]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - net/wireless/reg.c
cfg80211: reg: search built-in database directly
[mirror_ubuntu-bionic-kernel.git] / net / wireless / reg.c
1 /*
2 * Copyright 2002-2005, Instant802 Networks, Inc.
3 * Copyright 2005-2006, Devicescape Software, Inc.
4 * Copyright 2007 Johannes Berg <johannes@sipsolutions.net>
5 * Copyright 2008-2011 Luis R. Rodriguez <mcgrof@qca.qualcomm.com>
6 * Copyright 2013-2014 Intel Mobile Communications GmbH
7 *
8 * Permission to use, copy, modify, and/or distribute this software for any
9 * purpose with or without fee is hereby granted, provided that the above
10 * copyright notice and this permission notice appear in all copies.
11 *
12 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
13 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
14 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
15 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
16 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
17 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
18 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
19 */
20
21
22 /**
23 * DOC: Wireless regulatory infrastructure
24 *
25 * The usual implementation is for a driver to read a device EEPROM to
26 * determine which regulatory domain it should be operating under, then
27 * looking up the allowable channels in a driver-local table and finally
28 * registering those channels in the wiphy structure.
29 *
30 * Another set of compliance enforcement is for drivers to use their
31 * own compliance limits which can be stored on the EEPROM. The host
32 * driver or firmware may ensure these are used.
33 *
34 * In addition to all this we provide an extra layer of regulatory
35 * conformance. For drivers which do not have any regulatory
36 * information CRDA provides the complete regulatory solution.
37 * For others it provides a community effort on further restrictions
38 * to enhance compliance.
39 *
40 * Note: When number of rules --> infinity we will not be able to
41 * index on alpha2 any more, instead we'll probably have to
42 * rely on some SHA1 checksum of the regdomain for example.
43 *
44 */
45
46 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
47
48 #include <linux/kernel.h>
49 #include <linux/export.h>
50 #include <linux/slab.h>
51 #include <linux/list.h>
52 #include <linux/ctype.h>
53 #include <linux/nl80211.h>
54 #include <linux/platform_device.h>
55 #include <linux/moduleparam.h>
56 #include <net/cfg80211.h>
57 #include "core.h"
58 #include "reg.h"
59 #include "rdev-ops.h"
60 #include "regdb.h"
61 #include "nl80211.h"
62
63 #ifdef CONFIG_CFG80211_REG_DEBUG
64 #define REG_DBG_PRINT(format, args...) \
65 printk(KERN_DEBUG pr_fmt(format), ##args)
66 #else
67 #define REG_DBG_PRINT(args...)
68 #endif
69
70 /*
71 * Grace period we give before making sure all current interfaces reside on
72 * channels allowed by the current regulatory domain.
73 */
74 #define REG_ENFORCE_GRACE_MS 60000
75
76 /**
77 * enum reg_request_treatment - regulatory request treatment
78 *
79 * @REG_REQ_OK: continue processing the regulatory request
80 * @REG_REQ_IGNORE: ignore the regulatory request
81 * @REG_REQ_INTERSECT: the regulatory domain resulting from this request should
82 * be intersected with the current one.
83 * @REG_REQ_ALREADY_SET: the regulatory request will not change the current
84 * regulatory settings, and no further processing is required.
85 */
86 enum reg_request_treatment {
87 REG_REQ_OK,
88 REG_REQ_IGNORE,
89 REG_REQ_INTERSECT,
90 REG_REQ_ALREADY_SET,
91 };
92
93 static struct regulatory_request core_request_world = {
94 .initiator = NL80211_REGDOM_SET_BY_CORE,
95 .alpha2[0] = '0',
96 .alpha2[1] = '0',
97 .intersect = false,
98 .processed = true,
99 .country_ie_env = ENVIRON_ANY,
100 };
101
102 /*
103 * Receipt of information from last regulatory request,
104 * protected by RTNL (and can be accessed with RCU protection)
105 */
106 static struct regulatory_request __rcu *last_request =
107 (void __force __rcu *)&core_request_world;
108
109 /* To trigger userspace events */
110 static struct platform_device *reg_pdev;
111
112 /*
113 * Central wireless core regulatory domains, we only need two,
114 * the current one and a world regulatory domain in case we have no
115 * information to give us an alpha2.
116 * (protected by RTNL, can be read under RCU)
117 */
118 const struct ieee80211_regdomain __rcu *cfg80211_regdomain;
119
120 /*
121 * Number of devices that registered to the core
122 * that support cellular base station regulatory hints
123 * (protected by RTNL)
124 */
125 static int reg_num_devs_support_basehint;
126
127 /*
128 * State variable indicating if the platform on which the devices
129 * are attached is operating in an indoor environment. The state variable
130 * is relevant for all registered devices.
131 */
132 static bool reg_is_indoor;
133 static spinlock_t reg_indoor_lock;
134
135 /* Used to track the userspace process controlling the indoor setting */
136 static u32 reg_is_indoor_portid;
137
138 /* Max number of consecutive attempts to communicate with CRDA */
139 #define REG_MAX_CRDA_TIMEOUTS 10
140
141 static u32 reg_crda_timeouts;
142
143 static const struct ieee80211_regdomain *get_cfg80211_regdom(void)
144 {
145 return rtnl_dereference(cfg80211_regdomain);
146 }
147
148 const struct ieee80211_regdomain *get_wiphy_regdom(struct wiphy *wiphy)
149 {
150 return rtnl_dereference(wiphy->regd);
151 }
152
153 static const char *reg_dfs_region_str(enum nl80211_dfs_regions dfs_region)
154 {
155 switch (dfs_region) {
156 case NL80211_DFS_UNSET:
157 return "unset";
158 case NL80211_DFS_FCC:
159 return "FCC";
160 case NL80211_DFS_ETSI:
161 return "ETSI";
162 case NL80211_DFS_JP:
163 return "JP";
164 }
165 return "Unknown";
166 }
167
168 enum nl80211_dfs_regions reg_get_dfs_region(struct wiphy *wiphy)
169 {
170 const struct ieee80211_regdomain *regd = NULL;
171 const struct ieee80211_regdomain *wiphy_regd = NULL;
172
173 regd = get_cfg80211_regdom();
174 if (!wiphy)
175 goto out;
176
177 wiphy_regd = get_wiphy_regdom(wiphy);
178 if (!wiphy_regd)
179 goto out;
180
181 if (wiphy_regd->dfs_region == regd->dfs_region)
182 goto out;
183
184 REG_DBG_PRINT("%s: device specific dfs_region "
185 "(%s) disagrees with cfg80211's "
186 "central dfs_region (%s)\n",
187 dev_name(&wiphy->dev),
188 reg_dfs_region_str(wiphy_regd->dfs_region),
189 reg_dfs_region_str(regd->dfs_region));
190
191 out:
192 return regd->dfs_region;
193 }
194
195 static void rcu_free_regdom(const struct ieee80211_regdomain *r)
196 {
197 if (!r)
198 return;
199 kfree_rcu((struct ieee80211_regdomain *)r, rcu_head);
200 }
201
202 static struct regulatory_request *get_last_request(void)
203 {
204 return rcu_dereference_rtnl(last_request);
205 }
206
207 /* Used to queue up regulatory hints */
208 static LIST_HEAD(reg_requests_list);
209 static spinlock_t reg_requests_lock;
210
211 /* Used to queue up beacon hints for review */
212 static LIST_HEAD(reg_pending_beacons);
213 static spinlock_t reg_pending_beacons_lock;
214
215 /* Used to keep track of processed beacon hints */
216 static LIST_HEAD(reg_beacon_list);
217
218 struct reg_beacon {
219 struct list_head list;
220 struct ieee80211_channel chan;
221 };
222
223 static void reg_check_chans_work(struct work_struct *work);
224 static DECLARE_DELAYED_WORK(reg_check_chans, reg_check_chans_work);
225
226 static void reg_todo(struct work_struct *work);
227 static DECLARE_WORK(reg_work, reg_todo);
228
229 static void reg_timeout_work(struct work_struct *work);
230 static DECLARE_DELAYED_WORK(reg_timeout, reg_timeout_work);
231
232 /* We keep a static world regulatory domain in case of the absence of CRDA */
233 static const struct ieee80211_regdomain world_regdom = {
234 .n_reg_rules = 8,
235 .alpha2 = "00",
236 .reg_rules = {
237 /* IEEE 802.11b/g, channels 1..11 */
238 REG_RULE(2412-10, 2462+10, 40, 6, 20, 0),
239 /* IEEE 802.11b/g, channels 12..13. */
240 REG_RULE(2467-10, 2472+10, 40, 6, 20,
241 NL80211_RRF_NO_IR),
242 /* IEEE 802.11 channel 14 - Only JP enables
243 * this and for 802.11b only */
244 REG_RULE(2484-10, 2484+10, 20, 6, 20,
245 NL80211_RRF_NO_IR |
246 NL80211_RRF_NO_OFDM),
247 /* IEEE 802.11a, channel 36..48 */
248 REG_RULE(5180-10, 5240+10, 160, 6, 20,
249 NL80211_RRF_NO_IR),
250
251 /* IEEE 802.11a, channel 52..64 - DFS required */
252 REG_RULE(5260-10, 5320+10, 160, 6, 20,
253 NL80211_RRF_NO_IR |
254 NL80211_RRF_DFS),
255
256 /* IEEE 802.11a, channel 100..144 - DFS required */
257 REG_RULE(5500-10, 5720+10, 160, 6, 20,
258 NL80211_RRF_NO_IR |
259 NL80211_RRF_DFS),
260
261 /* IEEE 802.11a, channel 149..165 */
262 REG_RULE(5745-10, 5825+10, 80, 6, 20,
263 NL80211_RRF_NO_IR),
264
265 /* IEEE 802.11ad (60GHz), channels 1..3 */
266 REG_RULE(56160+2160*1-1080, 56160+2160*3+1080, 2160, 0, 0, 0),
267 }
268 };
269
270 /* protected by RTNL */
271 static const struct ieee80211_regdomain *cfg80211_world_regdom =
272 &world_regdom;
273
274 static char *ieee80211_regdom = "00";
275 static char user_alpha2[2];
276
277 module_param(ieee80211_regdom, charp, 0444);
278 MODULE_PARM_DESC(ieee80211_regdom, "IEEE 802.11 regulatory domain code");
279
280 static void reg_free_request(struct regulatory_request *request)
281 {
282 if (request != get_last_request())
283 kfree(request);
284 }
285
286 static void reg_free_last_request(void)
287 {
288 struct regulatory_request *lr = get_last_request();
289
290 if (lr != &core_request_world && lr)
291 kfree_rcu(lr, rcu_head);
292 }
293
294 static void reg_update_last_request(struct regulatory_request *request)
295 {
296 struct regulatory_request *lr;
297
298 lr = get_last_request();
299 if (lr == request)
300 return;
301
302 reg_free_last_request();
303 rcu_assign_pointer(last_request, request);
304 }
305
306 static void reset_regdomains(bool full_reset,
307 const struct ieee80211_regdomain *new_regdom)
308 {
309 const struct ieee80211_regdomain *r;
310
311 ASSERT_RTNL();
312
313 r = get_cfg80211_regdom();
314
315 /* avoid freeing static information or freeing something twice */
316 if (r == cfg80211_world_regdom)
317 r = NULL;
318 if (cfg80211_world_regdom == &world_regdom)
319 cfg80211_world_regdom = NULL;
320 if (r == &world_regdom)
321 r = NULL;
322
323 rcu_free_regdom(r);
324 rcu_free_regdom(cfg80211_world_regdom);
325
326 cfg80211_world_regdom = &world_regdom;
327 rcu_assign_pointer(cfg80211_regdomain, new_regdom);
328
329 if (!full_reset)
330 return;
331
332 reg_update_last_request(&core_request_world);
333 }
334
335 /*
336 * Dynamic world regulatory domain requested by the wireless
337 * core upon initialization
338 */
339 static void update_world_regdomain(const struct ieee80211_regdomain *rd)
340 {
341 struct regulatory_request *lr;
342
343 lr = get_last_request();
344
345 WARN_ON(!lr);
346
347 reset_regdomains(false, rd);
348
349 cfg80211_world_regdom = rd;
350 }
351
352 bool is_world_regdom(const char *alpha2)
353 {
354 if (!alpha2)
355 return false;
356 return alpha2[0] == '0' && alpha2[1] == '0';
357 }
358
359 static bool is_alpha2_set(const char *alpha2)
360 {
361 if (!alpha2)
362 return false;
363 return alpha2[0] && alpha2[1];
364 }
365
366 static bool is_unknown_alpha2(const char *alpha2)
367 {
368 if (!alpha2)
369 return false;
370 /*
371 * Special case where regulatory domain was built by driver
372 * but a specific alpha2 cannot be determined
373 */
374 return alpha2[0] == '9' && alpha2[1] == '9';
375 }
376
377 static bool is_intersected_alpha2(const char *alpha2)
378 {
379 if (!alpha2)
380 return false;
381 /*
382 * Special case where regulatory domain is the
383 * result of an intersection between two regulatory domain
384 * structures
385 */
386 return alpha2[0] == '9' && alpha2[1] == '8';
387 }
388
389 static bool is_an_alpha2(const char *alpha2)
390 {
391 if (!alpha2)
392 return false;
393 return isalpha(alpha2[0]) && isalpha(alpha2[1]);
394 }
395
396 static bool alpha2_equal(const char *alpha2_x, const char *alpha2_y)
397 {
398 if (!alpha2_x || !alpha2_y)
399 return false;
400 return alpha2_x[0] == alpha2_y[0] && alpha2_x[1] == alpha2_y[1];
401 }
402
403 static bool regdom_changes(const char *alpha2)
404 {
405 const struct ieee80211_regdomain *r = get_cfg80211_regdom();
406
407 if (!r)
408 return true;
409 return !alpha2_equal(r->alpha2, alpha2);
410 }
411
412 /*
413 * The NL80211_REGDOM_SET_BY_USER regdom alpha2 is cached, this lets
414 * you know if a valid regulatory hint with NL80211_REGDOM_SET_BY_USER
415 * has ever been issued.
416 */
417 static bool is_user_regdom_saved(void)
418 {
419 if (user_alpha2[0] == '9' && user_alpha2[1] == '7')
420 return false;
421
422 /* This would indicate a mistake on the design */
423 if (WARN(!is_world_regdom(user_alpha2) && !is_an_alpha2(user_alpha2),
424 "Unexpected user alpha2: %c%c\n",
425 user_alpha2[0], user_alpha2[1]))
426 return false;
427
428 return true;
429 }
430
431 static const struct ieee80211_regdomain *
432 reg_copy_regd(const struct ieee80211_regdomain *src_regd)
433 {
434 struct ieee80211_regdomain *regd;
435 int size_of_regd;
436 unsigned int i;
437
438 size_of_regd =
439 sizeof(struct ieee80211_regdomain) +
440 src_regd->n_reg_rules * sizeof(struct ieee80211_reg_rule);
441
442 regd = kzalloc(size_of_regd, GFP_KERNEL);
443 if (!regd)
444 return ERR_PTR(-ENOMEM);
445
446 memcpy(regd, src_regd, sizeof(struct ieee80211_regdomain));
447
448 for (i = 0; i < src_regd->n_reg_rules; i++)
449 memcpy(&regd->reg_rules[i], &src_regd->reg_rules[i],
450 sizeof(struct ieee80211_reg_rule));
451
452 return regd;
453 }
454
455 #ifdef CONFIG_CFG80211_INTERNAL_REGDB
456 struct reg_regdb_apply_request {
457 struct list_head list;
458 const struct ieee80211_regdomain *regdom;
459 };
460
461 static LIST_HEAD(reg_regdb_apply_list);
462 static DEFINE_MUTEX(reg_regdb_apply_mutex);
463
464 static void reg_regdb_apply(struct work_struct *work)
465 {
466 struct reg_regdb_apply_request *request;
467
468 rtnl_lock();
469
470 mutex_lock(&reg_regdb_apply_mutex);
471 while (!list_empty(&reg_regdb_apply_list)) {
472 request = list_first_entry(&reg_regdb_apply_list,
473 struct reg_regdb_apply_request,
474 list);
475 list_del(&request->list);
476
477 set_regdom(request->regdom, REGD_SOURCE_INTERNAL_DB);
478 kfree(request);
479 }
480 mutex_unlock(&reg_regdb_apply_mutex);
481
482 rtnl_unlock();
483 }
484
485 static DECLARE_WORK(reg_regdb_work, reg_regdb_apply);
486
487 static int reg_regdb_query(const char *alpha2)
488 {
489 const struct ieee80211_regdomain *regdom = NULL;
490 struct reg_regdb_apply_request *request;
491 unsigned int i;
492
493 for (i = 0; i < reg_regdb_size; i++) {
494 if (alpha2_equal(alpha2, reg_regdb[i]->alpha2)) {
495 regdom = reg_regdb[i];
496 break;
497 }
498 }
499
500 if (!regdom)
501 return -ENODATA;
502
503 request = kzalloc(sizeof(struct reg_regdb_apply_request), GFP_KERNEL);
504 if (!request)
505 return -ENOMEM;
506
507 request->regdom = reg_copy_regd(regdom);
508 if (IS_ERR_OR_NULL(request->regdom)) {
509 kfree(request);
510 return -ENOMEM;
511 }
512
513 mutex_lock(&reg_regdb_apply_mutex);
514 list_add_tail(&request->list, &reg_regdb_apply_list);
515 mutex_unlock(&reg_regdb_apply_mutex);
516
517 schedule_work(&reg_regdb_work);
518
519 return 0;
520 }
521
522 /* Feel free to add any other sanity checks here */
523 static void reg_regdb_size_check(void)
524 {
525 /* We should ideally BUILD_BUG_ON() but then random builds would fail */
526 WARN_ONCE(!reg_regdb_size, "db.txt is empty, you should update it...");
527 }
528 #else
529 static inline void reg_regdb_size_check(void) {}
530 static inline int reg_regdb_query(const char *alpha2)
531 {
532 return -ENODATA;
533 }
534 #endif /* CONFIG_CFG80211_INTERNAL_REGDB */
535
536 /*
537 * This lets us keep regulatory code which is updated on a regulatory
538 * basis in userspace.
539 */
540 static int call_crda(const char *alpha2)
541 {
542 char country[12];
543 char *env[] = { country, NULL };
544 int ret;
545
546 snprintf(country, sizeof(country), "COUNTRY=%c%c",
547 alpha2[0], alpha2[1]);
548
549 if (reg_crda_timeouts > REG_MAX_CRDA_TIMEOUTS) {
550 pr_debug("Exceeded CRDA call max attempts. Not calling CRDA\n");
551 return -EINVAL;
552 }
553
554 if (!is_world_regdom((char *) alpha2))
555 pr_debug("Calling CRDA for country: %c%c\n",
556 alpha2[0], alpha2[1]);
557 else
558 pr_debug("Calling CRDA to update world regulatory domain\n");
559
560 ret = kobject_uevent_env(&reg_pdev->dev.kobj, KOBJ_CHANGE, env);
561 if (ret)
562 return ret;
563
564 queue_delayed_work(system_power_efficient_wq,
565 &reg_timeout, msecs_to_jiffies(3142));
566 return 0;
567 }
568
569 static bool reg_query_database(struct regulatory_request *request)
570 {
571 /* query internal regulatory database (if it exists) */
572 if (reg_regdb_query(request->alpha2) == 0)
573 return true;
574
575 if (call_crda(request->alpha2) == 0)
576 return true;
577
578 return false;
579 }
580
581 bool reg_is_valid_request(const char *alpha2)
582 {
583 struct regulatory_request *lr = get_last_request();
584
585 if (!lr || lr->processed)
586 return false;
587
588 return alpha2_equal(lr->alpha2, alpha2);
589 }
590
591 static const struct ieee80211_regdomain *reg_get_regdomain(struct wiphy *wiphy)
592 {
593 struct regulatory_request *lr = get_last_request();
594
595 /*
596 * Follow the driver's regulatory domain, if present, unless a country
597 * IE has been processed or a user wants to help complaince further
598 */
599 if (lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
600 lr->initiator != NL80211_REGDOM_SET_BY_USER &&
601 wiphy->regd)
602 return get_wiphy_regdom(wiphy);
603
604 return get_cfg80211_regdom();
605 }
606
607 static unsigned int
608 reg_get_max_bandwidth_from_range(const struct ieee80211_regdomain *rd,
609 const struct ieee80211_reg_rule *rule)
610 {
611 const struct ieee80211_freq_range *freq_range = &rule->freq_range;
612 const struct ieee80211_freq_range *freq_range_tmp;
613 const struct ieee80211_reg_rule *tmp;
614 u32 start_freq, end_freq, idx, no;
615
616 for (idx = 0; idx < rd->n_reg_rules; idx++)
617 if (rule == &rd->reg_rules[idx])
618 break;
619
620 if (idx == rd->n_reg_rules)
621 return 0;
622
623 /* get start_freq */
624 no = idx;
625
626 while (no) {
627 tmp = &rd->reg_rules[--no];
628 freq_range_tmp = &tmp->freq_range;
629
630 if (freq_range_tmp->end_freq_khz < freq_range->start_freq_khz)
631 break;
632
633 freq_range = freq_range_tmp;
634 }
635
636 start_freq = freq_range->start_freq_khz;
637
638 /* get end_freq */
639 freq_range = &rule->freq_range;
640 no = idx;
641
642 while (no < rd->n_reg_rules - 1) {
643 tmp = &rd->reg_rules[++no];
644 freq_range_tmp = &tmp->freq_range;
645
646 if (freq_range_tmp->start_freq_khz > freq_range->end_freq_khz)
647 break;
648
649 freq_range = freq_range_tmp;
650 }
651
652 end_freq = freq_range->end_freq_khz;
653
654 return end_freq - start_freq;
655 }
656
657 unsigned int reg_get_max_bandwidth(const struct ieee80211_regdomain *rd,
658 const struct ieee80211_reg_rule *rule)
659 {
660 unsigned int bw = reg_get_max_bandwidth_from_range(rd, rule);
661
662 if (rule->flags & NL80211_RRF_NO_160MHZ)
663 bw = min_t(unsigned int, bw, MHZ_TO_KHZ(80));
664 if (rule->flags & NL80211_RRF_NO_80MHZ)
665 bw = min_t(unsigned int, bw, MHZ_TO_KHZ(40));
666
667 /*
668 * HT40+/HT40- limits are handled per-channel. Only limit BW if both
669 * are not allowed.
670 */
671 if (rule->flags & NL80211_RRF_NO_HT40MINUS &&
672 rule->flags & NL80211_RRF_NO_HT40PLUS)
673 bw = min_t(unsigned int, bw, MHZ_TO_KHZ(20));
674
675 return bw;
676 }
677
678 /* Sanity check on a regulatory rule */
679 static bool is_valid_reg_rule(const struct ieee80211_reg_rule *rule)
680 {
681 const struct ieee80211_freq_range *freq_range = &rule->freq_range;
682 u32 freq_diff;
683
684 if (freq_range->start_freq_khz <= 0 || freq_range->end_freq_khz <= 0)
685 return false;
686
687 if (freq_range->start_freq_khz > freq_range->end_freq_khz)
688 return false;
689
690 freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
691
692 if (freq_range->end_freq_khz <= freq_range->start_freq_khz ||
693 freq_range->max_bandwidth_khz > freq_diff)
694 return false;
695
696 return true;
697 }
698
699 static bool is_valid_rd(const struct ieee80211_regdomain *rd)
700 {
701 const struct ieee80211_reg_rule *reg_rule = NULL;
702 unsigned int i;
703
704 if (!rd->n_reg_rules)
705 return false;
706
707 if (WARN_ON(rd->n_reg_rules > NL80211_MAX_SUPP_REG_RULES))
708 return false;
709
710 for (i = 0; i < rd->n_reg_rules; i++) {
711 reg_rule = &rd->reg_rules[i];
712 if (!is_valid_reg_rule(reg_rule))
713 return false;
714 }
715
716 return true;
717 }
718
719 static bool reg_does_bw_fit(const struct ieee80211_freq_range *freq_range,
720 u32 center_freq_khz, u32 bw_khz)
721 {
722 u32 start_freq_khz, end_freq_khz;
723
724 start_freq_khz = center_freq_khz - (bw_khz/2);
725 end_freq_khz = center_freq_khz + (bw_khz/2);
726
727 if (start_freq_khz >= freq_range->start_freq_khz &&
728 end_freq_khz <= freq_range->end_freq_khz)
729 return true;
730
731 return false;
732 }
733
734 /**
735 * freq_in_rule_band - tells us if a frequency is in a frequency band
736 * @freq_range: frequency rule we want to query
737 * @freq_khz: frequency we are inquiring about
738 *
739 * This lets us know if a specific frequency rule is or is not relevant to
740 * a specific frequency's band. Bands are device specific and artificial
741 * definitions (the "2.4 GHz band", the "5 GHz band" and the "60GHz band"),
742 * however it is safe for now to assume that a frequency rule should not be
743 * part of a frequency's band if the start freq or end freq are off by more
744 * than 2 GHz for the 2.4 and 5 GHz bands, and by more than 10 GHz for the
745 * 60 GHz band.
746 * This resolution can be lowered and should be considered as we add
747 * regulatory rule support for other "bands".
748 **/
749 static bool freq_in_rule_band(const struct ieee80211_freq_range *freq_range,
750 u32 freq_khz)
751 {
752 #define ONE_GHZ_IN_KHZ 1000000
753 /*
754 * From 802.11ad: directional multi-gigabit (DMG):
755 * Pertaining to operation in a frequency band containing a channel
756 * with the Channel starting frequency above 45 GHz.
757 */
758 u32 limit = freq_khz > 45 * ONE_GHZ_IN_KHZ ?
759 10 * ONE_GHZ_IN_KHZ : 2 * ONE_GHZ_IN_KHZ;
760 if (abs(freq_khz - freq_range->start_freq_khz) <= limit)
761 return true;
762 if (abs(freq_khz - freq_range->end_freq_khz) <= limit)
763 return true;
764 return false;
765 #undef ONE_GHZ_IN_KHZ
766 }
767
768 /*
769 * Later on we can perhaps use the more restrictive DFS
770 * region but we don't have information for that yet so
771 * for now simply disallow conflicts.
772 */
773 static enum nl80211_dfs_regions
774 reg_intersect_dfs_region(const enum nl80211_dfs_regions dfs_region1,
775 const enum nl80211_dfs_regions dfs_region2)
776 {
777 if (dfs_region1 != dfs_region2)
778 return NL80211_DFS_UNSET;
779 return dfs_region1;
780 }
781
782 /*
783 * Helper for regdom_intersect(), this does the real
784 * mathematical intersection fun
785 */
786 static int reg_rules_intersect(const struct ieee80211_regdomain *rd1,
787 const struct ieee80211_regdomain *rd2,
788 const struct ieee80211_reg_rule *rule1,
789 const struct ieee80211_reg_rule *rule2,
790 struct ieee80211_reg_rule *intersected_rule)
791 {
792 const struct ieee80211_freq_range *freq_range1, *freq_range2;
793 struct ieee80211_freq_range *freq_range;
794 const struct ieee80211_power_rule *power_rule1, *power_rule2;
795 struct ieee80211_power_rule *power_rule;
796 u32 freq_diff, max_bandwidth1, max_bandwidth2;
797
798 freq_range1 = &rule1->freq_range;
799 freq_range2 = &rule2->freq_range;
800 freq_range = &intersected_rule->freq_range;
801
802 power_rule1 = &rule1->power_rule;
803 power_rule2 = &rule2->power_rule;
804 power_rule = &intersected_rule->power_rule;
805
806 freq_range->start_freq_khz = max(freq_range1->start_freq_khz,
807 freq_range2->start_freq_khz);
808 freq_range->end_freq_khz = min(freq_range1->end_freq_khz,
809 freq_range2->end_freq_khz);
810
811 max_bandwidth1 = freq_range1->max_bandwidth_khz;
812 max_bandwidth2 = freq_range2->max_bandwidth_khz;
813
814 if (rule1->flags & NL80211_RRF_AUTO_BW)
815 max_bandwidth1 = reg_get_max_bandwidth(rd1, rule1);
816 if (rule2->flags & NL80211_RRF_AUTO_BW)
817 max_bandwidth2 = reg_get_max_bandwidth(rd2, rule2);
818
819 freq_range->max_bandwidth_khz = min(max_bandwidth1, max_bandwidth2);
820
821 intersected_rule->flags = rule1->flags | rule2->flags;
822
823 /*
824 * In case NL80211_RRF_AUTO_BW requested for both rules
825 * set AUTO_BW in intersected rule also. Next we will
826 * calculate BW correctly in handle_channel function.
827 * In other case remove AUTO_BW flag while we calculate
828 * maximum bandwidth correctly and auto calculation is
829 * not required.
830 */
831 if ((rule1->flags & NL80211_RRF_AUTO_BW) &&
832 (rule2->flags & NL80211_RRF_AUTO_BW))
833 intersected_rule->flags |= NL80211_RRF_AUTO_BW;
834 else
835 intersected_rule->flags &= ~NL80211_RRF_AUTO_BW;
836
837 freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
838 if (freq_range->max_bandwidth_khz > freq_diff)
839 freq_range->max_bandwidth_khz = freq_diff;
840
841 power_rule->max_eirp = min(power_rule1->max_eirp,
842 power_rule2->max_eirp);
843 power_rule->max_antenna_gain = min(power_rule1->max_antenna_gain,
844 power_rule2->max_antenna_gain);
845
846 intersected_rule->dfs_cac_ms = max(rule1->dfs_cac_ms,
847 rule2->dfs_cac_ms);
848
849 if (!is_valid_reg_rule(intersected_rule))
850 return -EINVAL;
851
852 return 0;
853 }
854
855 /* check whether old rule contains new rule */
856 static bool rule_contains(struct ieee80211_reg_rule *r1,
857 struct ieee80211_reg_rule *r2)
858 {
859 /* for simplicity, currently consider only same flags */
860 if (r1->flags != r2->flags)
861 return false;
862
863 /* verify r1 is more restrictive */
864 if ((r1->power_rule.max_antenna_gain >
865 r2->power_rule.max_antenna_gain) ||
866 r1->power_rule.max_eirp > r2->power_rule.max_eirp)
867 return false;
868
869 /* make sure r2's range is contained within r1 */
870 if (r1->freq_range.start_freq_khz > r2->freq_range.start_freq_khz ||
871 r1->freq_range.end_freq_khz < r2->freq_range.end_freq_khz)
872 return false;
873
874 /* and finally verify that r1.max_bw >= r2.max_bw */
875 if (r1->freq_range.max_bandwidth_khz <
876 r2->freq_range.max_bandwidth_khz)
877 return false;
878
879 return true;
880 }
881
882 /* add or extend current rules. do nothing if rule is already contained */
883 static void add_rule(struct ieee80211_reg_rule *rule,
884 struct ieee80211_reg_rule *reg_rules, u32 *n_rules)
885 {
886 struct ieee80211_reg_rule *tmp_rule;
887 int i;
888
889 for (i = 0; i < *n_rules; i++) {
890 tmp_rule = &reg_rules[i];
891 /* rule is already contained - do nothing */
892 if (rule_contains(tmp_rule, rule))
893 return;
894
895 /* extend rule if possible */
896 if (rule_contains(rule, tmp_rule)) {
897 memcpy(tmp_rule, rule, sizeof(*rule));
898 return;
899 }
900 }
901
902 memcpy(&reg_rules[*n_rules], rule, sizeof(*rule));
903 (*n_rules)++;
904 }
905
906 /**
907 * regdom_intersect - do the intersection between two regulatory domains
908 * @rd1: first regulatory domain
909 * @rd2: second regulatory domain
910 *
911 * Use this function to get the intersection between two regulatory domains.
912 * Once completed we will mark the alpha2 for the rd as intersected, "98",
913 * as no one single alpha2 can represent this regulatory domain.
914 *
915 * Returns a pointer to the regulatory domain structure which will hold the
916 * resulting intersection of rules between rd1 and rd2. We will
917 * kzalloc() this structure for you.
918 */
919 static struct ieee80211_regdomain *
920 regdom_intersect(const struct ieee80211_regdomain *rd1,
921 const struct ieee80211_regdomain *rd2)
922 {
923 int r, size_of_regd;
924 unsigned int x, y;
925 unsigned int num_rules = 0;
926 const struct ieee80211_reg_rule *rule1, *rule2;
927 struct ieee80211_reg_rule intersected_rule;
928 struct ieee80211_regdomain *rd;
929
930 if (!rd1 || !rd2)
931 return NULL;
932
933 /*
934 * First we get a count of the rules we'll need, then we actually
935 * build them. This is to so we can malloc() and free() a
936 * regdomain once. The reason we use reg_rules_intersect() here
937 * is it will return -EINVAL if the rule computed makes no sense.
938 * All rules that do check out OK are valid.
939 */
940
941 for (x = 0; x < rd1->n_reg_rules; x++) {
942 rule1 = &rd1->reg_rules[x];
943 for (y = 0; y < rd2->n_reg_rules; y++) {
944 rule2 = &rd2->reg_rules[y];
945 if (!reg_rules_intersect(rd1, rd2, rule1, rule2,
946 &intersected_rule))
947 num_rules++;
948 }
949 }
950
951 if (!num_rules)
952 return NULL;
953
954 size_of_regd = sizeof(struct ieee80211_regdomain) +
955 num_rules * sizeof(struct ieee80211_reg_rule);
956
957 rd = kzalloc(size_of_regd, GFP_KERNEL);
958 if (!rd)
959 return NULL;
960
961 for (x = 0; x < rd1->n_reg_rules; x++) {
962 rule1 = &rd1->reg_rules[x];
963 for (y = 0; y < rd2->n_reg_rules; y++) {
964 rule2 = &rd2->reg_rules[y];
965 r = reg_rules_intersect(rd1, rd2, rule1, rule2,
966 &intersected_rule);
967 /*
968 * No need to memset here the intersected rule here as
969 * we're not using the stack anymore
970 */
971 if (r)
972 continue;
973
974 add_rule(&intersected_rule, rd->reg_rules,
975 &rd->n_reg_rules);
976 }
977 }
978
979 rd->alpha2[0] = '9';
980 rd->alpha2[1] = '8';
981 rd->dfs_region = reg_intersect_dfs_region(rd1->dfs_region,
982 rd2->dfs_region);
983
984 return rd;
985 }
986
987 /*
988 * XXX: add support for the rest of enum nl80211_reg_rule_flags, we may
989 * want to just have the channel structure use these
990 */
991 static u32 map_regdom_flags(u32 rd_flags)
992 {
993 u32 channel_flags = 0;
994 if (rd_flags & NL80211_RRF_NO_IR_ALL)
995 channel_flags |= IEEE80211_CHAN_NO_IR;
996 if (rd_flags & NL80211_RRF_DFS)
997 channel_flags |= IEEE80211_CHAN_RADAR;
998 if (rd_flags & NL80211_RRF_NO_OFDM)
999 channel_flags |= IEEE80211_CHAN_NO_OFDM;
1000 if (rd_flags & NL80211_RRF_NO_OUTDOOR)
1001 channel_flags |= IEEE80211_CHAN_INDOOR_ONLY;
1002 if (rd_flags & NL80211_RRF_IR_CONCURRENT)
1003 channel_flags |= IEEE80211_CHAN_IR_CONCURRENT;
1004 if (rd_flags & NL80211_RRF_NO_HT40MINUS)
1005 channel_flags |= IEEE80211_CHAN_NO_HT40MINUS;
1006 if (rd_flags & NL80211_RRF_NO_HT40PLUS)
1007 channel_flags |= IEEE80211_CHAN_NO_HT40PLUS;
1008 if (rd_flags & NL80211_RRF_NO_80MHZ)
1009 channel_flags |= IEEE80211_CHAN_NO_80MHZ;
1010 if (rd_flags & NL80211_RRF_NO_160MHZ)
1011 channel_flags |= IEEE80211_CHAN_NO_160MHZ;
1012 return channel_flags;
1013 }
1014
1015 static const struct ieee80211_reg_rule *
1016 freq_reg_info_regd(struct wiphy *wiphy, u32 center_freq,
1017 const struct ieee80211_regdomain *regd, u32 bw)
1018 {
1019 int i;
1020 bool band_rule_found = false;
1021 bool bw_fits = false;
1022
1023 if (!regd)
1024 return ERR_PTR(-EINVAL);
1025
1026 for (i = 0; i < regd->n_reg_rules; i++) {
1027 const struct ieee80211_reg_rule *rr;
1028 const struct ieee80211_freq_range *fr = NULL;
1029
1030 rr = &regd->reg_rules[i];
1031 fr = &rr->freq_range;
1032
1033 /*
1034 * We only need to know if one frequency rule was
1035 * was in center_freq's band, that's enough, so lets
1036 * not overwrite it once found
1037 */
1038 if (!band_rule_found)
1039 band_rule_found = freq_in_rule_band(fr, center_freq);
1040
1041 bw_fits = reg_does_bw_fit(fr, center_freq, bw);
1042
1043 if (band_rule_found && bw_fits)
1044 return rr;
1045 }
1046
1047 if (!band_rule_found)
1048 return ERR_PTR(-ERANGE);
1049
1050 return ERR_PTR(-EINVAL);
1051 }
1052
1053 static const struct ieee80211_reg_rule *
1054 __freq_reg_info(struct wiphy *wiphy, u32 center_freq, u32 min_bw)
1055 {
1056 const struct ieee80211_regdomain *regd = reg_get_regdomain(wiphy);
1057 const struct ieee80211_reg_rule *reg_rule = NULL;
1058 u32 bw;
1059
1060 for (bw = MHZ_TO_KHZ(20); bw >= min_bw; bw = bw / 2) {
1061 reg_rule = freq_reg_info_regd(wiphy, center_freq, regd, bw);
1062 if (!IS_ERR(reg_rule))
1063 return reg_rule;
1064 }
1065
1066 return reg_rule;
1067 }
1068
1069 const struct ieee80211_reg_rule *freq_reg_info(struct wiphy *wiphy,
1070 u32 center_freq)
1071 {
1072 return __freq_reg_info(wiphy, center_freq, MHZ_TO_KHZ(20));
1073 }
1074 EXPORT_SYMBOL(freq_reg_info);
1075
1076 const char *reg_initiator_name(enum nl80211_reg_initiator initiator)
1077 {
1078 switch (initiator) {
1079 case NL80211_REGDOM_SET_BY_CORE:
1080 return "core";
1081 case NL80211_REGDOM_SET_BY_USER:
1082 return "user";
1083 case NL80211_REGDOM_SET_BY_DRIVER:
1084 return "driver";
1085 case NL80211_REGDOM_SET_BY_COUNTRY_IE:
1086 return "country IE";
1087 default:
1088 WARN_ON(1);
1089 return "bug";
1090 }
1091 }
1092 EXPORT_SYMBOL(reg_initiator_name);
1093
1094 #ifdef CONFIG_CFG80211_REG_DEBUG
1095 static void chan_reg_rule_print_dbg(const struct ieee80211_regdomain *regd,
1096 struct ieee80211_channel *chan,
1097 const struct ieee80211_reg_rule *reg_rule)
1098 {
1099 const struct ieee80211_power_rule *power_rule;
1100 const struct ieee80211_freq_range *freq_range;
1101 char max_antenna_gain[32], bw[32];
1102
1103 power_rule = &reg_rule->power_rule;
1104 freq_range = &reg_rule->freq_range;
1105
1106 if (!power_rule->max_antenna_gain)
1107 snprintf(max_antenna_gain, sizeof(max_antenna_gain), "N/A");
1108 else
1109 snprintf(max_antenna_gain, sizeof(max_antenna_gain), "%d",
1110 power_rule->max_antenna_gain);
1111
1112 if (reg_rule->flags & NL80211_RRF_AUTO_BW)
1113 snprintf(bw, sizeof(bw), "%d KHz, %d KHz AUTO",
1114 freq_range->max_bandwidth_khz,
1115 reg_get_max_bandwidth(regd, reg_rule));
1116 else
1117 snprintf(bw, sizeof(bw), "%d KHz",
1118 freq_range->max_bandwidth_khz);
1119
1120 REG_DBG_PRINT("Updating information on frequency %d MHz with regulatory rule:\n",
1121 chan->center_freq);
1122
1123 REG_DBG_PRINT("%d KHz - %d KHz @ %s), (%s mBi, %d mBm)\n",
1124 freq_range->start_freq_khz, freq_range->end_freq_khz,
1125 bw, max_antenna_gain,
1126 power_rule->max_eirp);
1127 }
1128 #else
1129 static void chan_reg_rule_print_dbg(const struct ieee80211_regdomain *regd,
1130 struct ieee80211_channel *chan,
1131 const struct ieee80211_reg_rule *reg_rule)
1132 {
1133 return;
1134 }
1135 #endif
1136
1137 /*
1138 * Note that right now we assume the desired channel bandwidth
1139 * is always 20 MHz for each individual channel (HT40 uses 20 MHz
1140 * per channel, the primary and the extension channel).
1141 */
1142 static void handle_channel(struct wiphy *wiphy,
1143 enum nl80211_reg_initiator initiator,
1144 struct ieee80211_channel *chan)
1145 {
1146 u32 flags, bw_flags = 0;
1147 const struct ieee80211_reg_rule *reg_rule = NULL;
1148 const struct ieee80211_power_rule *power_rule = NULL;
1149 const struct ieee80211_freq_range *freq_range = NULL;
1150 struct wiphy *request_wiphy = NULL;
1151 struct regulatory_request *lr = get_last_request();
1152 const struct ieee80211_regdomain *regd;
1153 u32 max_bandwidth_khz;
1154
1155 request_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx);
1156
1157 flags = chan->orig_flags;
1158
1159 reg_rule = freq_reg_info(wiphy, MHZ_TO_KHZ(chan->center_freq));
1160 if (IS_ERR(reg_rule)) {
1161 /*
1162 * We will disable all channels that do not match our
1163 * received regulatory rule unless the hint is coming
1164 * from a Country IE and the Country IE had no information
1165 * about a band. The IEEE 802.11 spec allows for an AP
1166 * to send only a subset of the regulatory rules allowed,
1167 * so an AP in the US that only supports 2.4 GHz may only send
1168 * a country IE with information for the 2.4 GHz band
1169 * while 5 GHz is still supported.
1170 */
1171 if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1172 PTR_ERR(reg_rule) == -ERANGE)
1173 return;
1174
1175 if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1176 request_wiphy && request_wiphy == wiphy &&
1177 request_wiphy->regulatory_flags & REGULATORY_STRICT_REG) {
1178 REG_DBG_PRINT("Disabling freq %d MHz for good\n",
1179 chan->center_freq);
1180 chan->orig_flags |= IEEE80211_CHAN_DISABLED;
1181 chan->flags = chan->orig_flags;
1182 } else {
1183 REG_DBG_PRINT("Disabling freq %d MHz\n",
1184 chan->center_freq);
1185 chan->flags |= IEEE80211_CHAN_DISABLED;
1186 }
1187 return;
1188 }
1189
1190 regd = reg_get_regdomain(wiphy);
1191 chan_reg_rule_print_dbg(regd, chan, reg_rule);
1192
1193 power_rule = &reg_rule->power_rule;
1194 freq_range = &reg_rule->freq_range;
1195
1196 max_bandwidth_khz = freq_range->max_bandwidth_khz;
1197 /* Check if auto calculation requested */
1198 if (reg_rule->flags & NL80211_RRF_AUTO_BW)
1199 max_bandwidth_khz = reg_get_max_bandwidth(regd, reg_rule);
1200
1201 /* If we get a reg_rule we can assume that at least 5Mhz fit */
1202 if (!reg_does_bw_fit(freq_range, MHZ_TO_KHZ(chan->center_freq),
1203 MHZ_TO_KHZ(10)))
1204 bw_flags |= IEEE80211_CHAN_NO_10MHZ;
1205 if (!reg_does_bw_fit(freq_range, MHZ_TO_KHZ(chan->center_freq),
1206 MHZ_TO_KHZ(20)))
1207 bw_flags |= IEEE80211_CHAN_NO_20MHZ;
1208
1209 if (max_bandwidth_khz < MHZ_TO_KHZ(10))
1210 bw_flags |= IEEE80211_CHAN_NO_10MHZ;
1211 if (max_bandwidth_khz < MHZ_TO_KHZ(20))
1212 bw_flags |= IEEE80211_CHAN_NO_20MHZ;
1213 if (max_bandwidth_khz < MHZ_TO_KHZ(40))
1214 bw_flags |= IEEE80211_CHAN_NO_HT40;
1215 if (max_bandwidth_khz < MHZ_TO_KHZ(80))
1216 bw_flags |= IEEE80211_CHAN_NO_80MHZ;
1217 if (max_bandwidth_khz < MHZ_TO_KHZ(160))
1218 bw_flags |= IEEE80211_CHAN_NO_160MHZ;
1219
1220 if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1221 request_wiphy && request_wiphy == wiphy &&
1222 request_wiphy->regulatory_flags & REGULATORY_STRICT_REG) {
1223 /*
1224 * This guarantees the driver's requested regulatory domain
1225 * will always be used as a base for further regulatory
1226 * settings
1227 */
1228 chan->flags = chan->orig_flags =
1229 map_regdom_flags(reg_rule->flags) | bw_flags;
1230 chan->max_antenna_gain = chan->orig_mag =
1231 (int) MBI_TO_DBI(power_rule->max_antenna_gain);
1232 chan->max_reg_power = chan->max_power = chan->orig_mpwr =
1233 (int) MBM_TO_DBM(power_rule->max_eirp);
1234
1235 if (chan->flags & IEEE80211_CHAN_RADAR) {
1236 chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS;
1237 if (reg_rule->dfs_cac_ms)
1238 chan->dfs_cac_ms = reg_rule->dfs_cac_ms;
1239 }
1240
1241 return;
1242 }
1243
1244 chan->dfs_state = NL80211_DFS_USABLE;
1245 chan->dfs_state_entered = jiffies;
1246
1247 chan->beacon_found = false;
1248 chan->flags = flags | bw_flags | map_regdom_flags(reg_rule->flags);
1249 chan->max_antenna_gain =
1250 min_t(int, chan->orig_mag,
1251 MBI_TO_DBI(power_rule->max_antenna_gain));
1252 chan->max_reg_power = (int) MBM_TO_DBM(power_rule->max_eirp);
1253
1254 if (chan->flags & IEEE80211_CHAN_RADAR) {
1255 if (reg_rule->dfs_cac_ms)
1256 chan->dfs_cac_ms = reg_rule->dfs_cac_ms;
1257 else
1258 chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS;
1259 }
1260
1261 if (chan->orig_mpwr) {
1262 /*
1263 * Devices that use REGULATORY_COUNTRY_IE_FOLLOW_POWER
1264 * will always follow the passed country IE power settings.
1265 */
1266 if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1267 wiphy->regulatory_flags & REGULATORY_COUNTRY_IE_FOLLOW_POWER)
1268 chan->max_power = chan->max_reg_power;
1269 else
1270 chan->max_power = min(chan->orig_mpwr,
1271 chan->max_reg_power);
1272 } else
1273 chan->max_power = chan->max_reg_power;
1274 }
1275
1276 static void handle_band(struct wiphy *wiphy,
1277 enum nl80211_reg_initiator initiator,
1278 struct ieee80211_supported_band *sband)
1279 {
1280 unsigned int i;
1281
1282 if (!sband)
1283 return;
1284
1285 for (i = 0; i < sband->n_channels; i++)
1286 handle_channel(wiphy, initiator, &sband->channels[i]);
1287 }
1288
1289 static bool reg_request_cell_base(struct regulatory_request *request)
1290 {
1291 if (request->initiator != NL80211_REGDOM_SET_BY_USER)
1292 return false;
1293 return request->user_reg_hint_type == NL80211_USER_REG_HINT_CELL_BASE;
1294 }
1295
1296 bool reg_last_request_cell_base(void)
1297 {
1298 return reg_request_cell_base(get_last_request());
1299 }
1300
1301 #ifdef CONFIG_CFG80211_REG_CELLULAR_HINTS
1302 /* Core specific check */
1303 static enum reg_request_treatment
1304 reg_ignore_cell_hint(struct regulatory_request *pending_request)
1305 {
1306 struct regulatory_request *lr = get_last_request();
1307
1308 if (!reg_num_devs_support_basehint)
1309 return REG_REQ_IGNORE;
1310
1311 if (reg_request_cell_base(lr) &&
1312 !regdom_changes(pending_request->alpha2))
1313 return REG_REQ_ALREADY_SET;
1314
1315 return REG_REQ_OK;
1316 }
1317
1318 /* Device specific check */
1319 static bool reg_dev_ignore_cell_hint(struct wiphy *wiphy)
1320 {
1321 return !(wiphy->features & NL80211_FEATURE_CELL_BASE_REG_HINTS);
1322 }
1323 #else
1324 static int reg_ignore_cell_hint(struct regulatory_request *pending_request)
1325 {
1326 return REG_REQ_IGNORE;
1327 }
1328
1329 static bool reg_dev_ignore_cell_hint(struct wiphy *wiphy)
1330 {
1331 return true;
1332 }
1333 #endif
1334
1335 static bool wiphy_strict_alpha2_regd(struct wiphy *wiphy)
1336 {
1337 if (wiphy->regulatory_flags & REGULATORY_STRICT_REG &&
1338 !(wiphy->regulatory_flags & REGULATORY_CUSTOM_REG))
1339 return true;
1340 return false;
1341 }
1342
1343 static bool ignore_reg_update(struct wiphy *wiphy,
1344 enum nl80211_reg_initiator initiator)
1345 {
1346 struct regulatory_request *lr = get_last_request();
1347
1348 if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED)
1349 return true;
1350
1351 if (!lr) {
1352 REG_DBG_PRINT("Ignoring regulatory request set by %s "
1353 "since last_request is not set\n",
1354 reg_initiator_name(initiator));
1355 return true;
1356 }
1357
1358 if (initiator == NL80211_REGDOM_SET_BY_CORE &&
1359 wiphy->regulatory_flags & REGULATORY_CUSTOM_REG) {
1360 REG_DBG_PRINT("Ignoring regulatory request set by %s "
1361 "since the driver uses its own custom "
1362 "regulatory domain\n",
1363 reg_initiator_name(initiator));
1364 return true;
1365 }
1366
1367 /*
1368 * wiphy->regd will be set once the device has its own
1369 * desired regulatory domain set
1370 */
1371 if (wiphy_strict_alpha2_regd(wiphy) && !wiphy->regd &&
1372 initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1373 !is_world_regdom(lr->alpha2)) {
1374 REG_DBG_PRINT("Ignoring regulatory request set by %s "
1375 "since the driver requires its own regulatory "
1376 "domain to be set first\n",
1377 reg_initiator_name(initiator));
1378 return true;
1379 }
1380
1381 if (reg_request_cell_base(lr))
1382 return reg_dev_ignore_cell_hint(wiphy);
1383
1384 return false;
1385 }
1386
1387 static bool reg_is_world_roaming(struct wiphy *wiphy)
1388 {
1389 const struct ieee80211_regdomain *cr = get_cfg80211_regdom();
1390 const struct ieee80211_regdomain *wr = get_wiphy_regdom(wiphy);
1391 struct regulatory_request *lr = get_last_request();
1392
1393 if (is_world_regdom(cr->alpha2) || (wr && is_world_regdom(wr->alpha2)))
1394 return true;
1395
1396 if (lr && lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1397 wiphy->regulatory_flags & REGULATORY_CUSTOM_REG)
1398 return true;
1399
1400 return false;
1401 }
1402
1403 static void handle_reg_beacon(struct wiphy *wiphy, unsigned int chan_idx,
1404 struct reg_beacon *reg_beacon)
1405 {
1406 struct ieee80211_supported_band *sband;
1407 struct ieee80211_channel *chan;
1408 bool channel_changed = false;
1409 struct ieee80211_channel chan_before;
1410
1411 sband = wiphy->bands[reg_beacon->chan.band];
1412 chan = &sband->channels[chan_idx];
1413
1414 if (likely(chan->center_freq != reg_beacon->chan.center_freq))
1415 return;
1416
1417 if (chan->beacon_found)
1418 return;
1419
1420 chan->beacon_found = true;
1421
1422 if (!reg_is_world_roaming(wiphy))
1423 return;
1424
1425 if (wiphy->regulatory_flags & REGULATORY_DISABLE_BEACON_HINTS)
1426 return;
1427
1428 chan_before.center_freq = chan->center_freq;
1429 chan_before.flags = chan->flags;
1430
1431 if (chan->flags & IEEE80211_CHAN_NO_IR) {
1432 chan->flags &= ~IEEE80211_CHAN_NO_IR;
1433 channel_changed = true;
1434 }
1435
1436 if (channel_changed)
1437 nl80211_send_beacon_hint_event(wiphy, &chan_before, chan);
1438 }
1439
1440 /*
1441 * Called when a scan on a wiphy finds a beacon on
1442 * new channel
1443 */
1444 static void wiphy_update_new_beacon(struct wiphy *wiphy,
1445 struct reg_beacon *reg_beacon)
1446 {
1447 unsigned int i;
1448 struct ieee80211_supported_band *sband;
1449
1450 if (!wiphy->bands[reg_beacon->chan.band])
1451 return;
1452
1453 sband = wiphy->bands[reg_beacon->chan.band];
1454
1455 for (i = 0; i < sband->n_channels; i++)
1456 handle_reg_beacon(wiphy, i, reg_beacon);
1457 }
1458
1459 /*
1460 * Called upon reg changes or a new wiphy is added
1461 */
1462 static void wiphy_update_beacon_reg(struct wiphy *wiphy)
1463 {
1464 unsigned int i;
1465 struct ieee80211_supported_band *sband;
1466 struct reg_beacon *reg_beacon;
1467
1468 list_for_each_entry(reg_beacon, &reg_beacon_list, list) {
1469 if (!wiphy->bands[reg_beacon->chan.band])
1470 continue;
1471 sband = wiphy->bands[reg_beacon->chan.band];
1472 for (i = 0; i < sband->n_channels; i++)
1473 handle_reg_beacon(wiphy, i, reg_beacon);
1474 }
1475 }
1476
1477 /* Reap the advantages of previously found beacons */
1478 static void reg_process_beacons(struct wiphy *wiphy)
1479 {
1480 /*
1481 * Means we are just firing up cfg80211, so no beacons would
1482 * have been processed yet.
1483 */
1484 if (!last_request)
1485 return;
1486 wiphy_update_beacon_reg(wiphy);
1487 }
1488
1489 static bool is_ht40_allowed(struct ieee80211_channel *chan)
1490 {
1491 if (!chan)
1492 return false;
1493 if (chan->flags & IEEE80211_CHAN_DISABLED)
1494 return false;
1495 /* This would happen when regulatory rules disallow HT40 completely */
1496 if ((chan->flags & IEEE80211_CHAN_NO_HT40) == IEEE80211_CHAN_NO_HT40)
1497 return false;
1498 return true;
1499 }
1500
1501 static void reg_process_ht_flags_channel(struct wiphy *wiphy,
1502 struct ieee80211_channel *channel)
1503 {
1504 struct ieee80211_supported_band *sband = wiphy->bands[channel->band];
1505 struct ieee80211_channel *channel_before = NULL, *channel_after = NULL;
1506 unsigned int i;
1507
1508 if (!is_ht40_allowed(channel)) {
1509 channel->flags |= IEEE80211_CHAN_NO_HT40;
1510 return;
1511 }
1512
1513 /*
1514 * We need to ensure the extension channels exist to
1515 * be able to use HT40- or HT40+, this finds them (or not)
1516 */
1517 for (i = 0; i < sband->n_channels; i++) {
1518 struct ieee80211_channel *c = &sband->channels[i];
1519
1520 if (c->center_freq == (channel->center_freq - 20))
1521 channel_before = c;
1522 if (c->center_freq == (channel->center_freq + 20))
1523 channel_after = c;
1524 }
1525
1526 /*
1527 * Please note that this assumes target bandwidth is 20 MHz,
1528 * if that ever changes we also need to change the below logic
1529 * to include that as well.
1530 */
1531 if (!is_ht40_allowed(channel_before))
1532 channel->flags |= IEEE80211_CHAN_NO_HT40MINUS;
1533 else
1534 channel->flags &= ~IEEE80211_CHAN_NO_HT40MINUS;
1535
1536 if (!is_ht40_allowed(channel_after))
1537 channel->flags |= IEEE80211_CHAN_NO_HT40PLUS;
1538 else
1539 channel->flags &= ~IEEE80211_CHAN_NO_HT40PLUS;
1540 }
1541
1542 static void reg_process_ht_flags_band(struct wiphy *wiphy,
1543 struct ieee80211_supported_band *sband)
1544 {
1545 unsigned int i;
1546
1547 if (!sband)
1548 return;
1549
1550 for (i = 0; i < sband->n_channels; i++)
1551 reg_process_ht_flags_channel(wiphy, &sband->channels[i]);
1552 }
1553
1554 static void reg_process_ht_flags(struct wiphy *wiphy)
1555 {
1556 enum ieee80211_band band;
1557
1558 if (!wiphy)
1559 return;
1560
1561 for (band = 0; band < IEEE80211_NUM_BANDS; band++)
1562 reg_process_ht_flags_band(wiphy, wiphy->bands[band]);
1563 }
1564
1565 static void reg_call_notifier(struct wiphy *wiphy,
1566 struct regulatory_request *request)
1567 {
1568 if (wiphy->reg_notifier)
1569 wiphy->reg_notifier(wiphy, request);
1570 }
1571
1572 static bool reg_wdev_chan_valid(struct wiphy *wiphy, struct wireless_dev *wdev)
1573 {
1574 struct cfg80211_chan_def chandef;
1575 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
1576 enum nl80211_iftype iftype;
1577
1578 wdev_lock(wdev);
1579 iftype = wdev->iftype;
1580
1581 /* make sure the interface is active */
1582 if (!wdev->netdev || !netif_running(wdev->netdev))
1583 goto wdev_inactive_unlock;
1584
1585 switch (iftype) {
1586 case NL80211_IFTYPE_AP:
1587 case NL80211_IFTYPE_P2P_GO:
1588 if (!wdev->beacon_interval)
1589 goto wdev_inactive_unlock;
1590 chandef = wdev->chandef;
1591 break;
1592 case NL80211_IFTYPE_ADHOC:
1593 if (!wdev->ssid_len)
1594 goto wdev_inactive_unlock;
1595 chandef = wdev->chandef;
1596 break;
1597 case NL80211_IFTYPE_STATION:
1598 case NL80211_IFTYPE_P2P_CLIENT:
1599 if (!wdev->current_bss ||
1600 !wdev->current_bss->pub.channel)
1601 goto wdev_inactive_unlock;
1602
1603 if (!rdev->ops->get_channel ||
1604 rdev_get_channel(rdev, wdev, &chandef))
1605 cfg80211_chandef_create(&chandef,
1606 wdev->current_bss->pub.channel,
1607 NL80211_CHAN_NO_HT);
1608 break;
1609 case NL80211_IFTYPE_MONITOR:
1610 case NL80211_IFTYPE_AP_VLAN:
1611 case NL80211_IFTYPE_P2P_DEVICE:
1612 /* no enforcement required */
1613 break;
1614 default:
1615 /* others not implemented for now */
1616 WARN_ON(1);
1617 break;
1618 }
1619
1620 wdev_unlock(wdev);
1621
1622 switch (iftype) {
1623 case NL80211_IFTYPE_AP:
1624 case NL80211_IFTYPE_P2P_GO:
1625 case NL80211_IFTYPE_ADHOC:
1626 return cfg80211_reg_can_beacon_relax(wiphy, &chandef, iftype);
1627 case NL80211_IFTYPE_STATION:
1628 case NL80211_IFTYPE_P2P_CLIENT:
1629 return cfg80211_chandef_usable(wiphy, &chandef,
1630 IEEE80211_CHAN_DISABLED);
1631 default:
1632 break;
1633 }
1634
1635 return true;
1636
1637 wdev_inactive_unlock:
1638 wdev_unlock(wdev);
1639 return true;
1640 }
1641
1642 static void reg_leave_invalid_chans(struct wiphy *wiphy)
1643 {
1644 struct wireless_dev *wdev;
1645 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
1646
1647 ASSERT_RTNL();
1648
1649 list_for_each_entry(wdev, &rdev->wdev_list, list)
1650 if (!reg_wdev_chan_valid(wiphy, wdev))
1651 cfg80211_leave(rdev, wdev);
1652 }
1653
1654 static void reg_check_chans_work(struct work_struct *work)
1655 {
1656 struct cfg80211_registered_device *rdev;
1657
1658 REG_DBG_PRINT("Verifying active interfaces after reg change\n");
1659 rtnl_lock();
1660
1661 list_for_each_entry(rdev, &cfg80211_rdev_list, list)
1662 if (!(rdev->wiphy.regulatory_flags &
1663 REGULATORY_IGNORE_STALE_KICKOFF))
1664 reg_leave_invalid_chans(&rdev->wiphy);
1665
1666 rtnl_unlock();
1667 }
1668
1669 static void reg_check_channels(void)
1670 {
1671 /*
1672 * Give usermode a chance to do something nicer (move to another
1673 * channel, orderly disconnection), before forcing a disconnection.
1674 */
1675 mod_delayed_work(system_power_efficient_wq,
1676 &reg_check_chans,
1677 msecs_to_jiffies(REG_ENFORCE_GRACE_MS));
1678 }
1679
1680 static void wiphy_update_regulatory(struct wiphy *wiphy,
1681 enum nl80211_reg_initiator initiator)
1682 {
1683 enum ieee80211_band band;
1684 struct regulatory_request *lr = get_last_request();
1685
1686 if (ignore_reg_update(wiphy, initiator)) {
1687 /*
1688 * Regulatory updates set by CORE are ignored for custom
1689 * regulatory cards. Let us notify the changes to the driver,
1690 * as some drivers used this to restore its orig_* reg domain.
1691 */
1692 if (initiator == NL80211_REGDOM_SET_BY_CORE &&
1693 wiphy->regulatory_flags & REGULATORY_CUSTOM_REG)
1694 reg_call_notifier(wiphy, lr);
1695 return;
1696 }
1697
1698 lr->dfs_region = get_cfg80211_regdom()->dfs_region;
1699
1700 for (band = 0; band < IEEE80211_NUM_BANDS; band++)
1701 handle_band(wiphy, initiator, wiphy->bands[band]);
1702
1703 reg_process_beacons(wiphy);
1704 reg_process_ht_flags(wiphy);
1705 reg_call_notifier(wiphy, lr);
1706 }
1707
1708 static void update_all_wiphy_regulatory(enum nl80211_reg_initiator initiator)
1709 {
1710 struct cfg80211_registered_device *rdev;
1711 struct wiphy *wiphy;
1712
1713 ASSERT_RTNL();
1714
1715 list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
1716 wiphy = &rdev->wiphy;
1717 wiphy_update_regulatory(wiphy, initiator);
1718 }
1719
1720 reg_check_channels();
1721 }
1722
1723 static void handle_channel_custom(struct wiphy *wiphy,
1724 struct ieee80211_channel *chan,
1725 const struct ieee80211_regdomain *regd)
1726 {
1727 u32 bw_flags = 0;
1728 const struct ieee80211_reg_rule *reg_rule = NULL;
1729 const struct ieee80211_power_rule *power_rule = NULL;
1730 const struct ieee80211_freq_range *freq_range = NULL;
1731 u32 max_bandwidth_khz;
1732 u32 bw;
1733
1734 for (bw = MHZ_TO_KHZ(20); bw >= MHZ_TO_KHZ(5); bw = bw / 2) {
1735 reg_rule = freq_reg_info_regd(wiphy,
1736 MHZ_TO_KHZ(chan->center_freq),
1737 regd, bw);
1738 if (!IS_ERR(reg_rule))
1739 break;
1740 }
1741
1742 if (IS_ERR(reg_rule)) {
1743 REG_DBG_PRINT("Disabling freq %d MHz as custom regd has no rule that fits it\n",
1744 chan->center_freq);
1745 if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED) {
1746 chan->flags |= IEEE80211_CHAN_DISABLED;
1747 } else {
1748 chan->orig_flags |= IEEE80211_CHAN_DISABLED;
1749 chan->flags = chan->orig_flags;
1750 }
1751 return;
1752 }
1753
1754 chan_reg_rule_print_dbg(regd, chan, reg_rule);
1755
1756 power_rule = &reg_rule->power_rule;
1757 freq_range = &reg_rule->freq_range;
1758
1759 max_bandwidth_khz = freq_range->max_bandwidth_khz;
1760 /* Check if auto calculation requested */
1761 if (reg_rule->flags & NL80211_RRF_AUTO_BW)
1762 max_bandwidth_khz = reg_get_max_bandwidth(regd, reg_rule);
1763
1764 /* If we get a reg_rule we can assume that at least 5Mhz fit */
1765 if (!reg_does_bw_fit(freq_range, MHZ_TO_KHZ(chan->center_freq),
1766 MHZ_TO_KHZ(10)))
1767 bw_flags |= IEEE80211_CHAN_NO_10MHZ;
1768 if (!reg_does_bw_fit(freq_range, MHZ_TO_KHZ(chan->center_freq),
1769 MHZ_TO_KHZ(20)))
1770 bw_flags |= IEEE80211_CHAN_NO_20MHZ;
1771
1772 if (max_bandwidth_khz < MHZ_TO_KHZ(10))
1773 bw_flags |= IEEE80211_CHAN_NO_10MHZ;
1774 if (max_bandwidth_khz < MHZ_TO_KHZ(20))
1775 bw_flags |= IEEE80211_CHAN_NO_20MHZ;
1776 if (max_bandwidth_khz < MHZ_TO_KHZ(40))
1777 bw_flags |= IEEE80211_CHAN_NO_HT40;
1778 if (max_bandwidth_khz < MHZ_TO_KHZ(80))
1779 bw_flags |= IEEE80211_CHAN_NO_80MHZ;
1780 if (max_bandwidth_khz < MHZ_TO_KHZ(160))
1781 bw_flags |= IEEE80211_CHAN_NO_160MHZ;
1782
1783 chan->dfs_state_entered = jiffies;
1784 chan->dfs_state = NL80211_DFS_USABLE;
1785
1786 chan->beacon_found = false;
1787
1788 if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED)
1789 chan->flags = chan->orig_flags | bw_flags |
1790 map_regdom_flags(reg_rule->flags);
1791 else
1792 chan->flags |= map_regdom_flags(reg_rule->flags) | bw_flags;
1793
1794 chan->max_antenna_gain = (int) MBI_TO_DBI(power_rule->max_antenna_gain);
1795 chan->max_reg_power = chan->max_power =
1796 (int) MBM_TO_DBM(power_rule->max_eirp);
1797
1798 if (chan->flags & IEEE80211_CHAN_RADAR) {
1799 if (reg_rule->dfs_cac_ms)
1800 chan->dfs_cac_ms = reg_rule->dfs_cac_ms;
1801 else
1802 chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS;
1803 }
1804
1805 chan->max_power = chan->max_reg_power;
1806 }
1807
1808 static void handle_band_custom(struct wiphy *wiphy,
1809 struct ieee80211_supported_band *sband,
1810 const struct ieee80211_regdomain *regd)
1811 {
1812 unsigned int i;
1813
1814 if (!sband)
1815 return;
1816
1817 for (i = 0; i < sband->n_channels; i++)
1818 handle_channel_custom(wiphy, &sband->channels[i], regd);
1819 }
1820
1821 /* Used by drivers prior to wiphy registration */
1822 void wiphy_apply_custom_regulatory(struct wiphy *wiphy,
1823 const struct ieee80211_regdomain *regd)
1824 {
1825 enum ieee80211_band band;
1826 unsigned int bands_set = 0;
1827
1828 WARN(!(wiphy->regulatory_flags & REGULATORY_CUSTOM_REG),
1829 "wiphy should have REGULATORY_CUSTOM_REG\n");
1830 wiphy->regulatory_flags |= REGULATORY_CUSTOM_REG;
1831
1832 for (band = 0; band < IEEE80211_NUM_BANDS; band++) {
1833 if (!wiphy->bands[band])
1834 continue;
1835 handle_band_custom(wiphy, wiphy->bands[band], regd);
1836 bands_set++;
1837 }
1838
1839 /*
1840 * no point in calling this if it won't have any effect
1841 * on your device's supported bands.
1842 */
1843 WARN_ON(!bands_set);
1844 }
1845 EXPORT_SYMBOL(wiphy_apply_custom_regulatory);
1846
1847 static void reg_set_request_processed(void)
1848 {
1849 bool need_more_processing = false;
1850 struct regulatory_request *lr = get_last_request();
1851
1852 lr->processed = true;
1853
1854 spin_lock(&reg_requests_lock);
1855 if (!list_empty(&reg_requests_list))
1856 need_more_processing = true;
1857 spin_unlock(&reg_requests_lock);
1858
1859 cancel_delayed_work(&reg_timeout);
1860
1861 if (need_more_processing)
1862 schedule_work(&reg_work);
1863 }
1864
1865 /**
1866 * reg_process_hint_core - process core regulatory requests
1867 * @pending_request: a pending core regulatory request
1868 *
1869 * The wireless subsystem can use this function to process
1870 * a regulatory request issued by the regulatory core.
1871 */
1872 static void reg_process_hint_core(struct regulatory_request *core_request)
1873 {
1874 if (reg_query_database(core_request)) {
1875 core_request->intersect = false;
1876 core_request->processed = false;
1877 reg_update_last_request(core_request);
1878 }
1879 }
1880
1881 static enum reg_request_treatment
1882 __reg_process_hint_user(struct regulatory_request *user_request)
1883 {
1884 struct regulatory_request *lr = get_last_request();
1885
1886 if (reg_request_cell_base(user_request))
1887 return reg_ignore_cell_hint(user_request);
1888
1889 if (reg_request_cell_base(lr))
1890 return REG_REQ_IGNORE;
1891
1892 if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE)
1893 return REG_REQ_INTERSECT;
1894 /*
1895 * If the user knows better the user should set the regdom
1896 * to their country before the IE is picked up
1897 */
1898 if (lr->initiator == NL80211_REGDOM_SET_BY_USER &&
1899 lr->intersect)
1900 return REG_REQ_IGNORE;
1901 /*
1902 * Process user requests only after previous user/driver/core
1903 * requests have been processed
1904 */
1905 if ((lr->initiator == NL80211_REGDOM_SET_BY_CORE ||
1906 lr->initiator == NL80211_REGDOM_SET_BY_DRIVER ||
1907 lr->initiator == NL80211_REGDOM_SET_BY_USER) &&
1908 regdom_changes(lr->alpha2))
1909 return REG_REQ_IGNORE;
1910
1911 if (!regdom_changes(user_request->alpha2))
1912 return REG_REQ_ALREADY_SET;
1913
1914 return REG_REQ_OK;
1915 }
1916
1917 /**
1918 * reg_process_hint_user - process user regulatory requests
1919 * @user_request: a pending user regulatory request
1920 *
1921 * The wireless subsystem can use this function to process
1922 * a regulatory request initiated by userspace.
1923 */
1924 static void reg_process_hint_user(struct regulatory_request *user_request)
1925 {
1926 enum reg_request_treatment treatment;
1927
1928 treatment = __reg_process_hint_user(user_request);
1929 if (treatment == REG_REQ_IGNORE ||
1930 treatment == REG_REQ_ALREADY_SET) {
1931 reg_free_request(user_request);
1932 return;
1933 }
1934
1935 user_request->intersect = treatment == REG_REQ_INTERSECT;
1936 user_request->processed = false;
1937
1938 if (reg_query_database(user_request)) {
1939 reg_update_last_request(user_request);
1940 user_alpha2[0] = user_request->alpha2[0];
1941 user_alpha2[1] = user_request->alpha2[1];
1942 } else {
1943 reg_free_request(user_request);
1944 }
1945 }
1946
1947 static enum reg_request_treatment
1948 __reg_process_hint_driver(struct regulatory_request *driver_request)
1949 {
1950 struct regulatory_request *lr = get_last_request();
1951
1952 if (lr->initiator == NL80211_REGDOM_SET_BY_CORE) {
1953 if (regdom_changes(driver_request->alpha2))
1954 return REG_REQ_OK;
1955 return REG_REQ_ALREADY_SET;
1956 }
1957
1958 /*
1959 * This would happen if you unplug and plug your card
1960 * back in or if you add a new device for which the previously
1961 * loaded card also agrees on the regulatory domain.
1962 */
1963 if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1964 !regdom_changes(driver_request->alpha2))
1965 return REG_REQ_ALREADY_SET;
1966
1967 return REG_REQ_INTERSECT;
1968 }
1969
1970 /**
1971 * reg_process_hint_driver - process driver regulatory requests
1972 * @driver_request: a pending driver regulatory request
1973 *
1974 * The wireless subsystem can use this function to process
1975 * a regulatory request issued by an 802.11 driver.
1976 *
1977 * Returns one of the different reg request treatment values.
1978 */
1979 static enum reg_request_treatment
1980 reg_process_hint_driver(struct wiphy *wiphy,
1981 struct regulatory_request *driver_request)
1982 {
1983 const struct ieee80211_regdomain *regd, *tmp;
1984 enum reg_request_treatment treatment;
1985
1986 treatment = __reg_process_hint_driver(driver_request);
1987
1988 switch (treatment) {
1989 case REG_REQ_OK:
1990 break;
1991 case REG_REQ_IGNORE:
1992 reg_free_request(driver_request);
1993 return treatment;
1994 case REG_REQ_INTERSECT:
1995 /* fall through */
1996 case REG_REQ_ALREADY_SET:
1997 regd = reg_copy_regd(get_cfg80211_regdom());
1998 if (IS_ERR(regd)) {
1999 reg_free_request(driver_request);
2000 return REG_REQ_IGNORE;
2001 }
2002
2003 tmp = get_wiphy_regdom(wiphy);
2004 rcu_assign_pointer(wiphy->regd, regd);
2005 rcu_free_regdom(tmp);
2006 }
2007
2008
2009 driver_request->intersect = treatment == REG_REQ_INTERSECT;
2010 driver_request->processed = false;
2011
2012 /*
2013 * Since CRDA will not be called in this case as we already
2014 * have applied the requested regulatory domain before we just
2015 * inform userspace we have processed the request
2016 */
2017 if (treatment == REG_REQ_ALREADY_SET) {
2018 nl80211_send_reg_change_event(driver_request);
2019 reg_update_last_request(driver_request);
2020 reg_set_request_processed();
2021 return treatment;
2022 }
2023
2024 if (reg_query_database(driver_request))
2025 reg_update_last_request(driver_request);
2026 else
2027 reg_free_request(driver_request);
2028
2029 return REG_REQ_OK;
2030 }
2031
2032 static enum reg_request_treatment
2033 __reg_process_hint_country_ie(struct wiphy *wiphy,
2034 struct regulatory_request *country_ie_request)
2035 {
2036 struct wiphy *last_wiphy = NULL;
2037 struct regulatory_request *lr = get_last_request();
2038
2039 if (reg_request_cell_base(lr)) {
2040 /* Trust a Cell base station over the AP's country IE */
2041 if (regdom_changes(country_ie_request->alpha2))
2042 return REG_REQ_IGNORE;
2043 return REG_REQ_ALREADY_SET;
2044 } else {
2045 if (wiphy->regulatory_flags & REGULATORY_COUNTRY_IE_IGNORE)
2046 return REG_REQ_IGNORE;
2047 }
2048
2049 if (unlikely(!is_an_alpha2(country_ie_request->alpha2)))
2050 return -EINVAL;
2051
2052 if (lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE)
2053 return REG_REQ_OK;
2054
2055 last_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx);
2056
2057 if (last_wiphy != wiphy) {
2058 /*
2059 * Two cards with two APs claiming different
2060 * Country IE alpha2s. We could
2061 * intersect them, but that seems unlikely
2062 * to be correct. Reject second one for now.
2063 */
2064 if (regdom_changes(country_ie_request->alpha2))
2065 return REG_REQ_IGNORE;
2066 return REG_REQ_ALREADY_SET;
2067 }
2068
2069 if (regdom_changes(country_ie_request->alpha2))
2070 return REG_REQ_OK;
2071 return REG_REQ_ALREADY_SET;
2072 }
2073
2074 /**
2075 * reg_process_hint_country_ie - process regulatory requests from country IEs
2076 * @country_ie_request: a regulatory request from a country IE
2077 *
2078 * The wireless subsystem can use this function to process
2079 * a regulatory request issued by a country Information Element.
2080 *
2081 * Returns one of the different reg request treatment values.
2082 */
2083 static enum reg_request_treatment
2084 reg_process_hint_country_ie(struct wiphy *wiphy,
2085 struct regulatory_request *country_ie_request)
2086 {
2087 enum reg_request_treatment treatment;
2088
2089 treatment = __reg_process_hint_country_ie(wiphy, country_ie_request);
2090
2091 switch (treatment) {
2092 case REG_REQ_OK:
2093 break;
2094 case REG_REQ_IGNORE:
2095 /* fall through */
2096 case REG_REQ_ALREADY_SET:
2097 reg_free_request(country_ie_request);
2098 return treatment;
2099 case REG_REQ_INTERSECT:
2100 reg_free_request(country_ie_request);
2101 /*
2102 * This doesn't happen yet, not sure we
2103 * ever want to support it for this case.
2104 */
2105 WARN_ONCE(1, "Unexpected intersection for country IEs");
2106 return REG_REQ_IGNORE;
2107 }
2108
2109 country_ie_request->intersect = false;
2110 country_ie_request->processed = false;
2111
2112 if (reg_query_database(country_ie_request))
2113 reg_update_last_request(country_ie_request);
2114 else
2115 reg_free_request(country_ie_request);
2116
2117 return REG_REQ_OK;
2118 }
2119
2120 /* This processes *all* regulatory hints */
2121 static void reg_process_hint(struct regulatory_request *reg_request)
2122 {
2123 struct wiphy *wiphy = NULL;
2124 enum reg_request_treatment treatment;
2125
2126 if (reg_request->wiphy_idx != WIPHY_IDX_INVALID)
2127 wiphy = wiphy_idx_to_wiphy(reg_request->wiphy_idx);
2128
2129 switch (reg_request->initiator) {
2130 case NL80211_REGDOM_SET_BY_CORE:
2131 reg_process_hint_core(reg_request);
2132 return;
2133 case NL80211_REGDOM_SET_BY_USER:
2134 reg_process_hint_user(reg_request);
2135 return;
2136 case NL80211_REGDOM_SET_BY_DRIVER:
2137 if (!wiphy)
2138 goto out_free;
2139 treatment = reg_process_hint_driver(wiphy, reg_request);
2140 break;
2141 case NL80211_REGDOM_SET_BY_COUNTRY_IE:
2142 if (!wiphy)
2143 goto out_free;
2144 treatment = reg_process_hint_country_ie(wiphy, reg_request);
2145 break;
2146 default:
2147 WARN(1, "invalid initiator %d\n", reg_request->initiator);
2148 goto out_free;
2149 }
2150
2151 /* This is required so that the orig_* parameters are saved.
2152 * NOTE: treatment must be set for any case that reaches here!
2153 */
2154 if (treatment == REG_REQ_ALREADY_SET && wiphy &&
2155 wiphy->regulatory_flags & REGULATORY_STRICT_REG) {
2156 wiphy_update_regulatory(wiphy, reg_request->initiator);
2157 reg_check_channels();
2158 }
2159
2160 return;
2161
2162 out_free:
2163 reg_free_request(reg_request);
2164 }
2165
2166 static bool reg_only_self_managed_wiphys(void)
2167 {
2168 struct cfg80211_registered_device *rdev;
2169 struct wiphy *wiphy;
2170 bool self_managed_found = false;
2171
2172 ASSERT_RTNL();
2173
2174 list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
2175 wiphy = &rdev->wiphy;
2176 if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED)
2177 self_managed_found = true;
2178 else
2179 return false;
2180 }
2181
2182 /* make sure at least one self-managed wiphy exists */
2183 return self_managed_found;
2184 }
2185
2186 /*
2187 * Processes regulatory hints, this is all the NL80211_REGDOM_SET_BY_*
2188 * Regulatory hints come on a first come first serve basis and we
2189 * must process each one atomically.
2190 */
2191 static void reg_process_pending_hints(void)
2192 {
2193 struct regulatory_request *reg_request, *lr;
2194
2195 lr = get_last_request();
2196
2197 /* When last_request->processed becomes true this will be rescheduled */
2198 if (lr && !lr->processed) {
2199 reg_process_hint(lr);
2200 return;
2201 }
2202
2203 spin_lock(&reg_requests_lock);
2204
2205 if (list_empty(&reg_requests_list)) {
2206 spin_unlock(&reg_requests_lock);
2207 return;
2208 }
2209
2210 reg_request = list_first_entry(&reg_requests_list,
2211 struct regulatory_request,
2212 list);
2213 list_del_init(&reg_request->list);
2214
2215 spin_unlock(&reg_requests_lock);
2216
2217 if (reg_only_self_managed_wiphys()) {
2218 reg_free_request(reg_request);
2219 return;
2220 }
2221
2222 reg_process_hint(reg_request);
2223
2224 lr = get_last_request();
2225
2226 spin_lock(&reg_requests_lock);
2227 if (!list_empty(&reg_requests_list) && lr && lr->processed)
2228 schedule_work(&reg_work);
2229 spin_unlock(&reg_requests_lock);
2230 }
2231
2232 /* Processes beacon hints -- this has nothing to do with country IEs */
2233 static void reg_process_pending_beacon_hints(void)
2234 {
2235 struct cfg80211_registered_device *rdev;
2236 struct reg_beacon *pending_beacon, *tmp;
2237
2238 /* This goes through the _pending_ beacon list */
2239 spin_lock_bh(&reg_pending_beacons_lock);
2240
2241 list_for_each_entry_safe(pending_beacon, tmp,
2242 &reg_pending_beacons, list) {
2243 list_del_init(&pending_beacon->list);
2244
2245 /* Applies the beacon hint to current wiphys */
2246 list_for_each_entry(rdev, &cfg80211_rdev_list, list)
2247 wiphy_update_new_beacon(&rdev->wiphy, pending_beacon);
2248
2249 /* Remembers the beacon hint for new wiphys or reg changes */
2250 list_add_tail(&pending_beacon->list, &reg_beacon_list);
2251 }
2252
2253 spin_unlock_bh(&reg_pending_beacons_lock);
2254 }
2255
2256 static void reg_process_self_managed_hints(void)
2257 {
2258 struct cfg80211_registered_device *rdev;
2259 struct wiphy *wiphy;
2260 const struct ieee80211_regdomain *tmp;
2261 const struct ieee80211_regdomain *regd;
2262 enum ieee80211_band band;
2263 struct regulatory_request request = {};
2264
2265 list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
2266 wiphy = &rdev->wiphy;
2267
2268 spin_lock(&reg_requests_lock);
2269 regd = rdev->requested_regd;
2270 rdev->requested_regd = NULL;
2271 spin_unlock(&reg_requests_lock);
2272
2273 if (regd == NULL)
2274 continue;
2275
2276 tmp = get_wiphy_regdom(wiphy);
2277 rcu_assign_pointer(wiphy->regd, regd);
2278 rcu_free_regdom(tmp);
2279
2280 for (band = 0; band < IEEE80211_NUM_BANDS; band++)
2281 handle_band_custom(wiphy, wiphy->bands[band], regd);
2282
2283 reg_process_ht_flags(wiphy);
2284
2285 request.wiphy_idx = get_wiphy_idx(wiphy);
2286 request.alpha2[0] = regd->alpha2[0];
2287 request.alpha2[1] = regd->alpha2[1];
2288 request.initiator = NL80211_REGDOM_SET_BY_DRIVER;
2289
2290 nl80211_send_wiphy_reg_change_event(&request);
2291 }
2292
2293 reg_check_channels();
2294 }
2295
2296 static void reg_todo(struct work_struct *work)
2297 {
2298 rtnl_lock();
2299 reg_process_pending_hints();
2300 reg_process_pending_beacon_hints();
2301 reg_process_self_managed_hints();
2302 rtnl_unlock();
2303 }
2304
2305 static void queue_regulatory_request(struct regulatory_request *request)
2306 {
2307 request->alpha2[0] = toupper(request->alpha2[0]);
2308 request->alpha2[1] = toupper(request->alpha2[1]);
2309
2310 spin_lock(&reg_requests_lock);
2311 list_add_tail(&request->list, &reg_requests_list);
2312 spin_unlock(&reg_requests_lock);
2313
2314 schedule_work(&reg_work);
2315 }
2316
2317 /*
2318 * Core regulatory hint -- happens during cfg80211_init()
2319 * and when we restore regulatory settings.
2320 */
2321 static int regulatory_hint_core(const char *alpha2)
2322 {
2323 struct regulatory_request *request;
2324
2325 request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
2326 if (!request)
2327 return -ENOMEM;
2328
2329 request->alpha2[0] = alpha2[0];
2330 request->alpha2[1] = alpha2[1];
2331 request->initiator = NL80211_REGDOM_SET_BY_CORE;
2332
2333 queue_regulatory_request(request);
2334
2335 return 0;
2336 }
2337
2338 /* User hints */
2339 int regulatory_hint_user(const char *alpha2,
2340 enum nl80211_user_reg_hint_type user_reg_hint_type)
2341 {
2342 struct regulatory_request *request;
2343
2344 if (WARN_ON(!alpha2))
2345 return -EINVAL;
2346
2347 request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
2348 if (!request)
2349 return -ENOMEM;
2350
2351 request->wiphy_idx = WIPHY_IDX_INVALID;
2352 request->alpha2[0] = alpha2[0];
2353 request->alpha2[1] = alpha2[1];
2354 request->initiator = NL80211_REGDOM_SET_BY_USER;
2355 request->user_reg_hint_type = user_reg_hint_type;
2356
2357 /* Allow calling CRDA again */
2358 reg_crda_timeouts = 0;
2359
2360 queue_regulatory_request(request);
2361
2362 return 0;
2363 }
2364
2365 int regulatory_hint_indoor(bool is_indoor, u32 portid)
2366 {
2367 spin_lock(&reg_indoor_lock);
2368
2369 /* It is possible that more than one user space process is trying to
2370 * configure the indoor setting. To handle such cases, clear the indoor
2371 * setting in case that some process does not think that the device
2372 * is operating in an indoor environment. In addition, if a user space
2373 * process indicates that it is controlling the indoor setting, save its
2374 * portid, i.e., make it the owner.
2375 */
2376 reg_is_indoor = is_indoor;
2377 if (reg_is_indoor) {
2378 if (!reg_is_indoor_portid)
2379 reg_is_indoor_portid = portid;
2380 } else {
2381 reg_is_indoor_portid = 0;
2382 }
2383
2384 spin_unlock(&reg_indoor_lock);
2385
2386 if (!is_indoor)
2387 reg_check_channels();
2388
2389 return 0;
2390 }
2391
2392 void regulatory_netlink_notify(u32 portid)
2393 {
2394 spin_lock(&reg_indoor_lock);
2395
2396 if (reg_is_indoor_portid != portid) {
2397 spin_unlock(&reg_indoor_lock);
2398 return;
2399 }
2400
2401 reg_is_indoor = false;
2402 reg_is_indoor_portid = 0;
2403
2404 spin_unlock(&reg_indoor_lock);
2405
2406 reg_check_channels();
2407 }
2408
2409 /* Driver hints */
2410 int regulatory_hint(struct wiphy *wiphy, const char *alpha2)
2411 {
2412 struct regulatory_request *request;
2413
2414 if (WARN_ON(!alpha2 || !wiphy))
2415 return -EINVAL;
2416
2417 wiphy->regulatory_flags &= ~REGULATORY_CUSTOM_REG;
2418
2419 request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
2420 if (!request)
2421 return -ENOMEM;
2422
2423 request->wiphy_idx = get_wiphy_idx(wiphy);
2424
2425 request->alpha2[0] = alpha2[0];
2426 request->alpha2[1] = alpha2[1];
2427 request->initiator = NL80211_REGDOM_SET_BY_DRIVER;
2428
2429 /* Allow calling CRDA again */
2430 reg_crda_timeouts = 0;
2431
2432 queue_regulatory_request(request);
2433
2434 return 0;
2435 }
2436 EXPORT_SYMBOL(regulatory_hint);
2437
2438 void regulatory_hint_country_ie(struct wiphy *wiphy, enum ieee80211_band band,
2439 const u8 *country_ie, u8 country_ie_len)
2440 {
2441 char alpha2[2];
2442 enum environment_cap env = ENVIRON_ANY;
2443 struct regulatory_request *request = NULL, *lr;
2444
2445 /* IE len must be evenly divisible by 2 */
2446 if (country_ie_len & 0x01)
2447 return;
2448
2449 if (country_ie_len < IEEE80211_COUNTRY_IE_MIN_LEN)
2450 return;
2451
2452 request = kzalloc(sizeof(*request), GFP_KERNEL);
2453 if (!request)
2454 return;
2455
2456 alpha2[0] = country_ie[0];
2457 alpha2[1] = country_ie[1];
2458
2459 if (country_ie[2] == 'I')
2460 env = ENVIRON_INDOOR;
2461 else if (country_ie[2] == 'O')
2462 env = ENVIRON_OUTDOOR;
2463
2464 rcu_read_lock();
2465 lr = get_last_request();
2466
2467 if (unlikely(!lr))
2468 goto out;
2469
2470 /*
2471 * We will run this only upon a successful connection on cfg80211.
2472 * We leave conflict resolution to the workqueue, where can hold
2473 * the RTNL.
2474 */
2475 if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
2476 lr->wiphy_idx != WIPHY_IDX_INVALID)
2477 goto out;
2478
2479 request->wiphy_idx = get_wiphy_idx(wiphy);
2480 request->alpha2[0] = alpha2[0];
2481 request->alpha2[1] = alpha2[1];
2482 request->initiator = NL80211_REGDOM_SET_BY_COUNTRY_IE;
2483 request->country_ie_env = env;
2484
2485 /* Allow calling CRDA again */
2486 reg_crda_timeouts = 0;
2487
2488 queue_regulatory_request(request);
2489 request = NULL;
2490 out:
2491 kfree(request);
2492 rcu_read_unlock();
2493 }
2494
2495 static void restore_alpha2(char *alpha2, bool reset_user)
2496 {
2497 /* indicates there is no alpha2 to consider for restoration */
2498 alpha2[0] = '9';
2499 alpha2[1] = '7';
2500
2501 /* The user setting has precedence over the module parameter */
2502 if (is_user_regdom_saved()) {
2503 /* Unless we're asked to ignore it and reset it */
2504 if (reset_user) {
2505 REG_DBG_PRINT("Restoring regulatory settings including user preference\n");
2506 user_alpha2[0] = '9';
2507 user_alpha2[1] = '7';
2508
2509 /*
2510 * If we're ignoring user settings, we still need to
2511 * check the module parameter to ensure we put things
2512 * back as they were for a full restore.
2513 */
2514 if (!is_world_regdom(ieee80211_regdom)) {
2515 REG_DBG_PRINT("Keeping preference on module parameter ieee80211_regdom: %c%c\n",
2516 ieee80211_regdom[0], ieee80211_regdom[1]);
2517 alpha2[0] = ieee80211_regdom[0];
2518 alpha2[1] = ieee80211_regdom[1];
2519 }
2520 } else {
2521 REG_DBG_PRINT("Restoring regulatory settings while preserving user preference for: %c%c\n",
2522 user_alpha2[0], user_alpha2[1]);
2523 alpha2[0] = user_alpha2[0];
2524 alpha2[1] = user_alpha2[1];
2525 }
2526 } else if (!is_world_regdom(ieee80211_regdom)) {
2527 REG_DBG_PRINT("Keeping preference on module parameter ieee80211_regdom: %c%c\n",
2528 ieee80211_regdom[0], ieee80211_regdom[1]);
2529 alpha2[0] = ieee80211_regdom[0];
2530 alpha2[1] = ieee80211_regdom[1];
2531 } else
2532 REG_DBG_PRINT("Restoring regulatory settings\n");
2533 }
2534
2535 static void restore_custom_reg_settings(struct wiphy *wiphy)
2536 {
2537 struct ieee80211_supported_band *sband;
2538 enum ieee80211_band band;
2539 struct ieee80211_channel *chan;
2540 int i;
2541
2542 for (band = 0; band < IEEE80211_NUM_BANDS; band++) {
2543 sband = wiphy->bands[band];
2544 if (!sband)
2545 continue;
2546 for (i = 0; i < sband->n_channels; i++) {
2547 chan = &sband->channels[i];
2548 chan->flags = chan->orig_flags;
2549 chan->max_antenna_gain = chan->orig_mag;
2550 chan->max_power = chan->orig_mpwr;
2551 chan->beacon_found = false;
2552 }
2553 }
2554 }
2555
2556 /*
2557 * Restoring regulatory settings involves ingoring any
2558 * possibly stale country IE information and user regulatory
2559 * settings if so desired, this includes any beacon hints
2560 * learned as we could have traveled outside to another country
2561 * after disconnection. To restore regulatory settings we do
2562 * exactly what we did at bootup:
2563 *
2564 * - send a core regulatory hint
2565 * - send a user regulatory hint if applicable
2566 *
2567 * Device drivers that send a regulatory hint for a specific country
2568 * keep their own regulatory domain on wiphy->regd so that does does
2569 * not need to be remembered.
2570 */
2571 static void restore_regulatory_settings(bool reset_user)
2572 {
2573 char alpha2[2];
2574 char world_alpha2[2];
2575 struct reg_beacon *reg_beacon, *btmp;
2576 LIST_HEAD(tmp_reg_req_list);
2577 struct cfg80211_registered_device *rdev;
2578
2579 ASSERT_RTNL();
2580
2581 /*
2582 * Clear the indoor setting in case that it is not controlled by user
2583 * space, as otherwise there is no guarantee that the device is still
2584 * operating in an indoor environment.
2585 */
2586 spin_lock(&reg_indoor_lock);
2587 if (reg_is_indoor && !reg_is_indoor_portid) {
2588 reg_is_indoor = false;
2589 reg_check_channels();
2590 }
2591 spin_unlock(&reg_indoor_lock);
2592
2593 reset_regdomains(true, &world_regdom);
2594 restore_alpha2(alpha2, reset_user);
2595
2596 /*
2597 * If there's any pending requests we simply
2598 * stash them to a temporary pending queue and
2599 * add then after we've restored regulatory
2600 * settings.
2601 */
2602 spin_lock(&reg_requests_lock);
2603 list_splice_tail_init(&reg_requests_list, &tmp_reg_req_list);
2604 spin_unlock(&reg_requests_lock);
2605
2606 /* Clear beacon hints */
2607 spin_lock_bh(&reg_pending_beacons_lock);
2608 list_for_each_entry_safe(reg_beacon, btmp, &reg_pending_beacons, list) {
2609 list_del(&reg_beacon->list);
2610 kfree(reg_beacon);
2611 }
2612 spin_unlock_bh(&reg_pending_beacons_lock);
2613
2614 list_for_each_entry_safe(reg_beacon, btmp, &reg_beacon_list, list) {
2615 list_del(&reg_beacon->list);
2616 kfree(reg_beacon);
2617 }
2618
2619 /* First restore to the basic regulatory settings */
2620 world_alpha2[0] = cfg80211_world_regdom->alpha2[0];
2621 world_alpha2[1] = cfg80211_world_regdom->alpha2[1];
2622
2623 list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
2624 if (rdev->wiphy.regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED)
2625 continue;
2626 if (rdev->wiphy.regulatory_flags & REGULATORY_CUSTOM_REG)
2627 restore_custom_reg_settings(&rdev->wiphy);
2628 }
2629
2630 regulatory_hint_core(world_alpha2);
2631
2632 /*
2633 * This restores the ieee80211_regdom module parameter
2634 * preference or the last user requested regulatory
2635 * settings, user regulatory settings takes precedence.
2636 */
2637 if (is_an_alpha2(alpha2))
2638 regulatory_hint_user(alpha2, NL80211_USER_REG_HINT_USER);
2639
2640 spin_lock(&reg_requests_lock);
2641 list_splice_tail_init(&tmp_reg_req_list, &reg_requests_list);
2642 spin_unlock(&reg_requests_lock);
2643
2644 REG_DBG_PRINT("Kicking the queue\n");
2645
2646 schedule_work(&reg_work);
2647 }
2648
2649 void regulatory_hint_disconnect(void)
2650 {
2651 REG_DBG_PRINT("All devices are disconnected, going to restore regulatory settings\n");
2652 restore_regulatory_settings(false);
2653 }
2654
2655 static bool freq_is_chan_12_13_14(u16 freq)
2656 {
2657 if (freq == ieee80211_channel_to_frequency(12, IEEE80211_BAND_2GHZ) ||
2658 freq == ieee80211_channel_to_frequency(13, IEEE80211_BAND_2GHZ) ||
2659 freq == ieee80211_channel_to_frequency(14, IEEE80211_BAND_2GHZ))
2660 return true;
2661 return false;
2662 }
2663
2664 static bool pending_reg_beacon(struct ieee80211_channel *beacon_chan)
2665 {
2666 struct reg_beacon *pending_beacon;
2667
2668 list_for_each_entry(pending_beacon, &reg_pending_beacons, list)
2669 if (beacon_chan->center_freq ==
2670 pending_beacon->chan.center_freq)
2671 return true;
2672 return false;
2673 }
2674
2675 int regulatory_hint_found_beacon(struct wiphy *wiphy,
2676 struct ieee80211_channel *beacon_chan,
2677 gfp_t gfp)
2678 {
2679 struct reg_beacon *reg_beacon;
2680 bool processing;
2681
2682 if (beacon_chan->beacon_found ||
2683 beacon_chan->flags & IEEE80211_CHAN_RADAR ||
2684 (beacon_chan->band == IEEE80211_BAND_2GHZ &&
2685 !freq_is_chan_12_13_14(beacon_chan->center_freq)))
2686 return 0;
2687
2688 spin_lock_bh(&reg_pending_beacons_lock);
2689 processing = pending_reg_beacon(beacon_chan);
2690 spin_unlock_bh(&reg_pending_beacons_lock);
2691
2692 if (processing)
2693 return 0;
2694
2695 reg_beacon = kzalloc(sizeof(struct reg_beacon), gfp);
2696 if (!reg_beacon)
2697 return -ENOMEM;
2698
2699 REG_DBG_PRINT("Found new beacon on frequency: %d MHz (Ch %d) on %s\n",
2700 beacon_chan->center_freq,
2701 ieee80211_frequency_to_channel(beacon_chan->center_freq),
2702 wiphy_name(wiphy));
2703
2704 memcpy(&reg_beacon->chan, beacon_chan,
2705 sizeof(struct ieee80211_channel));
2706
2707 /*
2708 * Since we can be called from BH or and non-BH context
2709 * we must use spin_lock_bh()
2710 */
2711 spin_lock_bh(&reg_pending_beacons_lock);
2712 list_add_tail(&reg_beacon->list, &reg_pending_beacons);
2713 spin_unlock_bh(&reg_pending_beacons_lock);
2714
2715 schedule_work(&reg_work);
2716
2717 return 0;
2718 }
2719
2720 static void print_rd_rules(const struct ieee80211_regdomain *rd)
2721 {
2722 unsigned int i;
2723 const struct ieee80211_reg_rule *reg_rule = NULL;
2724 const struct ieee80211_freq_range *freq_range = NULL;
2725 const struct ieee80211_power_rule *power_rule = NULL;
2726 char bw[32], cac_time[32];
2727
2728 pr_info(" (start_freq - end_freq @ bandwidth), (max_antenna_gain, max_eirp), (dfs_cac_time)\n");
2729
2730 for (i = 0; i < rd->n_reg_rules; i++) {
2731 reg_rule = &rd->reg_rules[i];
2732 freq_range = &reg_rule->freq_range;
2733 power_rule = &reg_rule->power_rule;
2734
2735 if (reg_rule->flags & NL80211_RRF_AUTO_BW)
2736 snprintf(bw, sizeof(bw), "%d KHz, %d KHz AUTO",
2737 freq_range->max_bandwidth_khz,
2738 reg_get_max_bandwidth(rd, reg_rule));
2739 else
2740 snprintf(bw, sizeof(bw), "%d KHz",
2741 freq_range->max_bandwidth_khz);
2742
2743 if (reg_rule->flags & NL80211_RRF_DFS)
2744 scnprintf(cac_time, sizeof(cac_time), "%u s",
2745 reg_rule->dfs_cac_ms/1000);
2746 else
2747 scnprintf(cac_time, sizeof(cac_time), "N/A");
2748
2749
2750 /*
2751 * There may not be documentation for max antenna gain
2752 * in certain regions
2753 */
2754 if (power_rule->max_antenna_gain)
2755 pr_info(" (%d KHz - %d KHz @ %s), (%d mBi, %d mBm), (%s)\n",
2756 freq_range->start_freq_khz,
2757 freq_range->end_freq_khz,
2758 bw,
2759 power_rule->max_antenna_gain,
2760 power_rule->max_eirp,
2761 cac_time);
2762 else
2763 pr_info(" (%d KHz - %d KHz @ %s), (N/A, %d mBm), (%s)\n",
2764 freq_range->start_freq_khz,
2765 freq_range->end_freq_khz,
2766 bw,
2767 power_rule->max_eirp,
2768 cac_time);
2769 }
2770 }
2771
2772 bool reg_supported_dfs_region(enum nl80211_dfs_regions dfs_region)
2773 {
2774 switch (dfs_region) {
2775 case NL80211_DFS_UNSET:
2776 case NL80211_DFS_FCC:
2777 case NL80211_DFS_ETSI:
2778 case NL80211_DFS_JP:
2779 return true;
2780 default:
2781 REG_DBG_PRINT("Ignoring uknown DFS master region: %d\n",
2782 dfs_region);
2783 return false;
2784 }
2785 }
2786
2787 static void print_regdomain(const struct ieee80211_regdomain *rd)
2788 {
2789 struct regulatory_request *lr = get_last_request();
2790
2791 if (is_intersected_alpha2(rd->alpha2)) {
2792 if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE) {
2793 struct cfg80211_registered_device *rdev;
2794 rdev = cfg80211_rdev_by_wiphy_idx(lr->wiphy_idx);
2795 if (rdev) {
2796 pr_info("Current regulatory domain updated by AP to: %c%c\n",
2797 rdev->country_ie_alpha2[0],
2798 rdev->country_ie_alpha2[1]);
2799 } else
2800 pr_info("Current regulatory domain intersected:\n");
2801 } else
2802 pr_info("Current regulatory domain intersected:\n");
2803 } else if (is_world_regdom(rd->alpha2)) {
2804 pr_info("World regulatory domain updated:\n");
2805 } else {
2806 if (is_unknown_alpha2(rd->alpha2))
2807 pr_info("Regulatory domain changed to driver built-in settings (unknown country)\n");
2808 else {
2809 if (reg_request_cell_base(lr))
2810 pr_info("Regulatory domain changed to country: %c%c by Cell Station\n",
2811 rd->alpha2[0], rd->alpha2[1]);
2812 else
2813 pr_info("Regulatory domain changed to country: %c%c\n",
2814 rd->alpha2[0], rd->alpha2[1]);
2815 }
2816 }
2817
2818 pr_info(" DFS Master region: %s", reg_dfs_region_str(rd->dfs_region));
2819 print_rd_rules(rd);
2820 }
2821
2822 static void print_regdomain_info(const struct ieee80211_regdomain *rd)
2823 {
2824 pr_info("Regulatory domain: %c%c\n", rd->alpha2[0], rd->alpha2[1]);
2825 print_rd_rules(rd);
2826 }
2827
2828 static int reg_set_rd_core(const struct ieee80211_regdomain *rd)
2829 {
2830 if (!is_world_regdom(rd->alpha2))
2831 return -EINVAL;
2832 update_world_regdomain(rd);
2833 return 0;
2834 }
2835
2836 static int reg_set_rd_user(const struct ieee80211_regdomain *rd,
2837 struct regulatory_request *user_request)
2838 {
2839 const struct ieee80211_regdomain *intersected_rd = NULL;
2840
2841 if (!regdom_changes(rd->alpha2))
2842 return -EALREADY;
2843
2844 if (!is_valid_rd(rd)) {
2845 pr_err("Invalid regulatory domain detected:\n");
2846 print_regdomain_info(rd);
2847 return -EINVAL;
2848 }
2849
2850 if (!user_request->intersect) {
2851 reset_regdomains(false, rd);
2852 return 0;
2853 }
2854
2855 intersected_rd = regdom_intersect(rd, get_cfg80211_regdom());
2856 if (!intersected_rd)
2857 return -EINVAL;
2858
2859 kfree(rd);
2860 rd = NULL;
2861 reset_regdomains(false, intersected_rd);
2862
2863 return 0;
2864 }
2865
2866 static int reg_set_rd_driver(const struct ieee80211_regdomain *rd,
2867 struct regulatory_request *driver_request)
2868 {
2869 const struct ieee80211_regdomain *regd;
2870 const struct ieee80211_regdomain *intersected_rd = NULL;
2871 const struct ieee80211_regdomain *tmp;
2872 struct wiphy *request_wiphy;
2873
2874 if (is_world_regdom(rd->alpha2))
2875 return -EINVAL;
2876
2877 if (!regdom_changes(rd->alpha2))
2878 return -EALREADY;
2879
2880 if (!is_valid_rd(rd)) {
2881 pr_err("Invalid regulatory domain detected:\n");
2882 print_regdomain_info(rd);
2883 return -EINVAL;
2884 }
2885
2886 request_wiphy = wiphy_idx_to_wiphy(driver_request->wiphy_idx);
2887 if (!request_wiphy) {
2888 queue_delayed_work(system_power_efficient_wq,
2889 &reg_timeout, 0);
2890 return -ENODEV;
2891 }
2892
2893 if (!driver_request->intersect) {
2894 if (request_wiphy->regd)
2895 return -EALREADY;
2896
2897 regd = reg_copy_regd(rd);
2898 if (IS_ERR(regd))
2899 return PTR_ERR(regd);
2900
2901 rcu_assign_pointer(request_wiphy->regd, regd);
2902 reset_regdomains(false, rd);
2903 return 0;
2904 }
2905
2906 intersected_rd = regdom_intersect(rd, get_cfg80211_regdom());
2907 if (!intersected_rd)
2908 return -EINVAL;
2909
2910 /*
2911 * We can trash what CRDA provided now.
2912 * However if a driver requested this specific regulatory
2913 * domain we keep it for its private use
2914 */
2915 tmp = get_wiphy_regdom(request_wiphy);
2916 rcu_assign_pointer(request_wiphy->regd, rd);
2917 rcu_free_regdom(tmp);
2918
2919 rd = NULL;
2920
2921 reset_regdomains(false, intersected_rd);
2922
2923 return 0;
2924 }
2925
2926 static int reg_set_rd_country_ie(const struct ieee80211_regdomain *rd,
2927 struct regulatory_request *country_ie_request)
2928 {
2929 struct wiphy *request_wiphy;
2930
2931 if (!is_alpha2_set(rd->alpha2) && !is_an_alpha2(rd->alpha2) &&
2932 !is_unknown_alpha2(rd->alpha2))
2933 return -EINVAL;
2934
2935 /*
2936 * Lets only bother proceeding on the same alpha2 if the current
2937 * rd is non static (it means CRDA was present and was used last)
2938 * and the pending request came in from a country IE
2939 */
2940
2941 if (!is_valid_rd(rd)) {
2942 pr_err("Invalid regulatory domain detected:\n");
2943 print_regdomain_info(rd);
2944 return -EINVAL;
2945 }
2946
2947 request_wiphy = wiphy_idx_to_wiphy(country_ie_request->wiphy_idx);
2948 if (!request_wiphy) {
2949 queue_delayed_work(system_power_efficient_wq,
2950 &reg_timeout, 0);
2951 return -ENODEV;
2952 }
2953
2954 if (country_ie_request->intersect)
2955 return -EINVAL;
2956
2957 reset_regdomains(false, rd);
2958 return 0;
2959 }
2960
2961 /*
2962 * Use this call to set the current regulatory domain. Conflicts with
2963 * multiple drivers can be ironed out later. Caller must've already
2964 * kmalloc'd the rd structure.
2965 */
2966 int set_regdom(const struct ieee80211_regdomain *rd,
2967 enum ieee80211_regd_source regd_src)
2968 {
2969 struct regulatory_request *lr;
2970 bool user_reset = false;
2971 int r;
2972
2973 if (!reg_is_valid_request(rd->alpha2)) {
2974 kfree(rd);
2975 return -EINVAL;
2976 }
2977
2978 if (regd_src == REGD_SOURCE_CRDA)
2979 reg_crda_timeouts = 0;
2980
2981 lr = get_last_request();
2982
2983 /* Note that this doesn't update the wiphys, this is done below */
2984 switch (lr->initiator) {
2985 case NL80211_REGDOM_SET_BY_CORE:
2986 r = reg_set_rd_core(rd);
2987 break;
2988 case NL80211_REGDOM_SET_BY_USER:
2989 r = reg_set_rd_user(rd, lr);
2990 user_reset = true;
2991 break;
2992 case NL80211_REGDOM_SET_BY_DRIVER:
2993 r = reg_set_rd_driver(rd, lr);
2994 break;
2995 case NL80211_REGDOM_SET_BY_COUNTRY_IE:
2996 r = reg_set_rd_country_ie(rd, lr);
2997 break;
2998 default:
2999 WARN(1, "invalid initiator %d\n", lr->initiator);
3000 return -EINVAL;
3001 }
3002
3003 if (r) {
3004 switch (r) {
3005 case -EALREADY:
3006 reg_set_request_processed();
3007 break;
3008 default:
3009 /* Back to world regulatory in case of errors */
3010 restore_regulatory_settings(user_reset);
3011 }
3012
3013 kfree(rd);
3014 return r;
3015 }
3016
3017 /* This would make this whole thing pointless */
3018 if (WARN_ON(!lr->intersect && rd != get_cfg80211_regdom()))
3019 return -EINVAL;
3020
3021 /* update all wiphys now with the new established regulatory domain */
3022 update_all_wiphy_regulatory(lr->initiator);
3023
3024 print_regdomain(get_cfg80211_regdom());
3025
3026 nl80211_send_reg_change_event(lr);
3027
3028 reg_set_request_processed();
3029
3030 return 0;
3031 }
3032
3033 static int __regulatory_set_wiphy_regd(struct wiphy *wiphy,
3034 struct ieee80211_regdomain *rd)
3035 {
3036 const struct ieee80211_regdomain *regd;
3037 const struct ieee80211_regdomain *prev_regd;
3038 struct cfg80211_registered_device *rdev;
3039
3040 if (WARN_ON(!wiphy || !rd))
3041 return -EINVAL;
3042
3043 if (WARN(!(wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED),
3044 "wiphy should have REGULATORY_WIPHY_SELF_MANAGED\n"))
3045 return -EPERM;
3046
3047 if (WARN(!is_valid_rd(rd), "Invalid regulatory domain detected\n")) {
3048 print_regdomain_info(rd);
3049 return -EINVAL;
3050 }
3051
3052 regd = reg_copy_regd(rd);
3053 if (IS_ERR(regd))
3054 return PTR_ERR(regd);
3055
3056 rdev = wiphy_to_rdev(wiphy);
3057
3058 spin_lock(&reg_requests_lock);
3059 prev_regd = rdev->requested_regd;
3060 rdev->requested_regd = regd;
3061 spin_unlock(&reg_requests_lock);
3062
3063 kfree(prev_regd);
3064 return 0;
3065 }
3066
3067 int regulatory_set_wiphy_regd(struct wiphy *wiphy,
3068 struct ieee80211_regdomain *rd)
3069 {
3070 int ret = __regulatory_set_wiphy_regd(wiphy, rd);
3071
3072 if (ret)
3073 return ret;
3074
3075 schedule_work(&reg_work);
3076 return 0;
3077 }
3078 EXPORT_SYMBOL(regulatory_set_wiphy_regd);
3079
3080 int regulatory_set_wiphy_regd_sync_rtnl(struct wiphy *wiphy,
3081 struct ieee80211_regdomain *rd)
3082 {
3083 int ret;
3084
3085 ASSERT_RTNL();
3086
3087 ret = __regulatory_set_wiphy_regd(wiphy, rd);
3088 if (ret)
3089 return ret;
3090
3091 /* process the request immediately */
3092 reg_process_self_managed_hints();
3093 return 0;
3094 }
3095 EXPORT_SYMBOL(regulatory_set_wiphy_regd_sync_rtnl);
3096
3097 void wiphy_regulatory_register(struct wiphy *wiphy)
3098 {
3099 struct regulatory_request *lr;
3100
3101 /* self-managed devices ignore external hints */
3102 if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED)
3103 wiphy->regulatory_flags |= REGULATORY_DISABLE_BEACON_HINTS |
3104 REGULATORY_COUNTRY_IE_IGNORE;
3105
3106 if (!reg_dev_ignore_cell_hint(wiphy))
3107 reg_num_devs_support_basehint++;
3108
3109 lr = get_last_request();
3110 wiphy_update_regulatory(wiphy, lr->initiator);
3111 }
3112
3113 void wiphy_regulatory_deregister(struct wiphy *wiphy)
3114 {
3115 struct wiphy *request_wiphy = NULL;
3116 struct regulatory_request *lr;
3117
3118 lr = get_last_request();
3119
3120 if (!reg_dev_ignore_cell_hint(wiphy))
3121 reg_num_devs_support_basehint--;
3122
3123 rcu_free_regdom(get_wiphy_regdom(wiphy));
3124 RCU_INIT_POINTER(wiphy->regd, NULL);
3125
3126 if (lr)
3127 request_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx);
3128
3129 if (!request_wiphy || request_wiphy != wiphy)
3130 return;
3131
3132 lr->wiphy_idx = WIPHY_IDX_INVALID;
3133 lr->country_ie_env = ENVIRON_ANY;
3134 }
3135
3136 static void reg_timeout_work(struct work_struct *work)
3137 {
3138 REG_DBG_PRINT("Timeout while waiting for CRDA to reply, restoring regulatory settings\n");
3139 rtnl_lock();
3140 reg_crda_timeouts++;
3141 restore_regulatory_settings(true);
3142 rtnl_unlock();
3143 }
3144
3145 /*
3146 * See http://www.fcc.gov/document/5-ghz-unlicensed-spectrum-unii, for
3147 * UNII band definitions
3148 */
3149 int cfg80211_get_unii(int freq)
3150 {
3151 /* UNII-1 */
3152 if (freq >= 5150 && freq <= 5250)
3153 return 0;
3154
3155 /* UNII-2A */
3156 if (freq > 5250 && freq <= 5350)
3157 return 1;
3158
3159 /* UNII-2B */
3160 if (freq > 5350 && freq <= 5470)
3161 return 2;
3162
3163 /* UNII-2C */
3164 if (freq > 5470 && freq <= 5725)
3165 return 3;
3166
3167 /* UNII-3 */
3168 if (freq > 5725 && freq <= 5825)
3169 return 4;
3170
3171 return -EINVAL;
3172 }
3173
3174 bool regulatory_indoor_allowed(void)
3175 {
3176 return reg_is_indoor;
3177 }
3178
3179 int __init regulatory_init(void)
3180 {
3181 int err = 0;
3182
3183 reg_pdev = platform_device_register_simple("regulatory", 0, NULL, 0);
3184 if (IS_ERR(reg_pdev))
3185 return PTR_ERR(reg_pdev);
3186
3187 spin_lock_init(&reg_requests_lock);
3188 spin_lock_init(&reg_pending_beacons_lock);
3189 spin_lock_init(&reg_indoor_lock);
3190
3191 reg_regdb_size_check();
3192
3193 rcu_assign_pointer(cfg80211_regdomain, cfg80211_world_regdom);
3194
3195 user_alpha2[0] = '9';
3196 user_alpha2[1] = '7';
3197
3198 /* We always try to get an update for the static regdomain */
3199 err = regulatory_hint_core(cfg80211_world_regdom->alpha2);
3200 if (err) {
3201 if (err == -ENOMEM)
3202 return err;
3203 /*
3204 * N.B. kobject_uevent_env() can fail mainly for when we're out
3205 * memory which is handled and propagated appropriately above
3206 * but it can also fail during a netlink_broadcast() or during
3207 * early boot for call_usermodehelper(). For now treat these
3208 * errors as non-fatal.
3209 */
3210 pr_err("kobject_uevent_env() was unable to call CRDA during init\n");
3211 }
3212
3213 /*
3214 * Finally, if the user set the module parameter treat it
3215 * as a user hint.
3216 */
3217 if (!is_world_regdom(ieee80211_regdom))
3218 regulatory_hint_user(ieee80211_regdom,
3219 NL80211_USER_REG_HINT_USER);
3220
3221 return 0;
3222 }
3223
3224 void regulatory_exit(void)
3225 {
3226 struct regulatory_request *reg_request, *tmp;
3227 struct reg_beacon *reg_beacon, *btmp;
3228
3229 cancel_work_sync(&reg_work);
3230 cancel_delayed_work_sync(&reg_timeout);
3231 cancel_delayed_work_sync(&reg_check_chans);
3232
3233 /* Lock to suppress warnings */
3234 rtnl_lock();
3235 reset_regdomains(true, NULL);
3236 rtnl_unlock();
3237
3238 dev_set_uevent_suppress(&reg_pdev->dev, true);
3239
3240 platform_device_unregister(reg_pdev);
3241
3242 list_for_each_entry_safe(reg_beacon, btmp, &reg_pending_beacons, list) {
3243 list_del(&reg_beacon->list);
3244 kfree(reg_beacon);
3245 }
3246
3247 list_for_each_entry_safe(reg_beacon, btmp, &reg_beacon_list, list) {
3248 list_del(&reg_beacon->list);
3249 kfree(reg_beacon);
3250 }
3251
3252 list_for_each_entry_safe(reg_request, tmp, &reg_requests_list, list) {
3253 list_del(&reg_request->list);
3254 kfree(reg_request);
3255 }
3256 }