCP_SKB_CB(buff)->seq;
3579 tp->pushed_seq = TCP_SKB_CB(buff)->seq;
3580 }
3581 TCP_INC_STATS(sock_net(sk), TCP_MIB_ACTIVEOPENS);
3582
3583 /* Timer for repeating the SYN until an answer. */
3584 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
3585 inet_csk(sk)->icsk_rto, TCP_RTO_MAX);
3586 return 0;
3587 }
3588 EXPORT_SYMBOL(tcp_connect);
3589
3590 /* Send out a delayed ack, the caller does the policy checking
3591 * to see if we should even be here. See tcp_input.c:tcp_ack_snd_check()
3592 * for details.
3593 */
3594 void tcp_send_delayed_ack(struct sock *sk)
3595 {
3596 struct inet_connection_sock *icsk = inet_csk(sk);
3597 int ato = icsk->icsk_ack.ato;
3598 unsigned long timeout;
3599
3600 if (ato > TCP_DELACK_MIN) {
3601 const struct tcp_sock *tp = tcp_sk(sk);
3602 int max_ato = HZ / 2;
3603
3604 if (icsk->icsk_ack.pingpong ||
3605 (icsk->icsk_ack.pending & ICSK_ACK_PUSHED))
3606 max_ato = TCP_DELACK_MAX;
3607
3608 /* Slow path, intersegment interval is "high". */
3609
3610 /* If some rtt estimate is known, use it to bound delayed ack.
3611 * Do not use inet_csk(sk)->icsk_rto here, use results of rtt measurements
3612 * directly.
3613 */
3614 if (tp->srtt_us) {
3615 int rtt = max_t(int, usecs_to_jiffies(tp->srtt_us >> 3),
3616 TCP_DELACK_MIN);
3617
3618 if (rtt < max_ato)
3619 max_ato = rtt;
3620 }
3621
3622 ato = min(ato, max_ato);
3623 }
3624
3625 /* Stay within the limit we were given */
3626 timeout = jiffies + ato;
3627
3628 /* Use new timeout only if there wasn't a older one earlier. */
3629 if (icsk->icsk_ack.pending & ICSK_ACK_TIMER) {
3630 /* If delack timer was blocked or is about to expire,
3631 * send ACK now.
3632 */
3633 if (icsk->icsk_ack.blocked ||
3634 time_before_eq(icsk->icsk_ack.timeout, jiffies + (ato >> 2))) {
3635 tcp_send_ack(sk);
3636 return;
3637 }
3638
3639 if (!time_before(timeout, icsk->icsk_ack.timeout))
3640 timeout = icsk->icsk_ack.timeout;
3641 }
3642 icsk->icsk_ack.pending |= ICSK_ACK_SCHED | ICSK_ACK_TIMER;
3643 icsk->icsk_ack.timeout = timeout;
3644 sk_reset_timer(sk, &icsk->icsk_delack_timer, timeout);
3645 }
3646
3647 /* This routine sends an ack and also updates the window. */
3648 void __tcp_send_ack(struct sock *sk, u32 rcv_nxt)
3649 {
3650 struct sk_buff *buff;
3651
3652 /* If we have been reset, we may not send again. */
3653 if (sk->sk_state == TCP_CLOSE)
3654 return;
3655
3656 /* We are not putting this on the write queue, so
3657 * tcp_transmit_skb() will set the ownership to this
3658 * sock.
3659 */
3660 buff = alloc_skb(MAX_TCP_HEADER,
3661 sk_gfp_mask(sk, GFP_ATOMIC | __GFP_NOWARN));
3662 if (unlikely(!buff)) {
3663 inet_csk_schedule_ack(sk);
3664 inet_csk(sk)->icsk_ack.ato = TCP_ATO_MIN;
3665 inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
3666 TCP_DELACK_MAX, TCP_RTO_MAX);
3667 return;
3668 }
3669
3670 /* Reserve space for headers and prepare control bits. */
3671 skb_reserve(buff, MAX_TCP_HEADER);
3672 tcp_init_nondata_skb(buff, tcp_acceptable_seq(sk), TCPHDR_ACK);
3673
3674 /* We do not want pure acks influencing TCP Small Queues or fq/pacing
3675 * too much.
3676 * SKB_TRUESIZE(max(1 .. 66, MAX_TCP_HEADER)) is unfortunately ~784
3677 */
3678 skb_set_tcp_pure_ack(buff);
3679
3680 /* Send it off, this clears delayed acks for us. */
3681 __tcp_transmit_skb(sk, buff, 0, (__force gfp_t)0, rcv_nxt);
3682 }
3683 EXPORT_SYMBOL_GPL(__tcp_send_ack);
3684
3685 void tcp_send_ack(struct sock *sk)
3686 {
3687 __tcp_send_ack(sk, tcp_sk(sk)->rcv_nxt);
3688 }
3689
3690 /* This routine sends a packet with an out of date sequence
3691 * number. It assumes the other end will try to ack it.
3692 *
3693 * Question: what should we make while urgent mode?
3694 * 4.4BSD forces sending single byte of data. We cannot send
3695 * out of window data, because we have SND.NXT==SND.MAX...
3696 *
3697 * Current solution: to send TWO zero-length segments in urgent mode:
3698 * one is with SEG.SEQ=SND.UNA to deliver urgent pointer, another is
3699 * out-of-date with SND.UNA-1 to probe window.
3700 */
3701 static int tcp_xmit_probe_skb(struct sock *sk, int urgent, int mib)
3702 {
3703 struct tcp_sock *tp = tcp_sk(sk);
3704 struct sk_buff *skb;
3705
3706 /* We don't queue it, tcp_transmit_skb() sets ownership. */
3707 skb = alloc_skb(MAX_TCP_HEADER,
3708 sk_gfp_mask(sk, GFP_ATOMIC | __GFP_NOWARN));
3709 if (!skb)
3710 return -1;
3711
3712 /* Reserve space for headers and set control bits. */
3713 skb_reserve(skb, MAX_TCP_HEADER);
3714 /* Use a previous sequence. This should cause the other
3715 * end to send an ack. Don't queue or clone SKB, just
3716 * send it.
3717 */
3718 tcp_init_nondata_skb(skb, tp->snd_una - !urgent, TCPHDR_ACK);
3719 NET_INC_STATS(sock_net(sk), mib);
3720 return tcp_transmit_skb(sk, skb, 0, (__force gfp_t)0);
3721 }
3722
3723 /* Called from setsockopt( ... TCP_REPAIR ) */
3724 void tcp_send_window_probe(struct sock *sk)
3725 {
3726 if (sk->sk_state == TCP_ESTABLISHED) {
3727 tcp_sk(sk)->snd_wl1 = tcp_sk(sk)->rcv_nxt - 1;
3728 tcp_mstamp_refresh(tcp_sk(sk));
3729 tcp_xmit_probe_skb(sk, 0, LINUX_MIB_TCPWINPROBE);
3730 }
3731 }
3732
3733 /* Initiate keepalive or window probe from timer. */
3734 int tcp_write_wakeup(struct sock *sk, int mib)
3735 {
3736 struct tcp_sock *tp = tcp_sk(sk);
3737 struct sk_buff *skb;
3738
3739 if (sk->sk_state == TCP_CLOSE)
3740 return -1;
3741
3742 skb = tcp_send_head(sk);
3743 if (skb && before(TCP_SKB_CB(skb)->seq, tcp_wnd_end(tp))) {
3744 int err;
3745 unsigned int mss = tcp_current_mss(sk);
3746 unsigned int seg_size = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq;
3747
3748 if (before(tp->pushed_seq, TCP_SKB_CB(skb)->end_seq))
3749 tp->pushed_seq = TCP_SKB_CB(skb)->end_seq;
3750
3751 /* We are probing the opening of a window
3752 * but the window size is != 0
3753 * must have been a result SWS avoidance ( sender )
3754 */
3755 if (seg_size < TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq ||
3756 skb->len > mss) {
3757 seg_size = min(seg_size, mss);
3758 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH;
3759 if (tcp_fragment(sk, TCP_FRAG_IN_WRITE_QUEUE,
3760 skb, seg_size, mss, GFP_ATOMIC))
3761 return -1;
3762 } else if (!tcp_skb_pcount(skb))
3763 tcp_set_skb_tso_segs(skb, mss);
3764
3765 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH;
3766 err = tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC);
3767 if (!err)
3768 tcp_event_new_data_sent(sk, skb);
3769 return err;
3770 } else {
3771 if (between(tp->snd_up, tp->snd_una + 1, tp->snd_una + 0xFFFF))
3772 tcp_xmit_probe_skb(sk, 1, mib);
3773 return tcp_xmit_probe_skb(sk, 0, mib);
3774 }
3775 }
3776
3777 /* A window probe timeout has occurred. If window is not closed send
3778 * a partial packet else a zero probe.
3779 */
3780 void tcp_send_probe0(struct sock *sk)
3781 {
3782 struct inet_connection_sock *icsk = inet_csk(sk);
3783 struct tcp_sock *tp = tcp_sk(sk);
3784 struct net *net = sock_net(sk);
3785 unsigned long probe_max;
3786 int err;
3787
3788 err = tcp_write_wakeup(sk, LINUX_MIB_TCPWINPROBE);
3789
3790 if (tp->packets_out || tcp_write_queue_empty(sk)) {
3791 /* Cancel probe timer, if it is not required. */
3792 icsk->icsk_probes_out = 0;
3793 icsk->icsk_backoff = 0;
3794 return;
3795 }
3796
3797 if (err <= 0) {
3798 if (icsk->icsk_backoff < net->ipv4.sysctl_tcp_retries2)
3799 icsk->icsk_backoff++;
3800 icsk->icsk_probes_out++;
3801 probe_max = TCP_RTO_MAX;
3802 } else {
3803 /* If packet was not sent due to local congestion,
3804 * do not backoff and do not remember icsk_probes_out.
3805 * Let local senders to fight for local resources.
3806 *
3807 * Use accumulated backoff yet.
3808 */
3809 if (!icsk->icsk_probes_out)
3810 icsk->icsk_probes_out = 1;
3811 probe_max = TCP_RESOURCE_PROBE_INTERVAL;
3812 }
3813 inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
3814 tcp_probe0_when(sk, probe_max),
3815 TCP_RTO_MAX);
3816 }
3817
3818 int tcp_rtx_synack(const struct sock *sk, struct request_sock *req)
3819 {
3820 const struct tcp_request_sock_ops *af_ops = tcp_rsk(req)->af_specific;
3821 struct flowi fl;
3822 int res;
3823
3824 tcp_rsk(req)->txhash = net_tx_rndhash();
3825 res = af_ops->send_synack(sk, NULL, &fl, req, NULL, TCP_SYNACK_NORMAL);
3826 if (!res) {
3827 __TCP_INC_STATS(sock_net(sk), TCP_MIB_RETRANSSEGS);
3828 __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSYNRETRANS);
3829 if (unlikely(tcp_passive_fastopen(sk)))
3830 tcp_sk(sk)->total_retrans++;
3831 trace_tcp_retransmit_synack(sk, req);
3832 }
3833 return res;
3834 }
3835 EXPORT_SYMBOL(tcp_rtx_synack);