]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - net/sunrpc/svc.c
net: Convert net_ratelimit uses to net_<level>_ratelimited
[mirror_ubuntu-bionic-kernel.git] / net / sunrpc / svc.c
1 /*
2 * linux/net/sunrpc/svc.c
3 *
4 * High-level RPC service routines
5 *
6 * Copyright (C) 1995, 1996 Olaf Kirch <okir@monad.swb.de>
7 *
8 * Multiple threads pools and NUMAisation
9 * Copyright (c) 2006 Silicon Graphics, Inc.
10 * by Greg Banks <gnb@melbourne.sgi.com>
11 */
12
13 #include <linux/linkage.h>
14 #include <linux/sched.h>
15 #include <linux/errno.h>
16 #include <linux/net.h>
17 #include <linux/in.h>
18 #include <linux/mm.h>
19 #include <linux/interrupt.h>
20 #include <linux/module.h>
21 #include <linux/kthread.h>
22 #include <linux/slab.h>
23 #include <linux/nsproxy.h>
24
25 #include <linux/sunrpc/types.h>
26 #include <linux/sunrpc/xdr.h>
27 #include <linux/sunrpc/stats.h>
28 #include <linux/sunrpc/svcsock.h>
29 #include <linux/sunrpc/clnt.h>
30 #include <linux/sunrpc/bc_xprt.h>
31
32 #define RPCDBG_FACILITY RPCDBG_SVCDSP
33
34 static void svc_unregister(const struct svc_serv *serv, struct net *net);
35
36 #define svc_serv_is_pooled(serv) ((serv)->sv_function)
37
38 /*
39 * Mode for mapping cpus to pools.
40 */
41 enum {
42 SVC_POOL_AUTO = -1, /* choose one of the others */
43 SVC_POOL_GLOBAL, /* no mapping, just a single global pool
44 * (legacy & UP mode) */
45 SVC_POOL_PERCPU, /* one pool per cpu */
46 SVC_POOL_PERNODE /* one pool per numa node */
47 };
48 #define SVC_POOL_DEFAULT SVC_POOL_GLOBAL
49
50 /*
51 * Structure for mapping cpus to pools and vice versa.
52 * Setup once during sunrpc initialisation.
53 */
54 static struct svc_pool_map {
55 int count; /* How many svc_servs use us */
56 int mode; /* Note: int not enum to avoid
57 * warnings about "enumeration value
58 * not handled in switch" */
59 unsigned int npools;
60 unsigned int *pool_to; /* maps pool id to cpu or node */
61 unsigned int *to_pool; /* maps cpu or node to pool id */
62 } svc_pool_map = {
63 .count = 0,
64 .mode = SVC_POOL_DEFAULT
65 };
66 static DEFINE_MUTEX(svc_pool_map_mutex);/* protects svc_pool_map.count only */
67
68 static int
69 param_set_pool_mode(const char *val, struct kernel_param *kp)
70 {
71 int *ip = (int *)kp->arg;
72 struct svc_pool_map *m = &svc_pool_map;
73 int err;
74
75 mutex_lock(&svc_pool_map_mutex);
76
77 err = -EBUSY;
78 if (m->count)
79 goto out;
80
81 err = 0;
82 if (!strncmp(val, "auto", 4))
83 *ip = SVC_POOL_AUTO;
84 else if (!strncmp(val, "global", 6))
85 *ip = SVC_POOL_GLOBAL;
86 else if (!strncmp(val, "percpu", 6))
87 *ip = SVC_POOL_PERCPU;
88 else if (!strncmp(val, "pernode", 7))
89 *ip = SVC_POOL_PERNODE;
90 else
91 err = -EINVAL;
92
93 out:
94 mutex_unlock(&svc_pool_map_mutex);
95 return err;
96 }
97
98 static int
99 param_get_pool_mode(char *buf, struct kernel_param *kp)
100 {
101 int *ip = (int *)kp->arg;
102
103 switch (*ip)
104 {
105 case SVC_POOL_AUTO:
106 return strlcpy(buf, "auto", 20);
107 case SVC_POOL_GLOBAL:
108 return strlcpy(buf, "global", 20);
109 case SVC_POOL_PERCPU:
110 return strlcpy(buf, "percpu", 20);
111 case SVC_POOL_PERNODE:
112 return strlcpy(buf, "pernode", 20);
113 default:
114 return sprintf(buf, "%d", *ip);
115 }
116 }
117
118 module_param_call(pool_mode, param_set_pool_mode, param_get_pool_mode,
119 &svc_pool_map.mode, 0644);
120
121 /*
122 * Detect best pool mapping mode heuristically,
123 * according to the machine's topology.
124 */
125 static int
126 svc_pool_map_choose_mode(void)
127 {
128 unsigned int node;
129
130 if (nr_online_nodes > 1) {
131 /*
132 * Actually have multiple NUMA nodes,
133 * so split pools on NUMA node boundaries
134 */
135 return SVC_POOL_PERNODE;
136 }
137
138 node = first_online_node;
139 if (nr_cpus_node(node) > 2) {
140 /*
141 * Non-trivial SMP, or CONFIG_NUMA on
142 * non-NUMA hardware, e.g. with a generic
143 * x86_64 kernel on Xeons. In this case we
144 * want to divide the pools on cpu boundaries.
145 */
146 return SVC_POOL_PERCPU;
147 }
148
149 /* default: one global pool */
150 return SVC_POOL_GLOBAL;
151 }
152
153 /*
154 * Allocate the to_pool[] and pool_to[] arrays.
155 * Returns 0 on success or an errno.
156 */
157 static int
158 svc_pool_map_alloc_arrays(struct svc_pool_map *m, unsigned int maxpools)
159 {
160 m->to_pool = kcalloc(maxpools, sizeof(unsigned int), GFP_KERNEL);
161 if (!m->to_pool)
162 goto fail;
163 m->pool_to = kcalloc(maxpools, sizeof(unsigned int), GFP_KERNEL);
164 if (!m->pool_to)
165 goto fail_free;
166
167 return 0;
168
169 fail_free:
170 kfree(m->to_pool);
171 m->to_pool = NULL;
172 fail:
173 return -ENOMEM;
174 }
175
176 /*
177 * Initialise the pool map for SVC_POOL_PERCPU mode.
178 * Returns number of pools or <0 on error.
179 */
180 static int
181 svc_pool_map_init_percpu(struct svc_pool_map *m)
182 {
183 unsigned int maxpools = nr_cpu_ids;
184 unsigned int pidx = 0;
185 unsigned int cpu;
186 int err;
187
188 err = svc_pool_map_alloc_arrays(m, maxpools);
189 if (err)
190 return err;
191
192 for_each_online_cpu(cpu) {
193 BUG_ON(pidx > maxpools);
194 m->to_pool[cpu] = pidx;
195 m->pool_to[pidx] = cpu;
196 pidx++;
197 }
198 /* cpus brought online later all get mapped to pool0, sorry */
199
200 return pidx;
201 };
202
203
204 /*
205 * Initialise the pool map for SVC_POOL_PERNODE mode.
206 * Returns number of pools or <0 on error.
207 */
208 static int
209 svc_pool_map_init_pernode(struct svc_pool_map *m)
210 {
211 unsigned int maxpools = nr_node_ids;
212 unsigned int pidx = 0;
213 unsigned int node;
214 int err;
215
216 err = svc_pool_map_alloc_arrays(m, maxpools);
217 if (err)
218 return err;
219
220 for_each_node_with_cpus(node) {
221 /* some architectures (e.g. SN2) have cpuless nodes */
222 BUG_ON(pidx > maxpools);
223 m->to_pool[node] = pidx;
224 m->pool_to[pidx] = node;
225 pidx++;
226 }
227 /* nodes brought online later all get mapped to pool0, sorry */
228
229 return pidx;
230 }
231
232
233 /*
234 * Add a reference to the global map of cpus to pools (and
235 * vice versa). Initialise the map if we're the first user.
236 * Returns the number of pools.
237 */
238 static unsigned int
239 svc_pool_map_get(void)
240 {
241 struct svc_pool_map *m = &svc_pool_map;
242 int npools = -1;
243
244 mutex_lock(&svc_pool_map_mutex);
245
246 if (m->count++) {
247 mutex_unlock(&svc_pool_map_mutex);
248 return m->npools;
249 }
250
251 if (m->mode == SVC_POOL_AUTO)
252 m->mode = svc_pool_map_choose_mode();
253
254 switch (m->mode) {
255 case SVC_POOL_PERCPU:
256 npools = svc_pool_map_init_percpu(m);
257 break;
258 case SVC_POOL_PERNODE:
259 npools = svc_pool_map_init_pernode(m);
260 break;
261 }
262
263 if (npools < 0) {
264 /* default, or memory allocation failure */
265 npools = 1;
266 m->mode = SVC_POOL_GLOBAL;
267 }
268 m->npools = npools;
269
270 mutex_unlock(&svc_pool_map_mutex);
271 return m->npools;
272 }
273
274
275 /*
276 * Drop a reference to the global map of cpus to pools.
277 * When the last reference is dropped, the map data is
278 * freed; this allows the sysadmin to change the pool
279 * mode using the pool_mode module option without
280 * rebooting or re-loading sunrpc.ko.
281 */
282 static void
283 svc_pool_map_put(void)
284 {
285 struct svc_pool_map *m = &svc_pool_map;
286
287 mutex_lock(&svc_pool_map_mutex);
288
289 if (!--m->count) {
290 kfree(m->to_pool);
291 m->to_pool = NULL;
292 kfree(m->pool_to);
293 m->pool_to = NULL;
294 m->npools = 0;
295 }
296
297 mutex_unlock(&svc_pool_map_mutex);
298 }
299
300
301 static int svc_pool_map_get_node(unsigned int pidx)
302 {
303 const struct svc_pool_map *m = &svc_pool_map;
304
305 if (m->count) {
306 if (m->mode == SVC_POOL_PERCPU)
307 return cpu_to_node(m->pool_to[pidx]);
308 if (m->mode == SVC_POOL_PERNODE)
309 return m->pool_to[pidx];
310 }
311 return NUMA_NO_NODE;
312 }
313 /*
314 * Set the given thread's cpus_allowed mask so that it
315 * will only run on cpus in the given pool.
316 */
317 static inline void
318 svc_pool_map_set_cpumask(struct task_struct *task, unsigned int pidx)
319 {
320 struct svc_pool_map *m = &svc_pool_map;
321 unsigned int node = m->pool_to[pidx];
322
323 /*
324 * The caller checks for sv_nrpools > 1, which
325 * implies that we've been initialized.
326 */
327 BUG_ON(m->count == 0);
328
329 switch (m->mode) {
330 case SVC_POOL_PERCPU:
331 {
332 set_cpus_allowed_ptr(task, cpumask_of(node));
333 break;
334 }
335 case SVC_POOL_PERNODE:
336 {
337 set_cpus_allowed_ptr(task, cpumask_of_node(node));
338 break;
339 }
340 }
341 }
342
343 /*
344 * Use the mapping mode to choose a pool for a given CPU.
345 * Used when enqueueing an incoming RPC. Always returns
346 * a non-NULL pool pointer.
347 */
348 struct svc_pool *
349 svc_pool_for_cpu(struct svc_serv *serv, int cpu)
350 {
351 struct svc_pool_map *m = &svc_pool_map;
352 unsigned int pidx = 0;
353
354 /*
355 * An uninitialised map happens in a pure client when
356 * lockd is brought up, so silently treat it the
357 * same as SVC_POOL_GLOBAL.
358 */
359 if (svc_serv_is_pooled(serv)) {
360 switch (m->mode) {
361 case SVC_POOL_PERCPU:
362 pidx = m->to_pool[cpu];
363 break;
364 case SVC_POOL_PERNODE:
365 pidx = m->to_pool[cpu_to_node(cpu)];
366 break;
367 }
368 }
369 return &serv->sv_pools[pidx % serv->sv_nrpools];
370 }
371
372 int svc_rpcb_setup(struct svc_serv *serv, struct net *net)
373 {
374 int err;
375
376 err = rpcb_create_local(net);
377 if (err)
378 return err;
379
380 /* Remove any stale portmap registrations */
381 svc_unregister(serv, net);
382 return 0;
383 }
384 EXPORT_SYMBOL_GPL(svc_rpcb_setup);
385
386 void svc_rpcb_cleanup(struct svc_serv *serv, struct net *net)
387 {
388 svc_unregister(serv, net);
389 rpcb_put_local(net);
390 }
391 EXPORT_SYMBOL_GPL(svc_rpcb_cleanup);
392
393 static int svc_uses_rpcbind(struct svc_serv *serv)
394 {
395 struct svc_program *progp;
396 unsigned int i;
397
398 for (progp = serv->sv_program; progp; progp = progp->pg_next) {
399 for (i = 0; i < progp->pg_nvers; i++) {
400 if (progp->pg_vers[i] == NULL)
401 continue;
402 if (progp->pg_vers[i]->vs_hidden == 0)
403 return 1;
404 }
405 }
406
407 return 0;
408 }
409
410 /*
411 * Create an RPC service
412 */
413 static struct svc_serv *
414 __svc_create(struct svc_program *prog, unsigned int bufsize, int npools,
415 void (*shutdown)(struct svc_serv *serv, struct net *net))
416 {
417 struct svc_serv *serv;
418 unsigned int vers;
419 unsigned int xdrsize;
420 unsigned int i;
421
422 if (!(serv = kzalloc(sizeof(*serv), GFP_KERNEL)))
423 return NULL;
424 serv->sv_name = prog->pg_name;
425 serv->sv_program = prog;
426 serv->sv_nrthreads = 1;
427 serv->sv_stats = prog->pg_stats;
428 if (bufsize > RPCSVC_MAXPAYLOAD)
429 bufsize = RPCSVC_MAXPAYLOAD;
430 serv->sv_max_payload = bufsize? bufsize : 4096;
431 serv->sv_max_mesg = roundup(serv->sv_max_payload + PAGE_SIZE, PAGE_SIZE);
432 serv->sv_shutdown = shutdown;
433 xdrsize = 0;
434 while (prog) {
435 prog->pg_lovers = prog->pg_nvers-1;
436 for (vers=0; vers<prog->pg_nvers ; vers++)
437 if (prog->pg_vers[vers]) {
438 prog->pg_hivers = vers;
439 if (prog->pg_lovers > vers)
440 prog->pg_lovers = vers;
441 if (prog->pg_vers[vers]->vs_xdrsize > xdrsize)
442 xdrsize = prog->pg_vers[vers]->vs_xdrsize;
443 }
444 prog = prog->pg_next;
445 }
446 serv->sv_xdrsize = xdrsize;
447 INIT_LIST_HEAD(&serv->sv_tempsocks);
448 INIT_LIST_HEAD(&serv->sv_permsocks);
449 init_timer(&serv->sv_temptimer);
450 spin_lock_init(&serv->sv_lock);
451
452 serv->sv_nrpools = npools;
453 serv->sv_pools =
454 kcalloc(serv->sv_nrpools, sizeof(struct svc_pool),
455 GFP_KERNEL);
456 if (!serv->sv_pools) {
457 kfree(serv);
458 return NULL;
459 }
460
461 for (i = 0; i < serv->sv_nrpools; i++) {
462 struct svc_pool *pool = &serv->sv_pools[i];
463
464 dprintk("svc: initialising pool %u for %s\n",
465 i, serv->sv_name);
466
467 pool->sp_id = i;
468 INIT_LIST_HEAD(&pool->sp_threads);
469 INIT_LIST_HEAD(&pool->sp_sockets);
470 INIT_LIST_HEAD(&pool->sp_all_threads);
471 spin_lock_init(&pool->sp_lock);
472 }
473
474 if (svc_uses_rpcbind(serv)) {
475 if (svc_rpcb_setup(serv, current->nsproxy->net_ns) < 0) {
476 kfree(serv->sv_pools);
477 kfree(serv);
478 return NULL;
479 }
480 if (!serv->sv_shutdown)
481 serv->sv_shutdown = svc_rpcb_cleanup;
482 }
483
484 return serv;
485 }
486
487 struct svc_serv *
488 svc_create(struct svc_program *prog, unsigned int bufsize,
489 void (*shutdown)(struct svc_serv *serv, struct net *net))
490 {
491 return __svc_create(prog, bufsize, /*npools*/1, shutdown);
492 }
493 EXPORT_SYMBOL_GPL(svc_create);
494
495 struct svc_serv *
496 svc_create_pooled(struct svc_program *prog, unsigned int bufsize,
497 void (*shutdown)(struct svc_serv *serv, struct net *net),
498 svc_thread_fn func, struct module *mod)
499 {
500 struct svc_serv *serv;
501 unsigned int npools = svc_pool_map_get();
502
503 serv = __svc_create(prog, bufsize, npools, shutdown);
504
505 if (serv != NULL) {
506 serv->sv_function = func;
507 serv->sv_module = mod;
508 }
509
510 return serv;
511 }
512 EXPORT_SYMBOL_GPL(svc_create_pooled);
513
514 void svc_shutdown_net(struct svc_serv *serv, struct net *net)
515 {
516 /*
517 * The set of xprts (contained in the sv_tempsocks and
518 * sv_permsocks lists) is now constant, since it is modified
519 * only by accepting new sockets (done by service threads in
520 * svc_recv) or aging old ones (done by sv_temptimer), or
521 * configuration changes (excluded by whatever locking the
522 * caller is using--nfsd_mutex in the case of nfsd). So it's
523 * safe to traverse those lists and shut everything down:
524 */
525 svc_close_net(serv, net);
526
527 if (serv->sv_shutdown)
528 serv->sv_shutdown(serv, net);
529 }
530 EXPORT_SYMBOL_GPL(svc_shutdown_net);
531
532 /*
533 * Destroy an RPC service. Should be called with appropriate locking to
534 * protect the sv_nrthreads, sv_permsocks and sv_tempsocks.
535 */
536 void
537 svc_destroy(struct svc_serv *serv)
538 {
539 struct net *net = current->nsproxy->net_ns;
540
541 dprintk("svc: svc_destroy(%s, %d)\n",
542 serv->sv_program->pg_name,
543 serv->sv_nrthreads);
544
545 if (serv->sv_nrthreads) {
546 if (--(serv->sv_nrthreads) != 0) {
547 svc_sock_update_bufs(serv);
548 return;
549 }
550 } else
551 printk("svc_destroy: no threads for serv=%p!\n", serv);
552
553 del_timer_sync(&serv->sv_temptimer);
554
555 svc_shutdown_net(serv, net);
556
557 /*
558 * The last user is gone and thus all sockets have to be destroyed to
559 * the point. Check this.
560 */
561 BUG_ON(!list_empty(&serv->sv_permsocks));
562 BUG_ON(!list_empty(&serv->sv_tempsocks));
563
564 cache_clean_deferred(serv);
565
566 if (svc_serv_is_pooled(serv))
567 svc_pool_map_put();
568
569 kfree(serv->sv_pools);
570 kfree(serv);
571 }
572 EXPORT_SYMBOL_GPL(svc_destroy);
573
574 /*
575 * Allocate an RPC server's buffer space.
576 * We allocate pages and place them in rq_argpages.
577 */
578 static int
579 svc_init_buffer(struct svc_rqst *rqstp, unsigned int size, int node)
580 {
581 unsigned int pages, arghi;
582
583 /* bc_xprt uses fore channel allocated buffers */
584 if (svc_is_backchannel(rqstp))
585 return 1;
586
587 pages = size / PAGE_SIZE + 1; /* extra page as we hold both request and reply.
588 * We assume one is at most one page
589 */
590 arghi = 0;
591 BUG_ON(pages > RPCSVC_MAXPAGES);
592 while (pages) {
593 struct page *p = alloc_pages_node(node, GFP_KERNEL, 0);
594 if (!p)
595 break;
596 rqstp->rq_pages[arghi++] = p;
597 pages--;
598 }
599 return pages == 0;
600 }
601
602 /*
603 * Release an RPC server buffer
604 */
605 static void
606 svc_release_buffer(struct svc_rqst *rqstp)
607 {
608 unsigned int i;
609
610 for (i = 0; i < ARRAY_SIZE(rqstp->rq_pages); i++)
611 if (rqstp->rq_pages[i])
612 put_page(rqstp->rq_pages[i]);
613 }
614
615 struct svc_rqst *
616 svc_prepare_thread(struct svc_serv *serv, struct svc_pool *pool, int node)
617 {
618 struct svc_rqst *rqstp;
619
620 rqstp = kzalloc_node(sizeof(*rqstp), GFP_KERNEL, node);
621 if (!rqstp)
622 goto out_enomem;
623
624 init_waitqueue_head(&rqstp->rq_wait);
625
626 serv->sv_nrthreads++;
627 spin_lock_bh(&pool->sp_lock);
628 pool->sp_nrthreads++;
629 list_add(&rqstp->rq_all, &pool->sp_all_threads);
630 spin_unlock_bh(&pool->sp_lock);
631 rqstp->rq_server = serv;
632 rqstp->rq_pool = pool;
633
634 rqstp->rq_argp = kmalloc_node(serv->sv_xdrsize, GFP_KERNEL, node);
635 if (!rqstp->rq_argp)
636 goto out_thread;
637
638 rqstp->rq_resp = kmalloc_node(serv->sv_xdrsize, GFP_KERNEL, node);
639 if (!rqstp->rq_resp)
640 goto out_thread;
641
642 if (!svc_init_buffer(rqstp, serv->sv_max_mesg, node))
643 goto out_thread;
644
645 return rqstp;
646 out_thread:
647 svc_exit_thread(rqstp);
648 out_enomem:
649 return ERR_PTR(-ENOMEM);
650 }
651 EXPORT_SYMBOL_GPL(svc_prepare_thread);
652
653 /*
654 * Choose a pool in which to create a new thread, for svc_set_num_threads
655 */
656 static inline struct svc_pool *
657 choose_pool(struct svc_serv *serv, struct svc_pool *pool, unsigned int *state)
658 {
659 if (pool != NULL)
660 return pool;
661
662 return &serv->sv_pools[(*state)++ % serv->sv_nrpools];
663 }
664
665 /*
666 * Choose a thread to kill, for svc_set_num_threads
667 */
668 static inline struct task_struct *
669 choose_victim(struct svc_serv *serv, struct svc_pool *pool, unsigned int *state)
670 {
671 unsigned int i;
672 struct task_struct *task = NULL;
673
674 if (pool != NULL) {
675 spin_lock_bh(&pool->sp_lock);
676 } else {
677 /* choose a pool in round-robin fashion */
678 for (i = 0; i < serv->sv_nrpools; i++) {
679 pool = &serv->sv_pools[--(*state) % serv->sv_nrpools];
680 spin_lock_bh(&pool->sp_lock);
681 if (!list_empty(&pool->sp_all_threads))
682 goto found_pool;
683 spin_unlock_bh(&pool->sp_lock);
684 }
685 return NULL;
686 }
687
688 found_pool:
689 if (!list_empty(&pool->sp_all_threads)) {
690 struct svc_rqst *rqstp;
691
692 /*
693 * Remove from the pool->sp_all_threads list
694 * so we don't try to kill it again.
695 */
696 rqstp = list_entry(pool->sp_all_threads.next, struct svc_rqst, rq_all);
697 list_del_init(&rqstp->rq_all);
698 task = rqstp->rq_task;
699 }
700 spin_unlock_bh(&pool->sp_lock);
701
702 return task;
703 }
704
705 /*
706 * Create or destroy enough new threads to make the number
707 * of threads the given number. If `pool' is non-NULL, applies
708 * only to threads in that pool, otherwise round-robins between
709 * all pools. Caller must ensure that mutual exclusion between this and
710 * server startup or shutdown.
711 *
712 * Destroying threads relies on the service threads filling in
713 * rqstp->rq_task, which only the nfs ones do. Assumes the serv
714 * has been created using svc_create_pooled().
715 *
716 * Based on code that used to be in nfsd_svc() but tweaked
717 * to be pool-aware.
718 */
719 int
720 svc_set_num_threads(struct svc_serv *serv, struct svc_pool *pool, int nrservs)
721 {
722 struct svc_rqst *rqstp;
723 struct task_struct *task;
724 struct svc_pool *chosen_pool;
725 int error = 0;
726 unsigned int state = serv->sv_nrthreads-1;
727 int node;
728
729 if (pool == NULL) {
730 /* The -1 assumes caller has done a svc_get() */
731 nrservs -= (serv->sv_nrthreads-1);
732 } else {
733 spin_lock_bh(&pool->sp_lock);
734 nrservs -= pool->sp_nrthreads;
735 spin_unlock_bh(&pool->sp_lock);
736 }
737
738 /* create new threads */
739 while (nrservs > 0) {
740 nrservs--;
741 chosen_pool = choose_pool(serv, pool, &state);
742
743 node = svc_pool_map_get_node(chosen_pool->sp_id);
744 rqstp = svc_prepare_thread(serv, chosen_pool, node);
745 if (IS_ERR(rqstp)) {
746 error = PTR_ERR(rqstp);
747 break;
748 }
749
750 __module_get(serv->sv_module);
751 task = kthread_create_on_node(serv->sv_function, rqstp,
752 node, serv->sv_name);
753 if (IS_ERR(task)) {
754 error = PTR_ERR(task);
755 module_put(serv->sv_module);
756 svc_exit_thread(rqstp);
757 break;
758 }
759
760 rqstp->rq_task = task;
761 if (serv->sv_nrpools > 1)
762 svc_pool_map_set_cpumask(task, chosen_pool->sp_id);
763
764 svc_sock_update_bufs(serv);
765 wake_up_process(task);
766 }
767 /* destroy old threads */
768 while (nrservs < 0 &&
769 (task = choose_victim(serv, pool, &state)) != NULL) {
770 send_sig(SIGINT, task, 1);
771 nrservs++;
772 }
773
774 return error;
775 }
776 EXPORT_SYMBOL_GPL(svc_set_num_threads);
777
778 /*
779 * Called from a server thread as it's exiting. Caller must hold the BKL or
780 * the "service mutex", whichever is appropriate for the service.
781 */
782 void
783 svc_exit_thread(struct svc_rqst *rqstp)
784 {
785 struct svc_serv *serv = rqstp->rq_server;
786 struct svc_pool *pool = rqstp->rq_pool;
787
788 svc_release_buffer(rqstp);
789 kfree(rqstp->rq_resp);
790 kfree(rqstp->rq_argp);
791 kfree(rqstp->rq_auth_data);
792
793 spin_lock_bh(&pool->sp_lock);
794 pool->sp_nrthreads--;
795 list_del(&rqstp->rq_all);
796 spin_unlock_bh(&pool->sp_lock);
797
798 kfree(rqstp);
799
800 /* Release the server */
801 if (serv)
802 svc_destroy(serv);
803 }
804 EXPORT_SYMBOL_GPL(svc_exit_thread);
805
806 /*
807 * Register an "inet" protocol family netid with the local
808 * rpcbind daemon via an rpcbind v4 SET request.
809 *
810 * No netconfig infrastructure is available in the kernel, so
811 * we map IP_ protocol numbers to netids by hand.
812 *
813 * Returns zero on success; a negative errno value is returned
814 * if any error occurs.
815 */
816 static int __svc_rpcb_register4(struct net *net, const u32 program,
817 const u32 version,
818 const unsigned short protocol,
819 const unsigned short port)
820 {
821 const struct sockaddr_in sin = {
822 .sin_family = AF_INET,
823 .sin_addr.s_addr = htonl(INADDR_ANY),
824 .sin_port = htons(port),
825 };
826 const char *netid;
827 int error;
828
829 switch (protocol) {
830 case IPPROTO_UDP:
831 netid = RPCBIND_NETID_UDP;
832 break;
833 case IPPROTO_TCP:
834 netid = RPCBIND_NETID_TCP;
835 break;
836 default:
837 return -ENOPROTOOPT;
838 }
839
840 error = rpcb_v4_register(net, program, version,
841 (const struct sockaddr *)&sin, netid);
842
843 /*
844 * User space didn't support rpcbind v4, so retry this
845 * registration request with the legacy rpcbind v2 protocol.
846 */
847 if (error == -EPROTONOSUPPORT)
848 error = rpcb_register(net, program, version, protocol, port);
849
850 return error;
851 }
852
853 #if IS_ENABLED(CONFIG_IPV6)
854 /*
855 * Register an "inet6" protocol family netid with the local
856 * rpcbind daemon via an rpcbind v4 SET request.
857 *
858 * No netconfig infrastructure is available in the kernel, so
859 * we map IP_ protocol numbers to netids by hand.
860 *
861 * Returns zero on success; a negative errno value is returned
862 * if any error occurs.
863 */
864 static int __svc_rpcb_register6(struct net *net, const u32 program,
865 const u32 version,
866 const unsigned short protocol,
867 const unsigned short port)
868 {
869 const struct sockaddr_in6 sin6 = {
870 .sin6_family = AF_INET6,
871 .sin6_addr = IN6ADDR_ANY_INIT,
872 .sin6_port = htons(port),
873 };
874 const char *netid;
875 int error;
876
877 switch (protocol) {
878 case IPPROTO_UDP:
879 netid = RPCBIND_NETID_UDP6;
880 break;
881 case IPPROTO_TCP:
882 netid = RPCBIND_NETID_TCP6;
883 break;
884 default:
885 return -ENOPROTOOPT;
886 }
887
888 error = rpcb_v4_register(net, program, version,
889 (const struct sockaddr *)&sin6, netid);
890
891 /*
892 * User space didn't support rpcbind version 4, so we won't
893 * use a PF_INET6 listener.
894 */
895 if (error == -EPROTONOSUPPORT)
896 error = -EAFNOSUPPORT;
897
898 return error;
899 }
900 #endif /* IS_ENABLED(CONFIG_IPV6) */
901
902 /*
903 * Register a kernel RPC service via rpcbind version 4.
904 *
905 * Returns zero on success; a negative errno value is returned
906 * if any error occurs.
907 */
908 static int __svc_register(struct net *net, const char *progname,
909 const u32 program, const u32 version,
910 const int family,
911 const unsigned short protocol,
912 const unsigned short port)
913 {
914 int error = -EAFNOSUPPORT;
915
916 switch (family) {
917 case PF_INET:
918 error = __svc_rpcb_register4(net, program, version,
919 protocol, port);
920 break;
921 #if IS_ENABLED(CONFIG_IPV6)
922 case PF_INET6:
923 error = __svc_rpcb_register6(net, program, version,
924 protocol, port);
925 #endif
926 }
927
928 if (error < 0)
929 printk(KERN_WARNING "svc: failed to register %sv%u RPC "
930 "service (errno %d).\n", progname, version, -error);
931 return error;
932 }
933
934 /**
935 * svc_register - register an RPC service with the local portmapper
936 * @serv: svc_serv struct for the service to register
937 * @net: net namespace for the service to register
938 * @family: protocol family of service's listener socket
939 * @proto: transport protocol number to advertise
940 * @port: port to advertise
941 *
942 * Service is registered for any address in the passed-in protocol family
943 */
944 int svc_register(const struct svc_serv *serv, struct net *net,
945 const int family, const unsigned short proto,
946 const unsigned short port)
947 {
948 struct svc_program *progp;
949 unsigned int i;
950 int error = 0;
951
952 BUG_ON(proto == 0 && port == 0);
953
954 for (progp = serv->sv_program; progp; progp = progp->pg_next) {
955 for (i = 0; i < progp->pg_nvers; i++) {
956 if (progp->pg_vers[i] == NULL)
957 continue;
958
959 dprintk("svc: svc_register(%sv%d, %s, %u, %u)%s\n",
960 progp->pg_name,
961 i,
962 proto == IPPROTO_UDP? "udp" : "tcp",
963 port,
964 family,
965 progp->pg_vers[i]->vs_hidden?
966 " (but not telling portmap)" : "");
967
968 if (progp->pg_vers[i]->vs_hidden)
969 continue;
970
971 error = __svc_register(net, progp->pg_name, progp->pg_prog,
972 i, family, proto, port);
973 if (error < 0)
974 break;
975 }
976 }
977
978 return error;
979 }
980
981 /*
982 * If user space is running rpcbind, it should take the v4 UNSET
983 * and clear everything for this [program, version]. If user space
984 * is running portmap, it will reject the v4 UNSET, but won't have
985 * any "inet6" entries anyway. So a PMAP_UNSET should be sufficient
986 * in this case to clear all existing entries for [program, version].
987 */
988 static void __svc_unregister(struct net *net, const u32 program, const u32 version,
989 const char *progname)
990 {
991 int error;
992
993 error = rpcb_v4_register(net, program, version, NULL, "");
994
995 /*
996 * User space didn't support rpcbind v4, so retry this
997 * request with the legacy rpcbind v2 protocol.
998 */
999 if (error == -EPROTONOSUPPORT)
1000 error = rpcb_register(net, program, version, 0, 0);
1001
1002 dprintk("svc: %s(%sv%u), error %d\n",
1003 __func__, progname, version, error);
1004 }
1005
1006 /*
1007 * All netids, bind addresses and ports registered for [program, version]
1008 * are removed from the local rpcbind database (if the service is not
1009 * hidden) to make way for a new instance of the service.
1010 *
1011 * The result of unregistration is reported via dprintk for those who want
1012 * verification of the result, but is otherwise not important.
1013 */
1014 static void svc_unregister(const struct svc_serv *serv, struct net *net)
1015 {
1016 struct svc_program *progp;
1017 unsigned long flags;
1018 unsigned int i;
1019
1020 clear_thread_flag(TIF_SIGPENDING);
1021
1022 for (progp = serv->sv_program; progp; progp = progp->pg_next) {
1023 for (i = 0; i < progp->pg_nvers; i++) {
1024 if (progp->pg_vers[i] == NULL)
1025 continue;
1026 if (progp->pg_vers[i]->vs_hidden)
1027 continue;
1028
1029 dprintk("svc: attempting to unregister %sv%u\n",
1030 progp->pg_name, i);
1031 __svc_unregister(net, progp->pg_prog, i, progp->pg_name);
1032 }
1033 }
1034
1035 spin_lock_irqsave(&current->sighand->siglock, flags);
1036 recalc_sigpending();
1037 spin_unlock_irqrestore(&current->sighand->siglock, flags);
1038 }
1039
1040 /*
1041 * Printk the given error with the address of the client that caused it.
1042 */
1043 static __printf(2, 3)
1044 void svc_printk(struct svc_rqst *rqstp, const char *fmt, ...)
1045 {
1046 struct va_format vaf;
1047 va_list args;
1048 char buf[RPC_MAX_ADDRBUFLEN];
1049
1050 va_start(args, fmt);
1051
1052 vaf.fmt = fmt;
1053 vaf.va = &args;
1054
1055 net_warn_ratelimited("svc: %s: %pV",
1056 svc_print_addr(rqstp, buf, sizeof(buf)), &vaf);
1057
1058 va_end(args);
1059 }
1060
1061 /*
1062 * Common routine for processing the RPC request.
1063 */
1064 static int
1065 svc_process_common(struct svc_rqst *rqstp, struct kvec *argv, struct kvec *resv)
1066 {
1067 struct svc_program *progp;
1068 struct svc_version *versp = NULL; /* compiler food */
1069 struct svc_procedure *procp = NULL;
1070 struct svc_serv *serv = rqstp->rq_server;
1071 kxdrproc_t xdr;
1072 __be32 *statp;
1073 u32 prog, vers, proc;
1074 __be32 auth_stat, rpc_stat;
1075 int auth_res;
1076 __be32 *reply_statp;
1077
1078 rpc_stat = rpc_success;
1079
1080 if (argv->iov_len < 6*4)
1081 goto err_short_len;
1082
1083 /* Will be turned off only in gss privacy case: */
1084 rqstp->rq_splice_ok = 1;
1085 /* Will be turned off only when NFSv4 Sessions are used */
1086 rqstp->rq_usedeferral = 1;
1087 rqstp->rq_dropme = false;
1088
1089 /* Setup reply header */
1090 rqstp->rq_xprt->xpt_ops->xpo_prep_reply_hdr(rqstp);
1091
1092 svc_putu32(resv, rqstp->rq_xid);
1093
1094 vers = svc_getnl(argv);
1095
1096 /* First words of reply: */
1097 svc_putnl(resv, 1); /* REPLY */
1098
1099 if (vers != 2) /* RPC version number */
1100 goto err_bad_rpc;
1101
1102 /* Save position in case we later decide to reject: */
1103 reply_statp = resv->iov_base + resv->iov_len;
1104
1105 svc_putnl(resv, 0); /* ACCEPT */
1106
1107 rqstp->rq_prog = prog = svc_getnl(argv); /* program number */
1108 rqstp->rq_vers = vers = svc_getnl(argv); /* version number */
1109 rqstp->rq_proc = proc = svc_getnl(argv); /* procedure number */
1110
1111 progp = serv->sv_program;
1112
1113 for (progp = serv->sv_program; progp; progp = progp->pg_next)
1114 if (prog == progp->pg_prog)
1115 break;
1116
1117 /*
1118 * Decode auth data, and add verifier to reply buffer.
1119 * We do this before anything else in order to get a decent
1120 * auth verifier.
1121 */
1122 auth_res = svc_authenticate(rqstp, &auth_stat);
1123 /* Also give the program a chance to reject this call: */
1124 if (auth_res == SVC_OK && progp) {
1125 auth_stat = rpc_autherr_badcred;
1126 auth_res = progp->pg_authenticate(rqstp);
1127 }
1128 switch (auth_res) {
1129 case SVC_OK:
1130 break;
1131 case SVC_GARBAGE:
1132 goto err_garbage;
1133 case SVC_SYSERR:
1134 rpc_stat = rpc_system_err;
1135 goto err_bad;
1136 case SVC_DENIED:
1137 goto err_bad_auth;
1138 case SVC_CLOSE:
1139 if (test_bit(XPT_TEMP, &rqstp->rq_xprt->xpt_flags))
1140 svc_close_xprt(rqstp->rq_xprt);
1141 case SVC_DROP:
1142 goto dropit;
1143 case SVC_COMPLETE:
1144 goto sendit;
1145 }
1146
1147 if (progp == NULL)
1148 goto err_bad_prog;
1149
1150 if (vers >= progp->pg_nvers ||
1151 !(versp = progp->pg_vers[vers]))
1152 goto err_bad_vers;
1153
1154 procp = versp->vs_proc + proc;
1155 if (proc >= versp->vs_nproc || !procp->pc_func)
1156 goto err_bad_proc;
1157 rqstp->rq_procinfo = procp;
1158
1159 /* Syntactic check complete */
1160 serv->sv_stats->rpccnt++;
1161
1162 /* Build the reply header. */
1163 statp = resv->iov_base +resv->iov_len;
1164 svc_putnl(resv, RPC_SUCCESS);
1165
1166 /* Bump per-procedure stats counter */
1167 procp->pc_count++;
1168
1169 /* Initialize storage for argp and resp */
1170 memset(rqstp->rq_argp, 0, procp->pc_argsize);
1171 memset(rqstp->rq_resp, 0, procp->pc_ressize);
1172
1173 /* un-reserve some of the out-queue now that we have a
1174 * better idea of reply size
1175 */
1176 if (procp->pc_xdrressize)
1177 svc_reserve_auth(rqstp, procp->pc_xdrressize<<2);
1178
1179 /* Call the function that processes the request. */
1180 if (!versp->vs_dispatch) {
1181 /* Decode arguments */
1182 xdr = procp->pc_decode;
1183 if (xdr && !xdr(rqstp, argv->iov_base, rqstp->rq_argp))
1184 goto err_garbage;
1185
1186 *statp = procp->pc_func(rqstp, rqstp->rq_argp, rqstp->rq_resp);
1187
1188 /* Encode reply */
1189 if (rqstp->rq_dropme) {
1190 if (procp->pc_release)
1191 procp->pc_release(rqstp, NULL, rqstp->rq_resp);
1192 goto dropit;
1193 }
1194 if (*statp == rpc_success &&
1195 (xdr = procp->pc_encode) &&
1196 !xdr(rqstp, resv->iov_base+resv->iov_len, rqstp->rq_resp)) {
1197 dprintk("svc: failed to encode reply\n");
1198 /* serv->sv_stats->rpcsystemerr++; */
1199 *statp = rpc_system_err;
1200 }
1201 } else {
1202 dprintk("svc: calling dispatcher\n");
1203 if (!versp->vs_dispatch(rqstp, statp)) {
1204 /* Release reply info */
1205 if (procp->pc_release)
1206 procp->pc_release(rqstp, NULL, rqstp->rq_resp);
1207 goto dropit;
1208 }
1209 }
1210
1211 /* Check RPC status result */
1212 if (*statp != rpc_success)
1213 resv->iov_len = ((void*)statp) - resv->iov_base + 4;
1214
1215 /* Release reply info */
1216 if (procp->pc_release)
1217 procp->pc_release(rqstp, NULL, rqstp->rq_resp);
1218
1219 if (procp->pc_encode == NULL)
1220 goto dropit;
1221
1222 sendit:
1223 if (svc_authorise(rqstp))
1224 goto dropit;
1225 return 1; /* Caller can now send it */
1226
1227 dropit:
1228 svc_authorise(rqstp); /* doesn't hurt to call this twice */
1229 dprintk("svc: svc_process dropit\n");
1230 return 0;
1231
1232 err_short_len:
1233 svc_printk(rqstp, "short len %Zd, dropping request\n",
1234 argv->iov_len);
1235
1236 goto dropit; /* drop request */
1237
1238 err_bad_rpc:
1239 serv->sv_stats->rpcbadfmt++;
1240 svc_putnl(resv, 1); /* REJECT */
1241 svc_putnl(resv, 0); /* RPC_MISMATCH */
1242 svc_putnl(resv, 2); /* Only RPCv2 supported */
1243 svc_putnl(resv, 2);
1244 goto sendit;
1245
1246 err_bad_auth:
1247 dprintk("svc: authentication failed (%d)\n", ntohl(auth_stat));
1248 serv->sv_stats->rpcbadauth++;
1249 /* Restore write pointer to location of accept status: */
1250 xdr_ressize_check(rqstp, reply_statp);
1251 svc_putnl(resv, 1); /* REJECT */
1252 svc_putnl(resv, 1); /* AUTH_ERROR */
1253 svc_putnl(resv, ntohl(auth_stat)); /* status */
1254 goto sendit;
1255
1256 err_bad_prog:
1257 dprintk("svc: unknown program %d\n", prog);
1258 serv->sv_stats->rpcbadfmt++;
1259 svc_putnl(resv, RPC_PROG_UNAVAIL);
1260 goto sendit;
1261
1262 err_bad_vers:
1263 svc_printk(rqstp, "unknown version (%d for prog %d, %s)\n",
1264 vers, prog, progp->pg_name);
1265
1266 serv->sv_stats->rpcbadfmt++;
1267 svc_putnl(resv, RPC_PROG_MISMATCH);
1268 svc_putnl(resv, progp->pg_lovers);
1269 svc_putnl(resv, progp->pg_hivers);
1270 goto sendit;
1271
1272 err_bad_proc:
1273 svc_printk(rqstp, "unknown procedure (%d)\n", proc);
1274
1275 serv->sv_stats->rpcbadfmt++;
1276 svc_putnl(resv, RPC_PROC_UNAVAIL);
1277 goto sendit;
1278
1279 err_garbage:
1280 svc_printk(rqstp, "failed to decode args\n");
1281
1282 rpc_stat = rpc_garbage_args;
1283 err_bad:
1284 serv->sv_stats->rpcbadfmt++;
1285 svc_putnl(resv, ntohl(rpc_stat));
1286 goto sendit;
1287 }
1288 EXPORT_SYMBOL_GPL(svc_process);
1289
1290 /*
1291 * Process the RPC request.
1292 */
1293 int
1294 svc_process(struct svc_rqst *rqstp)
1295 {
1296 struct kvec *argv = &rqstp->rq_arg.head[0];
1297 struct kvec *resv = &rqstp->rq_res.head[0];
1298 struct svc_serv *serv = rqstp->rq_server;
1299 u32 dir;
1300
1301 /*
1302 * Setup response xdr_buf.
1303 * Initially it has just one page
1304 */
1305 rqstp->rq_resused = 1;
1306 resv->iov_base = page_address(rqstp->rq_respages[0]);
1307 resv->iov_len = 0;
1308 rqstp->rq_res.pages = rqstp->rq_respages + 1;
1309 rqstp->rq_res.len = 0;
1310 rqstp->rq_res.page_base = 0;
1311 rqstp->rq_res.page_len = 0;
1312 rqstp->rq_res.buflen = PAGE_SIZE;
1313 rqstp->rq_res.tail[0].iov_base = NULL;
1314 rqstp->rq_res.tail[0].iov_len = 0;
1315
1316 rqstp->rq_xid = svc_getu32(argv);
1317
1318 dir = svc_getnl(argv);
1319 if (dir != 0) {
1320 /* direction != CALL */
1321 svc_printk(rqstp, "bad direction %d, dropping request\n", dir);
1322 serv->sv_stats->rpcbadfmt++;
1323 svc_drop(rqstp);
1324 return 0;
1325 }
1326
1327 /* Returns 1 for send, 0 for drop */
1328 if (svc_process_common(rqstp, argv, resv))
1329 return svc_send(rqstp);
1330 else {
1331 svc_drop(rqstp);
1332 return 0;
1333 }
1334 }
1335
1336 #if defined(CONFIG_SUNRPC_BACKCHANNEL)
1337 /*
1338 * Process a backchannel RPC request that arrived over an existing
1339 * outbound connection
1340 */
1341 int
1342 bc_svc_process(struct svc_serv *serv, struct rpc_rqst *req,
1343 struct svc_rqst *rqstp)
1344 {
1345 struct kvec *argv = &rqstp->rq_arg.head[0];
1346 struct kvec *resv = &rqstp->rq_res.head[0];
1347
1348 /* Build the svc_rqst used by the common processing routine */
1349 rqstp->rq_xprt = serv->sv_bc_xprt;
1350 rqstp->rq_xid = req->rq_xid;
1351 rqstp->rq_prot = req->rq_xprt->prot;
1352 rqstp->rq_server = serv;
1353
1354 rqstp->rq_addrlen = sizeof(req->rq_xprt->addr);
1355 memcpy(&rqstp->rq_addr, &req->rq_xprt->addr, rqstp->rq_addrlen);
1356 memcpy(&rqstp->rq_arg, &req->rq_rcv_buf, sizeof(rqstp->rq_arg));
1357 memcpy(&rqstp->rq_res, &req->rq_snd_buf, sizeof(rqstp->rq_res));
1358
1359 /* reset result send buffer "put" position */
1360 resv->iov_len = 0;
1361
1362 if (rqstp->rq_prot != IPPROTO_TCP) {
1363 printk(KERN_ERR "No support for Non-TCP transports!\n");
1364 BUG();
1365 }
1366
1367 /*
1368 * Skip the next two words because they've already been
1369 * processed in the trasport
1370 */
1371 svc_getu32(argv); /* XID */
1372 svc_getnl(argv); /* CALLDIR */
1373
1374 /* Returns 1 for send, 0 for drop */
1375 if (svc_process_common(rqstp, argv, resv)) {
1376 memcpy(&req->rq_snd_buf, &rqstp->rq_res,
1377 sizeof(req->rq_snd_buf));
1378 return bc_send(req);
1379 } else {
1380 /* Nothing to do to drop request */
1381 return 0;
1382 }
1383 }
1384 EXPORT_SYMBOL_GPL(bc_svc_process);
1385 #endif /* CONFIG_SUNRPC_BACKCHANNEL */
1386
1387 /*
1388 * Return (transport-specific) limit on the rpc payload.
1389 */
1390 u32 svc_max_payload(const struct svc_rqst *rqstp)
1391 {
1392 u32 max = rqstp->rq_xprt->xpt_class->xcl_max_payload;
1393
1394 if (rqstp->rq_server->sv_max_payload < max)
1395 max = rqstp->rq_server->sv_max_payload;
1396 return max;
1397 }
1398 EXPORT_SYMBOL_GPL(svc_max_payload);