]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blob - net/socket.c
ethernet/arc/arc_emac - Add new driver
[mirror_ubuntu-hirsute-kernel.git] / net / socket.c
1 /*
2 * NET An implementation of the SOCKET network access protocol.
3 *
4 * Version: @(#)socket.c 1.1.93 18/02/95
5 *
6 * Authors: Orest Zborowski, <obz@Kodak.COM>
7 * Ross Biro
8 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
9 *
10 * Fixes:
11 * Anonymous : NOTSOCK/BADF cleanup. Error fix in
12 * shutdown()
13 * Alan Cox : verify_area() fixes
14 * Alan Cox : Removed DDI
15 * Jonathan Kamens : SOCK_DGRAM reconnect bug
16 * Alan Cox : Moved a load of checks to the very
17 * top level.
18 * Alan Cox : Move address structures to/from user
19 * mode above the protocol layers.
20 * Rob Janssen : Allow 0 length sends.
21 * Alan Cox : Asynchronous I/O support (cribbed from the
22 * tty drivers).
23 * Niibe Yutaka : Asynchronous I/O for writes (4.4BSD style)
24 * Jeff Uphoff : Made max number of sockets command-line
25 * configurable.
26 * Matti Aarnio : Made the number of sockets dynamic,
27 * to be allocated when needed, and mr.
28 * Uphoff's max is used as max to be
29 * allowed to allocate.
30 * Linus : Argh. removed all the socket allocation
31 * altogether: it's in the inode now.
32 * Alan Cox : Made sock_alloc()/sock_release() public
33 * for NetROM and future kernel nfsd type
34 * stuff.
35 * Alan Cox : sendmsg/recvmsg basics.
36 * Tom Dyas : Export net symbols.
37 * Marcin Dalecki : Fixed problems with CONFIG_NET="n".
38 * Alan Cox : Added thread locking to sys_* calls
39 * for sockets. May have errors at the
40 * moment.
41 * Kevin Buhr : Fixed the dumb errors in the above.
42 * Andi Kleen : Some small cleanups, optimizations,
43 * and fixed a copy_from_user() bug.
44 * Tigran Aivazian : sys_send(args) calls sys_sendto(args, NULL, 0)
45 * Tigran Aivazian : Made listen(2) backlog sanity checks
46 * protocol-independent
47 *
48 *
49 * This program is free software; you can redistribute it and/or
50 * modify it under the terms of the GNU General Public License
51 * as published by the Free Software Foundation; either version
52 * 2 of the License, or (at your option) any later version.
53 *
54 *
55 * This module is effectively the top level interface to the BSD socket
56 * paradigm.
57 *
58 * Based upon Swansea University Computer Society NET3.039
59 */
60
61 #include <linux/mm.h>
62 #include <linux/socket.h>
63 #include <linux/file.h>
64 #include <linux/net.h>
65 #include <linux/interrupt.h>
66 #include <linux/thread_info.h>
67 #include <linux/rcupdate.h>
68 #include <linux/netdevice.h>
69 #include <linux/proc_fs.h>
70 #include <linux/seq_file.h>
71 #include <linux/mutex.h>
72 #include <linux/if_bridge.h>
73 #include <linux/if_frad.h>
74 #include <linux/if_vlan.h>
75 #include <linux/init.h>
76 #include <linux/poll.h>
77 #include <linux/cache.h>
78 #include <linux/module.h>
79 #include <linux/highmem.h>
80 #include <linux/mount.h>
81 #include <linux/security.h>
82 #include <linux/syscalls.h>
83 #include <linux/compat.h>
84 #include <linux/kmod.h>
85 #include <linux/audit.h>
86 #include <linux/wireless.h>
87 #include <linux/nsproxy.h>
88 #include <linux/magic.h>
89 #include <linux/slab.h>
90 #include <linux/xattr.h>
91
92 #include <asm/uaccess.h>
93 #include <asm/unistd.h>
94
95 #include <net/compat.h>
96 #include <net/wext.h>
97 #include <net/cls_cgroup.h>
98
99 #include <net/sock.h>
100 #include <linux/netfilter.h>
101
102 #include <linux/if_tun.h>
103 #include <linux/ipv6_route.h>
104 #include <linux/route.h>
105 #include <linux/sockios.h>
106 #include <linux/atalk.h>
107 #include <net/ll_poll.h>
108
109 #ifdef CONFIG_NET_LL_RX_POLL
110 unsigned int sysctl_net_ll_poll __read_mostly;
111 #endif
112
113 static int sock_no_open(struct inode *irrelevant, struct file *dontcare);
114 static ssize_t sock_aio_read(struct kiocb *iocb, const struct iovec *iov,
115 unsigned long nr_segs, loff_t pos);
116 static ssize_t sock_aio_write(struct kiocb *iocb, const struct iovec *iov,
117 unsigned long nr_segs, loff_t pos);
118 static int sock_mmap(struct file *file, struct vm_area_struct *vma);
119
120 static int sock_close(struct inode *inode, struct file *file);
121 static unsigned int sock_poll(struct file *file,
122 struct poll_table_struct *wait);
123 static long sock_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
124 #ifdef CONFIG_COMPAT
125 static long compat_sock_ioctl(struct file *file,
126 unsigned int cmd, unsigned long arg);
127 #endif
128 static int sock_fasync(int fd, struct file *filp, int on);
129 static ssize_t sock_sendpage(struct file *file, struct page *page,
130 int offset, size_t size, loff_t *ppos, int more);
131 static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
132 struct pipe_inode_info *pipe, size_t len,
133 unsigned int flags);
134
135 /*
136 * Socket files have a set of 'special' operations as well as the generic file ones. These don't appear
137 * in the operation structures but are done directly via the socketcall() multiplexor.
138 */
139
140 static const struct file_operations socket_file_ops = {
141 .owner = THIS_MODULE,
142 .llseek = no_llseek,
143 .aio_read = sock_aio_read,
144 .aio_write = sock_aio_write,
145 .poll = sock_poll,
146 .unlocked_ioctl = sock_ioctl,
147 #ifdef CONFIG_COMPAT
148 .compat_ioctl = compat_sock_ioctl,
149 #endif
150 .mmap = sock_mmap,
151 .open = sock_no_open, /* special open code to disallow open via /proc */
152 .release = sock_close,
153 .fasync = sock_fasync,
154 .sendpage = sock_sendpage,
155 .splice_write = generic_splice_sendpage,
156 .splice_read = sock_splice_read,
157 };
158
159 /*
160 * The protocol list. Each protocol is registered in here.
161 */
162
163 static DEFINE_SPINLOCK(net_family_lock);
164 static const struct net_proto_family __rcu *net_families[NPROTO] __read_mostly;
165
166 /*
167 * Statistics counters of the socket lists
168 */
169
170 static DEFINE_PER_CPU(int, sockets_in_use);
171
172 /*
173 * Support routines.
174 * Move socket addresses back and forth across the kernel/user
175 * divide and look after the messy bits.
176 */
177
178 /**
179 * move_addr_to_kernel - copy a socket address into kernel space
180 * @uaddr: Address in user space
181 * @kaddr: Address in kernel space
182 * @ulen: Length in user space
183 *
184 * The address is copied into kernel space. If the provided address is
185 * too long an error code of -EINVAL is returned. If the copy gives
186 * invalid addresses -EFAULT is returned. On a success 0 is returned.
187 */
188
189 int move_addr_to_kernel(void __user *uaddr, int ulen, struct sockaddr_storage *kaddr)
190 {
191 if (ulen < 0 || ulen > sizeof(struct sockaddr_storage))
192 return -EINVAL;
193 if (ulen == 0)
194 return 0;
195 if (copy_from_user(kaddr, uaddr, ulen))
196 return -EFAULT;
197 return audit_sockaddr(ulen, kaddr);
198 }
199
200 /**
201 * move_addr_to_user - copy an address to user space
202 * @kaddr: kernel space address
203 * @klen: length of address in kernel
204 * @uaddr: user space address
205 * @ulen: pointer to user length field
206 *
207 * The value pointed to by ulen on entry is the buffer length available.
208 * This is overwritten with the buffer space used. -EINVAL is returned
209 * if an overlong buffer is specified or a negative buffer size. -EFAULT
210 * is returned if either the buffer or the length field are not
211 * accessible.
212 * After copying the data up to the limit the user specifies, the true
213 * length of the data is written over the length limit the user
214 * specified. Zero is returned for a success.
215 */
216
217 static int move_addr_to_user(struct sockaddr_storage *kaddr, int klen,
218 void __user *uaddr, int __user *ulen)
219 {
220 int err;
221 int len;
222
223 err = get_user(len, ulen);
224 if (err)
225 return err;
226 if (len > klen)
227 len = klen;
228 if (len < 0 || len > sizeof(struct sockaddr_storage))
229 return -EINVAL;
230 if (len) {
231 if (audit_sockaddr(klen, kaddr))
232 return -ENOMEM;
233 if (copy_to_user(uaddr, kaddr, len))
234 return -EFAULT;
235 }
236 /*
237 * "fromlen shall refer to the value before truncation.."
238 * 1003.1g
239 */
240 return __put_user(klen, ulen);
241 }
242
243 static struct kmem_cache *sock_inode_cachep __read_mostly;
244
245 static struct inode *sock_alloc_inode(struct super_block *sb)
246 {
247 struct socket_alloc *ei;
248 struct socket_wq *wq;
249
250 ei = kmem_cache_alloc(sock_inode_cachep, GFP_KERNEL);
251 if (!ei)
252 return NULL;
253 wq = kmalloc(sizeof(*wq), GFP_KERNEL);
254 if (!wq) {
255 kmem_cache_free(sock_inode_cachep, ei);
256 return NULL;
257 }
258 init_waitqueue_head(&wq->wait);
259 wq->fasync_list = NULL;
260 RCU_INIT_POINTER(ei->socket.wq, wq);
261
262 ei->socket.state = SS_UNCONNECTED;
263 ei->socket.flags = 0;
264 ei->socket.ops = NULL;
265 ei->socket.sk = NULL;
266 ei->socket.file = NULL;
267
268 return &ei->vfs_inode;
269 }
270
271 static void sock_destroy_inode(struct inode *inode)
272 {
273 struct socket_alloc *ei;
274 struct socket_wq *wq;
275
276 ei = container_of(inode, struct socket_alloc, vfs_inode);
277 wq = rcu_dereference_protected(ei->socket.wq, 1);
278 kfree_rcu(wq, rcu);
279 kmem_cache_free(sock_inode_cachep, ei);
280 }
281
282 static void init_once(void *foo)
283 {
284 struct socket_alloc *ei = (struct socket_alloc *)foo;
285
286 inode_init_once(&ei->vfs_inode);
287 }
288
289 static int init_inodecache(void)
290 {
291 sock_inode_cachep = kmem_cache_create("sock_inode_cache",
292 sizeof(struct socket_alloc),
293 0,
294 (SLAB_HWCACHE_ALIGN |
295 SLAB_RECLAIM_ACCOUNT |
296 SLAB_MEM_SPREAD),
297 init_once);
298 if (sock_inode_cachep == NULL)
299 return -ENOMEM;
300 return 0;
301 }
302
303 static const struct super_operations sockfs_ops = {
304 .alloc_inode = sock_alloc_inode,
305 .destroy_inode = sock_destroy_inode,
306 .statfs = simple_statfs,
307 };
308
309 /*
310 * sockfs_dname() is called from d_path().
311 */
312 static char *sockfs_dname(struct dentry *dentry, char *buffer, int buflen)
313 {
314 return dynamic_dname(dentry, buffer, buflen, "socket:[%lu]",
315 dentry->d_inode->i_ino);
316 }
317
318 static const struct dentry_operations sockfs_dentry_operations = {
319 .d_dname = sockfs_dname,
320 };
321
322 static struct dentry *sockfs_mount(struct file_system_type *fs_type,
323 int flags, const char *dev_name, void *data)
324 {
325 return mount_pseudo(fs_type, "socket:", &sockfs_ops,
326 &sockfs_dentry_operations, SOCKFS_MAGIC);
327 }
328
329 static struct vfsmount *sock_mnt __read_mostly;
330
331 static struct file_system_type sock_fs_type = {
332 .name = "sockfs",
333 .mount = sockfs_mount,
334 .kill_sb = kill_anon_super,
335 };
336
337 /*
338 * Obtains the first available file descriptor and sets it up for use.
339 *
340 * These functions create file structures and maps them to fd space
341 * of the current process. On success it returns file descriptor
342 * and file struct implicitly stored in sock->file.
343 * Note that another thread may close file descriptor before we return
344 * from this function. We use the fact that now we do not refer
345 * to socket after mapping. If one day we will need it, this
346 * function will increment ref. count on file by 1.
347 *
348 * In any case returned fd MAY BE not valid!
349 * This race condition is unavoidable
350 * with shared fd spaces, we cannot solve it inside kernel,
351 * but we take care of internal coherence yet.
352 */
353
354 struct file *sock_alloc_file(struct socket *sock, int flags, const char *dname)
355 {
356 struct qstr name = { .name = "" };
357 struct path path;
358 struct file *file;
359
360 if (dname) {
361 name.name = dname;
362 name.len = strlen(name.name);
363 } else if (sock->sk) {
364 name.name = sock->sk->sk_prot_creator->name;
365 name.len = strlen(name.name);
366 }
367 path.dentry = d_alloc_pseudo(sock_mnt->mnt_sb, &name);
368 if (unlikely(!path.dentry))
369 return ERR_PTR(-ENOMEM);
370 path.mnt = mntget(sock_mnt);
371
372 d_instantiate(path.dentry, SOCK_INODE(sock));
373 SOCK_INODE(sock)->i_fop = &socket_file_ops;
374
375 file = alloc_file(&path, FMODE_READ | FMODE_WRITE,
376 &socket_file_ops);
377 if (unlikely(IS_ERR(file))) {
378 /* drop dentry, keep inode */
379 ihold(path.dentry->d_inode);
380 path_put(&path);
381 return file;
382 }
383
384 sock->file = file;
385 file->f_flags = O_RDWR | (flags & O_NONBLOCK);
386 file->private_data = sock;
387 return file;
388 }
389 EXPORT_SYMBOL(sock_alloc_file);
390
391 static int sock_map_fd(struct socket *sock, int flags)
392 {
393 struct file *newfile;
394 int fd = get_unused_fd_flags(flags);
395 if (unlikely(fd < 0))
396 return fd;
397
398 newfile = sock_alloc_file(sock, flags, NULL);
399 if (likely(!IS_ERR(newfile))) {
400 fd_install(fd, newfile);
401 return fd;
402 }
403
404 put_unused_fd(fd);
405 return PTR_ERR(newfile);
406 }
407
408 struct socket *sock_from_file(struct file *file, int *err)
409 {
410 if (file->f_op == &socket_file_ops)
411 return file->private_data; /* set in sock_map_fd */
412
413 *err = -ENOTSOCK;
414 return NULL;
415 }
416 EXPORT_SYMBOL(sock_from_file);
417
418 /**
419 * sockfd_lookup - Go from a file number to its socket slot
420 * @fd: file handle
421 * @err: pointer to an error code return
422 *
423 * The file handle passed in is locked and the socket it is bound
424 * too is returned. If an error occurs the err pointer is overwritten
425 * with a negative errno code and NULL is returned. The function checks
426 * for both invalid handles and passing a handle which is not a socket.
427 *
428 * On a success the socket object pointer is returned.
429 */
430
431 struct socket *sockfd_lookup(int fd, int *err)
432 {
433 struct file *file;
434 struct socket *sock;
435
436 file = fget(fd);
437 if (!file) {
438 *err = -EBADF;
439 return NULL;
440 }
441
442 sock = sock_from_file(file, err);
443 if (!sock)
444 fput(file);
445 return sock;
446 }
447 EXPORT_SYMBOL(sockfd_lookup);
448
449 static struct socket *sockfd_lookup_light(int fd, int *err, int *fput_needed)
450 {
451 struct file *file;
452 struct socket *sock;
453
454 *err = -EBADF;
455 file = fget_light(fd, fput_needed);
456 if (file) {
457 sock = sock_from_file(file, err);
458 if (sock)
459 return sock;
460 fput_light(file, *fput_needed);
461 }
462 return NULL;
463 }
464
465 #define XATTR_SOCKPROTONAME_SUFFIX "sockprotoname"
466 #define XATTR_NAME_SOCKPROTONAME (XATTR_SYSTEM_PREFIX XATTR_SOCKPROTONAME_SUFFIX)
467 #define XATTR_NAME_SOCKPROTONAME_LEN (sizeof(XATTR_NAME_SOCKPROTONAME)-1)
468 static ssize_t sockfs_getxattr(struct dentry *dentry,
469 const char *name, void *value, size_t size)
470 {
471 const char *proto_name;
472 size_t proto_size;
473 int error;
474
475 error = -ENODATA;
476 if (!strncmp(name, XATTR_NAME_SOCKPROTONAME, XATTR_NAME_SOCKPROTONAME_LEN)) {
477 proto_name = dentry->d_name.name;
478 proto_size = strlen(proto_name);
479
480 if (value) {
481 error = -ERANGE;
482 if (proto_size + 1 > size)
483 goto out;
484
485 strncpy(value, proto_name, proto_size + 1);
486 }
487 error = proto_size + 1;
488 }
489
490 out:
491 return error;
492 }
493
494 static ssize_t sockfs_listxattr(struct dentry *dentry, char *buffer,
495 size_t size)
496 {
497 ssize_t len;
498 ssize_t used = 0;
499
500 len = security_inode_listsecurity(dentry->d_inode, buffer, size);
501 if (len < 0)
502 return len;
503 used += len;
504 if (buffer) {
505 if (size < used)
506 return -ERANGE;
507 buffer += len;
508 }
509
510 len = (XATTR_NAME_SOCKPROTONAME_LEN + 1);
511 used += len;
512 if (buffer) {
513 if (size < used)
514 return -ERANGE;
515 memcpy(buffer, XATTR_NAME_SOCKPROTONAME, len);
516 buffer += len;
517 }
518
519 return used;
520 }
521
522 static const struct inode_operations sockfs_inode_ops = {
523 .getxattr = sockfs_getxattr,
524 .listxattr = sockfs_listxattr,
525 };
526
527 /**
528 * sock_alloc - allocate a socket
529 *
530 * Allocate a new inode and socket object. The two are bound together
531 * and initialised. The socket is then returned. If we are out of inodes
532 * NULL is returned.
533 */
534
535 static struct socket *sock_alloc(void)
536 {
537 struct inode *inode;
538 struct socket *sock;
539
540 inode = new_inode_pseudo(sock_mnt->mnt_sb);
541 if (!inode)
542 return NULL;
543
544 sock = SOCKET_I(inode);
545
546 kmemcheck_annotate_bitfield(sock, type);
547 inode->i_ino = get_next_ino();
548 inode->i_mode = S_IFSOCK | S_IRWXUGO;
549 inode->i_uid = current_fsuid();
550 inode->i_gid = current_fsgid();
551 inode->i_op = &sockfs_inode_ops;
552
553 this_cpu_add(sockets_in_use, 1);
554 return sock;
555 }
556
557 /*
558 * In theory you can't get an open on this inode, but /proc provides
559 * a back door. Remember to keep it shut otherwise you'll let the
560 * creepy crawlies in.
561 */
562
563 static int sock_no_open(struct inode *irrelevant, struct file *dontcare)
564 {
565 return -ENXIO;
566 }
567
568 const struct file_operations bad_sock_fops = {
569 .owner = THIS_MODULE,
570 .open = sock_no_open,
571 .llseek = noop_llseek,
572 };
573
574 /**
575 * sock_release - close a socket
576 * @sock: socket to close
577 *
578 * The socket is released from the protocol stack if it has a release
579 * callback, and the inode is then released if the socket is bound to
580 * an inode not a file.
581 */
582
583 void sock_release(struct socket *sock)
584 {
585 if (sock->ops) {
586 struct module *owner = sock->ops->owner;
587
588 sock->ops->release(sock);
589 sock->ops = NULL;
590 module_put(owner);
591 }
592
593 if (rcu_dereference_protected(sock->wq, 1)->fasync_list)
594 printk(KERN_ERR "sock_release: fasync list not empty!\n");
595
596 if (test_bit(SOCK_EXTERNALLY_ALLOCATED, &sock->flags))
597 return;
598
599 this_cpu_sub(sockets_in_use, 1);
600 if (!sock->file) {
601 iput(SOCK_INODE(sock));
602 return;
603 }
604 sock->file = NULL;
605 }
606 EXPORT_SYMBOL(sock_release);
607
608 void sock_tx_timestamp(struct sock *sk, __u8 *tx_flags)
609 {
610 *tx_flags = 0;
611 if (sock_flag(sk, SOCK_TIMESTAMPING_TX_HARDWARE))
612 *tx_flags |= SKBTX_HW_TSTAMP;
613 if (sock_flag(sk, SOCK_TIMESTAMPING_TX_SOFTWARE))
614 *tx_flags |= SKBTX_SW_TSTAMP;
615 if (sock_flag(sk, SOCK_WIFI_STATUS))
616 *tx_flags |= SKBTX_WIFI_STATUS;
617 }
618 EXPORT_SYMBOL(sock_tx_timestamp);
619
620 static inline int __sock_sendmsg_nosec(struct kiocb *iocb, struct socket *sock,
621 struct msghdr *msg, size_t size)
622 {
623 struct sock_iocb *si = kiocb_to_siocb(iocb);
624
625 si->sock = sock;
626 si->scm = NULL;
627 si->msg = msg;
628 si->size = size;
629
630 return sock->ops->sendmsg(iocb, sock, msg, size);
631 }
632
633 static inline int __sock_sendmsg(struct kiocb *iocb, struct socket *sock,
634 struct msghdr *msg, size_t size)
635 {
636 int err = security_socket_sendmsg(sock, msg, size);
637
638 return err ?: __sock_sendmsg_nosec(iocb, sock, msg, size);
639 }
640
641 int sock_sendmsg(struct socket *sock, struct msghdr *msg, size_t size)
642 {
643 struct kiocb iocb;
644 struct sock_iocb siocb;
645 int ret;
646
647 init_sync_kiocb(&iocb, NULL);
648 iocb.private = &siocb;
649 ret = __sock_sendmsg(&iocb, sock, msg, size);
650 if (-EIOCBQUEUED == ret)
651 ret = wait_on_sync_kiocb(&iocb);
652 return ret;
653 }
654 EXPORT_SYMBOL(sock_sendmsg);
655
656 static int sock_sendmsg_nosec(struct socket *sock, struct msghdr *msg, size_t size)
657 {
658 struct kiocb iocb;
659 struct sock_iocb siocb;
660 int ret;
661
662 init_sync_kiocb(&iocb, NULL);
663 iocb.private = &siocb;
664 ret = __sock_sendmsg_nosec(&iocb, sock, msg, size);
665 if (-EIOCBQUEUED == ret)
666 ret = wait_on_sync_kiocb(&iocb);
667 return ret;
668 }
669
670 int kernel_sendmsg(struct socket *sock, struct msghdr *msg,
671 struct kvec *vec, size_t num, size_t size)
672 {
673 mm_segment_t oldfs = get_fs();
674 int result;
675
676 set_fs(KERNEL_DS);
677 /*
678 * the following is safe, since for compiler definitions of kvec and
679 * iovec are identical, yielding the same in-core layout and alignment
680 */
681 msg->msg_iov = (struct iovec *)vec;
682 msg->msg_iovlen = num;
683 result = sock_sendmsg(sock, msg, size);
684 set_fs(oldfs);
685 return result;
686 }
687 EXPORT_SYMBOL(kernel_sendmsg);
688
689 /*
690 * called from sock_recv_timestamp() if sock_flag(sk, SOCK_RCVTSTAMP)
691 */
692 void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk,
693 struct sk_buff *skb)
694 {
695 int need_software_tstamp = sock_flag(sk, SOCK_RCVTSTAMP);
696 struct timespec ts[3];
697 int empty = 1;
698 struct skb_shared_hwtstamps *shhwtstamps =
699 skb_hwtstamps(skb);
700
701 /* Race occurred between timestamp enabling and packet
702 receiving. Fill in the current time for now. */
703 if (need_software_tstamp && skb->tstamp.tv64 == 0)
704 __net_timestamp(skb);
705
706 if (need_software_tstamp) {
707 if (!sock_flag(sk, SOCK_RCVTSTAMPNS)) {
708 struct timeval tv;
709 skb_get_timestamp(skb, &tv);
710 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMP,
711 sizeof(tv), &tv);
712 } else {
713 skb_get_timestampns(skb, &ts[0]);
714 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPNS,
715 sizeof(ts[0]), &ts[0]);
716 }
717 }
718
719
720 memset(ts, 0, sizeof(ts));
721 if (sock_flag(sk, SOCK_TIMESTAMPING_SOFTWARE) &&
722 ktime_to_timespec_cond(skb->tstamp, ts + 0))
723 empty = 0;
724 if (shhwtstamps) {
725 if (sock_flag(sk, SOCK_TIMESTAMPING_SYS_HARDWARE) &&
726 ktime_to_timespec_cond(shhwtstamps->syststamp, ts + 1))
727 empty = 0;
728 if (sock_flag(sk, SOCK_TIMESTAMPING_RAW_HARDWARE) &&
729 ktime_to_timespec_cond(shhwtstamps->hwtstamp, ts + 2))
730 empty = 0;
731 }
732 if (!empty)
733 put_cmsg(msg, SOL_SOCKET,
734 SCM_TIMESTAMPING, sizeof(ts), &ts);
735 }
736 EXPORT_SYMBOL_GPL(__sock_recv_timestamp);
737
738 void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk,
739 struct sk_buff *skb)
740 {
741 int ack;
742
743 if (!sock_flag(sk, SOCK_WIFI_STATUS))
744 return;
745 if (!skb->wifi_acked_valid)
746 return;
747
748 ack = skb->wifi_acked;
749
750 put_cmsg(msg, SOL_SOCKET, SCM_WIFI_STATUS, sizeof(ack), &ack);
751 }
752 EXPORT_SYMBOL_GPL(__sock_recv_wifi_status);
753
754 static inline void sock_recv_drops(struct msghdr *msg, struct sock *sk,
755 struct sk_buff *skb)
756 {
757 if (sock_flag(sk, SOCK_RXQ_OVFL) && skb && skb->dropcount)
758 put_cmsg(msg, SOL_SOCKET, SO_RXQ_OVFL,
759 sizeof(__u32), &skb->dropcount);
760 }
761
762 void __sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
763 struct sk_buff *skb)
764 {
765 sock_recv_timestamp(msg, sk, skb);
766 sock_recv_drops(msg, sk, skb);
767 }
768 EXPORT_SYMBOL_GPL(__sock_recv_ts_and_drops);
769
770 static inline int __sock_recvmsg_nosec(struct kiocb *iocb, struct socket *sock,
771 struct msghdr *msg, size_t size, int flags)
772 {
773 struct sock_iocb *si = kiocb_to_siocb(iocb);
774
775 si->sock = sock;
776 si->scm = NULL;
777 si->msg = msg;
778 si->size = size;
779 si->flags = flags;
780
781 return sock->ops->recvmsg(iocb, sock, msg, size, flags);
782 }
783
784 static inline int __sock_recvmsg(struct kiocb *iocb, struct socket *sock,
785 struct msghdr *msg, size_t size, int flags)
786 {
787 int err = security_socket_recvmsg(sock, msg, size, flags);
788
789 return err ?: __sock_recvmsg_nosec(iocb, sock, msg, size, flags);
790 }
791
792 int sock_recvmsg(struct socket *sock, struct msghdr *msg,
793 size_t size, int flags)
794 {
795 struct kiocb iocb;
796 struct sock_iocb siocb;
797 int ret;
798
799 init_sync_kiocb(&iocb, NULL);
800 iocb.private = &siocb;
801 ret = __sock_recvmsg(&iocb, sock, msg, size, flags);
802 if (-EIOCBQUEUED == ret)
803 ret = wait_on_sync_kiocb(&iocb);
804 return ret;
805 }
806 EXPORT_SYMBOL(sock_recvmsg);
807
808 static int sock_recvmsg_nosec(struct socket *sock, struct msghdr *msg,
809 size_t size, int flags)
810 {
811 struct kiocb iocb;
812 struct sock_iocb siocb;
813 int ret;
814
815 init_sync_kiocb(&iocb, NULL);
816 iocb.private = &siocb;
817 ret = __sock_recvmsg_nosec(&iocb, sock, msg, size, flags);
818 if (-EIOCBQUEUED == ret)
819 ret = wait_on_sync_kiocb(&iocb);
820 return ret;
821 }
822
823 /**
824 * kernel_recvmsg - Receive a message from a socket (kernel space)
825 * @sock: The socket to receive the message from
826 * @msg: Received message
827 * @vec: Input s/g array for message data
828 * @num: Size of input s/g array
829 * @size: Number of bytes to read
830 * @flags: Message flags (MSG_DONTWAIT, etc...)
831 *
832 * On return the msg structure contains the scatter/gather array passed in the
833 * vec argument. The array is modified so that it consists of the unfilled
834 * portion of the original array.
835 *
836 * The returned value is the total number of bytes received, or an error.
837 */
838 int kernel_recvmsg(struct socket *sock, struct msghdr *msg,
839 struct kvec *vec, size_t num, size_t size, int flags)
840 {
841 mm_segment_t oldfs = get_fs();
842 int result;
843
844 set_fs(KERNEL_DS);
845 /*
846 * the following is safe, since for compiler definitions of kvec and
847 * iovec are identical, yielding the same in-core layout and alignment
848 */
849 msg->msg_iov = (struct iovec *)vec, msg->msg_iovlen = num;
850 result = sock_recvmsg(sock, msg, size, flags);
851 set_fs(oldfs);
852 return result;
853 }
854 EXPORT_SYMBOL(kernel_recvmsg);
855
856 static void sock_aio_dtor(struct kiocb *iocb)
857 {
858 kfree(iocb->private);
859 }
860
861 static ssize_t sock_sendpage(struct file *file, struct page *page,
862 int offset, size_t size, loff_t *ppos, int more)
863 {
864 struct socket *sock;
865 int flags;
866
867 sock = file->private_data;
868
869 flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0;
870 /* more is a combination of MSG_MORE and MSG_SENDPAGE_NOTLAST */
871 flags |= more;
872
873 return kernel_sendpage(sock, page, offset, size, flags);
874 }
875
876 static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
877 struct pipe_inode_info *pipe, size_t len,
878 unsigned int flags)
879 {
880 struct socket *sock = file->private_data;
881
882 if (unlikely(!sock->ops->splice_read))
883 return -EINVAL;
884
885 return sock->ops->splice_read(sock, ppos, pipe, len, flags);
886 }
887
888 static struct sock_iocb *alloc_sock_iocb(struct kiocb *iocb,
889 struct sock_iocb *siocb)
890 {
891 if (!is_sync_kiocb(iocb)) {
892 siocb = kmalloc(sizeof(*siocb), GFP_KERNEL);
893 if (!siocb)
894 return NULL;
895 iocb->ki_dtor = sock_aio_dtor;
896 }
897
898 siocb->kiocb = iocb;
899 iocb->private = siocb;
900 return siocb;
901 }
902
903 static ssize_t do_sock_read(struct msghdr *msg, struct kiocb *iocb,
904 struct file *file, const struct iovec *iov,
905 unsigned long nr_segs)
906 {
907 struct socket *sock = file->private_data;
908 size_t size = 0;
909 int i;
910
911 for (i = 0; i < nr_segs; i++)
912 size += iov[i].iov_len;
913
914 msg->msg_name = NULL;
915 msg->msg_namelen = 0;
916 msg->msg_control = NULL;
917 msg->msg_controllen = 0;
918 msg->msg_iov = (struct iovec *)iov;
919 msg->msg_iovlen = nr_segs;
920 msg->msg_flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0;
921
922 return __sock_recvmsg(iocb, sock, msg, size, msg->msg_flags);
923 }
924
925 static ssize_t sock_aio_read(struct kiocb *iocb, const struct iovec *iov,
926 unsigned long nr_segs, loff_t pos)
927 {
928 struct sock_iocb siocb, *x;
929
930 if (pos != 0)
931 return -ESPIPE;
932
933 if (iocb->ki_left == 0) /* Match SYS5 behaviour */
934 return 0;
935
936
937 x = alloc_sock_iocb(iocb, &siocb);
938 if (!x)
939 return -ENOMEM;
940 return do_sock_read(&x->async_msg, iocb, iocb->ki_filp, iov, nr_segs);
941 }
942
943 static ssize_t do_sock_write(struct msghdr *msg, struct kiocb *iocb,
944 struct file *file, const struct iovec *iov,
945 unsigned long nr_segs)
946 {
947 struct socket *sock = file->private_data;
948 size_t size = 0;
949 int i;
950
951 for (i = 0; i < nr_segs; i++)
952 size += iov[i].iov_len;
953
954 msg->msg_name = NULL;
955 msg->msg_namelen = 0;
956 msg->msg_control = NULL;
957 msg->msg_controllen = 0;
958 msg->msg_iov = (struct iovec *)iov;
959 msg->msg_iovlen = nr_segs;
960 msg->msg_flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0;
961 if (sock->type == SOCK_SEQPACKET)
962 msg->msg_flags |= MSG_EOR;
963
964 return __sock_sendmsg(iocb, sock, msg, size);
965 }
966
967 static ssize_t sock_aio_write(struct kiocb *iocb, const struct iovec *iov,
968 unsigned long nr_segs, loff_t pos)
969 {
970 struct sock_iocb siocb, *x;
971
972 if (pos != 0)
973 return -ESPIPE;
974
975 x = alloc_sock_iocb(iocb, &siocb);
976 if (!x)
977 return -ENOMEM;
978
979 return do_sock_write(&x->async_msg, iocb, iocb->ki_filp, iov, nr_segs);
980 }
981
982 /*
983 * Atomic setting of ioctl hooks to avoid race
984 * with module unload.
985 */
986
987 static DEFINE_MUTEX(br_ioctl_mutex);
988 static int (*br_ioctl_hook) (struct net *, unsigned int cmd, void __user *arg);
989
990 void brioctl_set(int (*hook) (struct net *, unsigned int, void __user *))
991 {
992 mutex_lock(&br_ioctl_mutex);
993 br_ioctl_hook = hook;
994 mutex_unlock(&br_ioctl_mutex);
995 }
996 EXPORT_SYMBOL(brioctl_set);
997
998 static DEFINE_MUTEX(vlan_ioctl_mutex);
999 static int (*vlan_ioctl_hook) (struct net *, void __user *arg);
1000
1001 void vlan_ioctl_set(int (*hook) (struct net *, void __user *))
1002 {
1003 mutex_lock(&vlan_ioctl_mutex);
1004 vlan_ioctl_hook = hook;
1005 mutex_unlock(&vlan_ioctl_mutex);
1006 }
1007 EXPORT_SYMBOL(vlan_ioctl_set);
1008
1009 static DEFINE_MUTEX(dlci_ioctl_mutex);
1010 static int (*dlci_ioctl_hook) (unsigned int, void __user *);
1011
1012 void dlci_ioctl_set(int (*hook) (unsigned int, void __user *))
1013 {
1014 mutex_lock(&dlci_ioctl_mutex);
1015 dlci_ioctl_hook = hook;
1016 mutex_unlock(&dlci_ioctl_mutex);
1017 }
1018 EXPORT_SYMBOL(dlci_ioctl_set);
1019
1020 static long sock_do_ioctl(struct net *net, struct socket *sock,
1021 unsigned int cmd, unsigned long arg)
1022 {
1023 int err;
1024 void __user *argp = (void __user *)arg;
1025
1026 err = sock->ops->ioctl(sock, cmd, arg);
1027
1028 /*
1029 * If this ioctl is unknown try to hand it down
1030 * to the NIC driver.
1031 */
1032 if (err == -ENOIOCTLCMD)
1033 err = dev_ioctl(net, cmd, argp);
1034
1035 return err;
1036 }
1037
1038 /*
1039 * With an ioctl, arg may well be a user mode pointer, but we don't know
1040 * what to do with it - that's up to the protocol still.
1041 */
1042
1043 static long sock_ioctl(struct file *file, unsigned cmd, unsigned long arg)
1044 {
1045 struct socket *sock;
1046 struct sock *sk;
1047 void __user *argp = (void __user *)arg;
1048 int pid, err;
1049 struct net *net;
1050
1051 sock = file->private_data;
1052 sk = sock->sk;
1053 net = sock_net(sk);
1054 if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15)) {
1055 err = dev_ioctl(net, cmd, argp);
1056 } else
1057 #ifdef CONFIG_WEXT_CORE
1058 if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST) {
1059 err = dev_ioctl(net, cmd, argp);
1060 } else
1061 #endif
1062 switch (cmd) {
1063 case FIOSETOWN:
1064 case SIOCSPGRP:
1065 err = -EFAULT;
1066 if (get_user(pid, (int __user *)argp))
1067 break;
1068 err = f_setown(sock->file, pid, 1);
1069 break;
1070 case FIOGETOWN:
1071 case SIOCGPGRP:
1072 err = put_user(f_getown(sock->file),
1073 (int __user *)argp);
1074 break;
1075 case SIOCGIFBR:
1076 case SIOCSIFBR:
1077 case SIOCBRADDBR:
1078 case SIOCBRDELBR:
1079 err = -ENOPKG;
1080 if (!br_ioctl_hook)
1081 request_module("bridge");
1082
1083 mutex_lock(&br_ioctl_mutex);
1084 if (br_ioctl_hook)
1085 err = br_ioctl_hook(net, cmd, argp);
1086 mutex_unlock(&br_ioctl_mutex);
1087 break;
1088 case SIOCGIFVLAN:
1089 case SIOCSIFVLAN:
1090 err = -ENOPKG;
1091 if (!vlan_ioctl_hook)
1092 request_module("8021q");
1093
1094 mutex_lock(&vlan_ioctl_mutex);
1095 if (vlan_ioctl_hook)
1096 err = vlan_ioctl_hook(net, argp);
1097 mutex_unlock(&vlan_ioctl_mutex);
1098 break;
1099 case SIOCADDDLCI:
1100 case SIOCDELDLCI:
1101 err = -ENOPKG;
1102 if (!dlci_ioctl_hook)
1103 request_module("dlci");
1104
1105 mutex_lock(&dlci_ioctl_mutex);
1106 if (dlci_ioctl_hook)
1107 err = dlci_ioctl_hook(cmd, argp);
1108 mutex_unlock(&dlci_ioctl_mutex);
1109 break;
1110 default:
1111 err = sock_do_ioctl(net, sock, cmd, arg);
1112 break;
1113 }
1114 return err;
1115 }
1116
1117 int sock_create_lite(int family, int type, int protocol, struct socket **res)
1118 {
1119 int err;
1120 struct socket *sock = NULL;
1121
1122 err = security_socket_create(family, type, protocol, 1);
1123 if (err)
1124 goto out;
1125
1126 sock = sock_alloc();
1127 if (!sock) {
1128 err = -ENOMEM;
1129 goto out;
1130 }
1131
1132 sock->type = type;
1133 err = security_socket_post_create(sock, family, type, protocol, 1);
1134 if (err)
1135 goto out_release;
1136
1137 out:
1138 *res = sock;
1139 return err;
1140 out_release:
1141 sock_release(sock);
1142 sock = NULL;
1143 goto out;
1144 }
1145 EXPORT_SYMBOL(sock_create_lite);
1146
1147 /* No kernel lock held - perfect */
1148 static unsigned int sock_poll(struct file *file, poll_table *wait)
1149 {
1150 struct socket *sock;
1151
1152 /*
1153 * We can't return errors to poll, so it's either yes or no.
1154 */
1155 sock = file->private_data;
1156 return sock->ops->poll(file, sock, wait);
1157 }
1158
1159 static int sock_mmap(struct file *file, struct vm_area_struct *vma)
1160 {
1161 struct socket *sock = file->private_data;
1162
1163 return sock->ops->mmap(file, sock, vma);
1164 }
1165
1166 static int sock_close(struct inode *inode, struct file *filp)
1167 {
1168 sock_release(SOCKET_I(inode));
1169 return 0;
1170 }
1171
1172 /*
1173 * Update the socket async list
1174 *
1175 * Fasync_list locking strategy.
1176 *
1177 * 1. fasync_list is modified only under process context socket lock
1178 * i.e. under semaphore.
1179 * 2. fasync_list is used under read_lock(&sk->sk_callback_lock)
1180 * or under socket lock
1181 */
1182
1183 static int sock_fasync(int fd, struct file *filp, int on)
1184 {
1185 struct socket *sock = filp->private_data;
1186 struct sock *sk = sock->sk;
1187 struct socket_wq *wq;
1188
1189 if (sk == NULL)
1190 return -EINVAL;
1191
1192 lock_sock(sk);
1193 wq = rcu_dereference_protected(sock->wq, sock_owned_by_user(sk));
1194 fasync_helper(fd, filp, on, &wq->fasync_list);
1195
1196 if (!wq->fasync_list)
1197 sock_reset_flag(sk, SOCK_FASYNC);
1198 else
1199 sock_set_flag(sk, SOCK_FASYNC);
1200
1201 release_sock(sk);
1202 return 0;
1203 }
1204
1205 /* This function may be called only under socket lock or callback_lock or rcu_lock */
1206
1207 int sock_wake_async(struct socket *sock, int how, int band)
1208 {
1209 struct socket_wq *wq;
1210
1211 if (!sock)
1212 return -1;
1213 rcu_read_lock();
1214 wq = rcu_dereference(sock->wq);
1215 if (!wq || !wq->fasync_list) {
1216 rcu_read_unlock();
1217 return -1;
1218 }
1219 switch (how) {
1220 case SOCK_WAKE_WAITD:
1221 if (test_bit(SOCK_ASYNC_WAITDATA, &sock->flags))
1222 break;
1223 goto call_kill;
1224 case SOCK_WAKE_SPACE:
1225 if (!test_and_clear_bit(SOCK_ASYNC_NOSPACE, &sock->flags))
1226 break;
1227 /* fall through */
1228 case SOCK_WAKE_IO:
1229 call_kill:
1230 kill_fasync(&wq->fasync_list, SIGIO, band);
1231 break;
1232 case SOCK_WAKE_URG:
1233 kill_fasync(&wq->fasync_list, SIGURG, band);
1234 }
1235 rcu_read_unlock();
1236 return 0;
1237 }
1238 EXPORT_SYMBOL(sock_wake_async);
1239
1240 int __sock_create(struct net *net, int family, int type, int protocol,
1241 struct socket **res, int kern)
1242 {
1243 int err;
1244 struct socket *sock;
1245 const struct net_proto_family *pf;
1246
1247 /*
1248 * Check protocol is in range
1249 */
1250 if (family < 0 || family >= NPROTO)
1251 return -EAFNOSUPPORT;
1252 if (type < 0 || type >= SOCK_MAX)
1253 return -EINVAL;
1254
1255 /* Compatibility.
1256
1257 This uglymoron is moved from INET layer to here to avoid
1258 deadlock in module load.
1259 */
1260 if (family == PF_INET && type == SOCK_PACKET) {
1261 static int warned;
1262 if (!warned) {
1263 warned = 1;
1264 printk(KERN_INFO "%s uses obsolete (PF_INET,SOCK_PACKET)\n",
1265 current->comm);
1266 }
1267 family = PF_PACKET;
1268 }
1269
1270 err = security_socket_create(family, type, protocol, kern);
1271 if (err)
1272 return err;
1273
1274 /*
1275 * Allocate the socket and allow the family to set things up. if
1276 * the protocol is 0, the family is instructed to select an appropriate
1277 * default.
1278 */
1279 sock = sock_alloc();
1280 if (!sock) {
1281 net_warn_ratelimited("socket: no more sockets\n");
1282 return -ENFILE; /* Not exactly a match, but its the
1283 closest posix thing */
1284 }
1285
1286 sock->type = type;
1287
1288 #ifdef CONFIG_MODULES
1289 /* Attempt to load a protocol module if the find failed.
1290 *
1291 * 12/09/1996 Marcin: But! this makes REALLY only sense, if the user
1292 * requested real, full-featured networking support upon configuration.
1293 * Otherwise module support will break!
1294 */
1295 if (rcu_access_pointer(net_families[family]) == NULL)
1296 request_module("net-pf-%d", family);
1297 #endif
1298
1299 rcu_read_lock();
1300 pf = rcu_dereference(net_families[family]);
1301 err = -EAFNOSUPPORT;
1302 if (!pf)
1303 goto out_release;
1304
1305 /*
1306 * We will call the ->create function, that possibly is in a loadable
1307 * module, so we have to bump that loadable module refcnt first.
1308 */
1309 if (!try_module_get(pf->owner))
1310 goto out_release;
1311
1312 /* Now protected by module ref count */
1313 rcu_read_unlock();
1314
1315 err = pf->create(net, sock, protocol, kern);
1316 if (err < 0)
1317 goto out_module_put;
1318
1319 /*
1320 * Now to bump the refcnt of the [loadable] module that owns this
1321 * socket at sock_release time we decrement its refcnt.
1322 */
1323 if (!try_module_get(sock->ops->owner))
1324 goto out_module_busy;
1325
1326 /*
1327 * Now that we're done with the ->create function, the [loadable]
1328 * module can have its refcnt decremented
1329 */
1330 module_put(pf->owner);
1331 err = security_socket_post_create(sock, family, type, protocol, kern);
1332 if (err)
1333 goto out_sock_release;
1334 *res = sock;
1335
1336 return 0;
1337
1338 out_module_busy:
1339 err = -EAFNOSUPPORT;
1340 out_module_put:
1341 sock->ops = NULL;
1342 module_put(pf->owner);
1343 out_sock_release:
1344 sock_release(sock);
1345 return err;
1346
1347 out_release:
1348 rcu_read_unlock();
1349 goto out_sock_release;
1350 }
1351 EXPORT_SYMBOL(__sock_create);
1352
1353 int sock_create(int family, int type, int protocol, struct socket **res)
1354 {
1355 return __sock_create(current->nsproxy->net_ns, family, type, protocol, res, 0);
1356 }
1357 EXPORT_SYMBOL(sock_create);
1358
1359 int sock_create_kern(int family, int type, int protocol, struct socket **res)
1360 {
1361 return __sock_create(&init_net, family, type, protocol, res, 1);
1362 }
1363 EXPORT_SYMBOL(sock_create_kern);
1364
1365 SYSCALL_DEFINE3(socket, int, family, int, type, int, protocol)
1366 {
1367 int retval;
1368 struct socket *sock;
1369 int flags;
1370
1371 /* Check the SOCK_* constants for consistency. */
1372 BUILD_BUG_ON(SOCK_CLOEXEC != O_CLOEXEC);
1373 BUILD_BUG_ON((SOCK_MAX | SOCK_TYPE_MASK) != SOCK_TYPE_MASK);
1374 BUILD_BUG_ON(SOCK_CLOEXEC & SOCK_TYPE_MASK);
1375 BUILD_BUG_ON(SOCK_NONBLOCK & SOCK_TYPE_MASK);
1376
1377 flags = type & ~SOCK_TYPE_MASK;
1378 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1379 return -EINVAL;
1380 type &= SOCK_TYPE_MASK;
1381
1382 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1383 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1384
1385 retval = sock_create(family, type, protocol, &sock);
1386 if (retval < 0)
1387 goto out;
1388
1389 retval = sock_map_fd(sock, flags & (O_CLOEXEC | O_NONBLOCK));
1390 if (retval < 0)
1391 goto out_release;
1392
1393 out:
1394 /* It may be already another descriptor 8) Not kernel problem. */
1395 return retval;
1396
1397 out_release:
1398 sock_release(sock);
1399 return retval;
1400 }
1401
1402 /*
1403 * Create a pair of connected sockets.
1404 */
1405
1406 SYSCALL_DEFINE4(socketpair, int, family, int, type, int, protocol,
1407 int __user *, usockvec)
1408 {
1409 struct socket *sock1, *sock2;
1410 int fd1, fd2, err;
1411 struct file *newfile1, *newfile2;
1412 int flags;
1413
1414 flags = type & ~SOCK_TYPE_MASK;
1415 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1416 return -EINVAL;
1417 type &= SOCK_TYPE_MASK;
1418
1419 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1420 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1421
1422 /*
1423 * Obtain the first socket and check if the underlying protocol
1424 * supports the socketpair call.
1425 */
1426
1427 err = sock_create(family, type, protocol, &sock1);
1428 if (err < 0)
1429 goto out;
1430
1431 err = sock_create(family, type, protocol, &sock2);
1432 if (err < 0)
1433 goto out_release_1;
1434
1435 err = sock1->ops->socketpair(sock1, sock2);
1436 if (err < 0)
1437 goto out_release_both;
1438
1439 fd1 = get_unused_fd_flags(flags);
1440 if (unlikely(fd1 < 0)) {
1441 err = fd1;
1442 goto out_release_both;
1443 }
1444 fd2 = get_unused_fd_flags(flags);
1445 if (unlikely(fd2 < 0)) {
1446 err = fd2;
1447 put_unused_fd(fd1);
1448 goto out_release_both;
1449 }
1450
1451 newfile1 = sock_alloc_file(sock1, flags, NULL);
1452 if (unlikely(IS_ERR(newfile1))) {
1453 err = PTR_ERR(newfile1);
1454 put_unused_fd(fd1);
1455 put_unused_fd(fd2);
1456 goto out_release_both;
1457 }
1458
1459 newfile2 = sock_alloc_file(sock2, flags, NULL);
1460 if (IS_ERR(newfile2)) {
1461 err = PTR_ERR(newfile2);
1462 fput(newfile1);
1463 put_unused_fd(fd1);
1464 put_unused_fd(fd2);
1465 sock_release(sock2);
1466 goto out;
1467 }
1468
1469 audit_fd_pair(fd1, fd2);
1470 fd_install(fd1, newfile1);
1471 fd_install(fd2, newfile2);
1472 /* fd1 and fd2 may be already another descriptors.
1473 * Not kernel problem.
1474 */
1475
1476 err = put_user(fd1, &usockvec[0]);
1477 if (!err)
1478 err = put_user(fd2, &usockvec[1]);
1479 if (!err)
1480 return 0;
1481
1482 sys_close(fd2);
1483 sys_close(fd1);
1484 return err;
1485
1486 out_release_both:
1487 sock_release(sock2);
1488 out_release_1:
1489 sock_release(sock1);
1490 out:
1491 return err;
1492 }
1493
1494 /*
1495 * Bind a name to a socket. Nothing much to do here since it's
1496 * the protocol's responsibility to handle the local address.
1497 *
1498 * We move the socket address to kernel space before we call
1499 * the protocol layer (having also checked the address is ok).
1500 */
1501
1502 SYSCALL_DEFINE3(bind, int, fd, struct sockaddr __user *, umyaddr, int, addrlen)
1503 {
1504 struct socket *sock;
1505 struct sockaddr_storage address;
1506 int err, fput_needed;
1507
1508 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1509 if (sock) {
1510 err = move_addr_to_kernel(umyaddr, addrlen, &address);
1511 if (err >= 0) {
1512 err = security_socket_bind(sock,
1513 (struct sockaddr *)&address,
1514 addrlen);
1515 if (!err)
1516 err = sock->ops->bind(sock,
1517 (struct sockaddr *)
1518 &address, addrlen);
1519 }
1520 fput_light(sock->file, fput_needed);
1521 }
1522 return err;
1523 }
1524
1525 /*
1526 * Perform a listen. Basically, we allow the protocol to do anything
1527 * necessary for a listen, and if that works, we mark the socket as
1528 * ready for listening.
1529 */
1530
1531 SYSCALL_DEFINE2(listen, int, fd, int, backlog)
1532 {
1533 struct socket *sock;
1534 int err, fput_needed;
1535 int somaxconn;
1536
1537 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1538 if (sock) {
1539 somaxconn = sock_net(sock->sk)->core.sysctl_somaxconn;
1540 if ((unsigned int)backlog > somaxconn)
1541 backlog = somaxconn;
1542
1543 err = security_socket_listen(sock, backlog);
1544 if (!err)
1545 err = sock->ops->listen(sock, backlog);
1546
1547 fput_light(sock->file, fput_needed);
1548 }
1549 return err;
1550 }
1551
1552 /*
1553 * For accept, we attempt to create a new socket, set up the link
1554 * with the client, wake up the client, then return the new
1555 * connected fd. We collect the address of the connector in kernel
1556 * space and move it to user at the very end. This is unclean because
1557 * we open the socket then return an error.
1558 *
1559 * 1003.1g adds the ability to recvmsg() to query connection pending
1560 * status to recvmsg. We need to add that support in a way thats
1561 * clean when we restucture accept also.
1562 */
1563
1564 SYSCALL_DEFINE4(accept4, int, fd, struct sockaddr __user *, upeer_sockaddr,
1565 int __user *, upeer_addrlen, int, flags)
1566 {
1567 struct socket *sock, *newsock;
1568 struct file *newfile;
1569 int err, len, newfd, fput_needed;
1570 struct sockaddr_storage address;
1571
1572 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1573 return -EINVAL;
1574
1575 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1576 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1577
1578 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1579 if (!sock)
1580 goto out;
1581
1582 err = -ENFILE;
1583 newsock = sock_alloc();
1584 if (!newsock)
1585 goto out_put;
1586
1587 newsock->type = sock->type;
1588 newsock->ops = sock->ops;
1589
1590 /*
1591 * We don't need try_module_get here, as the listening socket (sock)
1592 * has the protocol module (sock->ops->owner) held.
1593 */
1594 __module_get(newsock->ops->owner);
1595
1596 newfd = get_unused_fd_flags(flags);
1597 if (unlikely(newfd < 0)) {
1598 err = newfd;
1599 sock_release(newsock);
1600 goto out_put;
1601 }
1602 newfile = sock_alloc_file(newsock, flags, sock->sk->sk_prot_creator->name);
1603 if (unlikely(IS_ERR(newfile))) {
1604 err = PTR_ERR(newfile);
1605 put_unused_fd(newfd);
1606 sock_release(newsock);
1607 goto out_put;
1608 }
1609
1610 err = security_socket_accept(sock, newsock);
1611 if (err)
1612 goto out_fd;
1613
1614 err = sock->ops->accept(sock, newsock, sock->file->f_flags);
1615 if (err < 0)
1616 goto out_fd;
1617
1618 if (upeer_sockaddr) {
1619 if (newsock->ops->getname(newsock, (struct sockaddr *)&address,
1620 &len, 2) < 0) {
1621 err = -ECONNABORTED;
1622 goto out_fd;
1623 }
1624 err = move_addr_to_user(&address,
1625 len, upeer_sockaddr, upeer_addrlen);
1626 if (err < 0)
1627 goto out_fd;
1628 }
1629
1630 /* File flags are not inherited via accept() unlike another OSes. */
1631
1632 fd_install(newfd, newfile);
1633 err = newfd;
1634
1635 out_put:
1636 fput_light(sock->file, fput_needed);
1637 out:
1638 return err;
1639 out_fd:
1640 fput(newfile);
1641 put_unused_fd(newfd);
1642 goto out_put;
1643 }
1644
1645 SYSCALL_DEFINE3(accept, int, fd, struct sockaddr __user *, upeer_sockaddr,
1646 int __user *, upeer_addrlen)
1647 {
1648 return sys_accept4(fd, upeer_sockaddr, upeer_addrlen, 0);
1649 }
1650
1651 /*
1652 * Attempt to connect to a socket with the server address. The address
1653 * is in user space so we verify it is OK and move it to kernel space.
1654 *
1655 * For 1003.1g we need to add clean support for a bind to AF_UNSPEC to
1656 * break bindings
1657 *
1658 * NOTE: 1003.1g draft 6.3 is broken with respect to AX.25/NetROM and
1659 * other SEQPACKET protocols that take time to connect() as it doesn't
1660 * include the -EINPROGRESS status for such sockets.
1661 */
1662
1663 SYSCALL_DEFINE3(connect, int, fd, struct sockaddr __user *, uservaddr,
1664 int, addrlen)
1665 {
1666 struct socket *sock;
1667 struct sockaddr_storage address;
1668 int err, fput_needed;
1669
1670 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1671 if (!sock)
1672 goto out;
1673 err = move_addr_to_kernel(uservaddr, addrlen, &address);
1674 if (err < 0)
1675 goto out_put;
1676
1677 err =
1678 security_socket_connect(sock, (struct sockaddr *)&address, addrlen);
1679 if (err)
1680 goto out_put;
1681
1682 err = sock->ops->connect(sock, (struct sockaddr *)&address, addrlen,
1683 sock->file->f_flags);
1684 out_put:
1685 fput_light(sock->file, fput_needed);
1686 out:
1687 return err;
1688 }
1689
1690 /*
1691 * Get the local address ('name') of a socket object. Move the obtained
1692 * name to user space.
1693 */
1694
1695 SYSCALL_DEFINE3(getsockname, int, fd, struct sockaddr __user *, usockaddr,
1696 int __user *, usockaddr_len)
1697 {
1698 struct socket *sock;
1699 struct sockaddr_storage address;
1700 int len, err, fput_needed;
1701
1702 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1703 if (!sock)
1704 goto out;
1705
1706 err = security_socket_getsockname(sock);
1707 if (err)
1708 goto out_put;
1709
1710 err = sock->ops->getname(sock, (struct sockaddr *)&address, &len, 0);
1711 if (err)
1712 goto out_put;
1713 err = move_addr_to_user(&address, len, usockaddr, usockaddr_len);
1714
1715 out_put:
1716 fput_light(sock->file, fput_needed);
1717 out:
1718 return err;
1719 }
1720
1721 /*
1722 * Get the remote address ('name') of a socket object. Move the obtained
1723 * name to user space.
1724 */
1725
1726 SYSCALL_DEFINE3(getpeername, int, fd, struct sockaddr __user *, usockaddr,
1727 int __user *, usockaddr_len)
1728 {
1729 struct socket *sock;
1730 struct sockaddr_storage address;
1731 int len, err, fput_needed;
1732
1733 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1734 if (sock != NULL) {
1735 err = security_socket_getpeername(sock);
1736 if (err) {
1737 fput_light(sock->file, fput_needed);
1738 return err;
1739 }
1740
1741 err =
1742 sock->ops->getname(sock, (struct sockaddr *)&address, &len,
1743 1);
1744 if (!err)
1745 err = move_addr_to_user(&address, len, usockaddr,
1746 usockaddr_len);
1747 fput_light(sock->file, fput_needed);
1748 }
1749 return err;
1750 }
1751
1752 /*
1753 * Send a datagram to a given address. We move the address into kernel
1754 * space and check the user space data area is readable before invoking
1755 * the protocol.
1756 */
1757
1758 SYSCALL_DEFINE6(sendto, int, fd, void __user *, buff, size_t, len,
1759 unsigned int, flags, struct sockaddr __user *, addr,
1760 int, addr_len)
1761 {
1762 struct socket *sock;
1763 struct sockaddr_storage address;
1764 int err;
1765 struct msghdr msg;
1766 struct iovec iov;
1767 int fput_needed;
1768
1769 if (len > INT_MAX)
1770 len = INT_MAX;
1771 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1772 if (!sock)
1773 goto out;
1774
1775 iov.iov_base = buff;
1776 iov.iov_len = len;
1777 msg.msg_name = NULL;
1778 msg.msg_iov = &iov;
1779 msg.msg_iovlen = 1;
1780 msg.msg_control = NULL;
1781 msg.msg_controllen = 0;
1782 msg.msg_namelen = 0;
1783 if (addr) {
1784 err = move_addr_to_kernel(addr, addr_len, &address);
1785 if (err < 0)
1786 goto out_put;
1787 msg.msg_name = (struct sockaddr *)&address;
1788 msg.msg_namelen = addr_len;
1789 }
1790 if (sock->file->f_flags & O_NONBLOCK)
1791 flags |= MSG_DONTWAIT;
1792 msg.msg_flags = flags;
1793 err = sock_sendmsg(sock, &msg, len);
1794
1795 out_put:
1796 fput_light(sock->file, fput_needed);
1797 out:
1798 return err;
1799 }
1800
1801 /*
1802 * Send a datagram down a socket.
1803 */
1804
1805 SYSCALL_DEFINE4(send, int, fd, void __user *, buff, size_t, len,
1806 unsigned int, flags)
1807 {
1808 return sys_sendto(fd, buff, len, flags, NULL, 0);
1809 }
1810
1811 /*
1812 * Receive a frame from the socket and optionally record the address of the
1813 * sender. We verify the buffers are writable and if needed move the
1814 * sender address from kernel to user space.
1815 */
1816
1817 SYSCALL_DEFINE6(recvfrom, int, fd, void __user *, ubuf, size_t, size,
1818 unsigned int, flags, struct sockaddr __user *, addr,
1819 int __user *, addr_len)
1820 {
1821 struct socket *sock;
1822 struct iovec iov;
1823 struct msghdr msg;
1824 struct sockaddr_storage address;
1825 int err, err2;
1826 int fput_needed;
1827
1828 if (size > INT_MAX)
1829 size = INT_MAX;
1830 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1831 if (!sock)
1832 goto out;
1833
1834 msg.msg_control = NULL;
1835 msg.msg_controllen = 0;
1836 msg.msg_iovlen = 1;
1837 msg.msg_iov = &iov;
1838 iov.iov_len = size;
1839 iov.iov_base = ubuf;
1840 msg.msg_name = (struct sockaddr *)&address;
1841 msg.msg_namelen = sizeof(address);
1842 if (sock->file->f_flags & O_NONBLOCK)
1843 flags |= MSG_DONTWAIT;
1844 err = sock_recvmsg(sock, &msg, size, flags);
1845
1846 if (err >= 0 && addr != NULL) {
1847 err2 = move_addr_to_user(&address,
1848 msg.msg_namelen, addr, addr_len);
1849 if (err2 < 0)
1850 err = err2;
1851 }
1852
1853 fput_light(sock->file, fput_needed);
1854 out:
1855 return err;
1856 }
1857
1858 /*
1859 * Receive a datagram from a socket.
1860 */
1861
1862 asmlinkage long sys_recv(int fd, void __user *ubuf, size_t size,
1863 unsigned int flags)
1864 {
1865 return sys_recvfrom(fd, ubuf, size, flags, NULL, NULL);
1866 }
1867
1868 /*
1869 * Set a socket option. Because we don't know the option lengths we have
1870 * to pass the user mode parameter for the protocols to sort out.
1871 */
1872
1873 SYSCALL_DEFINE5(setsockopt, int, fd, int, level, int, optname,
1874 char __user *, optval, int, optlen)
1875 {
1876 int err, fput_needed;
1877 struct socket *sock;
1878
1879 if (optlen < 0)
1880 return -EINVAL;
1881
1882 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1883 if (sock != NULL) {
1884 err = security_socket_setsockopt(sock, level, optname);
1885 if (err)
1886 goto out_put;
1887
1888 if (level == SOL_SOCKET)
1889 err =
1890 sock_setsockopt(sock, level, optname, optval,
1891 optlen);
1892 else
1893 err =
1894 sock->ops->setsockopt(sock, level, optname, optval,
1895 optlen);
1896 out_put:
1897 fput_light(sock->file, fput_needed);
1898 }
1899 return err;
1900 }
1901
1902 /*
1903 * Get a socket option. Because we don't know the option lengths we have
1904 * to pass a user mode parameter for the protocols to sort out.
1905 */
1906
1907 SYSCALL_DEFINE5(getsockopt, int, fd, int, level, int, optname,
1908 char __user *, optval, int __user *, optlen)
1909 {
1910 int err, fput_needed;
1911 struct socket *sock;
1912
1913 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1914 if (sock != NULL) {
1915 err = security_socket_getsockopt(sock, level, optname);
1916 if (err)
1917 goto out_put;
1918
1919 if (level == SOL_SOCKET)
1920 err =
1921 sock_getsockopt(sock, level, optname, optval,
1922 optlen);
1923 else
1924 err =
1925 sock->ops->getsockopt(sock, level, optname, optval,
1926 optlen);
1927 out_put:
1928 fput_light(sock->file, fput_needed);
1929 }
1930 return err;
1931 }
1932
1933 /*
1934 * Shutdown a socket.
1935 */
1936
1937 SYSCALL_DEFINE2(shutdown, int, fd, int, how)
1938 {
1939 int err, fput_needed;
1940 struct socket *sock;
1941
1942 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1943 if (sock != NULL) {
1944 err = security_socket_shutdown(sock, how);
1945 if (!err)
1946 err = sock->ops->shutdown(sock, how);
1947 fput_light(sock->file, fput_needed);
1948 }
1949 return err;
1950 }
1951
1952 /* A couple of helpful macros for getting the address of the 32/64 bit
1953 * fields which are the same type (int / unsigned) on our platforms.
1954 */
1955 #define COMPAT_MSG(msg, member) ((MSG_CMSG_COMPAT & flags) ? &msg##_compat->member : &msg->member)
1956 #define COMPAT_NAMELEN(msg) COMPAT_MSG(msg, msg_namelen)
1957 #define COMPAT_FLAGS(msg) COMPAT_MSG(msg, msg_flags)
1958
1959 struct used_address {
1960 struct sockaddr_storage name;
1961 unsigned int name_len;
1962 };
1963
1964 static int ___sys_sendmsg(struct socket *sock, struct msghdr __user *msg,
1965 struct msghdr *msg_sys, unsigned int flags,
1966 struct used_address *used_address)
1967 {
1968 struct compat_msghdr __user *msg_compat =
1969 (struct compat_msghdr __user *)msg;
1970 struct sockaddr_storage address;
1971 struct iovec iovstack[UIO_FASTIOV], *iov = iovstack;
1972 unsigned char ctl[sizeof(struct cmsghdr) + 20]
1973 __attribute__ ((aligned(sizeof(__kernel_size_t))));
1974 /* 20 is size of ipv6_pktinfo */
1975 unsigned char *ctl_buf = ctl;
1976 int err, ctl_len, total_len;
1977
1978 err = -EFAULT;
1979 if (MSG_CMSG_COMPAT & flags) {
1980 if (get_compat_msghdr(msg_sys, msg_compat))
1981 return -EFAULT;
1982 } else if (copy_from_user(msg_sys, msg, sizeof(struct msghdr)))
1983 return -EFAULT;
1984
1985 if (msg_sys->msg_iovlen > UIO_FASTIOV) {
1986 err = -EMSGSIZE;
1987 if (msg_sys->msg_iovlen > UIO_MAXIOV)
1988 goto out;
1989 err = -ENOMEM;
1990 iov = kmalloc(msg_sys->msg_iovlen * sizeof(struct iovec),
1991 GFP_KERNEL);
1992 if (!iov)
1993 goto out;
1994 }
1995
1996 /* This will also move the address data into kernel space */
1997 if (MSG_CMSG_COMPAT & flags) {
1998 err = verify_compat_iovec(msg_sys, iov, &address, VERIFY_READ);
1999 } else
2000 err = verify_iovec(msg_sys, iov, &address, VERIFY_READ);
2001 if (err < 0)
2002 goto out_freeiov;
2003 total_len = err;
2004
2005 err = -ENOBUFS;
2006
2007 if (msg_sys->msg_controllen > INT_MAX)
2008 goto out_freeiov;
2009 ctl_len = msg_sys->msg_controllen;
2010 if ((MSG_CMSG_COMPAT & flags) && ctl_len) {
2011 err =
2012 cmsghdr_from_user_compat_to_kern(msg_sys, sock->sk, ctl,
2013 sizeof(ctl));
2014 if (err)
2015 goto out_freeiov;
2016 ctl_buf = msg_sys->msg_control;
2017 ctl_len = msg_sys->msg_controllen;
2018 } else if (ctl_len) {
2019 if (ctl_len > sizeof(ctl)) {
2020 ctl_buf = sock_kmalloc(sock->sk, ctl_len, GFP_KERNEL);
2021 if (ctl_buf == NULL)
2022 goto out_freeiov;
2023 }
2024 err = -EFAULT;
2025 /*
2026 * Careful! Before this, msg_sys->msg_control contains a user pointer.
2027 * Afterwards, it will be a kernel pointer. Thus the compiler-assisted
2028 * checking falls down on this.
2029 */
2030 if (copy_from_user(ctl_buf,
2031 (void __user __force *)msg_sys->msg_control,
2032 ctl_len))
2033 goto out_freectl;
2034 msg_sys->msg_control = ctl_buf;
2035 }
2036 msg_sys->msg_flags = flags;
2037
2038 if (sock->file->f_flags & O_NONBLOCK)
2039 msg_sys->msg_flags |= MSG_DONTWAIT;
2040 /*
2041 * If this is sendmmsg() and current destination address is same as
2042 * previously succeeded address, omit asking LSM's decision.
2043 * used_address->name_len is initialized to UINT_MAX so that the first
2044 * destination address never matches.
2045 */
2046 if (used_address && msg_sys->msg_name &&
2047 used_address->name_len == msg_sys->msg_namelen &&
2048 !memcmp(&used_address->name, msg_sys->msg_name,
2049 used_address->name_len)) {
2050 err = sock_sendmsg_nosec(sock, msg_sys, total_len);
2051 goto out_freectl;
2052 }
2053 err = sock_sendmsg(sock, msg_sys, total_len);
2054 /*
2055 * If this is sendmmsg() and sending to current destination address was
2056 * successful, remember it.
2057 */
2058 if (used_address && err >= 0) {
2059 used_address->name_len = msg_sys->msg_namelen;
2060 if (msg_sys->msg_name)
2061 memcpy(&used_address->name, msg_sys->msg_name,
2062 used_address->name_len);
2063 }
2064
2065 out_freectl:
2066 if (ctl_buf != ctl)
2067 sock_kfree_s(sock->sk, ctl_buf, ctl_len);
2068 out_freeiov:
2069 if (iov != iovstack)
2070 kfree(iov);
2071 out:
2072 return err;
2073 }
2074
2075 /*
2076 * BSD sendmsg interface
2077 */
2078
2079 long __sys_sendmsg(int fd, struct msghdr __user *msg, unsigned flags)
2080 {
2081 int fput_needed, err;
2082 struct msghdr msg_sys;
2083 struct socket *sock;
2084
2085 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2086 if (!sock)
2087 goto out;
2088
2089 err = ___sys_sendmsg(sock, msg, &msg_sys, flags, NULL);
2090
2091 fput_light(sock->file, fput_needed);
2092 out:
2093 return err;
2094 }
2095
2096 SYSCALL_DEFINE3(sendmsg, int, fd, struct msghdr __user *, msg, unsigned int, flags)
2097 {
2098 if (flags & MSG_CMSG_COMPAT)
2099 return -EINVAL;
2100 return __sys_sendmsg(fd, msg, flags);
2101 }
2102
2103 /*
2104 * Linux sendmmsg interface
2105 */
2106
2107 int __sys_sendmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen,
2108 unsigned int flags)
2109 {
2110 int fput_needed, err, datagrams;
2111 struct socket *sock;
2112 struct mmsghdr __user *entry;
2113 struct compat_mmsghdr __user *compat_entry;
2114 struct msghdr msg_sys;
2115 struct used_address used_address;
2116
2117 if (vlen > UIO_MAXIOV)
2118 vlen = UIO_MAXIOV;
2119
2120 datagrams = 0;
2121
2122 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2123 if (!sock)
2124 return err;
2125
2126 used_address.name_len = UINT_MAX;
2127 entry = mmsg;
2128 compat_entry = (struct compat_mmsghdr __user *)mmsg;
2129 err = 0;
2130
2131 while (datagrams < vlen) {
2132 if (MSG_CMSG_COMPAT & flags) {
2133 err = ___sys_sendmsg(sock, (struct msghdr __user *)compat_entry,
2134 &msg_sys, flags, &used_address);
2135 if (err < 0)
2136 break;
2137 err = __put_user(err, &compat_entry->msg_len);
2138 ++compat_entry;
2139 } else {
2140 err = ___sys_sendmsg(sock,
2141 (struct msghdr __user *)entry,
2142 &msg_sys, flags, &used_address);
2143 if (err < 0)
2144 break;
2145 err = put_user(err, &entry->msg_len);
2146 ++entry;
2147 }
2148
2149 if (err)
2150 break;
2151 ++datagrams;
2152 }
2153
2154 fput_light(sock->file, fput_needed);
2155
2156 /* We only return an error if no datagrams were able to be sent */
2157 if (datagrams != 0)
2158 return datagrams;
2159
2160 return err;
2161 }
2162
2163 SYSCALL_DEFINE4(sendmmsg, int, fd, struct mmsghdr __user *, mmsg,
2164 unsigned int, vlen, unsigned int, flags)
2165 {
2166 if (flags & MSG_CMSG_COMPAT)
2167 return -EINVAL;
2168 return __sys_sendmmsg(fd, mmsg, vlen, flags);
2169 }
2170
2171 static int ___sys_recvmsg(struct socket *sock, struct msghdr __user *msg,
2172 struct msghdr *msg_sys, unsigned int flags, int nosec)
2173 {
2174 struct compat_msghdr __user *msg_compat =
2175 (struct compat_msghdr __user *)msg;
2176 struct iovec iovstack[UIO_FASTIOV];
2177 struct iovec *iov = iovstack;
2178 unsigned long cmsg_ptr;
2179 int err, total_len, len;
2180
2181 /* kernel mode address */
2182 struct sockaddr_storage addr;
2183
2184 /* user mode address pointers */
2185 struct sockaddr __user *uaddr;
2186 int __user *uaddr_len;
2187
2188 if (MSG_CMSG_COMPAT & flags) {
2189 if (get_compat_msghdr(msg_sys, msg_compat))
2190 return -EFAULT;
2191 } else if (copy_from_user(msg_sys, msg, sizeof(struct msghdr)))
2192 return -EFAULT;
2193
2194 if (msg_sys->msg_iovlen > UIO_FASTIOV) {
2195 err = -EMSGSIZE;
2196 if (msg_sys->msg_iovlen > UIO_MAXIOV)
2197 goto out;
2198 err = -ENOMEM;
2199 iov = kmalloc(msg_sys->msg_iovlen * sizeof(struct iovec),
2200 GFP_KERNEL);
2201 if (!iov)
2202 goto out;
2203 }
2204
2205 /*
2206 * Save the user-mode address (verify_iovec will change the
2207 * kernel msghdr to use the kernel address space)
2208 */
2209
2210 uaddr = (__force void __user *)msg_sys->msg_name;
2211 uaddr_len = COMPAT_NAMELEN(msg);
2212 if (MSG_CMSG_COMPAT & flags) {
2213 err = verify_compat_iovec(msg_sys, iov, &addr, VERIFY_WRITE);
2214 } else
2215 err = verify_iovec(msg_sys, iov, &addr, VERIFY_WRITE);
2216 if (err < 0)
2217 goto out_freeiov;
2218 total_len = err;
2219
2220 cmsg_ptr = (unsigned long)msg_sys->msg_control;
2221 msg_sys->msg_flags = flags & (MSG_CMSG_CLOEXEC|MSG_CMSG_COMPAT);
2222
2223 if (sock->file->f_flags & O_NONBLOCK)
2224 flags |= MSG_DONTWAIT;
2225 err = (nosec ? sock_recvmsg_nosec : sock_recvmsg)(sock, msg_sys,
2226 total_len, flags);
2227 if (err < 0)
2228 goto out_freeiov;
2229 len = err;
2230
2231 if (uaddr != NULL) {
2232 err = move_addr_to_user(&addr,
2233 msg_sys->msg_namelen, uaddr,
2234 uaddr_len);
2235 if (err < 0)
2236 goto out_freeiov;
2237 }
2238 err = __put_user((msg_sys->msg_flags & ~MSG_CMSG_COMPAT),
2239 COMPAT_FLAGS(msg));
2240 if (err)
2241 goto out_freeiov;
2242 if (MSG_CMSG_COMPAT & flags)
2243 err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2244 &msg_compat->msg_controllen);
2245 else
2246 err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2247 &msg->msg_controllen);
2248 if (err)
2249 goto out_freeiov;
2250 err = len;
2251
2252 out_freeiov:
2253 if (iov != iovstack)
2254 kfree(iov);
2255 out:
2256 return err;
2257 }
2258
2259 /*
2260 * BSD recvmsg interface
2261 */
2262
2263 long __sys_recvmsg(int fd, struct msghdr __user *msg, unsigned flags)
2264 {
2265 int fput_needed, err;
2266 struct msghdr msg_sys;
2267 struct socket *sock;
2268
2269 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2270 if (!sock)
2271 goto out;
2272
2273 err = ___sys_recvmsg(sock, msg, &msg_sys, flags, 0);
2274
2275 fput_light(sock->file, fput_needed);
2276 out:
2277 return err;
2278 }
2279
2280 SYSCALL_DEFINE3(recvmsg, int, fd, struct msghdr __user *, msg,
2281 unsigned int, flags)
2282 {
2283 if (flags & MSG_CMSG_COMPAT)
2284 return -EINVAL;
2285 return __sys_recvmsg(fd, msg, flags);
2286 }
2287
2288 /*
2289 * Linux recvmmsg interface
2290 */
2291
2292 int __sys_recvmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen,
2293 unsigned int flags, struct timespec *timeout)
2294 {
2295 int fput_needed, err, datagrams;
2296 struct socket *sock;
2297 struct mmsghdr __user *entry;
2298 struct compat_mmsghdr __user *compat_entry;
2299 struct msghdr msg_sys;
2300 struct timespec end_time;
2301
2302 if (timeout &&
2303 poll_select_set_timeout(&end_time, timeout->tv_sec,
2304 timeout->tv_nsec))
2305 return -EINVAL;
2306
2307 datagrams = 0;
2308
2309 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2310 if (!sock)
2311 return err;
2312
2313 err = sock_error(sock->sk);
2314 if (err)
2315 goto out_put;
2316
2317 entry = mmsg;
2318 compat_entry = (struct compat_mmsghdr __user *)mmsg;
2319
2320 while (datagrams < vlen) {
2321 /*
2322 * No need to ask LSM for more than the first datagram.
2323 */
2324 if (MSG_CMSG_COMPAT & flags) {
2325 err = ___sys_recvmsg(sock, (struct msghdr __user *)compat_entry,
2326 &msg_sys, flags & ~MSG_WAITFORONE,
2327 datagrams);
2328 if (err < 0)
2329 break;
2330 err = __put_user(err, &compat_entry->msg_len);
2331 ++compat_entry;
2332 } else {
2333 err = ___sys_recvmsg(sock,
2334 (struct msghdr __user *)entry,
2335 &msg_sys, flags & ~MSG_WAITFORONE,
2336 datagrams);
2337 if (err < 0)
2338 break;
2339 err = put_user(err, &entry->msg_len);
2340 ++entry;
2341 }
2342
2343 if (err)
2344 break;
2345 ++datagrams;
2346
2347 /* MSG_WAITFORONE turns on MSG_DONTWAIT after one packet */
2348 if (flags & MSG_WAITFORONE)
2349 flags |= MSG_DONTWAIT;
2350
2351 if (timeout) {
2352 ktime_get_ts(timeout);
2353 *timeout = timespec_sub(end_time, *timeout);
2354 if (timeout->tv_sec < 0) {
2355 timeout->tv_sec = timeout->tv_nsec = 0;
2356 break;
2357 }
2358
2359 /* Timeout, return less than vlen datagrams */
2360 if (timeout->tv_nsec == 0 && timeout->tv_sec == 0)
2361 break;
2362 }
2363
2364 /* Out of band data, return right away */
2365 if (msg_sys.msg_flags & MSG_OOB)
2366 break;
2367 }
2368
2369 out_put:
2370 fput_light(sock->file, fput_needed);
2371
2372 if (err == 0)
2373 return datagrams;
2374
2375 if (datagrams != 0) {
2376 /*
2377 * We may return less entries than requested (vlen) if the
2378 * sock is non block and there aren't enough datagrams...
2379 */
2380 if (err != -EAGAIN) {
2381 /*
2382 * ... or if recvmsg returns an error after we
2383 * received some datagrams, where we record the
2384 * error to return on the next call or if the
2385 * app asks about it using getsockopt(SO_ERROR).
2386 */
2387 sock->sk->sk_err = -err;
2388 }
2389
2390 return datagrams;
2391 }
2392
2393 return err;
2394 }
2395
2396 SYSCALL_DEFINE5(recvmmsg, int, fd, struct mmsghdr __user *, mmsg,
2397 unsigned int, vlen, unsigned int, flags,
2398 struct timespec __user *, timeout)
2399 {
2400 int datagrams;
2401 struct timespec timeout_sys;
2402
2403 if (flags & MSG_CMSG_COMPAT)
2404 return -EINVAL;
2405
2406 if (!timeout)
2407 return __sys_recvmmsg(fd, mmsg, vlen, flags, NULL);
2408
2409 if (copy_from_user(&timeout_sys, timeout, sizeof(timeout_sys)))
2410 return -EFAULT;
2411
2412 datagrams = __sys_recvmmsg(fd, mmsg, vlen, flags, &timeout_sys);
2413
2414 if (datagrams > 0 &&
2415 copy_to_user(timeout, &timeout_sys, sizeof(timeout_sys)))
2416 datagrams = -EFAULT;
2417
2418 return datagrams;
2419 }
2420
2421 #ifdef __ARCH_WANT_SYS_SOCKETCALL
2422 /* Argument list sizes for sys_socketcall */
2423 #define AL(x) ((x) * sizeof(unsigned long))
2424 static const unsigned char nargs[21] = {
2425 AL(0), AL(3), AL(3), AL(3), AL(2), AL(3),
2426 AL(3), AL(3), AL(4), AL(4), AL(4), AL(6),
2427 AL(6), AL(2), AL(5), AL(5), AL(3), AL(3),
2428 AL(4), AL(5), AL(4)
2429 };
2430
2431 #undef AL
2432
2433 /*
2434 * System call vectors.
2435 *
2436 * Argument checking cleaned up. Saved 20% in size.
2437 * This function doesn't need to set the kernel lock because
2438 * it is set by the callees.
2439 */
2440
2441 SYSCALL_DEFINE2(socketcall, int, call, unsigned long __user *, args)
2442 {
2443 unsigned long a[AUDITSC_ARGS];
2444 unsigned long a0, a1;
2445 int err;
2446 unsigned int len;
2447
2448 if (call < 1 || call > SYS_SENDMMSG)
2449 return -EINVAL;
2450
2451 len = nargs[call];
2452 if (len > sizeof(a))
2453 return -EINVAL;
2454
2455 /* copy_from_user should be SMP safe. */
2456 if (copy_from_user(a, args, len))
2457 return -EFAULT;
2458
2459 err = audit_socketcall(nargs[call] / sizeof(unsigned long), a);
2460 if (err)
2461 return err;
2462
2463 a0 = a[0];
2464 a1 = a[1];
2465
2466 switch (call) {
2467 case SYS_SOCKET:
2468 err = sys_socket(a0, a1, a[2]);
2469 break;
2470 case SYS_BIND:
2471 err = sys_bind(a0, (struct sockaddr __user *)a1, a[2]);
2472 break;
2473 case SYS_CONNECT:
2474 err = sys_connect(a0, (struct sockaddr __user *)a1, a[2]);
2475 break;
2476 case SYS_LISTEN:
2477 err = sys_listen(a0, a1);
2478 break;
2479 case SYS_ACCEPT:
2480 err = sys_accept4(a0, (struct sockaddr __user *)a1,
2481 (int __user *)a[2], 0);
2482 break;
2483 case SYS_GETSOCKNAME:
2484 err =
2485 sys_getsockname(a0, (struct sockaddr __user *)a1,
2486 (int __user *)a[2]);
2487 break;
2488 case SYS_GETPEERNAME:
2489 err =
2490 sys_getpeername(a0, (struct sockaddr __user *)a1,
2491 (int __user *)a[2]);
2492 break;
2493 case SYS_SOCKETPAIR:
2494 err = sys_socketpair(a0, a1, a[2], (int __user *)a[3]);
2495 break;
2496 case SYS_SEND:
2497 err = sys_send(a0, (void __user *)a1, a[2], a[3]);
2498 break;
2499 case SYS_SENDTO:
2500 err = sys_sendto(a0, (void __user *)a1, a[2], a[3],
2501 (struct sockaddr __user *)a[4], a[5]);
2502 break;
2503 case SYS_RECV:
2504 err = sys_recv(a0, (void __user *)a1, a[2], a[3]);
2505 break;
2506 case SYS_RECVFROM:
2507 err = sys_recvfrom(a0, (void __user *)a1, a[2], a[3],
2508 (struct sockaddr __user *)a[4],
2509 (int __user *)a[5]);
2510 break;
2511 case SYS_SHUTDOWN:
2512 err = sys_shutdown(a0, a1);
2513 break;
2514 case SYS_SETSOCKOPT:
2515 err = sys_setsockopt(a0, a1, a[2], (char __user *)a[3], a[4]);
2516 break;
2517 case SYS_GETSOCKOPT:
2518 err =
2519 sys_getsockopt(a0, a1, a[2], (char __user *)a[3],
2520 (int __user *)a[4]);
2521 break;
2522 case SYS_SENDMSG:
2523 err = sys_sendmsg(a0, (struct msghdr __user *)a1, a[2]);
2524 break;
2525 case SYS_SENDMMSG:
2526 err = sys_sendmmsg(a0, (struct mmsghdr __user *)a1, a[2], a[3]);
2527 break;
2528 case SYS_RECVMSG:
2529 err = sys_recvmsg(a0, (struct msghdr __user *)a1, a[2]);
2530 break;
2531 case SYS_RECVMMSG:
2532 err = sys_recvmmsg(a0, (struct mmsghdr __user *)a1, a[2], a[3],
2533 (struct timespec __user *)a[4]);
2534 break;
2535 case SYS_ACCEPT4:
2536 err = sys_accept4(a0, (struct sockaddr __user *)a1,
2537 (int __user *)a[2], a[3]);
2538 break;
2539 default:
2540 err = -EINVAL;
2541 break;
2542 }
2543 return err;
2544 }
2545
2546 #endif /* __ARCH_WANT_SYS_SOCKETCALL */
2547
2548 /**
2549 * sock_register - add a socket protocol handler
2550 * @ops: description of protocol
2551 *
2552 * This function is called by a protocol handler that wants to
2553 * advertise its address family, and have it linked into the
2554 * socket interface. The value ops->family coresponds to the
2555 * socket system call protocol family.
2556 */
2557 int sock_register(const struct net_proto_family *ops)
2558 {
2559 int err;
2560
2561 if (ops->family >= NPROTO) {
2562 printk(KERN_CRIT "protocol %d >= NPROTO(%d)\n", ops->family,
2563 NPROTO);
2564 return -ENOBUFS;
2565 }
2566
2567 spin_lock(&net_family_lock);
2568 if (rcu_dereference_protected(net_families[ops->family],
2569 lockdep_is_held(&net_family_lock)))
2570 err = -EEXIST;
2571 else {
2572 rcu_assign_pointer(net_families[ops->family], ops);
2573 err = 0;
2574 }
2575 spin_unlock(&net_family_lock);
2576
2577 printk(KERN_INFO "NET: Registered protocol family %d\n", ops->family);
2578 return err;
2579 }
2580 EXPORT_SYMBOL(sock_register);
2581
2582 /**
2583 * sock_unregister - remove a protocol handler
2584 * @family: protocol family to remove
2585 *
2586 * This function is called by a protocol handler that wants to
2587 * remove its address family, and have it unlinked from the
2588 * new socket creation.
2589 *
2590 * If protocol handler is a module, then it can use module reference
2591 * counts to protect against new references. If protocol handler is not
2592 * a module then it needs to provide its own protection in
2593 * the ops->create routine.
2594 */
2595 void sock_unregister(int family)
2596 {
2597 BUG_ON(family < 0 || family >= NPROTO);
2598
2599 spin_lock(&net_family_lock);
2600 RCU_INIT_POINTER(net_families[family], NULL);
2601 spin_unlock(&net_family_lock);
2602
2603 synchronize_rcu();
2604
2605 printk(KERN_INFO "NET: Unregistered protocol family %d\n", family);
2606 }
2607 EXPORT_SYMBOL(sock_unregister);
2608
2609 static int __init sock_init(void)
2610 {
2611 int err;
2612 /*
2613 * Initialize the network sysctl infrastructure.
2614 */
2615 err = net_sysctl_init();
2616 if (err)
2617 goto out;
2618
2619 /*
2620 * Initialize skbuff SLAB cache
2621 */
2622 skb_init();
2623
2624 /*
2625 * Initialize the protocols module.
2626 */
2627
2628 init_inodecache();
2629
2630 err = register_filesystem(&sock_fs_type);
2631 if (err)
2632 goto out_fs;
2633 sock_mnt = kern_mount(&sock_fs_type);
2634 if (IS_ERR(sock_mnt)) {
2635 err = PTR_ERR(sock_mnt);
2636 goto out_mount;
2637 }
2638
2639 /* The real protocol initialization is performed in later initcalls.
2640 */
2641
2642 #ifdef CONFIG_NETFILTER
2643 err = netfilter_init();
2644 if (err)
2645 goto out;
2646 #endif
2647
2648 #ifdef CONFIG_NETWORK_PHY_TIMESTAMPING
2649 skb_timestamping_init();
2650 #endif
2651
2652 out:
2653 return err;
2654
2655 out_mount:
2656 unregister_filesystem(&sock_fs_type);
2657 out_fs:
2658 goto out;
2659 }
2660
2661 core_initcall(sock_init); /* early initcall */
2662
2663 #ifdef CONFIG_PROC_FS
2664 void socket_seq_show(struct seq_file *seq)
2665 {
2666 int cpu;
2667 int counter = 0;
2668
2669 for_each_possible_cpu(cpu)
2670 counter += per_cpu(sockets_in_use, cpu);
2671
2672 /* It can be negative, by the way. 8) */
2673 if (counter < 0)
2674 counter = 0;
2675
2676 seq_printf(seq, "sockets: used %d\n", counter);
2677 }
2678 #endif /* CONFIG_PROC_FS */
2679
2680 #ifdef CONFIG_COMPAT
2681 static int do_siocgstamp(struct net *net, struct socket *sock,
2682 unsigned int cmd, void __user *up)
2683 {
2684 mm_segment_t old_fs = get_fs();
2685 struct timeval ktv;
2686 int err;
2687
2688 set_fs(KERNEL_DS);
2689 err = sock_do_ioctl(net, sock, cmd, (unsigned long)&ktv);
2690 set_fs(old_fs);
2691 if (!err)
2692 err = compat_put_timeval(&ktv, up);
2693
2694 return err;
2695 }
2696
2697 static int do_siocgstampns(struct net *net, struct socket *sock,
2698 unsigned int cmd, void __user *up)
2699 {
2700 mm_segment_t old_fs = get_fs();
2701 struct timespec kts;
2702 int err;
2703
2704 set_fs(KERNEL_DS);
2705 err = sock_do_ioctl(net, sock, cmd, (unsigned long)&kts);
2706 set_fs(old_fs);
2707 if (!err)
2708 err = compat_put_timespec(&kts, up);
2709
2710 return err;
2711 }
2712
2713 static int dev_ifname32(struct net *net, struct compat_ifreq __user *uifr32)
2714 {
2715 struct ifreq __user *uifr;
2716 int err;
2717
2718 uifr = compat_alloc_user_space(sizeof(struct ifreq));
2719 if (copy_in_user(uifr, uifr32, sizeof(struct compat_ifreq)))
2720 return -EFAULT;
2721
2722 err = dev_ioctl(net, SIOCGIFNAME, uifr);
2723 if (err)
2724 return err;
2725
2726 if (copy_in_user(uifr32, uifr, sizeof(struct compat_ifreq)))
2727 return -EFAULT;
2728
2729 return 0;
2730 }
2731
2732 static int dev_ifconf(struct net *net, struct compat_ifconf __user *uifc32)
2733 {
2734 struct compat_ifconf ifc32;
2735 struct ifconf ifc;
2736 struct ifconf __user *uifc;
2737 struct compat_ifreq __user *ifr32;
2738 struct ifreq __user *ifr;
2739 unsigned int i, j;
2740 int err;
2741
2742 if (copy_from_user(&ifc32, uifc32, sizeof(struct compat_ifconf)))
2743 return -EFAULT;
2744
2745 memset(&ifc, 0, sizeof(ifc));
2746 if (ifc32.ifcbuf == 0) {
2747 ifc32.ifc_len = 0;
2748 ifc.ifc_len = 0;
2749 ifc.ifc_req = NULL;
2750 uifc = compat_alloc_user_space(sizeof(struct ifconf));
2751 } else {
2752 size_t len = ((ifc32.ifc_len / sizeof(struct compat_ifreq)) + 1) *
2753 sizeof(struct ifreq);
2754 uifc = compat_alloc_user_space(sizeof(struct ifconf) + len);
2755 ifc.ifc_len = len;
2756 ifr = ifc.ifc_req = (void __user *)(uifc + 1);
2757 ifr32 = compat_ptr(ifc32.ifcbuf);
2758 for (i = 0; i < ifc32.ifc_len; i += sizeof(struct compat_ifreq)) {
2759 if (copy_in_user(ifr, ifr32, sizeof(struct compat_ifreq)))
2760 return -EFAULT;
2761 ifr++;
2762 ifr32++;
2763 }
2764 }
2765 if (copy_to_user(uifc, &ifc, sizeof(struct ifconf)))
2766 return -EFAULT;
2767
2768 err = dev_ioctl(net, SIOCGIFCONF, uifc);
2769 if (err)
2770 return err;
2771
2772 if (copy_from_user(&ifc, uifc, sizeof(struct ifconf)))
2773 return -EFAULT;
2774
2775 ifr = ifc.ifc_req;
2776 ifr32 = compat_ptr(ifc32.ifcbuf);
2777 for (i = 0, j = 0;
2778 i + sizeof(struct compat_ifreq) <= ifc32.ifc_len && j < ifc.ifc_len;
2779 i += sizeof(struct compat_ifreq), j += sizeof(struct ifreq)) {
2780 if (copy_in_user(ifr32, ifr, sizeof(struct compat_ifreq)))
2781 return -EFAULT;
2782 ifr32++;
2783 ifr++;
2784 }
2785
2786 if (ifc32.ifcbuf == 0) {
2787 /* Translate from 64-bit structure multiple to
2788 * a 32-bit one.
2789 */
2790 i = ifc.ifc_len;
2791 i = ((i / sizeof(struct ifreq)) * sizeof(struct compat_ifreq));
2792 ifc32.ifc_len = i;
2793 } else {
2794 ifc32.ifc_len = i;
2795 }
2796 if (copy_to_user(uifc32, &ifc32, sizeof(struct compat_ifconf)))
2797 return -EFAULT;
2798
2799 return 0;
2800 }
2801
2802 static int ethtool_ioctl(struct net *net, struct compat_ifreq __user *ifr32)
2803 {
2804 struct compat_ethtool_rxnfc __user *compat_rxnfc;
2805 bool convert_in = false, convert_out = false;
2806 size_t buf_size = ALIGN(sizeof(struct ifreq), 8);
2807 struct ethtool_rxnfc __user *rxnfc;
2808 struct ifreq __user *ifr;
2809 u32 rule_cnt = 0, actual_rule_cnt;
2810 u32 ethcmd;
2811 u32 data;
2812 int ret;
2813
2814 if (get_user(data, &ifr32->ifr_ifru.ifru_data))
2815 return -EFAULT;
2816
2817 compat_rxnfc = compat_ptr(data);
2818
2819 if (get_user(ethcmd, &compat_rxnfc->cmd))
2820 return -EFAULT;
2821
2822 /* Most ethtool structures are defined without padding.
2823 * Unfortunately struct ethtool_rxnfc is an exception.
2824 */
2825 switch (ethcmd) {
2826 default:
2827 break;
2828 case ETHTOOL_GRXCLSRLALL:
2829 /* Buffer size is variable */
2830 if (get_user(rule_cnt, &compat_rxnfc->rule_cnt))
2831 return -EFAULT;
2832 if (rule_cnt > KMALLOC_MAX_SIZE / sizeof(u32))
2833 return -ENOMEM;
2834 buf_size += rule_cnt * sizeof(u32);
2835 /* fall through */
2836 case ETHTOOL_GRXRINGS:
2837 case ETHTOOL_GRXCLSRLCNT:
2838 case ETHTOOL_GRXCLSRULE:
2839 case ETHTOOL_SRXCLSRLINS:
2840 convert_out = true;
2841 /* fall through */
2842 case ETHTOOL_SRXCLSRLDEL:
2843 buf_size += sizeof(struct ethtool_rxnfc);
2844 convert_in = true;
2845 break;
2846 }
2847
2848 ifr = compat_alloc_user_space(buf_size);
2849 rxnfc = (void __user *)ifr + ALIGN(sizeof(struct ifreq), 8);
2850
2851 if (copy_in_user(&ifr->ifr_name, &ifr32->ifr_name, IFNAMSIZ))
2852 return -EFAULT;
2853
2854 if (put_user(convert_in ? rxnfc : compat_ptr(data),
2855 &ifr->ifr_ifru.ifru_data))
2856 return -EFAULT;
2857
2858 if (convert_in) {
2859 /* We expect there to be holes between fs.m_ext and
2860 * fs.ring_cookie and at the end of fs, but nowhere else.
2861 */
2862 BUILD_BUG_ON(offsetof(struct compat_ethtool_rxnfc, fs.m_ext) +
2863 sizeof(compat_rxnfc->fs.m_ext) !=
2864 offsetof(struct ethtool_rxnfc, fs.m_ext) +
2865 sizeof(rxnfc->fs.m_ext));
2866 BUILD_BUG_ON(
2867 offsetof(struct compat_ethtool_rxnfc, fs.location) -
2868 offsetof(struct compat_ethtool_rxnfc, fs.ring_cookie) !=
2869 offsetof(struct ethtool_rxnfc, fs.location) -
2870 offsetof(struct ethtool_rxnfc, fs.ring_cookie));
2871
2872 if (copy_in_user(rxnfc, compat_rxnfc,
2873 (void __user *)(&rxnfc->fs.m_ext + 1) -
2874 (void __user *)rxnfc) ||
2875 copy_in_user(&rxnfc->fs.ring_cookie,
2876 &compat_rxnfc->fs.ring_cookie,
2877 (void __user *)(&rxnfc->fs.location + 1) -
2878 (void __user *)&rxnfc->fs.ring_cookie) ||
2879 copy_in_user(&rxnfc->rule_cnt, &compat_rxnfc->rule_cnt,
2880 sizeof(rxnfc->rule_cnt)))
2881 return -EFAULT;
2882 }
2883
2884 ret = dev_ioctl(net, SIOCETHTOOL, ifr);
2885 if (ret)
2886 return ret;
2887
2888 if (convert_out) {
2889 if (copy_in_user(compat_rxnfc, rxnfc,
2890 (const void __user *)(&rxnfc->fs.m_ext + 1) -
2891 (const void __user *)rxnfc) ||
2892 copy_in_user(&compat_rxnfc->fs.ring_cookie,
2893 &rxnfc->fs.ring_cookie,
2894 (const void __user *)(&rxnfc->fs.location + 1) -
2895 (const void __user *)&rxnfc->fs.ring_cookie) ||
2896 copy_in_user(&compat_rxnfc->rule_cnt, &rxnfc->rule_cnt,
2897 sizeof(rxnfc->rule_cnt)))
2898 return -EFAULT;
2899
2900 if (ethcmd == ETHTOOL_GRXCLSRLALL) {
2901 /* As an optimisation, we only copy the actual
2902 * number of rules that the underlying
2903 * function returned. Since Mallory might
2904 * change the rule count in user memory, we
2905 * check that it is less than the rule count
2906 * originally given (as the user buffer size),
2907 * which has been range-checked.
2908 */
2909 if (get_user(actual_rule_cnt, &rxnfc->rule_cnt))
2910 return -EFAULT;
2911 if (actual_rule_cnt < rule_cnt)
2912 rule_cnt = actual_rule_cnt;
2913 if (copy_in_user(&compat_rxnfc->rule_locs[0],
2914 &rxnfc->rule_locs[0],
2915 rule_cnt * sizeof(u32)))
2916 return -EFAULT;
2917 }
2918 }
2919
2920 return 0;
2921 }
2922
2923 static int compat_siocwandev(struct net *net, struct compat_ifreq __user *uifr32)
2924 {
2925 void __user *uptr;
2926 compat_uptr_t uptr32;
2927 struct ifreq __user *uifr;
2928
2929 uifr = compat_alloc_user_space(sizeof(*uifr));
2930 if (copy_in_user(uifr, uifr32, sizeof(struct compat_ifreq)))
2931 return -EFAULT;
2932
2933 if (get_user(uptr32, &uifr32->ifr_settings.ifs_ifsu))
2934 return -EFAULT;
2935
2936 uptr = compat_ptr(uptr32);
2937
2938 if (put_user(uptr, &uifr->ifr_settings.ifs_ifsu.raw_hdlc))
2939 return -EFAULT;
2940
2941 return dev_ioctl(net, SIOCWANDEV, uifr);
2942 }
2943
2944 static int bond_ioctl(struct net *net, unsigned int cmd,
2945 struct compat_ifreq __user *ifr32)
2946 {
2947 struct ifreq kifr;
2948 struct ifreq __user *uifr;
2949 mm_segment_t old_fs;
2950 int err;
2951 u32 data;
2952 void __user *datap;
2953
2954 switch (cmd) {
2955 case SIOCBONDENSLAVE:
2956 case SIOCBONDRELEASE:
2957 case SIOCBONDSETHWADDR:
2958 case SIOCBONDCHANGEACTIVE:
2959 if (copy_from_user(&kifr, ifr32, sizeof(struct compat_ifreq)))
2960 return -EFAULT;
2961
2962 old_fs = get_fs();
2963 set_fs(KERNEL_DS);
2964 err = dev_ioctl(net, cmd,
2965 (struct ifreq __user __force *) &kifr);
2966 set_fs(old_fs);
2967
2968 return err;
2969 case SIOCBONDSLAVEINFOQUERY:
2970 case SIOCBONDINFOQUERY:
2971 uifr = compat_alloc_user_space(sizeof(*uifr));
2972 if (copy_in_user(&uifr->ifr_name, &ifr32->ifr_name, IFNAMSIZ))
2973 return -EFAULT;
2974
2975 if (get_user(data, &ifr32->ifr_ifru.ifru_data))
2976 return -EFAULT;
2977
2978 datap = compat_ptr(data);
2979 if (put_user(datap, &uifr->ifr_ifru.ifru_data))
2980 return -EFAULT;
2981
2982 return dev_ioctl(net, cmd, uifr);
2983 default:
2984 return -ENOIOCTLCMD;
2985 }
2986 }
2987
2988 static int siocdevprivate_ioctl(struct net *net, unsigned int cmd,
2989 struct compat_ifreq __user *u_ifreq32)
2990 {
2991 struct ifreq __user *u_ifreq64;
2992 char tmp_buf[IFNAMSIZ];
2993 void __user *data64;
2994 u32 data32;
2995
2996 if (copy_from_user(&tmp_buf[0], &(u_ifreq32->ifr_ifrn.ifrn_name[0]),
2997 IFNAMSIZ))
2998 return -EFAULT;
2999 if (__get_user(data32, &u_ifreq32->ifr_ifru.ifru_data))
3000 return -EFAULT;
3001 data64 = compat_ptr(data32);
3002
3003 u_ifreq64 = compat_alloc_user_space(sizeof(*u_ifreq64));
3004
3005 /* Don't check these user accesses, just let that get trapped
3006 * in the ioctl handler instead.
3007 */
3008 if (copy_to_user(&u_ifreq64->ifr_ifrn.ifrn_name[0], &tmp_buf[0],
3009 IFNAMSIZ))
3010 return -EFAULT;
3011 if (__put_user(data64, &u_ifreq64->ifr_ifru.ifru_data))
3012 return -EFAULT;
3013
3014 return dev_ioctl(net, cmd, u_ifreq64);
3015 }
3016
3017 static int dev_ifsioc(struct net *net, struct socket *sock,
3018 unsigned int cmd, struct compat_ifreq __user *uifr32)
3019 {
3020 struct ifreq __user *uifr;
3021 int err;
3022
3023 uifr = compat_alloc_user_space(sizeof(*uifr));
3024 if (copy_in_user(uifr, uifr32, sizeof(*uifr32)))
3025 return -EFAULT;
3026
3027 err = sock_do_ioctl(net, sock, cmd, (unsigned long)uifr);
3028
3029 if (!err) {
3030 switch (cmd) {
3031 case SIOCGIFFLAGS:
3032 case SIOCGIFMETRIC:
3033 case SIOCGIFMTU:
3034 case SIOCGIFMEM:
3035 case SIOCGIFHWADDR:
3036 case SIOCGIFINDEX:
3037 case SIOCGIFADDR:
3038 case SIOCGIFBRDADDR:
3039 case SIOCGIFDSTADDR:
3040 case SIOCGIFNETMASK:
3041 case SIOCGIFPFLAGS:
3042 case SIOCGIFTXQLEN:
3043 case SIOCGMIIPHY:
3044 case SIOCGMIIREG:
3045 if (copy_in_user(uifr32, uifr, sizeof(*uifr32)))
3046 err = -EFAULT;
3047 break;
3048 }
3049 }
3050 return err;
3051 }
3052
3053 static int compat_sioc_ifmap(struct net *net, unsigned int cmd,
3054 struct compat_ifreq __user *uifr32)
3055 {
3056 struct ifreq ifr;
3057 struct compat_ifmap __user *uifmap32;
3058 mm_segment_t old_fs;
3059 int err;
3060
3061 uifmap32 = &uifr32->ifr_ifru.ifru_map;
3062 err = copy_from_user(&ifr, uifr32, sizeof(ifr.ifr_name));
3063 err |= __get_user(ifr.ifr_map.mem_start, &uifmap32->mem_start);
3064 err |= __get_user(ifr.ifr_map.mem_end, &uifmap32->mem_end);
3065 err |= __get_user(ifr.ifr_map.base_addr, &uifmap32->base_addr);
3066 err |= __get_user(ifr.ifr_map.irq, &uifmap32->irq);
3067 err |= __get_user(ifr.ifr_map.dma, &uifmap32->dma);
3068 err |= __get_user(ifr.ifr_map.port, &uifmap32->port);
3069 if (err)
3070 return -EFAULT;
3071
3072 old_fs = get_fs();
3073 set_fs(KERNEL_DS);
3074 err = dev_ioctl(net, cmd, (void __user __force *)&ifr);
3075 set_fs(old_fs);
3076
3077 if (cmd == SIOCGIFMAP && !err) {
3078 err = copy_to_user(uifr32, &ifr, sizeof(ifr.ifr_name));
3079 err |= __put_user(ifr.ifr_map.mem_start, &uifmap32->mem_start);
3080 err |= __put_user(ifr.ifr_map.mem_end, &uifmap32->mem_end);
3081 err |= __put_user(ifr.ifr_map.base_addr, &uifmap32->base_addr);
3082 err |= __put_user(ifr.ifr_map.irq, &uifmap32->irq);
3083 err |= __put_user(ifr.ifr_map.dma, &uifmap32->dma);
3084 err |= __put_user(ifr.ifr_map.port, &uifmap32->port);
3085 if (err)
3086 err = -EFAULT;
3087 }
3088 return err;
3089 }
3090
3091 static int compat_siocshwtstamp(struct net *net, struct compat_ifreq __user *uifr32)
3092 {
3093 void __user *uptr;
3094 compat_uptr_t uptr32;
3095 struct ifreq __user *uifr;
3096
3097 uifr = compat_alloc_user_space(sizeof(*uifr));
3098 if (copy_in_user(uifr, uifr32, sizeof(struct compat_ifreq)))
3099 return -EFAULT;
3100
3101 if (get_user(uptr32, &uifr32->ifr_data))
3102 return -EFAULT;
3103
3104 uptr = compat_ptr(uptr32);
3105
3106 if (put_user(uptr, &uifr->ifr_data))
3107 return -EFAULT;
3108
3109 return dev_ioctl(net, SIOCSHWTSTAMP, uifr);
3110 }
3111
3112 struct rtentry32 {
3113 u32 rt_pad1;
3114 struct sockaddr rt_dst; /* target address */
3115 struct sockaddr rt_gateway; /* gateway addr (RTF_GATEWAY) */
3116 struct sockaddr rt_genmask; /* target network mask (IP) */
3117 unsigned short rt_flags;
3118 short rt_pad2;
3119 u32 rt_pad3;
3120 unsigned char rt_tos;
3121 unsigned char rt_class;
3122 short rt_pad4;
3123 short rt_metric; /* +1 for binary compatibility! */
3124 /* char * */ u32 rt_dev; /* forcing the device at add */
3125 u32 rt_mtu; /* per route MTU/Window */
3126 u32 rt_window; /* Window clamping */
3127 unsigned short rt_irtt; /* Initial RTT */
3128 };
3129
3130 struct in6_rtmsg32 {
3131 struct in6_addr rtmsg_dst;
3132 struct in6_addr rtmsg_src;
3133 struct in6_addr rtmsg_gateway;
3134 u32 rtmsg_type;
3135 u16 rtmsg_dst_len;
3136 u16 rtmsg_src_len;
3137 u32 rtmsg_metric;
3138 u32 rtmsg_info;
3139 u32 rtmsg_flags;
3140 s32 rtmsg_ifindex;
3141 };
3142
3143 static int routing_ioctl(struct net *net, struct socket *sock,
3144 unsigned int cmd, void __user *argp)
3145 {
3146 int ret;
3147 void *r = NULL;
3148 struct in6_rtmsg r6;
3149 struct rtentry r4;
3150 char devname[16];
3151 u32 rtdev;
3152 mm_segment_t old_fs = get_fs();
3153
3154 if (sock && sock->sk && sock->sk->sk_family == AF_INET6) { /* ipv6 */
3155 struct in6_rtmsg32 __user *ur6 = argp;
3156 ret = copy_from_user(&r6.rtmsg_dst, &(ur6->rtmsg_dst),
3157 3 * sizeof(struct in6_addr));
3158 ret |= __get_user(r6.rtmsg_type, &(ur6->rtmsg_type));
3159 ret |= __get_user(r6.rtmsg_dst_len, &(ur6->rtmsg_dst_len));
3160 ret |= __get_user(r6.rtmsg_src_len, &(ur6->rtmsg_src_len));
3161 ret |= __get_user(r6.rtmsg_metric, &(ur6->rtmsg_metric));
3162 ret |= __get_user(r6.rtmsg_info, &(ur6->rtmsg_info));
3163 ret |= __get_user(r6.rtmsg_flags, &(ur6->rtmsg_flags));
3164 ret |= __get_user(r6.rtmsg_ifindex, &(ur6->rtmsg_ifindex));
3165
3166 r = (void *) &r6;
3167 } else { /* ipv4 */
3168 struct rtentry32 __user *ur4 = argp;
3169 ret = copy_from_user(&r4.rt_dst, &(ur4->rt_dst),
3170 3 * sizeof(struct sockaddr));
3171 ret |= __get_user(r4.rt_flags, &(ur4->rt_flags));
3172 ret |= __get_user(r4.rt_metric, &(ur4->rt_metric));
3173 ret |= __get_user(r4.rt_mtu, &(ur4->rt_mtu));
3174 ret |= __get_user(r4.rt_window, &(ur4->rt_window));
3175 ret |= __get_user(r4.rt_irtt, &(ur4->rt_irtt));
3176 ret |= __get_user(rtdev, &(ur4->rt_dev));
3177 if (rtdev) {
3178 ret |= copy_from_user(devname, compat_ptr(rtdev), 15);
3179 r4.rt_dev = (char __user __force *)devname;
3180 devname[15] = 0;
3181 } else
3182 r4.rt_dev = NULL;
3183
3184 r = (void *) &r4;
3185 }
3186
3187 if (ret) {
3188 ret = -EFAULT;
3189 goto out;
3190 }
3191
3192 set_fs(KERNEL_DS);
3193 ret = sock_do_ioctl(net, sock, cmd, (unsigned long) r);
3194 set_fs(old_fs);
3195
3196 out:
3197 return ret;
3198 }
3199
3200 /* Since old style bridge ioctl's endup using SIOCDEVPRIVATE
3201 * for some operations; this forces use of the newer bridge-utils that
3202 * use compatible ioctls
3203 */
3204 static int old_bridge_ioctl(compat_ulong_t __user *argp)
3205 {
3206 compat_ulong_t tmp;
3207
3208 if (get_user(tmp, argp))
3209 return -EFAULT;
3210 if (tmp == BRCTL_GET_VERSION)
3211 return BRCTL_VERSION + 1;
3212 return -EINVAL;
3213 }
3214
3215 static int compat_sock_ioctl_trans(struct file *file, struct socket *sock,
3216 unsigned int cmd, unsigned long arg)
3217 {
3218 void __user *argp = compat_ptr(arg);
3219 struct sock *sk = sock->sk;
3220 struct net *net = sock_net(sk);
3221
3222 if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15))
3223 return siocdevprivate_ioctl(net, cmd, argp);
3224
3225 switch (cmd) {
3226 case SIOCSIFBR:
3227 case SIOCGIFBR:
3228 return old_bridge_ioctl(argp);
3229 case SIOCGIFNAME:
3230 return dev_ifname32(net, argp);
3231 case SIOCGIFCONF:
3232 return dev_ifconf(net, argp);
3233 case SIOCETHTOOL:
3234 return ethtool_ioctl(net, argp);
3235 case SIOCWANDEV:
3236 return compat_siocwandev(net, argp);
3237 case SIOCGIFMAP:
3238 case SIOCSIFMAP:
3239 return compat_sioc_ifmap(net, cmd, argp);
3240 case SIOCBONDENSLAVE:
3241 case SIOCBONDRELEASE:
3242 case SIOCBONDSETHWADDR:
3243 case SIOCBONDSLAVEINFOQUERY:
3244 case SIOCBONDINFOQUERY:
3245 case SIOCBONDCHANGEACTIVE:
3246 return bond_ioctl(net, cmd, argp);
3247 case SIOCADDRT:
3248 case SIOCDELRT:
3249 return routing_ioctl(net, sock, cmd, argp);
3250 case SIOCGSTAMP:
3251 return do_siocgstamp(net, sock, cmd, argp);
3252 case SIOCGSTAMPNS:
3253 return do_siocgstampns(net, sock, cmd, argp);
3254 case SIOCSHWTSTAMP:
3255 return compat_siocshwtstamp(net, argp);
3256
3257 case FIOSETOWN:
3258 case SIOCSPGRP:
3259 case FIOGETOWN:
3260 case SIOCGPGRP:
3261 case SIOCBRADDBR:
3262 case SIOCBRDELBR:
3263 case SIOCGIFVLAN:
3264 case SIOCSIFVLAN:
3265 case SIOCADDDLCI:
3266 case SIOCDELDLCI:
3267 return sock_ioctl(file, cmd, arg);
3268
3269 case SIOCGIFFLAGS:
3270 case SIOCSIFFLAGS:
3271 case SIOCGIFMETRIC:
3272 case SIOCSIFMETRIC:
3273 case SIOCGIFMTU:
3274 case SIOCSIFMTU:
3275 case SIOCGIFMEM:
3276 case SIOCSIFMEM:
3277 case SIOCGIFHWADDR:
3278 case SIOCSIFHWADDR:
3279 case SIOCADDMULTI:
3280 case SIOCDELMULTI:
3281 case SIOCGIFINDEX:
3282 case SIOCGIFADDR:
3283 case SIOCSIFADDR:
3284 case SIOCSIFHWBROADCAST:
3285 case SIOCDIFADDR:
3286 case SIOCGIFBRDADDR:
3287 case SIOCSIFBRDADDR:
3288 case SIOCGIFDSTADDR:
3289 case SIOCSIFDSTADDR:
3290 case SIOCGIFNETMASK:
3291 case SIOCSIFNETMASK:
3292 case SIOCSIFPFLAGS:
3293 case SIOCGIFPFLAGS:
3294 case SIOCGIFTXQLEN:
3295 case SIOCSIFTXQLEN:
3296 case SIOCBRADDIF:
3297 case SIOCBRDELIF:
3298 case SIOCSIFNAME:
3299 case SIOCGMIIPHY:
3300 case SIOCGMIIREG:
3301 case SIOCSMIIREG:
3302 return dev_ifsioc(net, sock, cmd, argp);
3303
3304 case SIOCSARP:
3305 case SIOCGARP:
3306 case SIOCDARP:
3307 case SIOCATMARK:
3308 return sock_do_ioctl(net, sock, cmd, arg);
3309 }
3310
3311 return -ENOIOCTLCMD;
3312 }
3313
3314 static long compat_sock_ioctl(struct file *file, unsigned int cmd,
3315 unsigned long arg)
3316 {
3317 struct socket *sock = file->private_data;
3318 int ret = -ENOIOCTLCMD;
3319 struct sock *sk;
3320 struct net *net;
3321
3322 sk = sock->sk;
3323 net = sock_net(sk);
3324
3325 if (sock->ops->compat_ioctl)
3326 ret = sock->ops->compat_ioctl(sock, cmd, arg);
3327
3328 if (ret == -ENOIOCTLCMD &&
3329 (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST))
3330 ret = compat_wext_handle_ioctl(net, cmd, arg);
3331
3332 if (ret == -ENOIOCTLCMD)
3333 ret = compat_sock_ioctl_trans(file, sock, cmd, arg);
3334
3335 return ret;
3336 }
3337 #endif
3338
3339 int kernel_bind(struct socket *sock, struct sockaddr *addr, int addrlen)
3340 {
3341 return sock->ops->bind(sock, addr, addrlen);
3342 }
3343 EXPORT_SYMBOL(kernel_bind);
3344
3345 int kernel_listen(struct socket *sock, int backlog)
3346 {
3347 return sock->ops->listen(sock, backlog);
3348 }
3349 EXPORT_SYMBOL(kernel_listen);
3350
3351 int kernel_accept(struct socket *sock, struct socket **newsock, int flags)
3352 {
3353 struct sock *sk = sock->sk;
3354 int err;
3355
3356 err = sock_create_lite(sk->sk_family, sk->sk_type, sk->sk_protocol,
3357 newsock);
3358 if (err < 0)
3359 goto done;
3360
3361 err = sock->ops->accept(sock, *newsock, flags);
3362 if (err < 0) {
3363 sock_release(*newsock);
3364 *newsock = NULL;
3365 goto done;
3366 }
3367
3368 (*newsock)->ops = sock->ops;
3369 __module_get((*newsock)->ops->owner);
3370
3371 done:
3372 return err;
3373 }
3374 EXPORT_SYMBOL(kernel_accept);
3375
3376 int kernel_connect(struct socket *sock, struct sockaddr *addr, int addrlen,
3377 int flags)
3378 {
3379 return sock->ops->connect(sock, addr, addrlen, flags);
3380 }
3381 EXPORT_SYMBOL(kernel_connect);
3382
3383 int kernel_getsockname(struct socket *sock, struct sockaddr *addr,
3384 int *addrlen)
3385 {
3386 return sock->ops->getname(sock, addr, addrlen, 0);
3387 }
3388 EXPORT_SYMBOL(kernel_getsockname);
3389
3390 int kernel_getpeername(struct socket *sock, struct sockaddr *addr,
3391 int *addrlen)
3392 {
3393 return sock->ops->getname(sock, addr, addrlen, 1);
3394 }
3395 EXPORT_SYMBOL(kernel_getpeername);
3396
3397 int kernel_getsockopt(struct socket *sock, int level, int optname,
3398 char *optval, int *optlen)
3399 {
3400 mm_segment_t oldfs = get_fs();
3401 char __user *uoptval;
3402 int __user *uoptlen;
3403 int err;
3404
3405 uoptval = (char __user __force *) optval;
3406 uoptlen = (int __user __force *) optlen;
3407
3408 set_fs(KERNEL_DS);
3409 if (level == SOL_SOCKET)
3410 err = sock_getsockopt(sock, level, optname, uoptval, uoptlen);
3411 else
3412 err = sock->ops->getsockopt(sock, level, optname, uoptval,
3413 uoptlen);
3414 set_fs(oldfs);
3415 return err;
3416 }
3417 EXPORT_SYMBOL(kernel_getsockopt);
3418
3419 int kernel_setsockopt(struct socket *sock, int level, int optname,
3420 char *optval, unsigned int optlen)
3421 {
3422 mm_segment_t oldfs = get_fs();
3423 char __user *uoptval;
3424 int err;
3425
3426 uoptval = (char __user __force *) optval;
3427
3428 set_fs(KERNEL_DS);
3429 if (level == SOL_SOCKET)
3430 err = sock_setsockopt(sock, level, optname, uoptval, optlen);
3431 else
3432 err = sock->ops->setsockopt(sock, level, optname, uoptval,
3433 optlen);
3434 set_fs(oldfs);
3435 return err;
3436 }
3437 EXPORT_SYMBOL(kernel_setsockopt);
3438
3439 int kernel_sendpage(struct socket *sock, struct page *page, int offset,
3440 size_t size, int flags)
3441 {
3442 if (sock->ops->sendpage)
3443 return sock->ops->sendpage(sock, page, offset, size, flags);
3444
3445 return sock_no_sendpage(sock, page, offset, size, flags);
3446 }
3447 EXPORT_SYMBOL(kernel_sendpage);
3448
3449 int kernel_sock_ioctl(struct socket *sock, int cmd, unsigned long arg)
3450 {
3451 mm_segment_t oldfs = get_fs();
3452 int err;
3453
3454 set_fs(KERNEL_DS);
3455 err = sock->ops->ioctl(sock, cmd, arg);
3456 set_fs(oldfs);
3457
3458 return err;
3459 }
3460 EXPORT_SYMBOL(kernel_sock_ioctl);
3461
3462 int kernel_sock_shutdown(struct socket *sock, enum sock_shutdown_cmd how)
3463 {
3464 return sock->ops->shutdown(sock, how);
3465 }
3466 EXPORT_SYMBOL(kernel_sock_shutdown);