]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - net/ipv4/tcp_output.c
Merge tag 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/dledford/rdma
[mirror_ubuntu-artful-kernel.git] / net / ipv4 / tcp_output.c
1 /*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
5 *
6 * Implementation of the Transmission Control Protocol(TCP).
7 *
8 * Authors: Ross Biro
9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10 * Mark Evans, <evansmp@uhura.aston.ac.uk>
11 * Corey Minyard <wf-rch!minyard@relay.EU.net>
12 * Florian La Roche, <flla@stud.uni-sb.de>
13 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
14 * Linus Torvalds, <torvalds@cs.helsinki.fi>
15 * Alan Cox, <gw4pts@gw4pts.ampr.org>
16 * Matthew Dillon, <dillon@apollo.west.oic.com>
17 * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
18 * Jorge Cwik, <jorge@laser.satlink.net>
19 */
20
21 /*
22 * Changes: Pedro Roque : Retransmit queue handled by TCP.
23 * : Fragmentation on mtu decrease
24 * : Segment collapse on retransmit
25 * : AF independence
26 *
27 * Linus Torvalds : send_delayed_ack
28 * David S. Miller : Charge memory using the right skb
29 * during syn/ack processing.
30 * David S. Miller : Output engine completely rewritten.
31 * Andrea Arcangeli: SYNACK carry ts_recent in tsecr.
32 * Cacophonix Gaul : draft-minshall-nagle-01
33 * J Hadi Salim : ECN support
34 *
35 */
36
37 #define pr_fmt(fmt) "TCP: " fmt
38
39 #include <net/tcp.h>
40
41 #include <linux/compiler.h>
42 #include <linux/gfp.h>
43 #include <linux/module.h>
44
45 /* People can turn this off for buggy TCP's found in printers etc. */
46 int sysctl_tcp_retrans_collapse __read_mostly = 1;
47
48 /* People can turn this on to work with those rare, broken TCPs that
49 * interpret the window field as a signed quantity.
50 */
51 int sysctl_tcp_workaround_signed_windows __read_mostly = 0;
52
53 /* Default TSQ limit of four TSO segments */
54 int sysctl_tcp_limit_output_bytes __read_mostly = 262144;
55
56 /* This limits the percentage of the congestion window which we
57 * will allow a single TSO frame to consume. Building TSO frames
58 * which are too large can cause TCP streams to be bursty.
59 */
60 int sysctl_tcp_tso_win_divisor __read_mostly = 3;
61
62 /* By default, RFC2861 behavior. */
63 int sysctl_tcp_slow_start_after_idle __read_mostly = 1;
64
65 static bool tcp_write_xmit(struct sock *sk, unsigned int mss_now, int nonagle,
66 int push_one, gfp_t gfp);
67
68 /* Account for new data that has been sent to the network. */
69 static void tcp_event_new_data_sent(struct sock *sk, const struct sk_buff *skb)
70 {
71 struct inet_connection_sock *icsk = inet_csk(sk);
72 struct tcp_sock *tp = tcp_sk(sk);
73 unsigned int prior_packets = tp->packets_out;
74
75 tcp_advance_send_head(sk, skb);
76 tp->snd_nxt = TCP_SKB_CB(skb)->end_seq;
77
78 tp->packets_out += tcp_skb_pcount(skb);
79 if (!prior_packets || icsk->icsk_pending == ICSK_TIME_EARLY_RETRANS ||
80 icsk->icsk_pending == ICSK_TIME_LOSS_PROBE) {
81 tcp_rearm_rto(sk);
82 }
83
84 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPORIGDATASENT,
85 tcp_skb_pcount(skb));
86 }
87
88 /* SND.NXT, if window was not shrunk.
89 * If window has been shrunk, what should we make? It is not clear at all.
90 * Using SND.UNA we will fail to open window, SND.NXT is out of window. :-(
91 * Anything in between SND.UNA...SND.UNA+SND.WND also can be already
92 * invalid. OK, let's make this for now:
93 */
94 static inline __u32 tcp_acceptable_seq(const struct sock *sk)
95 {
96 const struct tcp_sock *tp = tcp_sk(sk);
97
98 if (!before(tcp_wnd_end(tp), tp->snd_nxt))
99 return tp->snd_nxt;
100 else
101 return tcp_wnd_end(tp);
102 }
103
104 /* Calculate mss to advertise in SYN segment.
105 * RFC1122, RFC1063, draft-ietf-tcpimpl-pmtud-01 state that:
106 *
107 * 1. It is independent of path mtu.
108 * 2. Ideally, it is maximal possible segment size i.e. 65535-40.
109 * 3. For IPv4 it is reasonable to calculate it from maximal MTU of
110 * attached devices, because some buggy hosts are confused by
111 * large MSS.
112 * 4. We do not make 3, we advertise MSS, calculated from first
113 * hop device mtu, but allow to raise it to ip_rt_min_advmss.
114 * This may be overridden via information stored in routing table.
115 * 5. Value 65535 for MSS is valid in IPv6 and means "as large as possible,
116 * probably even Jumbo".
117 */
118 static __u16 tcp_advertise_mss(struct sock *sk)
119 {
120 struct tcp_sock *tp = tcp_sk(sk);
121 const struct dst_entry *dst = __sk_dst_get(sk);
122 int mss = tp->advmss;
123
124 if (dst) {
125 unsigned int metric = dst_metric_advmss(dst);
126
127 if (metric < mss) {
128 mss = metric;
129 tp->advmss = mss;
130 }
131 }
132
133 return (__u16)mss;
134 }
135
136 /* RFC2861. Reset CWND after idle period longer RTO to "restart window".
137 * This is the first part of cwnd validation mechanism.
138 */
139 void tcp_cwnd_restart(struct sock *sk, s32 delta)
140 {
141 struct tcp_sock *tp = tcp_sk(sk);
142 u32 restart_cwnd = tcp_init_cwnd(tp, __sk_dst_get(sk));
143 u32 cwnd = tp->snd_cwnd;
144
145 tcp_ca_event(sk, CA_EVENT_CWND_RESTART);
146
147 tp->snd_ssthresh = tcp_current_ssthresh(sk);
148 restart_cwnd = min(restart_cwnd, cwnd);
149
150 while ((delta -= inet_csk(sk)->icsk_rto) > 0 && cwnd > restart_cwnd)
151 cwnd >>= 1;
152 tp->snd_cwnd = max(cwnd, restart_cwnd);
153 tp->snd_cwnd_stamp = tcp_time_stamp;
154 tp->snd_cwnd_used = 0;
155 }
156
157 /* Congestion state accounting after a packet has been sent. */
158 static void tcp_event_data_sent(struct tcp_sock *tp,
159 struct sock *sk)
160 {
161 struct inet_connection_sock *icsk = inet_csk(sk);
162 const u32 now = tcp_time_stamp;
163
164 if (tcp_packets_in_flight(tp) == 0)
165 tcp_ca_event(sk, CA_EVENT_TX_START);
166
167 tp->lsndtime = now;
168
169 /* If it is a reply for ato after last received
170 * packet, enter pingpong mode.
171 */
172 if ((u32)(now - icsk->icsk_ack.lrcvtime) < icsk->icsk_ack.ato)
173 icsk->icsk_ack.pingpong = 1;
174 }
175
176 /* Account for an ACK we sent. */
177 static inline void tcp_event_ack_sent(struct sock *sk, unsigned int pkts)
178 {
179 tcp_dec_quickack_mode(sk, pkts);
180 inet_csk_clear_xmit_timer(sk, ICSK_TIME_DACK);
181 }
182
183
184 u32 tcp_default_init_rwnd(u32 mss)
185 {
186 /* Initial receive window should be twice of TCP_INIT_CWND to
187 * enable proper sending of new unsent data during fast recovery
188 * (RFC 3517, Section 4, NextSeg() rule (2)). Further place a
189 * limit when mss is larger than 1460.
190 */
191 u32 init_rwnd = TCP_INIT_CWND * 2;
192
193 if (mss > 1460)
194 init_rwnd = max((1460 * init_rwnd) / mss, 2U);
195 return init_rwnd;
196 }
197
198 /* Determine a window scaling and initial window to offer.
199 * Based on the assumption that the given amount of space
200 * will be offered. Store the results in the tp structure.
201 * NOTE: for smooth operation initial space offering should
202 * be a multiple of mss if possible. We assume here that mss >= 1.
203 * This MUST be enforced by all callers.
204 */
205 void tcp_select_initial_window(int __space, __u32 mss,
206 __u32 *rcv_wnd, __u32 *window_clamp,
207 int wscale_ok, __u8 *rcv_wscale,
208 __u32 init_rcv_wnd)
209 {
210 unsigned int space = (__space < 0 ? 0 : __space);
211
212 /* If no clamp set the clamp to the max possible scaled window */
213 if (*window_clamp == 0)
214 (*window_clamp) = (65535 << 14);
215 space = min(*window_clamp, space);
216
217 /* Quantize space offering to a multiple of mss if possible. */
218 if (space > mss)
219 space = (space / mss) * mss;
220
221 /* NOTE: offering an initial window larger than 32767
222 * will break some buggy TCP stacks. If the admin tells us
223 * it is likely we could be speaking with such a buggy stack
224 * we will truncate our initial window offering to 32K-1
225 * unless the remote has sent us a window scaling option,
226 * which we interpret as a sign the remote TCP is not
227 * misinterpreting the window field as a signed quantity.
228 */
229 if (sysctl_tcp_workaround_signed_windows)
230 (*rcv_wnd) = min(space, MAX_TCP_WINDOW);
231 else
232 (*rcv_wnd) = space;
233
234 (*rcv_wscale) = 0;
235 if (wscale_ok) {
236 /* Set window scaling on max possible window
237 * See RFC1323 for an explanation of the limit to 14
238 */
239 space = max_t(u32, space, sysctl_tcp_rmem[2]);
240 space = max_t(u32, space, sysctl_rmem_max);
241 space = min_t(u32, space, *window_clamp);
242 while (space > 65535 && (*rcv_wscale) < 14) {
243 space >>= 1;
244 (*rcv_wscale)++;
245 }
246 }
247
248 if (mss > (1 << *rcv_wscale)) {
249 if (!init_rcv_wnd) /* Use default unless specified otherwise */
250 init_rcv_wnd = tcp_default_init_rwnd(mss);
251 *rcv_wnd = min(*rcv_wnd, init_rcv_wnd * mss);
252 }
253
254 /* Set the clamp no higher than max representable value */
255 (*window_clamp) = min(65535U << (*rcv_wscale), *window_clamp);
256 }
257 EXPORT_SYMBOL(tcp_select_initial_window);
258
259 /* Chose a new window to advertise, update state in tcp_sock for the
260 * socket, and return result with RFC1323 scaling applied. The return
261 * value can be stuffed directly into th->window for an outgoing
262 * frame.
263 */
264 static u16 tcp_select_window(struct sock *sk)
265 {
266 struct tcp_sock *tp = tcp_sk(sk);
267 u32 old_win = tp->rcv_wnd;
268 u32 cur_win = tcp_receive_window(tp);
269 u32 new_win = __tcp_select_window(sk);
270
271 /* Never shrink the offered window */
272 if (new_win < cur_win) {
273 /* Danger Will Robinson!
274 * Don't update rcv_wup/rcv_wnd here or else
275 * we will not be able to advertise a zero
276 * window in time. --DaveM
277 *
278 * Relax Will Robinson.
279 */
280 if (new_win == 0)
281 NET_INC_STATS(sock_net(sk),
282 LINUX_MIB_TCPWANTZEROWINDOWADV);
283 new_win = ALIGN(cur_win, 1 << tp->rx_opt.rcv_wscale);
284 }
285 tp->rcv_wnd = new_win;
286 tp->rcv_wup = tp->rcv_nxt;
287
288 /* Make sure we do not exceed the maximum possible
289 * scaled window.
290 */
291 if (!tp->rx_opt.rcv_wscale && sysctl_tcp_workaround_signed_windows)
292 new_win = min(new_win, MAX_TCP_WINDOW);
293 else
294 new_win = min(new_win, (65535U << tp->rx_opt.rcv_wscale));
295
296 /* RFC1323 scaling applied */
297 new_win >>= tp->rx_opt.rcv_wscale;
298
299 /* If we advertise zero window, disable fast path. */
300 if (new_win == 0) {
301 tp->pred_flags = 0;
302 if (old_win)
303 NET_INC_STATS(sock_net(sk),
304 LINUX_MIB_TCPTOZEROWINDOWADV);
305 } else if (old_win == 0) {
306 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPFROMZEROWINDOWADV);
307 }
308
309 return new_win;
310 }
311
312 /* Packet ECN state for a SYN-ACK */
313 static void tcp_ecn_send_synack(struct sock *sk, struct sk_buff *skb)
314 {
315 const struct tcp_sock *tp = tcp_sk(sk);
316
317 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_CWR;
318 if (!(tp->ecn_flags & TCP_ECN_OK))
319 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_ECE;
320 else if (tcp_ca_needs_ecn(sk))
321 INET_ECN_xmit(sk);
322 }
323
324 /* Packet ECN state for a SYN. */
325 static void tcp_ecn_send_syn(struct sock *sk, struct sk_buff *skb)
326 {
327 struct tcp_sock *tp = tcp_sk(sk);
328 bool use_ecn = sock_net(sk)->ipv4.sysctl_tcp_ecn == 1 ||
329 tcp_ca_needs_ecn(sk);
330
331 if (!use_ecn) {
332 const struct dst_entry *dst = __sk_dst_get(sk);
333
334 if (dst && dst_feature(dst, RTAX_FEATURE_ECN))
335 use_ecn = true;
336 }
337
338 tp->ecn_flags = 0;
339
340 if (use_ecn) {
341 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_ECE | TCPHDR_CWR;
342 tp->ecn_flags = TCP_ECN_OK;
343 if (tcp_ca_needs_ecn(sk))
344 INET_ECN_xmit(sk);
345 }
346 }
347
348 static void tcp_ecn_clear_syn(struct sock *sk, struct sk_buff *skb)
349 {
350 if (sock_net(sk)->ipv4.sysctl_tcp_ecn_fallback)
351 /* tp->ecn_flags are cleared at a later point in time when
352 * SYN ACK is ultimatively being received.
353 */
354 TCP_SKB_CB(skb)->tcp_flags &= ~(TCPHDR_ECE | TCPHDR_CWR);
355 }
356
357 static void
358 tcp_ecn_make_synack(const struct request_sock *req, struct tcphdr *th)
359 {
360 if (inet_rsk(req)->ecn_ok)
361 th->ece = 1;
362 }
363
364 /* Set up ECN state for a packet on a ESTABLISHED socket that is about to
365 * be sent.
366 */
367 static void tcp_ecn_send(struct sock *sk, struct sk_buff *skb,
368 struct tcphdr *th, int tcp_header_len)
369 {
370 struct tcp_sock *tp = tcp_sk(sk);
371
372 if (tp->ecn_flags & TCP_ECN_OK) {
373 /* Not-retransmitted data segment: set ECT and inject CWR. */
374 if (skb->len != tcp_header_len &&
375 !before(TCP_SKB_CB(skb)->seq, tp->snd_nxt)) {
376 INET_ECN_xmit(sk);
377 if (tp->ecn_flags & TCP_ECN_QUEUE_CWR) {
378 tp->ecn_flags &= ~TCP_ECN_QUEUE_CWR;
379 th->cwr = 1;
380 skb_shinfo(skb)->gso_type |= SKB_GSO_TCP_ECN;
381 }
382 } else if (!tcp_ca_needs_ecn(sk)) {
383 /* ACK or retransmitted segment: clear ECT|CE */
384 INET_ECN_dontxmit(sk);
385 }
386 if (tp->ecn_flags & TCP_ECN_DEMAND_CWR)
387 th->ece = 1;
388 }
389 }
390
391 /* Constructs common control bits of non-data skb. If SYN/FIN is present,
392 * auto increment end seqno.
393 */
394 static void tcp_init_nondata_skb(struct sk_buff *skb, u32 seq, u8 flags)
395 {
396 skb->ip_summed = CHECKSUM_PARTIAL;
397 skb->csum = 0;
398
399 TCP_SKB_CB(skb)->tcp_flags = flags;
400 TCP_SKB_CB(skb)->sacked = 0;
401
402 tcp_skb_pcount_set(skb, 1);
403
404 TCP_SKB_CB(skb)->seq = seq;
405 if (flags & (TCPHDR_SYN | TCPHDR_FIN))
406 seq++;
407 TCP_SKB_CB(skb)->end_seq = seq;
408 }
409
410 static inline bool tcp_urg_mode(const struct tcp_sock *tp)
411 {
412 return tp->snd_una != tp->snd_up;
413 }
414
415 #define OPTION_SACK_ADVERTISE (1 << 0)
416 #define OPTION_TS (1 << 1)
417 #define OPTION_MD5 (1 << 2)
418 #define OPTION_WSCALE (1 << 3)
419 #define OPTION_FAST_OPEN_COOKIE (1 << 8)
420
421 struct tcp_out_options {
422 u16 options; /* bit field of OPTION_* */
423 u16 mss; /* 0 to disable */
424 u8 ws; /* window scale, 0 to disable */
425 u8 num_sack_blocks; /* number of SACK blocks to include */
426 u8 hash_size; /* bytes in hash_location */
427 __u8 *hash_location; /* temporary pointer, overloaded */
428 __u32 tsval, tsecr; /* need to include OPTION_TS */
429 struct tcp_fastopen_cookie *fastopen_cookie; /* Fast open cookie */
430 };
431
432 /* Write previously computed TCP options to the packet.
433 *
434 * Beware: Something in the Internet is very sensitive to the ordering of
435 * TCP options, we learned this through the hard way, so be careful here.
436 * Luckily we can at least blame others for their non-compliance but from
437 * inter-operability perspective it seems that we're somewhat stuck with
438 * the ordering which we have been using if we want to keep working with
439 * those broken things (not that it currently hurts anybody as there isn't
440 * particular reason why the ordering would need to be changed).
441 *
442 * At least SACK_PERM as the first option is known to lead to a disaster
443 * (but it may well be that other scenarios fail similarly).
444 */
445 static void tcp_options_write(__be32 *ptr, struct tcp_sock *tp,
446 struct tcp_out_options *opts)
447 {
448 u16 options = opts->options; /* mungable copy */
449
450 if (unlikely(OPTION_MD5 & options)) {
451 *ptr++ = htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) |
452 (TCPOPT_MD5SIG << 8) | TCPOLEN_MD5SIG);
453 /* overload cookie hash location */
454 opts->hash_location = (__u8 *)ptr;
455 ptr += 4;
456 }
457
458 if (unlikely(opts->mss)) {
459 *ptr++ = htonl((TCPOPT_MSS << 24) |
460 (TCPOLEN_MSS << 16) |
461 opts->mss);
462 }
463
464 if (likely(OPTION_TS & options)) {
465 if (unlikely(OPTION_SACK_ADVERTISE & options)) {
466 *ptr++ = htonl((TCPOPT_SACK_PERM << 24) |
467 (TCPOLEN_SACK_PERM << 16) |
468 (TCPOPT_TIMESTAMP << 8) |
469 TCPOLEN_TIMESTAMP);
470 options &= ~OPTION_SACK_ADVERTISE;
471 } else {
472 *ptr++ = htonl((TCPOPT_NOP << 24) |
473 (TCPOPT_NOP << 16) |
474 (TCPOPT_TIMESTAMP << 8) |
475 TCPOLEN_TIMESTAMP);
476 }
477 *ptr++ = htonl(opts->tsval);
478 *ptr++ = htonl(opts->tsecr);
479 }
480
481 if (unlikely(OPTION_SACK_ADVERTISE & options)) {
482 *ptr++ = htonl((TCPOPT_NOP << 24) |
483 (TCPOPT_NOP << 16) |
484 (TCPOPT_SACK_PERM << 8) |
485 TCPOLEN_SACK_PERM);
486 }
487
488 if (unlikely(OPTION_WSCALE & options)) {
489 *ptr++ = htonl((TCPOPT_NOP << 24) |
490 (TCPOPT_WINDOW << 16) |
491 (TCPOLEN_WINDOW << 8) |
492 opts->ws);
493 }
494
495 if (unlikely(opts->num_sack_blocks)) {
496 struct tcp_sack_block *sp = tp->rx_opt.dsack ?
497 tp->duplicate_sack : tp->selective_acks;
498 int this_sack;
499
500 *ptr++ = htonl((TCPOPT_NOP << 24) |
501 (TCPOPT_NOP << 16) |
502 (TCPOPT_SACK << 8) |
503 (TCPOLEN_SACK_BASE + (opts->num_sack_blocks *
504 TCPOLEN_SACK_PERBLOCK)));
505
506 for (this_sack = 0; this_sack < opts->num_sack_blocks;
507 ++this_sack) {
508 *ptr++ = htonl(sp[this_sack].start_seq);
509 *ptr++ = htonl(sp[this_sack].end_seq);
510 }
511
512 tp->rx_opt.dsack = 0;
513 }
514
515 if (unlikely(OPTION_FAST_OPEN_COOKIE & options)) {
516 struct tcp_fastopen_cookie *foc = opts->fastopen_cookie;
517 u8 *p = (u8 *)ptr;
518 u32 len; /* Fast Open option length */
519
520 if (foc->exp) {
521 len = TCPOLEN_EXP_FASTOPEN_BASE + foc->len;
522 *ptr = htonl((TCPOPT_EXP << 24) | (len << 16) |
523 TCPOPT_FASTOPEN_MAGIC);
524 p += TCPOLEN_EXP_FASTOPEN_BASE;
525 } else {
526 len = TCPOLEN_FASTOPEN_BASE + foc->len;
527 *p++ = TCPOPT_FASTOPEN;
528 *p++ = len;
529 }
530
531 memcpy(p, foc->val, foc->len);
532 if ((len & 3) == 2) {
533 p[foc->len] = TCPOPT_NOP;
534 p[foc->len + 1] = TCPOPT_NOP;
535 }
536 ptr += (len + 3) >> 2;
537 }
538 }
539
540 /* Compute TCP options for SYN packets. This is not the final
541 * network wire format yet.
542 */
543 static unsigned int tcp_syn_options(struct sock *sk, struct sk_buff *skb,
544 struct tcp_out_options *opts,
545 struct tcp_md5sig_key **md5)
546 {
547 struct tcp_sock *tp = tcp_sk(sk);
548 unsigned int remaining = MAX_TCP_OPTION_SPACE;
549 struct tcp_fastopen_request *fastopen = tp->fastopen_req;
550
551 #ifdef CONFIG_TCP_MD5SIG
552 *md5 = tp->af_specific->md5_lookup(sk, sk);
553 if (*md5) {
554 opts->options |= OPTION_MD5;
555 remaining -= TCPOLEN_MD5SIG_ALIGNED;
556 }
557 #else
558 *md5 = NULL;
559 #endif
560
561 /* We always get an MSS option. The option bytes which will be seen in
562 * normal data packets should timestamps be used, must be in the MSS
563 * advertised. But we subtract them from tp->mss_cache so that
564 * calculations in tcp_sendmsg are simpler etc. So account for this
565 * fact here if necessary. If we don't do this correctly, as a
566 * receiver we won't recognize data packets as being full sized when we
567 * should, and thus we won't abide by the delayed ACK rules correctly.
568 * SACKs don't matter, we never delay an ACK when we have any of those
569 * going out. */
570 opts->mss = tcp_advertise_mss(sk);
571 remaining -= TCPOLEN_MSS_ALIGNED;
572
573 if (likely(sysctl_tcp_timestamps && !*md5)) {
574 opts->options |= OPTION_TS;
575 opts->tsval = tcp_skb_timestamp(skb) + tp->tsoffset;
576 opts->tsecr = tp->rx_opt.ts_recent;
577 remaining -= TCPOLEN_TSTAMP_ALIGNED;
578 }
579 if (likely(sysctl_tcp_window_scaling)) {
580 opts->ws = tp->rx_opt.rcv_wscale;
581 opts->options |= OPTION_WSCALE;
582 remaining -= TCPOLEN_WSCALE_ALIGNED;
583 }
584 if (likely(sysctl_tcp_sack)) {
585 opts->options |= OPTION_SACK_ADVERTISE;
586 if (unlikely(!(OPTION_TS & opts->options)))
587 remaining -= TCPOLEN_SACKPERM_ALIGNED;
588 }
589
590 if (fastopen && fastopen->cookie.len >= 0) {
591 u32 need = fastopen->cookie.len;
592
593 need += fastopen->cookie.exp ? TCPOLEN_EXP_FASTOPEN_BASE :
594 TCPOLEN_FASTOPEN_BASE;
595 need = (need + 3) & ~3U; /* Align to 32 bits */
596 if (remaining >= need) {
597 opts->options |= OPTION_FAST_OPEN_COOKIE;
598 opts->fastopen_cookie = &fastopen->cookie;
599 remaining -= need;
600 tp->syn_fastopen = 1;
601 tp->syn_fastopen_exp = fastopen->cookie.exp ? 1 : 0;
602 }
603 }
604
605 return MAX_TCP_OPTION_SPACE - remaining;
606 }
607
608 /* Set up TCP options for SYN-ACKs. */
609 static unsigned int tcp_synack_options(struct request_sock *req,
610 unsigned int mss, struct sk_buff *skb,
611 struct tcp_out_options *opts,
612 const struct tcp_md5sig_key *md5,
613 struct tcp_fastopen_cookie *foc)
614 {
615 struct inet_request_sock *ireq = inet_rsk(req);
616 unsigned int remaining = MAX_TCP_OPTION_SPACE;
617
618 #ifdef CONFIG_TCP_MD5SIG
619 if (md5) {
620 opts->options |= OPTION_MD5;
621 remaining -= TCPOLEN_MD5SIG_ALIGNED;
622
623 /* We can't fit any SACK blocks in a packet with MD5 + TS
624 * options. There was discussion about disabling SACK
625 * rather than TS in order to fit in better with old,
626 * buggy kernels, but that was deemed to be unnecessary.
627 */
628 ireq->tstamp_ok &= !ireq->sack_ok;
629 }
630 #endif
631
632 /* We always send an MSS option. */
633 opts->mss = mss;
634 remaining -= TCPOLEN_MSS_ALIGNED;
635
636 if (likely(ireq->wscale_ok)) {
637 opts->ws = ireq->rcv_wscale;
638 opts->options |= OPTION_WSCALE;
639 remaining -= TCPOLEN_WSCALE_ALIGNED;
640 }
641 if (likely(ireq->tstamp_ok)) {
642 opts->options |= OPTION_TS;
643 opts->tsval = tcp_skb_timestamp(skb) + tcp_rsk(req)->ts_off;
644 opts->tsecr = req->ts_recent;
645 remaining -= TCPOLEN_TSTAMP_ALIGNED;
646 }
647 if (likely(ireq->sack_ok)) {
648 opts->options |= OPTION_SACK_ADVERTISE;
649 if (unlikely(!ireq->tstamp_ok))
650 remaining -= TCPOLEN_SACKPERM_ALIGNED;
651 }
652 if (foc != NULL && foc->len >= 0) {
653 u32 need = foc->len;
654
655 need += foc->exp ? TCPOLEN_EXP_FASTOPEN_BASE :
656 TCPOLEN_FASTOPEN_BASE;
657 need = (need + 3) & ~3U; /* Align to 32 bits */
658 if (remaining >= need) {
659 opts->options |= OPTION_FAST_OPEN_COOKIE;
660 opts->fastopen_cookie = foc;
661 remaining -= need;
662 }
663 }
664
665 return MAX_TCP_OPTION_SPACE - remaining;
666 }
667
668 /* Compute TCP options for ESTABLISHED sockets. This is not the
669 * final wire format yet.
670 */
671 static unsigned int tcp_established_options(struct sock *sk, struct sk_buff *skb,
672 struct tcp_out_options *opts,
673 struct tcp_md5sig_key **md5)
674 {
675 struct tcp_sock *tp = tcp_sk(sk);
676 unsigned int size = 0;
677 unsigned int eff_sacks;
678
679 opts->options = 0;
680
681 #ifdef CONFIG_TCP_MD5SIG
682 *md5 = tp->af_specific->md5_lookup(sk, sk);
683 if (unlikely(*md5)) {
684 opts->options |= OPTION_MD5;
685 size += TCPOLEN_MD5SIG_ALIGNED;
686 }
687 #else
688 *md5 = NULL;
689 #endif
690
691 if (likely(tp->rx_opt.tstamp_ok)) {
692 opts->options |= OPTION_TS;
693 opts->tsval = skb ? tcp_skb_timestamp(skb) + tp->tsoffset : 0;
694 opts->tsecr = tp->rx_opt.ts_recent;
695 size += TCPOLEN_TSTAMP_ALIGNED;
696 }
697
698 eff_sacks = tp->rx_opt.num_sacks + tp->rx_opt.dsack;
699 if (unlikely(eff_sacks)) {
700 const unsigned int remaining = MAX_TCP_OPTION_SPACE - size;
701 opts->num_sack_blocks =
702 min_t(unsigned int, eff_sacks,
703 (remaining - TCPOLEN_SACK_BASE_ALIGNED) /
704 TCPOLEN_SACK_PERBLOCK);
705 size += TCPOLEN_SACK_BASE_ALIGNED +
706 opts->num_sack_blocks * TCPOLEN_SACK_PERBLOCK;
707 }
708
709 return size;
710 }
711
712
713 /* TCP SMALL QUEUES (TSQ)
714 *
715 * TSQ goal is to keep small amount of skbs per tcp flow in tx queues (qdisc+dev)
716 * to reduce RTT and bufferbloat.
717 * We do this using a special skb destructor (tcp_wfree).
718 *
719 * Its important tcp_wfree() can be replaced by sock_wfree() in the event skb
720 * needs to be reallocated in a driver.
721 * The invariant being skb->truesize subtracted from sk->sk_wmem_alloc
722 *
723 * Since transmit from skb destructor is forbidden, we use a tasklet
724 * to process all sockets that eventually need to send more skbs.
725 * We use one tasklet per cpu, with its own queue of sockets.
726 */
727 struct tsq_tasklet {
728 struct tasklet_struct tasklet;
729 struct list_head head; /* queue of tcp sockets */
730 };
731 static DEFINE_PER_CPU(struct tsq_tasklet, tsq_tasklet);
732
733 static void tcp_tsq_handler(struct sock *sk)
734 {
735 if ((1 << sk->sk_state) &
736 (TCPF_ESTABLISHED | TCPF_FIN_WAIT1 | TCPF_CLOSING |
737 TCPF_CLOSE_WAIT | TCPF_LAST_ACK)) {
738 struct tcp_sock *tp = tcp_sk(sk);
739
740 if (tp->lost_out > tp->retrans_out &&
741 tp->snd_cwnd > tcp_packets_in_flight(tp))
742 tcp_xmit_retransmit_queue(sk);
743
744 tcp_write_xmit(sk, tcp_current_mss(sk), tp->nonagle,
745 0, GFP_ATOMIC);
746 }
747 }
748 /*
749 * One tasklet per cpu tries to send more skbs.
750 * We run in tasklet context but need to disable irqs when
751 * transferring tsq->head because tcp_wfree() might
752 * interrupt us (non NAPI drivers)
753 */
754 static void tcp_tasklet_func(unsigned long data)
755 {
756 struct tsq_tasklet *tsq = (struct tsq_tasklet *)data;
757 LIST_HEAD(list);
758 unsigned long flags;
759 struct list_head *q, *n;
760 struct tcp_sock *tp;
761 struct sock *sk;
762
763 local_irq_save(flags);
764 list_splice_init(&tsq->head, &list);
765 local_irq_restore(flags);
766
767 list_for_each_safe(q, n, &list) {
768 tp = list_entry(q, struct tcp_sock, tsq_node);
769 list_del(&tp->tsq_node);
770
771 sk = (struct sock *)tp;
772 clear_bit(TSQ_QUEUED, &sk->sk_tsq_flags);
773
774 if (!sk->sk_lock.owned &&
775 test_bit(TCP_TSQ_DEFERRED, &sk->sk_tsq_flags)) {
776 bh_lock_sock(sk);
777 if (!sock_owned_by_user(sk)) {
778 clear_bit(TCP_TSQ_DEFERRED, &sk->sk_tsq_flags);
779 tcp_tsq_handler(sk);
780 }
781 bh_unlock_sock(sk);
782 }
783
784 sk_free(sk);
785 }
786 }
787
788 #define TCP_DEFERRED_ALL (TCPF_TSQ_DEFERRED | \
789 TCPF_WRITE_TIMER_DEFERRED | \
790 TCPF_DELACK_TIMER_DEFERRED | \
791 TCPF_MTU_REDUCED_DEFERRED)
792 /**
793 * tcp_release_cb - tcp release_sock() callback
794 * @sk: socket
795 *
796 * called from release_sock() to perform protocol dependent
797 * actions before socket release.
798 */
799 void tcp_release_cb(struct sock *sk)
800 {
801 unsigned long flags, nflags;
802
803 /* perform an atomic operation only if at least one flag is set */
804 do {
805 flags = sk->sk_tsq_flags;
806 if (!(flags & TCP_DEFERRED_ALL))
807 return;
808 nflags = flags & ~TCP_DEFERRED_ALL;
809 } while (cmpxchg(&sk->sk_tsq_flags, flags, nflags) != flags);
810
811 if (flags & TCPF_TSQ_DEFERRED)
812 tcp_tsq_handler(sk);
813
814 /* Here begins the tricky part :
815 * We are called from release_sock() with :
816 * 1) BH disabled
817 * 2) sk_lock.slock spinlock held
818 * 3) socket owned by us (sk->sk_lock.owned == 1)
819 *
820 * But following code is meant to be called from BH handlers,
821 * so we should keep BH disabled, but early release socket ownership
822 */
823 sock_release_ownership(sk);
824
825 if (flags & TCPF_WRITE_TIMER_DEFERRED) {
826 tcp_write_timer_handler(sk);
827 __sock_put(sk);
828 }
829 if (flags & TCPF_DELACK_TIMER_DEFERRED) {
830 tcp_delack_timer_handler(sk);
831 __sock_put(sk);
832 }
833 if (flags & TCPF_MTU_REDUCED_DEFERRED) {
834 inet_csk(sk)->icsk_af_ops->mtu_reduced(sk);
835 __sock_put(sk);
836 }
837 }
838 EXPORT_SYMBOL(tcp_release_cb);
839
840 void __init tcp_tasklet_init(void)
841 {
842 int i;
843
844 for_each_possible_cpu(i) {
845 struct tsq_tasklet *tsq = &per_cpu(tsq_tasklet, i);
846
847 INIT_LIST_HEAD(&tsq->head);
848 tasklet_init(&tsq->tasklet,
849 tcp_tasklet_func,
850 (unsigned long)tsq);
851 }
852 }
853
854 /*
855 * Write buffer destructor automatically called from kfree_skb.
856 * We can't xmit new skbs from this context, as we might already
857 * hold qdisc lock.
858 */
859 void tcp_wfree(struct sk_buff *skb)
860 {
861 struct sock *sk = skb->sk;
862 struct tcp_sock *tp = tcp_sk(sk);
863 unsigned long flags, nval, oval;
864 int wmem;
865
866 /* Keep one reference on sk_wmem_alloc.
867 * Will be released by sk_free() from here or tcp_tasklet_func()
868 */
869 wmem = atomic_sub_return(skb->truesize - 1, &sk->sk_wmem_alloc);
870
871 /* If this softirq is serviced by ksoftirqd, we are likely under stress.
872 * Wait until our queues (qdisc + devices) are drained.
873 * This gives :
874 * - less callbacks to tcp_write_xmit(), reducing stress (batches)
875 * - chance for incoming ACK (processed by another cpu maybe)
876 * to migrate this flow (skb->ooo_okay will be eventually set)
877 */
878 if (wmem >= SKB_TRUESIZE(1) && this_cpu_ksoftirqd() == current)
879 goto out;
880
881 for (oval = READ_ONCE(sk->sk_tsq_flags);; oval = nval) {
882 struct tsq_tasklet *tsq;
883 bool empty;
884
885 if (!(oval & TSQF_THROTTLED) || (oval & TSQF_QUEUED))
886 goto out;
887
888 nval = (oval & ~TSQF_THROTTLED) | TSQF_QUEUED | TCPF_TSQ_DEFERRED;
889 nval = cmpxchg(&sk->sk_tsq_flags, oval, nval);
890 if (nval != oval)
891 continue;
892
893 /* queue this socket to tasklet queue */
894 local_irq_save(flags);
895 tsq = this_cpu_ptr(&tsq_tasklet);
896 empty = list_empty(&tsq->head);
897 list_add(&tp->tsq_node, &tsq->head);
898 if (empty)
899 tasklet_schedule(&tsq->tasklet);
900 local_irq_restore(flags);
901 return;
902 }
903 out:
904 sk_free(sk);
905 }
906
907 /* This routine actually transmits TCP packets queued in by
908 * tcp_do_sendmsg(). This is used by both the initial
909 * transmission and possible later retransmissions.
910 * All SKB's seen here are completely headerless. It is our
911 * job to build the TCP header, and pass the packet down to
912 * IP so it can do the same plus pass the packet off to the
913 * device.
914 *
915 * We are working here with either a clone of the original
916 * SKB, or a fresh unique copy made by the retransmit engine.
917 */
918 static int tcp_transmit_skb(struct sock *sk, struct sk_buff *skb, int clone_it,
919 gfp_t gfp_mask)
920 {
921 const struct inet_connection_sock *icsk = inet_csk(sk);
922 struct inet_sock *inet;
923 struct tcp_sock *tp;
924 struct tcp_skb_cb *tcb;
925 struct tcp_out_options opts;
926 unsigned int tcp_options_size, tcp_header_size;
927 struct tcp_md5sig_key *md5;
928 struct tcphdr *th;
929 int err;
930
931 BUG_ON(!skb || !tcp_skb_pcount(skb));
932 tp = tcp_sk(sk);
933
934 if (clone_it) {
935 skb_mstamp_get(&skb->skb_mstamp);
936 TCP_SKB_CB(skb)->tx.in_flight = TCP_SKB_CB(skb)->end_seq
937 - tp->snd_una;
938 tcp_rate_skb_sent(sk, skb);
939
940 if (unlikely(skb_cloned(skb)))
941 skb = pskb_copy(skb, gfp_mask);
942 else
943 skb = skb_clone(skb, gfp_mask);
944 if (unlikely(!skb))
945 return -ENOBUFS;
946 }
947
948 inet = inet_sk(sk);
949 tcb = TCP_SKB_CB(skb);
950 memset(&opts, 0, sizeof(opts));
951
952 if (unlikely(tcb->tcp_flags & TCPHDR_SYN))
953 tcp_options_size = tcp_syn_options(sk, skb, &opts, &md5);
954 else
955 tcp_options_size = tcp_established_options(sk, skb, &opts,
956 &md5);
957 tcp_header_size = tcp_options_size + sizeof(struct tcphdr);
958
959 /* if no packet is in qdisc/device queue, then allow XPS to select
960 * another queue. We can be called from tcp_tsq_handler()
961 * which holds one reference to sk_wmem_alloc.
962 *
963 * TODO: Ideally, in-flight pure ACK packets should not matter here.
964 * One way to get this would be to set skb->truesize = 2 on them.
965 */
966 skb->ooo_okay = sk_wmem_alloc_get(sk) < SKB_TRUESIZE(1);
967
968 skb_push(skb, tcp_header_size);
969 skb_reset_transport_header(skb);
970
971 skb_orphan(skb);
972 skb->sk = sk;
973 skb->destructor = skb_is_tcp_pure_ack(skb) ? __sock_wfree : tcp_wfree;
974 skb_set_hash_from_sk(skb, sk);
975 atomic_add(skb->truesize, &sk->sk_wmem_alloc);
976
977 /* Build TCP header and checksum it. */
978 th = (struct tcphdr *)skb->data;
979 th->source = inet->inet_sport;
980 th->dest = inet->inet_dport;
981 th->seq = htonl(tcb->seq);
982 th->ack_seq = htonl(tp->rcv_nxt);
983 *(((__be16 *)th) + 6) = htons(((tcp_header_size >> 2) << 12) |
984 tcb->tcp_flags);
985
986 th->check = 0;
987 th->urg_ptr = 0;
988
989 /* The urg_mode check is necessary during a below snd_una win probe */
990 if (unlikely(tcp_urg_mode(tp) && before(tcb->seq, tp->snd_up))) {
991 if (before(tp->snd_up, tcb->seq + 0x10000)) {
992 th->urg_ptr = htons(tp->snd_up - tcb->seq);
993 th->urg = 1;
994 } else if (after(tcb->seq + 0xFFFF, tp->snd_nxt)) {
995 th->urg_ptr = htons(0xFFFF);
996 th->urg = 1;
997 }
998 }
999
1000 tcp_options_write((__be32 *)(th + 1), tp, &opts);
1001 skb_shinfo(skb)->gso_type = sk->sk_gso_type;
1002 if (likely(!(tcb->tcp_flags & TCPHDR_SYN))) {
1003 th->window = htons(tcp_select_window(sk));
1004 tcp_ecn_send(sk, skb, th, tcp_header_size);
1005 } else {
1006 /* RFC1323: The window in SYN & SYN/ACK segments
1007 * is never scaled.
1008 */
1009 th->window = htons(min(tp->rcv_wnd, 65535U));
1010 }
1011 #ifdef CONFIG_TCP_MD5SIG
1012 /* Calculate the MD5 hash, as we have all we need now */
1013 if (md5) {
1014 sk_nocaps_add(sk, NETIF_F_GSO_MASK);
1015 tp->af_specific->calc_md5_hash(opts.hash_location,
1016 md5, sk, skb);
1017 }
1018 #endif
1019
1020 icsk->icsk_af_ops->send_check(sk, skb);
1021
1022 if (likely(tcb->tcp_flags & TCPHDR_ACK))
1023 tcp_event_ack_sent(sk, tcp_skb_pcount(skb));
1024
1025 if (skb->len != tcp_header_size) {
1026 tcp_event_data_sent(tp, sk);
1027 tp->data_segs_out += tcp_skb_pcount(skb);
1028 }
1029
1030 if (after(tcb->end_seq, tp->snd_nxt) || tcb->seq == tcb->end_seq)
1031 TCP_ADD_STATS(sock_net(sk), TCP_MIB_OUTSEGS,
1032 tcp_skb_pcount(skb));
1033
1034 tp->segs_out += tcp_skb_pcount(skb);
1035 /* OK, its time to fill skb_shinfo(skb)->gso_{segs|size} */
1036 skb_shinfo(skb)->gso_segs = tcp_skb_pcount(skb);
1037 skb_shinfo(skb)->gso_size = tcp_skb_mss(skb);
1038
1039 /* Our usage of tstamp should remain private */
1040 skb->tstamp.tv64 = 0;
1041
1042 /* Cleanup our debris for IP stacks */
1043 memset(skb->cb, 0, max(sizeof(struct inet_skb_parm),
1044 sizeof(struct inet6_skb_parm)));
1045
1046 err = icsk->icsk_af_ops->queue_xmit(sk, skb, &inet->cork.fl);
1047
1048 if (likely(err <= 0))
1049 return err;
1050
1051 tcp_enter_cwr(sk);
1052
1053 return net_xmit_eval(err);
1054 }
1055
1056 /* This routine just queues the buffer for sending.
1057 *
1058 * NOTE: probe0 timer is not checked, do not forget tcp_push_pending_frames,
1059 * otherwise socket can stall.
1060 */
1061 static void tcp_queue_skb(struct sock *sk, struct sk_buff *skb)
1062 {
1063 struct tcp_sock *tp = tcp_sk(sk);
1064
1065 /* Advance write_seq and place onto the write_queue. */
1066 tp->write_seq = TCP_SKB_CB(skb)->end_seq;
1067 __skb_header_release(skb);
1068 tcp_add_write_queue_tail(sk, skb);
1069 sk->sk_wmem_queued += skb->truesize;
1070 sk_mem_charge(sk, skb->truesize);
1071 }
1072
1073 /* Initialize TSO segments for a packet. */
1074 static void tcp_set_skb_tso_segs(struct sk_buff *skb, unsigned int mss_now)
1075 {
1076 if (skb->len <= mss_now || skb->ip_summed == CHECKSUM_NONE) {
1077 /* Avoid the costly divide in the normal
1078 * non-TSO case.
1079 */
1080 tcp_skb_pcount_set(skb, 1);
1081 TCP_SKB_CB(skb)->tcp_gso_size = 0;
1082 } else {
1083 tcp_skb_pcount_set(skb, DIV_ROUND_UP(skb->len, mss_now));
1084 TCP_SKB_CB(skb)->tcp_gso_size = mss_now;
1085 }
1086 }
1087
1088 /* When a modification to fackets out becomes necessary, we need to check
1089 * skb is counted to fackets_out or not.
1090 */
1091 static void tcp_adjust_fackets_out(struct sock *sk, const struct sk_buff *skb,
1092 int decr)
1093 {
1094 struct tcp_sock *tp = tcp_sk(sk);
1095
1096 if (!tp->sacked_out || tcp_is_reno(tp))
1097 return;
1098
1099 if (after(tcp_highest_sack_seq(tp), TCP_SKB_CB(skb)->seq))
1100 tp->fackets_out -= decr;
1101 }
1102
1103 /* Pcount in the middle of the write queue got changed, we need to do various
1104 * tweaks to fix counters
1105 */
1106 static void tcp_adjust_pcount(struct sock *sk, const struct sk_buff *skb, int decr)
1107 {
1108 struct tcp_sock *tp = tcp_sk(sk);
1109
1110 tp->packets_out -= decr;
1111
1112 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
1113 tp->sacked_out -= decr;
1114 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS)
1115 tp->retrans_out -= decr;
1116 if (TCP_SKB_CB(skb)->sacked & TCPCB_LOST)
1117 tp->lost_out -= decr;
1118
1119 /* Reno case is special. Sigh... */
1120 if (tcp_is_reno(tp) && decr > 0)
1121 tp->sacked_out -= min_t(u32, tp->sacked_out, decr);
1122
1123 tcp_adjust_fackets_out(sk, skb, decr);
1124
1125 if (tp->lost_skb_hint &&
1126 before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(tp->lost_skb_hint)->seq) &&
1127 (tcp_is_fack(tp) || (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)))
1128 tp->lost_cnt_hint -= decr;
1129
1130 tcp_verify_left_out(tp);
1131 }
1132
1133 static bool tcp_has_tx_tstamp(const struct sk_buff *skb)
1134 {
1135 return TCP_SKB_CB(skb)->txstamp_ack ||
1136 (skb_shinfo(skb)->tx_flags & SKBTX_ANY_TSTAMP);
1137 }
1138
1139 static void tcp_fragment_tstamp(struct sk_buff *skb, struct sk_buff *skb2)
1140 {
1141 struct skb_shared_info *shinfo = skb_shinfo(skb);
1142
1143 if (unlikely(tcp_has_tx_tstamp(skb)) &&
1144 !before(shinfo->tskey, TCP_SKB_CB(skb2)->seq)) {
1145 struct skb_shared_info *shinfo2 = skb_shinfo(skb2);
1146 u8 tsflags = shinfo->tx_flags & SKBTX_ANY_TSTAMP;
1147
1148 shinfo->tx_flags &= ~tsflags;
1149 shinfo2->tx_flags |= tsflags;
1150 swap(shinfo->tskey, shinfo2->tskey);
1151 TCP_SKB_CB(skb2)->txstamp_ack = TCP_SKB_CB(skb)->txstamp_ack;
1152 TCP_SKB_CB(skb)->txstamp_ack = 0;
1153 }
1154 }
1155
1156 static void tcp_skb_fragment_eor(struct sk_buff *skb, struct sk_buff *skb2)
1157 {
1158 TCP_SKB_CB(skb2)->eor = TCP_SKB_CB(skb)->eor;
1159 TCP_SKB_CB(skb)->eor = 0;
1160 }
1161
1162 /* Function to create two new TCP segments. Shrinks the given segment
1163 * to the specified size and appends a new segment with the rest of the
1164 * packet to the list. This won't be called frequently, I hope.
1165 * Remember, these are still headerless SKBs at this point.
1166 */
1167 int tcp_fragment(struct sock *sk, struct sk_buff *skb, u32 len,
1168 unsigned int mss_now, gfp_t gfp)
1169 {
1170 struct tcp_sock *tp = tcp_sk(sk);
1171 struct sk_buff *buff;
1172 int nsize, old_factor;
1173 int nlen;
1174 u8 flags;
1175
1176 if (WARN_ON(len > skb->len))
1177 return -EINVAL;
1178
1179 nsize = skb_headlen(skb) - len;
1180 if (nsize < 0)
1181 nsize = 0;
1182
1183 if (skb_unclone(skb, gfp))
1184 return -ENOMEM;
1185
1186 /* Get a new skb... force flag on. */
1187 buff = sk_stream_alloc_skb(sk, nsize, gfp, true);
1188 if (!buff)
1189 return -ENOMEM; /* We'll just try again later. */
1190
1191 sk->sk_wmem_queued += buff->truesize;
1192 sk_mem_charge(sk, buff->truesize);
1193 nlen = skb->len - len - nsize;
1194 buff->truesize += nlen;
1195 skb->truesize -= nlen;
1196
1197 /* Correct the sequence numbers. */
1198 TCP_SKB_CB(buff)->seq = TCP_SKB_CB(skb)->seq + len;
1199 TCP_SKB_CB(buff)->end_seq = TCP_SKB_CB(skb)->end_seq;
1200 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(buff)->seq;
1201
1202 /* PSH and FIN should only be set in the second packet. */
1203 flags = TCP_SKB_CB(skb)->tcp_flags;
1204 TCP_SKB_CB(skb)->tcp_flags = flags & ~(TCPHDR_FIN | TCPHDR_PSH);
1205 TCP_SKB_CB(buff)->tcp_flags = flags;
1206 TCP_SKB_CB(buff)->sacked = TCP_SKB_CB(skb)->sacked;
1207 tcp_skb_fragment_eor(skb, buff);
1208
1209 if (!skb_shinfo(skb)->nr_frags && skb->ip_summed != CHECKSUM_PARTIAL) {
1210 /* Copy and checksum data tail into the new buffer. */
1211 buff->csum = csum_partial_copy_nocheck(skb->data + len,
1212 skb_put(buff, nsize),
1213 nsize, 0);
1214
1215 skb_trim(skb, len);
1216
1217 skb->csum = csum_block_sub(skb->csum, buff->csum, len);
1218 } else {
1219 skb->ip_summed = CHECKSUM_PARTIAL;
1220 skb_split(skb, buff, len);
1221 }
1222
1223 buff->ip_summed = skb->ip_summed;
1224
1225 buff->tstamp = skb->tstamp;
1226 tcp_fragment_tstamp(skb, buff);
1227
1228 old_factor = tcp_skb_pcount(skb);
1229
1230 /* Fix up tso_factor for both original and new SKB. */
1231 tcp_set_skb_tso_segs(skb, mss_now);
1232 tcp_set_skb_tso_segs(buff, mss_now);
1233
1234 /* Update delivered info for the new segment */
1235 TCP_SKB_CB(buff)->tx = TCP_SKB_CB(skb)->tx;
1236
1237 /* If this packet has been sent out already, we must
1238 * adjust the various packet counters.
1239 */
1240 if (!before(tp->snd_nxt, TCP_SKB_CB(buff)->end_seq)) {
1241 int diff = old_factor - tcp_skb_pcount(skb) -
1242 tcp_skb_pcount(buff);
1243
1244 if (diff)
1245 tcp_adjust_pcount(sk, skb, diff);
1246 }
1247
1248 /* Link BUFF into the send queue. */
1249 __skb_header_release(buff);
1250 tcp_insert_write_queue_after(skb, buff, sk);
1251
1252 return 0;
1253 }
1254
1255 /* This is similar to __pskb_pull_head() (it will go to core/skbuff.c
1256 * eventually). The difference is that pulled data not copied, but
1257 * immediately discarded.
1258 */
1259 static void __pskb_trim_head(struct sk_buff *skb, int len)
1260 {
1261 struct skb_shared_info *shinfo;
1262 int i, k, eat;
1263
1264 eat = min_t(int, len, skb_headlen(skb));
1265 if (eat) {
1266 __skb_pull(skb, eat);
1267 len -= eat;
1268 if (!len)
1269 return;
1270 }
1271 eat = len;
1272 k = 0;
1273 shinfo = skb_shinfo(skb);
1274 for (i = 0; i < shinfo->nr_frags; i++) {
1275 int size = skb_frag_size(&shinfo->frags[i]);
1276
1277 if (size <= eat) {
1278 skb_frag_unref(skb, i);
1279 eat -= size;
1280 } else {
1281 shinfo->frags[k] = shinfo->frags[i];
1282 if (eat) {
1283 shinfo->frags[k].page_offset += eat;
1284 skb_frag_size_sub(&shinfo->frags[k], eat);
1285 eat = 0;
1286 }
1287 k++;
1288 }
1289 }
1290 shinfo->nr_frags = k;
1291
1292 skb_reset_tail_pointer(skb);
1293 skb->data_len -= len;
1294 skb->len = skb->data_len;
1295 }
1296
1297 /* Remove acked data from a packet in the transmit queue. */
1298 int tcp_trim_head(struct sock *sk, struct sk_buff *skb, u32 len)
1299 {
1300 if (skb_unclone(skb, GFP_ATOMIC))
1301 return -ENOMEM;
1302
1303 __pskb_trim_head(skb, len);
1304
1305 TCP_SKB_CB(skb)->seq += len;
1306 skb->ip_summed = CHECKSUM_PARTIAL;
1307
1308 skb->truesize -= len;
1309 sk->sk_wmem_queued -= len;
1310 sk_mem_uncharge(sk, len);
1311 sock_set_flag(sk, SOCK_QUEUE_SHRUNK);
1312
1313 /* Any change of skb->len requires recalculation of tso factor. */
1314 if (tcp_skb_pcount(skb) > 1)
1315 tcp_set_skb_tso_segs(skb, tcp_skb_mss(skb));
1316
1317 return 0;
1318 }
1319
1320 /* Calculate MSS not accounting any TCP options. */
1321 static inline int __tcp_mtu_to_mss(struct sock *sk, int pmtu)
1322 {
1323 const struct tcp_sock *tp = tcp_sk(sk);
1324 const struct inet_connection_sock *icsk = inet_csk(sk);
1325 int mss_now;
1326
1327 /* Calculate base mss without TCP options:
1328 It is MMS_S - sizeof(tcphdr) of rfc1122
1329 */
1330 mss_now = pmtu - icsk->icsk_af_ops->net_header_len - sizeof(struct tcphdr);
1331
1332 /* IPv6 adds a frag_hdr in case RTAX_FEATURE_ALLFRAG is set */
1333 if (icsk->icsk_af_ops->net_frag_header_len) {
1334 const struct dst_entry *dst = __sk_dst_get(sk);
1335
1336 if (dst && dst_allfrag(dst))
1337 mss_now -= icsk->icsk_af_ops->net_frag_header_len;
1338 }
1339
1340 /* Clamp it (mss_clamp does not include tcp options) */
1341 if (mss_now > tp->rx_opt.mss_clamp)
1342 mss_now = tp->rx_opt.mss_clamp;
1343
1344 /* Now subtract optional transport overhead */
1345 mss_now -= icsk->icsk_ext_hdr_len;
1346
1347 /* Then reserve room for full set of TCP options and 8 bytes of data */
1348 if (mss_now < 48)
1349 mss_now = 48;
1350 return mss_now;
1351 }
1352
1353 /* Calculate MSS. Not accounting for SACKs here. */
1354 int tcp_mtu_to_mss(struct sock *sk, int pmtu)
1355 {
1356 /* Subtract TCP options size, not including SACKs */
1357 return __tcp_mtu_to_mss(sk, pmtu) -
1358 (tcp_sk(sk)->tcp_header_len - sizeof(struct tcphdr));
1359 }
1360
1361 /* Inverse of above */
1362 int tcp_mss_to_mtu(struct sock *sk, int mss)
1363 {
1364 const struct tcp_sock *tp = tcp_sk(sk);
1365 const struct inet_connection_sock *icsk = inet_csk(sk);
1366 int mtu;
1367
1368 mtu = mss +
1369 tp->tcp_header_len +
1370 icsk->icsk_ext_hdr_len +
1371 icsk->icsk_af_ops->net_header_len;
1372
1373 /* IPv6 adds a frag_hdr in case RTAX_FEATURE_ALLFRAG is set */
1374 if (icsk->icsk_af_ops->net_frag_header_len) {
1375 const struct dst_entry *dst = __sk_dst_get(sk);
1376
1377 if (dst && dst_allfrag(dst))
1378 mtu += icsk->icsk_af_ops->net_frag_header_len;
1379 }
1380 return mtu;
1381 }
1382 EXPORT_SYMBOL(tcp_mss_to_mtu);
1383
1384 /* MTU probing init per socket */
1385 void tcp_mtup_init(struct sock *sk)
1386 {
1387 struct tcp_sock *tp = tcp_sk(sk);
1388 struct inet_connection_sock *icsk = inet_csk(sk);
1389 struct net *net = sock_net(sk);
1390
1391 icsk->icsk_mtup.enabled = net->ipv4.sysctl_tcp_mtu_probing > 1;
1392 icsk->icsk_mtup.search_high = tp->rx_opt.mss_clamp + sizeof(struct tcphdr) +
1393 icsk->icsk_af_ops->net_header_len;
1394 icsk->icsk_mtup.search_low = tcp_mss_to_mtu(sk, net->ipv4.sysctl_tcp_base_mss);
1395 icsk->icsk_mtup.probe_size = 0;
1396 if (icsk->icsk_mtup.enabled)
1397 icsk->icsk_mtup.probe_timestamp = tcp_time_stamp;
1398 }
1399 EXPORT_SYMBOL(tcp_mtup_init);
1400
1401 /* This function synchronize snd mss to current pmtu/exthdr set.
1402
1403 tp->rx_opt.user_mss is mss set by user by TCP_MAXSEG. It does NOT counts
1404 for TCP options, but includes only bare TCP header.
1405
1406 tp->rx_opt.mss_clamp is mss negotiated at connection setup.
1407 It is minimum of user_mss and mss received with SYN.
1408 It also does not include TCP options.
1409
1410 inet_csk(sk)->icsk_pmtu_cookie is last pmtu, seen by this function.
1411
1412 tp->mss_cache is current effective sending mss, including
1413 all tcp options except for SACKs. It is evaluated,
1414 taking into account current pmtu, but never exceeds
1415 tp->rx_opt.mss_clamp.
1416
1417 NOTE1. rfc1122 clearly states that advertised MSS
1418 DOES NOT include either tcp or ip options.
1419
1420 NOTE2. inet_csk(sk)->icsk_pmtu_cookie and tp->mss_cache
1421 are READ ONLY outside this function. --ANK (980731)
1422 */
1423 unsigned int tcp_sync_mss(struct sock *sk, u32 pmtu)
1424 {
1425 struct tcp_sock *tp = tcp_sk(sk);
1426 struct inet_connection_sock *icsk = inet_csk(sk);
1427 int mss_now;
1428
1429 if (icsk->icsk_mtup.search_high > pmtu)
1430 icsk->icsk_mtup.search_high = pmtu;
1431
1432 mss_now = tcp_mtu_to_mss(sk, pmtu);
1433 mss_now = tcp_bound_to_half_wnd(tp, mss_now);
1434
1435 /* And store cached results */
1436 icsk->icsk_pmtu_cookie = pmtu;
1437 if (icsk->icsk_mtup.enabled)
1438 mss_now = min(mss_now, tcp_mtu_to_mss(sk, icsk->icsk_mtup.search_low));
1439 tp->mss_cache = mss_now;
1440
1441 return mss_now;
1442 }
1443 EXPORT_SYMBOL(tcp_sync_mss);
1444
1445 /* Compute the current effective MSS, taking SACKs and IP options,
1446 * and even PMTU discovery events into account.
1447 */
1448 unsigned int tcp_current_mss(struct sock *sk)
1449 {
1450 const struct tcp_sock *tp = tcp_sk(sk);
1451 const struct dst_entry *dst = __sk_dst_get(sk);
1452 u32 mss_now;
1453 unsigned int header_len;
1454 struct tcp_out_options opts;
1455 struct tcp_md5sig_key *md5;
1456
1457 mss_now = tp->mss_cache;
1458
1459 if (dst) {
1460 u32 mtu = dst_mtu(dst);
1461 if (mtu != inet_csk(sk)->icsk_pmtu_cookie)
1462 mss_now = tcp_sync_mss(sk, mtu);
1463 }
1464
1465 header_len = tcp_established_options(sk, NULL, &opts, &md5) +
1466 sizeof(struct tcphdr);
1467 /* The mss_cache is sized based on tp->tcp_header_len, which assumes
1468 * some common options. If this is an odd packet (because we have SACK
1469 * blocks etc) then our calculated header_len will be different, and
1470 * we have to adjust mss_now correspondingly */
1471 if (header_len != tp->tcp_header_len) {
1472 int delta = (int) header_len - tp->tcp_header_len;
1473 mss_now -= delta;
1474 }
1475
1476 return mss_now;
1477 }
1478
1479 /* RFC2861, slow part. Adjust cwnd, after it was not full during one rto.
1480 * As additional protections, we do not touch cwnd in retransmission phases,
1481 * and if application hit its sndbuf limit recently.
1482 */
1483 static void tcp_cwnd_application_limited(struct sock *sk)
1484 {
1485 struct tcp_sock *tp = tcp_sk(sk);
1486
1487 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Open &&
1488 sk->sk_socket && !test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
1489 /* Limited by application or receiver window. */
1490 u32 init_win = tcp_init_cwnd(tp, __sk_dst_get(sk));
1491 u32 win_used = max(tp->snd_cwnd_used, init_win);
1492 if (win_used < tp->snd_cwnd) {
1493 tp->snd_ssthresh = tcp_current_ssthresh(sk);
1494 tp->snd_cwnd = (tp->snd_cwnd + win_used) >> 1;
1495 }
1496 tp->snd_cwnd_used = 0;
1497 }
1498 tp->snd_cwnd_stamp = tcp_time_stamp;
1499 }
1500
1501 static void tcp_cwnd_validate(struct sock *sk, bool is_cwnd_limited)
1502 {
1503 struct tcp_sock *tp = tcp_sk(sk);
1504
1505 /* Track the maximum number of outstanding packets in each
1506 * window, and remember whether we were cwnd-limited then.
1507 */
1508 if (!before(tp->snd_una, tp->max_packets_seq) ||
1509 tp->packets_out > tp->max_packets_out) {
1510 tp->max_packets_out = tp->packets_out;
1511 tp->max_packets_seq = tp->snd_nxt;
1512 tp->is_cwnd_limited = is_cwnd_limited;
1513 }
1514
1515 if (tcp_is_cwnd_limited(sk)) {
1516 /* Network is feed fully. */
1517 tp->snd_cwnd_used = 0;
1518 tp->snd_cwnd_stamp = tcp_time_stamp;
1519 } else {
1520 /* Network starves. */
1521 if (tp->packets_out > tp->snd_cwnd_used)
1522 tp->snd_cwnd_used = tp->packets_out;
1523
1524 if (sysctl_tcp_slow_start_after_idle &&
1525 (s32)(tcp_time_stamp - tp->snd_cwnd_stamp) >= inet_csk(sk)->icsk_rto)
1526 tcp_cwnd_application_limited(sk);
1527
1528 /* The following conditions together indicate the starvation
1529 * is caused by insufficient sender buffer:
1530 * 1) just sent some data (see tcp_write_xmit)
1531 * 2) not cwnd limited (this else condition)
1532 * 3) no more data to send (null tcp_send_head )
1533 * 4) application is hitting buffer limit (SOCK_NOSPACE)
1534 */
1535 if (!tcp_send_head(sk) && sk->sk_socket &&
1536 test_bit(SOCK_NOSPACE, &sk->sk_socket->flags) &&
1537 (1 << sk->sk_state) & (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT))
1538 tcp_chrono_start(sk, TCP_CHRONO_SNDBUF_LIMITED);
1539 }
1540 }
1541
1542 /* Minshall's variant of the Nagle send check. */
1543 static bool tcp_minshall_check(const struct tcp_sock *tp)
1544 {
1545 return after(tp->snd_sml, tp->snd_una) &&
1546 !after(tp->snd_sml, tp->snd_nxt);
1547 }
1548
1549 /* Update snd_sml if this skb is under mss
1550 * Note that a TSO packet might end with a sub-mss segment
1551 * The test is really :
1552 * if ((skb->len % mss) != 0)
1553 * tp->snd_sml = TCP_SKB_CB(skb)->end_seq;
1554 * But we can avoid doing the divide again given we already have
1555 * skb_pcount = skb->len / mss_now
1556 */
1557 static void tcp_minshall_update(struct tcp_sock *tp, unsigned int mss_now,
1558 const struct sk_buff *skb)
1559 {
1560 if (skb->len < tcp_skb_pcount(skb) * mss_now)
1561 tp->snd_sml = TCP_SKB_CB(skb)->end_seq;
1562 }
1563
1564 /* Return false, if packet can be sent now without violation Nagle's rules:
1565 * 1. It is full sized. (provided by caller in %partial bool)
1566 * 2. Or it contains FIN. (already checked by caller)
1567 * 3. Or TCP_CORK is not set, and TCP_NODELAY is set.
1568 * 4. Or TCP_CORK is not set, and all sent packets are ACKed.
1569 * With Minshall's modification: all sent small packets are ACKed.
1570 */
1571 static bool tcp_nagle_check(bool partial, const struct tcp_sock *tp,
1572 int nonagle)
1573 {
1574 return partial &&
1575 ((nonagle & TCP_NAGLE_CORK) ||
1576 (!nonagle && tp->packets_out && tcp_minshall_check(tp)));
1577 }
1578
1579 /* Return how many segs we'd like on a TSO packet,
1580 * to send one TSO packet per ms
1581 */
1582 u32 tcp_tso_autosize(const struct sock *sk, unsigned int mss_now,
1583 int min_tso_segs)
1584 {
1585 u32 bytes, segs;
1586
1587 bytes = min(sk->sk_pacing_rate >> 10,
1588 sk->sk_gso_max_size - 1 - MAX_TCP_HEADER);
1589
1590 /* Goal is to send at least one packet per ms,
1591 * not one big TSO packet every 100 ms.
1592 * This preserves ACK clocking and is consistent
1593 * with tcp_tso_should_defer() heuristic.
1594 */
1595 segs = max_t(u32, bytes / mss_now, min_tso_segs);
1596
1597 return min_t(u32, segs, sk->sk_gso_max_segs);
1598 }
1599 EXPORT_SYMBOL(tcp_tso_autosize);
1600
1601 /* Return the number of segments we want in the skb we are transmitting.
1602 * See if congestion control module wants to decide; otherwise, autosize.
1603 */
1604 static u32 tcp_tso_segs(struct sock *sk, unsigned int mss_now)
1605 {
1606 const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
1607 u32 tso_segs = ca_ops->tso_segs_goal ? ca_ops->tso_segs_goal(sk) : 0;
1608
1609 return tso_segs ? :
1610 tcp_tso_autosize(sk, mss_now, sysctl_tcp_min_tso_segs);
1611 }
1612
1613 /* Returns the portion of skb which can be sent right away */
1614 static unsigned int tcp_mss_split_point(const struct sock *sk,
1615 const struct sk_buff *skb,
1616 unsigned int mss_now,
1617 unsigned int max_segs,
1618 int nonagle)
1619 {
1620 const struct tcp_sock *tp = tcp_sk(sk);
1621 u32 partial, needed, window, max_len;
1622
1623 window = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq;
1624 max_len = mss_now * max_segs;
1625
1626 if (likely(max_len <= window && skb != tcp_write_queue_tail(sk)))
1627 return max_len;
1628
1629 needed = min(skb->len, window);
1630
1631 if (max_len <= needed)
1632 return max_len;
1633
1634 partial = needed % mss_now;
1635 /* If last segment is not a full MSS, check if Nagle rules allow us
1636 * to include this last segment in this skb.
1637 * Otherwise, we'll split the skb at last MSS boundary
1638 */
1639 if (tcp_nagle_check(partial != 0, tp, nonagle))
1640 return needed - partial;
1641
1642 return needed;
1643 }
1644
1645 /* Can at least one segment of SKB be sent right now, according to the
1646 * congestion window rules? If so, return how many segments are allowed.
1647 */
1648 static inline unsigned int tcp_cwnd_test(const struct tcp_sock *tp,
1649 const struct sk_buff *skb)
1650 {
1651 u32 in_flight, cwnd, halfcwnd;
1652
1653 /* Don't be strict about the congestion window for the final FIN. */
1654 if ((TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) &&
1655 tcp_skb_pcount(skb) == 1)
1656 return 1;
1657
1658 in_flight = tcp_packets_in_flight(tp);
1659 cwnd = tp->snd_cwnd;
1660 if (in_flight >= cwnd)
1661 return 0;
1662
1663 /* For better scheduling, ensure we have at least
1664 * 2 GSO packets in flight.
1665 */
1666 halfcwnd = max(cwnd >> 1, 1U);
1667 return min(halfcwnd, cwnd - in_flight);
1668 }
1669
1670 /* Initialize TSO state of a skb.
1671 * This must be invoked the first time we consider transmitting
1672 * SKB onto the wire.
1673 */
1674 static int tcp_init_tso_segs(struct sk_buff *skb, unsigned int mss_now)
1675 {
1676 int tso_segs = tcp_skb_pcount(skb);
1677
1678 if (!tso_segs || (tso_segs > 1 && tcp_skb_mss(skb) != mss_now)) {
1679 tcp_set_skb_tso_segs(skb, mss_now);
1680 tso_segs = tcp_skb_pcount(skb);
1681 }
1682 return tso_segs;
1683 }
1684
1685
1686 /* Return true if the Nagle test allows this packet to be
1687 * sent now.
1688 */
1689 static inline bool tcp_nagle_test(const struct tcp_sock *tp, const struct sk_buff *skb,
1690 unsigned int cur_mss, int nonagle)
1691 {
1692 /* Nagle rule does not apply to frames, which sit in the middle of the
1693 * write_queue (they have no chances to get new data).
1694 *
1695 * This is implemented in the callers, where they modify the 'nonagle'
1696 * argument based upon the location of SKB in the send queue.
1697 */
1698 if (nonagle & TCP_NAGLE_PUSH)
1699 return true;
1700
1701 /* Don't use the nagle rule for urgent data (or for the final FIN). */
1702 if (tcp_urg_mode(tp) || (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN))
1703 return true;
1704
1705 if (!tcp_nagle_check(skb->len < cur_mss, tp, nonagle))
1706 return true;
1707
1708 return false;
1709 }
1710
1711 /* Does at least the first segment of SKB fit into the send window? */
1712 static bool tcp_snd_wnd_test(const struct tcp_sock *tp,
1713 const struct sk_buff *skb,
1714 unsigned int cur_mss)
1715 {
1716 u32 end_seq = TCP_SKB_CB(skb)->end_seq;
1717
1718 if (skb->len > cur_mss)
1719 end_seq = TCP_SKB_CB(skb)->seq + cur_mss;
1720
1721 return !after(end_seq, tcp_wnd_end(tp));
1722 }
1723
1724 /* This checks if the data bearing packet SKB (usually tcp_send_head(sk))
1725 * should be put on the wire right now. If so, it returns the number of
1726 * packets allowed by the congestion window.
1727 */
1728 static unsigned int tcp_snd_test(const struct sock *sk, struct sk_buff *skb,
1729 unsigned int cur_mss, int nonagle)
1730 {
1731 const struct tcp_sock *tp = tcp_sk(sk);
1732 unsigned int cwnd_quota;
1733
1734 tcp_init_tso_segs(skb, cur_mss);
1735
1736 if (!tcp_nagle_test(tp, skb, cur_mss, nonagle))
1737 return 0;
1738
1739 cwnd_quota = tcp_cwnd_test(tp, skb);
1740 if (cwnd_quota && !tcp_snd_wnd_test(tp, skb, cur_mss))
1741 cwnd_quota = 0;
1742
1743 return cwnd_quota;
1744 }
1745
1746 /* Test if sending is allowed right now. */
1747 bool tcp_may_send_now(struct sock *sk)
1748 {
1749 const struct tcp_sock *tp = tcp_sk(sk);
1750 struct sk_buff *skb = tcp_send_head(sk);
1751
1752 return skb &&
1753 tcp_snd_test(sk, skb, tcp_current_mss(sk),
1754 (tcp_skb_is_last(sk, skb) ?
1755 tp->nonagle : TCP_NAGLE_PUSH));
1756 }
1757
1758 /* Trim TSO SKB to LEN bytes, put the remaining data into a new packet
1759 * which is put after SKB on the list. It is very much like
1760 * tcp_fragment() except that it may make several kinds of assumptions
1761 * in order to speed up the splitting operation. In particular, we
1762 * know that all the data is in scatter-gather pages, and that the
1763 * packet has never been sent out before (and thus is not cloned).
1764 */
1765 static int tso_fragment(struct sock *sk, struct sk_buff *skb, unsigned int len,
1766 unsigned int mss_now, gfp_t gfp)
1767 {
1768 struct sk_buff *buff;
1769 int nlen = skb->len - len;
1770 u8 flags;
1771
1772 /* All of a TSO frame must be composed of paged data. */
1773 if (skb->len != skb->data_len)
1774 return tcp_fragment(sk, skb, len, mss_now, gfp);
1775
1776 buff = sk_stream_alloc_skb(sk, 0, gfp, true);
1777 if (unlikely(!buff))
1778 return -ENOMEM;
1779
1780 sk->sk_wmem_queued += buff->truesize;
1781 sk_mem_charge(sk, buff->truesize);
1782 buff->truesize += nlen;
1783 skb->truesize -= nlen;
1784
1785 /* Correct the sequence numbers. */
1786 TCP_SKB_CB(buff)->seq = TCP_SKB_CB(skb)->seq + len;
1787 TCP_SKB_CB(buff)->end_seq = TCP_SKB_CB(skb)->end_seq;
1788 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(buff)->seq;
1789
1790 /* PSH and FIN should only be set in the second packet. */
1791 flags = TCP_SKB_CB(skb)->tcp_flags;
1792 TCP_SKB_CB(skb)->tcp_flags = flags & ~(TCPHDR_FIN | TCPHDR_PSH);
1793 TCP_SKB_CB(buff)->tcp_flags = flags;
1794
1795 /* This packet was never sent out yet, so no SACK bits. */
1796 TCP_SKB_CB(buff)->sacked = 0;
1797
1798 tcp_skb_fragment_eor(skb, buff);
1799
1800 buff->ip_summed = skb->ip_summed = CHECKSUM_PARTIAL;
1801 skb_split(skb, buff, len);
1802 tcp_fragment_tstamp(skb, buff);
1803
1804 /* Fix up tso_factor for both original and new SKB. */
1805 tcp_set_skb_tso_segs(skb, mss_now);
1806 tcp_set_skb_tso_segs(buff, mss_now);
1807
1808 /* Link BUFF into the send queue. */
1809 __skb_header_release(buff);
1810 tcp_insert_write_queue_after(skb, buff, sk);
1811
1812 return 0;
1813 }
1814
1815 /* Try to defer sending, if possible, in order to minimize the amount
1816 * of TSO splitting we do. View it as a kind of TSO Nagle test.
1817 *
1818 * This algorithm is from John Heffner.
1819 */
1820 static bool tcp_tso_should_defer(struct sock *sk, struct sk_buff *skb,
1821 bool *is_cwnd_limited, u32 max_segs)
1822 {
1823 const struct inet_connection_sock *icsk = inet_csk(sk);
1824 u32 age, send_win, cong_win, limit, in_flight;
1825 struct tcp_sock *tp = tcp_sk(sk);
1826 struct skb_mstamp now;
1827 struct sk_buff *head;
1828 int win_divisor;
1829
1830 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
1831 goto send_now;
1832
1833 if (icsk->icsk_ca_state >= TCP_CA_Recovery)
1834 goto send_now;
1835
1836 /* Avoid bursty behavior by allowing defer
1837 * only if the last write was recent.
1838 */
1839 if ((s32)(tcp_time_stamp - tp->lsndtime) > 0)
1840 goto send_now;
1841
1842 in_flight = tcp_packets_in_flight(tp);
1843
1844 BUG_ON(tcp_skb_pcount(skb) <= 1 || (tp->snd_cwnd <= in_flight));
1845
1846 send_win = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq;
1847
1848 /* From in_flight test above, we know that cwnd > in_flight. */
1849 cong_win = (tp->snd_cwnd - in_flight) * tp->mss_cache;
1850
1851 limit = min(send_win, cong_win);
1852
1853 /* If a full-sized TSO skb can be sent, do it. */
1854 if (limit >= max_segs * tp->mss_cache)
1855 goto send_now;
1856
1857 /* Middle in queue won't get any more data, full sendable already? */
1858 if ((skb != tcp_write_queue_tail(sk)) && (limit >= skb->len))
1859 goto send_now;
1860
1861 win_divisor = ACCESS_ONCE(sysctl_tcp_tso_win_divisor);
1862 if (win_divisor) {
1863 u32 chunk = min(tp->snd_wnd, tp->snd_cwnd * tp->mss_cache);
1864
1865 /* If at least some fraction of a window is available,
1866 * just use it.
1867 */
1868 chunk /= win_divisor;
1869 if (limit >= chunk)
1870 goto send_now;
1871 } else {
1872 /* Different approach, try not to defer past a single
1873 * ACK. Receiver should ACK every other full sized
1874 * frame, so if we have space for more than 3 frames
1875 * then send now.
1876 */
1877 if (limit > tcp_max_tso_deferred_mss(tp) * tp->mss_cache)
1878 goto send_now;
1879 }
1880
1881 head = tcp_write_queue_head(sk);
1882 skb_mstamp_get(&now);
1883 age = skb_mstamp_us_delta(&now, &head->skb_mstamp);
1884 /* If next ACK is likely to come too late (half srtt), do not defer */
1885 if (age < (tp->srtt_us >> 4))
1886 goto send_now;
1887
1888 /* Ok, it looks like it is advisable to defer. */
1889
1890 if (cong_win < send_win && cong_win <= skb->len)
1891 *is_cwnd_limited = true;
1892
1893 return true;
1894
1895 send_now:
1896 return false;
1897 }
1898
1899 static inline void tcp_mtu_check_reprobe(struct sock *sk)
1900 {
1901 struct inet_connection_sock *icsk = inet_csk(sk);
1902 struct tcp_sock *tp = tcp_sk(sk);
1903 struct net *net = sock_net(sk);
1904 u32 interval;
1905 s32 delta;
1906
1907 interval = net->ipv4.sysctl_tcp_probe_interval;
1908 delta = tcp_time_stamp - icsk->icsk_mtup.probe_timestamp;
1909 if (unlikely(delta >= interval * HZ)) {
1910 int mss = tcp_current_mss(sk);
1911
1912 /* Update current search range */
1913 icsk->icsk_mtup.probe_size = 0;
1914 icsk->icsk_mtup.search_high = tp->rx_opt.mss_clamp +
1915 sizeof(struct tcphdr) +
1916 icsk->icsk_af_ops->net_header_len;
1917 icsk->icsk_mtup.search_low = tcp_mss_to_mtu(sk, mss);
1918
1919 /* Update probe time stamp */
1920 icsk->icsk_mtup.probe_timestamp = tcp_time_stamp;
1921 }
1922 }
1923
1924 /* Create a new MTU probe if we are ready.
1925 * MTU probe is regularly attempting to increase the path MTU by
1926 * deliberately sending larger packets. This discovers routing
1927 * changes resulting in larger path MTUs.
1928 *
1929 * Returns 0 if we should wait to probe (no cwnd available),
1930 * 1 if a probe was sent,
1931 * -1 otherwise
1932 */
1933 static int tcp_mtu_probe(struct sock *sk)
1934 {
1935 struct inet_connection_sock *icsk = inet_csk(sk);
1936 struct tcp_sock *tp = tcp_sk(sk);
1937 struct sk_buff *skb, *nskb, *next;
1938 struct net *net = sock_net(sk);
1939 int probe_size;
1940 int size_needed;
1941 int copy, len;
1942 int mss_now;
1943 int interval;
1944
1945 /* Not currently probing/verifying,
1946 * not in recovery,
1947 * have enough cwnd, and
1948 * not SACKing (the variable headers throw things off)
1949 */
1950 if (likely(!icsk->icsk_mtup.enabled ||
1951 icsk->icsk_mtup.probe_size ||
1952 inet_csk(sk)->icsk_ca_state != TCP_CA_Open ||
1953 tp->snd_cwnd < 11 ||
1954 tp->rx_opt.num_sacks || tp->rx_opt.dsack))
1955 return -1;
1956
1957 /* Use binary search for probe_size between tcp_mss_base,
1958 * and current mss_clamp. if (search_high - search_low)
1959 * smaller than a threshold, backoff from probing.
1960 */
1961 mss_now = tcp_current_mss(sk);
1962 probe_size = tcp_mtu_to_mss(sk, (icsk->icsk_mtup.search_high +
1963 icsk->icsk_mtup.search_low) >> 1);
1964 size_needed = probe_size + (tp->reordering + 1) * tp->mss_cache;
1965 interval = icsk->icsk_mtup.search_high - icsk->icsk_mtup.search_low;
1966 /* When misfortune happens, we are reprobing actively,
1967 * and then reprobe timer has expired. We stick with current
1968 * probing process by not resetting search range to its orignal.
1969 */
1970 if (probe_size > tcp_mtu_to_mss(sk, icsk->icsk_mtup.search_high) ||
1971 interval < net->ipv4.sysctl_tcp_probe_threshold) {
1972 /* Check whether enough time has elaplased for
1973 * another round of probing.
1974 */
1975 tcp_mtu_check_reprobe(sk);
1976 return -1;
1977 }
1978
1979 /* Have enough data in the send queue to probe? */
1980 if (tp->write_seq - tp->snd_nxt < size_needed)
1981 return -1;
1982
1983 if (tp->snd_wnd < size_needed)
1984 return -1;
1985 if (after(tp->snd_nxt + size_needed, tcp_wnd_end(tp)))
1986 return 0;
1987
1988 /* Do we need to wait to drain cwnd? With none in flight, don't stall */
1989 if (tcp_packets_in_flight(tp) + 2 > tp->snd_cwnd) {
1990 if (!tcp_packets_in_flight(tp))
1991 return -1;
1992 else
1993 return 0;
1994 }
1995
1996 /* We're allowed to probe. Build it now. */
1997 nskb = sk_stream_alloc_skb(sk, probe_size, GFP_ATOMIC, false);
1998 if (!nskb)
1999 return -1;
2000 sk->sk_wmem_queued += nskb->truesize;
2001 sk_mem_charge(sk, nskb->truesize);
2002
2003 skb = tcp_send_head(sk);
2004
2005 TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(skb)->seq;
2006 TCP_SKB_CB(nskb)->end_seq = TCP_SKB_CB(skb)->seq + probe_size;
2007 TCP_SKB_CB(nskb)->tcp_flags = TCPHDR_ACK;
2008 TCP_SKB_CB(nskb)->sacked = 0;
2009 nskb->csum = 0;
2010 nskb->ip_summed = skb->ip_summed;
2011
2012 tcp_insert_write_queue_before(nskb, skb, sk);
2013
2014 len = 0;
2015 tcp_for_write_queue_from_safe(skb, next, sk) {
2016 copy = min_t(int, skb->len, probe_size - len);
2017 if (nskb->ip_summed) {
2018 skb_copy_bits(skb, 0, skb_put(nskb, copy), copy);
2019 } else {
2020 __wsum csum = skb_copy_and_csum_bits(skb, 0,
2021 skb_put(nskb, copy),
2022 copy, 0);
2023 nskb->csum = csum_block_add(nskb->csum, csum, len);
2024 }
2025
2026 if (skb->len <= copy) {
2027 /* We've eaten all the data from this skb.
2028 * Throw it away. */
2029 TCP_SKB_CB(nskb)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags;
2030 tcp_unlink_write_queue(skb, sk);
2031 sk_wmem_free_skb(sk, skb);
2032 } else {
2033 TCP_SKB_CB(nskb)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags &
2034 ~(TCPHDR_FIN|TCPHDR_PSH);
2035 if (!skb_shinfo(skb)->nr_frags) {
2036 skb_pull(skb, copy);
2037 if (skb->ip_summed != CHECKSUM_PARTIAL)
2038 skb->csum = csum_partial(skb->data,
2039 skb->len, 0);
2040 } else {
2041 __pskb_trim_head(skb, copy);
2042 tcp_set_skb_tso_segs(skb, mss_now);
2043 }
2044 TCP_SKB_CB(skb)->seq += copy;
2045 }
2046
2047 len += copy;
2048
2049 if (len >= probe_size)
2050 break;
2051 }
2052 tcp_init_tso_segs(nskb, nskb->len);
2053
2054 /* We're ready to send. If this fails, the probe will
2055 * be resegmented into mss-sized pieces by tcp_write_xmit().
2056 */
2057 if (!tcp_transmit_skb(sk, nskb, 1, GFP_ATOMIC)) {
2058 /* Decrement cwnd here because we are sending
2059 * effectively two packets. */
2060 tp->snd_cwnd--;
2061 tcp_event_new_data_sent(sk, nskb);
2062
2063 icsk->icsk_mtup.probe_size = tcp_mss_to_mtu(sk, nskb->len);
2064 tp->mtu_probe.probe_seq_start = TCP_SKB_CB(nskb)->seq;
2065 tp->mtu_probe.probe_seq_end = TCP_SKB_CB(nskb)->end_seq;
2066
2067 return 1;
2068 }
2069
2070 return -1;
2071 }
2072
2073 /* TCP Small Queues :
2074 * Control number of packets in qdisc/devices to two packets / or ~1 ms.
2075 * (These limits are doubled for retransmits)
2076 * This allows for :
2077 * - better RTT estimation and ACK scheduling
2078 * - faster recovery
2079 * - high rates
2080 * Alas, some drivers / subsystems require a fair amount
2081 * of queued bytes to ensure line rate.
2082 * One example is wifi aggregation (802.11 AMPDU)
2083 */
2084 static bool tcp_small_queue_check(struct sock *sk, const struct sk_buff *skb,
2085 unsigned int factor)
2086 {
2087 unsigned int limit;
2088
2089 limit = max(2 * skb->truesize, sk->sk_pacing_rate >> 10);
2090 limit = min_t(u32, limit, sysctl_tcp_limit_output_bytes);
2091 limit <<= factor;
2092
2093 if (atomic_read(&sk->sk_wmem_alloc) > limit) {
2094 /* Always send the 1st or 2nd skb in write queue.
2095 * No need to wait for TX completion to call us back,
2096 * after softirq/tasklet schedule.
2097 * This helps when TX completions are delayed too much.
2098 */
2099 if (skb == sk->sk_write_queue.next ||
2100 skb->prev == sk->sk_write_queue.next)
2101 return false;
2102
2103 set_bit(TSQ_THROTTLED, &sk->sk_tsq_flags);
2104 /* It is possible TX completion already happened
2105 * before we set TSQ_THROTTLED, so we must
2106 * test again the condition.
2107 */
2108 smp_mb__after_atomic();
2109 if (atomic_read(&sk->sk_wmem_alloc) > limit)
2110 return true;
2111 }
2112 return false;
2113 }
2114
2115 static void tcp_chrono_set(struct tcp_sock *tp, const enum tcp_chrono new)
2116 {
2117 const u32 now = tcp_time_stamp;
2118
2119 if (tp->chrono_type > TCP_CHRONO_UNSPEC)
2120 tp->chrono_stat[tp->chrono_type - 1] += now - tp->chrono_start;
2121 tp->chrono_start = now;
2122 tp->chrono_type = new;
2123 }
2124
2125 void tcp_chrono_start(struct sock *sk, const enum tcp_chrono type)
2126 {
2127 struct tcp_sock *tp = tcp_sk(sk);
2128
2129 /* If there are multiple conditions worthy of tracking in a
2130 * chronograph then the highest priority enum takes precedence
2131 * over the other conditions. So that if something "more interesting"
2132 * starts happening, stop the previous chrono and start a new one.
2133 */
2134 if (type > tp->chrono_type)
2135 tcp_chrono_set(tp, type);
2136 }
2137
2138 void tcp_chrono_stop(struct sock *sk, const enum tcp_chrono type)
2139 {
2140 struct tcp_sock *tp = tcp_sk(sk);
2141
2142
2143 /* There are multiple conditions worthy of tracking in a
2144 * chronograph, so that the highest priority enum takes
2145 * precedence over the other conditions (see tcp_chrono_start).
2146 * If a condition stops, we only stop chrono tracking if
2147 * it's the "most interesting" or current chrono we are
2148 * tracking and starts busy chrono if we have pending data.
2149 */
2150 if (tcp_write_queue_empty(sk))
2151 tcp_chrono_set(tp, TCP_CHRONO_UNSPEC);
2152 else if (type == tp->chrono_type)
2153 tcp_chrono_set(tp, TCP_CHRONO_BUSY);
2154 }
2155
2156 /* This routine writes packets to the network. It advances the
2157 * send_head. This happens as incoming acks open up the remote
2158 * window for us.
2159 *
2160 * LARGESEND note: !tcp_urg_mode is overkill, only frames between
2161 * snd_up-64k-mss .. snd_up cannot be large. However, taking into
2162 * account rare use of URG, this is not a big flaw.
2163 *
2164 * Send at most one packet when push_one > 0. Temporarily ignore
2165 * cwnd limit to force at most one packet out when push_one == 2.
2166
2167 * Returns true, if no segments are in flight and we have queued segments,
2168 * but cannot send anything now because of SWS or another problem.
2169 */
2170 static bool tcp_write_xmit(struct sock *sk, unsigned int mss_now, int nonagle,
2171 int push_one, gfp_t gfp)
2172 {
2173 struct tcp_sock *tp = tcp_sk(sk);
2174 struct sk_buff *skb;
2175 unsigned int tso_segs, sent_pkts;
2176 int cwnd_quota;
2177 int result;
2178 bool is_cwnd_limited = false, is_rwnd_limited = false;
2179 u32 max_segs;
2180
2181 sent_pkts = 0;
2182
2183 if (!push_one) {
2184 /* Do MTU probing. */
2185 result = tcp_mtu_probe(sk);
2186 if (!result) {
2187 return false;
2188 } else if (result > 0) {
2189 sent_pkts = 1;
2190 }
2191 }
2192
2193 max_segs = tcp_tso_segs(sk, mss_now);
2194 while ((skb = tcp_send_head(sk))) {
2195 unsigned int limit;
2196
2197 tso_segs = tcp_init_tso_segs(skb, mss_now);
2198 BUG_ON(!tso_segs);
2199
2200 if (unlikely(tp->repair) && tp->repair_queue == TCP_SEND_QUEUE) {
2201 /* "skb_mstamp" is used as a start point for the retransmit timer */
2202 skb_mstamp_get(&skb->skb_mstamp);
2203 goto repair; /* Skip network transmission */
2204 }
2205
2206 cwnd_quota = tcp_cwnd_test(tp, skb);
2207 if (!cwnd_quota) {
2208 if (push_one == 2)
2209 /* Force out a loss probe pkt. */
2210 cwnd_quota = 1;
2211 else
2212 break;
2213 }
2214
2215 if (unlikely(!tcp_snd_wnd_test(tp, skb, mss_now))) {
2216 is_rwnd_limited = true;
2217 break;
2218 }
2219
2220 if (tso_segs == 1) {
2221 if (unlikely(!tcp_nagle_test(tp, skb, mss_now,
2222 (tcp_skb_is_last(sk, skb) ?
2223 nonagle : TCP_NAGLE_PUSH))))
2224 break;
2225 } else {
2226 if (!push_one &&
2227 tcp_tso_should_defer(sk, skb, &is_cwnd_limited,
2228 max_segs))
2229 break;
2230 }
2231
2232 limit = mss_now;
2233 if (tso_segs > 1 && !tcp_urg_mode(tp))
2234 limit = tcp_mss_split_point(sk, skb, mss_now,
2235 min_t(unsigned int,
2236 cwnd_quota,
2237 max_segs),
2238 nonagle);
2239
2240 if (skb->len > limit &&
2241 unlikely(tso_fragment(sk, skb, limit, mss_now, gfp)))
2242 break;
2243
2244 if (test_bit(TCP_TSQ_DEFERRED, &sk->sk_tsq_flags))
2245 clear_bit(TCP_TSQ_DEFERRED, &sk->sk_tsq_flags);
2246 if (tcp_small_queue_check(sk, skb, 0))
2247 break;
2248
2249 if (unlikely(tcp_transmit_skb(sk, skb, 1, gfp)))
2250 break;
2251
2252 repair:
2253 /* Advance the send_head. This one is sent out.
2254 * This call will increment packets_out.
2255 */
2256 tcp_event_new_data_sent(sk, skb);
2257
2258 tcp_minshall_update(tp, mss_now, skb);
2259 sent_pkts += tcp_skb_pcount(skb);
2260
2261 if (push_one)
2262 break;
2263 }
2264
2265 if (is_rwnd_limited)
2266 tcp_chrono_start(sk, TCP_CHRONO_RWND_LIMITED);
2267 else
2268 tcp_chrono_stop(sk, TCP_CHRONO_RWND_LIMITED);
2269
2270 if (likely(sent_pkts)) {
2271 if (tcp_in_cwnd_reduction(sk))
2272 tp->prr_out += sent_pkts;
2273
2274 /* Send one loss probe per tail loss episode. */
2275 if (push_one != 2)
2276 tcp_schedule_loss_probe(sk);
2277 is_cwnd_limited |= (tcp_packets_in_flight(tp) >= tp->snd_cwnd);
2278 tcp_cwnd_validate(sk, is_cwnd_limited);
2279 return false;
2280 }
2281 return !tp->packets_out && tcp_send_head(sk);
2282 }
2283
2284 bool tcp_schedule_loss_probe(struct sock *sk)
2285 {
2286 struct inet_connection_sock *icsk = inet_csk(sk);
2287 struct tcp_sock *tp = tcp_sk(sk);
2288 u32 timeout, tlp_time_stamp, rto_time_stamp;
2289 u32 rtt = usecs_to_jiffies(tp->srtt_us >> 3);
2290
2291 if (WARN_ON(icsk->icsk_pending == ICSK_TIME_EARLY_RETRANS))
2292 return false;
2293 /* No consecutive loss probes. */
2294 if (WARN_ON(icsk->icsk_pending == ICSK_TIME_LOSS_PROBE)) {
2295 tcp_rearm_rto(sk);
2296 return false;
2297 }
2298 /* Don't do any loss probe on a Fast Open connection before 3WHS
2299 * finishes.
2300 */
2301 if (tp->fastopen_rsk)
2302 return false;
2303
2304 /* TLP is only scheduled when next timer event is RTO. */
2305 if (icsk->icsk_pending != ICSK_TIME_RETRANS)
2306 return false;
2307
2308 /* Schedule a loss probe in 2*RTT for SACK capable connections
2309 * in Open state, that are either limited by cwnd or application.
2310 */
2311 if (sysctl_tcp_early_retrans < 3 || !tp->packets_out ||
2312 !tcp_is_sack(tp) || inet_csk(sk)->icsk_ca_state != TCP_CA_Open)
2313 return false;
2314
2315 if ((tp->snd_cwnd > tcp_packets_in_flight(tp)) &&
2316 tcp_send_head(sk))
2317 return false;
2318
2319 /* Probe timeout is at least 1.5*rtt + TCP_DELACK_MAX to account
2320 * for delayed ack when there's one outstanding packet. If no RTT
2321 * sample is available then probe after TCP_TIMEOUT_INIT.
2322 */
2323 timeout = rtt << 1 ? : TCP_TIMEOUT_INIT;
2324 if (tp->packets_out == 1)
2325 timeout = max_t(u32, timeout,
2326 (rtt + (rtt >> 1) + TCP_DELACK_MAX));
2327 timeout = max_t(u32, timeout, msecs_to_jiffies(10));
2328
2329 /* If RTO is shorter, just schedule TLP in its place. */
2330 tlp_time_stamp = tcp_time_stamp + timeout;
2331 rto_time_stamp = (u32)inet_csk(sk)->icsk_timeout;
2332 if ((s32)(tlp_time_stamp - rto_time_stamp) > 0) {
2333 s32 delta = rto_time_stamp - tcp_time_stamp;
2334 if (delta > 0)
2335 timeout = delta;
2336 }
2337
2338 inet_csk_reset_xmit_timer(sk, ICSK_TIME_LOSS_PROBE, timeout,
2339 TCP_RTO_MAX);
2340 return true;
2341 }
2342
2343 /* Thanks to skb fast clones, we can detect if a prior transmit of
2344 * a packet is still in a qdisc or driver queue.
2345 * In this case, there is very little point doing a retransmit !
2346 */
2347 static bool skb_still_in_host_queue(const struct sock *sk,
2348 const struct sk_buff *skb)
2349 {
2350 if (unlikely(skb_fclone_busy(sk, skb))) {
2351 NET_INC_STATS(sock_net(sk),
2352 LINUX_MIB_TCPSPURIOUS_RTX_HOSTQUEUES);
2353 return true;
2354 }
2355 return false;
2356 }
2357
2358 /* When probe timeout (PTO) fires, try send a new segment if possible, else
2359 * retransmit the last segment.
2360 */
2361 void tcp_send_loss_probe(struct sock *sk)
2362 {
2363 struct tcp_sock *tp = tcp_sk(sk);
2364 struct sk_buff *skb;
2365 int pcount;
2366 int mss = tcp_current_mss(sk);
2367
2368 skb = tcp_send_head(sk);
2369 if (skb) {
2370 if (tcp_snd_wnd_test(tp, skb, mss)) {
2371 pcount = tp->packets_out;
2372 tcp_write_xmit(sk, mss, TCP_NAGLE_OFF, 2, GFP_ATOMIC);
2373 if (tp->packets_out > pcount)
2374 goto probe_sent;
2375 goto rearm_timer;
2376 }
2377 skb = tcp_write_queue_prev(sk, skb);
2378 } else {
2379 skb = tcp_write_queue_tail(sk);
2380 }
2381
2382 /* At most one outstanding TLP retransmission. */
2383 if (tp->tlp_high_seq)
2384 goto rearm_timer;
2385
2386 /* Retransmit last segment. */
2387 if (WARN_ON(!skb))
2388 goto rearm_timer;
2389
2390 if (skb_still_in_host_queue(sk, skb))
2391 goto rearm_timer;
2392
2393 pcount = tcp_skb_pcount(skb);
2394 if (WARN_ON(!pcount))
2395 goto rearm_timer;
2396
2397 if ((pcount > 1) && (skb->len > (pcount - 1) * mss)) {
2398 if (unlikely(tcp_fragment(sk, skb, (pcount - 1) * mss, mss,
2399 GFP_ATOMIC)))
2400 goto rearm_timer;
2401 skb = tcp_write_queue_next(sk, skb);
2402 }
2403
2404 if (WARN_ON(!skb || !tcp_skb_pcount(skb)))
2405 goto rearm_timer;
2406
2407 if (__tcp_retransmit_skb(sk, skb, 1))
2408 goto rearm_timer;
2409
2410 /* Record snd_nxt for loss detection. */
2411 tp->tlp_high_seq = tp->snd_nxt;
2412
2413 probe_sent:
2414 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPLOSSPROBES);
2415 /* Reset s.t. tcp_rearm_rto will restart timer from now */
2416 inet_csk(sk)->icsk_pending = 0;
2417 rearm_timer:
2418 tcp_rearm_rto(sk);
2419 }
2420
2421 /* Push out any pending frames which were held back due to
2422 * TCP_CORK or attempt at coalescing tiny packets.
2423 * The socket must be locked by the caller.
2424 */
2425 void __tcp_push_pending_frames(struct sock *sk, unsigned int cur_mss,
2426 int nonagle)
2427 {
2428 /* If we are closed, the bytes will have to remain here.
2429 * In time closedown will finish, we empty the write queue and
2430 * all will be happy.
2431 */
2432 if (unlikely(sk->sk_state == TCP_CLOSE))
2433 return;
2434
2435 if (tcp_write_xmit(sk, cur_mss, nonagle, 0,
2436 sk_gfp_mask(sk, GFP_ATOMIC)))
2437 tcp_check_probe_timer(sk);
2438 }
2439
2440 /* Send _single_ skb sitting at the send head. This function requires
2441 * true push pending frames to setup probe timer etc.
2442 */
2443 void tcp_push_one(struct sock *sk, unsigned int mss_now)
2444 {
2445 struct sk_buff *skb = tcp_send_head(sk);
2446
2447 BUG_ON(!skb || skb->len < mss_now);
2448
2449 tcp_write_xmit(sk, mss_now, TCP_NAGLE_PUSH, 1, sk->sk_allocation);
2450 }
2451
2452 /* This function returns the amount that we can raise the
2453 * usable window based on the following constraints
2454 *
2455 * 1. The window can never be shrunk once it is offered (RFC 793)
2456 * 2. We limit memory per socket
2457 *
2458 * RFC 1122:
2459 * "the suggested [SWS] avoidance algorithm for the receiver is to keep
2460 * RECV.NEXT + RCV.WIN fixed until:
2461 * RCV.BUFF - RCV.USER - RCV.WINDOW >= min(1/2 RCV.BUFF, MSS)"
2462 *
2463 * i.e. don't raise the right edge of the window until you can raise
2464 * it at least MSS bytes.
2465 *
2466 * Unfortunately, the recommended algorithm breaks header prediction,
2467 * since header prediction assumes th->window stays fixed.
2468 *
2469 * Strictly speaking, keeping th->window fixed violates the receiver
2470 * side SWS prevention criteria. The problem is that under this rule
2471 * a stream of single byte packets will cause the right side of the
2472 * window to always advance by a single byte.
2473 *
2474 * Of course, if the sender implements sender side SWS prevention
2475 * then this will not be a problem.
2476 *
2477 * BSD seems to make the following compromise:
2478 *
2479 * If the free space is less than the 1/4 of the maximum
2480 * space available and the free space is less than 1/2 mss,
2481 * then set the window to 0.
2482 * [ Actually, bsd uses MSS and 1/4 of maximal _window_ ]
2483 * Otherwise, just prevent the window from shrinking
2484 * and from being larger than the largest representable value.
2485 *
2486 * This prevents incremental opening of the window in the regime
2487 * where TCP is limited by the speed of the reader side taking
2488 * data out of the TCP receive queue. It does nothing about
2489 * those cases where the window is constrained on the sender side
2490 * because the pipeline is full.
2491 *
2492 * BSD also seems to "accidentally" limit itself to windows that are a
2493 * multiple of MSS, at least until the free space gets quite small.
2494 * This would appear to be a side effect of the mbuf implementation.
2495 * Combining these two algorithms results in the observed behavior
2496 * of having a fixed window size at almost all times.
2497 *
2498 * Below we obtain similar behavior by forcing the offered window to
2499 * a multiple of the mss when it is feasible to do so.
2500 *
2501 * Note, we don't "adjust" for TIMESTAMP or SACK option bytes.
2502 * Regular options like TIMESTAMP are taken into account.
2503 */
2504 u32 __tcp_select_window(struct sock *sk)
2505 {
2506 struct inet_connection_sock *icsk = inet_csk(sk);
2507 struct tcp_sock *tp = tcp_sk(sk);
2508 /* MSS for the peer's data. Previous versions used mss_clamp
2509 * here. I don't know if the value based on our guesses
2510 * of peer's MSS is better for the performance. It's more correct
2511 * but may be worse for the performance because of rcv_mss
2512 * fluctuations. --SAW 1998/11/1
2513 */
2514 int mss = icsk->icsk_ack.rcv_mss;
2515 int free_space = tcp_space(sk);
2516 int allowed_space = tcp_full_space(sk);
2517 int full_space = min_t(int, tp->window_clamp, allowed_space);
2518 int window;
2519
2520 if (mss > full_space)
2521 mss = full_space;
2522
2523 if (free_space < (full_space >> 1)) {
2524 icsk->icsk_ack.quick = 0;
2525
2526 if (tcp_under_memory_pressure(sk))
2527 tp->rcv_ssthresh = min(tp->rcv_ssthresh,
2528 4U * tp->advmss);
2529
2530 /* free_space might become our new window, make sure we don't
2531 * increase it due to wscale.
2532 */
2533 free_space = round_down(free_space, 1 << tp->rx_opt.rcv_wscale);
2534
2535 /* if free space is less than mss estimate, or is below 1/16th
2536 * of the maximum allowed, try to move to zero-window, else
2537 * tcp_clamp_window() will grow rcv buf up to tcp_rmem[2], and
2538 * new incoming data is dropped due to memory limits.
2539 * With large window, mss test triggers way too late in order
2540 * to announce zero window in time before rmem limit kicks in.
2541 */
2542 if (free_space < (allowed_space >> 4) || free_space < mss)
2543 return 0;
2544 }
2545
2546 if (free_space > tp->rcv_ssthresh)
2547 free_space = tp->rcv_ssthresh;
2548
2549 /* Don't do rounding if we are using window scaling, since the
2550 * scaled window will not line up with the MSS boundary anyway.
2551 */
2552 window = tp->rcv_wnd;
2553 if (tp->rx_opt.rcv_wscale) {
2554 window = free_space;
2555
2556 /* Advertise enough space so that it won't get scaled away.
2557 * Import case: prevent zero window announcement if
2558 * 1<<rcv_wscale > mss.
2559 */
2560 if (((window >> tp->rx_opt.rcv_wscale) << tp->rx_opt.rcv_wscale) != window)
2561 window = (((window >> tp->rx_opt.rcv_wscale) + 1)
2562 << tp->rx_opt.rcv_wscale);
2563 } else {
2564 /* Get the largest window that is a nice multiple of mss.
2565 * Window clamp already applied above.
2566 * If our current window offering is within 1 mss of the
2567 * free space we just keep it. This prevents the divide
2568 * and multiply from happening most of the time.
2569 * We also don't do any window rounding when the free space
2570 * is too small.
2571 */
2572 if (window <= free_space - mss || window > free_space)
2573 window = (free_space / mss) * mss;
2574 else if (mss == full_space &&
2575 free_space > window + (full_space >> 1))
2576 window = free_space;
2577 }
2578
2579 return window;
2580 }
2581
2582 void tcp_skb_collapse_tstamp(struct sk_buff *skb,
2583 const struct sk_buff *next_skb)
2584 {
2585 if (unlikely(tcp_has_tx_tstamp(next_skb))) {
2586 const struct skb_shared_info *next_shinfo =
2587 skb_shinfo(next_skb);
2588 struct skb_shared_info *shinfo = skb_shinfo(skb);
2589
2590 shinfo->tx_flags |= next_shinfo->tx_flags & SKBTX_ANY_TSTAMP;
2591 shinfo->tskey = next_shinfo->tskey;
2592 TCP_SKB_CB(skb)->txstamp_ack |=
2593 TCP_SKB_CB(next_skb)->txstamp_ack;
2594 }
2595 }
2596
2597 /* Collapses two adjacent SKB's during retransmission. */
2598 static bool tcp_collapse_retrans(struct sock *sk, struct sk_buff *skb)
2599 {
2600 struct tcp_sock *tp = tcp_sk(sk);
2601 struct sk_buff *next_skb = tcp_write_queue_next(sk, skb);
2602 int skb_size, next_skb_size;
2603
2604 skb_size = skb->len;
2605 next_skb_size = next_skb->len;
2606
2607 BUG_ON(tcp_skb_pcount(skb) != 1 || tcp_skb_pcount(next_skb) != 1);
2608
2609 if (next_skb_size) {
2610 if (next_skb_size <= skb_availroom(skb))
2611 skb_copy_bits(next_skb, 0, skb_put(skb, next_skb_size),
2612 next_skb_size);
2613 else if (!skb_shift(skb, next_skb, next_skb_size))
2614 return false;
2615 }
2616 tcp_highest_sack_combine(sk, next_skb, skb);
2617
2618 tcp_unlink_write_queue(next_skb, sk);
2619
2620 if (next_skb->ip_summed == CHECKSUM_PARTIAL)
2621 skb->ip_summed = CHECKSUM_PARTIAL;
2622
2623 if (skb->ip_summed != CHECKSUM_PARTIAL)
2624 skb->csum = csum_block_add(skb->csum, next_skb->csum, skb_size);
2625
2626 /* Update sequence range on original skb. */
2627 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(next_skb)->end_seq;
2628
2629 /* Merge over control information. This moves PSH/FIN etc. over */
2630 TCP_SKB_CB(skb)->tcp_flags |= TCP_SKB_CB(next_skb)->tcp_flags;
2631
2632 /* All done, get rid of second SKB and account for it so
2633 * packet counting does not break.
2634 */
2635 TCP_SKB_CB(skb)->sacked |= TCP_SKB_CB(next_skb)->sacked & TCPCB_EVER_RETRANS;
2636 TCP_SKB_CB(skb)->eor = TCP_SKB_CB(next_skb)->eor;
2637
2638 /* changed transmit queue under us so clear hints */
2639 tcp_clear_retrans_hints_partial(tp);
2640 if (next_skb == tp->retransmit_skb_hint)
2641 tp->retransmit_skb_hint = skb;
2642
2643 tcp_adjust_pcount(sk, next_skb, tcp_skb_pcount(next_skb));
2644
2645 tcp_skb_collapse_tstamp(skb, next_skb);
2646
2647 sk_wmem_free_skb(sk, next_skb);
2648 return true;
2649 }
2650
2651 /* Check if coalescing SKBs is legal. */
2652 static bool tcp_can_collapse(const struct sock *sk, const struct sk_buff *skb)
2653 {
2654 if (tcp_skb_pcount(skb) > 1)
2655 return false;
2656 if (skb_cloned(skb))
2657 return false;
2658 if (skb == tcp_send_head(sk))
2659 return false;
2660 /* Some heuristics for collapsing over SACK'd could be invented */
2661 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
2662 return false;
2663
2664 return true;
2665 }
2666
2667 /* Collapse packets in the retransmit queue to make to create
2668 * less packets on the wire. This is only done on retransmission.
2669 */
2670 static void tcp_retrans_try_collapse(struct sock *sk, struct sk_buff *to,
2671 int space)
2672 {
2673 struct tcp_sock *tp = tcp_sk(sk);
2674 struct sk_buff *skb = to, *tmp;
2675 bool first = true;
2676
2677 if (!sysctl_tcp_retrans_collapse)
2678 return;
2679 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)
2680 return;
2681
2682 tcp_for_write_queue_from_safe(skb, tmp, sk) {
2683 if (!tcp_can_collapse(sk, skb))
2684 break;
2685
2686 if (!tcp_skb_can_collapse_to(to))
2687 break;
2688
2689 space -= skb->len;
2690
2691 if (first) {
2692 first = false;
2693 continue;
2694 }
2695
2696 if (space < 0)
2697 break;
2698
2699 if (after(TCP_SKB_CB(skb)->end_seq, tcp_wnd_end(tp)))
2700 break;
2701
2702 if (!tcp_collapse_retrans(sk, to))
2703 break;
2704 }
2705 }
2706
2707 /* This retransmits one SKB. Policy decisions and retransmit queue
2708 * state updates are done by the caller. Returns non-zero if an
2709 * error occurred which prevented the send.
2710 */
2711 int __tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs)
2712 {
2713 struct inet_connection_sock *icsk = inet_csk(sk);
2714 struct tcp_sock *tp = tcp_sk(sk);
2715 unsigned int cur_mss;
2716 int diff, len, err;
2717
2718
2719 /* Inconclusive MTU probe */
2720 if (icsk->icsk_mtup.probe_size)
2721 icsk->icsk_mtup.probe_size = 0;
2722
2723 /* Do not sent more than we queued. 1/4 is reserved for possible
2724 * copying overhead: fragmentation, tunneling, mangling etc.
2725 */
2726 if (atomic_read(&sk->sk_wmem_alloc) >
2727 min_t(u32, sk->sk_wmem_queued + (sk->sk_wmem_queued >> 2),
2728 sk->sk_sndbuf))
2729 return -EAGAIN;
2730
2731 if (skb_still_in_host_queue(sk, skb))
2732 return -EBUSY;
2733
2734 if (before(TCP_SKB_CB(skb)->seq, tp->snd_una)) {
2735 if (before(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
2736 BUG();
2737 if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq))
2738 return -ENOMEM;
2739 }
2740
2741 if (inet_csk(sk)->icsk_af_ops->rebuild_header(sk))
2742 return -EHOSTUNREACH; /* Routing failure or similar. */
2743
2744 cur_mss = tcp_current_mss(sk);
2745
2746 /* If receiver has shrunk his window, and skb is out of
2747 * new window, do not retransmit it. The exception is the
2748 * case, when window is shrunk to zero. In this case
2749 * our retransmit serves as a zero window probe.
2750 */
2751 if (!before(TCP_SKB_CB(skb)->seq, tcp_wnd_end(tp)) &&
2752 TCP_SKB_CB(skb)->seq != tp->snd_una)
2753 return -EAGAIN;
2754
2755 len = cur_mss * segs;
2756 if (skb->len > len) {
2757 if (tcp_fragment(sk, skb, len, cur_mss, GFP_ATOMIC))
2758 return -ENOMEM; /* We'll try again later. */
2759 } else {
2760 if (skb_unclone(skb, GFP_ATOMIC))
2761 return -ENOMEM;
2762
2763 diff = tcp_skb_pcount(skb);
2764 tcp_set_skb_tso_segs(skb, cur_mss);
2765 diff -= tcp_skb_pcount(skb);
2766 if (diff)
2767 tcp_adjust_pcount(sk, skb, diff);
2768 if (skb->len < cur_mss)
2769 tcp_retrans_try_collapse(sk, skb, cur_mss);
2770 }
2771
2772 /* RFC3168, section 6.1.1.1. ECN fallback */
2773 if ((TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN_ECN) == TCPHDR_SYN_ECN)
2774 tcp_ecn_clear_syn(sk, skb);
2775
2776 /* make sure skb->data is aligned on arches that require it
2777 * and check if ack-trimming & collapsing extended the headroom
2778 * beyond what csum_start can cover.
2779 */
2780 if (unlikely((NET_IP_ALIGN && ((unsigned long)skb->data & 3)) ||
2781 skb_headroom(skb) >= 0xFFFF)) {
2782 struct sk_buff *nskb;
2783
2784 skb_mstamp_get(&skb->skb_mstamp);
2785 nskb = __pskb_copy(skb, MAX_TCP_HEADER, GFP_ATOMIC);
2786 err = nskb ? tcp_transmit_skb(sk, nskb, 0, GFP_ATOMIC) :
2787 -ENOBUFS;
2788 } else {
2789 err = tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC);
2790 }
2791
2792 if (likely(!err)) {
2793 segs = tcp_skb_pcount(skb);
2794
2795 TCP_SKB_CB(skb)->sacked |= TCPCB_EVER_RETRANS;
2796 /* Update global TCP statistics. */
2797 TCP_ADD_STATS(sock_net(sk), TCP_MIB_RETRANSSEGS, segs);
2798 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)
2799 __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSYNRETRANS);
2800 tp->total_retrans += segs;
2801 }
2802 return err;
2803 }
2804
2805 int tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs)
2806 {
2807 struct tcp_sock *tp = tcp_sk(sk);
2808 int err = __tcp_retransmit_skb(sk, skb, segs);
2809
2810 if (err == 0) {
2811 #if FASTRETRANS_DEBUG > 0
2812 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
2813 net_dbg_ratelimited("retrans_out leaked\n");
2814 }
2815 #endif
2816 TCP_SKB_CB(skb)->sacked |= TCPCB_RETRANS;
2817 tp->retrans_out += tcp_skb_pcount(skb);
2818
2819 /* Save stamp of the first retransmit. */
2820 if (!tp->retrans_stamp)
2821 tp->retrans_stamp = tcp_skb_timestamp(skb);
2822
2823 } else if (err != -EBUSY) {
2824 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRETRANSFAIL);
2825 }
2826
2827 if (tp->undo_retrans < 0)
2828 tp->undo_retrans = 0;
2829 tp->undo_retrans += tcp_skb_pcount(skb);
2830 return err;
2831 }
2832
2833 /* Check if we forward retransmits are possible in the current
2834 * window/congestion state.
2835 */
2836 static bool tcp_can_forward_retransmit(struct sock *sk)
2837 {
2838 const struct inet_connection_sock *icsk = inet_csk(sk);
2839 const struct tcp_sock *tp = tcp_sk(sk);
2840
2841 /* Forward retransmissions are possible only during Recovery. */
2842 if (icsk->icsk_ca_state != TCP_CA_Recovery)
2843 return false;
2844
2845 /* No forward retransmissions in Reno are possible. */
2846 if (tcp_is_reno(tp))
2847 return false;
2848
2849 /* Yeah, we have to make difficult choice between forward transmission
2850 * and retransmission... Both ways have their merits...
2851 *
2852 * For now we do not retransmit anything, while we have some new
2853 * segments to send. In the other cases, follow rule 3 for
2854 * NextSeg() specified in RFC3517.
2855 */
2856
2857 if (tcp_may_send_now(sk))
2858 return false;
2859
2860 return true;
2861 }
2862
2863 /* This gets called after a retransmit timeout, and the initially
2864 * retransmitted data is acknowledged. It tries to continue
2865 * resending the rest of the retransmit queue, until either
2866 * we've sent it all or the congestion window limit is reached.
2867 * If doing SACK, the first ACK which comes back for a timeout
2868 * based retransmit packet might feed us FACK information again.
2869 * If so, we use it to avoid unnecessarily retransmissions.
2870 */
2871 void tcp_xmit_retransmit_queue(struct sock *sk)
2872 {
2873 const struct inet_connection_sock *icsk = inet_csk(sk);
2874 struct tcp_sock *tp = tcp_sk(sk);
2875 struct sk_buff *skb;
2876 struct sk_buff *hole = NULL;
2877 u32 max_segs, last_lost;
2878 int mib_idx;
2879 int fwd_rexmitting = 0;
2880
2881 if (!tp->packets_out)
2882 return;
2883
2884 if (!tp->lost_out)
2885 tp->retransmit_high = tp->snd_una;
2886
2887 if (tp->retransmit_skb_hint) {
2888 skb = tp->retransmit_skb_hint;
2889 last_lost = TCP_SKB_CB(skb)->end_seq;
2890 if (after(last_lost, tp->retransmit_high))
2891 last_lost = tp->retransmit_high;
2892 } else {
2893 skb = tcp_write_queue_head(sk);
2894 last_lost = tp->snd_una;
2895 }
2896
2897 max_segs = tcp_tso_segs(sk, tcp_current_mss(sk));
2898 tcp_for_write_queue_from(skb, sk) {
2899 __u8 sacked;
2900 int segs;
2901
2902 if (skb == tcp_send_head(sk))
2903 break;
2904 /* we could do better than to assign each time */
2905 if (!hole)
2906 tp->retransmit_skb_hint = skb;
2907
2908 segs = tp->snd_cwnd - tcp_packets_in_flight(tp);
2909 if (segs <= 0)
2910 return;
2911 sacked = TCP_SKB_CB(skb)->sacked;
2912 /* In case tcp_shift_skb_data() have aggregated large skbs,
2913 * we need to make sure not sending too bigs TSO packets
2914 */
2915 segs = min_t(int, segs, max_segs);
2916
2917 if (fwd_rexmitting) {
2918 begin_fwd:
2919 if (!before(TCP_SKB_CB(skb)->seq, tcp_highest_sack_seq(tp)))
2920 break;
2921 mib_idx = LINUX_MIB_TCPFORWARDRETRANS;
2922
2923 } else if (!before(TCP_SKB_CB(skb)->seq, tp->retransmit_high)) {
2924 tp->retransmit_high = last_lost;
2925 if (!tcp_can_forward_retransmit(sk))
2926 break;
2927 /* Backtrack if necessary to non-L'ed skb */
2928 if (hole) {
2929 skb = hole;
2930 hole = NULL;
2931 }
2932 fwd_rexmitting = 1;
2933 goto begin_fwd;
2934
2935 } else if (!(sacked & TCPCB_LOST)) {
2936 if (!hole && !(sacked & (TCPCB_SACKED_RETRANS|TCPCB_SACKED_ACKED)))
2937 hole = skb;
2938 continue;
2939
2940 } else {
2941 last_lost = TCP_SKB_CB(skb)->end_seq;
2942 if (icsk->icsk_ca_state != TCP_CA_Loss)
2943 mib_idx = LINUX_MIB_TCPFASTRETRANS;
2944 else
2945 mib_idx = LINUX_MIB_TCPSLOWSTARTRETRANS;
2946 }
2947
2948 if (sacked & (TCPCB_SACKED_ACKED|TCPCB_SACKED_RETRANS))
2949 continue;
2950
2951 if (tcp_small_queue_check(sk, skb, 1))
2952 return;
2953
2954 if (tcp_retransmit_skb(sk, skb, segs))
2955 return;
2956
2957 NET_ADD_STATS(sock_net(sk), mib_idx, tcp_skb_pcount(skb));
2958
2959 if (tcp_in_cwnd_reduction(sk))
2960 tp->prr_out += tcp_skb_pcount(skb);
2961
2962 if (skb == tcp_write_queue_head(sk))
2963 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
2964 inet_csk(sk)->icsk_rto,
2965 TCP_RTO_MAX);
2966 }
2967 }
2968
2969 /* We allow to exceed memory limits for FIN packets to expedite
2970 * connection tear down and (memory) recovery.
2971 * Otherwise tcp_send_fin() could be tempted to either delay FIN
2972 * or even be forced to close flow without any FIN.
2973 * In general, we want to allow one skb per socket to avoid hangs
2974 * with edge trigger epoll()
2975 */
2976 void sk_forced_mem_schedule(struct sock *sk, int size)
2977 {
2978 int amt;
2979
2980 if (size <= sk->sk_forward_alloc)
2981 return;
2982 amt = sk_mem_pages(size);
2983 sk->sk_forward_alloc += amt * SK_MEM_QUANTUM;
2984 sk_memory_allocated_add(sk, amt);
2985
2986 if (mem_cgroup_sockets_enabled && sk->sk_memcg)
2987 mem_cgroup_charge_skmem(sk->sk_memcg, amt);
2988 }
2989
2990 /* Send a FIN. The caller locks the socket for us.
2991 * We should try to send a FIN packet really hard, but eventually give up.
2992 */
2993 void tcp_send_fin(struct sock *sk)
2994 {
2995 struct sk_buff *skb, *tskb = tcp_write_queue_tail(sk);
2996 struct tcp_sock *tp = tcp_sk(sk);
2997
2998 /* Optimization, tack on the FIN if we have one skb in write queue and
2999 * this skb was not yet sent, or we are under memory pressure.
3000 * Note: in the latter case, FIN packet will be sent after a timeout,
3001 * as TCP stack thinks it has already been transmitted.
3002 */
3003 if (tskb && (tcp_send_head(sk) || tcp_under_memory_pressure(sk))) {
3004 coalesce:
3005 TCP_SKB_CB(tskb)->tcp_flags |= TCPHDR_FIN;
3006 TCP_SKB_CB(tskb)->end_seq++;
3007 tp->write_seq++;
3008 if (!tcp_send_head(sk)) {
3009 /* This means tskb was already sent.
3010 * Pretend we included the FIN on previous transmit.
3011 * We need to set tp->snd_nxt to the value it would have
3012 * if FIN had been sent. This is because retransmit path
3013 * does not change tp->snd_nxt.
3014 */
3015 tp->snd_nxt++;
3016 return;
3017 }
3018 } else {
3019 skb = alloc_skb_fclone(MAX_TCP_HEADER, sk->sk_allocation);
3020 if (unlikely(!skb)) {
3021 if (tskb)
3022 goto coalesce;
3023 return;
3024 }
3025 skb_reserve(skb, MAX_TCP_HEADER);
3026 sk_forced_mem_schedule(sk, skb->truesize);
3027 /* FIN eats a sequence byte, write_seq advanced by tcp_queue_skb(). */
3028 tcp_init_nondata_skb(skb, tp->write_seq,
3029 TCPHDR_ACK | TCPHDR_FIN);
3030 tcp_queue_skb(sk, skb);
3031 }
3032 __tcp_push_pending_frames(sk, tcp_current_mss(sk), TCP_NAGLE_OFF);
3033 }
3034
3035 /* We get here when a process closes a file descriptor (either due to
3036 * an explicit close() or as a byproduct of exit()'ing) and there
3037 * was unread data in the receive queue. This behavior is recommended
3038 * by RFC 2525, section 2.17. -DaveM
3039 */
3040 void tcp_send_active_reset(struct sock *sk, gfp_t priority)
3041 {
3042 struct sk_buff *skb;
3043
3044 /* NOTE: No TCP options attached and we never retransmit this. */
3045 skb = alloc_skb(MAX_TCP_HEADER, priority);
3046 if (!skb) {
3047 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTFAILED);
3048 return;
3049 }
3050
3051 /* Reserve space for headers and prepare control bits. */
3052 skb_reserve(skb, MAX_TCP_HEADER);
3053 tcp_init_nondata_skb(skb, tcp_acceptable_seq(sk),
3054 TCPHDR_ACK | TCPHDR_RST);
3055 skb_mstamp_get(&skb->skb_mstamp);
3056 /* Send it off. */
3057 if (tcp_transmit_skb(sk, skb, 0, priority))
3058 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTFAILED);
3059
3060 TCP_INC_STATS(sock_net(sk), TCP_MIB_OUTRSTS);
3061 }
3062
3063 /* Send a crossed SYN-ACK during socket establishment.
3064 * WARNING: This routine must only be called when we have already sent
3065 * a SYN packet that crossed the incoming SYN that caused this routine
3066 * to get called. If this assumption fails then the initial rcv_wnd
3067 * and rcv_wscale values will not be correct.
3068 */
3069 int tcp_send_synack(struct sock *sk)
3070 {
3071 struct sk_buff *skb;
3072
3073 skb = tcp_write_queue_head(sk);
3074 if (!skb || !(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) {
3075 pr_debug("%s: wrong queue state\n", __func__);
3076 return -EFAULT;
3077 }
3078 if (!(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_ACK)) {
3079 if (skb_cloned(skb)) {
3080 struct sk_buff *nskb = skb_copy(skb, GFP_ATOMIC);
3081 if (!nskb)
3082 return -ENOMEM;
3083 tcp_unlink_write_queue(skb, sk);
3084 __skb_header_release(nskb);
3085 __tcp_add_write_queue_head(sk, nskb);
3086 sk_wmem_free_skb(sk, skb);
3087 sk->sk_wmem_queued += nskb->truesize;
3088 sk_mem_charge(sk, nskb->truesize);
3089 skb = nskb;
3090 }
3091
3092 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_ACK;
3093 tcp_ecn_send_synack(sk, skb);
3094 }
3095 return tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC);
3096 }
3097
3098 /**
3099 * tcp_make_synack - Prepare a SYN-ACK.
3100 * sk: listener socket
3101 * dst: dst entry attached to the SYNACK
3102 * req: request_sock pointer
3103 *
3104 * Allocate one skb and build a SYNACK packet.
3105 * @dst is consumed : Caller should not use it again.
3106 */
3107 struct sk_buff *tcp_make_synack(const struct sock *sk, struct dst_entry *dst,
3108 struct request_sock *req,
3109 struct tcp_fastopen_cookie *foc,
3110 enum tcp_synack_type synack_type)
3111 {
3112 struct inet_request_sock *ireq = inet_rsk(req);
3113 const struct tcp_sock *tp = tcp_sk(sk);
3114 struct tcp_md5sig_key *md5 = NULL;
3115 struct tcp_out_options opts;
3116 struct sk_buff *skb;
3117 int tcp_header_size;
3118 struct tcphdr *th;
3119 u16 user_mss;
3120 int mss;
3121
3122 skb = alloc_skb(MAX_TCP_HEADER, GFP_ATOMIC);
3123 if (unlikely(!skb)) {
3124 dst_release(dst);
3125 return NULL;
3126 }
3127 /* Reserve space for headers. */
3128 skb_reserve(skb, MAX_TCP_HEADER);
3129
3130 switch (synack_type) {
3131 case TCP_SYNACK_NORMAL:
3132 skb_set_owner_w(skb, req_to_sk(req));
3133 break;
3134 case TCP_SYNACK_COOKIE:
3135 /* Under synflood, we do not attach skb to a socket,
3136 * to avoid false sharing.
3137 */
3138 break;
3139 case TCP_SYNACK_FASTOPEN:
3140 /* sk is a const pointer, because we want to express multiple
3141 * cpu might call us concurrently.
3142 * sk->sk_wmem_alloc in an atomic, we can promote to rw.
3143 */
3144 skb_set_owner_w(skb, (struct sock *)sk);
3145 break;
3146 }
3147 skb_dst_set(skb, dst);
3148
3149 mss = dst_metric_advmss(dst);
3150 user_mss = READ_ONCE(tp->rx_opt.user_mss);
3151 if (user_mss && user_mss < mss)
3152 mss = user_mss;
3153
3154 memset(&opts, 0, sizeof(opts));
3155 #ifdef CONFIG_SYN_COOKIES
3156 if (unlikely(req->cookie_ts))
3157 skb->skb_mstamp.stamp_jiffies = cookie_init_timestamp(req);
3158 else
3159 #endif
3160 skb_mstamp_get(&skb->skb_mstamp);
3161
3162 #ifdef CONFIG_TCP_MD5SIG
3163 rcu_read_lock();
3164 md5 = tcp_rsk(req)->af_specific->req_md5_lookup(sk, req_to_sk(req));
3165 #endif
3166 skb_set_hash(skb, tcp_rsk(req)->txhash, PKT_HASH_TYPE_L4);
3167 tcp_header_size = tcp_synack_options(req, mss, skb, &opts, md5, foc) +
3168 sizeof(*th);
3169
3170 skb_push(skb, tcp_header_size);
3171 skb_reset_transport_header(skb);
3172
3173 th = (struct tcphdr *)skb->data;
3174 memset(th, 0, sizeof(struct tcphdr));
3175 th->syn = 1;
3176 th->ack = 1;
3177 tcp_ecn_make_synack(req, th);
3178 th->source = htons(ireq->ir_num);
3179 th->dest = ireq->ir_rmt_port;
3180 /* Setting of flags are superfluous here for callers (and ECE is
3181 * not even correctly set)
3182 */
3183 tcp_init_nondata_skb(skb, tcp_rsk(req)->snt_isn,
3184 TCPHDR_SYN | TCPHDR_ACK);
3185
3186 th->seq = htonl(TCP_SKB_CB(skb)->seq);
3187 /* XXX data is queued and acked as is. No buffer/window check */
3188 th->ack_seq = htonl(tcp_rsk(req)->rcv_nxt);
3189
3190 /* RFC1323: The window in SYN & SYN/ACK segments is never scaled. */
3191 th->window = htons(min(req->rsk_rcv_wnd, 65535U));
3192 tcp_options_write((__be32 *)(th + 1), NULL, &opts);
3193 th->doff = (tcp_header_size >> 2);
3194 __TCP_INC_STATS(sock_net(sk), TCP_MIB_OUTSEGS);
3195
3196 #ifdef CONFIG_TCP_MD5SIG
3197 /* Okay, we have all we need - do the md5 hash if needed */
3198 if (md5)
3199 tcp_rsk(req)->af_specific->calc_md5_hash(opts.hash_location,
3200 md5, req_to_sk(req), skb);
3201 rcu_read_unlock();
3202 #endif
3203
3204 /* Do not fool tcpdump (if any), clean our debris */
3205 skb->tstamp.tv64 = 0;
3206 return skb;
3207 }
3208 EXPORT_SYMBOL(tcp_make_synack);
3209
3210 static void tcp_ca_dst_init(struct sock *sk, const struct dst_entry *dst)
3211 {
3212 struct inet_connection_sock *icsk = inet_csk(sk);
3213 const struct tcp_congestion_ops *ca;
3214 u32 ca_key = dst_metric(dst, RTAX_CC_ALGO);
3215
3216 if (ca_key == TCP_CA_UNSPEC)
3217 return;
3218
3219 rcu_read_lock();
3220 ca = tcp_ca_find_key(ca_key);
3221 if (likely(ca && try_module_get(ca->owner))) {
3222 module_put(icsk->icsk_ca_ops->owner);
3223 icsk->icsk_ca_dst_locked = tcp_ca_dst_locked(dst);
3224 icsk->icsk_ca_ops = ca;
3225 }
3226 rcu_read_unlock();
3227 }
3228
3229 /* Do all connect socket setups that can be done AF independent. */
3230 static void tcp_connect_init(struct sock *sk)
3231 {
3232 const struct dst_entry *dst = __sk_dst_get(sk);
3233 struct tcp_sock *tp = tcp_sk(sk);
3234 __u8 rcv_wscale;
3235
3236 /* We'll fix this up when we get a response from the other end.
3237 * See tcp_input.c:tcp_rcv_state_process case TCP_SYN_SENT.
3238 */
3239 tp->tcp_header_len = sizeof(struct tcphdr) +
3240 (sysctl_tcp_timestamps ? TCPOLEN_TSTAMP_ALIGNED : 0);
3241
3242 #ifdef CONFIG_TCP_MD5SIG
3243 if (tp->af_specific->md5_lookup(sk, sk))
3244 tp->tcp_header_len += TCPOLEN_MD5SIG_ALIGNED;
3245 #endif
3246
3247 /* If user gave his TCP_MAXSEG, record it to clamp */
3248 if (tp->rx_opt.user_mss)
3249 tp->rx_opt.mss_clamp = tp->rx_opt.user_mss;
3250 tp->max_window = 0;
3251 tcp_mtup_init(sk);
3252 tcp_sync_mss(sk, dst_mtu(dst));
3253
3254 tcp_ca_dst_init(sk, dst);
3255
3256 if (!tp->window_clamp)
3257 tp->window_clamp = dst_metric(dst, RTAX_WINDOW);
3258 tp->advmss = dst_metric_advmss(dst);
3259 if (tp->rx_opt.user_mss && tp->rx_opt.user_mss < tp->advmss)
3260 tp->advmss = tp->rx_opt.user_mss;
3261
3262 tcp_initialize_rcv_mss(sk);
3263
3264 /* limit the window selection if the user enforce a smaller rx buffer */
3265 if (sk->sk_userlocks & SOCK_RCVBUF_LOCK &&
3266 (tp->window_clamp > tcp_full_space(sk) || tp->window_clamp == 0))
3267 tp->window_clamp = tcp_full_space(sk);
3268
3269 tcp_select_initial_window(tcp_full_space(sk),
3270 tp->advmss - (tp->rx_opt.ts_recent_stamp ? tp->tcp_header_len - sizeof(struct tcphdr) : 0),
3271 &tp->rcv_wnd,
3272 &tp->window_clamp,
3273 sysctl_tcp_window_scaling,
3274 &rcv_wscale,
3275 dst_metric(dst, RTAX_INITRWND));
3276
3277 tp->rx_opt.rcv_wscale = rcv_wscale;
3278 tp->rcv_ssthresh = tp->rcv_wnd;
3279
3280 sk->sk_err = 0;
3281 sock_reset_flag(sk, SOCK_DONE);
3282 tp->snd_wnd = 0;
3283 tcp_init_wl(tp, 0);
3284 tp->snd_una = tp->write_seq;
3285 tp->snd_sml = tp->write_seq;
3286 tp->snd_up = tp->write_seq;
3287 tp->snd_nxt = tp->write_seq;
3288
3289 if (likely(!tp->repair))
3290 tp->rcv_nxt = 0;
3291 else
3292 tp->rcv_tstamp = tcp_time_stamp;
3293 tp->rcv_wup = tp->rcv_nxt;
3294 tp->copied_seq = tp->rcv_nxt;
3295
3296 inet_csk(sk)->icsk_rto = TCP_TIMEOUT_INIT;
3297 inet_csk(sk)->icsk_retransmits = 0;
3298 tcp_clear_retrans(tp);
3299 }
3300
3301 static void tcp_connect_queue_skb(struct sock *sk, struct sk_buff *skb)
3302 {
3303 struct tcp_sock *tp = tcp_sk(sk);
3304 struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
3305
3306 tcb->end_seq += skb->len;
3307 __skb_header_release(skb);
3308 __tcp_add_write_queue_tail(sk, skb);
3309 sk->sk_wmem_queued += skb->truesize;
3310 sk_mem_charge(sk, skb->truesize);
3311 tp->write_seq = tcb->end_seq;
3312 tp->packets_out += tcp_skb_pcount(skb);
3313 }
3314
3315 /* Build and send a SYN with data and (cached) Fast Open cookie. However,
3316 * queue a data-only packet after the regular SYN, such that regular SYNs
3317 * are retransmitted on timeouts. Also if the remote SYN-ACK acknowledges
3318 * only the SYN sequence, the data are retransmitted in the first ACK.
3319 * If cookie is not cached or other error occurs, falls back to send a
3320 * regular SYN with Fast Open cookie request option.
3321 */
3322 static int tcp_send_syn_data(struct sock *sk, struct sk_buff *syn)
3323 {
3324 struct tcp_sock *tp = tcp_sk(sk);
3325 struct tcp_fastopen_request *fo = tp->fastopen_req;
3326 int syn_loss = 0, space, err = 0;
3327 unsigned long last_syn_loss = 0;
3328 struct sk_buff *syn_data;
3329
3330 tp->rx_opt.mss_clamp = tp->advmss; /* If MSS is not cached */
3331 tcp_fastopen_cache_get(sk, &tp->rx_opt.mss_clamp, &fo->cookie,
3332 &syn_loss, &last_syn_loss);
3333 /* Recurring FO SYN losses: revert to regular handshake temporarily */
3334 if (syn_loss > 1 &&
3335 time_before(jiffies, last_syn_loss + (60*HZ << syn_loss))) {
3336 fo->cookie.len = -1;
3337 goto fallback;
3338 }
3339
3340 if (sysctl_tcp_fastopen & TFO_CLIENT_NO_COOKIE)
3341 fo->cookie.len = -1;
3342 else if (fo->cookie.len <= 0)
3343 goto fallback;
3344
3345 /* MSS for SYN-data is based on cached MSS and bounded by PMTU and
3346 * user-MSS. Reserve maximum option space for middleboxes that add
3347 * private TCP options. The cost is reduced data space in SYN :(
3348 */
3349 if (tp->rx_opt.user_mss && tp->rx_opt.user_mss < tp->rx_opt.mss_clamp)
3350 tp->rx_opt.mss_clamp = tp->rx_opt.user_mss;
3351 space = __tcp_mtu_to_mss(sk, inet_csk(sk)->icsk_pmtu_cookie) -
3352 MAX_TCP_OPTION_SPACE;
3353
3354 space = min_t(size_t, space, fo->size);
3355
3356 /* limit to order-0 allocations */
3357 space = min_t(size_t, space, SKB_MAX_HEAD(MAX_TCP_HEADER));
3358
3359 syn_data = sk_stream_alloc_skb(sk, space, sk->sk_allocation, false);
3360 if (!syn_data)
3361 goto fallback;
3362 syn_data->ip_summed = CHECKSUM_PARTIAL;
3363 memcpy(syn_data->cb, syn->cb, sizeof(syn->cb));
3364 if (space) {
3365 int copied = copy_from_iter(skb_put(syn_data, space), space,
3366 &fo->data->msg_iter);
3367 if (unlikely(!copied)) {
3368 kfree_skb(syn_data);
3369 goto fallback;
3370 }
3371 if (copied != space) {
3372 skb_trim(syn_data, copied);
3373 space = copied;
3374 }
3375 }
3376 /* No more data pending in inet_wait_for_connect() */
3377 if (space == fo->size)
3378 fo->data = NULL;
3379 fo->copied = space;
3380
3381 tcp_connect_queue_skb(sk, syn_data);
3382 if (syn_data->len)
3383 tcp_chrono_start(sk, TCP_CHRONO_BUSY);
3384
3385 err = tcp_transmit_skb(sk, syn_data, 1, sk->sk_allocation);
3386
3387 syn->skb_mstamp = syn_data->skb_mstamp;
3388
3389 /* Now full SYN+DATA was cloned and sent (or not),
3390 * remove the SYN from the original skb (syn_data)
3391 * we keep in write queue in case of a retransmit, as we
3392 * also have the SYN packet (with no data) in the same queue.
3393 */
3394 TCP_SKB_CB(syn_data)->seq++;
3395 TCP_SKB_CB(syn_data)->tcp_flags = TCPHDR_ACK | TCPHDR_PSH;
3396 if (!err) {
3397 tp->syn_data = (fo->copied > 0);
3398 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPORIGDATASENT);
3399 goto done;
3400 }
3401
3402 fallback:
3403 /* Send a regular SYN with Fast Open cookie request option */
3404 if (fo->cookie.len > 0)
3405 fo->cookie.len = 0;
3406 err = tcp_transmit_skb(sk, syn, 1, sk->sk_allocation);
3407 if (err)
3408 tp->syn_fastopen = 0;
3409 done:
3410 fo->cookie.len = -1; /* Exclude Fast Open option for SYN retries */
3411 return err;
3412 }
3413
3414 /* Build a SYN and send it off. */
3415 int tcp_connect(struct sock *sk)
3416 {
3417 struct tcp_sock *tp = tcp_sk(sk);
3418 struct sk_buff *buff;
3419 int err;
3420
3421 tcp_connect_init(sk);
3422
3423 if (unlikely(tp->repair)) {
3424 tcp_finish_connect(sk, NULL);
3425 return 0;
3426 }
3427
3428 buff = sk_stream_alloc_skb(sk, 0, sk->sk_allocation, true);
3429 if (unlikely(!buff))
3430 return -ENOBUFS;
3431
3432 tcp_init_nondata_skb(buff, tp->write_seq++, TCPHDR_SYN);
3433 tp->retrans_stamp = tcp_time_stamp;
3434 tcp_connect_queue_skb(sk, buff);
3435 tcp_ecn_send_syn(sk, buff);
3436
3437 /* Send off SYN; include data in Fast Open. */
3438 err = tp->fastopen_req ? tcp_send_syn_data(sk, buff) :
3439 tcp_transmit_skb(sk, buff, 1, sk->sk_allocation);
3440 if (err == -ECONNREFUSED)
3441 return err;
3442
3443 /* We change tp->snd_nxt after the tcp_transmit_skb() call
3444 * in order to make this packet get counted in tcpOutSegs.
3445 */
3446 tp->snd_nxt = tp->write_seq;
3447 tp->pushed_seq = tp->write_seq;
3448 TCP_INC_STATS(sock_net(sk), TCP_MIB_ACTIVEOPENS);
3449
3450 /* Timer for repeating the SYN until an answer. */
3451 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
3452 inet_csk(sk)->icsk_rto, TCP_RTO_MAX);
3453 return 0;
3454 }
3455 EXPORT_SYMBOL(tcp_connect);
3456
3457 /* Send out a delayed ack, the caller does the policy checking
3458 * to see if we should even be here. See tcp_input.c:tcp_ack_snd_check()
3459 * for details.
3460 */
3461 void tcp_send_delayed_ack(struct sock *sk)
3462 {
3463 struct inet_connection_sock *icsk = inet_csk(sk);
3464 int ato = icsk->icsk_ack.ato;
3465 unsigned long timeout;
3466
3467 tcp_ca_event(sk, CA_EVENT_DELAYED_ACK);
3468
3469 if (ato > TCP_DELACK_MIN) {
3470 const struct tcp_sock *tp = tcp_sk(sk);
3471 int max_ato = HZ / 2;
3472
3473 if (icsk->icsk_ack.pingpong ||
3474 (icsk->icsk_ack.pending & ICSK_ACK_PUSHED))
3475 max_ato = TCP_DELACK_MAX;
3476
3477 /* Slow path, intersegment interval is "high". */
3478
3479 /* If some rtt estimate is known, use it to bound delayed ack.
3480 * Do not use inet_csk(sk)->icsk_rto here, use results of rtt measurements
3481 * directly.
3482 */
3483 if (tp->srtt_us) {
3484 int rtt = max_t(int, usecs_to_jiffies(tp->srtt_us >> 3),
3485 TCP_DELACK_MIN);
3486
3487 if (rtt < max_ato)
3488 max_ato = rtt;
3489 }
3490
3491 ato = min(ato, max_ato);
3492 }
3493
3494 /* Stay within the limit we were given */
3495 timeout = jiffies + ato;
3496
3497 /* Use new timeout only if there wasn't a older one earlier. */
3498 if (icsk->icsk_ack.pending & ICSK_ACK_TIMER) {
3499 /* If delack timer was blocked or is about to expire,
3500 * send ACK now.
3501 */
3502 if (icsk->icsk_ack.blocked ||
3503 time_before_eq(icsk->icsk_ack.timeout, jiffies + (ato >> 2))) {
3504 tcp_send_ack(sk);
3505 return;
3506 }
3507
3508 if (!time_before(timeout, icsk->icsk_ack.timeout))
3509 timeout = icsk->icsk_ack.timeout;
3510 }
3511 icsk->icsk_ack.pending |= ICSK_ACK_SCHED | ICSK_ACK_TIMER;
3512 icsk->icsk_ack.timeout = timeout;
3513 sk_reset_timer(sk, &icsk->icsk_delack_timer, timeout);
3514 }
3515
3516 /* This routine sends an ack and also updates the window. */
3517 void tcp_send_ack(struct sock *sk)
3518 {
3519 struct sk_buff *buff;
3520
3521 /* If we have been reset, we may not send again. */
3522 if (sk->sk_state == TCP_CLOSE)
3523 return;
3524
3525 tcp_ca_event(sk, CA_EVENT_NON_DELAYED_ACK);
3526
3527 /* We are not putting this on the write queue, so
3528 * tcp_transmit_skb() will set the ownership to this
3529 * sock.
3530 */
3531 buff = alloc_skb(MAX_TCP_HEADER,
3532 sk_gfp_mask(sk, GFP_ATOMIC | __GFP_NOWARN));
3533 if (unlikely(!buff)) {
3534 inet_csk_schedule_ack(sk);
3535 inet_csk(sk)->icsk_ack.ato = TCP_ATO_MIN;
3536 inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
3537 TCP_DELACK_MAX, TCP_RTO_MAX);
3538 return;
3539 }
3540
3541 /* Reserve space for headers and prepare control bits. */
3542 skb_reserve(buff, MAX_TCP_HEADER);
3543 tcp_init_nondata_skb(buff, tcp_acceptable_seq(sk), TCPHDR_ACK);
3544
3545 /* We do not want pure acks influencing TCP Small Queues or fq/pacing
3546 * too much.
3547 * SKB_TRUESIZE(max(1 .. 66, MAX_TCP_HEADER)) is unfortunately ~784
3548 */
3549 skb_set_tcp_pure_ack(buff);
3550
3551 /* Send it off, this clears delayed acks for us. */
3552 skb_mstamp_get(&buff->skb_mstamp);
3553 tcp_transmit_skb(sk, buff, 0, (__force gfp_t)0);
3554 }
3555 EXPORT_SYMBOL_GPL(tcp_send_ack);
3556
3557 /* This routine sends a packet with an out of date sequence
3558 * number. It assumes the other end will try to ack it.
3559 *
3560 * Question: what should we make while urgent mode?
3561 * 4.4BSD forces sending single byte of data. We cannot send
3562 * out of window data, because we have SND.NXT==SND.MAX...
3563 *
3564 * Current solution: to send TWO zero-length segments in urgent mode:
3565 * one is with SEG.SEQ=SND.UNA to deliver urgent pointer, another is
3566 * out-of-date with SND.UNA-1 to probe window.
3567 */
3568 static int tcp_xmit_probe_skb(struct sock *sk, int urgent, int mib)
3569 {
3570 struct tcp_sock *tp = tcp_sk(sk);
3571 struct sk_buff *skb;
3572
3573 /* We don't queue it, tcp_transmit_skb() sets ownership. */
3574 skb = alloc_skb(MAX_TCP_HEADER,
3575 sk_gfp_mask(sk, GFP_ATOMIC | __GFP_NOWARN));
3576 if (!skb)
3577 return -1;
3578
3579 /* Reserve space for headers and set control bits. */
3580 skb_reserve(skb, MAX_TCP_HEADER);
3581 /* Use a previous sequence. This should cause the other
3582 * end to send an ack. Don't queue or clone SKB, just
3583 * send it.
3584 */
3585 tcp_init_nondata_skb(skb, tp->snd_una - !urgent, TCPHDR_ACK);
3586 skb_mstamp_get(&skb->skb_mstamp);
3587 NET_INC_STATS(sock_net(sk), mib);
3588 return tcp_transmit_skb(sk, skb, 0, (__force gfp_t)0);
3589 }
3590
3591 void tcp_send_window_probe(struct sock *sk)
3592 {
3593 if (sk->sk_state == TCP_ESTABLISHED) {
3594 tcp_sk(sk)->snd_wl1 = tcp_sk(sk)->rcv_nxt - 1;
3595 tcp_xmit_probe_skb(sk, 0, LINUX_MIB_TCPWINPROBE);
3596 }
3597 }
3598
3599 /* Initiate keepalive or window probe from timer. */
3600 int tcp_write_wakeup(struct sock *sk, int mib)
3601 {
3602 struct tcp_sock *tp = tcp_sk(sk);
3603 struct sk_buff *skb;
3604
3605 if (sk->sk_state == TCP_CLOSE)
3606 return -1;
3607
3608 skb = tcp_send_head(sk);
3609 if (skb && before(TCP_SKB_CB(skb)->seq, tcp_wnd_end(tp))) {
3610 int err;
3611 unsigned int mss = tcp_current_mss(sk);
3612 unsigned int seg_size = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq;
3613
3614 if (before(tp->pushed_seq, TCP_SKB_CB(skb)->end_seq))
3615 tp->pushed_seq = TCP_SKB_CB(skb)->end_seq;
3616
3617 /* We are probing the opening of a window
3618 * but the window size is != 0
3619 * must have been a result SWS avoidance ( sender )
3620 */
3621 if (seg_size < TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq ||
3622 skb->len > mss) {
3623 seg_size = min(seg_size, mss);
3624 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH;
3625 if (tcp_fragment(sk, skb, seg_size, mss, GFP_ATOMIC))
3626 return -1;
3627 } else if (!tcp_skb_pcount(skb))
3628 tcp_set_skb_tso_segs(skb, mss);
3629
3630 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH;
3631 err = tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC);
3632 if (!err)
3633 tcp_event_new_data_sent(sk, skb);
3634 return err;
3635 } else {
3636 if (between(tp->snd_up, tp->snd_una + 1, tp->snd_una + 0xFFFF))
3637 tcp_xmit_probe_skb(sk, 1, mib);
3638 return tcp_xmit_probe_skb(sk, 0, mib);
3639 }
3640 }
3641
3642 /* A window probe timeout has occurred. If window is not closed send
3643 * a partial packet else a zero probe.
3644 */
3645 void tcp_send_probe0(struct sock *sk)
3646 {
3647 struct inet_connection_sock *icsk = inet_csk(sk);
3648 struct tcp_sock *tp = tcp_sk(sk);
3649 struct net *net = sock_net(sk);
3650 unsigned long probe_max;
3651 int err;
3652
3653 err = tcp_write_wakeup(sk, LINUX_MIB_TCPWINPROBE);
3654
3655 if (tp->packets_out || !tcp_send_head(sk)) {
3656 /* Cancel probe timer, if it is not required. */
3657 icsk->icsk_probes_out = 0;
3658 icsk->icsk_backoff = 0;
3659 return;
3660 }
3661
3662 if (err <= 0) {
3663 if (icsk->icsk_backoff < net->ipv4.sysctl_tcp_retries2)
3664 icsk->icsk_backoff++;
3665 icsk->icsk_probes_out++;
3666 probe_max = TCP_RTO_MAX;
3667 } else {
3668 /* If packet was not sent due to local congestion,
3669 * do not backoff and do not remember icsk_probes_out.
3670 * Let local senders to fight for local resources.
3671 *
3672 * Use accumulated backoff yet.
3673 */
3674 if (!icsk->icsk_probes_out)
3675 icsk->icsk_probes_out = 1;
3676 probe_max = TCP_RESOURCE_PROBE_INTERVAL;
3677 }
3678 inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
3679 tcp_probe0_when(sk, probe_max),
3680 TCP_RTO_MAX);
3681 }
3682
3683 int tcp_rtx_synack(const struct sock *sk, struct request_sock *req)
3684 {
3685 const struct tcp_request_sock_ops *af_ops = tcp_rsk(req)->af_specific;
3686 struct flowi fl;
3687 int res;
3688
3689 tcp_rsk(req)->txhash = net_tx_rndhash();
3690 res = af_ops->send_synack(sk, NULL, &fl, req, NULL, TCP_SYNACK_NORMAL);
3691 if (!res) {
3692 __TCP_INC_STATS(sock_net(sk), TCP_MIB_RETRANSSEGS);
3693 __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSYNRETRANS);
3694 if (unlikely(tcp_passive_fastopen(sk)))
3695 tcp_sk(sk)->total_retrans++;
3696 }
3697 return res;
3698 }
3699 EXPORT_SYMBOL(tcp_rtx_synack);