]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - net/wireless/reg.c
cfg80211: add helper reg_get_regdomain() function
[mirror_ubuntu-bionic-kernel.git] / net / wireless / reg.c
1 /*
2 * Copyright 2002-2005, Instant802 Networks, Inc.
3 * Copyright 2005-2006, Devicescape Software, Inc.
4 * Copyright 2007 Johannes Berg <johannes@sipsolutions.net>
5 * Copyright 2008-2011 Luis R. Rodriguez <mcgrof@qca.qualcomm.com>
6 *
7 * Permission to use, copy, modify, and/or distribute this software for any
8 * purpose with or without fee is hereby granted, provided that the above
9 * copyright notice and this permission notice appear in all copies.
10 *
11 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
12 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
13 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
14 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
15 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
16 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
17 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
18 */
19
20
21 /**
22 * DOC: Wireless regulatory infrastructure
23 *
24 * The usual implementation is for a driver to read a device EEPROM to
25 * determine which regulatory domain it should be operating under, then
26 * looking up the allowable channels in a driver-local table and finally
27 * registering those channels in the wiphy structure.
28 *
29 * Another set of compliance enforcement is for drivers to use their
30 * own compliance limits which can be stored on the EEPROM. The host
31 * driver or firmware may ensure these are used.
32 *
33 * In addition to all this we provide an extra layer of regulatory
34 * conformance. For drivers which do not have any regulatory
35 * information CRDA provides the complete regulatory solution.
36 * For others it provides a community effort on further restrictions
37 * to enhance compliance.
38 *
39 * Note: When number of rules --> infinity we will not be able to
40 * index on alpha2 any more, instead we'll probably have to
41 * rely on some SHA1 checksum of the regdomain for example.
42 *
43 */
44
45 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
46
47 #include <linux/kernel.h>
48 #include <linux/export.h>
49 #include <linux/slab.h>
50 #include <linux/list.h>
51 #include <linux/ctype.h>
52 #include <linux/nl80211.h>
53 #include <linux/platform_device.h>
54 #include <linux/moduleparam.h>
55 #include <net/cfg80211.h>
56 #include "core.h"
57 #include "reg.h"
58 #include "regdb.h"
59 #include "nl80211.h"
60
61 #ifdef CONFIG_CFG80211_REG_DEBUG
62 #define REG_DBG_PRINT(format, args...) \
63 printk(KERN_DEBUG pr_fmt(format), ##args)
64 #else
65 #define REG_DBG_PRINT(args...)
66 #endif
67
68 enum reg_request_treatment {
69 REG_REQ_OK,
70 REG_REQ_IGNORE,
71 REG_REQ_INTERSECT,
72 REG_REQ_ALREADY_SET,
73 };
74
75 static struct regulatory_request core_request_world = {
76 .initiator = NL80211_REGDOM_SET_BY_CORE,
77 .alpha2[0] = '0',
78 .alpha2[1] = '0',
79 .intersect = false,
80 .processed = true,
81 .country_ie_env = ENVIRON_ANY,
82 };
83
84 /*
85 * Receipt of information from last regulatory request,
86 * protected by RTNL (and can be accessed with RCU protection)
87 */
88 static struct regulatory_request __rcu *last_request =
89 (void __rcu *)&core_request_world;
90
91 /* To trigger userspace events */
92 static struct platform_device *reg_pdev;
93
94 static const struct device_type reg_device_type = {
95 .uevent = reg_device_uevent,
96 };
97
98 /*
99 * Central wireless core regulatory domains, we only need two,
100 * the current one and a world regulatory domain in case we have no
101 * information to give us an alpha2.
102 * (protected by RTNL, can be read under RCU)
103 */
104 const struct ieee80211_regdomain __rcu *cfg80211_regdomain;
105
106 /*
107 * Number of devices that registered to the core
108 * that support cellular base station regulatory hints
109 * (protected by RTNL)
110 */
111 static int reg_num_devs_support_basehint;
112
113 static const struct ieee80211_regdomain *get_cfg80211_regdom(void)
114 {
115 return rtnl_dereference(cfg80211_regdomain);
116 }
117
118 static const struct ieee80211_regdomain *get_wiphy_regdom(struct wiphy *wiphy)
119 {
120 return rtnl_dereference(wiphy->regd);
121 }
122
123 static const char *reg_dfs_region_str(enum nl80211_dfs_regions dfs_region)
124 {
125 switch (dfs_region) {
126 case NL80211_DFS_UNSET:
127 return "unset";
128 case NL80211_DFS_FCC:
129 return "FCC";
130 case NL80211_DFS_ETSI:
131 return "ETSI";
132 case NL80211_DFS_JP:
133 return "JP";
134 }
135 return "Unknown";
136 }
137
138 enum nl80211_dfs_regions reg_get_dfs_region(struct wiphy *wiphy)
139 {
140 const struct ieee80211_regdomain *regd = NULL;
141 const struct ieee80211_regdomain *wiphy_regd = NULL;
142
143 regd = get_cfg80211_regdom();
144 if (!wiphy)
145 goto out;
146
147 wiphy_regd = get_wiphy_regdom(wiphy);
148 if (!wiphy_regd)
149 goto out;
150
151 if (wiphy_regd->dfs_region == regd->dfs_region)
152 goto out;
153
154 REG_DBG_PRINT("%s: device specific dfs_region "
155 "(%s) disagrees with cfg80211's "
156 "central dfs_region (%s)\n",
157 dev_name(&wiphy->dev),
158 reg_dfs_region_str(wiphy_regd->dfs_region),
159 reg_dfs_region_str(regd->dfs_region));
160
161 out:
162 return regd->dfs_region;
163 }
164
165 static void rcu_free_regdom(const struct ieee80211_regdomain *r)
166 {
167 if (!r)
168 return;
169 kfree_rcu((struct ieee80211_regdomain *)r, rcu_head);
170 }
171
172 static struct regulatory_request *get_last_request(void)
173 {
174 return rcu_dereference_rtnl(last_request);
175 }
176
177 /* Used to queue up regulatory hints */
178 static LIST_HEAD(reg_requests_list);
179 static spinlock_t reg_requests_lock;
180
181 /* Used to queue up beacon hints for review */
182 static LIST_HEAD(reg_pending_beacons);
183 static spinlock_t reg_pending_beacons_lock;
184
185 /* Used to keep track of processed beacon hints */
186 static LIST_HEAD(reg_beacon_list);
187
188 struct reg_beacon {
189 struct list_head list;
190 struct ieee80211_channel chan;
191 };
192
193 static void reg_todo(struct work_struct *work);
194 static DECLARE_WORK(reg_work, reg_todo);
195
196 static void reg_timeout_work(struct work_struct *work);
197 static DECLARE_DELAYED_WORK(reg_timeout, reg_timeout_work);
198
199 /* We keep a static world regulatory domain in case of the absence of CRDA */
200 static const struct ieee80211_regdomain world_regdom = {
201 .n_reg_rules = 6,
202 .alpha2 = "00",
203 .reg_rules = {
204 /* IEEE 802.11b/g, channels 1..11 */
205 REG_RULE(2412-10, 2462+10, 40, 6, 20, 0),
206 /* IEEE 802.11b/g, channels 12..13. */
207 REG_RULE(2467-10, 2472+10, 40, 6, 20,
208 NL80211_RRF_NO_IR),
209 /* IEEE 802.11 channel 14 - Only JP enables
210 * this and for 802.11b only */
211 REG_RULE(2484-10, 2484+10, 20, 6, 20,
212 NL80211_RRF_NO_IR |
213 NL80211_RRF_NO_OFDM),
214 /* IEEE 802.11a, channel 36..48 */
215 REG_RULE(5180-10, 5240+10, 160, 6, 20,
216 NL80211_RRF_NO_IR),
217
218 /* IEEE 802.11a, channel 52..64 - DFS required */
219 REG_RULE(5260-10, 5320+10, 160, 6, 20,
220 NL80211_RRF_NO_IR |
221 NL80211_RRF_DFS),
222
223 /* IEEE 802.11a, channel 100..144 - DFS required */
224 REG_RULE(5500-10, 5720+10, 160, 6, 20,
225 NL80211_RRF_NO_IR |
226 NL80211_RRF_DFS),
227
228 /* IEEE 802.11a, channel 149..165 */
229 REG_RULE(5745-10, 5825+10, 80, 6, 20,
230 NL80211_RRF_NO_IR),
231
232 /* IEEE 802.11ad (60gHz), channels 1..3 */
233 REG_RULE(56160+2160*1-1080, 56160+2160*3+1080, 2160, 0, 0, 0),
234 }
235 };
236
237 /* protected by RTNL */
238 static const struct ieee80211_regdomain *cfg80211_world_regdom =
239 &world_regdom;
240
241 static char *ieee80211_regdom = "00";
242 static char user_alpha2[2];
243
244 module_param(ieee80211_regdom, charp, 0444);
245 MODULE_PARM_DESC(ieee80211_regdom, "IEEE 802.11 regulatory domain code");
246
247 static void reg_kfree_last_request(void)
248 {
249 struct regulatory_request *lr;
250
251 lr = get_last_request();
252
253 if (lr != &core_request_world && lr)
254 kfree_rcu(lr, rcu_head);
255 }
256
257 static void reg_update_last_request(struct regulatory_request *request)
258 {
259 reg_kfree_last_request();
260 rcu_assign_pointer(last_request, request);
261 }
262
263 static void reset_regdomains(bool full_reset,
264 const struct ieee80211_regdomain *new_regdom)
265 {
266 const struct ieee80211_regdomain *r;
267
268 ASSERT_RTNL();
269
270 r = get_cfg80211_regdom();
271
272 /* avoid freeing static information or freeing something twice */
273 if (r == cfg80211_world_regdom)
274 r = NULL;
275 if (cfg80211_world_regdom == &world_regdom)
276 cfg80211_world_regdom = NULL;
277 if (r == &world_regdom)
278 r = NULL;
279
280 rcu_free_regdom(r);
281 rcu_free_regdom(cfg80211_world_regdom);
282
283 cfg80211_world_regdom = &world_regdom;
284 rcu_assign_pointer(cfg80211_regdomain, new_regdom);
285
286 if (!full_reset)
287 return;
288
289 reg_update_last_request(&core_request_world);
290 }
291
292 /*
293 * Dynamic world regulatory domain requested by the wireless
294 * core upon initialization
295 */
296 static void update_world_regdomain(const struct ieee80211_regdomain *rd)
297 {
298 struct regulatory_request *lr;
299
300 lr = get_last_request();
301
302 WARN_ON(!lr);
303
304 reset_regdomains(false, rd);
305
306 cfg80211_world_regdom = rd;
307 }
308
309 bool is_world_regdom(const char *alpha2)
310 {
311 if (!alpha2)
312 return false;
313 return alpha2[0] == '0' && alpha2[1] == '0';
314 }
315
316 static bool is_alpha2_set(const char *alpha2)
317 {
318 if (!alpha2)
319 return false;
320 return alpha2[0] && alpha2[1];
321 }
322
323 static bool is_unknown_alpha2(const char *alpha2)
324 {
325 if (!alpha2)
326 return false;
327 /*
328 * Special case where regulatory domain was built by driver
329 * but a specific alpha2 cannot be determined
330 */
331 return alpha2[0] == '9' && alpha2[1] == '9';
332 }
333
334 static bool is_intersected_alpha2(const char *alpha2)
335 {
336 if (!alpha2)
337 return false;
338 /*
339 * Special case where regulatory domain is the
340 * result of an intersection between two regulatory domain
341 * structures
342 */
343 return alpha2[0] == '9' && alpha2[1] == '8';
344 }
345
346 static bool is_an_alpha2(const char *alpha2)
347 {
348 if (!alpha2)
349 return false;
350 return isalpha(alpha2[0]) && isalpha(alpha2[1]);
351 }
352
353 static bool alpha2_equal(const char *alpha2_x, const char *alpha2_y)
354 {
355 if (!alpha2_x || !alpha2_y)
356 return false;
357 return alpha2_x[0] == alpha2_y[0] && alpha2_x[1] == alpha2_y[1];
358 }
359
360 static bool regdom_changes(const char *alpha2)
361 {
362 const struct ieee80211_regdomain *r = get_cfg80211_regdom();
363
364 if (!r)
365 return true;
366 return !alpha2_equal(r->alpha2, alpha2);
367 }
368
369 /*
370 * The NL80211_REGDOM_SET_BY_USER regdom alpha2 is cached, this lets
371 * you know if a valid regulatory hint with NL80211_REGDOM_SET_BY_USER
372 * has ever been issued.
373 */
374 static bool is_user_regdom_saved(void)
375 {
376 if (user_alpha2[0] == '9' && user_alpha2[1] == '7')
377 return false;
378
379 /* This would indicate a mistake on the design */
380 if (WARN(!is_world_regdom(user_alpha2) && !is_an_alpha2(user_alpha2),
381 "Unexpected user alpha2: %c%c\n",
382 user_alpha2[0], user_alpha2[1]))
383 return false;
384
385 return true;
386 }
387
388 static const struct ieee80211_regdomain *
389 reg_copy_regd(const struct ieee80211_regdomain *src_regd)
390 {
391 struct ieee80211_regdomain *regd;
392 int size_of_regd;
393 unsigned int i;
394
395 size_of_regd =
396 sizeof(struct ieee80211_regdomain) +
397 src_regd->n_reg_rules * sizeof(struct ieee80211_reg_rule);
398
399 regd = kzalloc(size_of_regd, GFP_KERNEL);
400 if (!regd)
401 return ERR_PTR(-ENOMEM);
402
403 memcpy(regd, src_regd, sizeof(struct ieee80211_regdomain));
404
405 for (i = 0; i < src_regd->n_reg_rules; i++)
406 memcpy(&regd->reg_rules[i], &src_regd->reg_rules[i],
407 sizeof(struct ieee80211_reg_rule));
408
409 return regd;
410 }
411
412 #ifdef CONFIG_CFG80211_INTERNAL_REGDB
413 struct reg_regdb_search_request {
414 char alpha2[2];
415 struct list_head list;
416 };
417
418 static LIST_HEAD(reg_regdb_search_list);
419 static DEFINE_MUTEX(reg_regdb_search_mutex);
420
421 static void reg_regdb_search(struct work_struct *work)
422 {
423 struct reg_regdb_search_request *request;
424 const struct ieee80211_regdomain *curdom, *regdom = NULL;
425 int i;
426
427 rtnl_lock();
428
429 mutex_lock(&reg_regdb_search_mutex);
430 while (!list_empty(&reg_regdb_search_list)) {
431 request = list_first_entry(&reg_regdb_search_list,
432 struct reg_regdb_search_request,
433 list);
434 list_del(&request->list);
435
436 for (i = 0; i < reg_regdb_size; i++) {
437 curdom = reg_regdb[i];
438
439 if (alpha2_equal(request->alpha2, curdom->alpha2)) {
440 regdom = reg_copy_regd(curdom);
441 break;
442 }
443 }
444
445 kfree(request);
446 }
447 mutex_unlock(&reg_regdb_search_mutex);
448
449 if (!IS_ERR_OR_NULL(regdom))
450 set_regdom(regdom);
451
452 rtnl_unlock();
453 }
454
455 static DECLARE_WORK(reg_regdb_work, reg_regdb_search);
456
457 static void reg_regdb_query(const char *alpha2)
458 {
459 struct reg_regdb_search_request *request;
460
461 if (!alpha2)
462 return;
463
464 request = kzalloc(sizeof(struct reg_regdb_search_request), GFP_KERNEL);
465 if (!request)
466 return;
467
468 memcpy(request->alpha2, alpha2, 2);
469
470 mutex_lock(&reg_regdb_search_mutex);
471 list_add_tail(&request->list, &reg_regdb_search_list);
472 mutex_unlock(&reg_regdb_search_mutex);
473
474 schedule_work(&reg_regdb_work);
475 }
476
477 /* Feel free to add any other sanity checks here */
478 static void reg_regdb_size_check(void)
479 {
480 /* We should ideally BUILD_BUG_ON() but then random builds would fail */
481 WARN_ONCE(!reg_regdb_size, "db.txt is empty, you should update it...");
482 }
483 #else
484 static inline void reg_regdb_size_check(void) {}
485 static inline void reg_regdb_query(const char *alpha2) {}
486 #endif /* CONFIG_CFG80211_INTERNAL_REGDB */
487
488 /*
489 * This lets us keep regulatory code which is updated on a regulatory
490 * basis in userspace. Country information is filled in by
491 * reg_device_uevent
492 */
493 static int call_crda(const char *alpha2)
494 {
495 if (!is_world_regdom((char *) alpha2))
496 pr_info("Calling CRDA for country: %c%c\n",
497 alpha2[0], alpha2[1]);
498 else
499 pr_info("Calling CRDA to update world regulatory domain\n");
500
501 /* query internal regulatory database (if it exists) */
502 reg_regdb_query(alpha2);
503
504 return kobject_uevent(&reg_pdev->dev.kobj, KOBJ_CHANGE);
505 }
506
507 static enum reg_request_treatment
508 reg_call_crda(struct regulatory_request *request)
509 {
510 if (call_crda(request->alpha2))
511 return REG_REQ_IGNORE;
512 return REG_REQ_OK;
513 }
514
515 bool reg_is_valid_request(const char *alpha2)
516 {
517 struct regulatory_request *lr = get_last_request();
518
519 if (!lr || lr->processed)
520 return false;
521
522 return alpha2_equal(lr->alpha2, alpha2);
523 }
524
525 static const struct ieee80211_regdomain *reg_get_regdomain(struct wiphy *wiphy)
526 {
527 struct regulatory_request *lr = get_last_request();
528
529 /*
530 * Follow the driver's regulatory domain, if present, unless a country
531 * IE has been processed or a user wants to help complaince further
532 */
533 if (lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
534 lr->initiator != NL80211_REGDOM_SET_BY_USER &&
535 wiphy->regd)
536 return get_wiphy_regdom(wiphy);
537
538 return get_cfg80211_regdom();
539 }
540
541 /* Sanity check on a regulatory rule */
542 static bool is_valid_reg_rule(const struct ieee80211_reg_rule *rule)
543 {
544 const struct ieee80211_freq_range *freq_range = &rule->freq_range;
545 u32 freq_diff;
546
547 if (freq_range->start_freq_khz <= 0 || freq_range->end_freq_khz <= 0)
548 return false;
549
550 if (freq_range->start_freq_khz > freq_range->end_freq_khz)
551 return false;
552
553 freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
554
555 if (freq_range->end_freq_khz <= freq_range->start_freq_khz ||
556 freq_range->max_bandwidth_khz > freq_diff)
557 return false;
558
559 return true;
560 }
561
562 static bool is_valid_rd(const struct ieee80211_regdomain *rd)
563 {
564 const struct ieee80211_reg_rule *reg_rule = NULL;
565 unsigned int i;
566
567 if (!rd->n_reg_rules)
568 return false;
569
570 if (WARN_ON(rd->n_reg_rules > NL80211_MAX_SUPP_REG_RULES))
571 return false;
572
573 for (i = 0; i < rd->n_reg_rules; i++) {
574 reg_rule = &rd->reg_rules[i];
575 if (!is_valid_reg_rule(reg_rule))
576 return false;
577 }
578
579 return true;
580 }
581
582 static bool reg_does_bw_fit(const struct ieee80211_freq_range *freq_range,
583 u32 center_freq_khz, u32 bw_khz)
584 {
585 u32 start_freq_khz, end_freq_khz;
586
587 start_freq_khz = center_freq_khz - (bw_khz/2);
588 end_freq_khz = center_freq_khz + (bw_khz/2);
589
590 if (start_freq_khz >= freq_range->start_freq_khz &&
591 end_freq_khz <= freq_range->end_freq_khz)
592 return true;
593
594 return false;
595 }
596
597 /**
598 * freq_in_rule_band - tells us if a frequency is in a frequency band
599 * @freq_range: frequency rule we want to query
600 * @freq_khz: frequency we are inquiring about
601 *
602 * This lets us know if a specific frequency rule is or is not relevant to
603 * a specific frequency's band. Bands are device specific and artificial
604 * definitions (the "2.4 GHz band", the "5 GHz band" and the "60GHz band"),
605 * however it is safe for now to assume that a frequency rule should not be
606 * part of a frequency's band if the start freq or end freq are off by more
607 * than 2 GHz for the 2.4 and 5 GHz bands, and by more than 10 GHz for the
608 * 60 GHz band.
609 * This resolution can be lowered and should be considered as we add
610 * regulatory rule support for other "bands".
611 **/
612 static bool freq_in_rule_band(const struct ieee80211_freq_range *freq_range,
613 u32 freq_khz)
614 {
615 #define ONE_GHZ_IN_KHZ 1000000
616 /*
617 * From 802.11ad: directional multi-gigabit (DMG):
618 * Pertaining to operation in a frequency band containing a channel
619 * with the Channel starting frequency above 45 GHz.
620 */
621 u32 limit = freq_khz > 45 * ONE_GHZ_IN_KHZ ?
622 10 * ONE_GHZ_IN_KHZ : 2 * ONE_GHZ_IN_KHZ;
623 if (abs(freq_khz - freq_range->start_freq_khz) <= limit)
624 return true;
625 if (abs(freq_khz - freq_range->end_freq_khz) <= limit)
626 return true;
627 return false;
628 #undef ONE_GHZ_IN_KHZ
629 }
630
631 /*
632 * Later on we can perhaps use the more restrictive DFS
633 * region but we don't have information for that yet so
634 * for now simply disallow conflicts.
635 */
636 static enum nl80211_dfs_regions
637 reg_intersect_dfs_region(const enum nl80211_dfs_regions dfs_region1,
638 const enum nl80211_dfs_regions dfs_region2)
639 {
640 if (dfs_region1 != dfs_region2)
641 return NL80211_DFS_UNSET;
642 return dfs_region1;
643 }
644
645 /*
646 * Helper for regdom_intersect(), this does the real
647 * mathematical intersection fun
648 */
649 static int reg_rules_intersect(const struct ieee80211_reg_rule *rule1,
650 const struct ieee80211_reg_rule *rule2,
651 struct ieee80211_reg_rule *intersected_rule)
652 {
653 const struct ieee80211_freq_range *freq_range1, *freq_range2;
654 struct ieee80211_freq_range *freq_range;
655 const struct ieee80211_power_rule *power_rule1, *power_rule2;
656 struct ieee80211_power_rule *power_rule;
657 u32 freq_diff;
658
659 freq_range1 = &rule1->freq_range;
660 freq_range2 = &rule2->freq_range;
661 freq_range = &intersected_rule->freq_range;
662
663 power_rule1 = &rule1->power_rule;
664 power_rule2 = &rule2->power_rule;
665 power_rule = &intersected_rule->power_rule;
666
667 freq_range->start_freq_khz = max(freq_range1->start_freq_khz,
668 freq_range2->start_freq_khz);
669 freq_range->end_freq_khz = min(freq_range1->end_freq_khz,
670 freq_range2->end_freq_khz);
671 freq_range->max_bandwidth_khz = min(freq_range1->max_bandwidth_khz,
672 freq_range2->max_bandwidth_khz);
673
674 freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
675 if (freq_range->max_bandwidth_khz > freq_diff)
676 freq_range->max_bandwidth_khz = freq_diff;
677
678 power_rule->max_eirp = min(power_rule1->max_eirp,
679 power_rule2->max_eirp);
680 power_rule->max_antenna_gain = min(power_rule1->max_antenna_gain,
681 power_rule2->max_antenna_gain);
682
683 intersected_rule->flags = rule1->flags | rule2->flags;
684
685 if (!is_valid_reg_rule(intersected_rule))
686 return -EINVAL;
687
688 return 0;
689 }
690
691 /**
692 * regdom_intersect - do the intersection between two regulatory domains
693 * @rd1: first regulatory domain
694 * @rd2: second regulatory domain
695 *
696 * Use this function to get the intersection between two regulatory domains.
697 * Once completed we will mark the alpha2 for the rd as intersected, "98",
698 * as no one single alpha2 can represent this regulatory domain.
699 *
700 * Returns a pointer to the regulatory domain structure which will hold the
701 * resulting intersection of rules between rd1 and rd2. We will
702 * kzalloc() this structure for you.
703 */
704 static struct ieee80211_regdomain *
705 regdom_intersect(const struct ieee80211_regdomain *rd1,
706 const struct ieee80211_regdomain *rd2)
707 {
708 int r, size_of_regd;
709 unsigned int x, y;
710 unsigned int num_rules = 0, rule_idx = 0;
711 const struct ieee80211_reg_rule *rule1, *rule2;
712 struct ieee80211_reg_rule *intersected_rule;
713 struct ieee80211_regdomain *rd;
714 /* This is just a dummy holder to help us count */
715 struct ieee80211_reg_rule dummy_rule;
716
717 if (!rd1 || !rd2)
718 return NULL;
719
720 /*
721 * First we get a count of the rules we'll need, then we actually
722 * build them. This is to so we can malloc() and free() a
723 * regdomain once. The reason we use reg_rules_intersect() here
724 * is it will return -EINVAL if the rule computed makes no sense.
725 * All rules that do check out OK are valid.
726 */
727
728 for (x = 0; x < rd1->n_reg_rules; x++) {
729 rule1 = &rd1->reg_rules[x];
730 for (y = 0; y < rd2->n_reg_rules; y++) {
731 rule2 = &rd2->reg_rules[y];
732 if (!reg_rules_intersect(rule1, rule2, &dummy_rule))
733 num_rules++;
734 }
735 }
736
737 if (!num_rules)
738 return NULL;
739
740 size_of_regd = sizeof(struct ieee80211_regdomain) +
741 num_rules * sizeof(struct ieee80211_reg_rule);
742
743 rd = kzalloc(size_of_regd, GFP_KERNEL);
744 if (!rd)
745 return NULL;
746
747 for (x = 0; x < rd1->n_reg_rules && rule_idx < num_rules; x++) {
748 rule1 = &rd1->reg_rules[x];
749 for (y = 0; y < rd2->n_reg_rules && rule_idx < num_rules; y++) {
750 rule2 = &rd2->reg_rules[y];
751 /*
752 * This time around instead of using the stack lets
753 * write to the target rule directly saving ourselves
754 * a memcpy()
755 */
756 intersected_rule = &rd->reg_rules[rule_idx];
757 r = reg_rules_intersect(rule1, rule2, intersected_rule);
758 /*
759 * No need to memset here the intersected rule here as
760 * we're not using the stack anymore
761 */
762 if (r)
763 continue;
764 rule_idx++;
765 }
766 }
767
768 if (rule_idx != num_rules) {
769 kfree(rd);
770 return NULL;
771 }
772
773 rd->n_reg_rules = num_rules;
774 rd->alpha2[0] = '9';
775 rd->alpha2[1] = '8';
776 rd->dfs_region = reg_intersect_dfs_region(rd1->dfs_region,
777 rd2->dfs_region);
778
779 return rd;
780 }
781
782 /*
783 * XXX: add support for the rest of enum nl80211_reg_rule_flags, we may
784 * want to just have the channel structure use these
785 */
786 static u32 map_regdom_flags(u32 rd_flags)
787 {
788 u32 channel_flags = 0;
789 if (rd_flags & NL80211_RRF_NO_IR_ALL)
790 channel_flags |= IEEE80211_CHAN_NO_IR;
791 if (rd_flags & NL80211_RRF_DFS)
792 channel_flags |= IEEE80211_CHAN_RADAR;
793 if (rd_flags & NL80211_RRF_NO_OFDM)
794 channel_flags |= IEEE80211_CHAN_NO_OFDM;
795 return channel_flags;
796 }
797
798 static const struct ieee80211_reg_rule *
799 freq_reg_info_regd(struct wiphy *wiphy, u32 center_freq,
800 const struct ieee80211_regdomain *regd)
801 {
802 int i;
803 bool band_rule_found = false;
804 bool bw_fits = false;
805
806 if (!regd)
807 return ERR_PTR(-EINVAL);
808
809 for (i = 0; i < regd->n_reg_rules; i++) {
810 const struct ieee80211_reg_rule *rr;
811 const struct ieee80211_freq_range *fr = NULL;
812
813 rr = &regd->reg_rules[i];
814 fr = &rr->freq_range;
815
816 /*
817 * We only need to know if one frequency rule was
818 * was in center_freq's band, that's enough, so lets
819 * not overwrite it once found
820 */
821 if (!band_rule_found)
822 band_rule_found = freq_in_rule_band(fr, center_freq);
823
824 bw_fits = reg_does_bw_fit(fr, center_freq, MHZ_TO_KHZ(20));
825
826 if (band_rule_found && bw_fits)
827 return rr;
828 }
829
830 if (!band_rule_found)
831 return ERR_PTR(-ERANGE);
832
833 return ERR_PTR(-EINVAL);
834 }
835
836 const struct ieee80211_reg_rule *freq_reg_info(struct wiphy *wiphy,
837 u32 center_freq)
838 {
839 const struct ieee80211_regdomain *regd;
840
841 regd = reg_get_regdomain(wiphy);
842
843 return freq_reg_info_regd(wiphy, center_freq, regd);
844 }
845 EXPORT_SYMBOL(freq_reg_info);
846
847 const char *reg_initiator_name(enum nl80211_reg_initiator initiator)
848 {
849 switch (initiator) {
850 case NL80211_REGDOM_SET_BY_CORE:
851 return "core";
852 case NL80211_REGDOM_SET_BY_USER:
853 return "user";
854 case NL80211_REGDOM_SET_BY_DRIVER:
855 return "driver";
856 case NL80211_REGDOM_SET_BY_COUNTRY_IE:
857 return "country IE";
858 default:
859 WARN_ON(1);
860 return "bug";
861 }
862 }
863 EXPORT_SYMBOL(reg_initiator_name);
864
865 #ifdef CONFIG_CFG80211_REG_DEBUG
866 static void chan_reg_rule_print_dbg(struct ieee80211_channel *chan,
867 const struct ieee80211_reg_rule *reg_rule)
868 {
869 const struct ieee80211_power_rule *power_rule;
870 const struct ieee80211_freq_range *freq_range;
871 char max_antenna_gain[32];
872
873 power_rule = &reg_rule->power_rule;
874 freq_range = &reg_rule->freq_range;
875
876 if (!power_rule->max_antenna_gain)
877 snprintf(max_antenna_gain, 32, "N/A");
878 else
879 snprintf(max_antenna_gain, 32, "%d", power_rule->max_antenna_gain);
880
881 REG_DBG_PRINT("Updating information on frequency %d MHz with regulatory rule:\n",
882 chan->center_freq);
883
884 REG_DBG_PRINT("%d KHz - %d KHz @ %d KHz), (%s mBi, %d mBm)\n",
885 freq_range->start_freq_khz, freq_range->end_freq_khz,
886 freq_range->max_bandwidth_khz, max_antenna_gain,
887 power_rule->max_eirp);
888 }
889 #else
890 static void chan_reg_rule_print_dbg(struct ieee80211_channel *chan,
891 const struct ieee80211_reg_rule *reg_rule)
892 {
893 return;
894 }
895 #endif
896
897 /*
898 * Note that right now we assume the desired channel bandwidth
899 * is always 20 MHz for each individual channel (HT40 uses 20 MHz
900 * per channel, the primary and the extension channel).
901 */
902 static void handle_channel(struct wiphy *wiphy,
903 enum nl80211_reg_initiator initiator,
904 struct ieee80211_channel *chan)
905 {
906 u32 flags, bw_flags = 0;
907 const struct ieee80211_reg_rule *reg_rule = NULL;
908 const struct ieee80211_power_rule *power_rule = NULL;
909 const struct ieee80211_freq_range *freq_range = NULL;
910 struct wiphy *request_wiphy = NULL;
911 struct regulatory_request *lr = get_last_request();
912
913 request_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx);
914
915 flags = chan->orig_flags;
916
917 reg_rule = freq_reg_info(wiphy, MHZ_TO_KHZ(chan->center_freq));
918 if (IS_ERR(reg_rule)) {
919 /*
920 * We will disable all channels that do not match our
921 * received regulatory rule unless the hint is coming
922 * from a Country IE and the Country IE had no information
923 * about a band. The IEEE 802.11 spec allows for an AP
924 * to send only a subset of the regulatory rules allowed,
925 * so an AP in the US that only supports 2.4 GHz may only send
926 * a country IE with information for the 2.4 GHz band
927 * while 5 GHz is still supported.
928 */
929 if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
930 PTR_ERR(reg_rule) == -ERANGE)
931 return;
932
933 if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
934 request_wiphy && request_wiphy == wiphy &&
935 request_wiphy->regulatory_flags & REGULATORY_STRICT_REG) {
936 REG_DBG_PRINT("Disabling freq %d MHz for good\n",
937 chan->center_freq);
938 chan->orig_flags |= IEEE80211_CHAN_DISABLED;
939 chan->flags = chan->orig_flags;
940 } else {
941 REG_DBG_PRINT("Disabling freq %d MHz\n",
942 chan->center_freq);
943 chan->flags |= IEEE80211_CHAN_DISABLED;
944 }
945 return;
946 }
947
948 chan_reg_rule_print_dbg(chan, reg_rule);
949
950 power_rule = &reg_rule->power_rule;
951 freq_range = &reg_rule->freq_range;
952
953 if (freq_range->max_bandwidth_khz < MHZ_TO_KHZ(40))
954 bw_flags = IEEE80211_CHAN_NO_HT40;
955 if (freq_range->max_bandwidth_khz < MHZ_TO_KHZ(80))
956 bw_flags |= IEEE80211_CHAN_NO_80MHZ;
957 if (freq_range->max_bandwidth_khz < MHZ_TO_KHZ(160))
958 bw_flags |= IEEE80211_CHAN_NO_160MHZ;
959
960 if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
961 request_wiphy && request_wiphy == wiphy &&
962 request_wiphy->regulatory_flags & REGULATORY_STRICT_REG) {
963 /*
964 * This guarantees the driver's requested regulatory domain
965 * will always be used as a base for further regulatory
966 * settings
967 */
968 chan->flags = chan->orig_flags =
969 map_regdom_flags(reg_rule->flags) | bw_flags;
970 chan->max_antenna_gain = chan->orig_mag =
971 (int) MBI_TO_DBI(power_rule->max_antenna_gain);
972 chan->max_reg_power = chan->max_power = chan->orig_mpwr =
973 (int) MBM_TO_DBM(power_rule->max_eirp);
974 return;
975 }
976
977 chan->dfs_state = NL80211_DFS_USABLE;
978 chan->dfs_state_entered = jiffies;
979
980 chan->beacon_found = false;
981 chan->flags = flags | bw_flags | map_regdom_flags(reg_rule->flags);
982 chan->max_antenna_gain =
983 min_t(int, chan->orig_mag,
984 MBI_TO_DBI(power_rule->max_antenna_gain));
985 chan->max_reg_power = (int) MBM_TO_DBM(power_rule->max_eirp);
986 if (chan->orig_mpwr) {
987 /*
988 * Devices that use REGULATORY_COUNTRY_IE_FOLLOW_POWER
989 * will always follow the passed country IE power settings.
990 */
991 if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
992 wiphy->regulatory_flags & REGULATORY_COUNTRY_IE_FOLLOW_POWER)
993 chan->max_power = chan->max_reg_power;
994 else
995 chan->max_power = min(chan->orig_mpwr,
996 chan->max_reg_power);
997 } else
998 chan->max_power = chan->max_reg_power;
999 }
1000
1001 static void handle_band(struct wiphy *wiphy,
1002 enum nl80211_reg_initiator initiator,
1003 struct ieee80211_supported_band *sband)
1004 {
1005 unsigned int i;
1006
1007 if (!sband)
1008 return;
1009
1010 for (i = 0; i < sband->n_channels; i++)
1011 handle_channel(wiphy, initiator, &sband->channels[i]);
1012 }
1013
1014 static bool reg_request_cell_base(struct regulatory_request *request)
1015 {
1016 if (request->initiator != NL80211_REGDOM_SET_BY_USER)
1017 return false;
1018 return request->user_reg_hint_type == NL80211_USER_REG_HINT_CELL_BASE;
1019 }
1020
1021 bool reg_last_request_cell_base(void)
1022 {
1023 return reg_request_cell_base(get_last_request());
1024 }
1025
1026 #ifdef CONFIG_CFG80211_CERTIFICATION_ONUS
1027 /* Core specific check */
1028 static enum reg_request_treatment
1029 reg_ignore_cell_hint(struct regulatory_request *pending_request)
1030 {
1031 struct regulatory_request *lr = get_last_request();
1032
1033 if (!reg_num_devs_support_basehint)
1034 return REG_REQ_IGNORE;
1035
1036 if (reg_request_cell_base(lr) &&
1037 !regdom_changes(pending_request->alpha2))
1038 return REG_REQ_ALREADY_SET;
1039
1040 return REG_REQ_OK;
1041 }
1042
1043 /* Device specific check */
1044 static bool reg_dev_ignore_cell_hint(struct wiphy *wiphy)
1045 {
1046 return !(wiphy->features & NL80211_FEATURE_CELL_BASE_REG_HINTS);
1047 }
1048 #else
1049 static int reg_ignore_cell_hint(struct regulatory_request *pending_request)
1050 {
1051 return REG_REQ_IGNORE;
1052 }
1053
1054 static bool reg_dev_ignore_cell_hint(struct wiphy *wiphy)
1055 {
1056 return true;
1057 }
1058 #endif
1059
1060 static bool wiphy_strict_alpha2_regd(struct wiphy *wiphy)
1061 {
1062 if (wiphy->regulatory_flags & REGULATORY_STRICT_REG &&
1063 !(wiphy->regulatory_flags & REGULATORY_CUSTOM_REG))
1064 return true;
1065 return false;
1066 }
1067
1068 static bool ignore_reg_update(struct wiphy *wiphy,
1069 enum nl80211_reg_initiator initiator)
1070 {
1071 struct regulatory_request *lr = get_last_request();
1072
1073 if (!lr) {
1074 REG_DBG_PRINT("Ignoring regulatory request set by %s "
1075 "since last_request is not set\n",
1076 reg_initiator_name(initiator));
1077 return true;
1078 }
1079
1080 if (initiator == NL80211_REGDOM_SET_BY_CORE &&
1081 wiphy->regulatory_flags & REGULATORY_CUSTOM_REG) {
1082 REG_DBG_PRINT("Ignoring regulatory request set by %s "
1083 "since the driver uses its own custom "
1084 "regulatory domain\n",
1085 reg_initiator_name(initiator));
1086 return true;
1087 }
1088
1089 /*
1090 * wiphy->regd will be set once the device has its own
1091 * desired regulatory domain set
1092 */
1093 if (wiphy_strict_alpha2_regd(wiphy) && !wiphy->regd &&
1094 initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1095 !is_world_regdom(lr->alpha2)) {
1096 REG_DBG_PRINT("Ignoring regulatory request set by %s "
1097 "since the driver requires its own regulatory "
1098 "domain to be set first\n",
1099 reg_initiator_name(initiator));
1100 return true;
1101 }
1102
1103 if (reg_request_cell_base(lr))
1104 return reg_dev_ignore_cell_hint(wiphy);
1105
1106 return false;
1107 }
1108
1109 static bool reg_is_world_roaming(struct wiphy *wiphy)
1110 {
1111 const struct ieee80211_regdomain *cr = get_cfg80211_regdom();
1112 const struct ieee80211_regdomain *wr = get_wiphy_regdom(wiphy);
1113 struct regulatory_request *lr = get_last_request();
1114
1115 if (is_world_regdom(cr->alpha2) || (wr && is_world_regdom(wr->alpha2)))
1116 return true;
1117
1118 if (lr && lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1119 wiphy->regulatory_flags & REGULATORY_CUSTOM_REG)
1120 return true;
1121
1122 return false;
1123 }
1124
1125 static void handle_reg_beacon(struct wiphy *wiphy, unsigned int chan_idx,
1126 struct reg_beacon *reg_beacon)
1127 {
1128 struct ieee80211_supported_band *sband;
1129 struct ieee80211_channel *chan;
1130 bool channel_changed = false;
1131 struct ieee80211_channel chan_before;
1132
1133 sband = wiphy->bands[reg_beacon->chan.band];
1134 chan = &sband->channels[chan_idx];
1135
1136 if (likely(chan->center_freq != reg_beacon->chan.center_freq))
1137 return;
1138
1139 if (chan->beacon_found)
1140 return;
1141
1142 chan->beacon_found = true;
1143
1144 if (!reg_is_world_roaming(wiphy))
1145 return;
1146
1147 if (wiphy->regulatory_flags & REGULATORY_DISABLE_BEACON_HINTS)
1148 return;
1149
1150 chan_before.center_freq = chan->center_freq;
1151 chan_before.flags = chan->flags;
1152
1153 if (chan->flags & IEEE80211_CHAN_NO_IR) {
1154 chan->flags &= ~IEEE80211_CHAN_NO_IR;
1155 channel_changed = true;
1156 }
1157
1158 if (channel_changed)
1159 nl80211_send_beacon_hint_event(wiphy, &chan_before, chan);
1160 }
1161
1162 /*
1163 * Called when a scan on a wiphy finds a beacon on
1164 * new channel
1165 */
1166 static void wiphy_update_new_beacon(struct wiphy *wiphy,
1167 struct reg_beacon *reg_beacon)
1168 {
1169 unsigned int i;
1170 struct ieee80211_supported_band *sband;
1171
1172 if (!wiphy->bands[reg_beacon->chan.band])
1173 return;
1174
1175 sband = wiphy->bands[reg_beacon->chan.band];
1176
1177 for (i = 0; i < sband->n_channels; i++)
1178 handle_reg_beacon(wiphy, i, reg_beacon);
1179 }
1180
1181 /*
1182 * Called upon reg changes or a new wiphy is added
1183 */
1184 static void wiphy_update_beacon_reg(struct wiphy *wiphy)
1185 {
1186 unsigned int i;
1187 struct ieee80211_supported_band *sband;
1188 struct reg_beacon *reg_beacon;
1189
1190 list_for_each_entry(reg_beacon, &reg_beacon_list, list) {
1191 if (!wiphy->bands[reg_beacon->chan.band])
1192 continue;
1193 sband = wiphy->bands[reg_beacon->chan.band];
1194 for (i = 0; i < sband->n_channels; i++)
1195 handle_reg_beacon(wiphy, i, reg_beacon);
1196 }
1197 }
1198
1199 /* Reap the advantages of previously found beacons */
1200 static void reg_process_beacons(struct wiphy *wiphy)
1201 {
1202 /*
1203 * Means we are just firing up cfg80211, so no beacons would
1204 * have been processed yet.
1205 */
1206 if (!last_request)
1207 return;
1208 wiphy_update_beacon_reg(wiphy);
1209 }
1210
1211 static bool is_ht40_allowed(struct ieee80211_channel *chan)
1212 {
1213 if (!chan)
1214 return false;
1215 if (chan->flags & IEEE80211_CHAN_DISABLED)
1216 return false;
1217 /* This would happen when regulatory rules disallow HT40 completely */
1218 if ((chan->flags & IEEE80211_CHAN_NO_HT40) == IEEE80211_CHAN_NO_HT40)
1219 return false;
1220 return true;
1221 }
1222
1223 static void reg_process_ht_flags_channel(struct wiphy *wiphy,
1224 struct ieee80211_channel *channel)
1225 {
1226 struct ieee80211_supported_band *sband = wiphy->bands[channel->band];
1227 struct ieee80211_channel *channel_before = NULL, *channel_after = NULL;
1228 unsigned int i;
1229
1230 if (!is_ht40_allowed(channel)) {
1231 channel->flags |= IEEE80211_CHAN_NO_HT40;
1232 return;
1233 }
1234
1235 /*
1236 * We need to ensure the extension channels exist to
1237 * be able to use HT40- or HT40+, this finds them (or not)
1238 */
1239 for (i = 0; i < sband->n_channels; i++) {
1240 struct ieee80211_channel *c = &sband->channels[i];
1241
1242 if (c->center_freq == (channel->center_freq - 20))
1243 channel_before = c;
1244 if (c->center_freq == (channel->center_freq + 20))
1245 channel_after = c;
1246 }
1247
1248 /*
1249 * Please note that this assumes target bandwidth is 20 MHz,
1250 * if that ever changes we also need to change the below logic
1251 * to include that as well.
1252 */
1253 if (!is_ht40_allowed(channel_before))
1254 channel->flags |= IEEE80211_CHAN_NO_HT40MINUS;
1255 else
1256 channel->flags &= ~IEEE80211_CHAN_NO_HT40MINUS;
1257
1258 if (!is_ht40_allowed(channel_after))
1259 channel->flags |= IEEE80211_CHAN_NO_HT40PLUS;
1260 else
1261 channel->flags &= ~IEEE80211_CHAN_NO_HT40PLUS;
1262 }
1263
1264 static void reg_process_ht_flags_band(struct wiphy *wiphy,
1265 struct ieee80211_supported_band *sband)
1266 {
1267 unsigned int i;
1268
1269 if (!sband)
1270 return;
1271
1272 for (i = 0; i < sband->n_channels; i++)
1273 reg_process_ht_flags_channel(wiphy, &sband->channels[i]);
1274 }
1275
1276 static void reg_process_ht_flags(struct wiphy *wiphy)
1277 {
1278 enum ieee80211_band band;
1279
1280 if (!wiphy)
1281 return;
1282
1283 for (band = 0; band < IEEE80211_NUM_BANDS; band++)
1284 reg_process_ht_flags_band(wiphy, wiphy->bands[band]);
1285 }
1286
1287 static void reg_call_notifier(struct wiphy *wiphy,
1288 struct regulatory_request *request)
1289 {
1290 if (wiphy->reg_notifier)
1291 wiphy->reg_notifier(wiphy, request);
1292 }
1293
1294 static void wiphy_update_regulatory(struct wiphy *wiphy,
1295 enum nl80211_reg_initiator initiator)
1296 {
1297 enum ieee80211_band band;
1298 struct regulatory_request *lr = get_last_request();
1299
1300 if (ignore_reg_update(wiphy, initiator)) {
1301 /*
1302 * Regulatory updates set by CORE are ignored for custom
1303 * regulatory cards. Let us notify the changes to the driver,
1304 * as some drivers used this to restore its orig_* reg domain.
1305 */
1306 if (initiator == NL80211_REGDOM_SET_BY_CORE &&
1307 wiphy->regulatory_flags & REGULATORY_CUSTOM_REG)
1308 reg_call_notifier(wiphy, lr);
1309 return;
1310 }
1311
1312 lr->dfs_region = get_cfg80211_regdom()->dfs_region;
1313
1314 for (band = 0; band < IEEE80211_NUM_BANDS; band++)
1315 handle_band(wiphy, initiator, wiphy->bands[band]);
1316
1317 reg_process_beacons(wiphy);
1318 reg_process_ht_flags(wiphy);
1319 reg_call_notifier(wiphy, lr);
1320 }
1321
1322 static void update_all_wiphy_regulatory(enum nl80211_reg_initiator initiator)
1323 {
1324 struct cfg80211_registered_device *rdev;
1325 struct wiphy *wiphy;
1326
1327 ASSERT_RTNL();
1328
1329 list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
1330 wiphy = &rdev->wiphy;
1331 wiphy_update_regulatory(wiphy, initiator);
1332 }
1333 }
1334
1335 static void handle_channel_custom(struct wiphy *wiphy,
1336 struct ieee80211_channel *chan,
1337 const struct ieee80211_regdomain *regd)
1338 {
1339 u32 bw_flags = 0;
1340 const struct ieee80211_reg_rule *reg_rule = NULL;
1341 const struct ieee80211_power_rule *power_rule = NULL;
1342 const struct ieee80211_freq_range *freq_range = NULL;
1343
1344 reg_rule = freq_reg_info_regd(wiphy, MHZ_TO_KHZ(chan->center_freq),
1345 regd);
1346
1347 if (IS_ERR(reg_rule)) {
1348 REG_DBG_PRINT("Disabling freq %d MHz as custom regd has no rule that fits it\n",
1349 chan->center_freq);
1350 chan->orig_flags |= IEEE80211_CHAN_DISABLED;
1351 chan->flags = chan->orig_flags;
1352 return;
1353 }
1354
1355 chan_reg_rule_print_dbg(chan, reg_rule);
1356
1357 power_rule = &reg_rule->power_rule;
1358 freq_range = &reg_rule->freq_range;
1359
1360 if (freq_range->max_bandwidth_khz < MHZ_TO_KHZ(40))
1361 bw_flags = IEEE80211_CHAN_NO_HT40;
1362 if (freq_range->max_bandwidth_khz < MHZ_TO_KHZ(80))
1363 bw_flags |= IEEE80211_CHAN_NO_80MHZ;
1364 if (freq_range->max_bandwidth_khz < MHZ_TO_KHZ(160))
1365 bw_flags |= IEEE80211_CHAN_NO_160MHZ;
1366
1367 chan->flags |= map_regdom_flags(reg_rule->flags) | bw_flags;
1368 chan->max_antenna_gain = (int) MBI_TO_DBI(power_rule->max_antenna_gain);
1369 chan->max_reg_power = chan->max_power =
1370 (int) MBM_TO_DBM(power_rule->max_eirp);
1371 }
1372
1373 static void handle_band_custom(struct wiphy *wiphy,
1374 struct ieee80211_supported_band *sband,
1375 const struct ieee80211_regdomain *regd)
1376 {
1377 unsigned int i;
1378
1379 if (!sband)
1380 return;
1381
1382 for (i = 0; i < sband->n_channels; i++)
1383 handle_channel_custom(wiphy, &sband->channels[i], regd);
1384 }
1385
1386 /* Used by drivers prior to wiphy registration */
1387 void wiphy_apply_custom_regulatory(struct wiphy *wiphy,
1388 const struct ieee80211_regdomain *regd)
1389 {
1390 enum ieee80211_band band;
1391 unsigned int bands_set = 0;
1392
1393 WARN(!(wiphy->regulatory_flags & REGULATORY_CUSTOM_REG),
1394 "wiphy should have REGULATORY_CUSTOM_REG\n");
1395 wiphy->regulatory_flags |= REGULATORY_CUSTOM_REG;
1396
1397 for (band = 0; band < IEEE80211_NUM_BANDS; band++) {
1398 if (!wiphy->bands[band])
1399 continue;
1400 handle_band_custom(wiphy, wiphy->bands[band], regd);
1401 bands_set++;
1402 }
1403
1404 /*
1405 * no point in calling this if it won't have any effect
1406 * on your device's supported bands.
1407 */
1408 WARN_ON(!bands_set);
1409 }
1410 EXPORT_SYMBOL(wiphy_apply_custom_regulatory);
1411
1412 static void reg_set_request_processed(void)
1413 {
1414 bool need_more_processing = false;
1415 struct regulatory_request *lr = get_last_request();
1416
1417 lr->processed = true;
1418
1419 spin_lock(&reg_requests_lock);
1420 if (!list_empty(&reg_requests_list))
1421 need_more_processing = true;
1422 spin_unlock(&reg_requests_lock);
1423
1424 if (lr->initiator == NL80211_REGDOM_SET_BY_USER)
1425 cancel_delayed_work(&reg_timeout);
1426
1427 if (need_more_processing)
1428 schedule_work(&reg_work);
1429 }
1430
1431 /**
1432 * reg_process_hint_core - process core regulatory requests
1433 * @pending_request: a pending core regulatory request
1434 *
1435 * The wireless subsystem can use this function to process
1436 * a regulatory request issued by the regulatory core.
1437 *
1438 * Returns one of the different reg request treatment values.
1439 */
1440 static enum reg_request_treatment
1441 reg_process_hint_core(struct regulatory_request *core_request)
1442 {
1443
1444 core_request->intersect = false;
1445 core_request->processed = false;
1446
1447 reg_update_last_request(core_request);
1448
1449 return reg_call_crda(core_request);
1450 }
1451
1452 static enum reg_request_treatment
1453 __reg_process_hint_user(struct regulatory_request *user_request)
1454 {
1455 struct regulatory_request *lr = get_last_request();
1456
1457 if (reg_request_cell_base(user_request))
1458 return reg_ignore_cell_hint(user_request);
1459
1460 if (reg_request_cell_base(lr))
1461 return REG_REQ_IGNORE;
1462
1463 if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE)
1464 return REG_REQ_INTERSECT;
1465 /*
1466 * If the user knows better the user should set the regdom
1467 * to their country before the IE is picked up
1468 */
1469 if (lr->initiator == NL80211_REGDOM_SET_BY_USER &&
1470 lr->intersect)
1471 return REG_REQ_IGNORE;
1472 /*
1473 * Process user requests only after previous user/driver/core
1474 * requests have been processed
1475 */
1476 if ((lr->initiator == NL80211_REGDOM_SET_BY_CORE ||
1477 lr->initiator == NL80211_REGDOM_SET_BY_DRIVER ||
1478 lr->initiator == NL80211_REGDOM_SET_BY_USER) &&
1479 regdom_changes(lr->alpha2))
1480 return REG_REQ_IGNORE;
1481
1482 if (!regdom_changes(user_request->alpha2))
1483 return REG_REQ_ALREADY_SET;
1484
1485 return REG_REQ_OK;
1486 }
1487
1488 /**
1489 * reg_process_hint_user - process user regulatory requests
1490 * @user_request: a pending user regulatory request
1491 *
1492 * The wireless subsystem can use this function to process
1493 * a regulatory request initiated by userspace.
1494 *
1495 * Returns one of the different reg request treatment values.
1496 */
1497 static enum reg_request_treatment
1498 reg_process_hint_user(struct regulatory_request *user_request)
1499 {
1500 enum reg_request_treatment treatment;
1501
1502 treatment = __reg_process_hint_user(user_request);
1503 if (treatment == REG_REQ_IGNORE ||
1504 treatment == REG_REQ_ALREADY_SET) {
1505 kfree(user_request);
1506 return treatment;
1507 }
1508
1509 user_request->intersect = treatment == REG_REQ_INTERSECT;
1510 user_request->processed = false;
1511
1512 reg_update_last_request(user_request);
1513
1514 user_alpha2[0] = user_request->alpha2[0];
1515 user_alpha2[1] = user_request->alpha2[1];
1516
1517 return reg_call_crda(user_request);
1518 }
1519
1520 static enum reg_request_treatment
1521 __reg_process_hint_driver(struct regulatory_request *driver_request)
1522 {
1523 struct regulatory_request *lr = get_last_request();
1524
1525 if (lr->initiator == NL80211_REGDOM_SET_BY_CORE) {
1526 if (regdom_changes(driver_request->alpha2))
1527 return REG_REQ_OK;
1528 return REG_REQ_ALREADY_SET;
1529 }
1530
1531 /*
1532 * This would happen if you unplug and plug your card
1533 * back in or if you add a new device for which the previously
1534 * loaded card also agrees on the regulatory domain.
1535 */
1536 if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1537 !regdom_changes(driver_request->alpha2))
1538 return REG_REQ_ALREADY_SET;
1539
1540 return REG_REQ_INTERSECT;
1541 }
1542
1543 /**
1544 * reg_process_hint_driver - process driver regulatory requests
1545 * @driver_request: a pending driver regulatory request
1546 *
1547 * The wireless subsystem can use this function to process
1548 * a regulatory request issued by an 802.11 driver.
1549 *
1550 * Returns one of the different reg request treatment values.
1551 */
1552 static enum reg_request_treatment
1553 reg_process_hint_driver(struct wiphy *wiphy,
1554 struct regulatory_request *driver_request)
1555 {
1556 const struct ieee80211_regdomain *regd;
1557 enum reg_request_treatment treatment;
1558
1559 treatment = __reg_process_hint_driver(driver_request);
1560
1561 switch (treatment) {
1562 case REG_REQ_OK:
1563 break;
1564 case REG_REQ_IGNORE:
1565 kfree(driver_request);
1566 return treatment;
1567 case REG_REQ_INTERSECT:
1568 /* fall through */
1569 case REG_REQ_ALREADY_SET:
1570 regd = reg_copy_regd(get_cfg80211_regdom());
1571 if (IS_ERR(regd)) {
1572 kfree(driver_request);
1573 return REG_REQ_IGNORE;
1574 }
1575 rcu_assign_pointer(wiphy->regd, regd);
1576 }
1577
1578
1579 driver_request->intersect = treatment == REG_REQ_INTERSECT;
1580 driver_request->processed = false;
1581
1582 reg_update_last_request(driver_request);
1583
1584 /*
1585 * Since CRDA will not be called in this case as we already
1586 * have applied the requested regulatory domain before we just
1587 * inform userspace we have processed the request
1588 */
1589 if (treatment == REG_REQ_ALREADY_SET) {
1590 nl80211_send_reg_change_event(driver_request);
1591 reg_set_request_processed();
1592 return treatment;
1593 }
1594
1595 return reg_call_crda(driver_request);
1596 }
1597
1598 static enum reg_request_treatment
1599 __reg_process_hint_country_ie(struct wiphy *wiphy,
1600 struct regulatory_request *country_ie_request)
1601 {
1602 struct wiphy *last_wiphy = NULL;
1603 struct regulatory_request *lr = get_last_request();
1604
1605 if (reg_request_cell_base(lr)) {
1606 /* Trust a Cell base station over the AP's country IE */
1607 if (regdom_changes(country_ie_request->alpha2))
1608 return REG_REQ_IGNORE;
1609 return REG_REQ_ALREADY_SET;
1610 } else {
1611 if (wiphy->regulatory_flags & REGULATORY_COUNTRY_IE_IGNORE)
1612 return REG_REQ_IGNORE;
1613 }
1614
1615 if (unlikely(!is_an_alpha2(country_ie_request->alpha2)))
1616 return -EINVAL;
1617
1618 if (lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE)
1619 return REG_REQ_OK;
1620
1621 last_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx);
1622
1623 if (last_wiphy != wiphy) {
1624 /*
1625 * Two cards with two APs claiming different
1626 * Country IE alpha2s. We could
1627 * intersect them, but that seems unlikely
1628 * to be correct. Reject second one for now.
1629 */
1630 if (regdom_changes(country_ie_request->alpha2))
1631 return REG_REQ_IGNORE;
1632 return REG_REQ_ALREADY_SET;
1633 }
1634 /*
1635 * Two consecutive Country IE hints on the same wiphy.
1636 * This should be picked up early by the driver/stack
1637 */
1638 if (WARN_ON(regdom_changes(country_ie_request->alpha2)))
1639 return REG_REQ_OK;
1640 return REG_REQ_ALREADY_SET;
1641 }
1642
1643 /**
1644 * reg_process_hint_country_ie - process regulatory requests from country IEs
1645 * @country_ie_request: a regulatory request from a country IE
1646 *
1647 * The wireless subsystem can use this function to process
1648 * a regulatory request issued by a country Information Element.
1649 *
1650 * Returns one of the different reg request treatment values.
1651 */
1652 static enum reg_request_treatment
1653 reg_process_hint_country_ie(struct wiphy *wiphy,
1654 struct regulatory_request *country_ie_request)
1655 {
1656 enum reg_request_treatment treatment;
1657
1658 treatment = __reg_process_hint_country_ie(wiphy, country_ie_request);
1659
1660 switch (treatment) {
1661 case REG_REQ_OK:
1662 break;
1663 case REG_REQ_IGNORE:
1664 /* fall through */
1665 case REG_REQ_ALREADY_SET:
1666 kfree(country_ie_request);
1667 return treatment;
1668 case REG_REQ_INTERSECT:
1669 kfree(country_ie_request);
1670 /*
1671 * This doesn't happen yet, not sure we
1672 * ever want to support it for this case.
1673 */
1674 WARN_ONCE(1, "Unexpected intersection for country IEs");
1675 return REG_REQ_IGNORE;
1676 }
1677
1678 country_ie_request->intersect = false;
1679 country_ie_request->processed = false;
1680
1681 reg_update_last_request(country_ie_request);
1682
1683 return reg_call_crda(country_ie_request);
1684 }
1685
1686 /* This processes *all* regulatory hints */
1687 static void reg_process_hint(struct regulatory_request *reg_request)
1688 {
1689 struct wiphy *wiphy = NULL;
1690 enum reg_request_treatment treatment;
1691
1692 if (reg_request->wiphy_idx != WIPHY_IDX_INVALID)
1693 wiphy = wiphy_idx_to_wiphy(reg_request->wiphy_idx);
1694
1695 switch (reg_request->initiator) {
1696 case NL80211_REGDOM_SET_BY_CORE:
1697 reg_process_hint_core(reg_request);
1698 return;
1699 case NL80211_REGDOM_SET_BY_USER:
1700 treatment = reg_process_hint_user(reg_request);
1701 if (treatment == REG_REQ_OK ||
1702 treatment == REG_REQ_ALREADY_SET)
1703 return;
1704 schedule_delayed_work(&reg_timeout, msecs_to_jiffies(3142));
1705 return;
1706 case NL80211_REGDOM_SET_BY_DRIVER:
1707 if (!wiphy)
1708 goto out_free;
1709 treatment = reg_process_hint_driver(wiphy, reg_request);
1710 break;
1711 case NL80211_REGDOM_SET_BY_COUNTRY_IE:
1712 if (!wiphy)
1713 goto out_free;
1714 treatment = reg_process_hint_country_ie(wiphy, reg_request);
1715 break;
1716 default:
1717 WARN(1, "invalid initiator %d\n", reg_request->initiator);
1718 goto out_free;
1719 }
1720
1721 /* This is required so that the orig_* parameters are saved */
1722 if (treatment == REG_REQ_ALREADY_SET && wiphy &&
1723 wiphy->regulatory_flags & REGULATORY_STRICT_REG)
1724 wiphy_update_regulatory(wiphy, reg_request->initiator);
1725
1726 return;
1727
1728 out_free:
1729 kfree(reg_request);
1730 }
1731
1732 /*
1733 * Processes regulatory hints, this is all the NL80211_REGDOM_SET_BY_*
1734 * Regulatory hints come on a first come first serve basis and we
1735 * must process each one atomically.
1736 */
1737 static void reg_process_pending_hints(void)
1738 {
1739 struct regulatory_request *reg_request, *lr;
1740
1741 lr = get_last_request();
1742
1743 /* When last_request->processed becomes true this will be rescheduled */
1744 if (lr && !lr->processed) {
1745 REG_DBG_PRINT("Pending regulatory request, waiting for it to be processed...\n");
1746 return;
1747 }
1748
1749 spin_lock(&reg_requests_lock);
1750
1751 if (list_empty(&reg_requests_list)) {
1752 spin_unlock(&reg_requests_lock);
1753 return;
1754 }
1755
1756 reg_request = list_first_entry(&reg_requests_list,
1757 struct regulatory_request,
1758 list);
1759 list_del_init(&reg_request->list);
1760
1761 spin_unlock(&reg_requests_lock);
1762
1763 reg_process_hint(reg_request);
1764 }
1765
1766 /* Processes beacon hints -- this has nothing to do with country IEs */
1767 static void reg_process_pending_beacon_hints(void)
1768 {
1769 struct cfg80211_registered_device *rdev;
1770 struct reg_beacon *pending_beacon, *tmp;
1771
1772 /* This goes through the _pending_ beacon list */
1773 spin_lock_bh(&reg_pending_beacons_lock);
1774
1775 list_for_each_entry_safe(pending_beacon, tmp,
1776 &reg_pending_beacons, list) {
1777 list_del_init(&pending_beacon->list);
1778
1779 /* Applies the beacon hint to current wiphys */
1780 list_for_each_entry(rdev, &cfg80211_rdev_list, list)
1781 wiphy_update_new_beacon(&rdev->wiphy, pending_beacon);
1782
1783 /* Remembers the beacon hint for new wiphys or reg changes */
1784 list_add_tail(&pending_beacon->list, &reg_beacon_list);
1785 }
1786
1787 spin_unlock_bh(&reg_pending_beacons_lock);
1788 }
1789
1790 static void reg_todo(struct work_struct *work)
1791 {
1792 rtnl_lock();
1793 reg_process_pending_hints();
1794 reg_process_pending_beacon_hints();
1795 rtnl_unlock();
1796 }
1797
1798 static void queue_regulatory_request(struct regulatory_request *request)
1799 {
1800 request->alpha2[0] = toupper(request->alpha2[0]);
1801 request->alpha2[1] = toupper(request->alpha2[1]);
1802
1803 spin_lock(&reg_requests_lock);
1804 list_add_tail(&request->list, &reg_requests_list);
1805 spin_unlock(&reg_requests_lock);
1806
1807 schedule_work(&reg_work);
1808 }
1809
1810 /*
1811 * Core regulatory hint -- happens during cfg80211_init()
1812 * and when we restore regulatory settings.
1813 */
1814 static int regulatory_hint_core(const char *alpha2)
1815 {
1816 struct regulatory_request *request;
1817
1818 request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
1819 if (!request)
1820 return -ENOMEM;
1821
1822 request->alpha2[0] = alpha2[0];
1823 request->alpha2[1] = alpha2[1];
1824 request->initiator = NL80211_REGDOM_SET_BY_CORE;
1825
1826 queue_regulatory_request(request);
1827
1828 return 0;
1829 }
1830
1831 /* User hints */
1832 int regulatory_hint_user(const char *alpha2,
1833 enum nl80211_user_reg_hint_type user_reg_hint_type)
1834 {
1835 struct regulatory_request *request;
1836
1837 if (WARN_ON(!alpha2))
1838 return -EINVAL;
1839
1840 request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
1841 if (!request)
1842 return -ENOMEM;
1843
1844 request->wiphy_idx = WIPHY_IDX_INVALID;
1845 request->alpha2[0] = alpha2[0];
1846 request->alpha2[1] = alpha2[1];
1847 request->initiator = NL80211_REGDOM_SET_BY_USER;
1848 request->user_reg_hint_type = user_reg_hint_type;
1849
1850 queue_regulatory_request(request);
1851
1852 return 0;
1853 }
1854
1855 /* Driver hints */
1856 int regulatory_hint(struct wiphy *wiphy, const char *alpha2)
1857 {
1858 struct regulatory_request *request;
1859
1860 if (WARN_ON(!alpha2 || !wiphy))
1861 return -EINVAL;
1862
1863 wiphy->regulatory_flags &= ~REGULATORY_CUSTOM_REG;
1864
1865 request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
1866 if (!request)
1867 return -ENOMEM;
1868
1869 request->wiphy_idx = get_wiphy_idx(wiphy);
1870
1871 request->alpha2[0] = alpha2[0];
1872 request->alpha2[1] = alpha2[1];
1873 request->initiator = NL80211_REGDOM_SET_BY_DRIVER;
1874
1875 queue_regulatory_request(request);
1876
1877 return 0;
1878 }
1879 EXPORT_SYMBOL(regulatory_hint);
1880
1881 void regulatory_hint_country_ie(struct wiphy *wiphy, enum ieee80211_band band,
1882 const u8 *country_ie, u8 country_ie_len)
1883 {
1884 char alpha2[2];
1885 enum environment_cap env = ENVIRON_ANY;
1886 struct regulatory_request *request = NULL, *lr;
1887
1888 /* IE len must be evenly divisible by 2 */
1889 if (country_ie_len & 0x01)
1890 return;
1891
1892 if (country_ie_len < IEEE80211_COUNTRY_IE_MIN_LEN)
1893 return;
1894
1895 request = kzalloc(sizeof(*request), GFP_KERNEL);
1896 if (!request)
1897 return;
1898
1899 alpha2[0] = country_ie[0];
1900 alpha2[1] = country_ie[1];
1901
1902 if (country_ie[2] == 'I')
1903 env = ENVIRON_INDOOR;
1904 else if (country_ie[2] == 'O')
1905 env = ENVIRON_OUTDOOR;
1906
1907 rcu_read_lock();
1908 lr = get_last_request();
1909
1910 if (unlikely(!lr))
1911 goto out;
1912
1913 /*
1914 * We will run this only upon a successful connection on cfg80211.
1915 * We leave conflict resolution to the workqueue, where can hold
1916 * the RTNL.
1917 */
1918 if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1919 lr->wiphy_idx != WIPHY_IDX_INVALID)
1920 goto out;
1921
1922 request->wiphy_idx = get_wiphy_idx(wiphy);
1923 request->alpha2[0] = alpha2[0];
1924 request->alpha2[1] = alpha2[1];
1925 request->initiator = NL80211_REGDOM_SET_BY_COUNTRY_IE;
1926 request->country_ie_env = env;
1927
1928 queue_regulatory_request(request);
1929 request = NULL;
1930 out:
1931 kfree(request);
1932 rcu_read_unlock();
1933 }
1934
1935 static void restore_alpha2(char *alpha2, bool reset_user)
1936 {
1937 /* indicates there is no alpha2 to consider for restoration */
1938 alpha2[0] = '9';
1939 alpha2[1] = '7';
1940
1941 /* The user setting has precedence over the module parameter */
1942 if (is_user_regdom_saved()) {
1943 /* Unless we're asked to ignore it and reset it */
1944 if (reset_user) {
1945 REG_DBG_PRINT("Restoring regulatory settings including user preference\n");
1946 user_alpha2[0] = '9';
1947 user_alpha2[1] = '7';
1948
1949 /*
1950 * If we're ignoring user settings, we still need to
1951 * check the module parameter to ensure we put things
1952 * back as they were for a full restore.
1953 */
1954 if (!is_world_regdom(ieee80211_regdom)) {
1955 REG_DBG_PRINT("Keeping preference on module parameter ieee80211_regdom: %c%c\n",
1956 ieee80211_regdom[0], ieee80211_regdom[1]);
1957 alpha2[0] = ieee80211_regdom[0];
1958 alpha2[1] = ieee80211_regdom[1];
1959 }
1960 } else {
1961 REG_DBG_PRINT("Restoring regulatory settings while preserving user preference for: %c%c\n",
1962 user_alpha2[0], user_alpha2[1]);
1963 alpha2[0] = user_alpha2[0];
1964 alpha2[1] = user_alpha2[1];
1965 }
1966 } else if (!is_world_regdom(ieee80211_regdom)) {
1967 REG_DBG_PRINT("Keeping preference on module parameter ieee80211_regdom: %c%c\n",
1968 ieee80211_regdom[0], ieee80211_regdom[1]);
1969 alpha2[0] = ieee80211_regdom[0];
1970 alpha2[1] = ieee80211_regdom[1];
1971 } else
1972 REG_DBG_PRINT("Restoring regulatory settings\n");
1973 }
1974
1975 static void restore_custom_reg_settings(struct wiphy *wiphy)
1976 {
1977 struct ieee80211_supported_band *sband;
1978 enum ieee80211_band band;
1979 struct ieee80211_channel *chan;
1980 int i;
1981
1982 for (band = 0; band < IEEE80211_NUM_BANDS; band++) {
1983 sband = wiphy->bands[band];
1984 if (!sband)
1985 continue;
1986 for (i = 0; i < sband->n_channels; i++) {
1987 chan = &sband->channels[i];
1988 chan->flags = chan->orig_flags;
1989 chan->max_antenna_gain = chan->orig_mag;
1990 chan->max_power = chan->orig_mpwr;
1991 chan->beacon_found = false;
1992 }
1993 }
1994 }
1995
1996 /*
1997 * Restoring regulatory settings involves ingoring any
1998 * possibly stale country IE information and user regulatory
1999 * settings if so desired, this includes any beacon hints
2000 * learned as we could have traveled outside to another country
2001 * after disconnection. To restore regulatory settings we do
2002 * exactly what we did at bootup:
2003 *
2004 * - send a core regulatory hint
2005 * - send a user regulatory hint if applicable
2006 *
2007 * Device drivers that send a regulatory hint for a specific country
2008 * keep their own regulatory domain on wiphy->regd so that does does
2009 * not need to be remembered.
2010 */
2011 static void restore_regulatory_settings(bool reset_user)
2012 {
2013 char alpha2[2];
2014 char world_alpha2[2];
2015 struct reg_beacon *reg_beacon, *btmp;
2016 struct regulatory_request *reg_request, *tmp;
2017 LIST_HEAD(tmp_reg_req_list);
2018 struct cfg80211_registered_device *rdev;
2019
2020 ASSERT_RTNL();
2021
2022 reset_regdomains(true, &world_regdom);
2023 restore_alpha2(alpha2, reset_user);
2024
2025 /*
2026 * If there's any pending requests we simply
2027 * stash them to a temporary pending queue and
2028 * add then after we've restored regulatory
2029 * settings.
2030 */
2031 spin_lock(&reg_requests_lock);
2032 list_for_each_entry_safe(reg_request, tmp, &reg_requests_list, list) {
2033 if (reg_request->initiator != NL80211_REGDOM_SET_BY_USER)
2034 continue;
2035 list_move_tail(&reg_request->list, &tmp_reg_req_list);
2036 }
2037 spin_unlock(&reg_requests_lock);
2038
2039 /* Clear beacon hints */
2040 spin_lock_bh(&reg_pending_beacons_lock);
2041 list_for_each_entry_safe(reg_beacon, btmp, &reg_pending_beacons, list) {
2042 list_del(&reg_beacon->list);
2043 kfree(reg_beacon);
2044 }
2045 spin_unlock_bh(&reg_pending_beacons_lock);
2046
2047 list_for_each_entry_safe(reg_beacon, btmp, &reg_beacon_list, list) {
2048 list_del(&reg_beacon->list);
2049 kfree(reg_beacon);
2050 }
2051
2052 /* First restore to the basic regulatory settings */
2053 world_alpha2[0] = cfg80211_world_regdom->alpha2[0];
2054 world_alpha2[1] = cfg80211_world_regdom->alpha2[1];
2055
2056 list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
2057 if (rdev->wiphy.regulatory_flags & REGULATORY_CUSTOM_REG)
2058 restore_custom_reg_settings(&rdev->wiphy);
2059 }
2060
2061 regulatory_hint_core(world_alpha2);
2062
2063 /*
2064 * This restores the ieee80211_regdom module parameter
2065 * preference or the last user requested regulatory
2066 * settings, user regulatory settings takes precedence.
2067 */
2068 if (is_an_alpha2(alpha2))
2069 regulatory_hint_user(user_alpha2, NL80211_USER_REG_HINT_USER);
2070
2071 spin_lock(&reg_requests_lock);
2072 list_splice_tail_init(&tmp_reg_req_list, &reg_requests_list);
2073 spin_unlock(&reg_requests_lock);
2074
2075 REG_DBG_PRINT("Kicking the queue\n");
2076
2077 schedule_work(&reg_work);
2078 }
2079
2080 void regulatory_hint_disconnect(void)
2081 {
2082 REG_DBG_PRINT("All devices are disconnected, going to restore regulatory settings\n");
2083 restore_regulatory_settings(false);
2084 }
2085
2086 static bool freq_is_chan_12_13_14(u16 freq)
2087 {
2088 if (freq == ieee80211_channel_to_frequency(12, IEEE80211_BAND_2GHZ) ||
2089 freq == ieee80211_channel_to_frequency(13, IEEE80211_BAND_2GHZ) ||
2090 freq == ieee80211_channel_to_frequency(14, IEEE80211_BAND_2GHZ))
2091 return true;
2092 return false;
2093 }
2094
2095 static bool pending_reg_beacon(struct ieee80211_channel *beacon_chan)
2096 {
2097 struct reg_beacon *pending_beacon;
2098
2099 list_for_each_entry(pending_beacon, &reg_pending_beacons, list)
2100 if (beacon_chan->center_freq ==
2101 pending_beacon->chan.center_freq)
2102 return true;
2103 return false;
2104 }
2105
2106 int regulatory_hint_found_beacon(struct wiphy *wiphy,
2107 struct ieee80211_channel *beacon_chan,
2108 gfp_t gfp)
2109 {
2110 struct reg_beacon *reg_beacon;
2111 bool processing;
2112
2113 if (beacon_chan->beacon_found ||
2114 beacon_chan->flags & IEEE80211_CHAN_RADAR ||
2115 (beacon_chan->band == IEEE80211_BAND_2GHZ &&
2116 !freq_is_chan_12_13_14(beacon_chan->center_freq)))
2117 return 0;
2118
2119 spin_lock_bh(&reg_pending_beacons_lock);
2120 processing = pending_reg_beacon(beacon_chan);
2121 spin_unlock_bh(&reg_pending_beacons_lock);
2122
2123 if (processing)
2124 return 0;
2125
2126 reg_beacon = kzalloc(sizeof(struct reg_beacon), gfp);
2127 if (!reg_beacon)
2128 return -ENOMEM;
2129
2130 REG_DBG_PRINT("Found new beacon on frequency: %d MHz (Ch %d) on %s\n",
2131 beacon_chan->center_freq,
2132 ieee80211_frequency_to_channel(beacon_chan->center_freq),
2133 wiphy_name(wiphy));
2134
2135 memcpy(&reg_beacon->chan, beacon_chan,
2136 sizeof(struct ieee80211_channel));
2137
2138 /*
2139 * Since we can be called from BH or and non-BH context
2140 * we must use spin_lock_bh()
2141 */
2142 spin_lock_bh(&reg_pending_beacons_lock);
2143 list_add_tail(&reg_beacon->list, &reg_pending_beacons);
2144 spin_unlock_bh(&reg_pending_beacons_lock);
2145
2146 schedule_work(&reg_work);
2147
2148 return 0;
2149 }
2150
2151 static void print_rd_rules(const struct ieee80211_regdomain *rd)
2152 {
2153 unsigned int i;
2154 const struct ieee80211_reg_rule *reg_rule = NULL;
2155 const struct ieee80211_freq_range *freq_range = NULL;
2156 const struct ieee80211_power_rule *power_rule = NULL;
2157
2158 pr_info(" (start_freq - end_freq @ bandwidth), (max_antenna_gain, max_eirp)\n");
2159
2160 for (i = 0; i < rd->n_reg_rules; i++) {
2161 reg_rule = &rd->reg_rules[i];
2162 freq_range = &reg_rule->freq_range;
2163 power_rule = &reg_rule->power_rule;
2164
2165 /*
2166 * There may not be documentation for max antenna gain
2167 * in certain regions
2168 */
2169 if (power_rule->max_antenna_gain)
2170 pr_info(" (%d KHz - %d KHz @ %d KHz), (%d mBi, %d mBm)\n",
2171 freq_range->start_freq_khz,
2172 freq_range->end_freq_khz,
2173 freq_range->max_bandwidth_khz,
2174 power_rule->max_antenna_gain,
2175 power_rule->max_eirp);
2176 else
2177 pr_info(" (%d KHz - %d KHz @ %d KHz), (N/A, %d mBm)\n",
2178 freq_range->start_freq_khz,
2179 freq_range->end_freq_khz,
2180 freq_range->max_bandwidth_khz,
2181 power_rule->max_eirp);
2182 }
2183 }
2184
2185 bool reg_supported_dfs_region(enum nl80211_dfs_regions dfs_region)
2186 {
2187 switch (dfs_region) {
2188 case NL80211_DFS_UNSET:
2189 case NL80211_DFS_FCC:
2190 case NL80211_DFS_ETSI:
2191 case NL80211_DFS_JP:
2192 return true;
2193 default:
2194 REG_DBG_PRINT("Ignoring uknown DFS master region: %d\n",
2195 dfs_region);
2196 return false;
2197 }
2198 }
2199
2200 static void print_regdomain(const struct ieee80211_regdomain *rd)
2201 {
2202 struct regulatory_request *lr = get_last_request();
2203
2204 if (is_intersected_alpha2(rd->alpha2)) {
2205 if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE) {
2206 struct cfg80211_registered_device *rdev;
2207 rdev = cfg80211_rdev_by_wiphy_idx(lr->wiphy_idx);
2208 if (rdev) {
2209 pr_info("Current regulatory domain updated by AP to: %c%c\n",
2210 rdev->country_ie_alpha2[0],
2211 rdev->country_ie_alpha2[1]);
2212 } else
2213 pr_info("Current regulatory domain intersected:\n");
2214 } else
2215 pr_info("Current regulatory domain intersected:\n");
2216 } else if (is_world_regdom(rd->alpha2)) {
2217 pr_info("World regulatory domain updated:\n");
2218 } else {
2219 if (is_unknown_alpha2(rd->alpha2))
2220 pr_info("Regulatory domain changed to driver built-in settings (unknown country)\n");
2221 else {
2222 if (reg_request_cell_base(lr))
2223 pr_info("Regulatory domain changed to country: %c%c by Cell Station\n",
2224 rd->alpha2[0], rd->alpha2[1]);
2225 else
2226 pr_info("Regulatory domain changed to country: %c%c\n",
2227 rd->alpha2[0], rd->alpha2[1]);
2228 }
2229 }
2230
2231 pr_info(" DFS Master region: %s", reg_dfs_region_str(rd->dfs_region));
2232 print_rd_rules(rd);
2233 }
2234
2235 static void print_regdomain_info(const struct ieee80211_regdomain *rd)
2236 {
2237 pr_info("Regulatory domain: %c%c\n", rd->alpha2[0], rd->alpha2[1]);
2238 print_rd_rules(rd);
2239 }
2240
2241 static int reg_set_rd_core(const struct ieee80211_regdomain *rd)
2242 {
2243 if (!is_world_regdom(rd->alpha2))
2244 return -EINVAL;
2245 update_world_regdomain(rd);
2246 return 0;
2247 }
2248
2249 static int reg_set_rd_user(const struct ieee80211_regdomain *rd,
2250 struct regulatory_request *user_request)
2251 {
2252 const struct ieee80211_regdomain *intersected_rd = NULL;
2253
2254 if (is_world_regdom(rd->alpha2))
2255 return -EINVAL;
2256
2257 if (!regdom_changes(rd->alpha2))
2258 return -EALREADY;
2259
2260 if (!is_valid_rd(rd)) {
2261 pr_err("Invalid regulatory domain detected:\n");
2262 print_regdomain_info(rd);
2263 return -EINVAL;
2264 }
2265
2266 if (!user_request->intersect) {
2267 reset_regdomains(false, rd);
2268 return 0;
2269 }
2270
2271 intersected_rd = regdom_intersect(rd, get_cfg80211_regdom());
2272 if (!intersected_rd)
2273 return -EINVAL;
2274
2275 kfree(rd);
2276 rd = NULL;
2277 reset_regdomains(false, intersected_rd);
2278
2279 return 0;
2280 }
2281
2282 static int reg_set_rd_driver(const struct ieee80211_regdomain *rd,
2283 struct regulatory_request *driver_request)
2284 {
2285 const struct ieee80211_regdomain *regd;
2286 const struct ieee80211_regdomain *intersected_rd = NULL;
2287 const struct ieee80211_regdomain *tmp;
2288 struct wiphy *request_wiphy;
2289
2290 if (is_world_regdom(rd->alpha2))
2291 return -EINVAL;
2292
2293 if (!regdom_changes(rd->alpha2))
2294 return -EALREADY;
2295
2296 if (!is_valid_rd(rd)) {
2297 pr_err("Invalid regulatory domain detected:\n");
2298 print_regdomain_info(rd);
2299 return -EINVAL;
2300 }
2301
2302 request_wiphy = wiphy_idx_to_wiphy(driver_request->wiphy_idx);
2303 if (!request_wiphy) {
2304 schedule_delayed_work(&reg_timeout, 0);
2305 return -ENODEV;
2306 }
2307
2308 if (!driver_request->intersect) {
2309 if (request_wiphy->regd)
2310 return -EALREADY;
2311
2312 regd = reg_copy_regd(rd);
2313 if (IS_ERR(regd))
2314 return PTR_ERR(regd);
2315
2316 rcu_assign_pointer(request_wiphy->regd, regd);
2317 reset_regdomains(false, rd);
2318 return 0;
2319 }
2320
2321 intersected_rd = regdom_intersect(rd, get_cfg80211_regdom());
2322 if (!intersected_rd)
2323 return -EINVAL;
2324
2325 /*
2326 * We can trash what CRDA provided now.
2327 * However if a driver requested this specific regulatory
2328 * domain we keep it for its private use
2329 */
2330 tmp = get_wiphy_regdom(request_wiphy);
2331 rcu_assign_pointer(request_wiphy->regd, rd);
2332 rcu_free_regdom(tmp);
2333
2334 rd = NULL;
2335
2336 reset_regdomains(false, intersected_rd);
2337
2338 return 0;
2339 }
2340
2341 static int reg_set_rd_country_ie(const struct ieee80211_regdomain *rd,
2342 struct regulatory_request *country_ie_request)
2343 {
2344 struct wiphy *request_wiphy;
2345
2346 if (!is_alpha2_set(rd->alpha2) && !is_an_alpha2(rd->alpha2) &&
2347 !is_unknown_alpha2(rd->alpha2))
2348 return -EINVAL;
2349
2350 /*
2351 * Lets only bother proceeding on the same alpha2 if the current
2352 * rd is non static (it means CRDA was present and was used last)
2353 * and the pending request came in from a country IE
2354 */
2355
2356 if (!is_valid_rd(rd)) {
2357 pr_err("Invalid regulatory domain detected:\n");
2358 print_regdomain_info(rd);
2359 return -EINVAL;
2360 }
2361
2362 request_wiphy = wiphy_idx_to_wiphy(country_ie_request->wiphy_idx);
2363 if (!request_wiphy) {
2364 schedule_delayed_work(&reg_timeout, 0);
2365 return -ENODEV;
2366 }
2367
2368 if (country_ie_request->intersect)
2369 return -EINVAL;
2370
2371 reset_regdomains(false, rd);
2372 return 0;
2373 }
2374
2375 /*
2376 * Use this call to set the current regulatory domain. Conflicts with
2377 * multiple drivers can be ironed out later. Caller must've already
2378 * kmalloc'd the rd structure.
2379 */
2380 int set_regdom(const struct ieee80211_regdomain *rd)
2381 {
2382 struct regulatory_request *lr;
2383 int r;
2384
2385 if (!reg_is_valid_request(rd->alpha2)) {
2386 kfree(rd);
2387 return -EINVAL;
2388 }
2389
2390 lr = get_last_request();
2391
2392 /* Note that this doesn't update the wiphys, this is done below */
2393 switch (lr->initiator) {
2394 case NL80211_REGDOM_SET_BY_CORE:
2395 r = reg_set_rd_core(rd);
2396 break;
2397 case NL80211_REGDOM_SET_BY_USER:
2398 r = reg_set_rd_user(rd, lr);
2399 break;
2400 case NL80211_REGDOM_SET_BY_DRIVER:
2401 r = reg_set_rd_driver(rd, lr);
2402 break;
2403 case NL80211_REGDOM_SET_BY_COUNTRY_IE:
2404 r = reg_set_rd_country_ie(rd, lr);
2405 break;
2406 default:
2407 WARN(1, "invalid initiator %d\n", lr->initiator);
2408 return -EINVAL;
2409 }
2410
2411 if (r) {
2412 if (r == -EALREADY)
2413 reg_set_request_processed();
2414
2415 kfree(rd);
2416 return r;
2417 }
2418
2419 /* This would make this whole thing pointless */
2420 if (WARN_ON(!lr->intersect && rd != get_cfg80211_regdom()))
2421 return -EINVAL;
2422
2423 /* update all wiphys now with the new established regulatory domain */
2424 update_all_wiphy_regulatory(lr->initiator);
2425
2426 print_regdomain(get_cfg80211_regdom());
2427
2428 nl80211_send_reg_change_event(lr);
2429
2430 reg_set_request_processed();
2431
2432 return 0;
2433 }
2434
2435 int reg_device_uevent(struct device *dev, struct kobj_uevent_env *env)
2436 {
2437 struct regulatory_request *lr;
2438 u8 alpha2[2];
2439 bool add = false;
2440
2441 rcu_read_lock();
2442 lr = get_last_request();
2443 if (lr && !lr->processed) {
2444 memcpy(alpha2, lr->alpha2, 2);
2445 add = true;
2446 }
2447 rcu_read_unlock();
2448
2449 if (add)
2450 return add_uevent_var(env, "COUNTRY=%c%c",
2451 alpha2[0], alpha2[1]);
2452 return 0;
2453 }
2454
2455 void wiphy_regulatory_register(struct wiphy *wiphy)
2456 {
2457 struct regulatory_request *lr;
2458
2459 if (!reg_dev_ignore_cell_hint(wiphy))
2460 reg_num_devs_support_basehint++;
2461
2462 lr = get_last_request();
2463 wiphy_update_regulatory(wiphy, lr->initiator);
2464 }
2465
2466 void wiphy_regulatory_deregister(struct wiphy *wiphy)
2467 {
2468 struct wiphy *request_wiphy = NULL;
2469 struct regulatory_request *lr;
2470
2471 lr = get_last_request();
2472
2473 if (!reg_dev_ignore_cell_hint(wiphy))
2474 reg_num_devs_support_basehint--;
2475
2476 rcu_free_regdom(get_wiphy_regdom(wiphy));
2477 rcu_assign_pointer(wiphy->regd, NULL);
2478
2479 if (lr)
2480 request_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx);
2481
2482 if (!request_wiphy || request_wiphy != wiphy)
2483 return;
2484
2485 lr->wiphy_idx = WIPHY_IDX_INVALID;
2486 lr->country_ie_env = ENVIRON_ANY;
2487 }
2488
2489 static void reg_timeout_work(struct work_struct *work)
2490 {
2491 REG_DBG_PRINT("Timeout while waiting for CRDA to reply, restoring regulatory settings\n");
2492 rtnl_lock();
2493 restore_regulatory_settings(true);
2494 rtnl_unlock();
2495 }
2496
2497 int __init regulatory_init(void)
2498 {
2499 int err = 0;
2500
2501 reg_pdev = platform_device_register_simple("regulatory", 0, NULL, 0);
2502 if (IS_ERR(reg_pdev))
2503 return PTR_ERR(reg_pdev);
2504
2505 reg_pdev->dev.type = &reg_device_type;
2506
2507 spin_lock_init(&reg_requests_lock);
2508 spin_lock_init(&reg_pending_beacons_lock);
2509
2510 reg_regdb_size_check();
2511
2512 rcu_assign_pointer(cfg80211_regdomain, cfg80211_world_regdom);
2513
2514 user_alpha2[0] = '9';
2515 user_alpha2[1] = '7';
2516
2517 /* We always try to get an update for the static regdomain */
2518 err = regulatory_hint_core(cfg80211_world_regdom->alpha2);
2519 if (err) {
2520 if (err == -ENOMEM)
2521 return err;
2522 /*
2523 * N.B. kobject_uevent_env() can fail mainly for when we're out
2524 * memory which is handled and propagated appropriately above
2525 * but it can also fail during a netlink_broadcast() or during
2526 * early boot for call_usermodehelper(). For now treat these
2527 * errors as non-fatal.
2528 */
2529 pr_err("kobject_uevent_env() was unable to call CRDA during init\n");
2530 }
2531
2532 /*
2533 * Finally, if the user set the module parameter treat it
2534 * as a user hint.
2535 */
2536 if (!is_world_regdom(ieee80211_regdom))
2537 regulatory_hint_user(ieee80211_regdom,
2538 NL80211_USER_REG_HINT_USER);
2539
2540 return 0;
2541 }
2542
2543 void regulatory_exit(void)
2544 {
2545 struct regulatory_request *reg_request, *tmp;
2546 struct reg_beacon *reg_beacon, *btmp;
2547
2548 cancel_work_sync(&reg_work);
2549 cancel_delayed_work_sync(&reg_timeout);
2550
2551 /* Lock to suppress warnings */
2552 rtnl_lock();
2553 reset_regdomains(true, NULL);
2554 rtnl_unlock();
2555
2556 dev_set_uevent_suppress(&reg_pdev->dev, true);
2557
2558 platform_device_unregister(reg_pdev);
2559
2560 list_for_each_entry_safe(reg_beacon, btmp, &reg_pending_beacons, list) {
2561 list_del(&reg_beacon->list);
2562 kfree(reg_beacon);
2563 }
2564
2565 list_for_each_entry_safe(reg_beacon, btmp, &reg_beacon_list, list) {
2566 list_del(&reg_beacon->list);
2567 kfree(reg_beacon);
2568 }
2569
2570 list_for_each_entry_safe(reg_request, tmp, &reg_requests_list, list) {
2571 list_del(&reg_request->list);
2572 kfree(reg_request);
2573 }
2574 }