]> git.proxmox.com Git - mirror_qemu.git/blob - qapi/machine.json
b4bd26f7161153cf5322681e069ca205738f03c0
[mirror_qemu.git] / qapi / machine.json
1 # -*- Mode: Python -*-
2 # vim: filetype=python
3 #
4 # This work is licensed under the terms of the GNU GPL, version 2 or later.
5 # See the COPYING file in the top-level directory.
6
7 ##
8 # = Machines
9 ##
10
11 { 'include': 'common.json' }
12 { 'include': 'machine-common.json' }
13
14 ##
15 # @SysEmuTarget:
16 #
17 # The comprehensive enumeration of QEMU system emulation ("softmmu")
18 # targets. Run "./configure --help" in the project root directory,
19 # and look for the \*-softmmu targets near the "--target-list" option.
20 # The individual target constants are not documented here, for the
21 # time being.
22 #
23 # @rx: since 5.0
24 #
25 # @avr: since 5.1
26 #
27 # Notes: The resulting QMP strings can be appended to the
28 # "qemu-system-" prefix to produce the corresponding QEMU
29 # executable name. This is true even for "qemu-system-x86_64".
30 #
31 # Since: 3.0
32 ##
33 { 'enum' : 'SysEmuTarget',
34 'data' : [ 'aarch64', 'alpha', 'arm', 'avr', 'cris', 'hppa', 'i386',
35 'loongarch64', 'm68k', 'microblaze', 'microblazeel', 'mips', 'mips64',
36 'mips64el', 'mipsel', 'nios2', 'or1k', 'ppc',
37 'ppc64', 'riscv32', 'riscv64', 'rx', 's390x', 'sh4',
38 'sh4eb', 'sparc', 'sparc64', 'tricore',
39 'x86_64', 'xtensa', 'xtensaeb' ] }
40
41 ##
42 # @CpuS390State:
43 #
44 # An enumeration of cpu states that can be assumed by a virtual S390
45 # CPU
46 #
47 # Since: 2.12
48 ##
49 { 'enum': 'CpuS390State',
50 'prefix': 'S390_CPU_STATE',
51 'data': [ 'uninitialized', 'stopped', 'check-stop', 'operating', 'load' ] }
52
53 ##
54 # @CpuInfoS390:
55 #
56 # Additional information about a virtual S390 CPU
57 #
58 # @cpu-state: the virtual CPU's state
59 #
60 # @dedicated: the virtual CPU's dedication (since 8.2)
61 #
62 # @entitlement: the virtual CPU's entitlement (since 8.2)
63 #
64 # Since: 2.12
65 ##
66 { 'struct': 'CpuInfoS390',
67 'data': { 'cpu-state': 'CpuS390State',
68 '*dedicated': 'bool',
69 '*entitlement': 'CpuS390Entitlement' } }
70
71 ##
72 # @CpuInfoFast:
73 #
74 # Information about a virtual CPU
75 #
76 # @cpu-index: index of the virtual CPU
77 #
78 # @qom-path: path to the CPU object in the QOM tree
79 #
80 # @thread-id: ID of the underlying host thread
81 #
82 # @props: properties associated with a virtual CPU, e.g. the socket id
83 #
84 # @target: the QEMU system emulation target, which determines which
85 # additional fields will be listed (since 3.0)
86 #
87 # Since: 2.12
88 ##
89 { 'union' : 'CpuInfoFast',
90 'base' : { 'cpu-index' : 'int',
91 'qom-path' : 'str',
92 'thread-id' : 'int',
93 '*props' : 'CpuInstanceProperties',
94 'target' : 'SysEmuTarget' },
95 'discriminator' : 'target',
96 'data' : { 's390x' : 'CpuInfoS390' } }
97
98 ##
99 # @query-cpus-fast:
100 #
101 # Returns information about all virtual CPUs.
102 #
103 # Returns: list of @CpuInfoFast
104 #
105 # Since: 2.12
106 #
107 # Example:
108 #
109 # -> { "execute": "query-cpus-fast" }
110 # <- { "return": [
111 # {
112 # "thread-id": 25627,
113 # "props": {
114 # "core-id": 0,
115 # "thread-id": 0,
116 # "socket-id": 0
117 # },
118 # "qom-path": "/machine/unattached/device[0]",
119 # "target":"x86_64",
120 # "cpu-index": 0
121 # },
122 # {
123 # "thread-id": 25628,
124 # "props": {
125 # "core-id": 0,
126 # "thread-id": 0,
127 # "socket-id": 1
128 # },
129 # "qom-path": "/machine/unattached/device[2]",
130 # "target":"x86_64",
131 # "cpu-index": 1
132 # }
133 # ]
134 # }
135 ##
136 { 'command': 'query-cpus-fast', 'returns': [ 'CpuInfoFast' ] }
137
138 ##
139 # @MachineInfo:
140 #
141 # Information describing a machine.
142 #
143 # @name: the name of the machine
144 #
145 # @alias: an alias for the machine name
146 #
147 # @is-default: whether the machine is default
148 #
149 # @cpu-max: maximum number of CPUs supported by the machine type
150 # (since 1.5)
151 #
152 # @hotpluggable-cpus: cpu hotplug via -device is supported (since 2.7)
153 #
154 # @numa-mem-supported: true if '-numa node,mem' option is supported by
155 # the machine type and false otherwise (since 4.1)
156 #
157 # @deprecated: if true, the machine type is deprecated and may be
158 # removed in future versions of QEMU according to the QEMU
159 # deprecation policy (since 4.1)
160 #
161 # @default-cpu-type: default CPU model typename if none is requested
162 # via the -cpu argument. (since 4.2)
163 #
164 # @default-ram-id: the default ID of initial RAM memory backend (since
165 # 5.2)
166 #
167 # @acpi: machine type supports ACPI (since 8.0)
168 #
169 # Since: 1.2
170 ##
171 { 'struct': 'MachineInfo',
172 'data': { 'name': 'str', '*alias': 'str',
173 '*is-default': 'bool', 'cpu-max': 'int',
174 'hotpluggable-cpus': 'bool', 'numa-mem-supported': 'bool',
175 'deprecated': 'bool', '*default-cpu-type': 'str',
176 '*default-ram-id': 'str', 'acpi': 'bool' } }
177
178 ##
179 # @query-machines:
180 #
181 # Return a list of supported machines
182 #
183 # Returns: a list of MachineInfo
184 #
185 # Since: 1.2
186 ##
187 { 'command': 'query-machines', 'returns': ['MachineInfo'] }
188
189 ##
190 # @CurrentMachineParams:
191 #
192 # Information describing the running machine parameters.
193 #
194 # @wakeup-suspend-support: true if the machine supports wake up from
195 # suspend
196 #
197 # Since: 4.0
198 ##
199 { 'struct': 'CurrentMachineParams',
200 'data': { 'wakeup-suspend-support': 'bool'} }
201
202 ##
203 # @query-current-machine:
204 #
205 # Return information on the current virtual machine.
206 #
207 # Returns: CurrentMachineParams
208 #
209 # Since: 4.0
210 ##
211 { 'command': 'query-current-machine', 'returns': 'CurrentMachineParams' }
212
213 ##
214 # @TargetInfo:
215 #
216 # Information describing the QEMU target.
217 #
218 # @arch: the target architecture
219 #
220 # Since: 1.2
221 ##
222 { 'struct': 'TargetInfo',
223 'data': { 'arch': 'SysEmuTarget' } }
224
225 ##
226 # @query-target:
227 #
228 # Return information about the target for this QEMU
229 #
230 # Returns: TargetInfo
231 #
232 # Since: 1.2
233 ##
234 { 'command': 'query-target', 'returns': 'TargetInfo' }
235
236 ##
237 # @UuidInfo:
238 #
239 # Guest UUID information (Universally Unique Identifier).
240 #
241 # @UUID: the UUID of the guest
242 #
243 # Since: 0.14
244 #
245 # Notes: If no UUID was specified for the guest, a null UUID is
246 # returned.
247 ##
248 { 'struct': 'UuidInfo', 'data': {'UUID': 'str'} }
249
250 ##
251 # @query-uuid:
252 #
253 # Query the guest UUID information.
254 #
255 # Returns: The @UuidInfo for the guest
256 #
257 # Since: 0.14
258 #
259 # Example:
260 #
261 # -> { "execute": "query-uuid" }
262 # <- { "return": { "UUID": "550e8400-e29b-41d4-a716-446655440000" } }
263 ##
264 { 'command': 'query-uuid', 'returns': 'UuidInfo', 'allow-preconfig': true }
265
266 ##
267 # @GuidInfo:
268 #
269 # GUID information.
270 #
271 # @guid: the globally unique identifier
272 #
273 # Since: 2.9
274 ##
275 { 'struct': 'GuidInfo', 'data': {'guid': 'str'} }
276
277 ##
278 # @query-vm-generation-id:
279 #
280 # Show Virtual Machine Generation ID
281 #
282 # Since: 2.9
283 ##
284 { 'command': 'query-vm-generation-id', 'returns': 'GuidInfo' }
285
286 ##
287 # @system_reset:
288 #
289 # Performs a hard reset of a guest.
290 #
291 # Since: 0.14
292 #
293 # Example:
294 #
295 # -> { "execute": "system_reset" }
296 # <- { "return": {} }
297 ##
298 { 'command': 'system_reset' }
299
300 ##
301 # @system_powerdown:
302 #
303 # Requests that a guest perform a powerdown operation.
304 #
305 # Since: 0.14
306 #
307 # Notes: A guest may or may not respond to this command. This command
308 # returning does not indicate that a guest has accepted the
309 # request or that it has shut down. Many guests will respond to
310 # this command by prompting the user in some way.
311 #
312 # Example:
313 #
314 # -> { "execute": "system_powerdown" }
315 # <- { "return": {} }
316 ##
317 { 'command': 'system_powerdown' }
318
319 ##
320 # @system_wakeup:
321 #
322 # Wake up guest from suspend. If the guest has wake-up from suspend
323 # support enabled (wakeup-suspend-support flag from
324 # query-current-machine), wake-up guest from suspend if the guest is
325 # in SUSPENDED state. Return an error otherwise.
326 #
327 # Since: 1.1
328 #
329 # Returns: nothing.
330 #
331 # Note: prior to 4.0, this command does nothing in case the guest
332 # isn't suspended.
333 #
334 # Example:
335 #
336 # -> { "execute": "system_wakeup" }
337 # <- { "return": {} }
338 ##
339 { 'command': 'system_wakeup' }
340
341 ##
342 # @LostTickPolicy:
343 #
344 # Policy for handling lost ticks in timer devices. Ticks end up
345 # getting lost when, for example, the guest is paused.
346 #
347 # @discard: throw away the missed ticks and continue with future
348 # injection normally. The guest OS will see the timer jump ahead
349 # by a potentially quite significant amount all at once, as if the
350 # intervening chunk of time had simply not existed; needless to
351 # say, such a sudden jump can easily confuse a guest OS which is
352 # not specifically prepared to deal with it. Assuming the guest
353 # OS can deal correctly with the time jump, the time in the guest
354 # and in the host should now match.
355 #
356 # @delay: continue to deliver ticks at the normal rate. The guest OS
357 # will not notice anything is amiss, as from its point of view
358 # time will have continued to flow normally. The time in the
359 # guest should now be behind the time in the host by exactly the
360 # amount of time during which ticks have been missed.
361 #
362 # @slew: deliver ticks at a higher rate to catch up with the missed
363 # ticks. The guest OS will not notice anything is amiss, as from
364 # its point of view time will have continued to flow normally.
365 # Once the timer has managed to catch up with all the missing
366 # ticks, the time in the guest and in the host should match.
367 #
368 # Since: 2.0
369 ##
370 { 'enum': 'LostTickPolicy',
371 'data': ['discard', 'delay', 'slew' ] }
372
373 ##
374 # @inject-nmi:
375 #
376 # Injects a Non-Maskable Interrupt into the default CPU (x86/s390) or
377 # all CPUs (ppc64). The command fails when the guest doesn't support
378 # injecting.
379 #
380 # Returns: If successful, nothing
381 #
382 # Since: 0.14
383 #
384 # Note: prior to 2.1, this command was only supported for x86 and s390
385 # VMs
386 #
387 # Example:
388 #
389 # -> { "execute": "inject-nmi" }
390 # <- { "return": {} }
391 ##
392 { 'command': 'inject-nmi' }
393
394 ##
395 # @KvmInfo:
396 #
397 # Information about support for KVM acceleration
398 #
399 # @enabled: true if KVM acceleration is active
400 #
401 # @present: true if KVM acceleration is built into this executable
402 #
403 # Since: 0.14
404 ##
405 { 'struct': 'KvmInfo', 'data': {'enabled': 'bool', 'present': 'bool'} }
406
407 ##
408 # @query-kvm:
409 #
410 # Returns information about KVM acceleration
411 #
412 # Returns: @KvmInfo
413 #
414 # Since: 0.14
415 #
416 # Example:
417 #
418 # -> { "execute": "query-kvm" }
419 # <- { "return": { "enabled": true, "present": true } }
420 ##
421 { 'command': 'query-kvm', 'returns': 'KvmInfo' }
422
423 ##
424 # @NumaOptionsType:
425 #
426 # @node: NUMA nodes configuration
427 #
428 # @dist: NUMA distance configuration (since 2.10)
429 #
430 # @cpu: property based CPU(s) to node mapping (Since: 2.10)
431 #
432 # @hmat-lb: memory latency and bandwidth information (Since: 5.0)
433 #
434 # @hmat-cache: memory side cache information (Since: 5.0)
435 #
436 # Since: 2.1
437 ##
438 { 'enum': 'NumaOptionsType',
439 'data': [ 'node', 'dist', 'cpu', 'hmat-lb', 'hmat-cache' ] }
440
441 ##
442 # @NumaOptions:
443 #
444 # A discriminated record of NUMA options. (for OptsVisitor)
445 #
446 # Since: 2.1
447 ##
448 { 'union': 'NumaOptions',
449 'base': { 'type': 'NumaOptionsType' },
450 'discriminator': 'type',
451 'data': {
452 'node': 'NumaNodeOptions',
453 'dist': 'NumaDistOptions',
454 'cpu': 'NumaCpuOptions',
455 'hmat-lb': 'NumaHmatLBOptions',
456 'hmat-cache': 'NumaHmatCacheOptions' }}
457
458 ##
459 # @NumaNodeOptions:
460 #
461 # Create a guest NUMA node. (for OptsVisitor)
462 #
463 # @nodeid: NUMA node ID (increase by 1 from 0 if omitted)
464 #
465 # @cpus: VCPUs belonging to this node (assign VCPUS round-robin if
466 # omitted)
467 #
468 # @mem: memory size of this node; mutually exclusive with @memdev.
469 # Equally divide total memory among nodes if both @mem and @memdev
470 # are omitted.
471 #
472 # @memdev: memory backend object. If specified for one node, it must
473 # be specified for all nodes.
474 #
475 # @initiator: defined in ACPI 6.3 Chapter 5.2.27.3 Table 5-145, points
476 # to the nodeid which has the memory controller responsible for
477 # this NUMA node. This field provides additional information as
478 # to the initiator node that is closest (as in directly attached)
479 # to this node, and therefore has the best performance (since 5.0)
480 #
481 # Since: 2.1
482 ##
483 { 'struct': 'NumaNodeOptions',
484 'data': {
485 '*nodeid': 'uint16',
486 '*cpus': ['uint16'],
487 '*mem': 'size',
488 '*memdev': 'str',
489 '*initiator': 'uint16' }}
490
491 ##
492 # @NumaDistOptions:
493 #
494 # Set the distance between 2 NUMA nodes.
495 #
496 # @src: source NUMA node.
497 #
498 # @dst: destination NUMA node.
499 #
500 # @val: NUMA distance from source node to destination node. When a
501 # node is unreachable from another node, set the distance between
502 # them to 255.
503 #
504 # Since: 2.10
505 ##
506 { 'struct': 'NumaDistOptions',
507 'data': {
508 'src': 'uint16',
509 'dst': 'uint16',
510 'val': 'uint8' }}
511
512 ##
513 # @CXLFixedMemoryWindowOptions:
514 #
515 # Create a CXL Fixed Memory Window
516 #
517 # @size: Size of the Fixed Memory Window in bytes. Must be a multiple
518 # of 256MiB.
519 #
520 # @interleave-granularity: Number of contiguous bytes for which
521 # accesses will go to a given interleave target. Accepted values
522 # [256, 512, 1k, 2k, 4k, 8k, 16k]
523 #
524 # @targets: Target root bridge IDs from -device ...,id=<ID> for each
525 # root bridge.
526 #
527 # Since: 7.1
528 ##
529 { 'struct': 'CXLFixedMemoryWindowOptions',
530 'data': {
531 'size': 'size',
532 '*interleave-granularity': 'size',
533 'targets': ['str'] }}
534
535 ##
536 # @CXLFMWProperties:
537 #
538 # List of CXL Fixed Memory Windows.
539 #
540 # @cxl-fmw: List of CXLFixedMemoryWindowOptions
541 #
542 # Since: 7.1
543 ##
544 { 'struct' : 'CXLFMWProperties',
545 'data': { 'cxl-fmw': ['CXLFixedMemoryWindowOptions'] }
546 }
547
548 ##
549 # @X86CPURegister32:
550 #
551 # A X86 32-bit register
552 #
553 # Since: 1.5
554 ##
555 { 'enum': 'X86CPURegister32',
556 'data': [ 'EAX', 'EBX', 'ECX', 'EDX', 'ESP', 'EBP', 'ESI', 'EDI' ] }
557
558 ##
559 # @X86CPUFeatureWordInfo:
560 #
561 # Information about a X86 CPU feature word
562 #
563 # @cpuid-input-eax: Input EAX value for CPUID instruction for that
564 # feature word
565 #
566 # @cpuid-input-ecx: Input ECX value for CPUID instruction for that
567 # feature word
568 #
569 # @cpuid-register: Output register containing the feature bits
570 #
571 # @features: value of output register, containing the feature bits
572 #
573 # Since: 1.5
574 ##
575 { 'struct': 'X86CPUFeatureWordInfo',
576 'data': { 'cpuid-input-eax': 'int',
577 '*cpuid-input-ecx': 'int',
578 'cpuid-register': 'X86CPURegister32',
579 'features': 'int' } }
580
581 ##
582 # @DummyForceArrays:
583 #
584 # Not used by QMP; hack to let us use X86CPUFeatureWordInfoList
585 # internally
586 #
587 # Since: 2.5
588 ##
589 { 'struct': 'DummyForceArrays',
590 'data': { 'unused': ['X86CPUFeatureWordInfo'] } }
591
592 ##
593 # @NumaCpuOptions:
594 #
595 # Option "-numa cpu" overrides default cpu to node mapping. It
596 # accepts the same set of cpu properties as returned by
597 # query-hotpluggable-cpus[].props, where node-id could be used to
598 # override default node mapping.
599 #
600 # Since: 2.10
601 ##
602 { 'struct': 'NumaCpuOptions',
603 'base': 'CpuInstanceProperties',
604 'data' : {} }
605
606 ##
607 # @HmatLBMemoryHierarchy:
608 #
609 # The memory hierarchy in the System Locality Latency and Bandwidth
610 # Information Structure of HMAT (Heterogeneous Memory Attribute Table)
611 #
612 # For more information about @HmatLBMemoryHierarchy, see chapter
613 # 5.2.27.4: Table 5-146: Field "Flags" of ACPI 6.3 spec.
614 #
615 # @memory: the structure represents the memory performance
616 #
617 # @first-level: first level of memory side cache
618 #
619 # @second-level: second level of memory side cache
620 #
621 # @third-level: third level of memory side cache
622 #
623 # Since: 5.0
624 ##
625 { 'enum': 'HmatLBMemoryHierarchy',
626 'data': [ 'memory', 'first-level', 'second-level', 'third-level' ] }
627
628 ##
629 # @HmatLBDataType:
630 #
631 # Data type in the System Locality Latency and Bandwidth Information
632 # Structure of HMAT (Heterogeneous Memory Attribute Table)
633 #
634 # For more information about @HmatLBDataType, see chapter 5.2.27.4:
635 # Table 5-146: Field "Data Type" of ACPI 6.3 spec.
636 #
637 # @access-latency: access latency (nanoseconds)
638 #
639 # @read-latency: read latency (nanoseconds)
640 #
641 # @write-latency: write latency (nanoseconds)
642 #
643 # @access-bandwidth: access bandwidth (Bytes per second)
644 #
645 # @read-bandwidth: read bandwidth (Bytes per second)
646 #
647 # @write-bandwidth: write bandwidth (Bytes per second)
648 #
649 # Since: 5.0
650 ##
651 { 'enum': 'HmatLBDataType',
652 'data': [ 'access-latency', 'read-latency', 'write-latency',
653 'access-bandwidth', 'read-bandwidth', 'write-bandwidth' ] }
654
655 ##
656 # @NumaHmatLBOptions:
657 #
658 # Set the system locality latency and bandwidth information between
659 # Initiator and Target proximity Domains.
660 #
661 # For more information about @NumaHmatLBOptions, see chapter 5.2.27.4:
662 # Table 5-146 of ACPI 6.3 spec.
663 #
664 # @initiator: the Initiator Proximity Domain.
665 #
666 # @target: the Target Proximity Domain.
667 #
668 # @hierarchy: the Memory Hierarchy. Indicates the performance of
669 # memory or side cache.
670 #
671 # @data-type: presents the type of data, access/read/write latency or
672 # hit latency.
673 #
674 # @latency: the value of latency from @initiator to @target proximity
675 # domain, the latency unit is "ns(nanosecond)".
676 #
677 # @bandwidth: the value of bandwidth between @initiator and @target
678 # proximity domain, the bandwidth unit is "Bytes per second".
679 #
680 # Since: 5.0
681 ##
682 { 'struct': 'NumaHmatLBOptions',
683 'data': {
684 'initiator': 'uint16',
685 'target': 'uint16',
686 'hierarchy': 'HmatLBMemoryHierarchy',
687 'data-type': 'HmatLBDataType',
688 '*latency': 'uint64',
689 '*bandwidth': 'size' }}
690
691 ##
692 # @HmatCacheAssociativity:
693 #
694 # Cache associativity in the Memory Side Cache Information Structure
695 # of HMAT
696 #
697 # For more information of @HmatCacheAssociativity, see chapter
698 # 5.2.27.5: Table 5-147 of ACPI 6.3 spec.
699 #
700 # @none: None (no memory side cache in this proximity domain, or cache
701 # associativity unknown)
702 #
703 # @direct: Direct Mapped
704 #
705 # @complex: Complex Cache Indexing (implementation specific)
706 #
707 # Since: 5.0
708 ##
709 { 'enum': 'HmatCacheAssociativity',
710 'data': [ 'none', 'direct', 'complex' ] }
711
712 ##
713 # @HmatCacheWritePolicy:
714 #
715 # Cache write policy in the Memory Side Cache Information Structure of
716 # HMAT
717 #
718 # For more information of @HmatCacheWritePolicy, see chapter 5.2.27.5:
719 # Table 5-147: Field "Cache Attributes" of ACPI 6.3 spec.
720 #
721 # @none: None (no memory side cache in this proximity domain, or cache
722 # write policy unknown)
723 #
724 # @write-back: Write Back (WB)
725 #
726 # @write-through: Write Through (WT)
727 #
728 # Since: 5.0
729 ##
730 { 'enum': 'HmatCacheWritePolicy',
731 'data': [ 'none', 'write-back', 'write-through' ] }
732
733 ##
734 # @NumaHmatCacheOptions:
735 #
736 # Set the memory side cache information for a given memory domain.
737 #
738 # For more information of @NumaHmatCacheOptions, see chapter 5.2.27.5:
739 # Table 5-147: Field "Cache Attributes" of ACPI 6.3 spec.
740 #
741 # @node-id: the memory proximity domain to which the memory belongs.
742 #
743 # @size: the size of memory side cache in bytes.
744 #
745 # @level: the cache level described in this structure.
746 #
747 # @associativity: the cache associativity,
748 # none/direct-mapped/complex(complex cache indexing).
749 #
750 # @policy: the write policy, none/write-back/write-through.
751 #
752 # @line: the cache Line size in bytes.
753 #
754 # Since: 5.0
755 ##
756 { 'struct': 'NumaHmatCacheOptions',
757 'data': {
758 'node-id': 'uint32',
759 'size': 'size',
760 'level': 'uint8',
761 'associativity': 'HmatCacheAssociativity',
762 'policy': 'HmatCacheWritePolicy',
763 'line': 'uint16' }}
764
765 ##
766 # @memsave:
767 #
768 # Save a portion of guest memory to a file.
769 #
770 # @val: the virtual address of the guest to start from
771 #
772 # @size: the size of memory region to save
773 #
774 # @filename: the file to save the memory to as binary data
775 #
776 # @cpu-index: the index of the virtual CPU to use for translating the
777 # virtual address (defaults to CPU 0)
778 #
779 # Returns: Nothing on success
780 #
781 # Since: 0.14
782 #
783 # Notes: Errors were not reliably returned until 1.1
784 #
785 # Example:
786 #
787 # -> { "execute": "memsave",
788 # "arguments": { "val": 10,
789 # "size": 100,
790 # "filename": "/tmp/virtual-mem-dump" } }
791 # <- { "return": {} }
792 ##
793 { 'command': 'memsave',
794 'data': {'val': 'int', 'size': 'int', 'filename': 'str', '*cpu-index': 'int'} }
795
796 ##
797 # @pmemsave:
798 #
799 # Save a portion of guest physical memory to a file.
800 #
801 # @val: the physical address of the guest to start from
802 #
803 # @size: the size of memory region to save
804 #
805 # @filename: the file to save the memory to as binary data
806 #
807 # Returns: Nothing on success
808 #
809 # Since: 0.14
810 #
811 # Notes: Errors were not reliably returned until 1.1
812 #
813 # Example:
814 #
815 # -> { "execute": "pmemsave",
816 # "arguments": { "val": 10,
817 # "size": 100,
818 # "filename": "/tmp/physical-mem-dump" } }
819 # <- { "return": {} }
820 ##
821 { 'command': 'pmemsave',
822 'data': {'val': 'int', 'size': 'int', 'filename': 'str'} }
823
824 ##
825 # @Memdev:
826 #
827 # Information about memory backend
828 #
829 # @id: backend's ID if backend has 'id' property (since 2.9)
830 #
831 # @size: memory backend size
832 #
833 # @merge: whether memory merge support is enabled
834 #
835 # @dump: whether memory backend's memory is included in a core dump
836 #
837 # @prealloc: whether memory was preallocated
838 #
839 # @share: whether memory is private to QEMU or shared (since 6.1)
840 #
841 # @reserve: whether swap space (or huge pages) was reserved if
842 # applicable. This corresponds to the user configuration and not
843 # the actual behavior implemented in the OS to perform the
844 # reservation. For example, Linux will never reserve swap space
845 # for shared file mappings. (since 6.1)
846 #
847 # @host-nodes: host nodes for its memory policy
848 #
849 # @policy: memory policy of memory backend
850 #
851 # Since: 2.1
852 ##
853 { 'struct': 'Memdev',
854 'data': {
855 '*id': 'str',
856 'size': 'size',
857 'merge': 'bool',
858 'dump': 'bool',
859 'prealloc': 'bool',
860 'share': 'bool',
861 '*reserve': 'bool',
862 'host-nodes': ['uint16'],
863 'policy': 'HostMemPolicy' }}
864
865 ##
866 # @query-memdev:
867 #
868 # Returns information for all memory backends.
869 #
870 # Returns: a list of @Memdev.
871 #
872 # Since: 2.1
873 #
874 # Example:
875 #
876 # -> { "execute": "query-memdev" }
877 # <- { "return": [
878 # {
879 # "id": "mem1",
880 # "size": 536870912,
881 # "merge": false,
882 # "dump": true,
883 # "prealloc": false,
884 # "share": false,
885 # "host-nodes": [0, 1],
886 # "policy": "bind"
887 # },
888 # {
889 # "size": 536870912,
890 # "merge": false,
891 # "dump": true,
892 # "prealloc": true,
893 # "share": false,
894 # "host-nodes": [2, 3],
895 # "policy": "preferred"
896 # }
897 # ]
898 # }
899 ##
900 { 'command': 'query-memdev', 'returns': ['Memdev'], 'allow-preconfig': true }
901
902 ##
903 # @CpuInstanceProperties:
904 #
905 # List of properties to be used for hotplugging a CPU instance, it
906 # should be passed by management with device_add command when a CPU is
907 # being hotplugged.
908 #
909 # Which members are optional and which mandatory depends on the
910 # architecture and board.
911 #
912 # The ids other than the node-id specify the position of the CPU
913 # within the CPU topology (as defined by the machine property "smp",
914 # thus see also type @SMPConfiguration)
915 #
916 # @node-id: NUMA node ID the CPU belongs to
917 #
918 # @drawer-id: drawer number within CPU topology the CPU belongs to
919 # (since 8.2)
920 #
921 # @book-id: book number within parent container the CPU belongs to
922 # (since 8.2)
923 #
924 # @socket-id: socket number within parent container the CPU belongs to
925 #
926 # @die-id: die number within the parent container the CPU belongs to
927 # (since 4.1)
928 #
929 # @cluster-id: cluster number within the parent container the CPU
930 # belongs to (since 7.1)
931 #
932 # @core-id: core number within the parent container the CPU
933 # belongs to
934 #
935 # @thread-id: thread number within the core the CPU belongs to
936 #
937 # Note: management should be prepared to pass through additional
938 # properties with device_add.
939 #
940 # Since: 2.7
941 ##
942 { 'struct': 'CpuInstanceProperties',
943 # Keep these in sync with the properties device_add accepts
944 'data': { '*node-id': 'int',
945 '*drawer-id': 'int',
946 '*book-id': 'int',
947 '*socket-id': 'int',
948 '*die-id': 'int',
949 '*cluster-id': 'int',
950 '*core-id': 'int',
951 '*thread-id': 'int'
952 }
953 }
954
955 ##
956 # @HotpluggableCPU:
957 #
958 # @type: CPU object type for usage with device_add command
959 #
960 # @props: list of properties to be used for hotplugging CPU
961 #
962 # @vcpus-count: number of logical VCPU threads @HotpluggableCPU
963 # provides
964 #
965 # @qom-path: link to existing CPU object if CPU is present or omitted
966 # if CPU is not present.
967 #
968 # Since: 2.7
969 ##
970 { 'struct': 'HotpluggableCPU',
971 'data': { 'type': 'str',
972 'vcpus-count': 'int',
973 'props': 'CpuInstanceProperties',
974 '*qom-path': 'str'
975 }
976 }
977
978 ##
979 # @query-hotpluggable-cpus:
980 #
981 # TODO: Better documentation; currently there is none.
982 #
983 # Returns: a list of HotpluggableCPU objects.
984 #
985 # Since: 2.7
986 #
987 # Examples:
988 #
989 # For pseries machine type started with -smp 2,cores=2,maxcpus=4 -cpu
990 # POWER8:
991 #
992 # -> { "execute": "query-hotpluggable-cpus" }
993 # <- {"return": [
994 # { "props": { "core-id": 8 }, "type": "POWER8-spapr-cpu-core",
995 # "vcpus-count": 1 },
996 # { "props": { "core-id": 0 }, "type": "POWER8-spapr-cpu-core",
997 # "vcpus-count": 1, "qom-path": "/machine/unattached/device[0]"}
998 # ]}'
999 #
1000 # For pc machine type started with -smp 1,maxcpus=2:
1001 #
1002 # -> { "execute": "query-hotpluggable-cpus" }
1003 # <- {"return": [
1004 # {
1005 # "type": "qemu64-x86_64-cpu", "vcpus-count": 1,
1006 # "props": {"core-id": 0, "socket-id": 1, "thread-id": 0}
1007 # },
1008 # {
1009 # "qom-path": "/machine/unattached/device[0]",
1010 # "type": "qemu64-x86_64-cpu", "vcpus-count": 1,
1011 # "props": {"core-id": 0, "socket-id": 0, "thread-id": 0}
1012 # }
1013 # ]}
1014 #
1015 # For s390x-virtio-ccw machine type started with -smp 1,maxcpus=2 -cpu
1016 # qemu (Since: 2.11):
1017 #
1018 # -> { "execute": "query-hotpluggable-cpus" }
1019 # <- {"return": [
1020 # {
1021 # "type": "qemu-s390x-cpu", "vcpus-count": 1,
1022 # "props": { "core-id": 1 }
1023 # },
1024 # {
1025 # "qom-path": "/machine/unattached/device[0]",
1026 # "type": "qemu-s390x-cpu", "vcpus-count": 1,
1027 # "props": { "core-id": 0 }
1028 # }
1029 # ]}
1030 ##
1031 { 'command': 'query-hotpluggable-cpus', 'returns': ['HotpluggableCPU'],
1032 'allow-preconfig': true }
1033
1034 ##
1035 # @set-numa-node:
1036 #
1037 # Runtime equivalent of '-numa' CLI option, available at preconfigure
1038 # stage to configure numa mapping before initializing machine.
1039 #
1040 # Since: 3.0
1041 ##
1042 { 'command': 'set-numa-node', 'boxed': true,
1043 'data': 'NumaOptions',
1044 'allow-preconfig': true
1045 }
1046
1047 ##
1048 # @balloon:
1049 #
1050 # Request the balloon driver to change its balloon size.
1051 #
1052 # @value: the target logical size of the VM in bytes. We can deduce
1053 # the size of the balloon using this formula:
1054 #
1055 # logical_vm_size = vm_ram_size - balloon_size
1056 #
1057 # From it we have: balloon_size = vm_ram_size - @value
1058 #
1059 # Returns:
1060 # - Nothing on success
1061 # - If the balloon driver is enabled but not functional because the
1062 # KVM kernel module cannot support it, KVMMissingCap
1063 # - If no balloon device is present, DeviceNotActive
1064 #
1065 # Notes: This command just issues a request to the guest. When it
1066 # returns, the balloon size may not have changed. A guest can
1067 # change the balloon size independent of this command.
1068 #
1069 # Since: 0.14
1070 #
1071 # Example:
1072 #
1073 # -> { "execute": "balloon", "arguments": { "value": 536870912 } }
1074 # <- { "return": {} }
1075 #
1076 # With a 2.5GiB guest this command inflated the ballon to 3GiB.
1077 ##
1078 { 'command': 'balloon', 'data': {'value': 'int'} }
1079
1080 ##
1081 # @BalloonInfo:
1082 #
1083 # Information about the guest balloon device.
1084 #
1085 # @actual: the logical size of the VM in bytes Formula used:
1086 # logical_vm_size = vm_ram_size - balloon_size
1087 #
1088 # Since: 0.14
1089 ##
1090 { 'struct': 'BalloonInfo', 'data': {'actual': 'int' } }
1091
1092 ##
1093 # @query-balloon:
1094 #
1095 # Return information about the balloon device.
1096 #
1097 # Returns:
1098 # - @BalloonInfo on success
1099 # - If the balloon driver is enabled but not functional because the
1100 # KVM kernel module cannot support it, KVMMissingCap
1101 # - If no balloon device is present, DeviceNotActive
1102 #
1103 # Since: 0.14
1104 #
1105 # Example:
1106 #
1107 # -> { "execute": "query-balloon" }
1108 # <- { "return": {
1109 # "actual": 1073741824
1110 # }
1111 # }
1112 ##
1113 { 'command': 'query-balloon', 'returns': 'BalloonInfo' }
1114
1115 ##
1116 # @BALLOON_CHANGE:
1117 #
1118 # Emitted when the guest changes the actual BALLOON level. This value
1119 # is equivalent to the @actual field return by the 'query-balloon'
1120 # command
1121 #
1122 # @actual: the logical size of the VM in bytes Formula used:
1123 # logical_vm_size = vm_ram_size - balloon_size
1124 #
1125 # Note: this event is rate-limited.
1126 #
1127 # Since: 1.2
1128 #
1129 # Example:
1130 #
1131 # <- { "event": "BALLOON_CHANGE",
1132 # "data": { "actual": 944766976 },
1133 # "timestamp": { "seconds": 1267020223, "microseconds": 435656 } }
1134 ##
1135 { 'event': 'BALLOON_CHANGE',
1136 'data': { 'actual': 'int' } }
1137
1138 ##
1139 # @MemoryInfo:
1140 #
1141 # Actual memory information in bytes.
1142 #
1143 # @base-memory: size of "base" memory specified with command line
1144 # option -m.
1145 #
1146 # @plugged-memory: size of memory that can be hot-unplugged. This
1147 # field is omitted if target doesn't support memory hotplug (i.e.
1148 # CONFIG_MEM_DEVICE not defined at build time).
1149 #
1150 # Since: 2.11
1151 ##
1152 { 'struct': 'MemoryInfo',
1153 'data' : { 'base-memory': 'size', '*plugged-memory': 'size' } }
1154
1155 ##
1156 # @query-memory-size-summary:
1157 #
1158 # Return the amount of initially allocated and present hotpluggable
1159 # (if enabled) memory in bytes.
1160 #
1161 # Example:
1162 #
1163 # -> { "execute": "query-memory-size-summary" }
1164 # <- { "return": { "base-memory": 4294967296, "plugged-memory": 0 } }
1165 #
1166 # Since: 2.11
1167 ##
1168 { 'command': 'query-memory-size-summary', 'returns': 'MemoryInfo' }
1169
1170 ##
1171 # @PCDIMMDeviceInfo:
1172 #
1173 # PCDIMMDevice state information
1174 #
1175 # @id: device's ID
1176 #
1177 # @addr: physical address, where device is mapped
1178 #
1179 # @size: size of memory that the device provides
1180 #
1181 # @slot: slot number at which device is plugged in
1182 #
1183 # @node: NUMA node number where device is plugged in
1184 #
1185 # @memdev: memory backend linked with device
1186 #
1187 # @hotplugged: true if device was hotplugged
1188 #
1189 # @hotpluggable: true if device if could be added/removed while
1190 # machine is running
1191 #
1192 # Since: 2.1
1193 ##
1194 { 'struct': 'PCDIMMDeviceInfo',
1195 'data': { '*id': 'str',
1196 'addr': 'int',
1197 'size': 'int',
1198 'slot': 'int',
1199 'node': 'int',
1200 'memdev': 'str',
1201 'hotplugged': 'bool',
1202 'hotpluggable': 'bool'
1203 }
1204 }
1205
1206 ##
1207 # @VirtioPMEMDeviceInfo:
1208 #
1209 # VirtioPMEM state information
1210 #
1211 # @id: device's ID
1212 #
1213 # @memaddr: physical address in memory, where device is mapped
1214 #
1215 # @size: size of memory that the device provides
1216 #
1217 # @memdev: memory backend linked with device
1218 #
1219 # Since: 4.1
1220 ##
1221 { 'struct': 'VirtioPMEMDeviceInfo',
1222 'data': { '*id': 'str',
1223 'memaddr': 'size',
1224 'size': 'size',
1225 'memdev': 'str'
1226 }
1227 }
1228
1229 ##
1230 # @VirtioMEMDeviceInfo:
1231 #
1232 # VirtioMEMDevice state information
1233 #
1234 # @id: device's ID
1235 #
1236 # @memaddr: physical address in memory, where device is mapped
1237 #
1238 # @requested-size: the user requested size of the device
1239 #
1240 # @size: the (current) size of memory that the device provides
1241 #
1242 # @max-size: the maximum size of memory that the device can provide
1243 #
1244 # @block-size: the block size of memory that the device provides
1245 #
1246 # @node: NUMA node number where device is assigned to
1247 #
1248 # @memdev: memory backend linked with the region
1249 #
1250 # Since: 5.1
1251 ##
1252 { 'struct': 'VirtioMEMDeviceInfo',
1253 'data': { '*id': 'str',
1254 'memaddr': 'size',
1255 'requested-size': 'size',
1256 'size': 'size',
1257 'max-size': 'size',
1258 'block-size': 'size',
1259 'node': 'int',
1260 'memdev': 'str'
1261 }
1262 }
1263
1264 ##
1265 # @SgxEPCDeviceInfo:
1266 #
1267 # Sgx EPC state information
1268 #
1269 # @id: device's ID
1270 #
1271 # @memaddr: physical address in memory, where device is mapped
1272 #
1273 # @size: size of memory that the device provides
1274 #
1275 # @memdev: memory backend linked with device
1276 #
1277 # @node: the numa node (Since: 7.0)
1278 #
1279 # Since: 6.2
1280 ##
1281 { 'struct': 'SgxEPCDeviceInfo',
1282 'data': { '*id': 'str',
1283 'memaddr': 'size',
1284 'size': 'size',
1285 'node': 'int',
1286 'memdev': 'str'
1287 }
1288 }
1289
1290 ##
1291 # @MemoryDeviceInfoKind:
1292 #
1293 # @nvdimm: since 2.12
1294 #
1295 # @virtio-pmem: since 4.1
1296 #
1297 # @virtio-mem: since 5.1
1298 #
1299 # @sgx-epc: since 6.2.
1300 #
1301 # Since: 2.1
1302 ##
1303 { 'enum': 'MemoryDeviceInfoKind',
1304 'data': [ 'dimm', 'nvdimm', 'virtio-pmem', 'virtio-mem', 'sgx-epc' ] }
1305
1306 ##
1307 # @PCDIMMDeviceInfoWrapper:
1308 #
1309 # Since: 2.1
1310 ##
1311 { 'struct': 'PCDIMMDeviceInfoWrapper',
1312 'data': { 'data': 'PCDIMMDeviceInfo' } }
1313
1314 ##
1315 # @VirtioPMEMDeviceInfoWrapper:
1316 #
1317 # Since: 2.1
1318 ##
1319 { 'struct': 'VirtioPMEMDeviceInfoWrapper',
1320 'data': { 'data': 'VirtioPMEMDeviceInfo' } }
1321
1322 ##
1323 # @VirtioMEMDeviceInfoWrapper:
1324 #
1325 # Since: 2.1
1326 ##
1327 { 'struct': 'VirtioMEMDeviceInfoWrapper',
1328 'data': { 'data': 'VirtioMEMDeviceInfo' } }
1329
1330 ##
1331 # @SgxEPCDeviceInfoWrapper:
1332 #
1333 # Since: 6.2
1334 ##
1335 { 'struct': 'SgxEPCDeviceInfoWrapper',
1336 'data': { 'data': 'SgxEPCDeviceInfo' } }
1337
1338 ##
1339 # @MemoryDeviceInfo:
1340 #
1341 # Union containing information about a memory device
1342 #
1343 # Since: 2.1
1344 ##
1345 { 'union': 'MemoryDeviceInfo',
1346 'base': { 'type': 'MemoryDeviceInfoKind' },
1347 'discriminator': 'type',
1348 'data': { 'dimm': 'PCDIMMDeviceInfoWrapper',
1349 'nvdimm': 'PCDIMMDeviceInfoWrapper',
1350 'virtio-pmem': 'VirtioPMEMDeviceInfoWrapper',
1351 'virtio-mem': 'VirtioMEMDeviceInfoWrapper',
1352 'sgx-epc': 'SgxEPCDeviceInfoWrapper'
1353 }
1354 }
1355
1356 ##
1357 # @SgxEPC:
1358 #
1359 # Sgx EPC cmdline information
1360 #
1361 # @memdev: memory backend linked with device
1362 #
1363 # @node: the numa node (Since: 7.0)
1364 #
1365 # Since: 6.2
1366 ##
1367 { 'struct': 'SgxEPC',
1368 'data': { 'memdev': 'str',
1369 'node': 'int'
1370 }
1371 }
1372
1373 ##
1374 # @SgxEPCProperties:
1375 #
1376 # SGX properties of machine types.
1377 #
1378 # @sgx-epc: list of ids of memory-backend-epc objects.
1379 #
1380 # Since: 6.2
1381 ##
1382 { 'struct': 'SgxEPCProperties',
1383 'data': { 'sgx-epc': ['SgxEPC'] }
1384 }
1385
1386 ##
1387 # @query-memory-devices:
1388 #
1389 # Lists available memory devices and their state
1390 #
1391 # Since: 2.1
1392 #
1393 # Example:
1394 #
1395 # -> { "execute": "query-memory-devices" }
1396 # <- { "return": [ { "data":
1397 # { "addr": 5368709120,
1398 # "hotpluggable": true,
1399 # "hotplugged": true,
1400 # "id": "d1",
1401 # "memdev": "/objects/memX",
1402 # "node": 0,
1403 # "size": 1073741824,
1404 # "slot": 0},
1405 # "type": "dimm"
1406 # } ] }
1407 ##
1408 { 'command': 'query-memory-devices', 'returns': ['MemoryDeviceInfo'] }
1409
1410 ##
1411 # @MEMORY_DEVICE_SIZE_CHANGE:
1412 #
1413 # Emitted when the size of a memory device changes. Only emitted for
1414 # memory devices that can actually change the size (e.g., virtio-mem
1415 # due to guest action).
1416 #
1417 # @id: device's ID
1418 #
1419 # @size: the new size of memory that the device provides
1420 #
1421 # @qom-path: path to the device object in the QOM tree (since 6.2)
1422 #
1423 # Note: this event is rate-limited.
1424 #
1425 # Since: 5.1
1426 #
1427 # Example:
1428 #
1429 # <- { "event": "MEMORY_DEVICE_SIZE_CHANGE",
1430 # "data": { "id": "vm0", "size": 1073741824,
1431 # "qom-path": "/machine/unattached/device[2]" },
1432 # "timestamp": { "seconds": 1588168529, "microseconds": 201316 } }
1433 ##
1434 { 'event': 'MEMORY_DEVICE_SIZE_CHANGE',
1435 'data': { '*id': 'str', 'size': 'size', 'qom-path' : 'str'} }
1436
1437 ##
1438 # @MEM_UNPLUG_ERROR:
1439 #
1440 # Emitted when memory hot unplug error occurs.
1441 #
1442 # @device: device name
1443 #
1444 # @msg: Informative message
1445 #
1446 # Features:
1447 #
1448 # @deprecated: This event is deprecated. Use
1449 # @DEVICE_UNPLUG_GUEST_ERROR instead.
1450 #
1451 # Since: 2.4
1452 #
1453 # Example:
1454 #
1455 # <- { "event": "MEM_UNPLUG_ERROR",
1456 # "data": { "device": "dimm1",
1457 # "msg": "acpi: device unplug for unsupported device"
1458 # },
1459 # "timestamp": { "seconds": 1265044230, "microseconds": 450486 } }
1460 ##
1461 { 'event': 'MEM_UNPLUG_ERROR',
1462 'data': { 'device': 'str', 'msg': 'str' },
1463 'features': ['deprecated'] }
1464
1465 ##
1466 # @BootConfiguration:
1467 #
1468 # Schema for virtual machine boot configuration.
1469 #
1470 # @order: Boot order (a=floppy, c=hard disk, d=CD-ROM, n=network)
1471 #
1472 # @once: Boot order to apply on first boot
1473 #
1474 # @menu: Whether to show a boot menu
1475 #
1476 # @splash: The name of the file to be passed to the firmware as logo
1477 # picture, if @menu is true.
1478 #
1479 # @splash-time: How long to show the logo picture, in milliseconds
1480 #
1481 # @reboot-timeout: Timeout before guest reboots after boot fails
1482 #
1483 # @strict: Whether to attempt booting from devices not included in the
1484 # boot order
1485 #
1486 # Since: 7.1
1487 ##
1488 { 'struct': 'BootConfiguration', 'data': {
1489 '*order': 'str',
1490 '*once': 'str',
1491 '*menu': 'bool',
1492 '*splash': 'str',
1493 '*splash-time': 'int',
1494 '*reboot-timeout': 'int',
1495 '*strict': 'bool' } }
1496
1497 ##
1498 # @SMPConfiguration:
1499 #
1500 # Schema for CPU topology configuration. A missing value lets QEMU
1501 # figure out a suitable value based on the ones that are provided.
1502 #
1503 # The members other than @cpus and @maxcpus define a topology of
1504 # containers.
1505 #
1506 # The ordering from highest/coarsest to lowest/finest is:
1507 # @drawers, @books, @sockets, @dies, @clusters, @cores, @threads.
1508 #
1509 # Different architectures support different subsets of topology
1510 # containers.
1511 #
1512 # For example, s390x does not have clusters and dies, and the socket
1513 # is the parent container of cores.
1514 #
1515 # @cpus: number of virtual CPUs in the virtual machine
1516 #
1517 # @maxcpus: maximum number of hotpluggable virtual CPUs in the virtual
1518 # machine
1519 #
1520 # @drawers: number of drawers in the CPU topology (since 8.2)
1521 #
1522 # @books: number of books in the CPU topology (since 8.2)
1523 #
1524 # @sockets: number of sockets per parent container
1525 #
1526 # @dies: number of dies per parent container
1527 #
1528 # @clusters: number of clusters per parent container (since 7.0)
1529 #
1530 # @cores: number of cores per parent container
1531 #
1532 # @threads: number of threads per core
1533 #
1534 # Since: 6.1
1535 ##
1536 { 'struct': 'SMPConfiguration', 'data': {
1537 '*cpus': 'int',
1538 '*drawers': 'int',
1539 '*books': 'int',
1540 '*sockets': 'int',
1541 '*dies': 'int',
1542 '*clusters': 'int',
1543 '*cores': 'int',
1544 '*threads': 'int',
1545 '*maxcpus': 'int' } }
1546
1547 ##
1548 # @x-query-irq:
1549 #
1550 # Query interrupt statistics
1551 #
1552 # Features:
1553 #
1554 # @unstable: This command is meant for debugging.
1555 #
1556 # Returns: interrupt statistics
1557 #
1558 # Since: 6.2
1559 ##
1560 { 'command': 'x-query-irq',
1561 'returns': 'HumanReadableText',
1562 'features': [ 'unstable' ] }
1563
1564 ##
1565 # @x-query-jit:
1566 #
1567 # Query TCG compiler statistics
1568 #
1569 # Features:
1570 #
1571 # @unstable: This command is meant for debugging.
1572 #
1573 # Returns: TCG compiler statistics
1574 #
1575 # Since: 6.2
1576 ##
1577 { 'command': 'x-query-jit',
1578 'returns': 'HumanReadableText',
1579 'if': 'CONFIG_TCG',
1580 'features': [ 'unstable' ] }
1581
1582 ##
1583 # @x-query-numa:
1584 #
1585 # Query NUMA topology information
1586 #
1587 # Features:
1588 #
1589 # @unstable: This command is meant for debugging.
1590 #
1591 # Returns: topology information
1592 #
1593 # Since: 6.2
1594 ##
1595 { 'command': 'x-query-numa',
1596 'returns': 'HumanReadableText',
1597 'features': [ 'unstable' ] }
1598
1599 ##
1600 # @x-query-opcount:
1601 #
1602 # Query TCG opcode counters
1603 #
1604 # Features:
1605 #
1606 # @unstable: This command is meant for debugging.
1607 #
1608 # Returns: TCG opcode counters
1609 #
1610 # Since: 6.2
1611 ##
1612 { 'command': 'x-query-opcount',
1613 'returns': 'HumanReadableText',
1614 'if': 'CONFIG_TCG',
1615 'features': [ 'unstable' ] }
1616
1617 ##
1618 # @x-query-ramblock:
1619 #
1620 # Query system ramblock information
1621 #
1622 # Features:
1623 #
1624 # @unstable: This command is meant for debugging.
1625 #
1626 # Returns: system ramblock information
1627 #
1628 # Since: 6.2
1629 ##
1630 { 'command': 'x-query-ramblock',
1631 'returns': 'HumanReadableText',
1632 'features': [ 'unstable' ] }
1633
1634 ##
1635 # @x-query-rdma:
1636 #
1637 # Query RDMA state
1638 #
1639 # Features:
1640 #
1641 # @unstable: This command is meant for debugging.
1642 #
1643 # Returns: RDMA state
1644 #
1645 # Since: 6.2
1646 ##
1647 { 'command': 'x-query-rdma',
1648 'returns': 'HumanReadableText',
1649 'features': [ 'unstable' ] }
1650
1651 ##
1652 # @x-query-roms:
1653 #
1654 # Query information on the registered ROMS
1655 #
1656 # Features:
1657 #
1658 # @unstable: This command is meant for debugging.
1659 #
1660 # Returns: registered ROMs
1661 #
1662 # Since: 6.2
1663 ##
1664 { 'command': 'x-query-roms',
1665 'returns': 'HumanReadableText',
1666 'features': [ 'unstable' ] }
1667
1668 ##
1669 # @x-query-usb:
1670 #
1671 # Query information on the USB devices
1672 #
1673 # Features:
1674 #
1675 # @unstable: This command is meant for debugging.
1676 #
1677 # Returns: USB device information
1678 #
1679 # Since: 6.2
1680 ##
1681 { 'command': 'x-query-usb',
1682 'returns': 'HumanReadableText',
1683 'features': [ 'unstable' ] }
1684
1685 ##
1686 # @SmbiosEntryPointType:
1687 #
1688 # @32: SMBIOS version 2.1 (32-bit) Entry Point
1689 #
1690 # @64: SMBIOS version 3.0 (64-bit) Entry Point
1691 #
1692 # Since: 7.0
1693 ##
1694 { 'enum': 'SmbiosEntryPointType',
1695 'data': [ '32', '64' ] }
1696
1697 ##
1698 # @MemorySizeConfiguration:
1699 #
1700 # Schema for memory size configuration.
1701 #
1702 # @size: memory size in bytes
1703 #
1704 # @max-size: maximum hotpluggable memory size in bytes
1705 #
1706 # @slots: number of available memory slots for hotplug
1707 #
1708 # Since: 7.1
1709 ##
1710 { 'struct': 'MemorySizeConfiguration', 'data': {
1711 '*size': 'size',
1712 '*max-size': 'size',
1713 '*slots': 'uint64' } }
1714
1715 ##
1716 # @dumpdtb:
1717 #
1718 # Save the FDT in dtb format.
1719 #
1720 # @filename: name of the dtb file to be created
1721 #
1722 # Since: 7.2
1723 #
1724 # Example:
1725 #
1726 # -> { "execute": "dumpdtb" }
1727 # "arguments": { "filename": "fdt.dtb" } }
1728 # <- { "return": {} }
1729 ##
1730 { 'command': 'dumpdtb',
1731 'data': { 'filename': 'str' },
1732 'if': 'CONFIG_FDT' }