]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - net/sunrpc/svc.c
treewide: use __printf not __attribute__((format(printf,...)))
[mirror_ubuntu-artful-kernel.git] / net / sunrpc / svc.c
1 /*
2 * linux/net/sunrpc/svc.c
3 *
4 * High-level RPC service routines
5 *
6 * Copyright (C) 1995, 1996 Olaf Kirch <okir@monad.swb.de>
7 *
8 * Multiple threads pools and NUMAisation
9 * Copyright (c) 2006 Silicon Graphics, Inc.
10 * by Greg Banks <gnb@melbourne.sgi.com>
11 */
12
13 #include <linux/linkage.h>
14 #include <linux/sched.h>
15 #include <linux/errno.h>
16 #include <linux/net.h>
17 #include <linux/in.h>
18 #include <linux/mm.h>
19 #include <linux/interrupt.h>
20 #include <linux/module.h>
21 #include <linux/kthread.h>
22 #include <linux/slab.h>
23
24 #include <linux/sunrpc/types.h>
25 #include <linux/sunrpc/xdr.h>
26 #include <linux/sunrpc/stats.h>
27 #include <linux/sunrpc/svcsock.h>
28 #include <linux/sunrpc/clnt.h>
29 #include <linux/sunrpc/bc_xprt.h>
30
31 #define RPCDBG_FACILITY RPCDBG_SVCDSP
32
33 static void svc_unregister(const struct svc_serv *serv);
34
35 #define svc_serv_is_pooled(serv) ((serv)->sv_function)
36
37 /*
38 * Mode for mapping cpus to pools.
39 */
40 enum {
41 SVC_POOL_AUTO = -1, /* choose one of the others */
42 SVC_POOL_GLOBAL, /* no mapping, just a single global pool
43 * (legacy & UP mode) */
44 SVC_POOL_PERCPU, /* one pool per cpu */
45 SVC_POOL_PERNODE /* one pool per numa node */
46 };
47 #define SVC_POOL_DEFAULT SVC_POOL_GLOBAL
48
49 /*
50 * Structure for mapping cpus to pools and vice versa.
51 * Setup once during sunrpc initialisation.
52 */
53 static struct svc_pool_map {
54 int count; /* How many svc_servs use us */
55 int mode; /* Note: int not enum to avoid
56 * warnings about "enumeration value
57 * not handled in switch" */
58 unsigned int npools;
59 unsigned int *pool_to; /* maps pool id to cpu or node */
60 unsigned int *to_pool; /* maps cpu or node to pool id */
61 } svc_pool_map = {
62 .count = 0,
63 .mode = SVC_POOL_DEFAULT
64 };
65 static DEFINE_MUTEX(svc_pool_map_mutex);/* protects svc_pool_map.count only */
66
67 static int
68 param_set_pool_mode(const char *val, struct kernel_param *kp)
69 {
70 int *ip = (int *)kp->arg;
71 struct svc_pool_map *m = &svc_pool_map;
72 int err;
73
74 mutex_lock(&svc_pool_map_mutex);
75
76 err = -EBUSY;
77 if (m->count)
78 goto out;
79
80 err = 0;
81 if (!strncmp(val, "auto", 4))
82 *ip = SVC_POOL_AUTO;
83 else if (!strncmp(val, "global", 6))
84 *ip = SVC_POOL_GLOBAL;
85 else if (!strncmp(val, "percpu", 6))
86 *ip = SVC_POOL_PERCPU;
87 else if (!strncmp(val, "pernode", 7))
88 *ip = SVC_POOL_PERNODE;
89 else
90 err = -EINVAL;
91
92 out:
93 mutex_unlock(&svc_pool_map_mutex);
94 return err;
95 }
96
97 static int
98 param_get_pool_mode(char *buf, struct kernel_param *kp)
99 {
100 int *ip = (int *)kp->arg;
101
102 switch (*ip)
103 {
104 case SVC_POOL_AUTO:
105 return strlcpy(buf, "auto", 20);
106 case SVC_POOL_GLOBAL:
107 return strlcpy(buf, "global", 20);
108 case SVC_POOL_PERCPU:
109 return strlcpy(buf, "percpu", 20);
110 case SVC_POOL_PERNODE:
111 return strlcpy(buf, "pernode", 20);
112 default:
113 return sprintf(buf, "%d", *ip);
114 }
115 }
116
117 module_param_call(pool_mode, param_set_pool_mode, param_get_pool_mode,
118 &svc_pool_map.mode, 0644);
119
120 /*
121 * Detect best pool mapping mode heuristically,
122 * according to the machine's topology.
123 */
124 static int
125 svc_pool_map_choose_mode(void)
126 {
127 unsigned int node;
128
129 if (nr_online_nodes > 1) {
130 /*
131 * Actually have multiple NUMA nodes,
132 * so split pools on NUMA node boundaries
133 */
134 return SVC_POOL_PERNODE;
135 }
136
137 node = first_online_node;
138 if (nr_cpus_node(node) > 2) {
139 /*
140 * Non-trivial SMP, or CONFIG_NUMA on
141 * non-NUMA hardware, e.g. with a generic
142 * x86_64 kernel on Xeons. In this case we
143 * want to divide the pools on cpu boundaries.
144 */
145 return SVC_POOL_PERCPU;
146 }
147
148 /* default: one global pool */
149 return SVC_POOL_GLOBAL;
150 }
151
152 /*
153 * Allocate the to_pool[] and pool_to[] arrays.
154 * Returns 0 on success or an errno.
155 */
156 static int
157 svc_pool_map_alloc_arrays(struct svc_pool_map *m, unsigned int maxpools)
158 {
159 m->to_pool = kcalloc(maxpools, sizeof(unsigned int), GFP_KERNEL);
160 if (!m->to_pool)
161 goto fail;
162 m->pool_to = kcalloc(maxpools, sizeof(unsigned int), GFP_KERNEL);
163 if (!m->pool_to)
164 goto fail_free;
165
166 return 0;
167
168 fail_free:
169 kfree(m->to_pool);
170 fail:
171 return -ENOMEM;
172 }
173
174 /*
175 * Initialise the pool map for SVC_POOL_PERCPU mode.
176 * Returns number of pools or <0 on error.
177 */
178 static int
179 svc_pool_map_init_percpu(struct svc_pool_map *m)
180 {
181 unsigned int maxpools = nr_cpu_ids;
182 unsigned int pidx = 0;
183 unsigned int cpu;
184 int err;
185
186 err = svc_pool_map_alloc_arrays(m, maxpools);
187 if (err)
188 return err;
189
190 for_each_online_cpu(cpu) {
191 BUG_ON(pidx > maxpools);
192 m->to_pool[cpu] = pidx;
193 m->pool_to[pidx] = cpu;
194 pidx++;
195 }
196 /* cpus brought online later all get mapped to pool0, sorry */
197
198 return pidx;
199 };
200
201
202 /*
203 * Initialise the pool map for SVC_POOL_PERNODE mode.
204 * Returns number of pools or <0 on error.
205 */
206 static int
207 svc_pool_map_init_pernode(struct svc_pool_map *m)
208 {
209 unsigned int maxpools = nr_node_ids;
210 unsigned int pidx = 0;
211 unsigned int node;
212 int err;
213
214 err = svc_pool_map_alloc_arrays(m, maxpools);
215 if (err)
216 return err;
217
218 for_each_node_with_cpus(node) {
219 /* some architectures (e.g. SN2) have cpuless nodes */
220 BUG_ON(pidx > maxpools);
221 m->to_pool[node] = pidx;
222 m->pool_to[pidx] = node;
223 pidx++;
224 }
225 /* nodes brought online later all get mapped to pool0, sorry */
226
227 return pidx;
228 }
229
230
231 /*
232 * Add a reference to the global map of cpus to pools (and
233 * vice versa). Initialise the map if we're the first user.
234 * Returns the number of pools.
235 */
236 static unsigned int
237 svc_pool_map_get(void)
238 {
239 struct svc_pool_map *m = &svc_pool_map;
240 int npools = -1;
241
242 mutex_lock(&svc_pool_map_mutex);
243
244 if (m->count++) {
245 mutex_unlock(&svc_pool_map_mutex);
246 return m->npools;
247 }
248
249 if (m->mode == SVC_POOL_AUTO)
250 m->mode = svc_pool_map_choose_mode();
251
252 switch (m->mode) {
253 case SVC_POOL_PERCPU:
254 npools = svc_pool_map_init_percpu(m);
255 break;
256 case SVC_POOL_PERNODE:
257 npools = svc_pool_map_init_pernode(m);
258 break;
259 }
260
261 if (npools < 0) {
262 /* default, or memory allocation failure */
263 npools = 1;
264 m->mode = SVC_POOL_GLOBAL;
265 }
266 m->npools = npools;
267
268 mutex_unlock(&svc_pool_map_mutex);
269 return m->npools;
270 }
271
272
273 /*
274 * Drop a reference to the global map of cpus to pools.
275 * When the last reference is dropped, the map data is
276 * freed; this allows the sysadmin to change the pool
277 * mode using the pool_mode module option without
278 * rebooting or re-loading sunrpc.ko.
279 */
280 static void
281 svc_pool_map_put(void)
282 {
283 struct svc_pool_map *m = &svc_pool_map;
284
285 mutex_lock(&svc_pool_map_mutex);
286
287 if (!--m->count) {
288 m->mode = SVC_POOL_DEFAULT;
289 kfree(m->to_pool);
290 kfree(m->pool_to);
291 m->npools = 0;
292 }
293
294 mutex_unlock(&svc_pool_map_mutex);
295 }
296
297
298 static int svc_pool_map_get_node(unsigned int pidx)
299 {
300 const struct svc_pool_map *m = &svc_pool_map;
301
302 if (m->count) {
303 if (m->mode == SVC_POOL_PERCPU)
304 return cpu_to_node(m->pool_to[pidx]);
305 if (m->mode == SVC_POOL_PERNODE)
306 return m->pool_to[pidx];
307 }
308 return NUMA_NO_NODE;
309 }
310 /*
311 * Set the given thread's cpus_allowed mask so that it
312 * will only run on cpus in the given pool.
313 */
314 static inline void
315 svc_pool_map_set_cpumask(struct task_struct *task, unsigned int pidx)
316 {
317 struct svc_pool_map *m = &svc_pool_map;
318 unsigned int node = m->pool_to[pidx];
319
320 /*
321 * The caller checks for sv_nrpools > 1, which
322 * implies that we've been initialized.
323 */
324 BUG_ON(m->count == 0);
325
326 switch (m->mode) {
327 case SVC_POOL_PERCPU:
328 {
329 set_cpus_allowed_ptr(task, cpumask_of(node));
330 break;
331 }
332 case SVC_POOL_PERNODE:
333 {
334 set_cpus_allowed_ptr(task, cpumask_of_node(node));
335 break;
336 }
337 }
338 }
339
340 /*
341 * Use the mapping mode to choose a pool for a given CPU.
342 * Used when enqueueing an incoming RPC. Always returns
343 * a non-NULL pool pointer.
344 */
345 struct svc_pool *
346 svc_pool_for_cpu(struct svc_serv *serv, int cpu)
347 {
348 struct svc_pool_map *m = &svc_pool_map;
349 unsigned int pidx = 0;
350
351 /*
352 * An uninitialised map happens in a pure client when
353 * lockd is brought up, so silently treat it the
354 * same as SVC_POOL_GLOBAL.
355 */
356 if (svc_serv_is_pooled(serv)) {
357 switch (m->mode) {
358 case SVC_POOL_PERCPU:
359 pidx = m->to_pool[cpu];
360 break;
361 case SVC_POOL_PERNODE:
362 pidx = m->to_pool[cpu_to_node(cpu)];
363 break;
364 }
365 }
366 return &serv->sv_pools[pidx % serv->sv_nrpools];
367 }
368
369
370 /*
371 * Create an RPC service
372 */
373 static struct svc_serv *
374 __svc_create(struct svc_program *prog, unsigned int bufsize, int npools,
375 void (*shutdown)(struct svc_serv *serv))
376 {
377 struct svc_serv *serv;
378 unsigned int vers;
379 unsigned int xdrsize;
380 unsigned int i;
381
382 if (!(serv = kzalloc(sizeof(*serv), GFP_KERNEL)))
383 return NULL;
384 serv->sv_name = prog->pg_name;
385 serv->sv_program = prog;
386 serv->sv_nrthreads = 1;
387 serv->sv_stats = prog->pg_stats;
388 if (bufsize > RPCSVC_MAXPAYLOAD)
389 bufsize = RPCSVC_MAXPAYLOAD;
390 serv->sv_max_payload = bufsize? bufsize : 4096;
391 serv->sv_max_mesg = roundup(serv->sv_max_payload + PAGE_SIZE, PAGE_SIZE);
392 serv->sv_shutdown = shutdown;
393 xdrsize = 0;
394 while (prog) {
395 prog->pg_lovers = prog->pg_nvers-1;
396 for (vers=0; vers<prog->pg_nvers ; vers++)
397 if (prog->pg_vers[vers]) {
398 prog->pg_hivers = vers;
399 if (prog->pg_lovers > vers)
400 prog->pg_lovers = vers;
401 if (prog->pg_vers[vers]->vs_xdrsize > xdrsize)
402 xdrsize = prog->pg_vers[vers]->vs_xdrsize;
403 }
404 prog = prog->pg_next;
405 }
406 serv->sv_xdrsize = xdrsize;
407 INIT_LIST_HEAD(&serv->sv_tempsocks);
408 INIT_LIST_HEAD(&serv->sv_permsocks);
409 init_timer(&serv->sv_temptimer);
410 spin_lock_init(&serv->sv_lock);
411
412 serv->sv_nrpools = npools;
413 serv->sv_pools =
414 kcalloc(serv->sv_nrpools, sizeof(struct svc_pool),
415 GFP_KERNEL);
416 if (!serv->sv_pools) {
417 kfree(serv);
418 return NULL;
419 }
420
421 for (i = 0; i < serv->sv_nrpools; i++) {
422 struct svc_pool *pool = &serv->sv_pools[i];
423
424 dprintk("svc: initialising pool %u for %s\n",
425 i, serv->sv_name);
426
427 pool->sp_id = i;
428 INIT_LIST_HEAD(&pool->sp_threads);
429 INIT_LIST_HEAD(&pool->sp_sockets);
430 INIT_LIST_HEAD(&pool->sp_all_threads);
431 spin_lock_init(&pool->sp_lock);
432 }
433
434 /* Remove any stale portmap registrations */
435 svc_unregister(serv);
436
437 return serv;
438 }
439
440 struct svc_serv *
441 svc_create(struct svc_program *prog, unsigned int bufsize,
442 void (*shutdown)(struct svc_serv *serv))
443 {
444 return __svc_create(prog, bufsize, /*npools*/1, shutdown);
445 }
446 EXPORT_SYMBOL_GPL(svc_create);
447
448 struct svc_serv *
449 svc_create_pooled(struct svc_program *prog, unsigned int bufsize,
450 void (*shutdown)(struct svc_serv *serv),
451 svc_thread_fn func, struct module *mod)
452 {
453 struct svc_serv *serv;
454 unsigned int npools = svc_pool_map_get();
455
456 serv = __svc_create(prog, bufsize, npools, shutdown);
457
458 if (serv != NULL) {
459 serv->sv_function = func;
460 serv->sv_module = mod;
461 }
462
463 return serv;
464 }
465 EXPORT_SYMBOL_GPL(svc_create_pooled);
466
467 /*
468 * Destroy an RPC service. Should be called with appropriate locking to
469 * protect the sv_nrthreads, sv_permsocks and sv_tempsocks.
470 */
471 void
472 svc_destroy(struct svc_serv *serv)
473 {
474 dprintk("svc: svc_destroy(%s, %d)\n",
475 serv->sv_program->pg_name,
476 serv->sv_nrthreads);
477
478 if (serv->sv_nrthreads) {
479 if (--(serv->sv_nrthreads) != 0) {
480 svc_sock_update_bufs(serv);
481 return;
482 }
483 } else
484 printk("svc_destroy: no threads for serv=%p!\n", serv);
485
486 del_timer_sync(&serv->sv_temptimer);
487
488 svc_close_all(&serv->sv_tempsocks);
489
490 if (serv->sv_shutdown)
491 serv->sv_shutdown(serv);
492
493 svc_close_all(&serv->sv_permsocks);
494
495 BUG_ON(!list_empty(&serv->sv_permsocks));
496 BUG_ON(!list_empty(&serv->sv_tempsocks));
497
498 cache_clean_deferred(serv);
499
500 if (svc_serv_is_pooled(serv))
501 svc_pool_map_put();
502
503 svc_unregister(serv);
504 kfree(serv->sv_pools);
505 kfree(serv);
506 }
507 EXPORT_SYMBOL_GPL(svc_destroy);
508
509 /*
510 * Allocate an RPC server's buffer space.
511 * We allocate pages and place them in rq_argpages.
512 */
513 static int
514 svc_init_buffer(struct svc_rqst *rqstp, unsigned int size, int node)
515 {
516 unsigned int pages, arghi;
517
518 /* bc_xprt uses fore channel allocated buffers */
519 if (svc_is_backchannel(rqstp))
520 return 1;
521
522 pages = size / PAGE_SIZE + 1; /* extra page as we hold both request and reply.
523 * We assume one is at most one page
524 */
525 arghi = 0;
526 BUG_ON(pages > RPCSVC_MAXPAGES);
527 while (pages) {
528 struct page *p = alloc_pages_node(node, GFP_KERNEL, 0);
529 if (!p)
530 break;
531 rqstp->rq_pages[arghi++] = p;
532 pages--;
533 }
534 return pages == 0;
535 }
536
537 /*
538 * Release an RPC server buffer
539 */
540 static void
541 svc_release_buffer(struct svc_rqst *rqstp)
542 {
543 unsigned int i;
544
545 for (i = 0; i < ARRAY_SIZE(rqstp->rq_pages); i++)
546 if (rqstp->rq_pages[i])
547 put_page(rqstp->rq_pages[i]);
548 }
549
550 struct svc_rqst *
551 svc_prepare_thread(struct svc_serv *serv, struct svc_pool *pool, int node)
552 {
553 struct svc_rqst *rqstp;
554
555 rqstp = kzalloc_node(sizeof(*rqstp), GFP_KERNEL, node);
556 if (!rqstp)
557 goto out_enomem;
558
559 init_waitqueue_head(&rqstp->rq_wait);
560
561 serv->sv_nrthreads++;
562 spin_lock_bh(&pool->sp_lock);
563 pool->sp_nrthreads++;
564 list_add(&rqstp->rq_all, &pool->sp_all_threads);
565 spin_unlock_bh(&pool->sp_lock);
566 rqstp->rq_server = serv;
567 rqstp->rq_pool = pool;
568
569 rqstp->rq_argp = kmalloc_node(serv->sv_xdrsize, GFP_KERNEL, node);
570 if (!rqstp->rq_argp)
571 goto out_thread;
572
573 rqstp->rq_resp = kmalloc_node(serv->sv_xdrsize, GFP_KERNEL, node);
574 if (!rqstp->rq_resp)
575 goto out_thread;
576
577 if (!svc_init_buffer(rqstp, serv->sv_max_mesg, node))
578 goto out_thread;
579
580 return rqstp;
581 out_thread:
582 svc_exit_thread(rqstp);
583 out_enomem:
584 return ERR_PTR(-ENOMEM);
585 }
586 EXPORT_SYMBOL_GPL(svc_prepare_thread);
587
588 /*
589 * Choose a pool in which to create a new thread, for svc_set_num_threads
590 */
591 static inline struct svc_pool *
592 choose_pool(struct svc_serv *serv, struct svc_pool *pool, unsigned int *state)
593 {
594 if (pool != NULL)
595 return pool;
596
597 return &serv->sv_pools[(*state)++ % serv->sv_nrpools];
598 }
599
600 /*
601 * Choose a thread to kill, for svc_set_num_threads
602 */
603 static inline struct task_struct *
604 choose_victim(struct svc_serv *serv, struct svc_pool *pool, unsigned int *state)
605 {
606 unsigned int i;
607 struct task_struct *task = NULL;
608
609 if (pool != NULL) {
610 spin_lock_bh(&pool->sp_lock);
611 } else {
612 /* choose a pool in round-robin fashion */
613 for (i = 0; i < serv->sv_nrpools; i++) {
614 pool = &serv->sv_pools[--(*state) % serv->sv_nrpools];
615 spin_lock_bh(&pool->sp_lock);
616 if (!list_empty(&pool->sp_all_threads))
617 goto found_pool;
618 spin_unlock_bh(&pool->sp_lock);
619 }
620 return NULL;
621 }
622
623 found_pool:
624 if (!list_empty(&pool->sp_all_threads)) {
625 struct svc_rqst *rqstp;
626
627 /*
628 * Remove from the pool->sp_all_threads list
629 * so we don't try to kill it again.
630 */
631 rqstp = list_entry(pool->sp_all_threads.next, struct svc_rqst, rq_all);
632 list_del_init(&rqstp->rq_all);
633 task = rqstp->rq_task;
634 }
635 spin_unlock_bh(&pool->sp_lock);
636
637 return task;
638 }
639
640 /*
641 * Create or destroy enough new threads to make the number
642 * of threads the given number. If `pool' is non-NULL, applies
643 * only to threads in that pool, otherwise round-robins between
644 * all pools. Must be called with a svc_get() reference and
645 * the BKL or another lock to protect access to svc_serv fields.
646 *
647 * Destroying threads relies on the service threads filling in
648 * rqstp->rq_task, which only the nfs ones do. Assumes the serv
649 * has been created using svc_create_pooled().
650 *
651 * Based on code that used to be in nfsd_svc() but tweaked
652 * to be pool-aware.
653 */
654 int
655 svc_set_num_threads(struct svc_serv *serv, struct svc_pool *pool, int nrservs)
656 {
657 struct svc_rqst *rqstp;
658 struct task_struct *task;
659 struct svc_pool *chosen_pool;
660 int error = 0;
661 unsigned int state = serv->sv_nrthreads-1;
662 int node;
663
664 if (pool == NULL) {
665 /* The -1 assumes caller has done a svc_get() */
666 nrservs -= (serv->sv_nrthreads-1);
667 } else {
668 spin_lock_bh(&pool->sp_lock);
669 nrservs -= pool->sp_nrthreads;
670 spin_unlock_bh(&pool->sp_lock);
671 }
672
673 /* create new threads */
674 while (nrservs > 0) {
675 nrservs--;
676 chosen_pool = choose_pool(serv, pool, &state);
677
678 node = svc_pool_map_get_node(chosen_pool->sp_id);
679 rqstp = svc_prepare_thread(serv, chosen_pool, node);
680 if (IS_ERR(rqstp)) {
681 error = PTR_ERR(rqstp);
682 break;
683 }
684
685 __module_get(serv->sv_module);
686 task = kthread_create_on_node(serv->sv_function, rqstp,
687 node, serv->sv_name);
688 if (IS_ERR(task)) {
689 error = PTR_ERR(task);
690 module_put(serv->sv_module);
691 svc_exit_thread(rqstp);
692 break;
693 }
694
695 rqstp->rq_task = task;
696 if (serv->sv_nrpools > 1)
697 svc_pool_map_set_cpumask(task, chosen_pool->sp_id);
698
699 svc_sock_update_bufs(serv);
700 wake_up_process(task);
701 }
702 /* destroy old threads */
703 while (nrservs < 0 &&
704 (task = choose_victim(serv, pool, &state)) != NULL) {
705 send_sig(SIGINT, task, 1);
706 nrservs++;
707 }
708
709 return error;
710 }
711 EXPORT_SYMBOL_GPL(svc_set_num_threads);
712
713 /*
714 * Called from a server thread as it's exiting. Caller must hold the BKL or
715 * the "service mutex", whichever is appropriate for the service.
716 */
717 void
718 svc_exit_thread(struct svc_rqst *rqstp)
719 {
720 struct svc_serv *serv = rqstp->rq_server;
721 struct svc_pool *pool = rqstp->rq_pool;
722
723 svc_release_buffer(rqstp);
724 kfree(rqstp->rq_resp);
725 kfree(rqstp->rq_argp);
726 kfree(rqstp->rq_auth_data);
727
728 spin_lock_bh(&pool->sp_lock);
729 pool->sp_nrthreads--;
730 list_del(&rqstp->rq_all);
731 spin_unlock_bh(&pool->sp_lock);
732
733 kfree(rqstp);
734
735 /* Release the server */
736 if (serv)
737 svc_destroy(serv);
738 }
739 EXPORT_SYMBOL_GPL(svc_exit_thread);
740
741 /*
742 * Register an "inet" protocol family netid with the local
743 * rpcbind daemon via an rpcbind v4 SET request.
744 *
745 * No netconfig infrastructure is available in the kernel, so
746 * we map IP_ protocol numbers to netids by hand.
747 *
748 * Returns zero on success; a negative errno value is returned
749 * if any error occurs.
750 */
751 static int __svc_rpcb_register4(const u32 program, const u32 version,
752 const unsigned short protocol,
753 const unsigned short port)
754 {
755 const struct sockaddr_in sin = {
756 .sin_family = AF_INET,
757 .sin_addr.s_addr = htonl(INADDR_ANY),
758 .sin_port = htons(port),
759 };
760 const char *netid;
761 int error;
762
763 switch (protocol) {
764 case IPPROTO_UDP:
765 netid = RPCBIND_NETID_UDP;
766 break;
767 case IPPROTO_TCP:
768 netid = RPCBIND_NETID_TCP;
769 break;
770 default:
771 return -ENOPROTOOPT;
772 }
773
774 error = rpcb_v4_register(program, version,
775 (const struct sockaddr *)&sin, netid);
776
777 /*
778 * User space didn't support rpcbind v4, so retry this
779 * registration request with the legacy rpcbind v2 protocol.
780 */
781 if (error == -EPROTONOSUPPORT)
782 error = rpcb_register(program, version, protocol, port);
783
784 return error;
785 }
786
787 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
788 /*
789 * Register an "inet6" protocol family netid with the local
790 * rpcbind daemon via an rpcbind v4 SET request.
791 *
792 * No netconfig infrastructure is available in the kernel, so
793 * we map IP_ protocol numbers to netids by hand.
794 *
795 * Returns zero on success; a negative errno value is returned
796 * if any error occurs.
797 */
798 static int __svc_rpcb_register6(const u32 program, const u32 version,
799 const unsigned short protocol,
800 const unsigned short port)
801 {
802 const struct sockaddr_in6 sin6 = {
803 .sin6_family = AF_INET6,
804 .sin6_addr = IN6ADDR_ANY_INIT,
805 .sin6_port = htons(port),
806 };
807 const char *netid;
808 int error;
809
810 switch (protocol) {
811 case IPPROTO_UDP:
812 netid = RPCBIND_NETID_UDP6;
813 break;
814 case IPPROTO_TCP:
815 netid = RPCBIND_NETID_TCP6;
816 break;
817 default:
818 return -ENOPROTOOPT;
819 }
820
821 error = rpcb_v4_register(program, version,
822 (const struct sockaddr *)&sin6, netid);
823
824 /*
825 * User space didn't support rpcbind version 4, so we won't
826 * use a PF_INET6 listener.
827 */
828 if (error == -EPROTONOSUPPORT)
829 error = -EAFNOSUPPORT;
830
831 return error;
832 }
833 #endif /* defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE) */
834
835 /*
836 * Register a kernel RPC service via rpcbind version 4.
837 *
838 * Returns zero on success; a negative errno value is returned
839 * if any error occurs.
840 */
841 static int __svc_register(const char *progname,
842 const u32 program, const u32 version,
843 const int family,
844 const unsigned short protocol,
845 const unsigned short port)
846 {
847 int error = -EAFNOSUPPORT;
848
849 switch (family) {
850 case PF_INET:
851 error = __svc_rpcb_register4(program, version,
852 protocol, port);
853 break;
854 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
855 case PF_INET6:
856 error = __svc_rpcb_register6(program, version,
857 protocol, port);
858 #endif /* defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE) */
859 }
860
861 if (error < 0)
862 printk(KERN_WARNING "svc: failed to register %sv%u RPC "
863 "service (errno %d).\n", progname, version, -error);
864 return error;
865 }
866
867 /**
868 * svc_register - register an RPC service with the local portmapper
869 * @serv: svc_serv struct for the service to register
870 * @family: protocol family of service's listener socket
871 * @proto: transport protocol number to advertise
872 * @port: port to advertise
873 *
874 * Service is registered for any address in the passed-in protocol family
875 */
876 int svc_register(const struct svc_serv *serv, const int family,
877 const unsigned short proto, const unsigned short port)
878 {
879 struct svc_program *progp;
880 unsigned int i;
881 int error = 0;
882
883 BUG_ON(proto == 0 && port == 0);
884
885 for (progp = serv->sv_program; progp; progp = progp->pg_next) {
886 for (i = 0; i < progp->pg_nvers; i++) {
887 if (progp->pg_vers[i] == NULL)
888 continue;
889
890 dprintk("svc: svc_register(%sv%d, %s, %u, %u)%s\n",
891 progp->pg_name,
892 i,
893 proto == IPPROTO_UDP? "udp" : "tcp",
894 port,
895 family,
896 progp->pg_vers[i]->vs_hidden?
897 " (but not telling portmap)" : "");
898
899 if (progp->pg_vers[i]->vs_hidden)
900 continue;
901
902 error = __svc_register(progp->pg_name, progp->pg_prog,
903 i, family, proto, port);
904 if (error < 0)
905 break;
906 }
907 }
908
909 return error;
910 }
911
912 /*
913 * If user space is running rpcbind, it should take the v4 UNSET
914 * and clear everything for this [program, version]. If user space
915 * is running portmap, it will reject the v4 UNSET, but won't have
916 * any "inet6" entries anyway. So a PMAP_UNSET should be sufficient
917 * in this case to clear all existing entries for [program, version].
918 */
919 static void __svc_unregister(const u32 program, const u32 version,
920 const char *progname)
921 {
922 int error;
923
924 error = rpcb_v4_register(program, version, NULL, "");
925
926 /*
927 * User space didn't support rpcbind v4, so retry this
928 * request with the legacy rpcbind v2 protocol.
929 */
930 if (error == -EPROTONOSUPPORT)
931 error = rpcb_register(program, version, 0, 0);
932
933 dprintk("svc: %s(%sv%u), error %d\n",
934 __func__, progname, version, error);
935 }
936
937 /*
938 * All netids, bind addresses and ports registered for [program, version]
939 * are removed from the local rpcbind database (if the service is not
940 * hidden) to make way for a new instance of the service.
941 *
942 * The result of unregistration is reported via dprintk for those who want
943 * verification of the result, but is otherwise not important.
944 */
945 static void svc_unregister(const struct svc_serv *serv)
946 {
947 struct svc_program *progp;
948 unsigned long flags;
949 unsigned int i;
950
951 clear_thread_flag(TIF_SIGPENDING);
952
953 for (progp = serv->sv_program; progp; progp = progp->pg_next) {
954 for (i = 0; i < progp->pg_nvers; i++) {
955 if (progp->pg_vers[i] == NULL)
956 continue;
957 if (progp->pg_vers[i]->vs_hidden)
958 continue;
959
960 dprintk("svc: attempting to unregister %sv%u\n",
961 progp->pg_name, i);
962 __svc_unregister(progp->pg_prog, i, progp->pg_name);
963 }
964 }
965
966 spin_lock_irqsave(&current->sighand->siglock, flags);
967 recalc_sigpending();
968 spin_unlock_irqrestore(&current->sighand->siglock, flags);
969 }
970
971 /*
972 * Printk the given error with the address of the client that caused it.
973 */
974 static __printf(2, 3)
975 int svc_printk(struct svc_rqst *rqstp, const char *fmt, ...)
976 {
977 va_list args;
978 int r;
979 char buf[RPC_MAX_ADDRBUFLEN];
980
981 if (!net_ratelimit())
982 return 0;
983
984 printk(KERN_WARNING "svc: %s: ",
985 svc_print_addr(rqstp, buf, sizeof(buf)));
986
987 va_start(args, fmt);
988 r = vprintk(fmt, args);
989 va_end(args);
990
991 return r;
992 }
993
994 /*
995 * Common routine for processing the RPC request.
996 */
997 static int
998 svc_process_common(struct svc_rqst *rqstp, struct kvec *argv, struct kvec *resv)
999 {
1000 struct svc_program *progp;
1001 struct svc_version *versp = NULL; /* compiler food */
1002 struct svc_procedure *procp = NULL;
1003 struct svc_serv *serv = rqstp->rq_server;
1004 kxdrproc_t xdr;
1005 __be32 *statp;
1006 u32 prog, vers, proc;
1007 __be32 auth_stat, rpc_stat;
1008 int auth_res;
1009 __be32 *reply_statp;
1010
1011 rpc_stat = rpc_success;
1012
1013 if (argv->iov_len < 6*4)
1014 goto err_short_len;
1015
1016 /* Will be turned off only in gss privacy case: */
1017 rqstp->rq_splice_ok = 1;
1018 /* Will be turned off only when NFSv4 Sessions are used */
1019 rqstp->rq_usedeferral = 1;
1020 rqstp->rq_dropme = false;
1021
1022 /* Setup reply header */
1023 rqstp->rq_xprt->xpt_ops->xpo_prep_reply_hdr(rqstp);
1024
1025 svc_putu32(resv, rqstp->rq_xid);
1026
1027 vers = svc_getnl(argv);
1028
1029 /* First words of reply: */
1030 svc_putnl(resv, 1); /* REPLY */
1031
1032 if (vers != 2) /* RPC version number */
1033 goto err_bad_rpc;
1034
1035 /* Save position in case we later decide to reject: */
1036 reply_statp = resv->iov_base + resv->iov_len;
1037
1038 svc_putnl(resv, 0); /* ACCEPT */
1039
1040 rqstp->rq_prog = prog = svc_getnl(argv); /* program number */
1041 rqstp->rq_vers = vers = svc_getnl(argv); /* version number */
1042 rqstp->rq_proc = proc = svc_getnl(argv); /* procedure number */
1043
1044 progp = serv->sv_program;
1045
1046 for (progp = serv->sv_program; progp; progp = progp->pg_next)
1047 if (prog == progp->pg_prog)
1048 break;
1049
1050 /*
1051 * Decode auth data, and add verifier to reply buffer.
1052 * We do this before anything else in order to get a decent
1053 * auth verifier.
1054 */
1055 auth_res = svc_authenticate(rqstp, &auth_stat);
1056 /* Also give the program a chance to reject this call: */
1057 if (auth_res == SVC_OK && progp) {
1058 auth_stat = rpc_autherr_badcred;
1059 auth_res = progp->pg_authenticate(rqstp);
1060 }
1061 switch (auth_res) {
1062 case SVC_OK:
1063 break;
1064 case SVC_GARBAGE:
1065 goto err_garbage;
1066 case SVC_SYSERR:
1067 rpc_stat = rpc_system_err;
1068 goto err_bad;
1069 case SVC_DENIED:
1070 goto err_bad_auth;
1071 case SVC_CLOSE:
1072 if (test_bit(XPT_TEMP, &rqstp->rq_xprt->xpt_flags))
1073 svc_close_xprt(rqstp->rq_xprt);
1074 case SVC_DROP:
1075 goto dropit;
1076 case SVC_COMPLETE:
1077 goto sendit;
1078 }
1079
1080 if (progp == NULL)
1081 goto err_bad_prog;
1082
1083 if (vers >= progp->pg_nvers ||
1084 !(versp = progp->pg_vers[vers]))
1085 goto err_bad_vers;
1086
1087 procp = versp->vs_proc + proc;
1088 if (proc >= versp->vs_nproc || !procp->pc_func)
1089 goto err_bad_proc;
1090 rqstp->rq_procinfo = procp;
1091
1092 /* Syntactic check complete */
1093 serv->sv_stats->rpccnt++;
1094
1095 /* Build the reply header. */
1096 statp = resv->iov_base +resv->iov_len;
1097 svc_putnl(resv, RPC_SUCCESS);
1098
1099 /* Bump per-procedure stats counter */
1100 procp->pc_count++;
1101
1102 /* Initialize storage for argp and resp */
1103 memset(rqstp->rq_argp, 0, procp->pc_argsize);
1104 memset(rqstp->rq_resp, 0, procp->pc_ressize);
1105
1106 /* un-reserve some of the out-queue now that we have a
1107 * better idea of reply size
1108 */
1109 if (procp->pc_xdrressize)
1110 svc_reserve_auth(rqstp, procp->pc_xdrressize<<2);
1111
1112 /* Call the function that processes the request. */
1113 if (!versp->vs_dispatch) {
1114 /* Decode arguments */
1115 xdr = procp->pc_decode;
1116 if (xdr && !xdr(rqstp, argv->iov_base, rqstp->rq_argp))
1117 goto err_garbage;
1118
1119 *statp = procp->pc_func(rqstp, rqstp->rq_argp, rqstp->rq_resp);
1120
1121 /* Encode reply */
1122 if (rqstp->rq_dropme) {
1123 if (procp->pc_release)
1124 procp->pc_release(rqstp, NULL, rqstp->rq_resp);
1125 goto dropit;
1126 }
1127 if (*statp == rpc_success &&
1128 (xdr = procp->pc_encode) &&
1129 !xdr(rqstp, resv->iov_base+resv->iov_len, rqstp->rq_resp)) {
1130 dprintk("svc: failed to encode reply\n");
1131 /* serv->sv_stats->rpcsystemerr++; */
1132 *statp = rpc_system_err;
1133 }
1134 } else {
1135 dprintk("svc: calling dispatcher\n");
1136 if (!versp->vs_dispatch(rqstp, statp)) {
1137 /* Release reply info */
1138 if (procp->pc_release)
1139 procp->pc_release(rqstp, NULL, rqstp->rq_resp);
1140 goto dropit;
1141 }
1142 }
1143
1144 /* Check RPC status result */
1145 if (*statp != rpc_success)
1146 resv->iov_len = ((void*)statp) - resv->iov_base + 4;
1147
1148 /* Release reply info */
1149 if (procp->pc_release)
1150 procp->pc_release(rqstp, NULL, rqstp->rq_resp);
1151
1152 if (procp->pc_encode == NULL)
1153 goto dropit;
1154
1155 sendit:
1156 if (svc_authorise(rqstp))
1157 goto dropit;
1158 return 1; /* Caller can now send it */
1159
1160 dropit:
1161 svc_authorise(rqstp); /* doesn't hurt to call this twice */
1162 dprintk("svc: svc_process dropit\n");
1163 return 0;
1164
1165 err_short_len:
1166 svc_printk(rqstp, "short len %Zd, dropping request\n",
1167 argv->iov_len);
1168
1169 goto dropit; /* drop request */
1170
1171 err_bad_rpc:
1172 serv->sv_stats->rpcbadfmt++;
1173 svc_putnl(resv, 1); /* REJECT */
1174 svc_putnl(resv, 0); /* RPC_MISMATCH */
1175 svc_putnl(resv, 2); /* Only RPCv2 supported */
1176 svc_putnl(resv, 2);
1177 goto sendit;
1178
1179 err_bad_auth:
1180 dprintk("svc: authentication failed (%d)\n", ntohl(auth_stat));
1181 serv->sv_stats->rpcbadauth++;
1182 /* Restore write pointer to location of accept status: */
1183 xdr_ressize_check(rqstp, reply_statp);
1184 svc_putnl(resv, 1); /* REJECT */
1185 svc_putnl(resv, 1); /* AUTH_ERROR */
1186 svc_putnl(resv, ntohl(auth_stat)); /* status */
1187 goto sendit;
1188
1189 err_bad_prog:
1190 dprintk("svc: unknown program %d\n", prog);
1191 serv->sv_stats->rpcbadfmt++;
1192 svc_putnl(resv, RPC_PROG_UNAVAIL);
1193 goto sendit;
1194
1195 err_bad_vers:
1196 svc_printk(rqstp, "unknown version (%d for prog %d, %s)\n",
1197 vers, prog, progp->pg_name);
1198
1199 serv->sv_stats->rpcbadfmt++;
1200 svc_putnl(resv, RPC_PROG_MISMATCH);
1201 svc_putnl(resv, progp->pg_lovers);
1202 svc_putnl(resv, progp->pg_hivers);
1203 goto sendit;
1204
1205 err_bad_proc:
1206 svc_printk(rqstp, "unknown procedure (%d)\n", proc);
1207
1208 serv->sv_stats->rpcbadfmt++;
1209 svc_putnl(resv, RPC_PROC_UNAVAIL);
1210 goto sendit;
1211
1212 err_garbage:
1213 svc_printk(rqstp, "failed to decode args\n");
1214
1215 rpc_stat = rpc_garbage_args;
1216 err_bad:
1217 serv->sv_stats->rpcbadfmt++;
1218 svc_putnl(resv, ntohl(rpc_stat));
1219 goto sendit;
1220 }
1221 EXPORT_SYMBOL_GPL(svc_process);
1222
1223 /*
1224 * Process the RPC request.
1225 */
1226 int
1227 svc_process(struct svc_rqst *rqstp)
1228 {
1229 struct kvec *argv = &rqstp->rq_arg.head[0];
1230 struct kvec *resv = &rqstp->rq_res.head[0];
1231 struct svc_serv *serv = rqstp->rq_server;
1232 u32 dir;
1233
1234 /*
1235 * Setup response xdr_buf.
1236 * Initially it has just one page
1237 */
1238 rqstp->rq_resused = 1;
1239 resv->iov_base = page_address(rqstp->rq_respages[0]);
1240 resv->iov_len = 0;
1241 rqstp->rq_res.pages = rqstp->rq_respages + 1;
1242 rqstp->rq_res.len = 0;
1243 rqstp->rq_res.page_base = 0;
1244 rqstp->rq_res.page_len = 0;
1245 rqstp->rq_res.buflen = PAGE_SIZE;
1246 rqstp->rq_res.tail[0].iov_base = NULL;
1247 rqstp->rq_res.tail[0].iov_len = 0;
1248
1249 rqstp->rq_xid = svc_getu32(argv);
1250
1251 dir = svc_getnl(argv);
1252 if (dir != 0) {
1253 /* direction != CALL */
1254 svc_printk(rqstp, "bad direction %d, dropping request\n", dir);
1255 serv->sv_stats->rpcbadfmt++;
1256 svc_drop(rqstp);
1257 return 0;
1258 }
1259
1260 /* Returns 1 for send, 0 for drop */
1261 if (svc_process_common(rqstp, argv, resv))
1262 return svc_send(rqstp);
1263 else {
1264 svc_drop(rqstp);
1265 return 0;
1266 }
1267 }
1268
1269 #if defined(CONFIG_SUNRPC_BACKCHANNEL)
1270 /*
1271 * Process a backchannel RPC request that arrived over an existing
1272 * outbound connection
1273 */
1274 int
1275 bc_svc_process(struct svc_serv *serv, struct rpc_rqst *req,
1276 struct svc_rqst *rqstp)
1277 {
1278 struct kvec *argv = &rqstp->rq_arg.head[0];
1279 struct kvec *resv = &rqstp->rq_res.head[0];
1280
1281 /* Build the svc_rqst used by the common processing routine */
1282 rqstp->rq_xprt = serv->sv_bc_xprt;
1283 rqstp->rq_xid = req->rq_xid;
1284 rqstp->rq_prot = req->rq_xprt->prot;
1285 rqstp->rq_server = serv;
1286
1287 rqstp->rq_addrlen = sizeof(req->rq_xprt->addr);
1288 memcpy(&rqstp->rq_addr, &req->rq_xprt->addr, rqstp->rq_addrlen);
1289 memcpy(&rqstp->rq_arg, &req->rq_rcv_buf, sizeof(rqstp->rq_arg));
1290 memcpy(&rqstp->rq_res, &req->rq_snd_buf, sizeof(rqstp->rq_res));
1291
1292 /* reset result send buffer "put" position */
1293 resv->iov_len = 0;
1294
1295 if (rqstp->rq_prot != IPPROTO_TCP) {
1296 printk(KERN_ERR "No support for Non-TCP transports!\n");
1297 BUG();
1298 }
1299
1300 /*
1301 * Skip the next two words because they've already been
1302 * processed in the trasport
1303 */
1304 svc_getu32(argv); /* XID */
1305 svc_getnl(argv); /* CALLDIR */
1306
1307 /* Returns 1 for send, 0 for drop */
1308 if (svc_process_common(rqstp, argv, resv)) {
1309 memcpy(&req->rq_snd_buf, &rqstp->rq_res,
1310 sizeof(req->rq_snd_buf));
1311 return bc_send(req);
1312 } else {
1313 /* Nothing to do to drop request */
1314 return 0;
1315 }
1316 }
1317 EXPORT_SYMBOL_GPL(bc_svc_process);
1318 #endif /* CONFIG_SUNRPC_BACKCHANNEL */
1319
1320 /*
1321 * Return (transport-specific) limit on the rpc payload.
1322 */
1323 u32 svc_max_payload(const struct svc_rqst *rqstp)
1324 {
1325 u32 max = rqstp->rq_xprt->xpt_class->xcl_max_payload;
1326
1327 if (rqstp->rq_server->sv_max_payload < max)
1328 max = rqstp->rq_server->sv_max_payload;
1329 return max;
1330 }
1331 EXPORT_SYMBOL_GPL(svc_max_payload);