]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - net/wireless/reg.c
Merge branch 'master' of git://git.kernel.org/pub/scm/linux/kernel/git/linville/wirel...
[mirror_ubuntu-bionic-kernel.git] / net / wireless / reg.c
1 /*
2 * Copyright 2002-2005, Instant802 Networks, Inc.
3 * Copyright 2005-2006, Devicescape Software, Inc.
4 * Copyright 2007 Johannes Berg <johannes@sipsolutions.net>
5 * Copyright 2008 Luis R. Rodriguez <lrodriguz@atheros.com>
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 */
11
12 /**
13 * DOC: Wireless regulatory infrastructure
14 *
15 * The usual implementation is for a driver to read a device EEPROM to
16 * determine which regulatory domain it should be operating under, then
17 * looking up the allowable channels in a driver-local table and finally
18 * registering those channels in the wiphy structure.
19 *
20 * Another set of compliance enforcement is for drivers to use their
21 * own compliance limits which can be stored on the EEPROM. The host
22 * driver or firmware may ensure these are used.
23 *
24 * In addition to all this we provide an extra layer of regulatory
25 * conformance. For drivers which do not have any regulatory
26 * information CRDA provides the complete regulatory solution.
27 * For others it provides a community effort on further restrictions
28 * to enhance compliance.
29 *
30 * Note: When number of rules --> infinity we will not be able to
31 * index on alpha2 any more, instead we'll probably have to
32 * rely on some SHA1 checksum of the regdomain for example.
33 *
34 */
35 #include <linux/kernel.h>
36 #include <linux/slab.h>
37 #include <linux/list.h>
38 #include <linux/random.h>
39 #include <linux/ctype.h>
40 #include <linux/nl80211.h>
41 #include <linux/platform_device.h>
42 #include <net/cfg80211.h>
43 #include "core.h"
44 #include "reg.h"
45 #include "regdb.h"
46 #include "nl80211.h"
47
48 #ifdef CONFIG_CFG80211_REG_DEBUG
49 #define REG_DBG_PRINT(format, args...) \
50 do { \
51 printk(KERN_DEBUG "cfg80211: " format , ## args); \
52 } while (0)
53 #else
54 #define REG_DBG_PRINT(args...)
55 #endif
56
57 /* Receipt of information from last regulatory request */
58 static struct regulatory_request *last_request;
59
60 /* To trigger userspace events */
61 static struct platform_device *reg_pdev;
62
63 /*
64 * Central wireless core regulatory domains, we only need two,
65 * the current one and a world regulatory domain in case we have no
66 * information to give us an alpha2
67 */
68 const struct ieee80211_regdomain *cfg80211_regdomain;
69
70 /*
71 * Protects static reg.c components:
72 * - cfg80211_world_regdom
73 * - cfg80211_regdom
74 * - last_request
75 */
76 static DEFINE_MUTEX(reg_mutex);
77
78 static inline void assert_reg_lock(void)
79 {
80 lockdep_assert_held(&reg_mutex);
81 }
82
83 /* Used to queue up regulatory hints */
84 static LIST_HEAD(reg_requests_list);
85 static spinlock_t reg_requests_lock;
86
87 /* Used to queue up beacon hints for review */
88 static LIST_HEAD(reg_pending_beacons);
89 static spinlock_t reg_pending_beacons_lock;
90
91 /* Used to keep track of processed beacon hints */
92 static LIST_HEAD(reg_beacon_list);
93
94 struct reg_beacon {
95 struct list_head list;
96 struct ieee80211_channel chan;
97 };
98
99 static void reg_todo(struct work_struct *work);
100 static DECLARE_WORK(reg_work, reg_todo);
101
102 /* We keep a static world regulatory domain in case of the absence of CRDA */
103 static const struct ieee80211_regdomain world_regdom = {
104 .n_reg_rules = 5,
105 .alpha2 = "00",
106 .reg_rules = {
107 /* IEEE 802.11b/g, channels 1..11 */
108 REG_RULE(2412-10, 2462+10, 40, 6, 20, 0),
109 /* IEEE 802.11b/g, channels 12..13. No HT40
110 * channel fits here. */
111 REG_RULE(2467-10, 2472+10, 20, 6, 20,
112 NL80211_RRF_PASSIVE_SCAN |
113 NL80211_RRF_NO_IBSS),
114 /* IEEE 802.11 channel 14 - Only JP enables
115 * this and for 802.11b only */
116 REG_RULE(2484-10, 2484+10, 20, 6, 20,
117 NL80211_RRF_PASSIVE_SCAN |
118 NL80211_RRF_NO_IBSS |
119 NL80211_RRF_NO_OFDM),
120 /* IEEE 802.11a, channel 36..48 */
121 REG_RULE(5180-10, 5240+10, 40, 6, 20,
122 NL80211_RRF_PASSIVE_SCAN |
123 NL80211_RRF_NO_IBSS),
124
125 /* NB: 5260 MHz - 5700 MHz requies DFS */
126
127 /* IEEE 802.11a, channel 149..165 */
128 REG_RULE(5745-10, 5825+10, 40, 6, 20,
129 NL80211_RRF_PASSIVE_SCAN |
130 NL80211_RRF_NO_IBSS),
131 }
132 };
133
134 static const struct ieee80211_regdomain *cfg80211_world_regdom =
135 &world_regdom;
136
137 static char *ieee80211_regdom = "00";
138 static char user_alpha2[2];
139
140 module_param(ieee80211_regdom, charp, 0444);
141 MODULE_PARM_DESC(ieee80211_regdom, "IEEE 802.11 regulatory domain code");
142
143 static void reset_regdomains(void)
144 {
145 /* avoid freeing static information or freeing something twice */
146 if (cfg80211_regdomain == cfg80211_world_regdom)
147 cfg80211_regdomain = NULL;
148 if (cfg80211_world_regdom == &world_regdom)
149 cfg80211_world_regdom = NULL;
150 if (cfg80211_regdomain == &world_regdom)
151 cfg80211_regdomain = NULL;
152
153 kfree(cfg80211_regdomain);
154 kfree(cfg80211_world_regdom);
155
156 cfg80211_world_regdom = &world_regdom;
157 cfg80211_regdomain = NULL;
158 }
159
160 /*
161 * Dynamic world regulatory domain requested by the wireless
162 * core upon initialization
163 */
164 static void update_world_regdomain(const struct ieee80211_regdomain *rd)
165 {
166 BUG_ON(!last_request);
167
168 reset_regdomains();
169
170 cfg80211_world_regdom = rd;
171 cfg80211_regdomain = rd;
172 }
173
174 bool is_world_regdom(const char *alpha2)
175 {
176 if (!alpha2)
177 return false;
178 if (alpha2[0] == '0' && alpha2[1] == '0')
179 return true;
180 return false;
181 }
182
183 static bool is_alpha2_set(const char *alpha2)
184 {
185 if (!alpha2)
186 return false;
187 if (alpha2[0] != 0 && alpha2[1] != 0)
188 return true;
189 return false;
190 }
191
192 static bool is_unknown_alpha2(const char *alpha2)
193 {
194 if (!alpha2)
195 return false;
196 /*
197 * Special case where regulatory domain was built by driver
198 * but a specific alpha2 cannot be determined
199 */
200 if (alpha2[0] == '9' && alpha2[1] == '9')
201 return true;
202 return false;
203 }
204
205 static bool is_intersected_alpha2(const char *alpha2)
206 {
207 if (!alpha2)
208 return false;
209 /*
210 * Special case where regulatory domain is the
211 * result of an intersection between two regulatory domain
212 * structures
213 */
214 if (alpha2[0] == '9' && alpha2[1] == '8')
215 return true;
216 return false;
217 }
218
219 static bool is_an_alpha2(const char *alpha2)
220 {
221 if (!alpha2)
222 return false;
223 if (isalpha(alpha2[0]) && isalpha(alpha2[1]))
224 return true;
225 return false;
226 }
227
228 static bool alpha2_equal(const char *alpha2_x, const char *alpha2_y)
229 {
230 if (!alpha2_x || !alpha2_y)
231 return false;
232 if (alpha2_x[0] == alpha2_y[0] &&
233 alpha2_x[1] == alpha2_y[1])
234 return true;
235 return false;
236 }
237
238 static bool regdom_changes(const char *alpha2)
239 {
240 assert_cfg80211_lock();
241
242 if (!cfg80211_regdomain)
243 return true;
244 if (alpha2_equal(cfg80211_regdomain->alpha2, alpha2))
245 return false;
246 return true;
247 }
248
249 /*
250 * The NL80211_REGDOM_SET_BY_USER regdom alpha2 is cached, this lets
251 * you know if a valid regulatory hint with NL80211_REGDOM_SET_BY_USER
252 * has ever been issued.
253 */
254 static bool is_user_regdom_saved(void)
255 {
256 if (user_alpha2[0] == '9' && user_alpha2[1] == '7')
257 return false;
258
259 /* This would indicate a mistake on the design */
260 if (WARN((!is_world_regdom(user_alpha2) &&
261 !is_an_alpha2(user_alpha2)),
262 "Unexpected user alpha2: %c%c\n",
263 user_alpha2[0],
264 user_alpha2[1]))
265 return false;
266
267 return true;
268 }
269
270 static int reg_copy_regd(const struct ieee80211_regdomain **dst_regd,
271 const struct ieee80211_regdomain *src_regd)
272 {
273 struct ieee80211_regdomain *regd;
274 int size_of_regd = 0;
275 unsigned int i;
276
277 size_of_regd = sizeof(struct ieee80211_regdomain) +
278 ((src_regd->n_reg_rules + 1) * sizeof(struct ieee80211_reg_rule));
279
280 regd = kzalloc(size_of_regd, GFP_KERNEL);
281 if (!regd)
282 return -ENOMEM;
283
284 memcpy(regd, src_regd, sizeof(struct ieee80211_regdomain));
285
286 for (i = 0; i < src_regd->n_reg_rules; i++)
287 memcpy(&regd->reg_rules[i], &src_regd->reg_rules[i],
288 sizeof(struct ieee80211_reg_rule));
289
290 *dst_regd = regd;
291 return 0;
292 }
293
294 #ifdef CONFIG_CFG80211_INTERNAL_REGDB
295 struct reg_regdb_search_request {
296 char alpha2[2];
297 struct list_head list;
298 };
299
300 static LIST_HEAD(reg_regdb_search_list);
301 static DEFINE_MUTEX(reg_regdb_search_mutex);
302
303 static void reg_regdb_search(struct work_struct *work)
304 {
305 struct reg_regdb_search_request *request;
306 const struct ieee80211_regdomain *curdom, *regdom;
307 int i, r;
308
309 mutex_lock(&reg_regdb_search_mutex);
310 while (!list_empty(&reg_regdb_search_list)) {
311 request = list_first_entry(&reg_regdb_search_list,
312 struct reg_regdb_search_request,
313 list);
314 list_del(&request->list);
315
316 for (i=0; i<reg_regdb_size; i++) {
317 curdom = reg_regdb[i];
318
319 if (!memcmp(request->alpha2, curdom->alpha2, 2)) {
320 r = reg_copy_regd(&regdom, curdom);
321 if (r)
322 break;
323 mutex_lock(&cfg80211_mutex);
324 set_regdom(regdom);
325 mutex_unlock(&cfg80211_mutex);
326 break;
327 }
328 }
329
330 kfree(request);
331 }
332 mutex_unlock(&reg_regdb_search_mutex);
333 }
334
335 static DECLARE_WORK(reg_regdb_work, reg_regdb_search);
336
337 static void reg_regdb_query(const char *alpha2)
338 {
339 struct reg_regdb_search_request *request;
340
341 if (!alpha2)
342 return;
343
344 request = kzalloc(sizeof(struct reg_regdb_search_request), GFP_KERNEL);
345 if (!request)
346 return;
347
348 memcpy(request->alpha2, alpha2, 2);
349
350 mutex_lock(&reg_regdb_search_mutex);
351 list_add_tail(&request->list, &reg_regdb_search_list);
352 mutex_unlock(&reg_regdb_search_mutex);
353
354 schedule_work(&reg_regdb_work);
355 }
356 #else
357 static inline void reg_regdb_query(const char *alpha2) {}
358 #endif /* CONFIG_CFG80211_INTERNAL_REGDB */
359
360 /*
361 * This lets us keep regulatory code which is updated on a regulatory
362 * basis in userspace.
363 */
364 static int call_crda(const char *alpha2)
365 {
366 char country_env[9 + 2] = "COUNTRY=";
367 char *envp[] = {
368 country_env,
369 NULL
370 };
371
372 if (!is_world_regdom((char *) alpha2))
373 printk(KERN_INFO "cfg80211: Calling CRDA for country: %c%c\n",
374 alpha2[0], alpha2[1]);
375 else
376 printk(KERN_INFO "cfg80211: Calling CRDA to update world "
377 "regulatory domain\n");
378
379 /* query internal regulatory database (if it exists) */
380 reg_regdb_query(alpha2);
381
382 country_env[8] = alpha2[0];
383 country_env[9] = alpha2[1];
384
385 return kobject_uevent_env(&reg_pdev->dev.kobj, KOBJ_CHANGE, envp);
386 }
387
388 /* Used by nl80211 before kmalloc'ing our regulatory domain */
389 bool reg_is_valid_request(const char *alpha2)
390 {
391 assert_cfg80211_lock();
392
393 if (!last_request)
394 return false;
395
396 return alpha2_equal(last_request->alpha2, alpha2);
397 }
398
399 /* Sanity check on a regulatory rule */
400 static bool is_valid_reg_rule(const struct ieee80211_reg_rule *rule)
401 {
402 const struct ieee80211_freq_range *freq_range = &rule->freq_range;
403 u32 freq_diff;
404
405 if (freq_range->start_freq_khz <= 0 || freq_range->end_freq_khz <= 0)
406 return false;
407
408 if (freq_range->start_freq_khz > freq_range->end_freq_khz)
409 return false;
410
411 freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
412
413 if (freq_range->end_freq_khz <= freq_range->start_freq_khz ||
414 freq_range->max_bandwidth_khz > freq_diff)
415 return false;
416
417 return true;
418 }
419
420 static bool is_valid_rd(const struct ieee80211_regdomain *rd)
421 {
422 const struct ieee80211_reg_rule *reg_rule = NULL;
423 unsigned int i;
424
425 if (!rd->n_reg_rules)
426 return false;
427
428 if (WARN_ON(rd->n_reg_rules > NL80211_MAX_SUPP_REG_RULES))
429 return false;
430
431 for (i = 0; i < rd->n_reg_rules; i++) {
432 reg_rule = &rd->reg_rules[i];
433 if (!is_valid_reg_rule(reg_rule))
434 return false;
435 }
436
437 return true;
438 }
439
440 static bool reg_does_bw_fit(const struct ieee80211_freq_range *freq_range,
441 u32 center_freq_khz,
442 u32 bw_khz)
443 {
444 u32 start_freq_khz, end_freq_khz;
445
446 start_freq_khz = center_freq_khz - (bw_khz/2);
447 end_freq_khz = center_freq_khz + (bw_khz/2);
448
449 if (start_freq_khz >= freq_range->start_freq_khz &&
450 end_freq_khz <= freq_range->end_freq_khz)
451 return true;
452
453 return false;
454 }
455
456 /**
457 * freq_in_rule_band - tells us if a frequency is in a frequency band
458 * @freq_range: frequency rule we want to query
459 * @freq_khz: frequency we are inquiring about
460 *
461 * This lets us know if a specific frequency rule is or is not relevant to
462 * a specific frequency's band. Bands are device specific and artificial
463 * definitions (the "2.4 GHz band" and the "5 GHz band"), however it is
464 * safe for now to assume that a frequency rule should not be part of a
465 * frequency's band if the start freq or end freq are off by more than 2 GHz.
466 * This resolution can be lowered and should be considered as we add
467 * regulatory rule support for other "bands".
468 **/
469 static bool freq_in_rule_band(const struct ieee80211_freq_range *freq_range,
470 u32 freq_khz)
471 {
472 #define ONE_GHZ_IN_KHZ 1000000
473 if (abs(freq_khz - freq_range->start_freq_khz) <= (2 * ONE_GHZ_IN_KHZ))
474 return true;
475 if (abs(freq_khz - freq_range->end_freq_khz) <= (2 * ONE_GHZ_IN_KHZ))
476 return true;
477 return false;
478 #undef ONE_GHZ_IN_KHZ
479 }
480
481 /*
482 * Helper for regdom_intersect(), this does the real
483 * mathematical intersection fun
484 */
485 static int reg_rules_intersect(
486 const struct ieee80211_reg_rule *rule1,
487 const struct ieee80211_reg_rule *rule2,
488 struct ieee80211_reg_rule *intersected_rule)
489 {
490 const struct ieee80211_freq_range *freq_range1, *freq_range2;
491 struct ieee80211_freq_range *freq_range;
492 const struct ieee80211_power_rule *power_rule1, *power_rule2;
493 struct ieee80211_power_rule *power_rule;
494 u32 freq_diff;
495
496 freq_range1 = &rule1->freq_range;
497 freq_range2 = &rule2->freq_range;
498 freq_range = &intersected_rule->freq_range;
499
500 power_rule1 = &rule1->power_rule;
501 power_rule2 = &rule2->power_rule;
502 power_rule = &intersected_rule->power_rule;
503
504 freq_range->start_freq_khz = max(freq_range1->start_freq_khz,
505 freq_range2->start_freq_khz);
506 freq_range->end_freq_khz = min(freq_range1->end_freq_khz,
507 freq_range2->end_freq_khz);
508 freq_range->max_bandwidth_khz = min(freq_range1->max_bandwidth_khz,
509 freq_range2->max_bandwidth_khz);
510
511 freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
512 if (freq_range->max_bandwidth_khz > freq_diff)
513 freq_range->max_bandwidth_khz = freq_diff;
514
515 power_rule->max_eirp = min(power_rule1->max_eirp,
516 power_rule2->max_eirp);
517 power_rule->max_antenna_gain = min(power_rule1->max_antenna_gain,
518 power_rule2->max_antenna_gain);
519
520 intersected_rule->flags = (rule1->flags | rule2->flags);
521
522 if (!is_valid_reg_rule(intersected_rule))
523 return -EINVAL;
524
525 return 0;
526 }
527
528 /**
529 * regdom_intersect - do the intersection between two regulatory domains
530 * @rd1: first regulatory domain
531 * @rd2: second regulatory domain
532 *
533 * Use this function to get the intersection between two regulatory domains.
534 * Once completed we will mark the alpha2 for the rd as intersected, "98",
535 * as no one single alpha2 can represent this regulatory domain.
536 *
537 * Returns a pointer to the regulatory domain structure which will hold the
538 * resulting intersection of rules between rd1 and rd2. We will
539 * kzalloc() this structure for you.
540 */
541 static struct ieee80211_regdomain *regdom_intersect(
542 const struct ieee80211_regdomain *rd1,
543 const struct ieee80211_regdomain *rd2)
544 {
545 int r, size_of_regd;
546 unsigned int x, y;
547 unsigned int num_rules = 0, rule_idx = 0;
548 const struct ieee80211_reg_rule *rule1, *rule2;
549 struct ieee80211_reg_rule *intersected_rule;
550 struct ieee80211_regdomain *rd;
551 /* This is just a dummy holder to help us count */
552 struct ieee80211_reg_rule irule;
553
554 /* Uses the stack temporarily for counter arithmetic */
555 intersected_rule = &irule;
556
557 memset(intersected_rule, 0, sizeof(struct ieee80211_reg_rule));
558
559 if (!rd1 || !rd2)
560 return NULL;
561
562 /*
563 * First we get a count of the rules we'll need, then we actually
564 * build them. This is to so we can malloc() and free() a
565 * regdomain once. The reason we use reg_rules_intersect() here
566 * is it will return -EINVAL if the rule computed makes no sense.
567 * All rules that do check out OK are valid.
568 */
569
570 for (x = 0; x < rd1->n_reg_rules; x++) {
571 rule1 = &rd1->reg_rules[x];
572 for (y = 0; y < rd2->n_reg_rules; y++) {
573 rule2 = &rd2->reg_rules[y];
574 if (!reg_rules_intersect(rule1, rule2,
575 intersected_rule))
576 num_rules++;
577 memset(intersected_rule, 0,
578 sizeof(struct ieee80211_reg_rule));
579 }
580 }
581
582 if (!num_rules)
583 return NULL;
584
585 size_of_regd = sizeof(struct ieee80211_regdomain) +
586 ((num_rules + 1) * sizeof(struct ieee80211_reg_rule));
587
588 rd = kzalloc(size_of_regd, GFP_KERNEL);
589 if (!rd)
590 return NULL;
591
592 for (x = 0; x < rd1->n_reg_rules; x++) {
593 rule1 = &rd1->reg_rules[x];
594 for (y = 0; y < rd2->n_reg_rules; y++) {
595 rule2 = &rd2->reg_rules[y];
596 /*
597 * This time around instead of using the stack lets
598 * write to the target rule directly saving ourselves
599 * a memcpy()
600 */
601 intersected_rule = &rd->reg_rules[rule_idx];
602 r = reg_rules_intersect(rule1, rule2,
603 intersected_rule);
604 /*
605 * No need to memset here the intersected rule here as
606 * we're not using the stack anymore
607 */
608 if (r)
609 continue;
610 rule_idx++;
611 }
612 }
613
614 if (rule_idx != num_rules) {
615 kfree(rd);
616 return NULL;
617 }
618
619 rd->n_reg_rules = num_rules;
620 rd->alpha2[0] = '9';
621 rd->alpha2[1] = '8';
622
623 return rd;
624 }
625
626 /*
627 * XXX: add support for the rest of enum nl80211_reg_rule_flags, we may
628 * want to just have the channel structure use these
629 */
630 static u32 map_regdom_flags(u32 rd_flags)
631 {
632 u32 channel_flags = 0;
633 if (rd_flags & NL80211_RRF_PASSIVE_SCAN)
634 channel_flags |= IEEE80211_CHAN_PASSIVE_SCAN;
635 if (rd_flags & NL80211_RRF_NO_IBSS)
636 channel_flags |= IEEE80211_CHAN_NO_IBSS;
637 if (rd_flags & NL80211_RRF_DFS)
638 channel_flags |= IEEE80211_CHAN_RADAR;
639 return channel_flags;
640 }
641
642 static int freq_reg_info_regd(struct wiphy *wiphy,
643 u32 center_freq,
644 u32 desired_bw_khz,
645 const struct ieee80211_reg_rule **reg_rule,
646 const struct ieee80211_regdomain *custom_regd)
647 {
648 int i;
649 bool band_rule_found = false;
650 const struct ieee80211_regdomain *regd;
651 bool bw_fits = false;
652
653 if (!desired_bw_khz)
654 desired_bw_khz = MHZ_TO_KHZ(20);
655
656 regd = custom_regd ? custom_regd : cfg80211_regdomain;
657
658 /*
659 * Follow the driver's regulatory domain, if present, unless a country
660 * IE has been processed or a user wants to help complaince further
661 */
662 if (last_request->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
663 last_request->initiator != NL80211_REGDOM_SET_BY_USER &&
664 wiphy->regd)
665 regd = wiphy->regd;
666
667 if (!regd)
668 return -EINVAL;
669
670 for (i = 0; i < regd->n_reg_rules; i++) {
671 const struct ieee80211_reg_rule *rr;
672 const struct ieee80211_freq_range *fr = NULL;
673 const struct ieee80211_power_rule *pr = NULL;
674
675 rr = &regd->reg_rules[i];
676 fr = &rr->freq_range;
677 pr = &rr->power_rule;
678
679 /*
680 * We only need to know if one frequency rule was
681 * was in center_freq's band, that's enough, so lets
682 * not overwrite it once found
683 */
684 if (!band_rule_found)
685 band_rule_found = freq_in_rule_band(fr, center_freq);
686
687 bw_fits = reg_does_bw_fit(fr,
688 center_freq,
689 desired_bw_khz);
690
691 if (band_rule_found && bw_fits) {
692 *reg_rule = rr;
693 return 0;
694 }
695 }
696
697 if (!band_rule_found)
698 return -ERANGE;
699
700 return -EINVAL;
701 }
702
703 int freq_reg_info(struct wiphy *wiphy,
704 u32 center_freq,
705 u32 desired_bw_khz,
706 const struct ieee80211_reg_rule **reg_rule)
707 {
708 assert_cfg80211_lock();
709 return freq_reg_info_regd(wiphy,
710 center_freq,
711 desired_bw_khz,
712 reg_rule,
713 NULL);
714 }
715 EXPORT_SYMBOL(freq_reg_info);
716
717 #ifdef CONFIG_CFG80211_REG_DEBUG
718 static const char *reg_initiator_name(enum nl80211_reg_initiator initiator)
719 {
720 switch (initiator) {
721 case NL80211_REGDOM_SET_BY_CORE:
722 return "Set by core";
723 case NL80211_REGDOM_SET_BY_USER:
724 return "Set by user";
725 case NL80211_REGDOM_SET_BY_DRIVER:
726 return "Set by driver";
727 case NL80211_REGDOM_SET_BY_COUNTRY_IE:
728 return "Set by country IE";
729 default:
730 WARN_ON(1);
731 return "Set by bug";
732 }
733 }
734
735 static void chan_reg_rule_print_dbg(struct ieee80211_channel *chan,
736 u32 desired_bw_khz,
737 const struct ieee80211_reg_rule *reg_rule)
738 {
739 const struct ieee80211_power_rule *power_rule;
740 const struct ieee80211_freq_range *freq_range;
741 char max_antenna_gain[32];
742
743 power_rule = &reg_rule->power_rule;
744 freq_range = &reg_rule->freq_range;
745
746 if (!power_rule->max_antenna_gain)
747 snprintf(max_antenna_gain, 32, "N/A");
748 else
749 snprintf(max_antenna_gain, 32, "%d", power_rule->max_antenna_gain);
750
751 REG_DBG_PRINT("Updating information on frequency %d MHz "
752 "for %d a MHz width channel with regulatory rule:\n",
753 chan->center_freq,
754 KHZ_TO_MHZ(desired_bw_khz));
755
756 REG_DBG_PRINT("%d KHz - %d KHz @ KHz), (%s mBi, %d mBm)\n",
757 freq_range->start_freq_khz,
758 freq_range->end_freq_khz,
759 max_antenna_gain,
760 power_rule->max_eirp);
761 }
762 #else
763 static void chan_reg_rule_print_dbg(struct ieee80211_channel *chan,
764 u32 desired_bw_khz,
765 const struct ieee80211_reg_rule *reg_rule)
766 {
767 return;
768 }
769 #endif
770
771 /*
772 * Note that right now we assume the desired channel bandwidth
773 * is always 20 MHz for each individual channel (HT40 uses 20 MHz
774 * per channel, the primary and the extension channel). To support
775 * smaller custom bandwidths such as 5 MHz or 10 MHz we'll need a
776 * new ieee80211_channel.target_bw and re run the regulatory check
777 * on the wiphy with the target_bw specified. Then we can simply use
778 * that below for the desired_bw_khz below.
779 */
780 static void handle_channel(struct wiphy *wiphy,
781 enum nl80211_reg_initiator initiator,
782 enum ieee80211_band band,
783 unsigned int chan_idx)
784 {
785 int r;
786 u32 flags, bw_flags = 0;
787 u32 desired_bw_khz = MHZ_TO_KHZ(20);
788 const struct ieee80211_reg_rule *reg_rule = NULL;
789 const struct ieee80211_power_rule *power_rule = NULL;
790 const struct ieee80211_freq_range *freq_range = NULL;
791 struct ieee80211_supported_band *sband;
792 struct ieee80211_channel *chan;
793 struct wiphy *request_wiphy = NULL;
794
795 assert_cfg80211_lock();
796
797 request_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx);
798
799 sband = wiphy->bands[band];
800 BUG_ON(chan_idx >= sband->n_channels);
801 chan = &sband->channels[chan_idx];
802
803 flags = chan->orig_flags;
804
805 r = freq_reg_info(wiphy,
806 MHZ_TO_KHZ(chan->center_freq),
807 desired_bw_khz,
808 &reg_rule);
809
810 if (r) {
811 /*
812 * We will disable all channels that do not match our
813 * recieved regulatory rule unless the hint is coming
814 * from a Country IE and the Country IE had no information
815 * about a band. The IEEE 802.11 spec allows for an AP
816 * to send only a subset of the regulatory rules allowed,
817 * so an AP in the US that only supports 2.4 GHz may only send
818 * a country IE with information for the 2.4 GHz band
819 * while 5 GHz is still supported.
820 */
821 if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
822 r == -ERANGE)
823 return;
824
825 REG_DBG_PRINT("Disabling freq %d MHz\n", chan->center_freq);
826 chan->flags = IEEE80211_CHAN_DISABLED;
827 return;
828 }
829
830 chan_reg_rule_print_dbg(chan, desired_bw_khz, reg_rule);
831
832 power_rule = &reg_rule->power_rule;
833 freq_range = &reg_rule->freq_range;
834
835 if (freq_range->max_bandwidth_khz < MHZ_TO_KHZ(40))
836 bw_flags = IEEE80211_CHAN_NO_HT40;
837
838 if (last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
839 request_wiphy && request_wiphy == wiphy &&
840 request_wiphy->flags & WIPHY_FLAG_STRICT_REGULATORY) {
841 /*
842 * This gaurantees the driver's requested regulatory domain
843 * will always be used as a base for further regulatory
844 * settings
845 */
846 chan->flags = chan->orig_flags =
847 map_regdom_flags(reg_rule->flags) | bw_flags;
848 chan->max_antenna_gain = chan->orig_mag =
849 (int) MBI_TO_DBI(power_rule->max_antenna_gain);
850 chan->max_power = chan->orig_mpwr =
851 (int) MBM_TO_DBM(power_rule->max_eirp);
852 return;
853 }
854
855 chan->flags = flags | bw_flags | map_regdom_flags(reg_rule->flags);
856 chan->max_antenna_gain = min(chan->orig_mag,
857 (int) MBI_TO_DBI(power_rule->max_antenna_gain));
858 if (chan->orig_mpwr)
859 chan->max_power = min(chan->orig_mpwr,
860 (int) MBM_TO_DBM(power_rule->max_eirp));
861 else
862 chan->max_power = (int) MBM_TO_DBM(power_rule->max_eirp);
863 }
864
865 static void handle_band(struct wiphy *wiphy,
866 enum ieee80211_band band,
867 enum nl80211_reg_initiator initiator)
868 {
869 unsigned int i;
870 struct ieee80211_supported_band *sband;
871
872 BUG_ON(!wiphy->bands[band]);
873 sband = wiphy->bands[band];
874
875 for (i = 0; i < sband->n_channels; i++)
876 handle_channel(wiphy, initiator, band, i);
877 }
878
879 static bool ignore_reg_update(struct wiphy *wiphy,
880 enum nl80211_reg_initiator initiator)
881 {
882 if (!last_request) {
883 REG_DBG_PRINT("Ignoring regulatory request %s since "
884 "last_request is not set\n",
885 reg_initiator_name(initiator));
886 return true;
887 }
888
889 if (initiator == NL80211_REGDOM_SET_BY_CORE &&
890 wiphy->flags & WIPHY_FLAG_CUSTOM_REGULATORY) {
891 REG_DBG_PRINT("Ignoring regulatory request %s "
892 "since the driver uses its own custom "
893 "regulatory domain ",
894 reg_initiator_name(initiator));
895 return true;
896 }
897
898 /*
899 * wiphy->regd will be set once the device has its own
900 * desired regulatory domain set
901 */
902 if (wiphy->flags & WIPHY_FLAG_STRICT_REGULATORY && !wiphy->regd &&
903 initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
904 !is_world_regdom(last_request->alpha2)) {
905 REG_DBG_PRINT("Ignoring regulatory request %s "
906 "since the driver requires its own regulaotry "
907 "domain to be set first",
908 reg_initiator_name(initiator));
909 return true;
910 }
911
912 return false;
913 }
914
915 static void update_all_wiphy_regulatory(enum nl80211_reg_initiator initiator)
916 {
917 struct cfg80211_registered_device *rdev;
918
919 list_for_each_entry(rdev, &cfg80211_rdev_list, list)
920 wiphy_update_regulatory(&rdev->wiphy, initiator);
921 }
922
923 static void handle_reg_beacon(struct wiphy *wiphy,
924 unsigned int chan_idx,
925 struct reg_beacon *reg_beacon)
926 {
927 struct ieee80211_supported_band *sband;
928 struct ieee80211_channel *chan;
929 bool channel_changed = false;
930 struct ieee80211_channel chan_before;
931
932 assert_cfg80211_lock();
933
934 sband = wiphy->bands[reg_beacon->chan.band];
935 chan = &sband->channels[chan_idx];
936
937 if (likely(chan->center_freq != reg_beacon->chan.center_freq))
938 return;
939
940 if (chan->beacon_found)
941 return;
942
943 chan->beacon_found = true;
944
945 if (wiphy->flags & WIPHY_FLAG_DISABLE_BEACON_HINTS)
946 return;
947
948 chan_before.center_freq = chan->center_freq;
949 chan_before.flags = chan->flags;
950
951 if (chan->flags & IEEE80211_CHAN_PASSIVE_SCAN) {
952 chan->flags &= ~IEEE80211_CHAN_PASSIVE_SCAN;
953 channel_changed = true;
954 }
955
956 if (chan->flags & IEEE80211_CHAN_NO_IBSS) {
957 chan->flags &= ~IEEE80211_CHAN_NO_IBSS;
958 channel_changed = true;
959 }
960
961 if (channel_changed)
962 nl80211_send_beacon_hint_event(wiphy, &chan_before, chan);
963 }
964
965 /*
966 * Called when a scan on a wiphy finds a beacon on
967 * new channel
968 */
969 static void wiphy_update_new_beacon(struct wiphy *wiphy,
970 struct reg_beacon *reg_beacon)
971 {
972 unsigned int i;
973 struct ieee80211_supported_band *sband;
974
975 assert_cfg80211_lock();
976
977 if (!wiphy->bands[reg_beacon->chan.band])
978 return;
979
980 sband = wiphy->bands[reg_beacon->chan.band];
981
982 for (i = 0; i < sband->n_channels; i++)
983 handle_reg_beacon(wiphy, i, reg_beacon);
984 }
985
986 /*
987 * Called upon reg changes or a new wiphy is added
988 */
989 static void wiphy_update_beacon_reg(struct wiphy *wiphy)
990 {
991 unsigned int i;
992 struct ieee80211_supported_band *sband;
993 struct reg_beacon *reg_beacon;
994
995 assert_cfg80211_lock();
996
997 if (list_empty(&reg_beacon_list))
998 return;
999
1000 list_for_each_entry(reg_beacon, &reg_beacon_list, list) {
1001 if (!wiphy->bands[reg_beacon->chan.band])
1002 continue;
1003 sband = wiphy->bands[reg_beacon->chan.band];
1004 for (i = 0; i < sband->n_channels; i++)
1005 handle_reg_beacon(wiphy, i, reg_beacon);
1006 }
1007 }
1008
1009 static bool reg_is_world_roaming(struct wiphy *wiphy)
1010 {
1011 if (is_world_regdom(cfg80211_regdomain->alpha2) ||
1012 (wiphy->regd && is_world_regdom(wiphy->regd->alpha2)))
1013 return true;
1014 if (last_request &&
1015 last_request->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1016 wiphy->flags & WIPHY_FLAG_CUSTOM_REGULATORY)
1017 return true;
1018 return false;
1019 }
1020
1021 /* Reap the advantages of previously found beacons */
1022 static void reg_process_beacons(struct wiphy *wiphy)
1023 {
1024 /*
1025 * Means we are just firing up cfg80211, so no beacons would
1026 * have been processed yet.
1027 */
1028 if (!last_request)
1029 return;
1030 if (!reg_is_world_roaming(wiphy))
1031 return;
1032 wiphy_update_beacon_reg(wiphy);
1033 }
1034
1035 static bool is_ht40_not_allowed(struct ieee80211_channel *chan)
1036 {
1037 if (!chan)
1038 return true;
1039 if (chan->flags & IEEE80211_CHAN_DISABLED)
1040 return true;
1041 /* This would happen when regulatory rules disallow HT40 completely */
1042 if (IEEE80211_CHAN_NO_HT40 == (chan->flags & (IEEE80211_CHAN_NO_HT40)))
1043 return true;
1044 return false;
1045 }
1046
1047 static void reg_process_ht_flags_channel(struct wiphy *wiphy,
1048 enum ieee80211_band band,
1049 unsigned int chan_idx)
1050 {
1051 struct ieee80211_supported_band *sband;
1052 struct ieee80211_channel *channel;
1053 struct ieee80211_channel *channel_before = NULL, *channel_after = NULL;
1054 unsigned int i;
1055
1056 assert_cfg80211_lock();
1057
1058 sband = wiphy->bands[band];
1059 BUG_ON(chan_idx >= sband->n_channels);
1060 channel = &sband->channels[chan_idx];
1061
1062 if (is_ht40_not_allowed(channel)) {
1063 channel->flags |= IEEE80211_CHAN_NO_HT40;
1064 return;
1065 }
1066
1067 /*
1068 * We need to ensure the extension channels exist to
1069 * be able to use HT40- or HT40+, this finds them (or not)
1070 */
1071 for (i = 0; i < sband->n_channels; i++) {
1072 struct ieee80211_channel *c = &sband->channels[i];
1073 if (c->center_freq == (channel->center_freq - 20))
1074 channel_before = c;
1075 if (c->center_freq == (channel->center_freq + 20))
1076 channel_after = c;
1077 }
1078
1079 /*
1080 * Please note that this assumes target bandwidth is 20 MHz,
1081 * if that ever changes we also need to change the below logic
1082 * to include that as well.
1083 */
1084 if (is_ht40_not_allowed(channel_before))
1085 channel->flags |= IEEE80211_CHAN_NO_HT40MINUS;
1086 else
1087 channel->flags &= ~IEEE80211_CHAN_NO_HT40MINUS;
1088
1089 if (is_ht40_not_allowed(channel_after))
1090 channel->flags |= IEEE80211_CHAN_NO_HT40PLUS;
1091 else
1092 channel->flags &= ~IEEE80211_CHAN_NO_HT40PLUS;
1093 }
1094
1095 static void reg_process_ht_flags_band(struct wiphy *wiphy,
1096 enum ieee80211_band band)
1097 {
1098 unsigned int i;
1099 struct ieee80211_supported_band *sband;
1100
1101 BUG_ON(!wiphy->bands[band]);
1102 sband = wiphy->bands[band];
1103
1104 for (i = 0; i < sband->n_channels; i++)
1105 reg_process_ht_flags_channel(wiphy, band, i);
1106 }
1107
1108 static void reg_process_ht_flags(struct wiphy *wiphy)
1109 {
1110 enum ieee80211_band band;
1111
1112 if (!wiphy)
1113 return;
1114
1115 for (band = 0; band < IEEE80211_NUM_BANDS; band++) {
1116 if (wiphy->bands[band])
1117 reg_process_ht_flags_band(wiphy, band);
1118 }
1119
1120 }
1121
1122 void wiphy_update_regulatory(struct wiphy *wiphy,
1123 enum nl80211_reg_initiator initiator)
1124 {
1125 enum ieee80211_band band;
1126
1127 if (ignore_reg_update(wiphy, initiator))
1128 goto out;
1129 for (band = 0; band < IEEE80211_NUM_BANDS; band++) {
1130 if (wiphy->bands[band])
1131 handle_band(wiphy, band, initiator);
1132 }
1133 out:
1134 reg_process_beacons(wiphy);
1135 reg_process_ht_flags(wiphy);
1136 if (wiphy->reg_notifier)
1137 wiphy->reg_notifier(wiphy, last_request);
1138 }
1139
1140 static void handle_channel_custom(struct wiphy *wiphy,
1141 enum ieee80211_band band,
1142 unsigned int chan_idx,
1143 const struct ieee80211_regdomain *regd)
1144 {
1145 int r;
1146 u32 desired_bw_khz = MHZ_TO_KHZ(20);
1147 u32 bw_flags = 0;
1148 const struct ieee80211_reg_rule *reg_rule = NULL;
1149 const struct ieee80211_power_rule *power_rule = NULL;
1150 const struct ieee80211_freq_range *freq_range = NULL;
1151 struct ieee80211_supported_band *sband;
1152 struct ieee80211_channel *chan;
1153
1154 assert_reg_lock();
1155
1156 sband = wiphy->bands[band];
1157 BUG_ON(chan_idx >= sband->n_channels);
1158 chan = &sband->channels[chan_idx];
1159
1160 r = freq_reg_info_regd(wiphy,
1161 MHZ_TO_KHZ(chan->center_freq),
1162 desired_bw_khz,
1163 &reg_rule,
1164 regd);
1165
1166 if (r) {
1167 REG_DBG_PRINT("Disabling freq %d MHz as custom "
1168 "regd has no rule that fits a %d MHz "
1169 "wide channel\n",
1170 chan->center_freq,
1171 KHZ_TO_MHZ(desired_bw_khz));
1172 chan->flags = IEEE80211_CHAN_DISABLED;
1173 return;
1174 }
1175
1176 chan_reg_rule_print_dbg(chan, desired_bw_khz, reg_rule);
1177
1178 power_rule = &reg_rule->power_rule;
1179 freq_range = &reg_rule->freq_range;
1180
1181 if (freq_range->max_bandwidth_khz < MHZ_TO_KHZ(40))
1182 bw_flags = IEEE80211_CHAN_NO_HT40;
1183
1184 chan->flags |= map_regdom_flags(reg_rule->flags) | bw_flags;
1185 chan->max_antenna_gain = (int) MBI_TO_DBI(power_rule->max_antenna_gain);
1186 chan->max_power = (int) MBM_TO_DBM(power_rule->max_eirp);
1187 }
1188
1189 static void handle_band_custom(struct wiphy *wiphy, enum ieee80211_band band,
1190 const struct ieee80211_regdomain *regd)
1191 {
1192 unsigned int i;
1193 struct ieee80211_supported_band *sband;
1194
1195 BUG_ON(!wiphy->bands[band]);
1196 sband = wiphy->bands[band];
1197
1198 for (i = 0; i < sband->n_channels; i++)
1199 handle_channel_custom(wiphy, band, i, regd);
1200 }
1201
1202 /* Used by drivers prior to wiphy registration */
1203 void wiphy_apply_custom_regulatory(struct wiphy *wiphy,
1204 const struct ieee80211_regdomain *regd)
1205 {
1206 enum ieee80211_band band;
1207 unsigned int bands_set = 0;
1208
1209 mutex_lock(&reg_mutex);
1210 for (band = 0; band < IEEE80211_NUM_BANDS; band++) {
1211 if (!wiphy->bands[band])
1212 continue;
1213 handle_band_custom(wiphy, band, regd);
1214 bands_set++;
1215 }
1216 mutex_unlock(&reg_mutex);
1217
1218 /*
1219 * no point in calling this if it won't have any effect
1220 * on your device's supportd bands.
1221 */
1222 WARN_ON(!bands_set);
1223 }
1224 EXPORT_SYMBOL(wiphy_apply_custom_regulatory);
1225
1226 /*
1227 * Return value which can be used by ignore_request() to indicate
1228 * it has been determined we should intersect two regulatory domains
1229 */
1230 #define REG_INTERSECT 1
1231
1232 /* This has the logic which determines when a new request
1233 * should be ignored. */
1234 static int ignore_request(struct wiphy *wiphy,
1235 struct regulatory_request *pending_request)
1236 {
1237 struct wiphy *last_wiphy = NULL;
1238
1239 assert_cfg80211_lock();
1240
1241 /* All initial requests are respected */
1242 if (!last_request)
1243 return 0;
1244
1245 switch (pending_request->initiator) {
1246 case NL80211_REGDOM_SET_BY_CORE:
1247 return 0;
1248 case NL80211_REGDOM_SET_BY_COUNTRY_IE:
1249
1250 last_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx);
1251
1252 if (unlikely(!is_an_alpha2(pending_request->alpha2)))
1253 return -EINVAL;
1254 if (last_request->initiator ==
1255 NL80211_REGDOM_SET_BY_COUNTRY_IE) {
1256 if (last_wiphy != wiphy) {
1257 /*
1258 * Two cards with two APs claiming different
1259 * Country IE alpha2s. We could
1260 * intersect them, but that seems unlikely
1261 * to be correct. Reject second one for now.
1262 */
1263 if (regdom_changes(pending_request->alpha2))
1264 return -EOPNOTSUPP;
1265 return -EALREADY;
1266 }
1267 /*
1268 * Two consecutive Country IE hints on the same wiphy.
1269 * This should be picked up early by the driver/stack
1270 */
1271 if (WARN_ON(regdom_changes(pending_request->alpha2)))
1272 return 0;
1273 return -EALREADY;
1274 }
1275 return 0;
1276 case NL80211_REGDOM_SET_BY_DRIVER:
1277 if (last_request->initiator == NL80211_REGDOM_SET_BY_CORE) {
1278 if (regdom_changes(pending_request->alpha2))
1279 return 0;
1280 return -EALREADY;
1281 }
1282
1283 /*
1284 * This would happen if you unplug and plug your card
1285 * back in or if you add a new device for which the previously
1286 * loaded card also agrees on the regulatory domain.
1287 */
1288 if (last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1289 !regdom_changes(pending_request->alpha2))
1290 return -EALREADY;
1291
1292 return REG_INTERSECT;
1293 case NL80211_REGDOM_SET_BY_USER:
1294 if (last_request->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE)
1295 return REG_INTERSECT;
1296 /*
1297 * If the user knows better the user should set the regdom
1298 * to their country before the IE is picked up
1299 */
1300 if (last_request->initiator == NL80211_REGDOM_SET_BY_USER &&
1301 last_request->intersect)
1302 return -EOPNOTSUPP;
1303 /*
1304 * Process user requests only after previous user/driver/core
1305 * requests have been processed
1306 */
1307 if (last_request->initiator == NL80211_REGDOM_SET_BY_CORE ||
1308 last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER ||
1309 last_request->initiator == NL80211_REGDOM_SET_BY_USER) {
1310 if (regdom_changes(last_request->alpha2))
1311 return -EAGAIN;
1312 }
1313
1314 if (!regdom_changes(pending_request->alpha2))
1315 return -EALREADY;
1316
1317 return 0;
1318 }
1319
1320 return -EINVAL;
1321 }
1322
1323 static void reg_set_request_processed(void)
1324 {
1325 bool need_more_processing = false;
1326
1327 last_request->processed = true;
1328
1329 spin_lock(&reg_requests_lock);
1330 if (!list_empty(&reg_requests_list))
1331 need_more_processing = true;
1332 spin_unlock(&reg_requests_lock);
1333
1334 if (need_more_processing)
1335 schedule_work(&reg_work);
1336 }
1337
1338 /**
1339 * __regulatory_hint - hint to the wireless core a regulatory domain
1340 * @wiphy: if the hint comes from country information from an AP, this
1341 * is required to be set to the wiphy that received the information
1342 * @pending_request: the regulatory request currently being processed
1343 *
1344 * The Wireless subsystem can use this function to hint to the wireless core
1345 * what it believes should be the current regulatory domain.
1346 *
1347 * Returns zero if all went fine, %-EALREADY if a regulatory domain had
1348 * already been set or other standard error codes.
1349 *
1350 * Caller must hold &cfg80211_mutex and &reg_mutex
1351 */
1352 static int __regulatory_hint(struct wiphy *wiphy,
1353 struct regulatory_request *pending_request)
1354 {
1355 bool intersect = false;
1356 int r = 0;
1357
1358 assert_cfg80211_lock();
1359
1360 r = ignore_request(wiphy, pending_request);
1361
1362 if (r == REG_INTERSECT) {
1363 if (pending_request->initiator ==
1364 NL80211_REGDOM_SET_BY_DRIVER) {
1365 r = reg_copy_regd(&wiphy->regd, cfg80211_regdomain);
1366 if (r) {
1367 kfree(pending_request);
1368 return r;
1369 }
1370 }
1371 intersect = true;
1372 } else if (r) {
1373 /*
1374 * If the regulatory domain being requested by the
1375 * driver has already been set just copy it to the
1376 * wiphy
1377 */
1378 if (r == -EALREADY &&
1379 pending_request->initiator ==
1380 NL80211_REGDOM_SET_BY_DRIVER) {
1381 r = reg_copy_regd(&wiphy->regd, cfg80211_regdomain);
1382 if (r) {
1383 kfree(pending_request);
1384 return r;
1385 }
1386 r = -EALREADY;
1387 goto new_request;
1388 }
1389 kfree(pending_request);
1390 return r;
1391 }
1392
1393 new_request:
1394 kfree(last_request);
1395
1396 last_request = pending_request;
1397 last_request->intersect = intersect;
1398
1399 pending_request = NULL;
1400
1401 if (last_request->initiator == NL80211_REGDOM_SET_BY_USER) {
1402 user_alpha2[0] = last_request->alpha2[0];
1403 user_alpha2[1] = last_request->alpha2[1];
1404 }
1405
1406 /* When r == REG_INTERSECT we do need to call CRDA */
1407 if (r < 0) {
1408 /*
1409 * Since CRDA will not be called in this case as we already
1410 * have applied the requested regulatory domain before we just
1411 * inform userspace we have processed the request
1412 */
1413 if (r == -EALREADY) {
1414 nl80211_send_reg_change_event(last_request);
1415 reg_set_request_processed();
1416 }
1417 return r;
1418 }
1419
1420 return call_crda(last_request->alpha2);
1421 }
1422
1423 /* This processes *all* regulatory hints */
1424 static void reg_process_hint(struct regulatory_request *reg_request)
1425 {
1426 int r = 0;
1427 struct wiphy *wiphy = NULL;
1428 enum nl80211_reg_initiator initiator = reg_request->initiator;
1429
1430 BUG_ON(!reg_request->alpha2);
1431
1432 if (wiphy_idx_valid(reg_request->wiphy_idx))
1433 wiphy = wiphy_idx_to_wiphy(reg_request->wiphy_idx);
1434
1435 if (reg_request->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1436 !wiphy) {
1437 kfree(reg_request);
1438 return;
1439 }
1440
1441 r = __regulatory_hint(wiphy, reg_request);
1442 /* This is required so that the orig_* parameters are saved */
1443 if (r == -EALREADY && wiphy &&
1444 wiphy->flags & WIPHY_FLAG_STRICT_REGULATORY)
1445 wiphy_update_regulatory(wiphy, initiator);
1446 }
1447
1448 /*
1449 * Processes regulatory hints, this is all the NL80211_REGDOM_SET_BY_*
1450 * Regulatory hints come on a first come first serve basis and we
1451 * must process each one atomically.
1452 */
1453 static void reg_process_pending_hints(void)
1454 {
1455 struct regulatory_request *reg_request;
1456
1457 mutex_lock(&cfg80211_mutex);
1458 mutex_lock(&reg_mutex);
1459
1460 /* When last_request->processed becomes true this will be rescheduled */
1461 if (last_request && !last_request->processed) {
1462 REG_DBG_PRINT("Pending regulatory request, waiting "
1463 "for it to be processed...");
1464 goto out;
1465 }
1466
1467 spin_lock(&reg_requests_lock);
1468
1469 if (list_empty(&reg_requests_list)) {
1470 spin_unlock(&reg_requests_lock);
1471 goto out;
1472 }
1473
1474 reg_request = list_first_entry(&reg_requests_list,
1475 struct regulatory_request,
1476 list);
1477 list_del_init(&reg_request->list);
1478
1479 spin_unlock(&reg_requests_lock);
1480
1481 reg_process_hint(reg_request);
1482
1483 out:
1484 mutex_unlock(&reg_mutex);
1485 mutex_unlock(&cfg80211_mutex);
1486 }
1487
1488 /* Processes beacon hints -- this has nothing to do with country IEs */
1489 static void reg_process_pending_beacon_hints(void)
1490 {
1491 struct cfg80211_registered_device *rdev;
1492 struct reg_beacon *pending_beacon, *tmp;
1493
1494 /*
1495 * No need to hold the reg_mutex here as we just touch wiphys
1496 * and do not read or access regulatory variables.
1497 */
1498 mutex_lock(&cfg80211_mutex);
1499
1500 /* This goes through the _pending_ beacon list */
1501 spin_lock_bh(&reg_pending_beacons_lock);
1502
1503 if (list_empty(&reg_pending_beacons)) {
1504 spin_unlock_bh(&reg_pending_beacons_lock);
1505 goto out;
1506 }
1507
1508 list_for_each_entry_safe(pending_beacon, tmp,
1509 &reg_pending_beacons, list) {
1510
1511 list_del_init(&pending_beacon->list);
1512
1513 /* Applies the beacon hint to current wiphys */
1514 list_for_each_entry(rdev, &cfg80211_rdev_list, list)
1515 wiphy_update_new_beacon(&rdev->wiphy, pending_beacon);
1516
1517 /* Remembers the beacon hint for new wiphys or reg changes */
1518 list_add_tail(&pending_beacon->list, &reg_beacon_list);
1519 }
1520
1521 spin_unlock_bh(&reg_pending_beacons_lock);
1522 out:
1523 mutex_unlock(&cfg80211_mutex);
1524 }
1525
1526 static void reg_todo(struct work_struct *work)
1527 {
1528 reg_process_pending_hints();
1529 reg_process_pending_beacon_hints();
1530 }
1531
1532 static void queue_regulatory_request(struct regulatory_request *request)
1533 {
1534 if (isalpha(request->alpha2[0]))
1535 request->alpha2[0] = toupper(request->alpha2[0]);
1536 if (isalpha(request->alpha2[1]))
1537 request->alpha2[1] = toupper(request->alpha2[1]);
1538
1539 spin_lock(&reg_requests_lock);
1540 list_add_tail(&request->list, &reg_requests_list);
1541 spin_unlock(&reg_requests_lock);
1542
1543 schedule_work(&reg_work);
1544 }
1545
1546 /*
1547 * Core regulatory hint -- happens during cfg80211_init()
1548 * and when we restore regulatory settings.
1549 */
1550 static int regulatory_hint_core(const char *alpha2)
1551 {
1552 struct regulatory_request *request;
1553
1554 kfree(last_request);
1555 last_request = NULL;
1556
1557 request = kzalloc(sizeof(struct regulatory_request),
1558 GFP_KERNEL);
1559 if (!request)
1560 return -ENOMEM;
1561
1562 request->alpha2[0] = alpha2[0];
1563 request->alpha2[1] = alpha2[1];
1564 request->initiator = NL80211_REGDOM_SET_BY_CORE;
1565
1566 queue_regulatory_request(request);
1567
1568 return 0;
1569 }
1570
1571 /* User hints */
1572 int regulatory_hint_user(const char *alpha2)
1573 {
1574 struct regulatory_request *request;
1575
1576 BUG_ON(!alpha2);
1577
1578 request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
1579 if (!request)
1580 return -ENOMEM;
1581
1582 request->wiphy_idx = WIPHY_IDX_STALE;
1583 request->alpha2[0] = alpha2[0];
1584 request->alpha2[1] = alpha2[1];
1585 request->initiator = NL80211_REGDOM_SET_BY_USER;
1586
1587 queue_regulatory_request(request);
1588
1589 return 0;
1590 }
1591
1592 /* Driver hints */
1593 int regulatory_hint(struct wiphy *wiphy, const char *alpha2)
1594 {
1595 struct regulatory_request *request;
1596
1597 BUG_ON(!alpha2);
1598 BUG_ON(!wiphy);
1599
1600 request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
1601 if (!request)
1602 return -ENOMEM;
1603
1604 request->wiphy_idx = get_wiphy_idx(wiphy);
1605
1606 /* Must have registered wiphy first */
1607 BUG_ON(!wiphy_idx_valid(request->wiphy_idx));
1608
1609 request->alpha2[0] = alpha2[0];
1610 request->alpha2[1] = alpha2[1];
1611 request->initiator = NL80211_REGDOM_SET_BY_DRIVER;
1612
1613 queue_regulatory_request(request);
1614
1615 return 0;
1616 }
1617 EXPORT_SYMBOL(regulatory_hint);
1618
1619 /*
1620 * We hold wdev_lock() here so we cannot hold cfg80211_mutex() and
1621 * therefore cannot iterate over the rdev list here.
1622 */
1623 void regulatory_hint_11d(struct wiphy *wiphy,
1624 enum ieee80211_band band,
1625 u8 *country_ie,
1626 u8 country_ie_len)
1627 {
1628 char alpha2[2];
1629 enum environment_cap env = ENVIRON_ANY;
1630 struct regulatory_request *request;
1631
1632 mutex_lock(&reg_mutex);
1633
1634 if (unlikely(!last_request))
1635 goto out;
1636
1637 /* IE len must be evenly divisible by 2 */
1638 if (country_ie_len & 0x01)
1639 goto out;
1640
1641 if (country_ie_len < IEEE80211_COUNTRY_IE_MIN_LEN)
1642 goto out;
1643
1644 alpha2[0] = country_ie[0];
1645 alpha2[1] = country_ie[1];
1646
1647 if (country_ie[2] == 'I')
1648 env = ENVIRON_INDOOR;
1649 else if (country_ie[2] == 'O')
1650 env = ENVIRON_OUTDOOR;
1651
1652 /*
1653 * We will run this only upon a successful connection on cfg80211.
1654 * We leave conflict resolution to the workqueue, where can hold
1655 * cfg80211_mutex.
1656 */
1657 if (likely(last_request->initiator ==
1658 NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1659 wiphy_idx_valid(last_request->wiphy_idx)))
1660 goto out;
1661
1662 request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
1663 if (!request)
1664 goto out;
1665
1666 request->wiphy_idx = get_wiphy_idx(wiphy);
1667 request->alpha2[0] = alpha2[0];
1668 request->alpha2[1] = alpha2[1];
1669 request->initiator = NL80211_REGDOM_SET_BY_COUNTRY_IE;
1670 request->country_ie_env = env;
1671
1672 mutex_unlock(&reg_mutex);
1673
1674 queue_regulatory_request(request);
1675
1676 return;
1677
1678 out:
1679 mutex_unlock(&reg_mutex);
1680 }
1681
1682 static void restore_alpha2(char *alpha2, bool reset_user)
1683 {
1684 /* indicates there is no alpha2 to consider for restoration */
1685 alpha2[0] = '9';
1686 alpha2[1] = '7';
1687
1688 /* The user setting has precedence over the module parameter */
1689 if (is_user_regdom_saved()) {
1690 /* Unless we're asked to ignore it and reset it */
1691 if (reset_user) {
1692 REG_DBG_PRINT("Restoring regulatory settings "
1693 "including user preference\n");
1694 user_alpha2[0] = '9';
1695 user_alpha2[1] = '7';
1696
1697 /*
1698 * If we're ignoring user settings, we still need to
1699 * check the module parameter to ensure we put things
1700 * back as they were for a full restore.
1701 */
1702 if (!is_world_regdom(ieee80211_regdom)) {
1703 REG_DBG_PRINT("Keeping preference on "
1704 "module parameter ieee80211_regdom: %c%c\n",
1705 ieee80211_regdom[0],
1706 ieee80211_regdom[1]);
1707 alpha2[0] = ieee80211_regdom[0];
1708 alpha2[1] = ieee80211_regdom[1];
1709 }
1710 } else {
1711 REG_DBG_PRINT("Restoring regulatory settings "
1712 "while preserving user preference for: %c%c\n",
1713 user_alpha2[0],
1714 user_alpha2[1]);
1715 alpha2[0] = user_alpha2[0];
1716 alpha2[1] = user_alpha2[1];
1717 }
1718 } else if (!is_world_regdom(ieee80211_regdom)) {
1719 REG_DBG_PRINT("Keeping preference on "
1720 "module parameter ieee80211_regdom: %c%c\n",
1721 ieee80211_regdom[0],
1722 ieee80211_regdom[1]);
1723 alpha2[0] = ieee80211_regdom[0];
1724 alpha2[1] = ieee80211_regdom[1];
1725 } else
1726 REG_DBG_PRINT("Restoring regulatory settings\n");
1727 }
1728
1729 /*
1730 * Restoring regulatory settings involves ingoring any
1731 * possibly stale country IE information and user regulatory
1732 * settings if so desired, this includes any beacon hints
1733 * learned as we could have traveled outside to another country
1734 * after disconnection. To restore regulatory settings we do
1735 * exactly what we did at bootup:
1736 *
1737 * - send a core regulatory hint
1738 * - send a user regulatory hint if applicable
1739 *
1740 * Device drivers that send a regulatory hint for a specific country
1741 * keep their own regulatory domain on wiphy->regd so that does does
1742 * not need to be remembered.
1743 */
1744 static void restore_regulatory_settings(bool reset_user)
1745 {
1746 char alpha2[2];
1747 struct reg_beacon *reg_beacon, *btmp;
1748
1749 mutex_lock(&cfg80211_mutex);
1750 mutex_lock(&reg_mutex);
1751
1752 reset_regdomains();
1753 restore_alpha2(alpha2, reset_user);
1754
1755 /* Clear beacon hints */
1756 spin_lock_bh(&reg_pending_beacons_lock);
1757 if (!list_empty(&reg_pending_beacons)) {
1758 list_for_each_entry_safe(reg_beacon, btmp,
1759 &reg_pending_beacons, list) {
1760 list_del(&reg_beacon->list);
1761 kfree(reg_beacon);
1762 }
1763 }
1764 spin_unlock_bh(&reg_pending_beacons_lock);
1765
1766 if (!list_empty(&reg_beacon_list)) {
1767 list_for_each_entry_safe(reg_beacon, btmp,
1768 &reg_beacon_list, list) {
1769 list_del(&reg_beacon->list);
1770 kfree(reg_beacon);
1771 }
1772 }
1773
1774 /* First restore to the basic regulatory settings */
1775 cfg80211_regdomain = cfg80211_world_regdom;
1776
1777 mutex_unlock(&reg_mutex);
1778 mutex_unlock(&cfg80211_mutex);
1779
1780 regulatory_hint_core(cfg80211_regdomain->alpha2);
1781
1782 /*
1783 * This restores the ieee80211_regdom module parameter
1784 * preference or the last user requested regulatory
1785 * settings, user regulatory settings takes precedence.
1786 */
1787 if (is_an_alpha2(alpha2))
1788 regulatory_hint_user(user_alpha2);
1789 }
1790
1791
1792 void regulatory_hint_disconnect(void)
1793 {
1794 REG_DBG_PRINT("All devices are disconnected, going to "
1795 "restore regulatory settings\n");
1796 restore_regulatory_settings(false);
1797 }
1798
1799 static bool freq_is_chan_12_13_14(u16 freq)
1800 {
1801 if (freq == ieee80211_channel_to_frequency(12) ||
1802 freq == ieee80211_channel_to_frequency(13) ||
1803 freq == ieee80211_channel_to_frequency(14))
1804 return true;
1805 return false;
1806 }
1807
1808 int regulatory_hint_found_beacon(struct wiphy *wiphy,
1809 struct ieee80211_channel *beacon_chan,
1810 gfp_t gfp)
1811 {
1812 struct reg_beacon *reg_beacon;
1813
1814 if (likely((beacon_chan->beacon_found ||
1815 (beacon_chan->flags & IEEE80211_CHAN_RADAR) ||
1816 (beacon_chan->band == IEEE80211_BAND_2GHZ &&
1817 !freq_is_chan_12_13_14(beacon_chan->center_freq)))))
1818 return 0;
1819
1820 reg_beacon = kzalloc(sizeof(struct reg_beacon), gfp);
1821 if (!reg_beacon)
1822 return -ENOMEM;
1823
1824 REG_DBG_PRINT("Found new beacon on "
1825 "frequency: %d MHz (Ch %d) on %s\n",
1826 beacon_chan->center_freq,
1827 ieee80211_frequency_to_channel(beacon_chan->center_freq),
1828 wiphy_name(wiphy));
1829
1830 memcpy(&reg_beacon->chan, beacon_chan,
1831 sizeof(struct ieee80211_channel));
1832
1833
1834 /*
1835 * Since we can be called from BH or and non-BH context
1836 * we must use spin_lock_bh()
1837 */
1838 spin_lock_bh(&reg_pending_beacons_lock);
1839 list_add_tail(&reg_beacon->list, &reg_pending_beacons);
1840 spin_unlock_bh(&reg_pending_beacons_lock);
1841
1842 schedule_work(&reg_work);
1843
1844 return 0;
1845 }
1846
1847 static void print_rd_rules(const struct ieee80211_regdomain *rd)
1848 {
1849 unsigned int i;
1850 const struct ieee80211_reg_rule *reg_rule = NULL;
1851 const struct ieee80211_freq_range *freq_range = NULL;
1852 const struct ieee80211_power_rule *power_rule = NULL;
1853
1854 printk(KERN_INFO " (start_freq - end_freq @ bandwidth), "
1855 "(max_antenna_gain, max_eirp)\n");
1856
1857 for (i = 0; i < rd->n_reg_rules; i++) {
1858 reg_rule = &rd->reg_rules[i];
1859 freq_range = &reg_rule->freq_range;
1860 power_rule = &reg_rule->power_rule;
1861
1862 /*
1863 * There may not be documentation for max antenna gain
1864 * in certain regions
1865 */
1866 if (power_rule->max_antenna_gain)
1867 printk(KERN_INFO " (%d KHz - %d KHz @ %d KHz), "
1868 "(%d mBi, %d mBm)\n",
1869 freq_range->start_freq_khz,
1870 freq_range->end_freq_khz,
1871 freq_range->max_bandwidth_khz,
1872 power_rule->max_antenna_gain,
1873 power_rule->max_eirp);
1874 else
1875 printk(KERN_INFO " (%d KHz - %d KHz @ %d KHz), "
1876 "(N/A, %d mBm)\n",
1877 freq_range->start_freq_khz,
1878 freq_range->end_freq_khz,
1879 freq_range->max_bandwidth_khz,
1880 power_rule->max_eirp);
1881 }
1882 }
1883
1884 static void print_regdomain(const struct ieee80211_regdomain *rd)
1885 {
1886
1887 if (is_intersected_alpha2(rd->alpha2)) {
1888
1889 if (last_request->initiator ==
1890 NL80211_REGDOM_SET_BY_COUNTRY_IE) {
1891 struct cfg80211_registered_device *rdev;
1892 rdev = cfg80211_rdev_by_wiphy_idx(
1893 last_request->wiphy_idx);
1894 if (rdev) {
1895 printk(KERN_INFO "cfg80211: Current regulatory "
1896 "domain updated by AP to: %c%c\n",
1897 rdev->country_ie_alpha2[0],
1898 rdev->country_ie_alpha2[1]);
1899 } else
1900 printk(KERN_INFO "cfg80211: Current regulatory "
1901 "domain intersected:\n");
1902 } else
1903 printk(KERN_INFO "cfg80211: Current regulatory "
1904 "domain intersected:\n");
1905 } else if (is_world_regdom(rd->alpha2))
1906 printk(KERN_INFO "cfg80211: World regulatory "
1907 "domain updated:\n");
1908 else {
1909 if (is_unknown_alpha2(rd->alpha2))
1910 printk(KERN_INFO "cfg80211: Regulatory domain "
1911 "changed to driver built-in settings "
1912 "(unknown country)\n");
1913 else
1914 printk(KERN_INFO "cfg80211: Regulatory domain "
1915 "changed to country: %c%c\n",
1916 rd->alpha2[0], rd->alpha2[1]);
1917 }
1918 print_rd_rules(rd);
1919 }
1920
1921 static void print_regdomain_info(const struct ieee80211_regdomain *rd)
1922 {
1923 printk(KERN_INFO "cfg80211: Regulatory domain: %c%c\n",
1924 rd->alpha2[0], rd->alpha2[1]);
1925 print_rd_rules(rd);
1926 }
1927
1928 /* Takes ownership of rd only if it doesn't fail */
1929 static int __set_regdom(const struct ieee80211_regdomain *rd)
1930 {
1931 const struct ieee80211_regdomain *intersected_rd = NULL;
1932 struct cfg80211_registered_device *rdev = NULL;
1933 struct wiphy *request_wiphy;
1934 /* Some basic sanity checks first */
1935
1936 if (is_world_regdom(rd->alpha2)) {
1937 if (WARN_ON(!reg_is_valid_request(rd->alpha2)))
1938 return -EINVAL;
1939 update_world_regdomain(rd);
1940 return 0;
1941 }
1942
1943 if (!is_alpha2_set(rd->alpha2) && !is_an_alpha2(rd->alpha2) &&
1944 !is_unknown_alpha2(rd->alpha2))
1945 return -EINVAL;
1946
1947 if (!last_request)
1948 return -EINVAL;
1949
1950 /*
1951 * Lets only bother proceeding on the same alpha2 if the current
1952 * rd is non static (it means CRDA was present and was used last)
1953 * and the pending request came in from a country IE
1954 */
1955 if (last_request->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE) {
1956 /*
1957 * If someone else asked us to change the rd lets only bother
1958 * checking if the alpha2 changes if CRDA was already called
1959 */
1960 if (!regdom_changes(rd->alpha2))
1961 return -EINVAL;
1962 }
1963
1964 /*
1965 * Now lets set the regulatory domain, update all driver channels
1966 * and finally inform them of what we have done, in case they want
1967 * to review or adjust their own settings based on their own
1968 * internal EEPROM data
1969 */
1970
1971 if (WARN_ON(!reg_is_valid_request(rd->alpha2)))
1972 return -EINVAL;
1973
1974 if (!is_valid_rd(rd)) {
1975 printk(KERN_ERR "cfg80211: Invalid "
1976 "regulatory domain detected:\n");
1977 print_regdomain_info(rd);
1978 return -EINVAL;
1979 }
1980
1981 request_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx);
1982
1983 if (!last_request->intersect) {
1984 int r;
1985
1986 if (last_request->initiator != NL80211_REGDOM_SET_BY_DRIVER) {
1987 reset_regdomains();
1988 cfg80211_regdomain = rd;
1989 return 0;
1990 }
1991
1992 /*
1993 * For a driver hint, lets copy the regulatory domain the
1994 * driver wanted to the wiphy to deal with conflicts
1995 */
1996
1997 /*
1998 * Userspace could have sent two replies with only
1999 * one kernel request.
2000 */
2001 if (request_wiphy->regd)
2002 return -EALREADY;
2003
2004 r = reg_copy_regd(&request_wiphy->regd, rd);
2005 if (r)
2006 return r;
2007
2008 reset_regdomains();
2009 cfg80211_regdomain = rd;
2010 return 0;
2011 }
2012
2013 /* Intersection requires a bit more work */
2014
2015 if (last_request->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE) {
2016
2017 intersected_rd = regdom_intersect(rd, cfg80211_regdomain);
2018 if (!intersected_rd)
2019 return -EINVAL;
2020
2021 /*
2022 * We can trash what CRDA provided now.
2023 * However if a driver requested this specific regulatory
2024 * domain we keep it for its private use
2025 */
2026 if (last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER)
2027 request_wiphy->regd = rd;
2028 else
2029 kfree(rd);
2030
2031 rd = NULL;
2032
2033 reset_regdomains();
2034 cfg80211_regdomain = intersected_rd;
2035
2036 return 0;
2037 }
2038
2039 if (!intersected_rd)
2040 return -EINVAL;
2041
2042 rdev = wiphy_to_dev(request_wiphy);
2043
2044 rdev->country_ie_alpha2[0] = rd->alpha2[0];
2045 rdev->country_ie_alpha2[1] = rd->alpha2[1];
2046 rdev->env = last_request->country_ie_env;
2047
2048 BUG_ON(intersected_rd == rd);
2049
2050 kfree(rd);
2051 rd = NULL;
2052
2053 reset_regdomains();
2054 cfg80211_regdomain = intersected_rd;
2055
2056 return 0;
2057 }
2058
2059
2060 /*
2061 * Use this call to set the current regulatory domain. Conflicts with
2062 * multiple drivers can be ironed out later. Caller must've already
2063 * kmalloc'd the rd structure. Caller must hold cfg80211_mutex
2064 */
2065 int set_regdom(const struct ieee80211_regdomain *rd)
2066 {
2067 int r;
2068
2069 assert_cfg80211_lock();
2070
2071 mutex_lock(&reg_mutex);
2072
2073 /* Note that this doesn't update the wiphys, this is done below */
2074 r = __set_regdom(rd);
2075 if (r) {
2076 kfree(rd);
2077 mutex_unlock(&reg_mutex);
2078 return r;
2079 }
2080
2081 /* This would make this whole thing pointless */
2082 if (!last_request->intersect)
2083 BUG_ON(rd != cfg80211_regdomain);
2084
2085 /* update all wiphys now with the new established regulatory domain */
2086 update_all_wiphy_regulatory(last_request->initiator);
2087
2088 print_regdomain(cfg80211_regdomain);
2089
2090 nl80211_send_reg_change_event(last_request);
2091
2092 reg_set_request_processed();
2093
2094 mutex_unlock(&reg_mutex);
2095
2096 return r;
2097 }
2098
2099 /* Caller must hold cfg80211_mutex */
2100 void reg_device_remove(struct wiphy *wiphy)
2101 {
2102 struct wiphy *request_wiphy = NULL;
2103
2104 assert_cfg80211_lock();
2105
2106 mutex_lock(&reg_mutex);
2107
2108 kfree(wiphy->regd);
2109
2110 if (last_request)
2111 request_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx);
2112
2113 if (!request_wiphy || request_wiphy != wiphy)
2114 goto out;
2115
2116 last_request->wiphy_idx = WIPHY_IDX_STALE;
2117 last_request->country_ie_env = ENVIRON_ANY;
2118 out:
2119 mutex_unlock(&reg_mutex);
2120 }
2121
2122 int __init regulatory_init(void)
2123 {
2124 int err = 0;
2125
2126 reg_pdev = platform_device_register_simple("regulatory", 0, NULL, 0);
2127 if (IS_ERR(reg_pdev))
2128 return PTR_ERR(reg_pdev);
2129
2130 spin_lock_init(&reg_requests_lock);
2131 spin_lock_init(&reg_pending_beacons_lock);
2132
2133 cfg80211_regdomain = cfg80211_world_regdom;
2134
2135 user_alpha2[0] = '9';
2136 user_alpha2[1] = '7';
2137
2138 /* We always try to get an update for the static regdomain */
2139 err = regulatory_hint_core(cfg80211_regdomain->alpha2);
2140 if (err) {
2141 if (err == -ENOMEM)
2142 return err;
2143 /*
2144 * N.B. kobject_uevent_env() can fail mainly for when we're out
2145 * memory which is handled and propagated appropriately above
2146 * but it can also fail during a netlink_broadcast() or during
2147 * early boot for call_usermodehelper(). For now treat these
2148 * errors as non-fatal.
2149 */
2150 printk(KERN_ERR "cfg80211: kobject_uevent_env() was unable "
2151 "to call CRDA during init");
2152 #ifdef CONFIG_CFG80211_REG_DEBUG
2153 /* We want to find out exactly why when debugging */
2154 WARN_ON(err);
2155 #endif
2156 }
2157
2158 /*
2159 * Finally, if the user set the module parameter treat it
2160 * as a user hint.
2161 */
2162 if (!is_world_regdom(ieee80211_regdom))
2163 regulatory_hint_user(ieee80211_regdom);
2164
2165 return 0;
2166 }
2167
2168 void /* __init_or_exit */ regulatory_exit(void)
2169 {
2170 struct regulatory_request *reg_request, *tmp;
2171 struct reg_beacon *reg_beacon, *btmp;
2172
2173 cancel_work_sync(&reg_work);
2174
2175 mutex_lock(&cfg80211_mutex);
2176 mutex_lock(&reg_mutex);
2177
2178 reset_regdomains();
2179
2180 kfree(last_request);
2181
2182 platform_device_unregister(reg_pdev);
2183
2184 spin_lock_bh(&reg_pending_beacons_lock);
2185 if (!list_empty(&reg_pending_beacons)) {
2186 list_for_each_entry_safe(reg_beacon, btmp,
2187 &reg_pending_beacons, list) {
2188 list_del(&reg_beacon->list);
2189 kfree(reg_beacon);
2190 }
2191 }
2192 spin_unlock_bh(&reg_pending_beacons_lock);
2193
2194 if (!list_empty(&reg_beacon_list)) {
2195 list_for_each_entry_safe(reg_beacon, btmp,
2196 &reg_beacon_list, list) {
2197 list_del(&reg_beacon->list);
2198 kfree(reg_beacon);
2199 }
2200 }
2201
2202 spin_lock(&reg_requests_lock);
2203 if (!list_empty(&reg_requests_list)) {
2204 list_for_each_entry_safe(reg_request, tmp,
2205 &reg_requests_list, list) {
2206 list_del(&reg_request->list);
2207 kfree(reg_request);
2208 }
2209 }
2210 spin_unlock(&reg_requests_lock);
2211
2212 mutex_unlock(&reg_mutex);
2213 mutex_unlock(&cfg80211_mutex);
2214 }