]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - net/netfilter/nf_nat_core.c
UBUNTU: [Config] CONFIG_BCM2835_THERMAL=y
[mirror_ubuntu-artful-kernel.git] / net / netfilter / nf_nat_core.c
1 /*
2 * (C) 1999-2001 Paul `Rusty' Russell
3 * (C) 2002-2006 Netfilter Core Team <coreteam@netfilter.org>
4 * (C) 2011 Patrick McHardy <kaber@trash.net>
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License version 2 as
8 * published by the Free Software Foundation.
9 */
10
11 #include <linux/module.h>
12 #include <linux/types.h>
13 #include <linux/timer.h>
14 #include <linux/skbuff.h>
15 #include <linux/gfp.h>
16 #include <net/xfrm.h>
17 #include <linux/jhash.h>
18 #include <linux/rtnetlink.h>
19
20 #include <net/netfilter/nf_conntrack.h>
21 #include <net/netfilter/nf_conntrack_core.h>
22 #include <net/netfilter/nf_nat.h>
23 #include <net/netfilter/nf_nat_l3proto.h>
24 #include <net/netfilter/nf_nat_l4proto.h>
25 #include <net/netfilter/nf_nat_core.h>
26 #include <net/netfilter/nf_nat_helper.h>
27 #include <net/netfilter/nf_conntrack_helper.h>
28 #include <net/netfilter/nf_conntrack_seqadj.h>
29 #include <net/netfilter/nf_conntrack_l3proto.h>
30 #include <net/netfilter/nf_conntrack_zones.h>
31 #include <linux/netfilter/nf_nat.h>
32
33 static DEFINE_SPINLOCK(nf_nat_lock);
34
35 static DEFINE_MUTEX(nf_nat_proto_mutex);
36 static const struct nf_nat_l3proto __rcu *nf_nat_l3protos[NFPROTO_NUMPROTO]
37 __read_mostly;
38 static const struct nf_nat_l4proto __rcu **nf_nat_l4protos[NFPROTO_NUMPROTO]
39 __read_mostly;
40
41 static struct hlist_head *nf_nat_bysource __read_mostly;
42 static unsigned int nf_nat_htable_size __read_mostly;
43 static unsigned int nf_nat_hash_rnd __read_mostly;
44
45 inline const struct nf_nat_l3proto *
46 __nf_nat_l3proto_find(u8 family)
47 {
48 return rcu_dereference(nf_nat_l3protos[family]);
49 }
50
51 inline const struct nf_nat_l4proto *
52 __nf_nat_l4proto_find(u8 family, u8 protonum)
53 {
54 return rcu_dereference(nf_nat_l4protos[family][protonum]);
55 }
56 EXPORT_SYMBOL_GPL(__nf_nat_l4proto_find);
57
58 #ifdef CONFIG_XFRM
59 static void __nf_nat_decode_session(struct sk_buff *skb, struct flowi *fl)
60 {
61 const struct nf_nat_l3proto *l3proto;
62 const struct nf_conn *ct;
63 enum ip_conntrack_info ctinfo;
64 enum ip_conntrack_dir dir;
65 unsigned long statusbit;
66 u8 family;
67
68 ct = nf_ct_get(skb, &ctinfo);
69 if (ct == NULL)
70 return;
71
72 family = nf_ct_l3num(ct);
73 l3proto = __nf_nat_l3proto_find(family);
74 if (l3proto == NULL)
75 return;
76
77 dir = CTINFO2DIR(ctinfo);
78 if (dir == IP_CT_DIR_ORIGINAL)
79 statusbit = IPS_DST_NAT;
80 else
81 statusbit = IPS_SRC_NAT;
82
83 l3proto->decode_session(skb, ct, dir, statusbit, fl);
84 }
85
86 int nf_xfrm_me_harder(struct net *net, struct sk_buff *skb, unsigned int family)
87 {
88 struct flowi fl;
89 unsigned int hh_len;
90 struct dst_entry *dst;
91 int err;
92
93 err = xfrm_decode_session(skb, &fl, family);
94 if (err < 0)
95 return err;
96
97 dst = skb_dst(skb);
98 if (dst->xfrm)
99 dst = ((struct xfrm_dst *)dst)->route;
100 dst_hold(dst);
101
102 dst = xfrm_lookup(net, dst, &fl, skb->sk, 0);
103 if (IS_ERR(dst))
104 return PTR_ERR(dst);
105
106 skb_dst_drop(skb);
107 skb_dst_set(skb, dst);
108
109 /* Change in oif may mean change in hh_len. */
110 hh_len = skb_dst(skb)->dev->hard_header_len;
111 if (skb_headroom(skb) < hh_len &&
112 pskb_expand_head(skb, hh_len - skb_headroom(skb), 0, GFP_ATOMIC))
113 return -ENOMEM;
114 return 0;
115 }
116 EXPORT_SYMBOL(nf_xfrm_me_harder);
117 #endif /* CONFIG_XFRM */
118
119 /* We keep an extra hash for each conntrack, for fast searching. */
120 static unsigned int
121 hash_by_src(const struct net *n, const struct nf_conntrack_tuple *tuple)
122 {
123 unsigned int hash;
124
125 get_random_once(&nf_nat_hash_rnd, sizeof(nf_nat_hash_rnd));
126
127 /* Original src, to ensure we map it consistently if poss. */
128 hash = jhash2((u32 *)&tuple->src, sizeof(tuple->src) / sizeof(u32),
129 tuple->dst.protonum ^ nf_nat_hash_rnd ^ net_hash_mix(n));
130
131 return reciprocal_scale(hash, nf_nat_htable_size);
132 }
133
134 /* Is this tuple already taken? (not by us) */
135 int
136 nf_nat_used_tuple(const struct nf_conntrack_tuple *tuple,
137 const struct nf_conn *ignored_conntrack)
138 {
139 /* Conntrack tracking doesn't keep track of outgoing tuples; only
140 * incoming ones. NAT means they don't have a fixed mapping,
141 * so we invert the tuple and look for the incoming reply.
142 *
143 * We could keep a separate hash if this proves too slow.
144 */
145 struct nf_conntrack_tuple reply;
146
147 nf_ct_invert_tuplepr(&reply, tuple);
148 return nf_conntrack_tuple_taken(&reply, ignored_conntrack);
149 }
150 EXPORT_SYMBOL(nf_nat_used_tuple);
151
152 /* If we source map this tuple so reply looks like reply_tuple, will
153 * that meet the constraints of range.
154 */
155 static int in_range(const struct nf_nat_l3proto *l3proto,
156 const struct nf_nat_l4proto *l4proto,
157 const struct nf_conntrack_tuple *tuple,
158 const struct nf_nat_range *range)
159 {
160 /* If we are supposed to map IPs, then we must be in the
161 * range specified, otherwise let this drag us onto a new src IP.
162 */
163 if (range->flags & NF_NAT_RANGE_MAP_IPS &&
164 !l3proto->in_range(tuple, range))
165 return 0;
166
167 if (!(range->flags & NF_NAT_RANGE_PROTO_SPECIFIED) ||
168 l4proto->in_range(tuple, NF_NAT_MANIP_SRC,
169 &range->min_proto, &range->max_proto))
170 return 1;
171
172 return 0;
173 }
174
175 static inline int
176 same_src(const struct nf_conn *ct,
177 const struct nf_conntrack_tuple *tuple)
178 {
179 const struct nf_conntrack_tuple *t;
180
181 t = &ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple;
182 return (t->dst.protonum == tuple->dst.protonum &&
183 nf_inet_addr_cmp(&t->src.u3, &tuple->src.u3) &&
184 t->src.u.all == tuple->src.u.all);
185 }
186
187 /* Only called for SRC manip */
188 static int
189 find_appropriate_src(struct net *net,
190 const struct nf_conntrack_zone *zone,
191 const struct nf_nat_l3proto *l3proto,
192 const struct nf_nat_l4proto *l4proto,
193 const struct nf_conntrack_tuple *tuple,
194 struct nf_conntrack_tuple *result,
195 const struct nf_nat_range *range)
196 {
197 unsigned int h = hash_by_src(net, tuple);
198 const struct nf_conn *ct;
199
200 hlist_for_each_entry_rcu(ct, &nf_nat_bysource[h], nat_bysource) {
201 if (same_src(ct, tuple) &&
202 net_eq(net, nf_ct_net(ct)) &&
203 nf_ct_zone_equal(ct, zone, IP_CT_DIR_ORIGINAL)) {
204 /* Copy source part from reply tuple. */
205 nf_ct_invert_tuplepr(result,
206 &ct->tuplehash[IP_CT_DIR_REPLY].tuple);
207 result->dst = tuple->dst;
208
209 if (in_range(l3proto, l4proto, result, range))
210 return 1;
211 }
212 }
213 return 0;
214 }
215
216 /* For [FUTURE] fragmentation handling, we want the least-used
217 * src-ip/dst-ip/proto triple. Fairness doesn't come into it. Thus
218 * if the range specifies 1.2.3.4 ports 10000-10005 and 1.2.3.5 ports
219 * 1-65535, we don't do pro-rata allocation based on ports; we choose
220 * the ip with the lowest src-ip/dst-ip/proto usage.
221 */
222 static void
223 find_best_ips_proto(const struct nf_conntrack_zone *zone,
224 struct nf_conntrack_tuple *tuple,
225 const struct nf_nat_range *range,
226 const struct nf_conn *ct,
227 enum nf_nat_manip_type maniptype)
228 {
229 union nf_inet_addr *var_ipp;
230 unsigned int i, max;
231 /* Host order */
232 u32 minip, maxip, j, dist;
233 bool full_range;
234
235 /* No IP mapping? Do nothing. */
236 if (!(range->flags & NF_NAT_RANGE_MAP_IPS))
237 return;
238
239 if (maniptype == NF_NAT_MANIP_SRC)
240 var_ipp = &tuple->src.u3;
241 else
242 var_ipp = &tuple->dst.u3;
243
244 /* Fast path: only one choice. */
245 if (nf_inet_addr_cmp(&range->min_addr, &range->max_addr)) {
246 *var_ipp = range->min_addr;
247 return;
248 }
249
250 if (nf_ct_l3num(ct) == NFPROTO_IPV4)
251 max = sizeof(var_ipp->ip) / sizeof(u32) - 1;
252 else
253 max = sizeof(var_ipp->ip6) / sizeof(u32) - 1;
254
255 /* Hashing source and destination IPs gives a fairly even
256 * spread in practice (if there are a small number of IPs
257 * involved, there usually aren't that many connections
258 * anyway). The consistency means that servers see the same
259 * client coming from the same IP (some Internet Banking sites
260 * like this), even across reboots.
261 */
262 j = jhash2((u32 *)&tuple->src.u3, sizeof(tuple->src.u3) / sizeof(u32),
263 range->flags & NF_NAT_RANGE_PERSISTENT ?
264 0 : (__force u32)tuple->dst.u3.all[max] ^ zone->id);
265
266 full_range = false;
267 for (i = 0; i <= max; i++) {
268 /* If first bytes of the address are at the maximum, use the
269 * distance. Otherwise use the full range.
270 */
271 if (!full_range) {
272 minip = ntohl((__force __be32)range->min_addr.all[i]);
273 maxip = ntohl((__force __be32)range->max_addr.all[i]);
274 dist = maxip - minip + 1;
275 } else {
276 minip = 0;
277 dist = ~0;
278 }
279
280 var_ipp->all[i] = (__force __u32)
281 htonl(minip + reciprocal_scale(j, dist));
282 if (var_ipp->all[i] != range->max_addr.all[i])
283 full_range = true;
284
285 if (!(range->flags & NF_NAT_RANGE_PERSISTENT))
286 j ^= (__force u32)tuple->dst.u3.all[i];
287 }
288 }
289
290 /* Manipulate the tuple into the range given. For NF_INET_POST_ROUTING,
291 * we change the source to map into the range. For NF_INET_PRE_ROUTING
292 * and NF_INET_LOCAL_OUT, we change the destination to map into the
293 * range. It might not be possible to get a unique tuple, but we try.
294 * At worst (or if we race), we will end up with a final duplicate in
295 * __ip_conntrack_confirm and drop the packet. */
296 static void
297 get_unique_tuple(struct nf_conntrack_tuple *tuple,
298 const struct nf_conntrack_tuple *orig_tuple,
299 const struct nf_nat_range *range,
300 struct nf_conn *ct,
301 enum nf_nat_manip_type maniptype)
302 {
303 const struct nf_conntrack_zone *zone;
304 const struct nf_nat_l3proto *l3proto;
305 const struct nf_nat_l4proto *l4proto;
306 struct net *net = nf_ct_net(ct);
307
308 zone = nf_ct_zone(ct);
309
310 rcu_read_lock();
311 l3proto = __nf_nat_l3proto_find(orig_tuple->src.l3num);
312 l4proto = __nf_nat_l4proto_find(orig_tuple->src.l3num,
313 orig_tuple->dst.protonum);
314
315 /* 1) If this srcip/proto/src-proto-part is currently mapped,
316 * and that same mapping gives a unique tuple within the given
317 * range, use that.
318 *
319 * This is only required for source (ie. NAT/masq) mappings.
320 * So far, we don't do local source mappings, so multiple
321 * manips not an issue.
322 */
323 if (maniptype == NF_NAT_MANIP_SRC &&
324 !(range->flags & NF_NAT_RANGE_PROTO_RANDOM_ALL)) {
325 /* try the original tuple first */
326 if (in_range(l3proto, l4proto, orig_tuple, range)) {
327 if (!nf_nat_used_tuple(orig_tuple, ct)) {
328 *tuple = *orig_tuple;
329 goto out;
330 }
331 } else if (find_appropriate_src(net, zone, l3proto, l4proto,
332 orig_tuple, tuple, range)) {
333 pr_debug("get_unique_tuple: Found current src map\n");
334 if (!nf_nat_used_tuple(tuple, ct))
335 goto out;
336 }
337 }
338
339 /* 2) Select the least-used IP/proto combination in the given range */
340 *tuple = *orig_tuple;
341 find_best_ips_proto(zone, tuple, range, ct, maniptype);
342
343 /* 3) The per-protocol part of the manip is made to map into
344 * the range to make a unique tuple.
345 */
346
347 /* Only bother mapping if it's not already in range and unique */
348 if (!(range->flags & NF_NAT_RANGE_PROTO_RANDOM_ALL)) {
349 if (range->flags & NF_NAT_RANGE_PROTO_SPECIFIED) {
350 if (l4proto->in_range(tuple, maniptype,
351 &range->min_proto,
352 &range->max_proto) &&
353 (range->min_proto.all == range->max_proto.all ||
354 !nf_nat_used_tuple(tuple, ct)))
355 goto out;
356 } else if (!nf_nat_used_tuple(tuple, ct)) {
357 goto out;
358 }
359 }
360
361 /* Last change: get protocol to try to obtain unique tuple. */
362 l4proto->unique_tuple(l3proto, tuple, range, maniptype, ct);
363 out:
364 rcu_read_unlock();
365 }
366
367 struct nf_conn_nat *nf_ct_nat_ext_add(struct nf_conn *ct)
368 {
369 struct nf_conn_nat *nat = nfct_nat(ct);
370 if (nat)
371 return nat;
372
373 if (!nf_ct_is_confirmed(ct))
374 nat = nf_ct_ext_add(ct, NF_CT_EXT_NAT, GFP_ATOMIC);
375
376 return nat;
377 }
378 EXPORT_SYMBOL_GPL(nf_ct_nat_ext_add);
379
380 unsigned int
381 nf_nat_setup_info(struct nf_conn *ct,
382 const struct nf_nat_range *range,
383 enum nf_nat_manip_type maniptype)
384 {
385 struct net *net = nf_ct_net(ct);
386 struct nf_conntrack_tuple curr_tuple, new_tuple;
387
388 /* Can't setup nat info for confirmed ct. */
389 if (nf_ct_is_confirmed(ct))
390 return NF_ACCEPT;
391
392 NF_CT_ASSERT(maniptype == NF_NAT_MANIP_SRC ||
393 maniptype == NF_NAT_MANIP_DST);
394 BUG_ON(nf_nat_initialized(ct, maniptype));
395
396 /* What we've got will look like inverse of reply. Normally
397 * this is what is in the conntrack, except for prior
398 * manipulations (future optimization: if num_manips == 0,
399 * orig_tp = ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple)
400 */
401 nf_ct_invert_tuplepr(&curr_tuple,
402 &ct->tuplehash[IP_CT_DIR_REPLY].tuple);
403
404 get_unique_tuple(&new_tuple, &curr_tuple, range, ct, maniptype);
405
406 if (!nf_ct_tuple_equal(&new_tuple, &curr_tuple)) {
407 struct nf_conntrack_tuple reply;
408
409 /* Alter conntrack table so will recognize replies. */
410 nf_ct_invert_tuplepr(&reply, &new_tuple);
411 nf_conntrack_alter_reply(ct, &reply);
412
413 /* Non-atomic: we own this at the moment. */
414 if (maniptype == NF_NAT_MANIP_SRC)
415 ct->status |= IPS_SRC_NAT;
416 else
417 ct->status |= IPS_DST_NAT;
418
419 if (nfct_help(ct) && !nfct_seqadj(ct))
420 if (!nfct_seqadj_ext_add(ct))
421 return NF_DROP;
422 }
423
424 if (maniptype == NF_NAT_MANIP_SRC) {
425 unsigned int srchash;
426
427 srchash = hash_by_src(net,
428 &ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple);
429 spin_lock_bh(&nf_nat_lock);
430 hlist_add_head_rcu(&ct->nat_bysource,
431 &nf_nat_bysource[srchash]);
432 spin_unlock_bh(&nf_nat_lock);
433 }
434
435 /* It's done. */
436 if (maniptype == NF_NAT_MANIP_DST)
437 ct->status |= IPS_DST_NAT_DONE;
438 else
439 ct->status |= IPS_SRC_NAT_DONE;
440
441 return NF_ACCEPT;
442 }
443 EXPORT_SYMBOL(nf_nat_setup_info);
444
445 static unsigned int
446 __nf_nat_alloc_null_binding(struct nf_conn *ct, enum nf_nat_manip_type manip)
447 {
448 /* Force range to this IP; let proto decide mapping for
449 * per-proto parts (hence not IP_NAT_RANGE_PROTO_SPECIFIED).
450 * Use reply in case it's already been mangled (eg local packet).
451 */
452 union nf_inet_addr ip =
453 (manip == NF_NAT_MANIP_SRC ?
454 ct->tuplehash[IP_CT_DIR_REPLY].tuple.dst.u3 :
455 ct->tuplehash[IP_CT_DIR_REPLY].tuple.src.u3);
456 struct nf_nat_range range = {
457 .flags = NF_NAT_RANGE_MAP_IPS,
458 .min_addr = ip,
459 .max_addr = ip,
460 };
461 return nf_nat_setup_info(ct, &range, manip);
462 }
463
464 unsigned int
465 nf_nat_alloc_null_binding(struct nf_conn *ct, unsigned int hooknum)
466 {
467 return __nf_nat_alloc_null_binding(ct, HOOK2MANIP(hooknum));
468 }
469 EXPORT_SYMBOL_GPL(nf_nat_alloc_null_binding);
470
471 /* Do packet manipulations according to nf_nat_setup_info. */
472 unsigned int nf_nat_packet(struct nf_conn *ct,
473 enum ip_conntrack_info ctinfo,
474 unsigned int hooknum,
475 struct sk_buff *skb)
476 {
477 const struct nf_nat_l3proto *l3proto;
478 const struct nf_nat_l4proto *l4proto;
479 enum ip_conntrack_dir dir = CTINFO2DIR(ctinfo);
480 unsigned long statusbit;
481 enum nf_nat_manip_type mtype = HOOK2MANIP(hooknum);
482
483 if (mtype == NF_NAT_MANIP_SRC)
484 statusbit = IPS_SRC_NAT;
485 else
486 statusbit = IPS_DST_NAT;
487
488 /* Invert if this is reply dir. */
489 if (dir == IP_CT_DIR_REPLY)
490 statusbit ^= IPS_NAT_MASK;
491
492 /* Non-atomic: these bits don't change. */
493 if (ct->status & statusbit) {
494 struct nf_conntrack_tuple target;
495
496 /* We are aiming to look like inverse of other direction. */
497 nf_ct_invert_tuplepr(&target, &ct->tuplehash[!dir].tuple);
498
499 l3proto = __nf_nat_l3proto_find(target.src.l3num);
500 l4proto = __nf_nat_l4proto_find(target.src.l3num,
501 target.dst.protonum);
502 if (!l3proto->manip_pkt(skb, 0, l4proto, &target, mtype))
503 return NF_DROP;
504 }
505 return NF_ACCEPT;
506 }
507 EXPORT_SYMBOL_GPL(nf_nat_packet);
508
509 struct nf_nat_proto_clean {
510 u8 l3proto;
511 u8 l4proto;
512 };
513
514 /* kill conntracks with affected NAT section */
515 static int nf_nat_proto_remove(struct nf_conn *i, void *data)
516 {
517 const struct nf_nat_proto_clean *clean = data;
518
519 if ((clean->l3proto && nf_ct_l3num(i) != clean->l3proto) ||
520 (clean->l4proto && nf_ct_protonum(i) != clean->l4proto))
521 return 0;
522
523 return i->status & IPS_NAT_MASK ? 1 : 0;
524 }
525
526 static int nf_nat_proto_clean(struct nf_conn *ct, void *data)
527 {
528 if (nf_nat_proto_remove(ct, data))
529 return 1;
530
531 if ((ct->status & IPS_SRC_NAT_DONE) == 0)
532 return 0;
533
534 /* This netns is being destroyed, and conntrack has nat null binding.
535 * Remove it from bysource hash, as the table will be freed soon.
536 *
537 * Else, when the conntrack is destoyed, nf_nat_cleanup_conntrack()
538 * will delete entry from already-freed table.
539 */
540 clear_bit(IPS_SRC_NAT_DONE_BIT, &ct->status);
541 spin_lock_bh(&nf_nat_lock);
542 hlist_del_rcu(&ct->nat_bysource);
543 spin_unlock_bh(&nf_nat_lock);
544
545 /* don't delete conntrack. Although that would make things a lot
546 * simpler, we'd end up flushing all conntracks on nat rmmod.
547 */
548 return 0;
549 }
550
551 static void nf_nat_l4proto_clean(u8 l3proto, u8 l4proto)
552 {
553 struct nf_nat_proto_clean clean = {
554 .l3proto = l3proto,
555 .l4proto = l4proto,
556 };
557
558 nf_ct_iterate_destroy(nf_nat_proto_remove, &clean);
559 }
560
561 static void nf_nat_l3proto_clean(u8 l3proto)
562 {
563 struct nf_nat_proto_clean clean = {
564 .l3proto = l3proto,
565 };
566
567 nf_ct_iterate_destroy(nf_nat_proto_remove, &clean);
568 }
569
570 /* Protocol registration. */
571 int nf_nat_l4proto_register(u8 l3proto, const struct nf_nat_l4proto *l4proto)
572 {
573 const struct nf_nat_l4proto **l4protos;
574 unsigned int i;
575 int ret = 0;
576
577 mutex_lock(&nf_nat_proto_mutex);
578 if (nf_nat_l4protos[l3proto] == NULL) {
579 l4protos = kmalloc(IPPROTO_MAX * sizeof(struct nf_nat_l4proto *),
580 GFP_KERNEL);
581 if (l4protos == NULL) {
582 ret = -ENOMEM;
583 goto out;
584 }
585
586 for (i = 0; i < IPPROTO_MAX; i++)
587 RCU_INIT_POINTER(l4protos[i], &nf_nat_l4proto_unknown);
588
589 /* Before making proto_array visible to lockless readers,
590 * we must make sure its content is committed to memory.
591 */
592 smp_wmb();
593
594 nf_nat_l4protos[l3proto] = l4protos;
595 }
596
597 if (rcu_dereference_protected(
598 nf_nat_l4protos[l3proto][l4proto->l4proto],
599 lockdep_is_held(&nf_nat_proto_mutex)
600 ) != &nf_nat_l4proto_unknown) {
601 ret = -EBUSY;
602 goto out;
603 }
604 RCU_INIT_POINTER(nf_nat_l4protos[l3proto][l4proto->l4proto], l4proto);
605 out:
606 mutex_unlock(&nf_nat_proto_mutex);
607 return ret;
608 }
609 EXPORT_SYMBOL_GPL(nf_nat_l4proto_register);
610
611 /* No one stores the protocol anywhere; simply delete it. */
612 void nf_nat_l4proto_unregister(u8 l3proto, const struct nf_nat_l4proto *l4proto)
613 {
614 mutex_lock(&nf_nat_proto_mutex);
615 RCU_INIT_POINTER(nf_nat_l4protos[l3proto][l4proto->l4proto],
616 &nf_nat_l4proto_unknown);
617 mutex_unlock(&nf_nat_proto_mutex);
618 synchronize_rcu();
619
620 nf_nat_l4proto_clean(l3proto, l4proto->l4proto);
621 }
622 EXPORT_SYMBOL_GPL(nf_nat_l4proto_unregister);
623
624 int nf_nat_l3proto_register(const struct nf_nat_l3proto *l3proto)
625 {
626 int err;
627
628 err = nf_ct_l3proto_try_module_get(l3proto->l3proto);
629 if (err < 0)
630 return err;
631
632 mutex_lock(&nf_nat_proto_mutex);
633 RCU_INIT_POINTER(nf_nat_l4protos[l3proto->l3proto][IPPROTO_TCP],
634 &nf_nat_l4proto_tcp);
635 RCU_INIT_POINTER(nf_nat_l4protos[l3proto->l3proto][IPPROTO_UDP],
636 &nf_nat_l4proto_udp);
637 #ifdef CONFIG_NF_NAT_PROTO_DCCP
638 RCU_INIT_POINTER(nf_nat_l4protos[l3proto->l3proto][IPPROTO_DCCP],
639 &nf_nat_l4proto_dccp);
640 #endif
641 #ifdef CONFIG_NF_NAT_PROTO_SCTP
642 RCU_INIT_POINTER(nf_nat_l4protos[l3proto->l3proto][IPPROTO_SCTP],
643 &nf_nat_l4proto_sctp);
644 #endif
645 #ifdef CONFIG_NF_NAT_PROTO_UDPLITE
646 RCU_INIT_POINTER(nf_nat_l4protos[l3proto->l3proto][IPPROTO_UDPLITE],
647 &nf_nat_l4proto_udplite);
648 #endif
649 mutex_unlock(&nf_nat_proto_mutex);
650
651 RCU_INIT_POINTER(nf_nat_l3protos[l3proto->l3proto], l3proto);
652 return 0;
653 }
654 EXPORT_SYMBOL_GPL(nf_nat_l3proto_register);
655
656 void nf_nat_l3proto_unregister(const struct nf_nat_l3proto *l3proto)
657 {
658 mutex_lock(&nf_nat_proto_mutex);
659 RCU_INIT_POINTER(nf_nat_l3protos[l3proto->l3proto], NULL);
660 mutex_unlock(&nf_nat_proto_mutex);
661 synchronize_rcu();
662
663 nf_nat_l3proto_clean(l3proto->l3proto);
664 nf_ct_l3proto_module_put(l3proto->l3proto);
665 }
666 EXPORT_SYMBOL_GPL(nf_nat_l3proto_unregister);
667
668 /* No one using conntrack by the time this called. */
669 static void nf_nat_cleanup_conntrack(struct nf_conn *ct)
670 {
671 if (ct->status & IPS_SRC_NAT_DONE) {
672 spin_lock_bh(&nf_nat_lock);
673 hlist_del_rcu(&ct->nat_bysource);
674 spin_unlock_bh(&nf_nat_lock);
675 }
676 }
677
678 static struct nf_ct_ext_type nat_extend __read_mostly = {
679 .len = sizeof(struct nf_conn_nat),
680 .align = __alignof__(struct nf_conn_nat),
681 .destroy = nf_nat_cleanup_conntrack,
682 .id = NF_CT_EXT_NAT,
683 };
684
685 #if IS_ENABLED(CONFIG_NF_CT_NETLINK)
686
687 #include <linux/netfilter/nfnetlink.h>
688 #include <linux/netfilter/nfnetlink_conntrack.h>
689
690 static const struct nla_policy protonat_nla_policy[CTA_PROTONAT_MAX+1] = {
691 [CTA_PROTONAT_PORT_MIN] = { .type = NLA_U16 },
692 [CTA_PROTONAT_PORT_MAX] = { .type = NLA_U16 },
693 };
694
695 static int nfnetlink_parse_nat_proto(struct nlattr *attr,
696 const struct nf_conn *ct,
697 struct nf_nat_range *range)
698 {
699 struct nlattr *tb[CTA_PROTONAT_MAX+1];
700 const struct nf_nat_l4proto *l4proto;
701 int err;
702
703 err = nla_parse_nested(tb, CTA_PROTONAT_MAX, attr,
704 protonat_nla_policy, NULL);
705 if (err < 0)
706 return err;
707
708 l4proto = __nf_nat_l4proto_find(nf_ct_l3num(ct), nf_ct_protonum(ct));
709 if (l4proto->nlattr_to_range)
710 err = l4proto->nlattr_to_range(tb, range);
711
712 return err;
713 }
714
715 static const struct nla_policy nat_nla_policy[CTA_NAT_MAX+1] = {
716 [CTA_NAT_V4_MINIP] = { .type = NLA_U32 },
717 [CTA_NAT_V4_MAXIP] = { .type = NLA_U32 },
718 [CTA_NAT_V6_MINIP] = { .len = sizeof(struct in6_addr) },
719 [CTA_NAT_V6_MAXIP] = { .len = sizeof(struct in6_addr) },
720 [CTA_NAT_PROTO] = { .type = NLA_NESTED },
721 };
722
723 static int
724 nfnetlink_parse_nat(const struct nlattr *nat,
725 const struct nf_conn *ct, struct nf_nat_range *range,
726 const struct nf_nat_l3proto *l3proto)
727 {
728 struct nlattr *tb[CTA_NAT_MAX+1];
729 int err;
730
731 memset(range, 0, sizeof(*range));
732
733 err = nla_parse_nested(tb, CTA_NAT_MAX, nat, nat_nla_policy, NULL);
734 if (err < 0)
735 return err;
736
737 err = l3proto->nlattr_to_range(tb, range);
738 if (err < 0)
739 return err;
740
741 if (!tb[CTA_NAT_PROTO])
742 return 0;
743
744 return nfnetlink_parse_nat_proto(tb[CTA_NAT_PROTO], ct, range);
745 }
746
747 /* This function is called under rcu_read_lock() */
748 static int
749 nfnetlink_parse_nat_setup(struct nf_conn *ct,
750 enum nf_nat_manip_type manip,
751 const struct nlattr *attr)
752 {
753 struct nf_nat_range range;
754 const struct nf_nat_l3proto *l3proto;
755 int err;
756
757 /* Should not happen, restricted to creating new conntracks
758 * via ctnetlink.
759 */
760 if (WARN_ON_ONCE(nf_nat_initialized(ct, manip)))
761 return -EEXIST;
762
763 /* Make sure that L3 NAT is there by when we call nf_nat_setup_info to
764 * attach the null binding, otherwise this may oops.
765 */
766 l3proto = __nf_nat_l3proto_find(nf_ct_l3num(ct));
767 if (l3proto == NULL)
768 return -EAGAIN;
769
770 /* No NAT information has been passed, allocate the null-binding */
771 if (attr == NULL)
772 return __nf_nat_alloc_null_binding(ct, manip) == NF_DROP ? -ENOMEM : 0;
773
774 err = nfnetlink_parse_nat(attr, ct, &range, l3proto);
775 if (err < 0)
776 return err;
777
778 return nf_nat_setup_info(ct, &range, manip) == NF_DROP ? -ENOMEM : 0;
779 }
780 #else
781 static int
782 nfnetlink_parse_nat_setup(struct nf_conn *ct,
783 enum nf_nat_manip_type manip,
784 const struct nlattr *attr)
785 {
786 return -EOPNOTSUPP;
787 }
788 #endif
789
790 static struct nf_ct_helper_expectfn follow_master_nat = {
791 .name = "nat-follow-master",
792 .expectfn = nf_nat_follow_master,
793 };
794
795 static int __init nf_nat_init(void)
796 {
797 int ret;
798
799 /* Leave them the same for the moment. */
800 nf_nat_htable_size = nf_conntrack_htable_size;
801
802 nf_nat_bysource = nf_ct_alloc_hashtable(&nf_nat_htable_size, 0);
803 if (!nf_nat_bysource)
804 return -ENOMEM;
805
806 ret = nf_ct_extend_register(&nat_extend);
807 if (ret < 0) {
808 nf_ct_free_hashtable(nf_nat_bysource, nf_nat_htable_size);
809 printk(KERN_ERR "nf_nat_core: Unable to register extension\n");
810 return ret;
811 }
812
813 nf_ct_helper_expectfn_register(&follow_master_nat);
814
815 BUG_ON(nfnetlink_parse_nat_setup_hook != NULL);
816 RCU_INIT_POINTER(nfnetlink_parse_nat_setup_hook,
817 nfnetlink_parse_nat_setup);
818 #ifdef CONFIG_XFRM
819 BUG_ON(nf_nat_decode_session_hook != NULL);
820 RCU_INIT_POINTER(nf_nat_decode_session_hook, __nf_nat_decode_session);
821 #endif
822 return 0;
823 }
824
825 static void __exit nf_nat_cleanup(void)
826 {
827 struct nf_nat_proto_clean clean = {};
828 unsigned int i;
829
830 nf_ct_iterate_destroy(nf_nat_proto_clean, &clean);
831
832 nf_ct_extend_unregister(&nat_extend);
833 nf_ct_helper_expectfn_unregister(&follow_master_nat);
834 RCU_INIT_POINTER(nfnetlink_parse_nat_setup_hook, NULL);
835 #ifdef CONFIG_XFRM
836 RCU_INIT_POINTER(nf_nat_decode_session_hook, NULL);
837 #endif
838 synchronize_rcu();
839
840 for (i = 0; i < NFPROTO_NUMPROTO; i++)
841 kfree(nf_nat_l4protos[i]);
842 synchronize_net();
843 nf_ct_free_hashtable(nf_nat_bysource, nf_nat_htable_size);
844 }
845
846 MODULE_LICENSE("GPL");
847
848 module_init(nf_nat_init);
849 module_exit(nf_nat_cleanup);