]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - net/socket.c
net: socket: add __sys_setsockopt() helper; remove in-kernel call to syscall
[mirror_ubuntu-jammy-kernel.git] / net / socket.c
1 /*
2 * NET An implementation of the SOCKET network access protocol.
3 *
4 * Version: @(#)socket.c 1.1.93 18/02/95
5 *
6 * Authors: Orest Zborowski, <obz@Kodak.COM>
7 * Ross Biro
8 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
9 *
10 * Fixes:
11 * Anonymous : NOTSOCK/BADF cleanup. Error fix in
12 * shutdown()
13 * Alan Cox : verify_area() fixes
14 * Alan Cox : Removed DDI
15 * Jonathan Kamens : SOCK_DGRAM reconnect bug
16 * Alan Cox : Moved a load of checks to the very
17 * top level.
18 * Alan Cox : Move address structures to/from user
19 * mode above the protocol layers.
20 * Rob Janssen : Allow 0 length sends.
21 * Alan Cox : Asynchronous I/O support (cribbed from the
22 * tty drivers).
23 * Niibe Yutaka : Asynchronous I/O for writes (4.4BSD style)
24 * Jeff Uphoff : Made max number of sockets command-line
25 * configurable.
26 * Matti Aarnio : Made the number of sockets dynamic,
27 * to be allocated when needed, and mr.
28 * Uphoff's max is used as max to be
29 * allowed to allocate.
30 * Linus : Argh. removed all the socket allocation
31 * altogether: it's in the inode now.
32 * Alan Cox : Made sock_alloc()/sock_release() public
33 * for NetROM and future kernel nfsd type
34 * stuff.
35 * Alan Cox : sendmsg/recvmsg basics.
36 * Tom Dyas : Export net symbols.
37 * Marcin Dalecki : Fixed problems with CONFIG_NET="n".
38 * Alan Cox : Added thread locking to sys_* calls
39 * for sockets. May have errors at the
40 * moment.
41 * Kevin Buhr : Fixed the dumb errors in the above.
42 * Andi Kleen : Some small cleanups, optimizations,
43 * and fixed a copy_from_user() bug.
44 * Tigran Aivazian : sys_send(args) calls sys_sendto(args, NULL, 0)
45 * Tigran Aivazian : Made listen(2) backlog sanity checks
46 * protocol-independent
47 *
48 *
49 * This program is free software; you can redistribute it and/or
50 * modify it under the terms of the GNU General Public License
51 * as published by the Free Software Foundation; either version
52 * 2 of the License, or (at your option) any later version.
53 *
54 *
55 * This module is effectively the top level interface to the BSD socket
56 * paradigm.
57 *
58 * Based upon Swansea University Computer Society NET3.039
59 */
60
61 #include <linux/mm.h>
62 #include <linux/socket.h>
63 #include <linux/file.h>
64 #include <linux/net.h>
65 #include <linux/interrupt.h>
66 #include <linux/thread_info.h>
67 #include <linux/rcupdate.h>
68 #include <linux/netdevice.h>
69 #include <linux/proc_fs.h>
70 #include <linux/seq_file.h>
71 #include <linux/mutex.h>
72 #include <linux/if_bridge.h>
73 #include <linux/if_frad.h>
74 #include <linux/if_vlan.h>
75 #include <linux/ptp_classify.h>
76 #include <linux/init.h>
77 #include <linux/poll.h>
78 #include <linux/cache.h>
79 #include <linux/module.h>
80 #include <linux/highmem.h>
81 #include <linux/mount.h>
82 #include <linux/security.h>
83 #include <linux/syscalls.h>
84 #include <linux/compat.h>
85 #include <linux/kmod.h>
86 #include <linux/audit.h>
87 #include <linux/wireless.h>
88 #include <linux/nsproxy.h>
89 #include <linux/magic.h>
90 #include <linux/slab.h>
91 #include <linux/xattr.h>
92
93 #include <linux/uaccess.h>
94 #include <asm/unistd.h>
95
96 #include <net/compat.h>
97 #include <net/wext.h>
98 #include <net/cls_cgroup.h>
99
100 #include <net/sock.h>
101 #include <linux/netfilter.h>
102
103 #include <linux/if_tun.h>
104 #include <linux/ipv6_route.h>
105 #include <linux/route.h>
106 #include <linux/sockios.h>
107 #include <linux/atalk.h>
108 #include <net/busy_poll.h>
109 #include <linux/errqueue.h>
110
111 #ifdef CONFIG_NET_RX_BUSY_POLL
112 unsigned int sysctl_net_busy_read __read_mostly;
113 unsigned int sysctl_net_busy_poll __read_mostly;
114 #endif
115
116 static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to);
117 static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from);
118 static int sock_mmap(struct file *file, struct vm_area_struct *vma);
119
120 static int sock_close(struct inode *inode, struct file *file);
121 static __poll_t sock_poll(struct file *file,
122 struct poll_table_struct *wait);
123 static long sock_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
124 #ifdef CONFIG_COMPAT
125 static long compat_sock_ioctl(struct file *file,
126 unsigned int cmd, unsigned long arg);
127 #endif
128 static int sock_fasync(int fd, struct file *filp, int on);
129 static ssize_t sock_sendpage(struct file *file, struct page *page,
130 int offset, size_t size, loff_t *ppos, int more);
131 static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
132 struct pipe_inode_info *pipe, size_t len,
133 unsigned int flags);
134
135 /*
136 * Socket files have a set of 'special' operations as well as the generic file ones. These don't appear
137 * in the operation structures but are done directly via the socketcall() multiplexor.
138 */
139
140 static const struct file_operations socket_file_ops = {
141 .owner = THIS_MODULE,
142 .llseek = no_llseek,
143 .read_iter = sock_read_iter,
144 .write_iter = sock_write_iter,
145 .poll = sock_poll,
146 .unlocked_ioctl = sock_ioctl,
147 #ifdef CONFIG_COMPAT
148 .compat_ioctl = compat_sock_ioctl,
149 #endif
150 .mmap = sock_mmap,
151 .release = sock_close,
152 .fasync = sock_fasync,
153 .sendpage = sock_sendpage,
154 .splice_write = generic_splice_sendpage,
155 .splice_read = sock_splice_read,
156 };
157
158 /*
159 * The protocol list. Each protocol is registered in here.
160 */
161
162 static DEFINE_SPINLOCK(net_family_lock);
163 static const struct net_proto_family __rcu *net_families[NPROTO] __read_mostly;
164
165 /*
166 * Support routines.
167 * Move socket addresses back and forth across the kernel/user
168 * divide and look after the messy bits.
169 */
170
171 /**
172 * move_addr_to_kernel - copy a socket address into kernel space
173 * @uaddr: Address in user space
174 * @kaddr: Address in kernel space
175 * @ulen: Length in user space
176 *
177 * The address is copied into kernel space. If the provided address is
178 * too long an error code of -EINVAL is returned. If the copy gives
179 * invalid addresses -EFAULT is returned. On a success 0 is returned.
180 */
181
182 int move_addr_to_kernel(void __user *uaddr, int ulen, struct sockaddr_storage *kaddr)
183 {
184 if (ulen < 0 || ulen > sizeof(struct sockaddr_storage))
185 return -EINVAL;
186 if (ulen == 0)
187 return 0;
188 if (copy_from_user(kaddr, uaddr, ulen))
189 return -EFAULT;
190 return audit_sockaddr(ulen, kaddr);
191 }
192
193 /**
194 * move_addr_to_user - copy an address to user space
195 * @kaddr: kernel space address
196 * @klen: length of address in kernel
197 * @uaddr: user space address
198 * @ulen: pointer to user length field
199 *
200 * The value pointed to by ulen on entry is the buffer length available.
201 * This is overwritten with the buffer space used. -EINVAL is returned
202 * if an overlong buffer is specified or a negative buffer size. -EFAULT
203 * is returned if either the buffer or the length field are not
204 * accessible.
205 * After copying the data up to the limit the user specifies, the true
206 * length of the data is written over the length limit the user
207 * specified. Zero is returned for a success.
208 */
209
210 static int move_addr_to_user(struct sockaddr_storage *kaddr, int klen,
211 void __user *uaddr, int __user *ulen)
212 {
213 int err;
214 int len;
215
216 BUG_ON(klen > sizeof(struct sockaddr_storage));
217 err = get_user(len, ulen);
218 if (err)
219 return err;
220 if (len > klen)
221 len = klen;
222 if (len < 0)
223 return -EINVAL;
224 if (len) {
225 if (audit_sockaddr(klen, kaddr))
226 return -ENOMEM;
227 if (copy_to_user(uaddr, kaddr, len))
228 return -EFAULT;
229 }
230 /*
231 * "fromlen shall refer to the value before truncation.."
232 * 1003.1g
233 */
234 return __put_user(klen, ulen);
235 }
236
237 static struct kmem_cache *sock_inode_cachep __read_mostly;
238
239 static struct inode *sock_alloc_inode(struct super_block *sb)
240 {
241 struct socket_alloc *ei;
242 struct socket_wq *wq;
243
244 ei = kmem_cache_alloc(sock_inode_cachep, GFP_KERNEL);
245 if (!ei)
246 return NULL;
247 wq = kmalloc(sizeof(*wq), GFP_KERNEL);
248 if (!wq) {
249 kmem_cache_free(sock_inode_cachep, ei);
250 return NULL;
251 }
252 init_waitqueue_head(&wq->wait);
253 wq->fasync_list = NULL;
254 wq->flags = 0;
255 RCU_INIT_POINTER(ei->socket.wq, wq);
256
257 ei->socket.state = SS_UNCONNECTED;
258 ei->socket.flags = 0;
259 ei->socket.ops = NULL;
260 ei->socket.sk = NULL;
261 ei->socket.file = NULL;
262
263 return &ei->vfs_inode;
264 }
265
266 static void sock_destroy_inode(struct inode *inode)
267 {
268 struct socket_alloc *ei;
269 struct socket_wq *wq;
270
271 ei = container_of(inode, struct socket_alloc, vfs_inode);
272 wq = rcu_dereference_protected(ei->socket.wq, 1);
273 kfree_rcu(wq, rcu);
274 kmem_cache_free(sock_inode_cachep, ei);
275 }
276
277 static void init_once(void *foo)
278 {
279 struct socket_alloc *ei = (struct socket_alloc *)foo;
280
281 inode_init_once(&ei->vfs_inode);
282 }
283
284 static void init_inodecache(void)
285 {
286 sock_inode_cachep = kmem_cache_create("sock_inode_cache",
287 sizeof(struct socket_alloc),
288 0,
289 (SLAB_HWCACHE_ALIGN |
290 SLAB_RECLAIM_ACCOUNT |
291 SLAB_MEM_SPREAD | SLAB_ACCOUNT),
292 init_once);
293 BUG_ON(sock_inode_cachep == NULL);
294 }
295
296 static const struct super_operations sockfs_ops = {
297 .alloc_inode = sock_alloc_inode,
298 .destroy_inode = sock_destroy_inode,
299 .statfs = simple_statfs,
300 };
301
302 /*
303 * sockfs_dname() is called from d_path().
304 */
305 static char *sockfs_dname(struct dentry *dentry, char *buffer, int buflen)
306 {
307 return dynamic_dname(dentry, buffer, buflen, "socket:[%lu]",
308 d_inode(dentry)->i_ino);
309 }
310
311 static const struct dentry_operations sockfs_dentry_operations = {
312 .d_dname = sockfs_dname,
313 };
314
315 static int sockfs_xattr_get(const struct xattr_handler *handler,
316 struct dentry *dentry, struct inode *inode,
317 const char *suffix, void *value, size_t size)
318 {
319 if (value) {
320 if (dentry->d_name.len + 1 > size)
321 return -ERANGE;
322 memcpy(value, dentry->d_name.name, dentry->d_name.len + 1);
323 }
324 return dentry->d_name.len + 1;
325 }
326
327 #define XATTR_SOCKPROTONAME_SUFFIX "sockprotoname"
328 #define XATTR_NAME_SOCKPROTONAME (XATTR_SYSTEM_PREFIX XATTR_SOCKPROTONAME_SUFFIX)
329 #define XATTR_NAME_SOCKPROTONAME_LEN (sizeof(XATTR_NAME_SOCKPROTONAME)-1)
330
331 static const struct xattr_handler sockfs_xattr_handler = {
332 .name = XATTR_NAME_SOCKPROTONAME,
333 .get = sockfs_xattr_get,
334 };
335
336 static int sockfs_security_xattr_set(const struct xattr_handler *handler,
337 struct dentry *dentry, struct inode *inode,
338 const char *suffix, const void *value,
339 size_t size, int flags)
340 {
341 /* Handled by LSM. */
342 return -EAGAIN;
343 }
344
345 static const struct xattr_handler sockfs_security_xattr_handler = {
346 .prefix = XATTR_SECURITY_PREFIX,
347 .set = sockfs_security_xattr_set,
348 };
349
350 static const struct xattr_handler *sockfs_xattr_handlers[] = {
351 &sockfs_xattr_handler,
352 &sockfs_security_xattr_handler,
353 NULL
354 };
355
356 static struct dentry *sockfs_mount(struct file_system_type *fs_type,
357 int flags, const char *dev_name, void *data)
358 {
359 return mount_pseudo_xattr(fs_type, "socket:", &sockfs_ops,
360 sockfs_xattr_handlers,
361 &sockfs_dentry_operations, SOCKFS_MAGIC);
362 }
363
364 static struct vfsmount *sock_mnt __read_mostly;
365
366 static struct file_system_type sock_fs_type = {
367 .name = "sockfs",
368 .mount = sockfs_mount,
369 .kill_sb = kill_anon_super,
370 };
371
372 /*
373 * Obtains the first available file descriptor and sets it up for use.
374 *
375 * These functions create file structures and maps them to fd space
376 * of the current process. On success it returns file descriptor
377 * and file struct implicitly stored in sock->file.
378 * Note that another thread may close file descriptor before we return
379 * from this function. We use the fact that now we do not refer
380 * to socket after mapping. If one day we will need it, this
381 * function will increment ref. count on file by 1.
382 *
383 * In any case returned fd MAY BE not valid!
384 * This race condition is unavoidable
385 * with shared fd spaces, we cannot solve it inside kernel,
386 * but we take care of internal coherence yet.
387 */
388
389 struct file *sock_alloc_file(struct socket *sock, int flags, const char *dname)
390 {
391 struct qstr name = { .name = "" };
392 struct path path;
393 struct file *file;
394
395 if (dname) {
396 name.name = dname;
397 name.len = strlen(name.name);
398 } else if (sock->sk) {
399 name.name = sock->sk->sk_prot_creator->name;
400 name.len = strlen(name.name);
401 }
402 path.dentry = d_alloc_pseudo(sock_mnt->mnt_sb, &name);
403 if (unlikely(!path.dentry)) {
404 sock_release(sock);
405 return ERR_PTR(-ENOMEM);
406 }
407 path.mnt = mntget(sock_mnt);
408
409 d_instantiate(path.dentry, SOCK_INODE(sock));
410
411 file = alloc_file(&path, FMODE_READ | FMODE_WRITE,
412 &socket_file_ops);
413 if (IS_ERR(file)) {
414 /* drop dentry, keep inode for a bit */
415 ihold(d_inode(path.dentry));
416 path_put(&path);
417 /* ... and now kill it properly */
418 sock_release(sock);
419 return file;
420 }
421
422 sock->file = file;
423 file->f_flags = O_RDWR | (flags & O_NONBLOCK);
424 file->private_data = sock;
425 return file;
426 }
427 EXPORT_SYMBOL(sock_alloc_file);
428
429 static int sock_map_fd(struct socket *sock, int flags)
430 {
431 struct file *newfile;
432 int fd = get_unused_fd_flags(flags);
433 if (unlikely(fd < 0)) {
434 sock_release(sock);
435 return fd;
436 }
437
438 newfile = sock_alloc_file(sock, flags, NULL);
439 if (likely(!IS_ERR(newfile))) {
440 fd_install(fd, newfile);
441 return fd;
442 }
443
444 put_unused_fd(fd);
445 return PTR_ERR(newfile);
446 }
447
448 struct socket *sock_from_file(struct file *file, int *err)
449 {
450 if (file->f_op == &socket_file_ops)
451 return file->private_data; /* set in sock_map_fd */
452
453 *err = -ENOTSOCK;
454 return NULL;
455 }
456 EXPORT_SYMBOL(sock_from_file);
457
458 /**
459 * sockfd_lookup - Go from a file number to its socket slot
460 * @fd: file handle
461 * @err: pointer to an error code return
462 *
463 * The file handle passed in is locked and the socket it is bound
464 * to is returned. If an error occurs the err pointer is overwritten
465 * with a negative errno code and NULL is returned. The function checks
466 * for both invalid handles and passing a handle which is not a socket.
467 *
468 * On a success the socket object pointer is returned.
469 */
470
471 struct socket *sockfd_lookup(int fd, int *err)
472 {
473 struct file *file;
474 struct socket *sock;
475
476 file = fget(fd);
477 if (!file) {
478 *err = -EBADF;
479 return NULL;
480 }
481
482 sock = sock_from_file(file, err);
483 if (!sock)
484 fput(file);
485 return sock;
486 }
487 EXPORT_SYMBOL(sockfd_lookup);
488
489 static struct socket *sockfd_lookup_light(int fd, int *err, int *fput_needed)
490 {
491 struct fd f = fdget(fd);
492 struct socket *sock;
493
494 *err = -EBADF;
495 if (f.file) {
496 sock = sock_from_file(f.file, err);
497 if (likely(sock)) {
498 *fput_needed = f.flags;
499 return sock;
500 }
501 fdput(f);
502 }
503 return NULL;
504 }
505
506 static ssize_t sockfs_listxattr(struct dentry *dentry, char *buffer,
507 size_t size)
508 {
509 ssize_t len;
510 ssize_t used = 0;
511
512 len = security_inode_listsecurity(d_inode(dentry), buffer, size);
513 if (len < 0)
514 return len;
515 used += len;
516 if (buffer) {
517 if (size < used)
518 return -ERANGE;
519 buffer += len;
520 }
521
522 len = (XATTR_NAME_SOCKPROTONAME_LEN + 1);
523 used += len;
524 if (buffer) {
525 if (size < used)
526 return -ERANGE;
527 memcpy(buffer, XATTR_NAME_SOCKPROTONAME, len);
528 buffer += len;
529 }
530
531 return used;
532 }
533
534 static int sockfs_setattr(struct dentry *dentry, struct iattr *iattr)
535 {
536 int err = simple_setattr(dentry, iattr);
537
538 if (!err && (iattr->ia_valid & ATTR_UID)) {
539 struct socket *sock = SOCKET_I(d_inode(dentry));
540
541 sock->sk->sk_uid = iattr->ia_uid;
542 }
543
544 return err;
545 }
546
547 static const struct inode_operations sockfs_inode_ops = {
548 .listxattr = sockfs_listxattr,
549 .setattr = sockfs_setattr,
550 };
551
552 /**
553 * sock_alloc - allocate a socket
554 *
555 * Allocate a new inode and socket object. The two are bound together
556 * and initialised. The socket is then returned. If we are out of inodes
557 * NULL is returned.
558 */
559
560 struct socket *sock_alloc(void)
561 {
562 struct inode *inode;
563 struct socket *sock;
564
565 inode = new_inode_pseudo(sock_mnt->mnt_sb);
566 if (!inode)
567 return NULL;
568
569 sock = SOCKET_I(inode);
570
571 inode->i_ino = get_next_ino();
572 inode->i_mode = S_IFSOCK | S_IRWXUGO;
573 inode->i_uid = current_fsuid();
574 inode->i_gid = current_fsgid();
575 inode->i_op = &sockfs_inode_ops;
576
577 return sock;
578 }
579 EXPORT_SYMBOL(sock_alloc);
580
581 /**
582 * sock_release - close a socket
583 * @sock: socket to close
584 *
585 * The socket is released from the protocol stack if it has a release
586 * callback, and the inode is then released if the socket is bound to
587 * an inode not a file.
588 */
589
590 void sock_release(struct socket *sock)
591 {
592 if (sock->ops) {
593 struct module *owner = sock->ops->owner;
594
595 sock->ops->release(sock);
596 sock->ops = NULL;
597 module_put(owner);
598 }
599
600 if (rcu_dereference_protected(sock->wq, 1)->fasync_list)
601 pr_err("%s: fasync list not empty!\n", __func__);
602
603 if (!sock->file) {
604 iput(SOCK_INODE(sock));
605 return;
606 }
607 sock->file = NULL;
608 }
609 EXPORT_SYMBOL(sock_release);
610
611 void __sock_tx_timestamp(__u16 tsflags, __u8 *tx_flags)
612 {
613 u8 flags = *tx_flags;
614
615 if (tsflags & SOF_TIMESTAMPING_TX_HARDWARE)
616 flags |= SKBTX_HW_TSTAMP;
617
618 if (tsflags & SOF_TIMESTAMPING_TX_SOFTWARE)
619 flags |= SKBTX_SW_TSTAMP;
620
621 if (tsflags & SOF_TIMESTAMPING_TX_SCHED)
622 flags |= SKBTX_SCHED_TSTAMP;
623
624 *tx_flags = flags;
625 }
626 EXPORT_SYMBOL(__sock_tx_timestamp);
627
628 static inline int sock_sendmsg_nosec(struct socket *sock, struct msghdr *msg)
629 {
630 int ret = sock->ops->sendmsg(sock, msg, msg_data_left(msg));
631 BUG_ON(ret == -EIOCBQUEUED);
632 return ret;
633 }
634
635 int sock_sendmsg(struct socket *sock, struct msghdr *msg)
636 {
637 int err = security_socket_sendmsg(sock, msg,
638 msg_data_left(msg));
639
640 return err ?: sock_sendmsg_nosec(sock, msg);
641 }
642 EXPORT_SYMBOL(sock_sendmsg);
643
644 int kernel_sendmsg(struct socket *sock, struct msghdr *msg,
645 struct kvec *vec, size_t num, size_t size)
646 {
647 iov_iter_kvec(&msg->msg_iter, WRITE | ITER_KVEC, vec, num, size);
648 return sock_sendmsg(sock, msg);
649 }
650 EXPORT_SYMBOL(kernel_sendmsg);
651
652 int kernel_sendmsg_locked(struct sock *sk, struct msghdr *msg,
653 struct kvec *vec, size_t num, size_t size)
654 {
655 struct socket *sock = sk->sk_socket;
656
657 if (!sock->ops->sendmsg_locked)
658 return sock_no_sendmsg_locked(sk, msg, size);
659
660 iov_iter_kvec(&msg->msg_iter, WRITE | ITER_KVEC, vec, num, size);
661
662 return sock->ops->sendmsg_locked(sk, msg, msg_data_left(msg));
663 }
664 EXPORT_SYMBOL(kernel_sendmsg_locked);
665
666 static bool skb_is_err_queue(const struct sk_buff *skb)
667 {
668 /* pkt_type of skbs enqueued on the error queue are set to
669 * PACKET_OUTGOING in skb_set_err_queue(). This is only safe to do
670 * in recvmsg, since skbs received on a local socket will never
671 * have a pkt_type of PACKET_OUTGOING.
672 */
673 return skb->pkt_type == PACKET_OUTGOING;
674 }
675
676 /* On transmit, software and hardware timestamps are returned independently.
677 * As the two skb clones share the hardware timestamp, which may be updated
678 * before the software timestamp is received, a hardware TX timestamp may be
679 * returned only if there is no software TX timestamp. Ignore false software
680 * timestamps, which may be made in the __sock_recv_timestamp() call when the
681 * option SO_TIMESTAMP(NS) is enabled on the socket, even when the skb has a
682 * hardware timestamp.
683 */
684 static bool skb_is_swtx_tstamp(const struct sk_buff *skb, int false_tstamp)
685 {
686 return skb->tstamp && !false_tstamp && skb_is_err_queue(skb);
687 }
688
689 static void put_ts_pktinfo(struct msghdr *msg, struct sk_buff *skb)
690 {
691 struct scm_ts_pktinfo ts_pktinfo;
692 struct net_device *orig_dev;
693
694 if (!skb_mac_header_was_set(skb))
695 return;
696
697 memset(&ts_pktinfo, 0, sizeof(ts_pktinfo));
698
699 rcu_read_lock();
700 orig_dev = dev_get_by_napi_id(skb_napi_id(skb));
701 if (orig_dev)
702 ts_pktinfo.if_index = orig_dev->ifindex;
703 rcu_read_unlock();
704
705 ts_pktinfo.pkt_length = skb->len - skb_mac_offset(skb);
706 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPING_PKTINFO,
707 sizeof(ts_pktinfo), &ts_pktinfo);
708 }
709
710 /*
711 * called from sock_recv_timestamp() if sock_flag(sk, SOCK_RCVTSTAMP)
712 */
713 void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk,
714 struct sk_buff *skb)
715 {
716 int need_software_tstamp = sock_flag(sk, SOCK_RCVTSTAMP);
717 struct scm_timestamping tss;
718 int empty = 1, false_tstamp = 0;
719 struct skb_shared_hwtstamps *shhwtstamps =
720 skb_hwtstamps(skb);
721
722 /* Race occurred between timestamp enabling and packet
723 receiving. Fill in the current time for now. */
724 if (need_software_tstamp && skb->tstamp == 0) {
725 __net_timestamp(skb);
726 false_tstamp = 1;
727 }
728
729 if (need_software_tstamp) {
730 if (!sock_flag(sk, SOCK_RCVTSTAMPNS)) {
731 struct timeval tv;
732 skb_get_timestamp(skb, &tv);
733 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMP,
734 sizeof(tv), &tv);
735 } else {
736 struct timespec ts;
737 skb_get_timestampns(skb, &ts);
738 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPNS,
739 sizeof(ts), &ts);
740 }
741 }
742
743 memset(&tss, 0, sizeof(tss));
744 if ((sk->sk_tsflags & SOF_TIMESTAMPING_SOFTWARE) &&
745 ktime_to_timespec_cond(skb->tstamp, tss.ts + 0))
746 empty = 0;
747 if (shhwtstamps &&
748 (sk->sk_tsflags & SOF_TIMESTAMPING_RAW_HARDWARE) &&
749 !skb_is_swtx_tstamp(skb, false_tstamp) &&
750 ktime_to_timespec_cond(shhwtstamps->hwtstamp, tss.ts + 2)) {
751 empty = 0;
752 if ((sk->sk_tsflags & SOF_TIMESTAMPING_OPT_PKTINFO) &&
753 !skb_is_err_queue(skb))
754 put_ts_pktinfo(msg, skb);
755 }
756 if (!empty) {
757 put_cmsg(msg, SOL_SOCKET,
758 SCM_TIMESTAMPING, sizeof(tss), &tss);
759
760 if (skb_is_err_queue(skb) && skb->len &&
761 SKB_EXT_ERR(skb)->opt_stats)
762 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPING_OPT_STATS,
763 skb->len, skb->data);
764 }
765 }
766 EXPORT_SYMBOL_GPL(__sock_recv_timestamp);
767
768 void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk,
769 struct sk_buff *skb)
770 {
771 int ack;
772
773 if (!sock_flag(sk, SOCK_WIFI_STATUS))
774 return;
775 if (!skb->wifi_acked_valid)
776 return;
777
778 ack = skb->wifi_acked;
779
780 put_cmsg(msg, SOL_SOCKET, SCM_WIFI_STATUS, sizeof(ack), &ack);
781 }
782 EXPORT_SYMBOL_GPL(__sock_recv_wifi_status);
783
784 static inline void sock_recv_drops(struct msghdr *msg, struct sock *sk,
785 struct sk_buff *skb)
786 {
787 if (sock_flag(sk, SOCK_RXQ_OVFL) && skb && SOCK_SKB_CB(skb)->dropcount)
788 put_cmsg(msg, SOL_SOCKET, SO_RXQ_OVFL,
789 sizeof(__u32), &SOCK_SKB_CB(skb)->dropcount);
790 }
791
792 void __sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
793 struct sk_buff *skb)
794 {
795 sock_recv_timestamp(msg, sk, skb);
796 sock_recv_drops(msg, sk, skb);
797 }
798 EXPORT_SYMBOL_GPL(__sock_recv_ts_and_drops);
799
800 static inline int sock_recvmsg_nosec(struct socket *sock, struct msghdr *msg,
801 int flags)
802 {
803 return sock->ops->recvmsg(sock, msg, msg_data_left(msg), flags);
804 }
805
806 int sock_recvmsg(struct socket *sock, struct msghdr *msg, int flags)
807 {
808 int err = security_socket_recvmsg(sock, msg, msg_data_left(msg), flags);
809
810 return err ?: sock_recvmsg_nosec(sock, msg, flags);
811 }
812 EXPORT_SYMBOL(sock_recvmsg);
813
814 /**
815 * kernel_recvmsg - Receive a message from a socket (kernel space)
816 * @sock: The socket to receive the message from
817 * @msg: Received message
818 * @vec: Input s/g array for message data
819 * @num: Size of input s/g array
820 * @size: Number of bytes to read
821 * @flags: Message flags (MSG_DONTWAIT, etc...)
822 *
823 * On return the msg structure contains the scatter/gather array passed in the
824 * vec argument. The array is modified so that it consists of the unfilled
825 * portion of the original array.
826 *
827 * The returned value is the total number of bytes received, or an error.
828 */
829 int kernel_recvmsg(struct socket *sock, struct msghdr *msg,
830 struct kvec *vec, size_t num, size_t size, int flags)
831 {
832 mm_segment_t oldfs = get_fs();
833 int result;
834
835 iov_iter_kvec(&msg->msg_iter, READ | ITER_KVEC, vec, num, size);
836 set_fs(KERNEL_DS);
837 result = sock_recvmsg(sock, msg, flags);
838 set_fs(oldfs);
839 return result;
840 }
841 EXPORT_SYMBOL(kernel_recvmsg);
842
843 static ssize_t sock_sendpage(struct file *file, struct page *page,
844 int offset, size_t size, loff_t *ppos, int more)
845 {
846 struct socket *sock;
847 int flags;
848
849 sock = file->private_data;
850
851 flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0;
852 /* more is a combination of MSG_MORE and MSG_SENDPAGE_NOTLAST */
853 flags |= more;
854
855 return kernel_sendpage(sock, page, offset, size, flags);
856 }
857
858 static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
859 struct pipe_inode_info *pipe, size_t len,
860 unsigned int flags)
861 {
862 struct socket *sock = file->private_data;
863
864 if (unlikely(!sock->ops->splice_read))
865 return -EINVAL;
866
867 return sock->ops->splice_read(sock, ppos, pipe, len, flags);
868 }
869
870 static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to)
871 {
872 struct file *file = iocb->ki_filp;
873 struct socket *sock = file->private_data;
874 struct msghdr msg = {.msg_iter = *to,
875 .msg_iocb = iocb};
876 ssize_t res;
877
878 if (file->f_flags & O_NONBLOCK)
879 msg.msg_flags = MSG_DONTWAIT;
880
881 if (iocb->ki_pos != 0)
882 return -ESPIPE;
883
884 if (!iov_iter_count(to)) /* Match SYS5 behaviour */
885 return 0;
886
887 res = sock_recvmsg(sock, &msg, msg.msg_flags);
888 *to = msg.msg_iter;
889 return res;
890 }
891
892 static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from)
893 {
894 struct file *file = iocb->ki_filp;
895 struct socket *sock = file->private_data;
896 struct msghdr msg = {.msg_iter = *from,
897 .msg_iocb = iocb};
898 ssize_t res;
899
900 if (iocb->ki_pos != 0)
901 return -ESPIPE;
902
903 if (file->f_flags & O_NONBLOCK)
904 msg.msg_flags = MSG_DONTWAIT;
905
906 if (sock->type == SOCK_SEQPACKET)
907 msg.msg_flags |= MSG_EOR;
908
909 res = sock_sendmsg(sock, &msg);
910 *from = msg.msg_iter;
911 return res;
912 }
913
914 /*
915 * Atomic setting of ioctl hooks to avoid race
916 * with module unload.
917 */
918
919 static DEFINE_MUTEX(br_ioctl_mutex);
920 static int (*br_ioctl_hook) (struct net *, unsigned int cmd, void __user *arg);
921
922 void brioctl_set(int (*hook) (struct net *, unsigned int, void __user *))
923 {
924 mutex_lock(&br_ioctl_mutex);
925 br_ioctl_hook = hook;
926 mutex_unlock(&br_ioctl_mutex);
927 }
928 EXPORT_SYMBOL(brioctl_set);
929
930 static DEFINE_MUTEX(vlan_ioctl_mutex);
931 static int (*vlan_ioctl_hook) (struct net *, void __user *arg);
932
933 void vlan_ioctl_set(int (*hook) (struct net *, void __user *))
934 {
935 mutex_lock(&vlan_ioctl_mutex);
936 vlan_ioctl_hook = hook;
937 mutex_unlock(&vlan_ioctl_mutex);
938 }
939 EXPORT_SYMBOL(vlan_ioctl_set);
940
941 static DEFINE_MUTEX(dlci_ioctl_mutex);
942 static int (*dlci_ioctl_hook) (unsigned int, void __user *);
943
944 void dlci_ioctl_set(int (*hook) (unsigned int, void __user *))
945 {
946 mutex_lock(&dlci_ioctl_mutex);
947 dlci_ioctl_hook = hook;
948 mutex_unlock(&dlci_ioctl_mutex);
949 }
950 EXPORT_SYMBOL(dlci_ioctl_set);
951
952 static long sock_do_ioctl(struct net *net, struct socket *sock,
953 unsigned int cmd, unsigned long arg)
954 {
955 int err;
956 void __user *argp = (void __user *)arg;
957
958 err = sock->ops->ioctl(sock, cmd, arg);
959
960 /*
961 * If this ioctl is unknown try to hand it down
962 * to the NIC driver.
963 */
964 if (err != -ENOIOCTLCMD)
965 return err;
966
967 if (cmd == SIOCGIFCONF) {
968 struct ifconf ifc;
969 if (copy_from_user(&ifc, argp, sizeof(struct ifconf)))
970 return -EFAULT;
971 rtnl_lock();
972 err = dev_ifconf(net, &ifc, sizeof(struct ifreq));
973 rtnl_unlock();
974 if (!err && copy_to_user(argp, &ifc, sizeof(struct ifconf)))
975 err = -EFAULT;
976 } else {
977 struct ifreq ifr;
978 bool need_copyout;
979 if (copy_from_user(&ifr, argp, sizeof(struct ifreq)))
980 return -EFAULT;
981 err = dev_ioctl(net, cmd, &ifr, &need_copyout);
982 if (!err && need_copyout)
983 if (copy_to_user(argp, &ifr, sizeof(struct ifreq)))
984 return -EFAULT;
985 }
986 return err;
987 }
988
989 /*
990 * With an ioctl, arg may well be a user mode pointer, but we don't know
991 * what to do with it - that's up to the protocol still.
992 */
993
994 static struct ns_common *get_net_ns(struct ns_common *ns)
995 {
996 return &get_net(container_of(ns, struct net, ns))->ns;
997 }
998
999 static long sock_ioctl(struct file *file, unsigned cmd, unsigned long arg)
1000 {
1001 struct socket *sock;
1002 struct sock *sk;
1003 void __user *argp = (void __user *)arg;
1004 int pid, err;
1005 struct net *net;
1006
1007 sock = file->private_data;
1008 sk = sock->sk;
1009 net = sock_net(sk);
1010 if (unlikely(cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15))) {
1011 struct ifreq ifr;
1012 bool need_copyout;
1013 if (copy_from_user(&ifr, argp, sizeof(struct ifreq)))
1014 return -EFAULT;
1015 err = dev_ioctl(net, cmd, &ifr, &need_copyout);
1016 if (!err && need_copyout)
1017 if (copy_to_user(argp, &ifr, sizeof(struct ifreq)))
1018 return -EFAULT;
1019 } else
1020 #ifdef CONFIG_WEXT_CORE
1021 if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST) {
1022 err = wext_handle_ioctl(net, cmd, argp);
1023 } else
1024 #endif
1025 switch (cmd) {
1026 case FIOSETOWN:
1027 case SIOCSPGRP:
1028 err = -EFAULT;
1029 if (get_user(pid, (int __user *)argp))
1030 break;
1031 err = f_setown(sock->file, pid, 1);
1032 break;
1033 case FIOGETOWN:
1034 case SIOCGPGRP:
1035 err = put_user(f_getown(sock->file),
1036 (int __user *)argp);
1037 break;
1038 case SIOCGIFBR:
1039 case SIOCSIFBR:
1040 case SIOCBRADDBR:
1041 case SIOCBRDELBR:
1042 err = -ENOPKG;
1043 if (!br_ioctl_hook)
1044 request_module("bridge");
1045
1046 mutex_lock(&br_ioctl_mutex);
1047 if (br_ioctl_hook)
1048 err = br_ioctl_hook(net, cmd, argp);
1049 mutex_unlock(&br_ioctl_mutex);
1050 break;
1051 case SIOCGIFVLAN:
1052 case SIOCSIFVLAN:
1053 err = -ENOPKG;
1054 if (!vlan_ioctl_hook)
1055 request_module("8021q");
1056
1057 mutex_lock(&vlan_ioctl_mutex);
1058 if (vlan_ioctl_hook)
1059 err = vlan_ioctl_hook(net, argp);
1060 mutex_unlock(&vlan_ioctl_mutex);
1061 break;
1062 case SIOCADDDLCI:
1063 case SIOCDELDLCI:
1064 err = -ENOPKG;
1065 if (!dlci_ioctl_hook)
1066 request_module("dlci");
1067
1068 mutex_lock(&dlci_ioctl_mutex);
1069 if (dlci_ioctl_hook)
1070 err = dlci_ioctl_hook(cmd, argp);
1071 mutex_unlock(&dlci_ioctl_mutex);
1072 break;
1073 case SIOCGSKNS:
1074 err = -EPERM;
1075 if (!ns_capable(net->user_ns, CAP_NET_ADMIN))
1076 break;
1077
1078 err = open_related_ns(&net->ns, get_net_ns);
1079 break;
1080 default:
1081 err = sock_do_ioctl(net, sock, cmd, arg);
1082 break;
1083 }
1084 return err;
1085 }
1086
1087 int sock_create_lite(int family, int type, int protocol, struct socket **res)
1088 {
1089 int err;
1090 struct socket *sock = NULL;
1091
1092 err = security_socket_create(family, type, protocol, 1);
1093 if (err)
1094 goto out;
1095
1096 sock = sock_alloc();
1097 if (!sock) {
1098 err = -ENOMEM;
1099 goto out;
1100 }
1101
1102 sock->type = type;
1103 err = security_socket_post_create(sock, family, type, protocol, 1);
1104 if (err)
1105 goto out_release;
1106
1107 out:
1108 *res = sock;
1109 return err;
1110 out_release:
1111 sock_release(sock);
1112 sock = NULL;
1113 goto out;
1114 }
1115 EXPORT_SYMBOL(sock_create_lite);
1116
1117 /* No kernel lock held - perfect */
1118 static __poll_t sock_poll(struct file *file, poll_table *wait)
1119 {
1120 __poll_t busy_flag = 0;
1121 struct socket *sock;
1122
1123 /*
1124 * We can't return errors to poll, so it's either yes or no.
1125 */
1126 sock = file->private_data;
1127
1128 if (sk_can_busy_loop(sock->sk)) {
1129 /* this socket can poll_ll so tell the system call */
1130 busy_flag = POLL_BUSY_LOOP;
1131
1132 /* once, only if requested by syscall */
1133 if (wait && (wait->_key & POLL_BUSY_LOOP))
1134 sk_busy_loop(sock->sk, 1);
1135 }
1136
1137 return busy_flag | sock->ops->poll(file, sock, wait);
1138 }
1139
1140 static int sock_mmap(struct file *file, struct vm_area_struct *vma)
1141 {
1142 struct socket *sock = file->private_data;
1143
1144 return sock->ops->mmap(file, sock, vma);
1145 }
1146
1147 static int sock_close(struct inode *inode, struct file *filp)
1148 {
1149 sock_release(SOCKET_I(inode));
1150 return 0;
1151 }
1152
1153 /*
1154 * Update the socket async list
1155 *
1156 * Fasync_list locking strategy.
1157 *
1158 * 1. fasync_list is modified only under process context socket lock
1159 * i.e. under semaphore.
1160 * 2. fasync_list is used under read_lock(&sk->sk_callback_lock)
1161 * or under socket lock
1162 */
1163
1164 static int sock_fasync(int fd, struct file *filp, int on)
1165 {
1166 struct socket *sock = filp->private_data;
1167 struct sock *sk = sock->sk;
1168 struct socket_wq *wq;
1169
1170 if (sk == NULL)
1171 return -EINVAL;
1172
1173 lock_sock(sk);
1174 wq = rcu_dereference_protected(sock->wq, lockdep_sock_is_held(sk));
1175 fasync_helper(fd, filp, on, &wq->fasync_list);
1176
1177 if (!wq->fasync_list)
1178 sock_reset_flag(sk, SOCK_FASYNC);
1179 else
1180 sock_set_flag(sk, SOCK_FASYNC);
1181
1182 release_sock(sk);
1183 return 0;
1184 }
1185
1186 /* This function may be called only under rcu_lock */
1187
1188 int sock_wake_async(struct socket_wq *wq, int how, int band)
1189 {
1190 if (!wq || !wq->fasync_list)
1191 return -1;
1192
1193 switch (how) {
1194 case SOCK_WAKE_WAITD:
1195 if (test_bit(SOCKWQ_ASYNC_WAITDATA, &wq->flags))
1196 break;
1197 goto call_kill;
1198 case SOCK_WAKE_SPACE:
1199 if (!test_and_clear_bit(SOCKWQ_ASYNC_NOSPACE, &wq->flags))
1200 break;
1201 /* fall through */
1202 case SOCK_WAKE_IO:
1203 call_kill:
1204 kill_fasync(&wq->fasync_list, SIGIO, band);
1205 break;
1206 case SOCK_WAKE_URG:
1207 kill_fasync(&wq->fasync_list, SIGURG, band);
1208 }
1209
1210 return 0;
1211 }
1212 EXPORT_SYMBOL(sock_wake_async);
1213
1214 int __sock_create(struct net *net, int family, int type, int protocol,
1215 struct socket **res, int kern)
1216 {
1217 int err;
1218 struct socket *sock;
1219 const struct net_proto_family *pf;
1220
1221 /*
1222 * Check protocol is in range
1223 */
1224 if (family < 0 || family >= NPROTO)
1225 return -EAFNOSUPPORT;
1226 if (type < 0 || type >= SOCK_MAX)
1227 return -EINVAL;
1228
1229 /* Compatibility.
1230
1231 This uglymoron is moved from INET layer to here to avoid
1232 deadlock in module load.
1233 */
1234 if (family == PF_INET && type == SOCK_PACKET) {
1235 pr_info_once("%s uses obsolete (PF_INET,SOCK_PACKET)\n",
1236 current->comm);
1237 family = PF_PACKET;
1238 }
1239
1240 err = security_socket_create(family, type, protocol, kern);
1241 if (err)
1242 return err;
1243
1244 /*
1245 * Allocate the socket and allow the family to set things up. if
1246 * the protocol is 0, the family is instructed to select an appropriate
1247 * default.
1248 */
1249 sock = sock_alloc();
1250 if (!sock) {
1251 net_warn_ratelimited("socket: no more sockets\n");
1252 return -ENFILE; /* Not exactly a match, but its the
1253 closest posix thing */
1254 }
1255
1256 sock->type = type;
1257
1258 #ifdef CONFIG_MODULES
1259 /* Attempt to load a protocol module if the find failed.
1260 *
1261 * 12/09/1996 Marcin: But! this makes REALLY only sense, if the user
1262 * requested real, full-featured networking support upon configuration.
1263 * Otherwise module support will break!
1264 */
1265 if (rcu_access_pointer(net_families[family]) == NULL)
1266 request_module("net-pf-%d", family);
1267 #endif
1268
1269 rcu_read_lock();
1270 pf = rcu_dereference(net_families[family]);
1271 err = -EAFNOSUPPORT;
1272 if (!pf)
1273 goto out_release;
1274
1275 /*
1276 * We will call the ->create function, that possibly is in a loadable
1277 * module, so we have to bump that loadable module refcnt first.
1278 */
1279 if (!try_module_get(pf->owner))
1280 goto out_release;
1281
1282 /* Now protected by module ref count */
1283 rcu_read_unlock();
1284
1285 err = pf->create(net, sock, protocol, kern);
1286 if (err < 0)
1287 goto out_module_put;
1288
1289 /*
1290 * Now to bump the refcnt of the [loadable] module that owns this
1291 * socket at sock_release time we decrement its refcnt.
1292 */
1293 if (!try_module_get(sock->ops->owner))
1294 goto out_module_busy;
1295
1296 /*
1297 * Now that we're done with the ->create function, the [loadable]
1298 * module can have its refcnt decremented
1299 */
1300 module_put(pf->owner);
1301 err = security_socket_post_create(sock, family, type, protocol, kern);
1302 if (err)
1303 goto out_sock_release;
1304 *res = sock;
1305
1306 return 0;
1307
1308 out_module_busy:
1309 err = -EAFNOSUPPORT;
1310 out_module_put:
1311 sock->ops = NULL;
1312 module_put(pf->owner);
1313 out_sock_release:
1314 sock_release(sock);
1315 return err;
1316
1317 out_release:
1318 rcu_read_unlock();
1319 goto out_sock_release;
1320 }
1321 EXPORT_SYMBOL(__sock_create);
1322
1323 int sock_create(int family, int type, int protocol, struct socket **res)
1324 {
1325 return __sock_create(current->nsproxy->net_ns, family, type, protocol, res, 0);
1326 }
1327 EXPORT_SYMBOL(sock_create);
1328
1329 int sock_create_kern(struct net *net, int family, int type, int protocol, struct socket **res)
1330 {
1331 return __sock_create(net, family, type, protocol, res, 1);
1332 }
1333 EXPORT_SYMBOL(sock_create_kern);
1334
1335 int __sys_socket(int family, int type, int protocol)
1336 {
1337 int retval;
1338 struct socket *sock;
1339 int flags;
1340
1341 /* Check the SOCK_* constants for consistency. */
1342 BUILD_BUG_ON(SOCK_CLOEXEC != O_CLOEXEC);
1343 BUILD_BUG_ON((SOCK_MAX | SOCK_TYPE_MASK) != SOCK_TYPE_MASK);
1344 BUILD_BUG_ON(SOCK_CLOEXEC & SOCK_TYPE_MASK);
1345 BUILD_BUG_ON(SOCK_NONBLOCK & SOCK_TYPE_MASK);
1346
1347 flags = type & ~SOCK_TYPE_MASK;
1348 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1349 return -EINVAL;
1350 type &= SOCK_TYPE_MASK;
1351
1352 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1353 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1354
1355 retval = sock_create(family, type, protocol, &sock);
1356 if (retval < 0)
1357 return retval;
1358
1359 return sock_map_fd(sock, flags & (O_CLOEXEC | O_NONBLOCK));
1360 }
1361
1362 SYSCALL_DEFINE3(socket, int, family, int, type, int, protocol)
1363 {
1364 return __sys_socket(family, type, protocol);
1365 }
1366
1367 /*
1368 * Create a pair of connected sockets.
1369 */
1370
1371 int __sys_socketpair(int family, int type, int protocol, int __user *usockvec)
1372 {
1373 struct socket *sock1, *sock2;
1374 int fd1, fd2, err;
1375 struct file *newfile1, *newfile2;
1376 int flags;
1377
1378 flags = type & ~SOCK_TYPE_MASK;
1379 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1380 return -EINVAL;
1381 type &= SOCK_TYPE_MASK;
1382
1383 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1384 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1385
1386 /*
1387 * reserve descriptors and make sure we won't fail
1388 * to return them to userland.
1389 */
1390 fd1 = get_unused_fd_flags(flags);
1391 if (unlikely(fd1 < 0))
1392 return fd1;
1393
1394 fd2 = get_unused_fd_flags(flags);
1395 if (unlikely(fd2 < 0)) {
1396 put_unused_fd(fd1);
1397 return fd2;
1398 }
1399
1400 err = put_user(fd1, &usockvec[0]);
1401 if (err)
1402 goto out;
1403
1404 err = put_user(fd2, &usockvec[1]);
1405 if (err)
1406 goto out;
1407
1408 /*
1409 * Obtain the first socket and check if the underlying protocol
1410 * supports the socketpair call.
1411 */
1412
1413 err = sock_create(family, type, protocol, &sock1);
1414 if (unlikely(err < 0))
1415 goto out;
1416
1417 err = sock_create(family, type, protocol, &sock2);
1418 if (unlikely(err < 0)) {
1419 sock_release(sock1);
1420 goto out;
1421 }
1422
1423 err = sock1->ops->socketpair(sock1, sock2);
1424 if (unlikely(err < 0)) {
1425 sock_release(sock2);
1426 sock_release(sock1);
1427 goto out;
1428 }
1429
1430 newfile1 = sock_alloc_file(sock1, flags, NULL);
1431 if (IS_ERR(newfile1)) {
1432 err = PTR_ERR(newfile1);
1433 sock_release(sock2);
1434 goto out;
1435 }
1436
1437 newfile2 = sock_alloc_file(sock2, flags, NULL);
1438 if (IS_ERR(newfile2)) {
1439 err = PTR_ERR(newfile2);
1440 fput(newfile1);
1441 goto out;
1442 }
1443
1444 audit_fd_pair(fd1, fd2);
1445
1446 fd_install(fd1, newfile1);
1447 fd_install(fd2, newfile2);
1448 return 0;
1449
1450 out:
1451 put_unused_fd(fd2);
1452 put_unused_fd(fd1);
1453 return err;
1454 }
1455
1456 SYSCALL_DEFINE4(socketpair, int, family, int, type, int, protocol,
1457 int __user *, usockvec)
1458 {
1459 return __sys_socketpair(family, type, protocol, usockvec);
1460 }
1461
1462 /*
1463 * Bind a name to a socket. Nothing much to do here since it's
1464 * the protocol's responsibility to handle the local address.
1465 *
1466 * We move the socket address to kernel space before we call
1467 * the protocol layer (having also checked the address is ok).
1468 */
1469
1470 int __sys_bind(int fd, struct sockaddr __user *umyaddr, int addrlen)
1471 {
1472 struct socket *sock;
1473 struct sockaddr_storage address;
1474 int err, fput_needed;
1475
1476 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1477 if (sock) {
1478 err = move_addr_to_kernel(umyaddr, addrlen, &address);
1479 if (err >= 0) {
1480 err = security_socket_bind(sock,
1481 (struct sockaddr *)&address,
1482 addrlen);
1483 if (!err)
1484 err = sock->ops->bind(sock,
1485 (struct sockaddr *)
1486 &address, addrlen);
1487 }
1488 fput_light(sock->file, fput_needed);
1489 }
1490 return err;
1491 }
1492
1493 SYSCALL_DEFINE3(bind, int, fd, struct sockaddr __user *, umyaddr, int, addrlen)
1494 {
1495 return __sys_bind(fd, umyaddr, addrlen);
1496 }
1497
1498 /*
1499 * Perform a listen. Basically, we allow the protocol to do anything
1500 * necessary for a listen, and if that works, we mark the socket as
1501 * ready for listening.
1502 */
1503
1504 int __sys_listen(int fd, int backlog)
1505 {
1506 struct socket *sock;
1507 int err, fput_needed;
1508 int somaxconn;
1509
1510 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1511 if (sock) {
1512 somaxconn = sock_net(sock->sk)->core.sysctl_somaxconn;
1513 if ((unsigned int)backlog > somaxconn)
1514 backlog = somaxconn;
1515
1516 err = security_socket_listen(sock, backlog);
1517 if (!err)
1518 err = sock->ops->listen(sock, backlog);
1519
1520 fput_light(sock->file, fput_needed);
1521 }
1522 return err;
1523 }
1524
1525 SYSCALL_DEFINE2(listen, int, fd, int, backlog)
1526 {
1527 return __sys_listen(fd, backlog);
1528 }
1529
1530 /*
1531 * For accept, we attempt to create a new socket, set up the link
1532 * with the client, wake up the client, then return the new
1533 * connected fd. We collect the address of the connector in kernel
1534 * space and move it to user at the very end. This is unclean because
1535 * we open the socket then return an error.
1536 *
1537 * 1003.1g adds the ability to recvmsg() to query connection pending
1538 * status to recvmsg. We need to add that support in a way thats
1539 * clean when we restucture accept also.
1540 */
1541
1542 int __sys_accept4(int fd, struct sockaddr __user *upeer_sockaddr,
1543 int __user *upeer_addrlen, int flags)
1544 {
1545 struct socket *sock, *newsock;
1546 struct file *newfile;
1547 int err, len, newfd, fput_needed;
1548 struct sockaddr_storage address;
1549
1550 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1551 return -EINVAL;
1552
1553 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1554 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1555
1556 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1557 if (!sock)
1558 goto out;
1559
1560 err = -ENFILE;
1561 newsock = sock_alloc();
1562 if (!newsock)
1563 goto out_put;
1564
1565 newsock->type = sock->type;
1566 newsock->ops = sock->ops;
1567
1568 /*
1569 * We don't need try_module_get here, as the listening socket (sock)
1570 * has the protocol module (sock->ops->owner) held.
1571 */
1572 __module_get(newsock->ops->owner);
1573
1574 newfd = get_unused_fd_flags(flags);
1575 if (unlikely(newfd < 0)) {
1576 err = newfd;
1577 sock_release(newsock);
1578 goto out_put;
1579 }
1580 newfile = sock_alloc_file(newsock, flags, sock->sk->sk_prot_creator->name);
1581 if (IS_ERR(newfile)) {
1582 err = PTR_ERR(newfile);
1583 put_unused_fd(newfd);
1584 goto out_put;
1585 }
1586
1587 err = security_socket_accept(sock, newsock);
1588 if (err)
1589 goto out_fd;
1590
1591 err = sock->ops->accept(sock, newsock, sock->file->f_flags, false);
1592 if (err < 0)
1593 goto out_fd;
1594
1595 if (upeer_sockaddr) {
1596 if (newsock->ops->getname(newsock, (struct sockaddr *)&address,
1597 &len, 2) < 0) {
1598 err = -ECONNABORTED;
1599 goto out_fd;
1600 }
1601 err = move_addr_to_user(&address,
1602 len, upeer_sockaddr, upeer_addrlen);
1603 if (err < 0)
1604 goto out_fd;
1605 }
1606
1607 /* File flags are not inherited via accept() unlike another OSes. */
1608
1609 fd_install(newfd, newfile);
1610 err = newfd;
1611
1612 out_put:
1613 fput_light(sock->file, fput_needed);
1614 out:
1615 return err;
1616 out_fd:
1617 fput(newfile);
1618 put_unused_fd(newfd);
1619 goto out_put;
1620 }
1621
1622 SYSCALL_DEFINE4(accept4, int, fd, struct sockaddr __user *, upeer_sockaddr,
1623 int __user *, upeer_addrlen, int, flags)
1624 {
1625 return __sys_accept4(fd, upeer_sockaddr, upeer_addrlen, flags);
1626 }
1627
1628 SYSCALL_DEFINE3(accept, int, fd, struct sockaddr __user *, upeer_sockaddr,
1629 int __user *, upeer_addrlen)
1630 {
1631 return __sys_accept4(fd, upeer_sockaddr, upeer_addrlen, 0);
1632 }
1633
1634 /*
1635 * Attempt to connect to a socket with the server address. The address
1636 * is in user space so we verify it is OK and move it to kernel space.
1637 *
1638 * For 1003.1g we need to add clean support for a bind to AF_UNSPEC to
1639 * break bindings
1640 *
1641 * NOTE: 1003.1g draft 6.3 is broken with respect to AX.25/NetROM and
1642 * other SEQPACKET protocols that take time to connect() as it doesn't
1643 * include the -EINPROGRESS status for such sockets.
1644 */
1645
1646 int __sys_connect(int fd, struct sockaddr __user *uservaddr, int addrlen)
1647 {
1648 struct socket *sock;
1649 struct sockaddr_storage address;
1650 int err, fput_needed;
1651
1652 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1653 if (!sock)
1654 goto out;
1655 err = move_addr_to_kernel(uservaddr, addrlen, &address);
1656 if (err < 0)
1657 goto out_put;
1658
1659 err =
1660 security_socket_connect(sock, (struct sockaddr *)&address, addrlen);
1661 if (err)
1662 goto out_put;
1663
1664 err = sock->ops->connect(sock, (struct sockaddr *)&address, addrlen,
1665 sock->file->f_flags);
1666 out_put:
1667 fput_light(sock->file, fput_needed);
1668 out:
1669 return err;
1670 }
1671
1672 SYSCALL_DEFINE3(connect, int, fd, struct sockaddr __user *, uservaddr,
1673 int, addrlen)
1674 {
1675 return __sys_connect(fd, uservaddr, addrlen);
1676 }
1677
1678 /*
1679 * Get the local address ('name') of a socket object. Move the obtained
1680 * name to user space.
1681 */
1682
1683 int __sys_getsockname(int fd, struct sockaddr __user *usockaddr,
1684 int __user *usockaddr_len)
1685 {
1686 struct socket *sock;
1687 struct sockaddr_storage address;
1688 int len, err, fput_needed;
1689
1690 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1691 if (!sock)
1692 goto out;
1693
1694 err = security_socket_getsockname(sock);
1695 if (err)
1696 goto out_put;
1697
1698 err = sock->ops->getname(sock, (struct sockaddr *)&address, &len, 0);
1699 if (err)
1700 goto out_put;
1701 err = move_addr_to_user(&address, len, usockaddr, usockaddr_len);
1702
1703 out_put:
1704 fput_light(sock->file, fput_needed);
1705 out:
1706 return err;
1707 }
1708
1709 SYSCALL_DEFINE3(getsockname, int, fd, struct sockaddr __user *, usockaddr,
1710 int __user *, usockaddr_len)
1711 {
1712 return __sys_getsockname(fd, usockaddr, usockaddr_len);
1713 }
1714
1715 /*
1716 * Get the remote address ('name') of a socket object. Move the obtained
1717 * name to user space.
1718 */
1719
1720 int __sys_getpeername(int fd, struct sockaddr __user *usockaddr,
1721 int __user *usockaddr_len)
1722 {
1723 struct socket *sock;
1724 struct sockaddr_storage address;
1725 int len, err, fput_needed;
1726
1727 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1728 if (sock != NULL) {
1729 err = security_socket_getpeername(sock);
1730 if (err) {
1731 fput_light(sock->file, fput_needed);
1732 return err;
1733 }
1734
1735 err =
1736 sock->ops->getname(sock, (struct sockaddr *)&address, &len,
1737 1);
1738 if (!err)
1739 err = move_addr_to_user(&address, len, usockaddr,
1740 usockaddr_len);
1741 fput_light(sock->file, fput_needed);
1742 }
1743 return err;
1744 }
1745
1746 SYSCALL_DEFINE3(getpeername, int, fd, struct sockaddr __user *, usockaddr,
1747 int __user *, usockaddr_len)
1748 {
1749 return __sys_getpeername(fd, usockaddr, usockaddr_len);
1750 }
1751
1752 /*
1753 * Send a datagram to a given address. We move the address into kernel
1754 * space and check the user space data area is readable before invoking
1755 * the protocol.
1756 */
1757 int __sys_sendto(int fd, void __user *buff, size_t len, unsigned int flags,
1758 struct sockaddr __user *addr, int addr_len)
1759 {
1760 struct socket *sock;
1761 struct sockaddr_storage address;
1762 int err;
1763 struct msghdr msg;
1764 struct iovec iov;
1765 int fput_needed;
1766
1767 err = import_single_range(WRITE, buff, len, &iov, &msg.msg_iter);
1768 if (unlikely(err))
1769 return err;
1770 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1771 if (!sock)
1772 goto out;
1773
1774 msg.msg_name = NULL;
1775 msg.msg_control = NULL;
1776 msg.msg_controllen = 0;
1777 msg.msg_namelen = 0;
1778 if (addr) {
1779 err = move_addr_to_kernel(addr, addr_len, &address);
1780 if (err < 0)
1781 goto out_put;
1782 msg.msg_name = (struct sockaddr *)&address;
1783 msg.msg_namelen = addr_len;
1784 }
1785 if (sock->file->f_flags & O_NONBLOCK)
1786 flags |= MSG_DONTWAIT;
1787 msg.msg_flags = flags;
1788 err = sock_sendmsg(sock, &msg);
1789
1790 out_put:
1791 fput_light(sock->file, fput_needed);
1792 out:
1793 return err;
1794 }
1795
1796 SYSCALL_DEFINE6(sendto, int, fd, void __user *, buff, size_t, len,
1797 unsigned int, flags, struct sockaddr __user *, addr,
1798 int, addr_len)
1799 {
1800 return __sys_sendto(fd, buff, len, flags, addr, addr_len);
1801 }
1802
1803 /*
1804 * Send a datagram down a socket.
1805 */
1806
1807 SYSCALL_DEFINE4(send, int, fd, void __user *, buff, size_t, len,
1808 unsigned int, flags)
1809 {
1810 return __sys_sendto(fd, buff, len, flags, NULL, 0);
1811 }
1812
1813 /*
1814 * Receive a frame from the socket and optionally record the address of the
1815 * sender. We verify the buffers are writable and if needed move the
1816 * sender address from kernel to user space.
1817 */
1818 int __sys_recvfrom(int fd, void __user *ubuf, size_t size, unsigned int flags,
1819 struct sockaddr __user *addr, int __user *addr_len)
1820 {
1821 struct socket *sock;
1822 struct iovec iov;
1823 struct msghdr msg;
1824 struct sockaddr_storage address;
1825 int err, err2;
1826 int fput_needed;
1827
1828 err = import_single_range(READ, ubuf, size, &iov, &msg.msg_iter);
1829 if (unlikely(err))
1830 return err;
1831 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1832 if (!sock)
1833 goto out;
1834
1835 msg.msg_control = NULL;
1836 msg.msg_controllen = 0;
1837 /* Save some cycles and don't copy the address if not needed */
1838 msg.msg_name = addr ? (struct sockaddr *)&address : NULL;
1839 /* We assume all kernel code knows the size of sockaddr_storage */
1840 msg.msg_namelen = 0;
1841 msg.msg_iocb = NULL;
1842 msg.msg_flags = 0;
1843 if (sock->file->f_flags & O_NONBLOCK)
1844 flags |= MSG_DONTWAIT;
1845 err = sock_recvmsg(sock, &msg, flags);
1846
1847 if (err >= 0 && addr != NULL) {
1848 err2 = move_addr_to_user(&address,
1849 msg.msg_namelen, addr, addr_len);
1850 if (err2 < 0)
1851 err = err2;
1852 }
1853
1854 fput_light(sock->file, fput_needed);
1855 out:
1856 return err;
1857 }
1858
1859 SYSCALL_DEFINE6(recvfrom, int, fd, void __user *, ubuf, size_t, size,
1860 unsigned int, flags, struct sockaddr __user *, addr,
1861 int __user *, addr_len)
1862 {
1863 return __sys_recvfrom(fd, ubuf, size, flags, addr, addr_len);
1864 }
1865
1866 /*
1867 * Receive a datagram from a socket.
1868 */
1869
1870 SYSCALL_DEFINE4(recv, int, fd, void __user *, ubuf, size_t, size,
1871 unsigned int, flags)
1872 {
1873 return __sys_recvfrom(fd, ubuf, size, flags, NULL, NULL);
1874 }
1875
1876 /*
1877 * Set a socket option. Because we don't know the option lengths we have
1878 * to pass the user mode parameter for the protocols to sort out.
1879 */
1880
1881 static int __sys_setsockopt(int fd, int level, int optname,
1882 char __user *optval, int optlen)
1883 {
1884 int err, fput_needed;
1885 struct socket *sock;
1886
1887 if (optlen < 0)
1888 return -EINVAL;
1889
1890 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1891 if (sock != NULL) {
1892 err = security_socket_setsockopt(sock, level, optname);
1893 if (err)
1894 goto out_put;
1895
1896 if (level == SOL_SOCKET)
1897 err =
1898 sock_setsockopt(sock, level, optname, optval,
1899 optlen);
1900 else
1901 err =
1902 sock->ops->setsockopt(sock, level, optname, optval,
1903 optlen);
1904 out_put:
1905 fput_light(sock->file, fput_needed);
1906 }
1907 return err;
1908 }
1909
1910 SYSCALL_DEFINE5(setsockopt, int, fd, int, level, int, optname,
1911 char __user *, optval, int, optlen)
1912 {
1913 return __sys_setsockopt(fd, level, optname, optval, optlen);
1914 }
1915
1916 /*
1917 * Get a socket option. Because we don't know the option lengths we have
1918 * to pass a user mode parameter for the protocols to sort out.
1919 */
1920
1921 SYSCALL_DEFINE5(getsockopt, int, fd, int, level, int, optname,
1922 char __user *, optval, int __user *, optlen)
1923 {
1924 int err, fput_needed;
1925 struct socket *sock;
1926
1927 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1928 if (sock != NULL) {
1929 err = security_socket_getsockopt(sock, level, optname);
1930 if (err)
1931 goto out_put;
1932
1933 if (level == SOL_SOCKET)
1934 err =
1935 sock_getsockopt(sock, level, optname, optval,
1936 optlen);
1937 else
1938 err =
1939 sock->ops->getsockopt(sock, level, optname, optval,
1940 optlen);
1941 out_put:
1942 fput_light(sock->file, fput_needed);
1943 }
1944 return err;
1945 }
1946
1947 /*
1948 * Shutdown a socket.
1949 */
1950
1951 int __sys_shutdown(int fd, int how)
1952 {
1953 int err, fput_needed;
1954 struct socket *sock;
1955
1956 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1957 if (sock != NULL) {
1958 err = security_socket_shutdown(sock, how);
1959 if (!err)
1960 err = sock->ops->shutdown(sock, how);
1961 fput_light(sock->file, fput_needed);
1962 }
1963 return err;
1964 }
1965
1966 SYSCALL_DEFINE2(shutdown, int, fd, int, how)
1967 {
1968 return __sys_shutdown(fd, how);
1969 }
1970
1971 /* A couple of helpful macros for getting the address of the 32/64 bit
1972 * fields which are the same type (int / unsigned) on our platforms.
1973 */
1974 #define COMPAT_MSG(msg, member) ((MSG_CMSG_COMPAT & flags) ? &msg##_compat->member : &msg->member)
1975 #define COMPAT_NAMELEN(msg) COMPAT_MSG(msg, msg_namelen)
1976 #define COMPAT_FLAGS(msg) COMPAT_MSG(msg, msg_flags)
1977
1978 struct used_address {
1979 struct sockaddr_storage name;
1980 unsigned int name_len;
1981 };
1982
1983 static int copy_msghdr_from_user(struct msghdr *kmsg,
1984 struct user_msghdr __user *umsg,
1985 struct sockaddr __user **save_addr,
1986 struct iovec **iov)
1987 {
1988 struct user_msghdr msg;
1989 ssize_t err;
1990
1991 if (copy_from_user(&msg, umsg, sizeof(*umsg)))
1992 return -EFAULT;
1993
1994 kmsg->msg_control = (void __force *)msg.msg_control;
1995 kmsg->msg_controllen = msg.msg_controllen;
1996 kmsg->msg_flags = msg.msg_flags;
1997
1998 kmsg->msg_namelen = msg.msg_namelen;
1999 if (!msg.msg_name)
2000 kmsg->msg_namelen = 0;
2001
2002 if (kmsg->msg_namelen < 0)
2003 return -EINVAL;
2004
2005 if (kmsg->msg_namelen > sizeof(struct sockaddr_storage))
2006 kmsg->msg_namelen = sizeof(struct sockaddr_storage);
2007
2008 if (save_addr)
2009 *save_addr = msg.msg_name;
2010
2011 if (msg.msg_name && kmsg->msg_namelen) {
2012 if (!save_addr) {
2013 err = move_addr_to_kernel(msg.msg_name,
2014 kmsg->msg_namelen,
2015 kmsg->msg_name);
2016 if (err < 0)
2017 return err;
2018 }
2019 } else {
2020 kmsg->msg_name = NULL;
2021 kmsg->msg_namelen = 0;
2022 }
2023
2024 if (msg.msg_iovlen > UIO_MAXIOV)
2025 return -EMSGSIZE;
2026
2027 kmsg->msg_iocb = NULL;
2028
2029 return import_iovec(save_addr ? READ : WRITE,
2030 msg.msg_iov, msg.msg_iovlen,
2031 UIO_FASTIOV, iov, &kmsg->msg_iter);
2032 }
2033
2034 static int ___sys_sendmsg(struct socket *sock, struct user_msghdr __user *msg,
2035 struct msghdr *msg_sys, unsigned int flags,
2036 struct used_address *used_address,
2037 unsigned int allowed_msghdr_flags)
2038 {
2039 struct compat_msghdr __user *msg_compat =
2040 (struct compat_msghdr __user *)msg;
2041 struct sockaddr_storage address;
2042 struct iovec iovstack[UIO_FASTIOV], *iov = iovstack;
2043 unsigned char ctl[sizeof(struct cmsghdr) + 20]
2044 __aligned(sizeof(__kernel_size_t));
2045 /* 20 is size of ipv6_pktinfo */
2046 unsigned char *ctl_buf = ctl;
2047 int ctl_len;
2048 ssize_t err;
2049
2050 msg_sys->msg_name = &address;
2051
2052 if (MSG_CMSG_COMPAT & flags)
2053 err = get_compat_msghdr(msg_sys, msg_compat, NULL, &iov);
2054 else
2055 err = copy_msghdr_from_user(msg_sys, msg, NULL, &iov);
2056 if (err < 0)
2057 return err;
2058
2059 err = -ENOBUFS;
2060
2061 if (msg_sys->msg_controllen > INT_MAX)
2062 goto out_freeiov;
2063 flags |= (msg_sys->msg_flags & allowed_msghdr_flags);
2064 ctl_len = msg_sys->msg_controllen;
2065 if ((MSG_CMSG_COMPAT & flags) && ctl_len) {
2066 err =
2067 cmsghdr_from_user_compat_to_kern(msg_sys, sock->sk, ctl,
2068 sizeof(ctl));
2069 if (err)
2070 goto out_freeiov;
2071 ctl_buf = msg_sys->msg_control;
2072 ctl_len = msg_sys->msg_controllen;
2073 } else if (ctl_len) {
2074 BUILD_BUG_ON(sizeof(struct cmsghdr) !=
2075 CMSG_ALIGN(sizeof(struct cmsghdr)));
2076 if (ctl_len > sizeof(ctl)) {
2077 ctl_buf = sock_kmalloc(sock->sk, ctl_len, GFP_KERNEL);
2078 if (ctl_buf == NULL)
2079 goto out_freeiov;
2080 }
2081 err = -EFAULT;
2082 /*
2083 * Careful! Before this, msg_sys->msg_control contains a user pointer.
2084 * Afterwards, it will be a kernel pointer. Thus the compiler-assisted
2085 * checking falls down on this.
2086 */
2087 if (copy_from_user(ctl_buf,
2088 (void __user __force *)msg_sys->msg_control,
2089 ctl_len))
2090 goto out_freectl;
2091 msg_sys->msg_control = ctl_buf;
2092 }
2093 msg_sys->msg_flags = flags;
2094
2095 if (sock->file->f_flags & O_NONBLOCK)
2096 msg_sys->msg_flags |= MSG_DONTWAIT;
2097 /*
2098 * If this is sendmmsg() and current destination address is same as
2099 * previously succeeded address, omit asking LSM's decision.
2100 * used_address->name_len is initialized to UINT_MAX so that the first
2101 * destination address never matches.
2102 */
2103 if (used_address && msg_sys->msg_name &&
2104 used_address->name_len == msg_sys->msg_namelen &&
2105 !memcmp(&used_address->name, msg_sys->msg_name,
2106 used_address->name_len)) {
2107 err = sock_sendmsg_nosec(sock, msg_sys);
2108 goto out_freectl;
2109 }
2110 err = sock_sendmsg(sock, msg_sys);
2111 /*
2112 * If this is sendmmsg() and sending to current destination address was
2113 * successful, remember it.
2114 */
2115 if (used_address && err >= 0) {
2116 used_address->name_len = msg_sys->msg_namelen;
2117 if (msg_sys->msg_name)
2118 memcpy(&used_address->name, msg_sys->msg_name,
2119 used_address->name_len);
2120 }
2121
2122 out_freectl:
2123 if (ctl_buf != ctl)
2124 sock_kfree_s(sock->sk, ctl_buf, ctl_len);
2125 out_freeiov:
2126 kfree(iov);
2127 return err;
2128 }
2129
2130 /*
2131 * BSD sendmsg interface
2132 */
2133
2134 long __sys_sendmsg(int fd, struct user_msghdr __user *msg, unsigned flags)
2135 {
2136 int fput_needed, err;
2137 struct msghdr msg_sys;
2138 struct socket *sock;
2139
2140 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2141 if (!sock)
2142 goto out;
2143
2144 err = ___sys_sendmsg(sock, msg, &msg_sys, flags, NULL, 0);
2145
2146 fput_light(sock->file, fput_needed);
2147 out:
2148 return err;
2149 }
2150
2151 SYSCALL_DEFINE3(sendmsg, int, fd, struct user_msghdr __user *, msg, unsigned int, flags)
2152 {
2153 if (flags & MSG_CMSG_COMPAT)
2154 return -EINVAL;
2155 return __sys_sendmsg(fd, msg, flags);
2156 }
2157
2158 /*
2159 * Linux sendmmsg interface
2160 */
2161
2162 int __sys_sendmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen,
2163 unsigned int flags)
2164 {
2165 int fput_needed, err, datagrams;
2166 struct socket *sock;
2167 struct mmsghdr __user *entry;
2168 struct compat_mmsghdr __user *compat_entry;
2169 struct msghdr msg_sys;
2170 struct used_address used_address;
2171 unsigned int oflags = flags;
2172
2173 if (vlen > UIO_MAXIOV)
2174 vlen = UIO_MAXIOV;
2175
2176 datagrams = 0;
2177
2178 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2179 if (!sock)
2180 return err;
2181
2182 used_address.name_len = UINT_MAX;
2183 entry = mmsg;
2184 compat_entry = (struct compat_mmsghdr __user *)mmsg;
2185 err = 0;
2186 flags |= MSG_BATCH;
2187
2188 while (datagrams < vlen) {
2189 if (datagrams == vlen - 1)
2190 flags = oflags;
2191
2192 if (MSG_CMSG_COMPAT & flags) {
2193 err = ___sys_sendmsg(sock, (struct user_msghdr __user *)compat_entry,
2194 &msg_sys, flags, &used_address, MSG_EOR);
2195 if (err < 0)
2196 break;
2197 err = __put_user(err, &compat_entry->msg_len);
2198 ++compat_entry;
2199 } else {
2200 err = ___sys_sendmsg(sock,
2201 (struct user_msghdr __user *)entry,
2202 &msg_sys, flags, &used_address, MSG_EOR);
2203 if (err < 0)
2204 break;
2205 err = put_user(err, &entry->msg_len);
2206 ++entry;
2207 }
2208
2209 if (err)
2210 break;
2211 ++datagrams;
2212 if (msg_data_left(&msg_sys))
2213 break;
2214 cond_resched();
2215 }
2216
2217 fput_light(sock->file, fput_needed);
2218
2219 /* We only return an error if no datagrams were able to be sent */
2220 if (datagrams != 0)
2221 return datagrams;
2222
2223 return err;
2224 }
2225
2226 SYSCALL_DEFINE4(sendmmsg, int, fd, struct mmsghdr __user *, mmsg,
2227 unsigned int, vlen, unsigned int, flags)
2228 {
2229 if (flags & MSG_CMSG_COMPAT)
2230 return -EINVAL;
2231 return __sys_sendmmsg(fd, mmsg, vlen, flags);
2232 }
2233
2234 static int ___sys_recvmsg(struct socket *sock, struct user_msghdr __user *msg,
2235 struct msghdr *msg_sys, unsigned int flags, int nosec)
2236 {
2237 struct compat_msghdr __user *msg_compat =
2238 (struct compat_msghdr __user *)msg;
2239 struct iovec iovstack[UIO_FASTIOV];
2240 struct iovec *iov = iovstack;
2241 unsigned long cmsg_ptr;
2242 int len;
2243 ssize_t err;
2244
2245 /* kernel mode address */
2246 struct sockaddr_storage addr;
2247
2248 /* user mode address pointers */
2249 struct sockaddr __user *uaddr;
2250 int __user *uaddr_len = COMPAT_NAMELEN(msg);
2251
2252 msg_sys->msg_name = &addr;
2253
2254 if (MSG_CMSG_COMPAT & flags)
2255 err = get_compat_msghdr(msg_sys, msg_compat, &uaddr, &iov);
2256 else
2257 err = copy_msghdr_from_user(msg_sys, msg, &uaddr, &iov);
2258 if (err < 0)
2259 return err;
2260
2261 cmsg_ptr = (unsigned long)msg_sys->msg_control;
2262 msg_sys->msg_flags = flags & (MSG_CMSG_CLOEXEC|MSG_CMSG_COMPAT);
2263
2264 /* We assume all kernel code knows the size of sockaddr_storage */
2265 msg_sys->msg_namelen = 0;
2266
2267 if (sock->file->f_flags & O_NONBLOCK)
2268 flags |= MSG_DONTWAIT;
2269 err = (nosec ? sock_recvmsg_nosec : sock_recvmsg)(sock, msg_sys, flags);
2270 if (err < 0)
2271 goto out_freeiov;
2272 len = err;
2273
2274 if (uaddr != NULL) {
2275 err = move_addr_to_user(&addr,
2276 msg_sys->msg_namelen, uaddr,
2277 uaddr_len);
2278 if (err < 0)
2279 goto out_freeiov;
2280 }
2281 err = __put_user((msg_sys->msg_flags & ~MSG_CMSG_COMPAT),
2282 COMPAT_FLAGS(msg));
2283 if (err)
2284 goto out_freeiov;
2285 if (MSG_CMSG_COMPAT & flags)
2286 err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2287 &msg_compat->msg_controllen);
2288 else
2289 err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2290 &msg->msg_controllen);
2291 if (err)
2292 goto out_freeiov;
2293 err = len;
2294
2295 out_freeiov:
2296 kfree(iov);
2297 return err;
2298 }
2299
2300 /*
2301 * BSD recvmsg interface
2302 */
2303
2304 long __sys_recvmsg(int fd, struct user_msghdr __user *msg, unsigned flags)
2305 {
2306 int fput_needed, err;
2307 struct msghdr msg_sys;
2308 struct socket *sock;
2309
2310 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2311 if (!sock)
2312 goto out;
2313
2314 err = ___sys_recvmsg(sock, msg, &msg_sys, flags, 0);
2315
2316 fput_light(sock->file, fput_needed);
2317 out:
2318 return err;
2319 }
2320
2321 SYSCALL_DEFINE3(recvmsg, int, fd, struct user_msghdr __user *, msg,
2322 unsigned int, flags)
2323 {
2324 if (flags & MSG_CMSG_COMPAT)
2325 return -EINVAL;
2326 return __sys_recvmsg(fd, msg, flags);
2327 }
2328
2329 /*
2330 * Linux recvmmsg interface
2331 */
2332
2333 int __sys_recvmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen,
2334 unsigned int flags, struct timespec *timeout)
2335 {
2336 int fput_needed, err, datagrams;
2337 struct socket *sock;
2338 struct mmsghdr __user *entry;
2339 struct compat_mmsghdr __user *compat_entry;
2340 struct msghdr msg_sys;
2341 struct timespec64 end_time;
2342 struct timespec64 timeout64;
2343
2344 if (timeout &&
2345 poll_select_set_timeout(&end_time, timeout->tv_sec,
2346 timeout->tv_nsec))
2347 return -EINVAL;
2348
2349 datagrams = 0;
2350
2351 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2352 if (!sock)
2353 return err;
2354
2355 err = sock_error(sock->sk);
2356 if (err) {
2357 datagrams = err;
2358 goto out_put;
2359 }
2360
2361 entry = mmsg;
2362 compat_entry = (struct compat_mmsghdr __user *)mmsg;
2363
2364 while (datagrams < vlen) {
2365 /*
2366 * No need to ask LSM for more than the first datagram.
2367 */
2368 if (MSG_CMSG_COMPAT & flags) {
2369 err = ___sys_recvmsg(sock, (struct user_msghdr __user *)compat_entry,
2370 &msg_sys, flags & ~MSG_WAITFORONE,
2371 datagrams);
2372 if (err < 0)
2373 break;
2374 err = __put_user(err, &compat_entry->msg_len);
2375 ++compat_entry;
2376 } else {
2377 err = ___sys_recvmsg(sock,
2378 (struct user_msghdr __user *)entry,
2379 &msg_sys, flags & ~MSG_WAITFORONE,
2380 datagrams);
2381 if (err < 0)
2382 break;
2383 err = put_user(err, &entry->msg_len);
2384 ++entry;
2385 }
2386
2387 if (err)
2388 break;
2389 ++datagrams;
2390
2391 /* MSG_WAITFORONE turns on MSG_DONTWAIT after one packet */
2392 if (flags & MSG_WAITFORONE)
2393 flags |= MSG_DONTWAIT;
2394
2395 if (timeout) {
2396 ktime_get_ts64(&timeout64);
2397 *timeout = timespec64_to_timespec(
2398 timespec64_sub(end_time, timeout64));
2399 if (timeout->tv_sec < 0) {
2400 timeout->tv_sec = timeout->tv_nsec = 0;
2401 break;
2402 }
2403
2404 /* Timeout, return less than vlen datagrams */
2405 if (timeout->tv_nsec == 0 && timeout->tv_sec == 0)
2406 break;
2407 }
2408
2409 /* Out of band data, return right away */
2410 if (msg_sys.msg_flags & MSG_OOB)
2411 break;
2412 cond_resched();
2413 }
2414
2415 if (err == 0)
2416 goto out_put;
2417
2418 if (datagrams == 0) {
2419 datagrams = err;
2420 goto out_put;
2421 }
2422
2423 /*
2424 * We may return less entries than requested (vlen) if the
2425 * sock is non block and there aren't enough datagrams...
2426 */
2427 if (err != -EAGAIN) {
2428 /*
2429 * ... or if recvmsg returns an error after we
2430 * received some datagrams, where we record the
2431 * error to return on the next call or if the
2432 * app asks about it using getsockopt(SO_ERROR).
2433 */
2434 sock->sk->sk_err = -err;
2435 }
2436 out_put:
2437 fput_light(sock->file, fput_needed);
2438
2439 return datagrams;
2440 }
2441
2442 SYSCALL_DEFINE5(recvmmsg, int, fd, struct mmsghdr __user *, mmsg,
2443 unsigned int, vlen, unsigned int, flags,
2444 struct timespec __user *, timeout)
2445 {
2446 int datagrams;
2447 struct timespec timeout_sys;
2448
2449 if (flags & MSG_CMSG_COMPAT)
2450 return -EINVAL;
2451
2452 if (!timeout)
2453 return __sys_recvmmsg(fd, mmsg, vlen, flags, NULL);
2454
2455 if (copy_from_user(&timeout_sys, timeout, sizeof(timeout_sys)))
2456 return -EFAULT;
2457
2458 datagrams = __sys_recvmmsg(fd, mmsg, vlen, flags, &timeout_sys);
2459
2460 if (datagrams > 0 &&
2461 copy_to_user(timeout, &timeout_sys, sizeof(timeout_sys)))
2462 datagrams = -EFAULT;
2463
2464 return datagrams;
2465 }
2466
2467 #ifdef __ARCH_WANT_SYS_SOCKETCALL
2468 /* Argument list sizes for sys_socketcall */
2469 #define AL(x) ((x) * sizeof(unsigned long))
2470 static const unsigned char nargs[21] = {
2471 AL(0), AL(3), AL(3), AL(3), AL(2), AL(3),
2472 AL(3), AL(3), AL(4), AL(4), AL(4), AL(6),
2473 AL(6), AL(2), AL(5), AL(5), AL(3), AL(3),
2474 AL(4), AL(5), AL(4)
2475 };
2476
2477 #undef AL
2478
2479 /*
2480 * System call vectors.
2481 *
2482 * Argument checking cleaned up. Saved 20% in size.
2483 * This function doesn't need to set the kernel lock because
2484 * it is set by the callees.
2485 */
2486
2487 SYSCALL_DEFINE2(socketcall, int, call, unsigned long __user *, args)
2488 {
2489 unsigned long a[AUDITSC_ARGS];
2490 unsigned long a0, a1;
2491 int err;
2492 unsigned int len;
2493
2494 if (call < 1 || call > SYS_SENDMMSG)
2495 return -EINVAL;
2496
2497 len = nargs[call];
2498 if (len > sizeof(a))
2499 return -EINVAL;
2500
2501 /* copy_from_user should be SMP safe. */
2502 if (copy_from_user(a, args, len))
2503 return -EFAULT;
2504
2505 err = audit_socketcall(nargs[call] / sizeof(unsigned long), a);
2506 if (err)
2507 return err;
2508
2509 a0 = a[0];
2510 a1 = a[1];
2511
2512 switch (call) {
2513 case SYS_SOCKET:
2514 err = __sys_socket(a0, a1, a[2]);
2515 break;
2516 case SYS_BIND:
2517 err = __sys_bind(a0, (struct sockaddr __user *)a1, a[2]);
2518 break;
2519 case SYS_CONNECT:
2520 err = __sys_connect(a0, (struct sockaddr __user *)a1, a[2]);
2521 break;
2522 case SYS_LISTEN:
2523 err = __sys_listen(a0, a1);
2524 break;
2525 case SYS_ACCEPT:
2526 err = __sys_accept4(a0, (struct sockaddr __user *)a1,
2527 (int __user *)a[2], 0);
2528 break;
2529 case SYS_GETSOCKNAME:
2530 err =
2531 __sys_getsockname(a0, (struct sockaddr __user *)a1,
2532 (int __user *)a[2]);
2533 break;
2534 case SYS_GETPEERNAME:
2535 err =
2536 __sys_getpeername(a0, (struct sockaddr __user *)a1,
2537 (int __user *)a[2]);
2538 break;
2539 case SYS_SOCKETPAIR:
2540 err = __sys_socketpair(a0, a1, a[2], (int __user *)a[3]);
2541 break;
2542 case SYS_SEND:
2543 err = sys_send(a0, (void __user *)a1, a[2], a[3]);
2544 break;
2545 case SYS_SENDTO:
2546 err = __sys_sendto(a0, (void __user *)a1, a[2], a[3],
2547 (struct sockaddr __user *)a[4], a[5]);
2548 break;
2549 case SYS_RECV:
2550 err = sys_recv(a0, (void __user *)a1, a[2], a[3]);
2551 break;
2552 case SYS_RECVFROM:
2553 err = __sys_recvfrom(a0, (void __user *)a1, a[2], a[3],
2554 (struct sockaddr __user *)a[4],
2555 (int __user *)a[5]);
2556 break;
2557 case SYS_SHUTDOWN:
2558 err = __sys_shutdown(a0, a1);
2559 break;
2560 case SYS_SETSOCKOPT:
2561 err = __sys_setsockopt(a0, a1, a[2], (char __user *)a[3],
2562 a[4]);
2563 break;
2564 case SYS_GETSOCKOPT:
2565 err =
2566 sys_getsockopt(a0, a1, a[2], (char __user *)a[3],
2567 (int __user *)a[4]);
2568 break;
2569 case SYS_SENDMSG:
2570 err = sys_sendmsg(a0, (struct user_msghdr __user *)a1, a[2]);
2571 break;
2572 case SYS_SENDMMSG:
2573 err = sys_sendmmsg(a0, (struct mmsghdr __user *)a1, a[2], a[3]);
2574 break;
2575 case SYS_RECVMSG:
2576 err = sys_recvmsg(a0, (struct user_msghdr __user *)a1, a[2]);
2577 break;
2578 case SYS_RECVMMSG:
2579 err = sys_recvmmsg(a0, (struct mmsghdr __user *)a1, a[2], a[3],
2580 (struct timespec __user *)a[4]);
2581 break;
2582 case SYS_ACCEPT4:
2583 err = __sys_accept4(a0, (struct sockaddr __user *)a1,
2584 (int __user *)a[2], a[3]);
2585 break;
2586 default:
2587 err = -EINVAL;
2588 break;
2589 }
2590 return err;
2591 }
2592
2593 #endif /* __ARCH_WANT_SYS_SOCKETCALL */
2594
2595 /**
2596 * sock_register - add a socket protocol handler
2597 * @ops: description of protocol
2598 *
2599 * This function is called by a protocol handler that wants to
2600 * advertise its address family, and have it linked into the
2601 * socket interface. The value ops->family corresponds to the
2602 * socket system call protocol family.
2603 */
2604 int sock_register(const struct net_proto_family *ops)
2605 {
2606 int err;
2607
2608 if (ops->family >= NPROTO) {
2609 pr_crit("protocol %d >= NPROTO(%d)\n", ops->family, NPROTO);
2610 return -ENOBUFS;
2611 }
2612
2613 spin_lock(&net_family_lock);
2614 if (rcu_dereference_protected(net_families[ops->family],
2615 lockdep_is_held(&net_family_lock)))
2616 err = -EEXIST;
2617 else {
2618 rcu_assign_pointer(net_families[ops->family], ops);
2619 err = 0;
2620 }
2621 spin_unlock(&net_family_lock);
2622
2623 pr_info("NET: Registered protocol family %d\n", ops->family);
2624 return err;
2625 }
2626 EXPORT_SYMBOL(sock_register);
2627
2628 /**
2629 * sock_unregister - remove a protocol handler
2630 * @family: protocol family to remove
2631 *
2632 * This function is called by a protocol handler that wants to
2633 * remove its address family, and have it unlinked from the
2634 * new socket creation.
2635 *
2636 * If protocol handler is a module, then it can use module reference
2637 * counts to protect against new references. If protocol handler is not
2638 * a module then it needs to provide its own protection in
2639 * the ops->create routine.
2640 */
2641 void sock_unregister(int family)
2642 {
2643 BUG_ON(family < 0 || family >= NPROTO);
2644
2645 spin_lock(&net_family_lock);
2646 RCU_INIT_POINTER(net_families[family], NULL);
2647 spin_unlock(&net_family_lock);
2648
2649 synchronize_rcu();
2650
2651 pr_info("NET: Unregistered protocol family %d\n", family);
2652 }
2653 EXPORT_SYMBOL(sock_unregister);
2654
2655 static int __init sock_init(void)
2656 {
2657 int err;
2658 /*
2659 * Initialize the network sysctl infrastructure.
2660 */
2661 err = net_sysctl_init();
2662 if (err)
2663 goto out;
2664
2665 /*
2666 * Initialize skbuff SLAB cache
2667 */
2668 skb_init();
2669
2670 /*
2671 * Initialize the protocols module.
2672 */
2673
2674 init_inodecache();
2675
2676 err = register_filesystem(&sock_fs_type);
2677 if (err)
2678 goto out_fs;
2679 sock_mnt = kern_mount(&sock_fs_type);
2680 if (IS_ERR(sock_mnt)) {
2681 err = PTR_ERR(sock_mnt);
2682 goto out_mount;
2683 }
2684
2685 /* The real protocol initialization is performed in later initcalls.
2686 */
2687
2688 #ifdef CONFIG_NETFILTER
2689 err = netfilter_init();
2690 if (err)
2691 goto out;
2692 #endif
2693
2694 ptp_classifier_init();
2695
2696 out:
2697 return err;
2698
2699 out_mount:
2700 unregister_filesystem(&sock_fs_type);
2701 out_fs:
2702 goto out;
2703 }
2704
2705 core_initcall(sock_init); /* early initcall */
2706
2707 #ifdef CONFIG_PROC_FS
2708 void socket_seq_show(struct seq_file *seq)
2709 {
2710 seq_printf(seq, "sockets: used %d\n",
2711 sock_inuse_get(seq->private));
2712 }
2713 #endif /* CONFIG_PROC_FS */
2714
2715 #ifdef CONFIG_COMPAT
2716 static int do_siocgstamp(struct net *net, struct socket *sock,
2717 unsigned int cmd, void __user *up)
2718 {
2719 mm_segment_t old_fs = get_fs();
2720 struct timeval ktv;
2721 int err;
2722
2723 set_fs(KERNEL_DS);
2724 err = sock_do_ioctl(net, sock, cmd, (unsigned long)&ktv);
2725 set_fs(old_fs);
2726 if (!err)
2727 err = compat_put_timeval(&ktv, up);
2728
2729 return err;
2730 }
2731
2732 static int do_siocgstampns(struct net *net, struct socket *sock,
2733 unsigned int cmd, void __user *up)
2734 {
2735 mm_segment_t old_fs = get_fs();
2736 struct timespec kts;
2737 int err;
2738
2739 set_fs(KERNEL_DS);
2740 err = sock_do_ioctl(net, sock, cmd, (unsigned long)&kts);
2741 set_fs(old_fs);
2742 if (!err)
2743 err = compat_put_timespec(&kts, up);
2744
2745 return err;
2746 }
2747
2748 static int compat_dev_ifconf(struct net *net, struct compat_ifconf __user *uifc32)
2749 {
2750 struct compat_ifconf ifc32;
2751 struct ifconf ifc;
2752 int err;
2753
2754 if (copy_from_user(&ifc32, uifc32, sizeof(struct compat_ifconf)))
2755 return -EFAULT;
2756
2757 ifc.ifc_len = ifc32.ifc_len;
2758 ifc.ifc_req = compat_ptr(ifc32.ifcbuf);
2759
2760 rtnl_lock();
2761 err = dev_ifconf(net, &ifc, sizeof(struct compat_ifreq));
2762 rtnl_unlock();
2763 if (err)
2764 return err;
2765
2766 ifc32.ifc_len = ifc.ifc_len;
2767 if (copy_to_user(uifc32, &ifc32, sizeof(struct compat_ifconf)))
2768 return -EFAULT;
2769
2770 return 0;
2771 }
2772
2773 static int ethtool_ioctl(struct net *net, struct compat_ifreq __user *ifr32)
2774 {
2775 struct compat_ethtool_rxnfc __user *compat_rxnfc;
2776 bool convert_in = false, convert_out = false;
2777 size_t buf_size = 0;
2778 struct ethtool_rxnfc __user *rxnfc = NULL;
2779 struct ifreq ifr;
2780 u32 rule_cnt = 0, actual_rule_cnt;
2781 u32 ethcmd;
2782 u32 data;
2783 int ret;
2784
2785 if (get_user(data, &ifr32->ifr_ifru.ifru_data))
2786 return -EFAULT;
2787
2788 compat_rxnfc = compat_ptr(data);
2789
2790 if (get_user(ethcmd, &compat_rxnfc->cmd))
2791 return -EFAULT;
2792
2793 /* Most ethtool structures are defined without padding.
2794 * Unfortunately struct ethtool_rxnfc is an exception.
2795 */
2796 switch (ethcmd) {
2797 default:
2798 break;
2799 case ETHTOOL_GRXCLSRLALL:
2800 /* Buffer size is variable */
2801 if (get_user(rule_cnt, &compat_rxnfc->rule_cnt))
2802 return -EFAULT;
2803 if (rule_cnt > KMALLOC_MAX_SIZE / sizeof(u32))
2804 return -ENOMEM;
2805 buf_size += rule_cnt * sizeof(u32);
2806 /* fall through */
2807 case ETHTOOL_GRXRINGS:
2808 case ETHTOOL_GRXCLSRLCNT:
2809 case ETHTOOL_GRXCLSRULE:
2810 case ETHTOOL_SRXCLSRLINS:
2811 convert_out = true;
2812 /* fall through */
2813 case ETHTOOL_SRXCLSRLDEL:
2814 buf_size += sizeof(struct ethtool_rxnfc);
2815 convert_in = true;
2816 rxnfc = compat_alloc_user_space(buf_size);
2817 break;
2818 }
2819
2820 if (copy_from_user(&ifr.ifr_name, &ifr32->ifr_name, IFNAMSIZ))
2821 return -EFAULT;
2822
2823 ifr.ifr_data = convert_in ? rxnfc : (void __user *)compat_rxnfc;
2824
2825 if (convert_in) {
2826 /* We expect there to be holes between fs.m_ext and
2827 * fs.ring_cookie and at the end of fs, but nowhere else.
2828 */
2829 BUILD_BUG_ON(offsetof(struct compat_ethtool_rxnfc, fs.m_ext) +
2830 sizeof(compat_rxnfc->fs.m_ext) !=
2831 offsetof(struct ethtool_rxnfc, fs.m_ext) +
2832 sizeof(rxnfc->fs.m_ext));
2833 BUILD_BUG_ON(
2834 offsetof(struct compat_ethtool_rxnfc, fs.location) -
2835 offsetof(struct compat_ethtool_rxnfc, fs.ring_cookie) !=
2836 offsetof(struct ethtool_rxnfc, fs.location) -
2837 offsetof(struct ethtool_rxnfc, fs.ring_cookie));
2838
2839 if (copy_in_user(rxnfc, compat_rxnfc,
2840 (void __user *)(&rxnfc->fs.m_ext + 1) -
2841 (void __user *)rxnfc) ||
2842 copy_in_user(&rxnfc->fs.ring_cookie,
2843 &compat_rxnfc->fs.ring_cookie,
2844 (void __user *)(&rxnfc->fs.location + 1) -
2845 (void __user *)&rxnfc->fs.ring_cookie) ||
2846 copy_in_user(&rxnfc->rule_cnt, &compat_rxnfc->rule_cnt,
2847 sizeof(rxnfc->rule_cnt)))
2848 return -EFAULT;
2849 }
2850
2851 ret = dev_ioctl(net, SIOCETHTOOL, &ifr, NULL);
2852 if (ret)
2853 return ret;
2854
2855 if (convert_out) {
2856 if (copy_in_user(compat_rxnfc, rxnfc,
2857 (const void __user *)(&rxnfc->fs.m_ext + 1) -
2858 (const void __user *)rxnfc) ||
2859 copy_in_user(&compat_rxnfc->fs.ring_cookie,
2860 &rxnfc->fs.ring_cookie,
2861 (const void __user *)(&rxnfc->fs.location + 1) -
2862 (const void __user *)&rxnfc->fs.ring_cookie) ||
2863 copy_in_user(&compat_rxnfc->rule_cnt, &rxnfc->rule_cnt,
2864 sizeof(rxnfc->rule_cnt)))
2865 return -EFAULT;
2866
2867 if (ethcmd == ETHTOOL_GRXCLSRLALL) {
2868 /* As an optimisation, we only copy the actual
2869 * number of rules that the underlying
2870 * function returned. Since Mallory might
2871 * change the rule count in user memory, we
2872 * check that it is less than the rule count
2873 * originally given (as the user buffer size),
2874 * which has been range-checked.
2875 */
2876 if (get_user(actual_rule_cnt, &rxnfc->rule_cnt))
2877 return -EFAULT;
2878 if (actual_rule_cnt < rule_cnt)
2879 rule_cnt = actual_rule_cnt;
2880 if (copy_in_user(&compat_rxnfc->rule_locs[0],
2881 &rxnfc->rule_locs[0],
2882 rule_cnt * sizeof(u32)))
2883 return -EFAULT;
2884 }
2885 }
2886
2887 return 0;
2888 }
2889
2890 static int compat_siocwandev(struct net *net, struct compat_ifreq __user *uifr32)
2891 {
2892 compat_uptr_t uptr32;
2893 struct ifreq ifr;
2894 void __user *saved;
2895 int err;
2896
2897 if (copy_from_user(&ifr, uifr32, sizeof(struct compat_ifreq)))
2898 return -EFAULT;
2899
2900 if (get_user(uptr32, &uifr32->ifr_settings.ifs_ifsu))
2901 return -EFAULT;
2902
2903 saved = ifr.ifr_settings.ifs_ifsu.raw_hdlc;
2904 ifr.ifr_settings.ifs_ifsu.raw_hdlc = compat_ptr(uptr32);
2905
2906 err = dev_ioctl(net, SIOCWANDEV, &ifr, NULL);
2907 if (!err) {
2908 ifr.ifr_settings.ifs_ifsu.raw_hdlc = saved;
2909 if (copy_to_user(uifr32, &ifr, sizeof(struct compat_ifreq)))
2910 err = -EFAULT;
2911 }
2912 return err;
2913 }
2914
2915 /* Handle ioctls that use ifreq::ifr_data and just need struct ifreq converted */
2916 static int compat_ifr_data_ioctl(struct net *net, unsigned int cmd,
2917 struct compat_ifreq __user *u_ifreq32)
2918 {
2919 struct ifreq ifreq;
2920 u32 data32;
2921
2922 if (copy_from_user(ifreq.ifr_name, u_ifreq32->ifr_name, IFNAMSIZ))
2923 return -EFAULT;
2924 if (get_user(data32, &u_ifreq32->ifr_data))
2925 return -EFAULT;
2926 ifreq.ifr_data = compat_ptr(data32);
2927
2928 return dev_ioctl(net, cmd, &ifreq, NULL);
2929 }
2930
2931 static int compat_sioc_ifmap(struct net *net, unsigned int cmd,
2932 struct compat_ifreq __user *uifr32)
2933 {
2934 struct ifreq ifr;
2935 struct compat_ifmap __user *uifmap32;
2936 int err;
2937
2938 uifmap32 = &uifr32->ifr_ifru.ifru_map;
2939 err = copy_from_user(&ifr, uifr32, sizeof(ifr.ifr_name));
2940 err |= get_user(ifr.ifr_map.mem_start, &uifmap32->mem_start);
2941 err |= get_user(ifr.ifr_map.mem_end, &uifmap32->mem_end);
2942 err |= get_user(ifr.ifr_map.base_addr, &uifmap32->base_addr);
2943 err |= get_user(ifr.ifr_map.irq, &uifmap32->irq);
2944 err |= get_user(ifr.ifr_map.dma, &uifmap32->dma);
2945 err |= get_user(ifr.ifr_map.port, &uifmap32->port);
2946 if (err)
2947 return -EFAULT;
2948
2949 err = dev_ioctl(net, cmd, &ifr, NULL);
2950
2951 if (cmd == SIOCGIFMAP && !err) {
2952 err = copy_to_user(uifr32, &ifr, sizeof(ifr.ifr_name));
2953 err |= put_user(ifr.ifr_map.mem_start, &uifmap32->mem_start);
2954 err |= put_user(ifr.ifr_map.mem_end, &uifmap32->mem_end);
2955 err |= put_user(ifr.ifr_map.base_addr, &uifmap32->base_addr);
2956 err |= put_user(ifr.ifr_map.irq, &uifmap32->irq);
2957 err |= put_user(ifr.ifr_map.dma, &uifmap32->dma);
2958 err |= put_user(ifr.ifr_map.port, &uifmap32->port);
2959 if (err)
2960 err = -EFAULT;
2961 }
2962 return err;
2963 }
2964
2965 struct rtentry32 {
2966 u32 rt_pad1;
2967 struct sockaddr rt_dst; /* target address */
2968 struct sockaddr rt_gateway; /* gateway addr (RTF_GATEWAY) */
2969 struct sockaddr rt_genmask; /* target network mask (IP) */
2970 unsigned short rt_flags;
2971 short rt_pad2;
2972 u32 rt_pad3;
2973 unsigned char rt_tos;
2974 unsigned char rt_class;
2975 short rt_pad4;
2976 short rt_metric; /* +1 for binary compatibility! */
2977 /* char * */ u32 rt_dev; /* forcing the device at add */
2978 u32 rt_mtu; /* per route MTU/Window */
2979 u32 rt_window; /* Window clamping */
2980 unsigned short rt_irtt; /* Initial RTT */
2981 };
2982
2983 struct in6_rtmsg32 {
2984 struct in6_addr rtmsg_dst;
2985 struct in6_addr rtmsg_src;
2986 struct in6_addr rtmsg_gateway;
2987 u32 rtmsg_type;
2988 u16 rtmsg_dst_len;
2989 u16 rtmsg_src_len;
2990 u32 rtmsg_metric;
2991 u32 rtmsg_info;
2992 u32 rtmsg_flags;
2993 s32 rtmsg_ifindex;
2994 };
2995
2996 static int routing_ioctl(struct net *net, struct socket *sock,
2997 unsigned int cmd, void __user *argp)
2998 {
2999 int ret;
3000 void *r = NULL;
3001 struct in6_rtmsg r6;
3002 struct rtentry r4;
3003 char devname[16];
3004 u32 rtdev;
3005 mm_segment_t old_fs = get_fs();
3006
3007 if (sock && sock->sk && sock->sk->sk_family == AF_INET6) { /* ipv6 */
3008 struct in6_rtmsg32 __user *ur6 = argp;
3009 ret = copy_from_user(&r6.rtmsg_dst, &(ur6->rtmsg_dst),
3010 3 * sizeof(struct in6_addr));
3011 ret |= get_user(r6.rtmsg_type, &(ur6->rtmsg_type));
3012 ret |= get_user(r6.rtmsg_dst_len, &(ur6->rtmsg_dst_len));
3013 ret |= get_user(r6.rtmsg_src_len, &(ur6->rtmsg_src_len));
3014 ret |= get_user(r6.rtmsg_metric, &(ur6->rtmsg_metric));
3015 ret |= get_user(r6.rtmsg_info, &(ur6->rtmsg_info));
3016 ret |= get_user(r6.rtmsg_flags, &(ur6->rtmsg_flags));
3017 ret |= get_user(r6.rtmsg_ifindex, &(ur6->rtmsg_ifindex));
3018
3019 r = (void *) &r6;
3020 } else { /* ipv4 */
3021 struct rtentry32 __user *ur4 = argp;
3022 ret = copy_from_user(&r4.rt_dst, &(ur4->rt_dst),
3023 3 * sizeof(struct sockaddr));
3024 ret |= get_user(r4.rt_flags, &(ur4->rt_flags));
3025 ret |= get_user(r4.rt_metric, &(ur4->rt_metric));
3026 ret |= get_user(r4.rt_mtu, &(ur4->rt_mtu));
3027 ret |= get_user(r4.rt_window, &(ur4->rt_window));
3028 ret |= get_user(r4.rt_irtt, &(ur4->rt_irtt));
3029 ret |= get_user(rtdev, &(ur4->rt_dev));
3030 if (rtdev) {
3031 ret |= copy_from_user(devname, compat_ptr(rtdev), 15);
3032 r4.rt_dev = (char __user __force *)devname;
3033 devname[15] = 0;
3034 } else
3035 r4.rt_dev = NULL;
3036
3037 r = (void *) &r4;
3038 }
3039
3040 if (ret) {
3041 ret = -EFAULT;
3042 goto out;
3043 }
3044
3045 set_fs(KERNEL_DS);
3046 ret = sock_do_ioctl(net, sock, cmd, (unsigned long) r);
3047 set_fs(old_fs);
3048
3049 out:
3050 return ret;
3051 }
3052
3053 /* Since old style bridge ioctl's endup using SIOCDEVPRIVATE
3054 * for some operations; this forces use of the newer bridge-utils that
3055 * use compatible ioctls
3056 */
3057 static int old_bridge_ioctl(compat_ulong_t __user *argp)
3058 {
3059 compat_ulong_t tmp;
3060
3061 if (get_user(tmp, argp))
3062 return -EFAULT;
3063 if (tmp == BRCTL_GET_VERSION)
3064 return BRCTL_VERSION + 1;
3065 return -EINVAL;
3066 }
3067
3068 static int compat_sock_ioctl_trans(struct file *file, struct socket *sock,
3069 unsigned int cmd, unsigned long arg)
3070 {
3071 void __user *argp = compat_ptr(arg);
3072 struct sock *sk = sock->sk;
3073 struct net *net = sock_net(sk);
3074
3075 if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15))
3076 return compat_ifr_data_ioctl(net, cmd, argp);
3077
3078 switch (cmd) {
3079 case SIOCSIFBR:
3080 case SIOCGIFBR:
3081 return old_bridge_ioctl(argp);
3082 case SIOCGIFCONF:
3083 return compat_dev_ifconf(net, argp);
3084 case SIOCETHTOOL:
3085 return ethtool_ioctl(net, argp);
3086 case SIOCWANDEV:
3087 return compat_siocwandev(net, argp);
3088 case SIOCGIFMAP:
3089 case SIOCSIFMAP:
3090 return compat_sioc_ifmap(net, cmd, argp);
3091 case SIOCADDRT:
3092 case SIOCDELRT:
3093 return routing_ioctl(net, sock, cmd, argp);
3094 case SIOCGSTAMP:
3095 return do_siocgstamp(net, sock, cmd, argp);
3096 case SIOCGSTAMPNS:
3097 return do_siocgstampns(net, sock, cmd, argp);
3098 case SIOCBONDSLAVEINFOQUERY:
3099 case SIOCBONDINFOQUERY:
3100 case SIOCSHWTSTAMP:
3101 case SIOCGHWTSTAMP:
3102 return compat_ifr_data_ioctl(net, cmd, argp);
3103
3104 case FIOSETOWN:
3105 case SIOCSPGRP:
3106 case FIOGETOWN:
3107 case SIOCGPGRP:
3108 case SIOCBRADDBR:
3109 case SIOCBRDELBR:
3110 case SIOCGIFVLAN:
3111 case SIOCSIFVLAN:
3112 case SIOCADDDLCI:
3113 case SIOCDELDLCI:
3114 case SIOCGSKNS:
3115 return sock_ioctl(file, cmd, arg);
3116
3117 case SIOCGIFFLAGS:
3118 case SIOCSIFFLAGS:
3119 case SIOCGIFMETRIC:
3120 case SIOCSIFMETRIC:
3121 case SIOCGIFMTU:
3122 case SIOCSIFMTU:
3123 case SIOCGIFMEM:
3124 case SIOCSIFMEM:
3125 case SIOCGIFHWADDR:
3126 case SIOCSIFHWADDR:
3127 case SIOCADDMULTI:
3128 case SIOCDELMULTI:
3129 case SIOCGIFINDEX:
3130 case SIOCGIFADDR:
3131 case SIOCSIFADDR:
3132 case SIOCSIFHWBROADCAST:
3133 case SIOCDIFADDR:
3134 case SIOCGIFBRDADDR:
3135 case SIOCSIFBRDADDR:
3136 case SIOCGIFDSTADDR:
3137 case SIOCSIFDSTADDR:
3138 case SIOCGIFNETMASK:
3139 case SIOCSIFNETMASK:
3140 case SIOCSIFPFLAGS:
3141 case SIOCGIFPFLAGS:
3142 case SIOCGIFTXQLEN:
3143 case SIOCSIFTXQLEN:
3144 case SIOCBRADDIF:
3145 case SIOCBRDELIF:
3146 case SIOCSIFNAME:
3147 case SIOCGMIIPHY:
3148 case SIOCGMIIREG:
3149 case SIOCSMIIREG:
3150 case SIOCSARP:
3151 case SIOCGARP:
3152 case SIOCDARP:
3153 case SIOCATMARK:
3154 case SIOCBONDENSLAVE:
3155 case SIOCBONDRELEASE:
3156 case SIOCBONDSETHWADDR:
3157 case SIOCBONDCHANGEACTIVE:
3158 case SIOCGIFNAME:
3159 return sock_do_ioctl(net, sock, cmd, arg);
3160 }
3161
3162 return -ENOIOCTLCMD;
3163 }
3164
3165 static long compat_sock_ioctl(struct file *file, unsigned int cmd,
3166 unsigned long arg)
3167 {
3168 struct socket *sock = file->private_data;
3169 int ret = -ENOIOCTLCMD;
3170 struct sock *sk;
3171 struct net *net;
3172
3173 sk = sock->sk;
3174 net = sock_net(sk);
3175
3176 if (sock->ops->compat_ioctl)
3177 ret = sock->ops->compat_ioctl(sock, cmd, arg);
3178
3179 if (ret == -ENOIOCTLCMD &&
3180 (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST))
3181 ret = compat_wext_handle_ioctl(net, cmd, arg);
3182
3183 if (ret == -ENOIOCTLCMD)
3184 ret = compat_sock_ioctl_trans(file, sock, cmd, arg);
3185
3186 return ret;
3187 }
3188 #endif
3189
3190 int kernel_bind(struct socket *sock, struct sockaddr *addr, int addrlen)
3191 {
3192 return sock->ops->bind(sock, addr, addrlen);
3193 }
3194 EXPORT_SYMBOL(kernel_bind);
3195
3196 int kernel_listen(struct socket *sock, int backlog)
3197 {
3198 return sock->ops->listen(sock, backlog);
3199 }
3200 EXPORT_SYMBOL(kernel_listen);
3201
3202 int kernel_accept(struct socket *sock, struct socket **newsock, int flags)
3203 {
3204 struct sock *sk = sock->sk;
3205 int err;
3206
3207 err = sock_create_lite(sk->sk_family, sk->sk_type, sk->sk_protocol,
3208 newsock);
3209 if (err < 0)
3210 goto done;
3211
3212 err = sock->ops->accept(sock, *newsock, flags, true);
3213 if (err < 0) {
3214 sock_release(*newsock);
3215 *newsock = NULL;
3216 goto done;
3217 }
3218
3219 (*newsock)->ops = sock->ops;
3220 __module_get((*newsock)->ops->owner);
3221
3222 done:
3223 return err;
3224 }
3225 EXPORT_SYMBOL(kernel_accept);
3226
3227 int kernel_connect(struct socket *sock, struct sockaddr *addr, int addrlen,
3228 int flags)
3229 {
3230 return sock->ops->connect(sock, addr, addrlen, flags);
3231 }
3232 EXPORT_SYMBOL(kernel_connect);
3233
3234 int kernel_getsockname(struct socket *sock, struct sockaddr *addr,
3235 int *addrlen)
3236 {
3237 return sock->ops->getname(sock, addr, addrlen, 0);
3238 }
3239 EXPORT_SYMBOL(kernel_getsockname);
3240
3241 int kernel_getpeername(struct socket *sock, struct sockaddr *addr,
3242 int *addrlen)
3243 {
3244 return sock->ops->getname(sock, addr, addrlen, 1);
3245 }
3246 EXPORT_SYMBOL(kernel_getpeername);
3247
3248 int kernel_getsockopt(struct socket *sock, int level, int optname,
3249 char *optval, int *optlen)
3250 {
3251 mm_segment_t oldfs = get_fs();
3252 char __user *uoptval;
3253 int __user *uoptlen;
3254 int err;
3255
3256 uoptval = (char __user __force *) optval;
3257 uoptlen = (int __user __force *) optlen;
3258
3259 set_fs(KERNEL_DS);
3260 if (level == SOL_SOCKET)
3261 err = sock_getsockopt(sock, level, optname, uoptval, uoptlen);
3262 else
3263 err = sock->ops->getsockopt(sock, level, optname, uoptval,
3264 uoptlen);
3265 set_fs(oldfs);
3266 return err;
3267 }
3268 EXPORT_SYMBOL(kernel_getsockopt);
3269
3270 int kernel_setsockopt(struct socket *sock, int level, int optname,
3271 char *optval, unsigned int optlen)
3272 {
3273 mm_segment_t oldfs = get_fs();
3274 char __user *uoptval;
3275 int err;
3276
3277 uoptval = (char __user __force *) optval;
3278
3279 set_fs(KERNEL_DS);
3280 if (level == SOL_SOCKET)
3281 err = sock_setsockopt(sock, level, optname, uoptval, optlen);
3282 else
3283 err = sock->ops->setsockopt(sock, level, optname, uoptval,
3284 optlen);
3285 set_fs(oldfs);
3286 return err;
3287 }
3288 EXPORT_SYMBOL(kernel_setsockopt);
3289
3290 int kernel_sendpage(struct socket *sock, struct page *page, int offset,
3291 size_t size, int flags)
3292 {
3293 if (sock->ops->sendpage)
3294 return sock->ops->sendpage(sock, page, offset, size, flags);
3295
3296 return sock_no_sendpage(sock, page, offset, size, flags);
3297 }
3298 EXPORT_SYMBOL(kernel_sendpage);
3299
3300 int kernel_sendpage_locked(struct sock *sk, struct page *page, int offset,
3301 size_t size, int flags)
3302 {
3303 struct socket *sock = sk->sk_socket;
3304
3305 if (sock->ops->sendpage_locked)
3306 return sock->ops->sendpage_locked(sk, page, offset, size,
3307 flags);
3308
3309 return sock_no_sendpage_locked(sk, page, offset, size, flags);
3310 }
3311 EXPORT_SYMBOL(kernel_sendpage_locked);
3312
3313 int kernel_sock_shutdown(struct socket *sock, enum sock_shutdown_cmd how)
3314 {
3315 return sock->ops->shutdown(sock, how);
3316 }
3317 EXPORT_SYMBOL(kernel_sock_shutdown);
3318
3319 /* This routine returns the IP overhead imposed by a socket i.e.
3320 * the length of the underlying IP header, depending on whether
3321 * this is an IPv4 or IPv6 socket and the length from IP options turned
3322 * on at the socket. Assumes that the caller has a lock on the socket.
3323 */
3324 u32 kernel_sock_ip_overhead(struct sock *sk)
3325 {
3326 struct inet_sock *inet;
3327 struct ip_options_rcu *opt;
3328 u32 overhead = 0;
3329 #if IS_ENABLED(CONFIG_IPV6)
3330 struct ipv6_pinfo *np;
3331 struct ipv6_txoptions *optv6 = NULL;
3332 #endif /* IS_ENABLED(CONFIG_IPV6) */
3333
3334 if (!sk)
3335 return overhead;
3336
3337 switch (sk->sk_family) {
3338 case AF_INET:
3339 inet = inet_sk(sk);
3340 overhead += sizeof(struct iphdr);
3341 opt = rcu_dereference_protected(inet->inet_opt,
3342 sock_owned_by_user(sk));
3343 if (opt)
3344 overhead += opt->opt.optlen;
3345 return overhead;
3346 #if IS_ENABLED(CONFIG_IPV6)
3347 case AF_INET6:
3348 np = inet6_sk(sk);
3349 overhead += sizeof(struct ipv6hdr);
3350 if (np)
3351 optv6 = rcu_dereference_protected(np->opt,
3352 sock_owned_by_user(sk));
3353 if (optv6)
3354 overhead += (optv6->opt_flen + optv6->opt_nflen);
3355 return overhead;
3356 #endif /* IS_ENABLED(CONFIG_IPV6) */
3357 default: /* Returns 0 overhead if the socket is not ipv4 or ipv6 */
3358 return overhead;
3359 }
3360 }
3361 EXPORT_SYMBOL(kernel_sock_ip_overhead);