]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - net/tls/tls_device.c
tls: Skip tls_append_frag on zero copy size
[mirror_ubuntu-jammy-kernel.git] / net / tls / tls_device.c
1 /* Copyright (c) 2018, Mellanox Technologies All rights reserved.
2 *
3 * This software is available to you under a choice of one of two
4 * licenses. You may choose to be licensed under the terms of the GNU
5 * General Public License (GPL) Version 2, available from the file
6 * COPYING in the main directory of this source tree, or the
7 * OpenIB.org BSD license below:
8 *
9 * Redistribution and use in source and binary forms, with or
10 * without modification, are permitted provided that the following
11 * conditions are met:
12 *
13 * - Redistributions of source code must retain the above
14 * copyright notice, this list of conditions and the following
15 * disclaimer.
16 *
17 * - Redistributions in binary form must reproduce the above
18 * copyright notice, this list of conditions and the following
19 * disclaimer in the documentation and/or other materials
20 * provided with the distribution.
21 *
22 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
23 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
24 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
25 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
26 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
27 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
28 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
29 * SOFTWARE.
30 */
31
32 #include <crypto/aead.h>
33 #include <linux/highmem.h>
34 #include <linux/module.h>
35 #include <linux/netdevice.h>
36 #include <net/dst.h>
37 #include <net/inet_connection_sock.h>
38 #include <net/tcp.h>
39 #include <net/tls.h>
40
41 #include "trace.h"
42
43 /* device_offload_lock is used to synchronize tls_dev_add
44 * against NETDEV_DOWN notifications.
45 */
46 static DECLARE_RWSEM(device_offload_lock);
47
48 static void tls_device_gc_task(struct work_struct *work);
49
50 static DECLARE_WORK(tls_device_gc_work, tls_device_gc_task);
51 static LIST_HEAD(tls_device_gc_list);
52 static LIST_HEAD(tls_device_list);
53 static LIST_HEAD(tls_device_down_list);
54 static DEFINE_SPINLOCK(tls_device_lock);
55
56 static void tls_device_free_ctx(struct tls_context *ctx)
57 {
58 if (ctx->tx_conf == TLS_HW) {
59 kfree(tls_offload_ctx_tx(ctx));
60 kfree(ctx->tx.rec_seq);
61 kfree(ctx->tx.iv);
62 }
63
64 if (ctx->rx_conf == TLS_HW)
65 kfree(tls_offload_ctx_rx(ctx));
66
67 tls_ctx_free(NULL, ctx);
68 }
69
70 static void tls_device_gc_task(struct work_struct *work)
71 {
72 struct tls_context *ctx, *tmp;
73 unsigned long flags;
74 LIST_HEAD(gc_list);
75
76 spin_lock_irqsave(&tls_device_lock, flags);
77 list_splice_init(&tls_device_gc_list, &gc_list);
78 spin_unlock_irqrestore(&tls_device_lock, flags);
79
80 list_for_each_entry_safe(ctx, tmp, &gc_list, list) {
81 struct net_device *netdev = ctx->netdev;
82
83 if (netdev && ctx->tx_conf == TLS_HW) {
84 netdev->tlsdev_ops->tls_dev_del(netdev, ctx,
85 TLS_OFFLOAD_CTX_DIR_TX);
86 dev_put(netdev);
87 ctx->netdev = NULL;
88 }
89
90 list_del(&ctx->list);
91 tls_device_free_ctx(ctx);
92 }
93 }
94
95 static void tls_device_queue_ctx_destruction(struct tls_context *ctx)
96 {
97 unsigned long flags;
98
99 spin_lock_irqsave(&tls_device_lock, flags);
100 list_move_tail(&ctx->list, &tls_device_gc_list);
101
102 /* schedule_work inside the spinlock
103 * to make sure tls_device_down waits for that work.
104 */
105 schedule_work(&tls_device_gc_work);
106
107 spin_unlock_irqrestore(&tls_device_lock, flags);
108 }
109
110 /* We assume that the socket is already connected */
111 static struct net_device *get_netdev_for_sock(struct sock *sk)
112 {
113 struct dst_entry *dst = sk_dst_get(sk);
114 struct net_device *netdev = NULL;
115
116 if (likely(dst)) {
117 netdev = netdev_sk_get_lowest_dev(dst->dev, sk);
118 dev_hold(netdev);
119 }
120
121 dst_release(dst);
122
123 return netdev;
124 }
125
126 static void destroy_record(struct tls_record_info *record)
127 {
128 int i;
129
130 for (i = 0; i < record->num_frags; i++)
131 __skb_frag_unref(&record->frags[i], false);
132 kfree(record);
133 }
134
135 static void delete_all_records(struct tls_offload_context_tx *offload_ctx)
136 {
137 struct tls_record_info *info, *temp;
138
139 list_for_each_entry_safe(info, temp, &offload_ctx->records_list, list) {
140 list_del(&info->list);
141 destroy_record(info);
142 }
143
144 offload_ctx->retransmit_hint = NULL;
145 }
146
147 static void tls_icsk_clean_acked(struct sock *sk, u32 acked_seq)
148 {
149 struct tls_context *tls_ctx = tls_get_ctx(sk);
150 struct tls_record_info *info, *temp;
151 struct tls_offload_context_tx *ctx;
152 u64 deleted_records = 0;
153 unsigned long flags;
154
155 if (!tls_ctx)
156 return;
157
158 ctx = tls_offload_ctx_tx(tls_ctx);
159
160 spin_lock_irqsave(&ctx->lock, flags);
161 info = ctx->retransmit_hint;
162 if (info && !before(acked_seq, info->end_seq))
163 ctx->retransmit_hint = NULL;
164
165 list_for_each_entry_safe(info, temp, &ctx->records_list, list) {
166 if (before(acked_seq, info->end_seq))
167 break;
168 list_del(&info->list);
169
170 destroy_record(info);
171 deleted_records++;
172 }
173
174 ctx->unacked_record_sn += deleted_records;
175 spin_unlock_irqrestore(&ctx->lock, flags);
176 }
177
178 /* At this point, there should be no references on this
179 * socket and no in-flight SKBs associated with this
180 * socket, so it is safe to free all the resources.
181 */
182 void tls_device_sk_destruct(struct sock *sk)
183 {
184 struct tls_context *tls_ctx = tls_get_ctx(sk);
185 struct tls_offload_context_tx *ctx = tls_offload_ctx_tx(tls_ctx);
186
187 tls_ctx->sk_destruct(sk);
188
189 if (tls_ctx->tx_conf == TLS_HW) {
190 if (ctx->open_record)
191 destroy_record(ctx->open_record);
192 delete_all_records(ctx);
193 crypto_free_aead(ctx->aead_send);
194 clean_acked_data_disable(inet_csk(sk));
195 }
196
197 if (refcount_dec_and_test(&tls_ctx->refcount))
198 tls_device_queue_ctx_destruction(tls_ctx);
199 }
200 EXPORT_SYMBOL_GPL(tls_device_sk_destruct);
201
202 void tls_device_free_resources_tx(struct sock *sk)
203 {
204 struct tls_context *tls_ctx = tls_get_ctx(sk);
205
206 tls_free_partial_record(sk, tls_ctx);
207 }
208
209 void tls_offload_tx_resync_request(struct sock *sk, u32 got_seq, u32 exp_seq)
210 {
211 struct tls_context *tls_ctx = tls_get_ctx(sk);
212
213 trace_tls_device_tx_resync_req(sk, got_seq, exp_seq);
214 WARN_ON(test_and_set_bit(TLS_TX_SYNC_SCHED, &tls_ctx->flags));
215 }
216 EXPORT_SYMBOL_GPL(tls_offload_tx_resync_request);
217
218 static void tls_device_resync_tx(struct sock *sk, struct tls_context *tls_ctx,
219 u32 seq)
220 {
221 struct net_device *netdev;
222 struct sk_buff *skb;
223 int err = 0;
224 u8 *rcd_sn;
225
226 skb = tcp_write_queue_tail(sk);
227 if (skb)
228 TCP_SKB_CB(skb)->eor = 1;
229
230 rcd_sn = tls_ctx->tx.rec_seq;
231
232 trace_tls_device_tx_resync_send(sk, seq, rcd_sn);
233 down_read(&device_offload_lock);
234 netdev = tls_ctx->netdev;
235 if (netdev)
236 err = netdev->tlsdev_ops->tls_dev_resync(netdev, sk, seq,
237 rcd_sn,
238 TLS_OFFLOAD_CTX_DIR_TX);
239 up_read(&device_offload_lock);
240 if (err)
241 return;
242
243 clear_bit_unlock(TLS_TX_SYNC_SCHED, &tls_ctx->flags);
244 }
245
246 static void tls_append_frag(struct tls_record_info *record,
247 struct page_frag *pfrag,
248 int size)
249 {
250 skb_frag_t *frag;
251
252 frag = &record->frags[record->num_frags - 1];
253 if (skb_frag_page(frag) == pfrag->page &&
254 skb_frag_off(frag) + skb_frag_size(frag) == pfrag->offset) {
255 skb_frag_size_add(frag, size);
256 } else {
257 ++frag;
258 __skb_frag_set_page(frag, pfrag->page);
259 skb_frag_off_set(frag, pfrag->offset);
260 skb_frag_size_set(frag, size);
261 ++record->num_frags;
262 get_page(pfrag->page);
263 }
264
265 pfrag->offset += size;
266 record->len += size;
267 }
268
269 static int tls_push_record(struct sock *sk,
270 struct tls_context *ctx,
271 struct tls_offload_context_tx *offload_ctx,
272 struct tls_record_info *record,
273 int flags)
274 {
275 struct tls_prot_info *prot = &ctx->prot_info;
276 struct tcp_sock *tp = tcp_sk(sk);
277 skb_frag_t *frag;
278 int i;
279
280 record->end_seq = tp->write_seq + record->len;
281 list_add_tail_rcu(&record->list, &offload_ctx->records_list);
282 offload_ctx->open_record = NULL;
283
284 if (test_bit(TLS_TX_SYNC_SCHED, &ctx->flags))
285 tls_device_resync_tx(sk, ctx, tp->write_seq);
286
287 tls_advance_record_sn(sk, prot, &ctx->tx);
288
289 for (i = 0; i < record->num_frags; i++) {
290 frag = &record->frags[i];
291 sg_unmark_end(&offload_ctx->sg_tx_data[i]);
292 sg_set_page(&offload_ctx->sg_tx_data[i], skb_frag_page(frag),
293 skb_frag_size(frag), skb_frag_off(frag));
294 sk_mem_charge(sk, skb_frag_size(frag));
295 get_page(skb_frag_page(frag));
296 }
297 sg_mark_end(&offload_ctx->sg_tx_data[record->num_frags - 1]);
298
299 /* all ready, send */
300 return tls_push_sg(sk, ctx, offload_ctx->sg_tx_data, 0, flags);
301 }
302
303 static int tls_device_record_close(struct sock *sk,
304 struct tls_context *ctx,
305 struct tls_record_info *record,
306 struct page_frag *pfrag,
307 unsigned char record_type)
308 {
309 struct tls_prot_info *prot = &ctx->prot_info;
310 int ret;
311
312 /* append tag
313 * device will fill in the tag, we just need to append a placeholder
314 * use socket memory to improve coalescing (re-using a single buffer
315 * increases frag count)
316 * if we can't allocate memory now, steal some back from data
317 */
318 if (likely(skb_page_frag_refill(prot->tag_size, pfrag,
319 sk->sk_allocation))) {
320 ret = 0;
321 tls_append_frag(record, pfrag, prot->tag_size);
322 } else {
323 ret = prot->tag_size;
324 if (record->len <= prot->overhead_size)
325 return -ENOMEM;
326 }
327
328 /* fill prepend */
329 tls_fill_prepend(ctx, skb_frag_address(&record->frags[0]),
330 record->len - prot->overhead_size,
331 record_type);
332 return ret;
333 }
334
335 static int tls_create_new_record(struct tls_offload_context_tx *offload_ctx,
336 struct page_frag *pfrag,
337 size_t prepend_size)
338 {
339 struct tls_record_info *record;
340 skb_frag_t *frag;
341
342 record = kmalloc(sizeof(*record), GFP_KERNEL);
343 if (!record)
344 return -ENOMEM;
345
346 frag = &record->frags[0];
347 __skb_frag_set_page(frag, pfrag->page);
348 skb_frag_off_set(frag, pfrag->offset);
349 skb_frag_size_set(frag, prepend_size);
350
351 get_page(pfrag->page);
352 pfrag->offset += prepend_size;
353
354 record->num_frags = 1;
355 record->len = prepend_size;
356 offload_ctx->open_record = record;
357 return 0;
358 }
359
360 static int tls_do_allocation(struct sock *sk,
361 struct tls_offload_context_tx *offload_ctx,
362 struct page_frag *pfrag,
363 size_t prepend_size)
364 {
365 int ret;
366
367 if (!offload_ctx->open_record) {
368 if (unlikely(!skb_page_frag_refill(prepend_size, pfrag,
369 sk->sk_allocation))) {
370 READ_ONCE(sk->sk_prot)->enter_memory_pressure(sk);
371 sk_stream_moderate_sndbuf(sk);
372 return -ENOMEM;
373 }
374
375 ret = tls_create_new_record(offload_ctx, pfrag, prepend_size);
376 if (ret)
377 return ret;
378
379 if (pfrag->size > pfrag->offset)
380 return 0;
381 }
382
383 if (!sk_page_frag_refill(sk, pfrag))
384 return -ENOMEM;
385
386 return 0;
387 }
388
389 static int tls_device_copy_data(void *addr, size_t bytes, struct iov_iter *i)
390 {
391 size_t pre_copy, nocache;
392
393 pre_copy = ~((unsigned long)addr - 1) & (SMP_CACHE_BYTES - 1);
394 if (pre_copy) {
395 pre_copy = min(pre_copy, bytes);
396 if (copy_from_iter(addr, pre_copy, i) != pre_copy)
397 return -EFAULT;
398 bytes -= pre_copy;
399 addr += pre_copy;
400 }
401
402 nocache = round_down(bytes, SMP_CACHE_BYTES);
403 if (copy_from_iter_nocache(addr, nocache, i) != nocache)
404 return -EFAULT;
405 bytes -= nocache;
406 addr += nocache;
407
408 if (bytes && copy_from_iter(addr, bytes, i) != bytes)
409 return -EFAULT;
410
411 return 0;
412 }
413
414 static int tls_push_data(struct sock *sk,
415 struct iov_iter *msg_iter,
416 size_t size, int flags,
417 unsigned char record_type)
418 {
419 struct tls_context *tls_ctx = tls_get_ctx(sk);
420 struct tls_prot_info *prot = &tls_ctx->prot_info;
421 struct tls_offload_context_tx *ctx = tls_offload_ctx_tx(tls_ctx);
422 struct tls_record_info *record;
423 int tls_push_record_flags;
424 struct page_frag *pfrag;
425 size_t orig_size = size;
426 u32 max_open_record_len;
427 bool more = false;
428 bool done = false;
429 int copy, rc = 0;
430 long timeo;
431
432 if (flags &
433 ~(MSG_MORE | MSG_DONTWAIT | MSG_NOSIGNAL | MSG_SENDPAGE_NOTLAST))
434 return -EOPNOTSUPP;
435
436 if (unlikely(sk->sk_err))
437 return -sk->sk_err;
438
439 flags |= MSG_SENDPAGE_DECRYPTED;
440 tls_push_record_flags = flags | MSG_SENDPAGE_NOTLAST;
441
442 timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT);
443 if (tls_is_partially_sent_record(tls_ctx)) {
444 rc = tls_push_partial_record(sk, tls_ctx, flags);
445 if (rc < 0)
446 return rc;
447 }
448
449 pfrag = sk_page_frag(sk);
450
451 /* TLS_HEADER_SIZE is not counted as part of the TLS record, and
452 * we need to leave room for an authentication tag.
453 */
454 max_open_record_len = TLS_MAX_PAYLOAD_SIZE +
455 prot->prepend_size;
456 do {
457 rc = tls_do_allocation(sk, ctx, pfrag, prot->prepend_size);
458 if (unlikely(rc)) {
459 rc = sk_stream_wait_memory(sk, &timeo);
460 if (!rc)
461 continue;
462
463 record = ctx->open_record;
464 if (!record)
465 break;
466 handle_error:
467 if (record_type != TLS_RECORD_TYPE_DATA) {
468 /* avoid sending partial
469 * record with type !=
470 * application_data
471 */
472 size = orig_size;
473 destroy_record(record);
474 ctx->open_record = NULL;
475 } else if (record->len > prot->prepend_size) {
476 goto last_record;
477 }
478
479 break;
480 }
481
482 record = ctx->open_record;
483 copy = min_t(size_t, size, (pfrag->size - pfrag->offset));
484 copy = min_t(size_t, copy, (max_open_record_len - record->len));
485
486 if (copy) {
487 rc = tls_device_copy_data(page_address(pfrag->page) +
488 pfrag->offset, copy, msg_iter);
489 if (rc)
490 goto handle_error;
491 tls_append_frag(record, pfrag, copy);
492 }
493
494 size -= copy;
495 if (!size) {
496 last_record:
497 tls_push_record_flags = flags;
498 if (flags & (MSG_SENDPAGE_NOTLAST | MSG_MORE)) {
499 more = true;
500 break;
501 }
502
503 done = true;
504 }
505
506 if (done || record->len >= max_open_record_len ||
507 (record->num_frags >= MAX_SKB_FRAGS - 1)) {
508 rc = tls_device_record_close(sk, tls_ctx, record,
509 pfrag, record_type);
510 if (rc) {
511 if (rc > 0) {
512 size += rc;
513 } else {
514 size = orig_size;
515 destroy_record(record);
516 ctx->open_record = NULL;
517 break;
518 }
519 }
520
521 rc = tls_push_record(sk,
522 tls_ctx,
523 ctx,
524 record,
525 tls_push_record_flags);
526 if (rc < 0)
527 break;
528 }
529 } while (!done);
530
531 tls_ctx->pending_open_record_frags = more;
532
533 if (orig_size - size > 0)
534 rc = orig_size - size;
535
536 return rc;
537 }
538
539 int tls_device_sendmsg(struct sock *sk, struct msghdr *msg, size_t size)
540 {
541 unsigned char record_type = TLS_RECORD_TYPE_DATA;
542 struct tls_context *tls_ctx = tls_get_ctx(sk);
543 int rc;
544
545 mutex_lock(&tls_ctx->tx_lock);
546 lock_sock(sk);
547
548 if (unlikely(msg->msg_controllen)) {
549 rc = tls_proccess_cmsg(sk, msg, &record_type);
550 if (rc)
551 goto out;
552 }
553
554 rc = tls_push_data(sk, &msg->msg_iter, size,
555 msg->msg_flags, record_type);
556
557 out:
558 release_sock(sk);
559 mutex_unlock(&tls_ctx->tx_lock);
560 return rc;
561 }
562
563 int tls_device_sendpage(struct sock *sk, struct page *page,
564 int offset, size_t size, int flags)
565 {
566 struct tls_context *tls_ctx = tls_get_ctx(sk);
567 struct iov_iter msg_iter;
568 char *kaddr;
569 struct kvec iov;
570 int rc;
571
572 if (flags & MSG_SENDPAGE_NOTLAST)
573 flags |= MSG_MORE;
574
575 mutex_lock(&tls_ctx->tx_lock);
576 lock_sock(sk);
577
578 if (flags & MSG_OOB) {
579 rc = -EOPNOTSUPP;
580 goto out;
581 }
582
583 kaddr = kmap(page);
584 iov.iov_base = kaddr + offset;
585 iov.iov_len = size;
586 iov_iter_kvec(&msg_iter, WRITE, &iov, 1, size);
587 rc = tls_push_data(sk, &msg_iter, size,
588 flags, TLS_RECORD_TYPE_DATA);
589 kunmap(page);
590
591 out:
592 release_sock(sk);
593 mutex_unlock(&tls_ctx->tx_lock);
594 return rc;
595 }
596
597 struct tls_record_info *tls_get_record(struct tls_offload_context_tx *context,
598 u32 seq, u64 *p_record_sn)
599 {
600 u64 record_sn = context->hint_record_sn;
601 struct tls_record_info *info, *last;
602
603 info = context->retransmit_hint;
604 if (!info ||
605 before(seq, info->end_seq - info->len)) {
606 /* if retransmit_hint is irrelevant start
607 * from the beginning of the list
608 */
609 info = list_first_entry_or_null(&context->records_list,
610 struct tls_record_info, list);
611 if (!info)
612 return NULL;
613 /* send the start_marker record if seq number is before the
614 * tls offload start marker sequence number. This record is
615 * required to handle TCP packets which are before TLS offload
616 * started.
617 * And if it's not start marker, look if this seq number
618 * belongs to the list.
619 */
620 if (likely(!tls_record_is_start_marker(info))) {
621 /* we have the first record, get the last record to see
622 * if this seq number belongs to the list.
623 */
624 last = list_last_entry(&context->records_list,
625 struct tls_record_info, list);
626
627 if (!between(seq, tls_record_start_seq(info),
628 last->end_seq))
629 return NULL;
630 }
631 record_sn = context->unacked_record_sn;
632 }
633
634 /* We just need the _rcu for the READ_ONCE() */
635 rcu_read_lock();
636 list_for_each_entry_from_rcu(info, &context->records_list, list) {
637 if (before(seq, info->end_seq)) {
638 if (!context->retransmit_hint ||
639 after(info->end_seq,
640 context->retransmit_hint->end_seq)) {
641 context->hint_record_sn = record_sn;
642 context->retransmit_hint = info;
643 }
644 *p_record_sn = record_sn;
645 goto exit_rcu_unlock;
646 }
647 record_sn++;
648 }
649 info = NULL;
650
651 exit_rcu_unlock:
652 rcu_read_unlock();
653 return info;
654 }
655 EXPORT_SYMBOL(tls_get_record);
656
657 static int tls_device_push_pending_record(struct sock *sk, int flags)
658 {
659 struct iov_iter msg_iter;
660
661 iov_iter_kvec(&msg_iter, WRITE, NULL, 0, 0);
662 return tls_push_data(sk, &msg_iter, 0, flags, TLS_RECORD_TYPE_DATA);
663 }
664
665 void tls_device_write_space(struct sock *sk, struct tls_context *ctx)
666 {
667 if (tls_is_partially_sent_record(ctx)) {
668 gfp_t sk_allocation = sk->sk_allocation;
669
670 WARN_ON_ONCE(sk->sk_write_pending);
671
672 sk->sk_allocation = GFP_ATOMIC;
673 tls_push_partial_record(sk, ctx,
674 MSG_DONTWAIT | MSG_NOSIGNAL |
675 MSG_SENDPAGE_DECRYPTED);
676 sk->sk_allocation = sk_allocation;
677 }
678 }
679
680 static void tls_device_resync_rx(struct tls_context *tls_ctx,
681 struct sock *sk, u32 seq, u8 *rcd_sn)
682 {
683 struct tls_offload_context_rx *rx_ctx = tls_offload_ctx_rx(tls_ctx);
684 struct net_device *netdev;
685
686 trace_tls_device_rx_resync_send(sk, seq, rcd_sn, rx_ctx->resync_type);
687 rcu_read_lock();
688 netdev = READ_ONCE(tls_ctx->netdev);
689 if (netdev)
690 netdev->tlsdev_ops->tls_dev_resync(netdev, sk, seq, rcd_sn,
691 TLS_OFFLOAD_CTX_DIR_RX);
692 rcu_read_unlock();
693 TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSRXDEVICERESYNC);
694 }
695
696 static bool
697 tls_device_rx_resync_async(struct tls_offload_resync_async *resync_async,
698 s64 resync_req, u32 *seq, u16 *rcd_delta)
699 {
700 u32 is_async = resync_req & RESYNC_REQ_ASYNC;
701 u32 req_seq = resync_req >> 32;
702 u32 req_end = req_seq + ((resync_req >> 16) & 0xffff);
703 u16 i;
704
705 *rcd_delta = 0;
706
707 if (is_async) {
708 /* shouldn't get to wraparound:
709 * too long in async stage, something bad happened
710 */
711 if (WARN_ON_ONCE(resync_async->rcd_delta == USHRT_MAX))
712 return false;
713
714 /* asynchronous stage: log all headers seq such that
715 * req_seq <= seq <= end_seq, and wait for real resync request
716 */
717 if (before(*seq, req_seq))
718 return false;
719 if (!after(*seq, req_end) &&
720 resync_async->loglen < TLS_DEVICE_RESYNC_ASYNC_LOGMAX)
721 resync_async->log[resync_async->loglen++] = *seq;
722
723 resync_async->rcd_delta++;
724
725 return false;
726 }
727
728 /* synchronous stage: check against the logged entries and
729 * proceed to check the next entries if no match was found
730 */
731 for (i = 0; i < resync_async->loglen; i++)
732 if (req_seq == resync_async->log[i] &&
733 atomic64_try_cmpxchg(&resync_async->req, &resync_req, 0)) {
734 *rcd_delta = resync_async->rcd_delta - i;
735 *seq = req_seq;
736 resync_async->loglen = 0;
737 resync_async->rcd_delta = 0;
738 return true;
739 }
740
741 resync_async->loglen = 0;
742 resync_async->rcd_delta = 0;
743
744 if (req_seq == *seq &&
745 atomic64_try_cmpxchg(&resync_async->req,
746 &resync_req, 0))
747 return true;
748
749 return false;
750 }
751
752 void tls_device_rx_resync_new_rec(struct sock *sk, u32 rcd_len, u32 seq)
753 {
754 struct tls_context *tls_ctx = tls_get_ctx(sk);
755 struct tls_offload_context_rx *rx_ctx;
756 u8 rcd_sn[TLS_MAX_REC_SEQ_SIZE];
757 u32 sock_data, is_req_pending;
758 struct tls_prot_info *prot;
759 s64 resync_req;
760 u16 rcd_delta;
761 u32 req_seq;
762
763 if (tls_ctx->rx_conf != TLS_HW)
764 return;
765 if (unlikely(test_bit(TLS_RX_DEV_DEGRADED, &tls_ctx->flags)))
766 return;
767
768 prot = &tls_ctx->prot_info;
769 rx_ctx = tls_offload_ctx_rx(tls_ctx);
770 memcpy(rcd_sn, tls_ctx->rx.rec_seq, prot->rec_seq_size);
771
772 switch (rx_ctx->resync_type) {
773 case TLS_OFFLOAD_SYNC_TYPE_DRIVER_REQ:
774 resync_req = atomic64_read(&rx_ctx->resync_req);
775 req_seq = resync_req >> 32;
776 seq += TLS_HEADER_SIZE - 1;
777 is_req_pending = resync_req;
778
779 if (likely(!is_req_pending) || req_seq != seq ||
780 !atomic64_try_cmpxchg(&rx_ctx->resync_req, &resync_req, 0))
781 return;
782 break;
783 case TLS_OFFLOAD_SYNC_TYPE_CORE_NEXT_HINT:
784 if (likely(!rx_ctx->resync_nh_do_now))
785 return;
786
787 /* head of next rec is already in, note that the sock_inq will
788 * include the currently parsed message when called from parser
789 */
790 sock_data = tcp_inq(sk);
791 if (sock_data > rcd_len) {
792 trace_tls_device_rx_resync_nh_delay(sk, sock_data,
793 rcd_len);
794 return;
795 }
796
797 rx_ctx->resync_nh_do_now = 0;
798 seq += rcd_len;
799 tls_bigint_increment(rcd_sn, prot->rec_seq_size);
800 break;
801 case TLS_OFFLOAD_SYNC_TYPE_DRIVER_REQ_ASYNC:
802 resync_req = atomic64_read(&rx_ctx->resync_async->req);
803 is_req_pending = resync_req;
804 if (likely(!is_req_pending))
805 return;
806
807 if (!tls_device_rx_resync_async(rx_ctx->resync_async,
808 resync_req, &seq, &rcd_delta))
809 return;
810 tls_bigint_subtract(rcd_sn, rcd_delta);
811 break;
812 }
813
814 tls_device_resync_rx(tls_ctx, sk, seq, rcd_sn);
815 }
816
817 static void tls_device_core_ctrl_rx_resync(struct tls_context *tls_ctx,
818 struct tls_offload_context_rx *ctx,
819 struct sock *sk, struct sk_buff *skb)
820 {
821 struct strp_msg *rxm;
822
823 /* device will request resyncs by itself based on stream scan */
824 if (ctx->resync_type != TLS_OFFLOAD_SYNC_TYPE_CORE_NEXT_HINT)
825 return;
826 /* already scheduled */
827 if (ctx->resync_nh_do_now)
828 return;
829 /* seen decrypted fragments since last fully-failed record */
830 if (ctx->resync_nh_reset) {
831 ctx->resync_nh_reset = 0;
832 ctx->resync_nh.decrypted_failed = 1;
833 ctx->resync_nh.decrypted_tgt = TLS_DEVICE_RESYNC_NH_START_IVAL;
834 return;
835 }
836
837 if (++ctx->resync_nh.decrypted_failed <= ctx->resync_nh.decrypted_tgt)
838 return;
839
840 /* doing resync, bump the next target in case it fails */
841 if (ctx->resync_nh.decrypted_tgt < TLS_DEVICE_RESYNC_NH_MAX_IVAL)
842 ctx->resync_nh.decrypted_tgt *= 2;
843 else
844 ctx->resync_nh.decrypted_tgt += TLS_DEVICE_RESYNC_NH_MAX_IVAL;
845
846 rxm = strp_msg(skb);
847
848 /* head of next rec is already in, parser will sync for us */
849 if (tcp_inq(sk) > rxm->full_len) {
850 trace_tls_device_rx_resync_nh_schedule(sk);
851 ctx->resync_nh_do_now = 1;
852 } else {
853 struct tls_prot_info *prot = &tls_ctx->prot_info;
854 u8 rcd_sn[TLS_MAX_REC_SEQ_SIZE];
855
856 memcpy(rcd_sn, tls_ctx->rx.rec_seq, prot->rec_seq_size);
857 tls_bigint_increment(rcd_sn, prot->rec_seq_size);
858
859 tls_device_resync_rx(tls_ctx, sk, tcp_sk(sk)->copied_seq,
860 rcd_sn);
861 }
862 }
863
864 static int tls_device_reencrypt(struct sock *sk, struct sk_buff *skb)
865 {
866 struct strp_msg *rxm = strp_msg(skb);
867 int err = 0, offset = rxm->offset, copy, nsg, data_len, pos;
868 struct sk_buff *skb_iter, *unused;
869 struct scatterlist sg[1];
870 char *orig_buf, *buf;
871
872 orig_buf = kmalloc(rxm->full_len + TLS_HEADER_SIZE +
873 TLS_CIPHER_AES_GCM_128_IV_SIZE, sk->sk_allocation);
874 if (!orig_buf)
875 return -ENOMEM;
876 buf = orig_buf;
877
878 nsg = skb_cow_data(skb, 0, &unused);
879 if (unlikely(nsg < 0)) {
880 err = nsg;
881 goto free_buf;
882 }
883
884 sg_init_table(sg, 1);
885 sg_set_buf(&sg[0], buf,
886 rxm->full_len + TLS_HEADER_SIZE +
887 TLS_CIPHER_AES_GCM_128_IV_SIZE);
888 err = skb_copy_bits(skb, offset, buf,
889 TLS_HEADER_SIZE + TLS_CIPHER_AES_GCM_128_IV_SIZE);
890 if (err)
891 goto free_buf;
892
893 /* We are interested only in the decrypted data not the auth */
894 err = decrypt_skb(sk, skb, sg);
895 if (err != -EBADMSG)
896 goto free_buf;
897 else
898 err = 0;
899
900 data_len = rxm->full_len - TLS_CIPHER_AES_GCM_128_TAG_SIZE;
901
902 if (skb_pagelen(skb) > offset) {
903 copy = min_t(int, skb_pagelen(skb) - offset, data_len);
904
905 if (skb->decrypted) {
906 err = skb_store_bits(skb, offset, buf, copy);
907 if (err)
908 goto free_buf;
909 }
910
911 offset += copy;
912 buf += copy;
913 }
914
915 pos = skb_pagelen(skb);
916 skb_walk_frags(skb, skb_iter) {
917 int frag_pos;
918
919 /* Practically all frags must belong to msg if reencrypt
920 * is needed with current strparser and coalescing logic,
921 * but strparser may "get optimized", so let's be safe.
922 */
923 if (pos + skb_iter->len <= offset)
924 goto done_with_frag;
925 if (pos >= data_len + rxm->offset)
926 break;
927
928 frag_pos = offset - pos;
929 copy = min_t(int, skb_iter->len - frag_pos,
930 data_len + rxm->offset - offset);
931
932 if (skb_iter->decrypted) {
933 err = skb_store_bits(skb_iter, frag_pos, buf, copy);
934 if (err)
935 goto free_buf;
936 }
937
938 offset += copy;
939 buf += copy;
940 done_with_frag:
941 pos += skb_iter->len;
942 }
943
944 free_buf:
945 kfree(orig_buf);
946 return err;
947 }
948
949 int tls_device_decrypted(struct sock *sk, struct tls_context *tls_ctx,
950 struct sk_buff *skb, struct strp_msg *rxm)
951 {
952 struct tls_offload_context_rx *ctx = tls_offload_ctx_rx(tls_ctx);
953 int is_decrypted = skb->decrypted;
954 int is_encrypted = !is_decrypted;
955 struct sk_buff *skb_iter;
956
957 /* Check if all the data is decrypted already */
958 skb_walk_frags(skb, skb_iter) {
959 is_decrypted &= skb_iter->decrypted;
960 is_encrypted &= !skb_iter->decrypted;
961 }
962
963 trace_tls_device_decrypted(sk, tcp_sk(sk)->copied_seq - rxm->full_len,
964 tls_ctx->rx.rec_seq, rxm->full_len,
965 is_encrypted, is_decrypted);
966
967 ctx->sw.decrypted |= is_decrypted;
968
969 if (unlikely(test_bit(TLS_RX_DEV_DEGRADED, &tls_ctx->flags))) {
970 if (likely(is_encrypted || is_decrypted))
971 return 0;
972
973 /* After tls_device_down disables the offload, the next SKB will
974 * likely have initial fragments decrypted, and final ones not
975 * decrypted. We need to reencrypt that single SKB.
976 */
977 return tls_device_reencrypt(sk, skb);
978 }
979
980 /* Return immediately if the record is either entirely plaintext or
981 * entirely ciphertext. Otherwise handle reencrypt partially decrypted
982 * record.
983 */
984 if (is_decrypted) {
985 ctx->resync_nh_reset = 1;
986 return 0;
987 }
988 if (is_encrypted) {
989 tls_device_core_ctrl_rx_resync(tls_ctx, ctx, sk, skb);
990 return 0;
991 }
992
993 ctx->resync_nh_reset = 1;
994 return tls_device_reencrypt(sk, skb);
995 }
996
997 static void tls_device_attach(struct tls_context *ctx, struct sock *sk,
998 struct net_device *netdev)
999 {
1000 if (sk->sk_destruct != tls_device_sk_destruct) {
1001 refcount_set(&ctx->refcount, 1);
1002 dev_hold(netdev);
1003 ctx->netdev = netdev;
1004 spin_lock_irq(&tls_device_lock);
1005 list_add_tail(&ctx->list, &tls_device_list);
1006 spin_unlock_irq(&tls_device_lock);
1007
1008 ctx->sk_destruct = sk->sk_destruct;
1009 smp_store_release(&sk->sk_destruct, tls_device_sk_destruct);
1010 }
1011 }
1012
1013 int tls_set_device_offload(struct sock *sk, struct tls_context *ctx)
1014 {
1015 u16 nonce_size, tag_size, iv_size, rec_seq_size, salt_size;
1016 struct tls_context *tls_ctx = tls_get_ctx(sk);
1017 struct tls_prot_info *prot = &tls_ctx->prot_info;
1018 struct tls_record_info *start_marker_record;
1019 struct tls_offload_context_tx *offload_ctx;
1020 struct tls_crypto_info *crypto_info;
1021 struct net_device *netdev;
1022 char *iv, *rec_seq;
1023 struct sk_buff *skb;
1024 __be64 rcd_sn;
1025 int rc;
1026
1027 if (!ctx)
1028 return -EINVAL;
1029
1030 if (ctx->priv_ctx_tx)
1031 return -EEXIST;
1032
1033 start_marker_record = kmalloc(sizeof(*start_marker_record), GFP_KERNEL);
1034 if (!start_marker_record)
1035 return -ENOMEM;
1036
1037 offload_ctx = kzalloc(TLS_OFFLOAD_CONTEXT_SIZE_TX, GFP_KERNEL);
1038 if (!offload_ctx) {
1039 rc = -ENOMEM;
1040 goto free_marker_record;
1041 }
1042
1043 crypto_info = &ctx->crypto_send.info;
1044 if (crypto_info->version != TLS_1_2_VERSION) {
1045 rc = -EOPNOTSUPP;
1046 goto free_offload_ctx;
1047 }
1048
1049 switch (crypto_info->cipher_type) {
1050 case TLS_CIPHER_AES_GCM_128:
1051 nonce_size = TLS_CIPHER_AES_GCM_128_IV_SIZE;
1052 tag_size = TLS_CIPHER_AES_GCM_128_TAG_SIZE;
1053 iv_size = TLS_CIPHER_AES_GCM_128_IV_SIZE;
1054 iv = ((struct tls12_crypto_info_aes_gcm_128 *)crypto_info)->iv;
1055 rec_seq_size = TLS_CIPHER_AES_GCM_128_REC_SEQ_SIZE;
1056 salt_size = TLS_CIPHER_AES_GCM_128_SALT_SIZE;
1057 rec_seq =
1058 ((struct tls12_crypto_info_aes_gcm_128 *)crypto_info)->rec_seq;
1059 break;
1060 default:
1061 rc = -EINVAL;
1062 goto free_offload_ctx;
1063 }
1064
1065 /* Sanity-check the rec_seq_size for stack allocations */
1066 if (rec_seq_size > TLS_MAX_REC_SEQ_SIZE) {
1067 rc = -EINVAL;
1068 goto free_offload_ctx;
1069 }
1070
1071 prot->version = crypto_info->version;
1072 prot->cipher_type = crypto_info->cipher_type;
1073 prot->prepend_size = TLS_HEADER_SIZE + nonce_size;
1074 prot->tag_size = tag_size;
1075 prot->overhead_size = prot->prepend_size + prot->tag_size;
1076 prot->iv_size = iv_size;
1077 prot->salt_size = salt_size;
1078 ctx->tx.iv = kmalloc(iv_size + TLS_CIPHER_AES_GCM_128_SALT_SIZE,
1079 GFP_KERNEL);
1080 if (!ctx->tx.iv) {
1081 rc = -ENOMEM;
1082 goto free_offload_ctx;
1083 }
1084
1085 memcpy(ctx->tx.iv + TLS_CIPHER_AES_GCM_128_SALT_SIZE, iv, iv_size);
1086
1087 prot->rec_seq_size = rec_seq_size;
1088 ctx->tx.rec_seq = kmemdup(rec_seq, rec_seq_size, GFP_KERNEL);
1089 if (!ctx->tx.rec_seq) {
1090 rc = -ENOMEM;
1091 goto free_iv;
1092 }
1093
1094 rc = tls_sw_fallback_init(sk, offload_ctx, crypto_info);
1095 if (rc)
1096 goto free_rec_seq;
1097
1098 /* start at rec_seq - 1 to account for the start marker record */
1099 memcpy(&rcd_sn, ctx->tx.rec_seq, sizeof(rcd_sn));
1100 offload_ctx->unacked_record_sn = be64_to_cpu(rcd_sn) - 1;
1101
1102 start_marker_record->end_seq = tcp_sk(sk)->write_seq;
1103 start_marker_record->len = 0;
1104 start_marker_record->num_frags = 0;
1105
1106 INIT_LIST_HEAD(&offload_ctx->records_list);
1107 list_add_tail(&start_marker_record->list, &offload_ctx->records_list);
1108 spin_lock_init(&offload_ctx->lock);
1109 sg_init_table(offload_ctx->sg_tx_data,
1110 ARRAY_SIZE(offload_ctx->sg_tx_data));
1111
1112 clean_acked_data_enable(inet_csk(sk), &tls_icsk_clean_acked);
1113 ctx->push_pending_record = tls_device_push_pending_record;
1114
1115 /* TLS offload is greatly simplified if we don't send
1116 * SKBs where only part of the payload needs to be encrypted.
1117 * So mark the last skb in the write queue as end of record.
1118 */
1119 skb = tcp_write_queue_tail(sk);
1120 if (skb)
1121 TCP_SKB_CB(skb)->eor = 1;
1122
1123 netdev = get_netdev_for_sock(sk);
1124 if (!netdev) {
1125 pr_err_ratelimited("%s: netdev not found\n", __func__);
1126 rc = -EINVAL;
1127 goto disable_cad;
1128 }
1129
1130 if (!(netdev->features & NETIF_F_HW_TLS_TX)) {
1131 rc = -EOPNOTSUPP;
1132 goto release_netdev;
1133 }
1134
1135 /* Avoid offloading if the device is down
1136 * We don't want to offload new flows after
1137 * the NETDEV_DOWN event
1138 *
1139 * device_offload_lock is taken in tls_devices's NETDEV_DOWN
1140 * handler thus protecting from the device going down before
1141 * ctx was added to tls_device_list.
1142 */
1143 down_read(&device_offload_lock);
1144 if (!(netdev->flags & IFF_UP)) {
1145 rc = -EINVAL;
1146 goto release_lock;
1147 }
1148
1149 ctx->priv_ctx_tx = offload_ctx;
1150 rc = netdev->tlsdev_ops->tls_dev_add(netdev, sk, TLS_OFFLOAD_CTX_DIR_TX,
1151 &ctx->crypto_send.info,
1152 tcp_sk(sk)->write_seq);
1153 trace_tls_device_offload_set(sk, TLS_OFFLOAD_CTX_DIR_TX,
1154 tcp_sk(sk)->write_seq, rec_seq, rc);
1155 if (rc)
1156 goto release_lock;
1157
1158 tls_device_attach(ctx, sk, netdev);
1159 up_read(&device_offload_lock);
1160
1161 /* following this assignment tls_is_sk_tx_device_offloaded
1162 * will return true and the context might be accessed
1163 * by the netdev's xmit function.
1164 */
1165 smp_store_release(&sk->sk_validate_xmit_skb, tls_validate_xmit_skb);
1166 dev_put(netdev);
1167
1168 return 0;
1169
1170 release_lock:
1171 up_read(&device_offload_lock);
1172 release_netdev:
1173 dev_put(netdev);
1174 disable_cad:
1175 clean_acked_data_disable(inet_csk(sk));
1176 crypto_free_aead(offload_ctx->aead_send);
1177 free_rec_seq:
1178 kfree(ctx->tx.rec_seq);
1179 free_iv:
1180 kfree(ctx->tx.iv);
1181 free_offload_ctx:
1182 kfree(offload_ctx);
1183 ctx->priv_ctx_tx = NULL;
1184 free_marker_record:
1185 kfree(start_marker_record);
1186 return rc;
1187 }
1188
1189 int tls_set_device_offload_rx(struct sock *sk, struct tls_context *ctx)
1190 {
1191 struct tls12_crypto_info_aes_gcm_128 *info;
1192 struct tls_offload_context_rx *context;
1193 struct net_device *netdev;
1194 int rc = 0;
1195
1196 if (ctx->crypto_recv.info.version != TLS_1_2_VERSION)
1197 return -EOPNOTSUPP;
1198
1199 netdev = get_netdev_for_sock(sk);
1200 if (!netdev) {
1201 pr_err_ratelimited("%s: netdev not found\n", __func__);
1202 return -EINVAL;
1203 }
1204
1205 if (!(netdev->features & NETIF_F_HW_TLS_RX)) {
1206 rc = -EOPNOTSUPP;
1207 goto release_netdev;
1208 }
1209
1210 /* Avoid offloading if the device is down
1211 * We don't want to offload new flows after
1212 * the NETDEV_DOWN event
1213 *
1214 * device_offload_lock is taken in tls_devices's NETDEV_DOWN
1215 * handler thus protecting from the device going down before
1216 * ctx was added to tls_device_list.
1217 */
1218 down_read(&device_offload_lock);
1219 if (!(netdev->flags & IFF_UP)) {
1220 rc = -EINVAL;
1221 goto release_lock;
1222 }
1223
1224 context = kzalloc(TLS_OFFLOAD_CONTEXT_SIZE_RX, GFP_KERNEL);
1225 if (!context) {
1226 rc = -ENOMEM;
1227 goto release_lock;
1228 }
1229 context->resync_nh_reset = 1;
1230
1231 ctx->priv_ctx_rx = context;
1232 rc = tls_set_sw_offload(sk, ctx, 0);
1233 if (rc)
1234 goto release_ctx;
1235
1236 rc = netdev->tlsdev_ops->tls_dev_add(netdev, sk, TLS_OFFLOAD_CTX_DIR_RX,
1237 &ctx->crypto_recv.info,
1238 tcp_sk(sk)->copied_seq);
1239 info = (void *)&ctx->crypto_recv.info;
1240 trace_tls_device_offload_set(sk, TLS_OFFLOAD_CTX_DIR_RX,
1241 tcp_sk(sk)->copied_seq, info->rec_seq, rc);
1242 if (rc)
1243 goto free_sw_resources;
1244
1245 tls_device_attach(ctx, sk, netdev);
1246 up_read(&device_offload_lock);
1247
1248 dev_put(netdev);
1249
1250 return 0;
1251
1252 free_sw_resources:
1253 up_read(&device_offload_lock);
1254 tls_sw_free_resources_rx(sk);
1255 down_read(&device_offload_lock);
1256 release_ctx:
1257 ctx->priv_ctx_rx = NULL;
1258 release_lock:
1259 up_read(&device_offload_lock);
1260 release_netdev:
1261 dev_put(netdev);
1262 return rc;
1263 }
1264
1265 void tls_device_offload_cleanup_rx(struct sock *sk)
1266 {
1267 struct tls_context *tls_ctx = tls_get_ctx(sk);
1268 struct net_device *netdev;
1269
1270 down_read(&device_offload_lock);
1271 netdev = tls_ctx->netdev;
1272 if (!netdev)
1273 goto out;
1274
1275 netdev->tlsdev_ops->tls_dev_del(netdev, tls_ctx,
1276 TLS_OFFLOAD_CTX_DIR_RX);
1277
1278 if (tls_ctx->tx_conf != TLS_HW) {
1279 dev_put(netdev);
1280 tls_ctx->netdev = NULL;
1281 } else {
1282 set_bit(TLS_RX_DEV_CLOSED, &tls_ctx->flags);
1283 }
1284 out:
1285 up_read(&device_offload_lock);
1286 tls_sw_release_resources_rx(sk);
1287 }
1288
1289 static int tls_device_down(struct net_device *netdev)
1290 {
1291 struct tls_context *ctx, *tmp;
1292 unsigned long flags;
1293 LIST_HEAD(list);
1294
1295 /* Request a write lock to block new offload attempts */
1296 down_write(&device_offload_lock);
1297
1298 spin_lock_irqsave(&tls_device_lock, flags);
1299 list_for_each_entry_safe(ctx, tmp, &tls_device_list, list) {
1300 if (ctx->netdev != netdev ||
1301 !refcount_inc_not_zero(&ctx->refcount))
1302 continue;
1303
1304 list_move(&ctx->list, &list);
1305 }
1306 spin_unlock_irqrestore(&tls_device_lock, flags);
1307
1308 list_for_each_entry_safe(ctx, tmp, &list, list) {
1309 /* Stop offloaded TX and switch to the fallback.
1310 * tls_is_sk_tx_device_offloaded will return false.
1311 */
1312 WRITE_ONCE(ctx->sk->sk_validate_xmit_skb, tls_validate_xmit_skb_sw);
1313
1314 /* Stop the RX and TX resync.
1315 * tls_dev_resync must not be called after tls_dev_del.
1316 */
1317 WRITE_ONCE(ctx->netdev, NULL);
1318
1319 /* Start skipping the RX resync logic completely. */
1320 set_bit(TLS_RX_DEV_DEGRADED, &ctx->flags);
1321
1322 /* Sync with inflight packets. After this point:
1323 * TX: no non-encrypted packets will be passed to the driver.
1324 * RX: resync requests from the driver will be ignored.
1325 */
1326 synchronize_net();
1327
1328 /* Release the offload context on the driver side. */
1329 if (ctx->tx_conf == TLS_HW)
1330 netdev->tlsdev_ops->tls_dev_del(netdev, ctx,
1331 TLS_OFFLOAD_CTX_DIR_TX);
1332 if (ctx->rx_conf == TLS_HW &&
1333 !test_bit(TLS_RX_DEV_CLOSED, &ctx->flags))
1334 netdev->tlsdev_ops->tls_dev_del(netdev, ctx,
1335 TLS_OFFLOAD_CTX_DIR_RX);
1336
1337 dev_put(netdev);
1338
1339 /* Move the context to a separate list for two reasons:
1340 * 1. When the context is deallocated, list_del is called.
1341 * 2. It's no longer an offloaded context, so we don't want to
1342 * run offload-specific code on this context.
1343 */
1344 spin_lock_irqsave(&tls_device_lock, flags);
1345 list_move_tail(&ctx->list, &tls_device_down_list);
1346 spin_unlock_irqrestore(&tls_device_lock, flags);
1347
1348 /* Device contexts for RX and TX will be freed in on sk_destruct
1349 * by tls_device_free_ctx. rx_conf and tx_conf stay in TLS_HW.
1350 */
1351 }
1352
1353 up_write(&device_offload_lock);
1354
1355 flush_work(&tls_device_gc_work);
1356
1357 return NOTIFY_DONE;
1358 }
1359
1360 static int tls_dev_event(struct notifier_block *this, unsigned long event,
1361 void *ptr)
1362 {
1363 struct net_device *dev = netdev_notifier_info_to_dev(ptr);
1364
1365 if (!dev->tlsdev_ops &&
1366 !(dev->features & (NETIF_F_HW_TLS_RX | NETIF_F_HW_TLS_TX)))
1367 return NOTIFY_DONE;
1368
1369 switch (event) {
1370 case NETDEV_REGISTER:
1371 case NETDEV_FEAT_CHANGE:
1372 if (netif_is_bond_master(dev))
1373 return NOTIFY_DONE;
1374 if ((dev->features & NETIF_F_HW_TLS_RX) &&
1375 !dev->tlsdev_ops->tls_dev_resync)
1376 return NOTIFY_BAD;
1377
1378 if (dev->tlsdev_ops &&
1379 dev->tlsdev_ops->tls_dev_add &&
1380 dev->tlsdev_ops->tls_dev_del)
1381 return NOTIFY_DONE;
1382 else
1383 return NOTIFY_BAD;
1384 case NETDEV_DOWN:
1385 return tls_device_down(dev);
1386 }
1387 return NOTIFY_DONE;
1388 }
1389
1390 static struct notifier_block tls_dev_notifier = {
1391 .notifier_call = tls_dev_event,
1392 };
1393
1394 void __init tls_device_init(void)
1395 {
1396 register_netdevice_notifier(&tls_dev_notifier);
1397 }
1398
1399 void __exit tls_device_cleanup(void)
1400 {
1401 unregister_netdevice_notifier(&tls_dev_notifier);
1402 flush_work(&tls_device_gc_work);
1403 clean_acked_data_flush();
1404 }