]> git.proxmox.com Git - mirror_qemu.git/blob - qapi/migration.json
qapi: Tidy up examples
[mirror_qemu.git] / qapi / migration.json
1 # -*- Mode: Python -*-
2 # vim: filetype=python
3 #
4
5 ##
6 # = Migration
7 ##
8
9 { 'include': 'common.json' }
10 { 'include': 'sockets.json' }
11
12 ##
13 # @MigrationStats:
14 #
15 # Detailed migration status.
16 #
17 # @transferred: amount of bytes already transferred to the target VM
18 #
19 # @remaining: amount of bytes remaining to be transferred to the target VM
20 #
21 # @total: total amount of bytes involved in the migration process
22 #
23 # @duplicate: number of duplicate (zero) pages (since 1.2)
24 #
25 # @skipped: number of skipped zero pages (since 1.5)
26 #
27 # @normal: number of normal pages (since 1.2)
28 #
29 # @normal-bytes: number of normal bytes sent (since 1.2)
30 #
31 # @dirty-pages-rate: number of pages dirtied by second by the
32 # guest (since 1.3)
33 #
34 # @mbps: throughput in megabits/sec. (since 1.6)
35 #
36 # @dirty-sync-count: number of times that dirty ram was synchronized (since 2.1)
37 #
38 # @postcopy-requests: The number of page requests received from the destination
39 # (since 2.7)
40 #
41 # @page-size: The number of bytes per page for the various page-based
42 # statistics (since 2.10)
43 #
44 # @multifd-bytes: The number of bytes sent through multifd (since 3.0)
45 #
46 # @pages-per-second: the number of memory pages transferred per second
47 # (Since 4.0)
48 #
49 # @precopy-bytes: The number of bytes sent in the pre-copy phase
50 # (since 7.0).
51 #
52 # @downtime-bytes: The number of bytes sent while the guest is paused
53 # (since 7.0).
54 #
55 # @postcopy-bytes: The number of bytes sent during the post-copy phase
56 # (since 7.0).
57 #
58 # @dirty-sync-missed-zero-copy: Number of times dirty RAM synchronization could
59 # not avoid copying dirty pages. This is between
60 # 0 and @dirty-sync-count * @multifd-channels.
61 # (since 7.1)
62 # Since: 0.14
63 ##
64 { 'struct': 'MigrationStats',
65 'data': {'transferred': 'int', 'remaining': 'int', 'total': 'int' ,
66 'duplicate': 'int', 'skipped': 'int', 'normal': 'int',
67 'normal-bytes': 'int', 'dirty-pages-rate' : 'int',
68 'mbps' : 'number', 'dirty-sync-count' : 'int',
69 'postcopy-requests' : 'int', 'page-size' : 'int',
70 'multifd-bytes' : 'uint64', 'pages-per-second' : 'uint64',
71 'precopy-bytes' : 'uint64', 'downtime-bytes' : 'uint64',
72 'postcopy-bytes' : 'uint64',
73 'dirty-sync-missed-zero-copy' : 'uint64' } }
74
75 ##
76 # @XBZRLECacheStats:
77 #
78 # Detailed XBZRLE migration cache statistics
79 #
80 # @cache-size: XBZRLE cache size
81 #
82 # @bytes: amount of bytes already transferred to the target VM
83 #
84 # @pages: amount of pages transferred to the target VM
85 #
86 # @cache-miss: number of cache miss
87 #
88 # @cache-miss-rate: rate of cache miss (since 2.1)
89 #
90 # @encoding-rate: rate of encoded bytes (since 5.1)
91 #
92 # @overflow: number of overflows
93 #
94 # Since: 1.2
95 ##
96 { 'struct': 'XBZRLECacheStats',
97 'data': {'cache-size': 'size', 'bytes': 'int', 'pages': 'int',
98 'cache-miss': 'int', 'cache-miss-rate': 'number',
99 'encoding-rate': 'number', 'overflow': 'int' } }
100
101 ##
102 # @CompressionStats:
103 #
104 # Detailed migration compression statistics
105 #
106 # @pages: amount of pages compressed and transferred to the target VM
107 #
108 # @busy: count of times that no free thread was available to compress data
109 #
110 # @busy-rate: rate of thread busy
111 #
112 # @compressed-size: amount of bytes after compression
113 #
114 # @compression-rate: rate of compressed size
115 #
116 # Since: 3.1
117 ##
118 { 'struct': 'CompressionStats',
119 'data': {'pages': 'int', 'busy': 'int', 'busy-rate': 'number',
120 'compressed-size': 'int', 'compression-rate': 'number' } }
121
122 ##
123 # @MigrationStatus:
124 #
125 # An enumeration of migration status.
126 #
127 # @none: no migration has ever happened.
128 #
129 # @setup: migration process has been initiated.
130 #
131 # @cancelling: in the process of cancelling migration.
132 #
133 # @cancelled: cancelling migration is finished.
134 #
135 # @active: in the process of doing migration.
136 #
137 # @postcopy-active: like active, but now in postcopy mode. (since 2.5)
138 #
139 # @postcopy-paused: during postcopy but paused. (since 3.0)
140 #
141 # @postcopy-recover: trying to recover from a paused postcopy. (since 3.0)
142 #
143 # @completed: migration is finished.
144 #
145 # @failed: some error occurred during migration process.
146 #
147 # @colo: VM is in the process of fault tolerance, VM can not get into this
148 # state unless colo capability is enabled for migration. (since 2.8)
149 #
150 # @pre-switchover: Paused before device serialisation. (since 2.11)
151 #
152 # @device: During device serialisation when pause-before-switchover is enabled
153 # (since 2.11)
154 #
155 # @wait-unplug: wait for device unplug request by guest OS to be completed.
156 # (since 4.2)
157 #
158 # Since: 2.3
159 ##
160 { 'enum': 'MigrationStatus',
161 'data': [ 'none', 'setup', 'cancelling', 'cancelled',
162 'active', 'postcopy-active', 'postcopy-paused',
163 'postcopy-recover', 'completed', 'failed', 'colo',
164 'pre-switchover', 'device', 'wait-unplug' ] }
165 ##
166 # @VfioStats:
167 #
168 # Detailed VFIO devices migration statistics
169 #
170 # @transferred: amount of bytes transferred to the target VM by VFIO devices
171 #
172 # Since: 5.2
173 ##
174 { 'struct': 'VfioStats',
175 'data': {'transferred': 'int' } }
176
177 ##
178 # @MigrationInfo:
179 #
180 # Information about current migration process.
181 #
182 # @status: @MigrationStatus describing the current migration status.
183 # If this field is not returned, no migration process
184 # has been initiated
185 #
186 # @ram: @MigrationStats containing detailed migration
187 # status, only returned if status is 'active' or
188 # 'completed'(since 1.2)
189 #
190 # @disk: @MigrationStats containing detailed disk migration
191 # status, only returned if status is 'active' and it is a block
192 # migration
193 #
194 # @xbzrle-cache: @XBZRLECacheStats containing detailed XBZRLE
195 # migration statistics, only returned if XBZRLE feature is on and
196 # status is 'active' or 'completed' (since 1.2)
197 #
198 # @total-time: total amount of milliseconds since migration started.
199 # If migration has ended, it returns the total migration
200 # time. (since 1.2)
201 #
202 # @downtime: only present when migration finishes correctly
203 # total downtime in milliseconds for the guest.
204 # (since 1.3)
205 #
206 # @expected-downtime: only present while migration is active
207 # expected downtime in milliseconds for the guest in last walk
208 # of the dirty bitmap. (since 1.3)
209 #
210 # @setup-time: amount of setup time in milliseconds *before* the
211 # iterations begin but *after* the QMP command is issued. This is designed
212 # to provide an accounting of any activities (such as RDMA pinning) which
213 # may be expensive, but do not actually occur during the iterative
214 # migration rounds themselves. (since 1.6)
215 #
216 # @cpu-throttle-percentage: percentage of time guest cpus are being
217 # throttled during auto-converge. This is only present when auto-converge
218 # has started throttling guest cpus. (Since 2.7)
219 #
220 # @error-desc: the human readable error description string, when
221 # @status is 'failed'. Clients should not attempt to parse the
222 # error strings. (Since 2.7)
223 #
224 # @postcopy-blocktime: total time when all vCPU were blocked during postcopy
225 # live migration. This is only present when the postcopy-blocktime
226 # migration capability is enabled. (Since 3.0)
227 #
228 # @postcopy-vcpu-blocktime: list of the postcopy blocktime per vCPU. This is
229 # only present when the postcopy-blocktime migration capability
230 # is enabled. (Since 3.0)
231 #
232 # @compression: migration compression statistics, only returned if compression
233 # feature is on and status is 'active' or 'completed' (Since 3.1)
234 #
235 # @socket-address: Only used for tcp, to know what the real port is (Since 4.0)
236 #
237 # @vfio: @VfioStats containing detailed VFIO devices migration statistics,
238 # only returned if VFIO device is present, migration is supported by all
239 # VFIO devices and status is 'active' or 'completed' (since 5.2)
240 #
241 # @blocked-reasons: A list of reasons an outgoing migration is blocked.
242 # Present and non-empty when migration is blocked.
243 # (since 6.0)
244 #
245 # Since: 0.14
246 ##
247 { 'struct': 'MigrationInfo',
248 'data': {'*status': 'MigrationStatus', '*ram': 'MigrationStats',
249 '*disk': 'MigrationStats',
250 '*vfio': 'VfioStats',
251 '*xbzrle-cache': 'XBZRLECacheStats',
252 '*total-time': 'int',
253 '*expected-downtime': 'int',
254 '*downtime': 'int',
255 '*setup-time': 'int',
256 '*cpu-throttle-percentage': 'int',
257 '*error-desc': 'str',
258 '*blocked-reasons': ['str'],
259 '*postcopy-blocktime' : 'uint32',
260 '*postcopy-vcpu-blocktime': ['uint32'],
261 '*compression': 'CompressionStats',
262 '*socket-address': ['SocketAddress'] } }
263
264 ##
265 # @query-migrate:
266 #
267 # Returns information about current migration process. If migration
268 # is active there will be another json-object with RAM migration
269 # status and if block migration is active another one with block
270 # migration status.
271 #
272 # Returns: @MigrationInfo
273 #
274 # Since: 0.14
275 #
276 # Examples:
277 #
278 # 1. Before the first migration
279 #
280 # -> { "execute": "query-migrate" }
281 # <- { "return": {} }
282 #
283 # 2. Migration is done and has succeeded
284 #
285 # -> { "execute": "query-migrate" }
286 # <- { "return": {
287 # "status": "completed",
288 # "total-time":12345,
289 # "setup-time":12345,
290 # "downtime":12345,
291 # "ram":{
292 # "transferred":123,
293 # "remaining":123,
294 # "total":246,
295 # "duplicate":123,
296 # "normal":123,
297 # "normal-bytes":123456,
298 # "dirty-sync-count":15
299 # }
300 # }
301 # }
302 #
303 # 3. Migration is done and has failed
304 #
305 # -> { "execute": "query-migrate" }
306 # <- { "return": { "status": "failed" } }
307 #
308 # 4. Migration is being performed and is not a block migration:
309 #
310 # -> { "execute": "query-migrate" }
311 # <- {
312 # "return":{
313 # "status":"active",
314 # "total-time":12345,
315 # "setup-time":12345,
316 # "expected-downtime":12345,
317 # "ram":{
318 # "transferred":123,
319 # "remaining":123,
320 # "total":246,
321 # "duplicate":123,
322 # "normal":123,
323 # "normal-bytes":123456,
324 # "dirty-sync-count":15
325 # }
326 # }
327 # }
328 #
329 # 5. Migration is being performed and is a block migration:
330 #
331 # -> { "execute": "query-migrate" }
332 # <- {
333 # "return":{
334 # "status":"active",
335 # "total-time":12345,
336 # "setup-time":12345,
337 # "expected-downtime":12345,
338 # "ram":{
339 # "total":1057024,
340 # "remaining":1053304,
341 # "transferred":3720,
342 # "duplicate":123,
343 # "normal":123,
344 # "normal-bytes":123456,
345 # "dirty-sync-count":15
346 # },
347 # "disk":{
348 # "total":20971520,
349 # "remaining":20880384,
350 # "transferred":91136
351 # }
352 # }
353 # }
354 #
355 # 6. Migration is being performed and XBZRLE is active:
356 #
357 # -> { "execute": "query-migrate" }
358 # <- {
359 # "return":{
360 # "status":"active",
361 # "total-time":12345,
362 # "setup-time":12345,
363 # "expected-downtime":12345,
364 # "ram":{
365 # "total":1057024,
366 # "remaining":1053304,
367 # "transferred":3720,
368 # "duplicate":10,
369 # "normal":3333,
370 # "normal-bytes":3412992,
371 # "dirty-sync-count":15
372 # },
373 # "xbzrle-cache":{
374 # "cache-size":67108864,
375 # "bytes":20971520,
376 # "pages":2444343,
377 # "cache-miss":2244,
378 # "cache-miss-rate":0.123,
379 # "encoding-rate":80.1,
380 # "overflow":34434
381 # }
382 # }
383 # }
384 #
385 ##
386 { 'command': 'query-migrate', 'returns': 'MigrationInfo' }
387
388 ##
389 # @MigrationCapability:
390 #
391 # Migration capabilities enumeration
392 #
393 # @xbzrle: Migration supports xbzrle (Xor Based Zero Run Length Encoding).
394 # This feature allows us to minimize migration traffic for certain work
395 # loads, by sending compressed difference of the pages
396 #
397 # @rdma-pin-all: Controls whether or not the entire VM memory footprint is
398 # mlock()'d on demand or all at once. Refer to docs/rdma.txt for usage.
399 # Disabled by default. (since 2.0)
400 #
401 # @zero-blocks: During storage migration encode blocks of zeroes efficiently. This
402 # essentially saves 1MB of zeroes per block on the wire. Enabling requires
403 # source and target VM to support this feature. To enable it is sufficient
404 # to enable the capability on the source VM. The feature is disabled by
405 # default. (since 1.6)
406 #
407 # @compress: Use multiple compression threads to accelerate live migration.
408 # This feature can help to reduce the migration traffic, by sending
409 # compressed pages. Please note that if compress and xbzrle are both
410 # on, compress only takes effect in the ram bulk stage, after that,
411 # it will be disabled and only xbzrle takes effect, this can help to
412 # minimize migration traffic. The feature is disabled by default.
413 # (since 2.4 )
414 #
415 # @events: generate events for each migration state change
416 # (since 2.4 )
417 #
418 # @auto-converge: If enabled, QEMU will automatically throttle down the guest
419 # to speed up convergence of RAM migration. (since 1.6)
420 #
421 # @postcopy-ram: Start executing on the migration target before all of RAM has
422 # been migrated, pulling the remaining pages along as needed. The
423 # capacity must have the same setting on both source and target
424 # or migration will not even start. NOTE: If the migration fails during
425 # postcopy the VM will fail. (since 2.6)
426 #
427 # @x-colo: If enabled, migration will never end, and the state of the VM on the
428 # primary side will be migrated continuously to the VM on secondary
429 # side, this process is called COarse-Grain LOck Stepping (COLO) for
430 # Non-stop Service. (since 2.8)
431 #
432 # @release-ram: if enabled, qemu will free the migrated ram pages on the source
433 # during postcopy-ram migration. (since 2.9)
434 #
435 # @block: If enabled, QEMU will also migrate the contents of all block
436 # devices. Default is disabled. A possible alternative uses
437 # mirror jobs to a builtin NBD server on the destination, which
438 # offers more flexibility.
439 # (Since 2.10)
440 #
441 # @return-path: If enabled, migration will use the return path even
442 # for precopy. (since 2.10)
443 #
444 # @pause-before-switchover: Pause outgoing migration before serialising device
445 # state and before disabling block IO (since 2.11)
446 #
447 # @multifd: Use more than one fd for migration (since 4.0)
448 #
449 # @dirty-bitmaps: If enabled, QEMU will migrate named dirty bitmaps.
450 # (since 2.12)
451 #
452 # @postcopy-blocktime: Calculate downtime for postcopy live migration
453 # (since 3.0)
454 #
455 # @late-block-activate: If enabled, the destination will not activate block
456 # devices (and thus take locks) immediately at the end of migration.
457 # (since 3.0)
458 #
459 # @x-ignore-shared: If enabled, QEMU will not migrate shared memory (since 4.0)
460 #
461 # @validate-uuid: Send the UUID of the source to allow the destination
462 # to ensure it is the same. (since 4.2)
463 #
464 # @background-snapshot: If enabled, the migration stream will be a snapshot
465 # of the VM exactly at the point when the migration
466 # procedure starts. The VM RAM is saved with running VM.
467 # (since 6.0)
468 #
469 # @zero-copy-send: Controls behavior on sending memory pages on migration.
470 # When true, enables a zero-copy mechanism for sending
471 # memory pages, if host supports it.
472 # Requires that QEMU be permitted to use locked memory
473 # for guest RAM pages.
474 # (since 7.1)
475 # @postcopy-preempt: If enabled, the migration process will allow postcopy
476 # requests to preempt precopy stream, so postcopy requests
477 # will be handled faster. This is a performance feature and
478 # should not affect the correctness of postcopy migration.
479 # (since 7.1)
480 #
481 # Features:
482 # @unstable: Members @x-colo and @x-ignore-shared are experimental.
483 #
484 # Since: 1.2
485 ##
486 { 'enum': 'MigrationCapability',
487 'data': ['xbzrle', 'rdma-pin-all', 'auto-converge', 'zero-blocks',
488 'compress', 'events', 'postcopy-ram',
489 { 'name': 'x-colo', 'features': [ 'unstable' ] },
490 'release-ram',
491 'block', 'return-path', 'pause-before-switchover', 'multifd',
492 'dirty-bitmaps', 'postcopy-blocktime', 'late-block-activate',
493 { 'name': 'x-ignore-shared', 'features': [ 'unstable' ] },
494 'validate-uuid', 'background-snapshot',
495 'zero-copy-send', 'postcopy-preempt'] }
496
497 ##
498 # @MigrationCapabilityStatus:
499 #
500 # Migration capability information
501 #
502 # @capability: capability enum
503 #
504 # @state: capability state bool
505 #
506 # Since: 1.2
507 ##
508 { 'struct': 'MigrationCapabilityStatus',
509 'data': { 'capability' : 'MigrationCapability', 'state' : 'bool' } }
510
511 ##
512 # @migrate-set-capabilities:
513 #
514 # Enable/Disable the following migration capabilities (like xbzrle)
515 #
516 # @capabilities: json array of capability modifications to make
517 #
518 # Since: 1.2
519 #
520 # Example:
521 #
522 # -> { "execute": "migrate-set-capabilities" , "arguments":
523 # { "capabilities": [ { "capability": "xbzrle", "state": true } ] } }
524 # <- { "return": {} }
525 #
526 ##
527 { 'command': 'migrate-set-capabilities',
528 'data': { 'capabilities': ['MigrationCapabilityStatus'] } }
529
530 ##
531 # @query-migrate-capabilities:
532 #
533 # Returns information about the current migration capabilities status
534 #
535 # Returns: @MigrationCapabilityStatus
536 #
537 # Since: 1.2
538 #
539 # Example:
540 #
541 # -> { "execute": "query-migrate-capabilities" }
542 # <- { "return": [
543 # {"state": false, "capability": "xbzrle"},
544 # {"state": false, "capability": "rdma-pin-all"},
545 # {"state": false, "capability": "auto-converge"},
546 # {"state": false, "capability": "zero-blocks"},
547 # {"state": false, "capability": "compress"},
548 # {"state": true, "capability": "events"},
549 # {"state": false, "capability": "postcopy-ram"},
550 # {"state": false, "capability": "x-colo"}
551 # ]}
552 #
553 ##
554 { 'command': 'query-migrate-capabilities', 'returns': ['MigrationCapabilityStatus']}
555
556 ##
557 # @MultiFDCompression:
558 #
559 # An enumeration of multifd compression methods.
560 #
561 # @none: no compression.
562 # @zlib: use zlib compression method.
563 # @zstd: use zstd compression method.
564 #
565 # Since: 5.0
566 ##
567 { 'enum': 'MultiFDCompression',
568 'data': [ 'none', 'zlib',
569 { 'name': 'zstd', 'if': 'CONFIG_ZSTD' } ] }
570
571 ##
572 # @BitmapMigrationBitmapAliasTransform:
573 #
574 # @persistent: If present, the bitmap will be made persistent
575 # or transient depending on this parameter.
576 #
577 # Since: 6.0
578 ##
579 { 'struct': 'BitmapMigrationBitmapAliasTransform',
580 'data': {
581 '*persistent': 'bool'
582 } }
583
584 ##
585 # @BitmapMigrationBitmapAlias:
586 #
587 # @name: The name of the bitmap.
588 #
589 # @alias: An alias name for migration (for example the bitmap name on
590 # the opposite site).
591 #
592 # @transform: Allows the modification of the migrated bitmap.
593 # (since 6.0)
594 #
595 # Since: 5.2
596 ##
597 { 'struct': 'BitmapMigrationBitmapAlias',
598 'data': {
599 'name': 'str',
600 'alias': 'str',
601 '*transform': 'BitmapMigrationBitmapAliasTransform'
602 } }
603
604 ##
605 # @BitmapMigrationNodeAlias:
606 #
607 # Maps a block node name and the bitmaps it has to aliases for dirty
608 # bitmap migration.
609 #
610 # @node-name: A block node name.
611 #
612 # @alias: An alias block node name for migration (for example the
613 # node name on the opposite site).
614 #
615 # @bitmaps: Mappings for the bitmaps on this node.
616 #
617 # Since: 5.2
618 ##
619 { 'struct': 'BitmapMigrationNodeAlias',
620 'data': {
621 'node-name': 'str',
622 'alias': 'str',
623 'bitmaps': [ 'BitmapMigrationBitmapAlias' ]
624 } }
625
626 ##
627 # @MigrationParameter:
628 #
629 # Migration parameters enumeration
630 #
631 # @announce-initial: Initial delay (in milliseconds) before sending the first
632 # announce (Since 4.0)
633 #
634 # @announce-max: Maximum delay (in milliseconds) between packets in the
635 # announcement (Since 4.0)
636 #
637 # @announce-rounds: Number of self-announce packets sent after migration
638 # (Since 4.0)
639 #
640 # @announce-step: Increase in delay (in milliseconds) between subsequent
641 # packets in the announcement (Since 4.0)
642 #
643 # @compress-level: Set the compression level to be used in live migration,
644 # the compression level is an integer between 0 and 9, where 0 means
645 # no compression, 1 means the best compression speed, and 9 means best
646 # compression ratio which will consume more CPU.
647 #
648 # @compress-threads: Set compression thread count to be used in live migration,
649 # the compression thread count is an integer between 1 and 255.
650 #
651 # @compress-wait-thread: Controls behavior when all compression threads are
652 # currently busy. If true (default), wait for a free
653 # compression thread to become available; otherwise,
654 # send the page uncompressed. (Since 3.1)
655 #
656 # @decompress-threads: Set decompression thread count to be used in live
657 # migration, the decompression thread count is an integer between 1
658 # and 255. Usually, decompression is at least 4 times as fast as
659 # compression, so set the decompress-threads to the number about 1/4
660 # of compress-threads is adequate.
661 #
662 # @throttle-trigger-threshold: The ratio of bytes_dirty_period and bytes_xfer_period
663 # to trigger throttling. It is expressed as percentage.
664 # The default value is 50. (Since 5.0)
665 #
666 # @cpu-throttle-initial: Initial percentage of time guest cpus are throttled
667 # when migration auto-converge is activated. The
668 # default value is 20. (Since 2.7)
669 #
670 # @cpu-throttle-increment: throttle percentage increase each time
671 # auto-converge detects that migration is not making
672 # progress. The default value is 10. (Since 2.7)
673 #
674 # @cpu-throttle-tailslow: Make CPU throttling slower at tail stage
675 # At the tail stage of throttling, the Guest is very
676 # sensitive to CPU percentage while the @cpu-throttle
677 # -increment is excessive usually at tail stage.
678 # If this parameter is true, we will compute the ideal
679 # CPU percentage used by the Guest, which may exactly make
680 # the dirty rate match the dirty rate threshold. Then we
681 # will choose a smaller throttle increment between the
682 # one specified by @cpu-throttle-increment and the one
683 # generated by ideal CPU percentage.
684 # Therefore, it is compatible to traditional throttling,
685 # meanwhile the throttle increment won't be excessive
686 # at tail stage.
687 # The default value is false. (Since 5.1)
688 #
689 # @tls-creds: ID of the 'tls-creds' object that provides credentials for
690 # establishing a TLS connection over the migration data channel.
691 # On the outgoing side of the migration, the credentials must
692 # be for a 'client' endpoint, while for the incoming side the
693 # credentials must be for a 'server' endpoint. Setting this
694 # will enable TLS for all migrations. The default is unset,
695 # resulting in unsecured migration at the QEMU level. (Since 2.7)
696 #
697 # @tls-hostname: hostname of the target host for the migration. This is
698 # required when using x509 based TLS credentials and the
699 # migration URI does not already include a hostname. For
700 # example if using fd: or exec: based migration, the
701 # hostname must be provided so that the server's x509
702 # certificate identity can be validated. (Since 2.7)
703 #
704 # @tls-authz: ID of the 'authz' object subclass that provides access control
705 # checking of the TLS x509 certificate distinguished name.
706 # This object is only resolved at time of use, so can be deleted
707 # and recreated on the fly while the migration server is active.
708 # If missing, it will default to denying access (Since 4.0)
709 #
710 # @max-bandwidth: to set maximum speed for migration. maximum speed in
711 # bytes per second. (Since 2.8)
712 #
713 # @downtime-limit: set maximum tolerated downtime for migration. maximum
714 # downtime in milliseconds (Since 2.8)
715 #
716 # @x-checkpoint-delay: The delay time (in ms) between two COLO checkpoints in
717 # periodic mode. (Since 2.8)
718 #
719 # @block-incremental: Affects how much storage is migrated when the
720 # block migration capability is enabled. When false, the entire
721 # storage backing chain is migrated into a flattened image at
722 # the destination; when true, only the active qcow2 layer is
723 # migrated and the destination must already have access to the
724 # same backing chain as was used on the source. (since 2.10)
725 #
726 # @multifd-channels: Number of channels used to migrate data in
727 # parallel. This is the same number that the
728 # number of sockets used for migration. The
729 # default value is 2 (since 4.0)
730 #
731 # @xbzrle-cache-size: cache size to be used by XBZRLE migration. It
732 # needs to be a multiple of the target page size
733 # and a power of 2
734 # (Since 2.11)
735 #
736 # @max-postcopy-bandwidth: Background transfer bandwidth during postcopy.
737 # Defaults to 0 (unlimited). In bytes per second.
738 # (Since 3.0)
739 #
740 # @max-cpu-throttle: maximum cpu throttle percentage.
741 # Defaults to 99. (Since 3.1)
742 #
743 # @multifd-compression: Which compression method to use.
744 # Defaults to none. (Since 5.0)
745 #
746 # @multifd-zlib-level: Set the compression level to be used in live
747 # migration, the compression level is an integer between 0
748 # and 9, where 0 means no compression, 1 means the best
749 # compression speed, and 9 means best compression ratio which
750 # will consume more CPU.
751 # Defaults to 1. (Since 5.0)
752 #
753 # @multifd-zstd-level: Set the compression level to be used in live
754 # migration, the compression level is an integer between 0
755 # and 20, where 0 means no compression, 1 means the best
756 # compression speed, and 20 means best compression ratio which
757 # will consume more CPU.
758 # Defaults to 1. (Since 5.0)
759 #
760 #
761 # @block-bitmap-mapping: Maps block nodes and bitmaps on them to
762 # aliases for the purpose of dirty bitmap migration. Such
763 # aliases may for example be the corresponding names on the
764 # opposite site.
765 # The mapping must be one-to-one, but not necessarily
766 # complete: On the source, unmapped bitmaps and all bitmaps
767 # on unmapped nodes will be ignored. On the destination,
768 # encountering an unmapped alias in the incoming migration
769 # stream will result in a report, and all further bitmap
770 # migration data will then be discarded.
771 # Note that the destination does not know about bitmaps it
772 # does not receive, so there is no limitation or requirement
773 # regarding the number of bitmaps received, or how they are
774 # named, or on which nodes they are placed.
775 # By default (when this parameter has never been set), bitmap
776 # names are mapped to themselves. Nodes are mapped to their
777 # block device name if there is one, and to their node name
778 # otherwise. (Since 5.2)
779 #
780 # Features:
781 # @unstable: Member @x-checkpoint-delay is experimental.
782 #
783 # Since: 2.4
784 ##
785 { 'enum': 'MigrationParameter',
786 'data': ['announce-initial', 'announce-max',
787 'announce-rounds', 'announce-step',
788 'compress-level', 'compress-threads', 'decompress-threads',
789 'compress-wait-thread', 'throttle-trigger-threshold',
790 'cpu-throttle-initial', 'cpu-throttle-increment',
791 'cpu-throttle-tailslow',
792 'tls-creds', 'tls-hostname', 'tls-authz', 'max-bandwidth',
793 'downtime-limit',
794 { 'name': 'x-checkpoint-delay', 'features': [ 'unstable' ] },
795 'block-incremental',
796 'multifd-channels',
797 'xbzrle-cache-size', 'max-postcopy-bandwidth',
798 'max-cpu-throttle', 'multifd-compression',
799 'multifd-zlib-level' ,'multifd-zstd-level',
800 'block-bitmap-mapping' ] }
801
802 ##
803 # @MigrateSetParameters:
804 #
805 # @announce-initial: Initial delay (in milliseconds) before sending the first
806 # announce (Since 4.0)
807 #
808 # @announce-max: Maximum delay (in milliseconds) between packets in the
809 # announcement (Since 4.0)
810 #
811 # @announce-rounds: Number of self-announce packets sent after migration
812 # (Since 4.0)
813 #
814 # @announce-step: Increase in delay (in milliseconds) between subsequent
815 # packets in the announcement (Since 4.0)
816 #
817 # @compress-level: compression level
818 #
819 # @compress-threads: compression thread count
820 #
821 # @compress-wait-thread: Controls behavior when all compression threads are
822 # currently busy. If true (default), wait for a free
823 # compression thread to become available; otherwise,
824 # send the page uncompressed. (Since 3.1)
825 #
826 # @decompress-threads: decompression thread count
827 #
828 # @throttle-trigger-threshold: The ratio of bytes_dirty_period and bytes_xfer_period
829 # to trigger throttling. It is expressed as percentage.
830 # The default value is 50. (Since 5.0)
831 #
832 # @cpu-throttle-initial: Initial percentage of time guest cpus are
833 # throttled when migration auto-converge is activated.
834 # The default value is 20. (Since 2.7)
835 #
836 # @cpu-throttle-increment: throttle percentage increase each time
837 # auto-converge detects that migration is not making
838 # progress. The default value is 10. (Since 2.7)
839 #
840 # @cpu-throttle-tailslow: Make CPU throttling slower at tail stage
841 # At the tail stage of throttling, the Guest is very
842 # sensitive to CPU percentage while the @cpu-throttle
843 # -increment is excessive usually at tail stage.
844 # If this parameter is true, we will compute the ideal
845 # CPU percentage used by the Guest, which may exactly make
846 # the dirty rate match the dirty rate threshold. Then we
847 # will choose a smaller throttle increment between the
848 # one specified by @cpu-throttle-increment and the one
849 # generated by ideal CPU percentage.
850 # Therefore, it is compatible to traditional throttling,
851 # meanwhile the throttle increment won't be excessive
852 # at tail stage.
853 # The default value is false. (Since 5.1)
854 #
855 # @tls-creds: ID of the 'tls-creds' object that provides credentials
856 # for establishing a TLS connection over the migration data
857 # channel. On the outgoing side of the migration, the credentials
858 # must be for a 'client' endpoint, while for the incoming side the
859 # credentials must be for a 'server' endpoint. Setting this
860 # to a non-empty string enables TLS for all migrations.
861 # An empty string means that QEMU will use plain text mode for
862 # migration, rather than TLS (Since 2.9)
863 # Previously (since 2.7), this was reported by omitting
864 # tls-creds instead.
865 #
866 # @tls-hostname: hostname of the target host for the migration. This
867 # is required when using x509 based TLS credentials and the
868 # migration URI does not already include a hostname. For
869 # example if using fd: or exec: based migration, the
870 # hostname must be provided so that the server's x509
871 # certificate identity can be validated. (Since 2.7)
872 # An empty string means that QEMU will use the hostname
873 # associated with the migration URI, if any. (Since 2.9)
874 # Previously (since 2.7), this was reported by omitting
875 # tls-hostname instead.
876 #
877 # @max-bandwidth: to set maximum speed for migration. maximum speed in
878 # bytes per second. (Since 2.8)
879 #
880 # @downtime-limit: set maximum tolerated downtime for migration. maximum
881 # downtime in milliseconds (Since 2.8)
882 #
883 # @x-checkpoint-delay: the delay time between two COLO checkpoints. (Since 2.8)
884 #
885 # @block-incremental: Affects how much storage is migrated when the
886 # block migration capability is enabled. When false, the entire
887 # storage backing chain is migrated into a flattened image at
888 # the destination; when true, only the active qcow2 layer is
889 # migrated and the destination must already have access to the
890 # same backing chain as was used on the source. (since 2.10)
891 #
892 # @multifd-channels: Number of channels used to migrate data in
893 # parallel. This is the same number that the
894 # number of sockets used for migration. The
895 # default value is 2 (since 4.0)
896 #
897 # @xbzrle-cache-size: cache size to be used by XBZRLE migration. It
898 # needs to be a multiple of the target page size
899 # and a power of 2
900 # (Since 2.11)
901 #
902 # @max-postcopy-bandwidth: Background transfer bandwidth during postcopy.
903 # Defaults to 0 (unlimited). In bytes per second.
904 # (Since 3.0)
905 #
906 # @max-cpu-throttle: maximum cpu throttle percentage.
907 # The default value is 99. (Since 3.1)
908 #
909 # @multifd-compression: Which compression method to use.
910 # Defaults to none. (Since 5.0)
911 #
912 # @multifd-zlib-level: Set the compression level to be used in live
913 # migration, the compression level is an integer between 0
914 # and 9, where 0 means no compression, 1 means the best
915 # compression speed, and 9 means best compression ratio which
916 # will consume more CPU.
917 # Defaults to 1. (Since 5.0)
918 #
919 # @multifd-zstd-level: Set the compression level to be used in live
920 # migration, the compression level is an integer between 0
921 # and 20, where 0 means no compression, 1 means the best
922 # compression speed, and 20 means best compression ratio which
923 # will consume more CPU.
924 # Defaults to 1. (Since 5.0)
925 #
926 # @block-bitmap-mapping: Maps block nodes and bitmaps on them to
927 # aliases for the purpose of dirty bitmap migration. Such
928 # aliases may for example be the corresponding names on the
929 # opposite site.
930 # The mapping must be one-to-one, but not necessarily
931 # complete: On the source, unmapped bitmaps and all bitmaps
932 # on unmapped nodes will be ignored. On the destination,
933 # encountering an unmapped alias in the incoming migration
934 # stream will result in a report, and all further bitmap
935 # migration data will then be discarded.
936 # Note that the destination does not know about bitmaps it
937 # does not receive, so there is no limitation or requirement
938 # regarding the number of bitmaps received, or how they are
939 # named, or on which nodes they are placed.
940 # By default (when this parameter has never been set), bitmap
941 # names are mapped to themselves. Nodes are mapped to their
942 # block device name if there is one, and to their node name
943 # otherwise. (Since 5.2)
944 #
945 # Features:
946 # @unstable: Member @x-checkpoint-delay is experimental.
947 #
948 # Since: 2.4
949 ##
950 # TODO either fuse back into MigrationParameters, or make
951 # MigrationParameters members mandatory
952 { 'struct': 'MigrateSetParameters',
953 'data': { '*announce-initial': 'size',
954 '*announce-max': 'size',
955 '*announce-rounds': 'size',
956 '*announce-step': 'size',
957 '*compress-level': 'uint8',
958 '*compress-threads': 'uint8',
959 '*compress-wait-thread': 'bool',
960 '*decompress-threads': 'uint8',
961 '*throttle-trigger-threshold': 'uint8',
962 '*cpu-throttle-initial': 'uint8',
963 '*cpu-throttle-increment': 'uint8',
964 '*cpu-throttle-tailslow': 'bool',
965 '*tls-creds': 'StrOrNull',
966 '*tls-hostname': 'StrOrNull',
967 '*tls-authz': 'StrOrNull',
968 '*max-bandwidth': 'size',
969 '*downtime-limit': 'uint64',
970 '*x-checkpoint-delay': { 'type': 'uint32',
971 'features': [ 'unstable' ] },
972 '*block-incremental': 'bool',
973 '*multifd-channels': 'uint8',
974 '*xbzrle-cache-size': 'size',
975 '*max-postcopy-bandwidth': 'size',
976 '*max-cpu-throttle': 'uint8',
977 '*multifd-compression': 'MultiFDCompression',
978 '*multifd-zlib-level': 'uint8',
979 '*multifd-zstd-level': 'uint8',
980 '*block-bitmap-mapping': [ 'BitmapMigrationNodeAlias' ] } }
981
982 ##
983 # @migrate-set-parameters:
984 #
985 # Set various migration parameters.
986 #
987 # Since: 2.4
988 #
989 # Example:
990 #
991 # -> { "execute": "migrate-set-parameters" ,
992 # "arguments": { "compress-level": 1 } }
993 # <- { "return": {} }
994 #
995 ##
996 { 'command': 'migrate-set-parameters', 'boxed': true,
997 'data': 'MigrateSetParameters' }
998
999 ##
1000 # @MigrationParameters:
1001 #
1002 # The optional members aren't actually optional.
1003 #
1004 # @announce-initial: Initial delay (in milliseconds) before sending the
1005 # first announce (Since 4.0)
1006 #
1007 # @announce-max: Maximum delay (in milliseconds) between packets in the
1008 # announcement (Since 4.0)
1009 #
1010 # @announce-rounds: Number of self-announce packets sent after migration
1011 # (Since 4.0)
1012 #
1013 # @announce-step: Increase in delay (in milliseconds) between subsequent
1014 # packets in the announcement (Since 4.0)
1015 #
1016 # @compress-level: compression level
1017 #
1018 # @compress-threads: compression thread count
1019 #
1020 # @compress-wait-thread: Controls behavior when all compression threads are
1021 # currently busy. If true (default), wait for a free
1022 # compression thread to become available; otherwise,
1023 # send the page uncompressed. (Since 3.1)
1024 #
1025 # @decompress-threads: decompression thread count
1026 #
1027 # @throttle-trigger-threshold: The ratio of bytes_dirty_period and bytes_xfer_period
1028 # to trigger throttling. It is expressed as percentage.
1029 # The default value is 50. (Since 5.0)
1030 #
1031 # @cpu-throttle-initial: Initial percentage of time guest cpus are
1032 # throttled when migration auto-converge is activated.
1033 # (Since 2.7)
1034 #
1035 # @cpu-throttle-increment: throttle percentage increase each time
1036 # auto-converge detects that migration is not making
1037 # progress. (Since 2.7)
1038 #
1039 # @cpu-throttle-tailslow: Make CPU throttling slower at tail stage
1040 # At the tail stage of throttling, the Guest is very
1041 # sensitive to CPU percentage while the @cpu-throttle
1042 # -increment is excessive usually at tail stage.
1043 # If this parameter is true, we will compute the ideal
1044 # CPU percentage used by the Guest, which may exactly make
1045 # the dirty rate match the dirty rate threshold. Then we
1046 # will choose a smaller throttle increment between the
1047 # one specified by @cpu-throttle-increment and the one
1048 # generated by ideal CPU percentage.
1049 # Therefore, it is compatible to traditional throttling,
1050 # meanwhile the throttle increment won't be excessive
1051 # at tail stage.
1052 # The default value is false. (Since 5.1)
1053 #
1054 # @tls-creds: ID of the 'tls-creds' object that provides credentials
1055 # for establishing a TLS connection over the migration data
1056 # channel. On the outgoing side of the migration, the credentials
1057 # must be for a 'client' endpoint, while for the incoming side the
1058 # credentials must be for a 'server' endpoint.
1059 # An empty string means that QEMU will use plain text mode for
1060 # migration, rather than TLS (Since 2.7)
1061 # Note: 2.8 reports this by omitting tls-creds instead.
1062 #
1063 # @tls-hostname: hostname of the target host for the migration. This
1064 # is required when using x509 based TLS credentials and the
1065 # migration URI does not already include a hostname. For
1066 # example if using fd: or exec: based migration, the
1067 # hostname must be provided so that the server's x509
1068 # certificate identity can be validated. (Since 2.7)
1069 # An empty string means that QEMU will use the hostname
1070 # associated with the migration URI, if any. (Since 2.9)
1071 # Note: 2.8 reports this by omitting tls-hostname instead.
1072 #
1073 # @tls-authz: ID of the 'authz' object subclass that provides access control
1074 # checking of the TLS x509 certificate distinguished name. (Since
1075 # 4.0)
1076 #
1077 # @max-bandwidth: to set maximum speed for migration. maximum speed in
1078 # bytes per second. (Since 2.8)
1079 #
1080 # @downtime-limit: set maximum tolerated downtime for migration. maximum
1081 # downtime in milliseconds (Since 2.8)
1082 #
1083 # @x-checkpoint-delay: the delay time between two COLO checkpoints. (Since 2.8)
1084 #
1085 # @block-incremental: Affects how much storage is migrated when the
1086 # block migration capability is enabled. When false, the entire
1087 # storage backing chain is migrated into a flattened image at
1088 # the destination; when true, only the active qcow2 layer is
1089 # migrated and the destination must already have access to the
1090 # same backing chain as was used on the source. (since 2.10)
1091 #
1092 # @multifd-channels: Number of channels used to migrate data in
1093 # parallel. This is the same number that the
1094 # number of sockets used for migration.
1095 # The default value is 2 (since 4.0)
1096 #
1097 # @xbzrle-cache-size: cache size to be used by XBZRLE migration. It
1098 # needs to be a multiple of the target page size
1099 # and a power of 2
1100 # (Since 2.11)
1101 #
1102 # @max-postcopy-bandwidth: Background transfer bandwidth during postcopy.
1103 # Defaults to 0 (unlimited). In bytes per second.
1104 # (Since 3.0)
1105 #
1106 # @max-cpu-throttle: maximum cpu throttle percentage.
1107 # Defaults to 99.
1108 # (Since 3.1)
1109 #
1110 # @multifd-compression: Which compression method to use.
1111 # Defaults to none. (Since 5.0)
1112 #
1113 # @multifd-zlib-level: Set the compression level to be used in live
1114 # migration, the compression level is an integer between 0
1115 # and 9, where 0 means no compression, 1 means the best
1116 # compression speed, and 9 means best compression ratio which
1117 # will consume more CPU.
1118 # Defaults to 1. (Since 5.0)
1119 #
1120 # @multifd-zstd-level: Set the compression level to be used in live
1121 # migration, the compression level is an integer between 0
1122 # and 20, where 0 means no compression, 1 means the best
1123 # compression speed, and 20 means best compression ratio which
1124 # will consume more CPU.
1125 # Defaults to 1. (Since 5.0)
1126 #
1127 # @block-bitmap-mapping: Maps block nodes and bitmaps on them to
1128 # aliases for the purpose of dirty bitmap migration. Such
1129 # aliases may for example be the corresponding names on the
1130 # opposite site.
1131 # The mapping must be one-to-one, but not necessarily
1132 # complete: On the source, unmapped bitmaps and all bitmaps
1133 # on unmapped nodes will be ignored. On the destination,
1134 # encountering an unmapped alias in the incoming migration
1135 # stream will result in a report, and all further bitmap
1136 # migration data will then be discarded.
1137 # Note that the destination does not know about bitmaps it
1138 # does not receive, so there is no limitation or requirement
1139 # regarding the number of bitmaps received, or how they are
1140 # named, or on which nodes they are placed.
1141 # By default (when this parameter has never been set), bitmap
1142 # names are mapped to themselves. Nodes are mapped to their
1143 # block device name if there is one, and to their node name
1144 # otherwise. (Since 5.2)
1145 #
1146 # Features:
1147 # @unstable: Member @x-checkpoint-delay is experimental.
1148 #
1149 # Since: 2.4
1150 ##
1151 { 'struct': 'MigrationParameters',
1152 'data': { '*announce-initial': 'size',
1153 '*announce-max': 'size',
1154 '*announce-rounds': 'size',
1155 '*announce-step': 'size',
1156 '*compress-level': 'uint8',
1157 '*compress-threads': 'uint8',
1158 '*compress-wait-thread': 'bool',
1159 '*decompress-threads': 'uint8',
1160 '*throttle-trigger-threshold': 'uint8',
1161 '*cpu-throttle-initial': 'uint8',
1162 '*cpu-throttle-increment': 'uint8',
1163 '*cpu-throttle-tailslow': 'bool',
1164 '*tls-creds': 'str',
1165 '*tls-hostname': 'str',
1166 '*tls-authz': 'str',
1167 '*max-bandwidth': 'size',
1168 '*downtime-limit': 'uint64',
1169 '*x-checkpoint-delay': { 'type': 'uint32',
1170 'features': [ 'unstable' ] },
1171 '*block-incremental': 'bool',
1172 '*multifd-channels': 'uint8',
1173 '*xbzrle-cache-size': 'size',
1174 '*max-postcopy-bandwidth': 'size',
1175 '*max-cpu-throttle': 'uint8',
1176 '*multifd-compression': 'MultiFDCompression',
1177 '*multifd-zlib-level': 'uint8',
1178 '*multifd-zstd-level': 'uint8',
1179 '*block-bitmap-mapping': [ 'BitmapMigrationNodeAlias' ] } }
1180
1181 ##
1182 # @query-migrate-parameters:
1183 #
1184 # Returns information about the current migration parameters
1185 #
1186 # Returns: @MigrationParameters
1187 #
1188 # Since: 2.4
1189 #
1190 # Example:
1191 #
1192 # -> { "execute": "query-migrate-parameters" }
1193 # <- { "return": {
1194 # "decompress-threads": 2,
1195 # "cpu-throttle-increment": 10,
1196 # "compress-threads": 8,
1197 # "compress-level": 1,
1198 # "cpu-throttle-initial": 20,
1199 # "max-bandwidth": 33554432,
1200 # "downtime-limit": 300
1201 # }
1202 # }
1203 #
1204 ##
1205 { 'command': 'query-migrate-parameters',
1206 'returns': 'MigrationParameters' }
1207
1208 ##
1209 # @migrate-start-postcopy:
1210 #
1211 # Followup to a migration command to switch the migration to postcopy mode.
1212 # The postcopy-ram capability must be set on both source and destination
1213 # before the original migration command.
1214 #
1215 # Since: 2.5
1216 #
1217 # Example:
1218 #
1219 # -> { "execute": "migrate-start-postcopy" }
1220 # <- { "return": {} }
1221 #
1222 ##
1223 { 'command': 'migrate-start-postcopy' }
1224
1225 ##
1226 # @MIGRATION:
1227 #
1228 # Emitted when a migration event happens
1229 #
1230 # @status: @MigrationStatus describing the current migration status.
1231 #
1232 # Since: 2.4
1233 #
1234 # Example:
1235 #
1236 # <- {"timestamp": {"seconds": 1432121972, "microseconds": 744001},
1237 # "event": "MIGRATION",
1238 # "data": {"status": "completed"} }
1239 #
1240 ##
1241 { 'event': 'MIGRATION',
1242 'data': {'status': 'MigrationStatus'}}
1243
1244 ##
1245 # @MIGRATION_PASS:
1246 #
1247 # Emitted from the source side of a migration at the start of each pass
1248 # (when it syncs the dirty bitmap)
1249 #
1250 # @pass: An incrementing count (starting at 1 on the first pass)
1251 #
1252 # Since: 2.6
1253 #
1254 # Example:
1255 #
1256 # <- { "timestamp": {"seconds": 1449669631, "microseconds": 239225},
1257 # "event": "MIGRATION_PASS", "data": {"pass": 2} }
1258 #
1259 ##
1260 { 'event': 'MIGRATION_PASS',
1261 'data': { 'pass': 'int' } }
1262
1263 ##
1264 # @COLOMessage:
1265 #
1266 # The message transmission between Primary side and Secondary side.
1267 #
1268 # @checkpoint-ready: Secondary VM (SVM) is ready for checkpointing
1269 #
1270 # @checkpoint-request: Primary VM (PVM) tells SVM to prepare for checkpointing
1271 #
1272 # @checkpoint-reply: SVM gets PVM's checkpoint request
1273 #
1274 # @vmstate-send: VM's state will be sent by PVM.
1275 #
1276 # @vmstate-size: The total size of VMstate.
1277 #
1278 # @vmstate-received: VM's state has been received by SVM.
1279 #
1280 # @vmstate-loaded: VM's state has been loaded by SVM.
1281 #
1282 # Since: 2.8
1283 ##
1284 { 'enum': 'COLOMessage',
1285 'data': [ 'checkpoint-ready', 'checkpoint-request', 'checkpoint-reply',
1286 'vmstate-send', 'vmstate-size', 'vmstate-received',
1287 'vmstate-loaded' ] }
1288
1289 ##
1290 # @COLOMode:
1291 #
1292 # The COLO current mode.
1293 #
1294 # @none: COLO is disabled.
1295 #
1296 # @primary: COLO node in primary side.
1297 #
1298 # @secondary: COLO node in slave side.
1299 #
1300 # Since: 2.8
1301 ##
1302 { 'enum': 'COLOMode',
1303 'data': [ 'none', 'primary', 'secondary'] }
1304
1305 ##
1306 # @FailoverStatus:
1307 #
1308 # An enumeration of COLO failover status
1309 #
1310 # @none: no failover has ever happened
1311 #
1312 # @require: got failover requirement but not handled
1313 #
1314 # @active: in the process of doing failover
1315 #
1316 # @completed: finish the process of failover
1317 #
1318 # @relaunch: restart the failover process, from 'none' -> 'completed' (Since 2.9)
1319 #
1320 # Since: 2.8
1321 ##
1322 { 'enum': 'FailoverStatus',
1323 'data': [ 'none', 'require', 'active', 'completed', 'relaunch' ] }
1324
1325 ##
1326 # @COLO_EXIT:
1327 #
1328 # Emitted when VM finishes COLO mode due to some errors happening or
1329 # at the request of users.
1330 #
1331 # @mode: report COLO mode when COLO exited.
1332 #
1333 # @reason: describes the reason for the COLO exit.
1334 #
1335 # Since: 3.1
1336 #
1337 # Example:
1338 #
1339 # <- { "timestamp": {"seconds": 2032141960, "microseconds": 417172},
1340 # "event": "COLO_EXIT", "data": {"mode": "primary", "reason": "request" } }
1341 #
1342 ##
1343 { 'event': 'COLO_EXIT',
1344 'data': {'mode': 'COLOMode', 'reason': 'COLOExitReason' } }
1345
1346 ##
1347 # @COLOExitReason:
1348 #
1349 # The reason for a COLO exit.
1350 #
1351 # @none: failover has never happened. This state does not occur
1352 # in the COLO_EXIT event, and is only visible in the result of
1353 # query-colo-status.
1354 #
1355 # @request: COLO exit is due to an external request.
1356 #
1357 # @error: COLO exit is due to an internal error.
1358 #
1359 # @processing: COLO is currently handling a failover (since 4.0).
1360 #
1361 # Since: 3.1
1362 ##
1363 { 'enum': 'COLOExitReason',
1364 'data': [ 'none', 'request', 'error' , 'processing' ] }
1365
1366 ##
1367 # @x-colo-lost-heartbeat:
1368 #
1369 # Tell qemu that heartbeat is lost, request it to do takeover procedures.
1370 # If this command is sent to the PVM, the Primary side will exit COLO mode.
1371 # If sent to the Secondary, the Secondary side will run failover work,
1372 # then takes over server operation to become the service VM.
1373 #
1374 # Features:
1375 # @unstable: This command is experimental.
1376 #
1377 # Since: 2.8
1378 #
1379 # Example:
1380 #
1381 # -> { "execute": "x-colo-lost-heartbeat" }
1382 # <- { "return": {} }
1383 #
1384 ##
1385 { 'command': 'x-colo-lost-heartbeat',
1386 'features': [ 'unstable' ] }
1387
1388 ##
1389 # @migrate_cancel:
1390 #
1391 # Cancel the current executing migration process.
1392 #
1393 # Returns: nothing on success
1394 #
1395 # Notes: This command succeeds even if there is no migration process running.
1396 #
1397 # Since: 0.14
1398 #
1399 # Example:
1400 #
1401 # -> { "execute": "migrate_cancel" }
1402 # <- { "return": {} }
1403 #
1404 ##
1405 { 'command': 'migrate_cancel' }
1406
1407 ##
1408 # @migrate-continue:
1409 #
1410 # Continue migration when it's in a paused state.
1411 #
1412 # @state: The state the migration is currently expected to be in
1413 #
1414 # Returns: nothing on success
1415 #
1416 # Since: 2.11
1417 #
1418 # Example:
1419 #
1420 # -> { "execute": "migrate-continue" , "arguments":
1421 # { "state": "pre-switchover" } }
1422 # <- { "return": {} }
1423 ##
1424 { 'command': 'migrate-continue', 'data': {'state': 'MigrationStatus'} }
1425
1426 ##
1427 # @migrate:
1428 #
1429 # Migrates the current running guest to another Virtual Machine.
1430 #
1431 # @uri: the Uniform Resource Identifier of the destination VM
1432 #
1433 # @blk: do block migration (full disk copy)
1434 #
1435 # @inc: incremental disk copy migration
1436 #
1437 # @detach: this argument exists only for compatibility reasons and
1438 # is ignored by QEMU
1439 #
1440 # @resume: resume one paused migration, default "off". (since 3.0)
1441 #
1442 # Returns: nothing on success
1443 #
1444 # Since: 0.14
1445 #
1446 # Notes:
1447 #
1448 # 1. The 'query-migrate' command should be used to check migration's progress
1449 # and final result (this information is provided by the 'status' member)
1450 #
1451 # 2. All boolean arguments default to false
1452 #
1453 # 3. The user Monitor's "detach" argument is invalid in QMP and should not
1454 # be used
1455 #
1456 # Example:
1457 #
1458 # -> { "execute": "migrate", "arguments": { "uri": "tcp:0:4446" } }
1459 # <- { "return": {} }
1460 #
1461 ##
1462 { 'command': 'migrate',
1463 'data': {'uri': 'str', '*blk': 'bool', '*inc': 'bool',
1464 '*detach': 'bool', '*resume': 'bool' } }
1465
1466 ##
1467 # @migrate-incoming:
1468 #
1469 # Start an incoming migration, the qemu must have been started
1470 # with -incoming defer
1471 #
1472 # @uri: The Uniform Resource Identifier identifying the source or
1473 # address to listen on
1474 #
1475 # Returns: nothing on success
1476 #
1477 # Since: 2.3
1478 #
1479 # Notes:
1480 #
1481 # 1. It's a bad idea to use a string for the uri, but it needs to stay
1482 # compatible with -incoming and the format of the uri is already exposed
1483 # above libvirt.
1484 #
1485 # 2. QEMU must be started with -incoming defer to allow migrate-incoming to
1486 # be used.
1487 #
1488 # 3. The uri format is the same as for -incoming
1489 #
1490 # Example:
1491 #
1492 # -> { "execute": "migrate-incoming",
1493 # "arguments": { "uri": "tcp::4446" } }
1494 # <- { "return": {} }
1495 #
1496 ##
1497 { 'command': 'migrate-incoming', 'data': {'uri': 'str' } }
1498
1499 ##
1500 # @xen-save-devices-state:
1501 #
1502 # Save the state of all devices to file. The RAM and the block devices
1503 # of the VM are not saved by this command.
1504 #
1505 # @filename: the file to save the state of the devices to as binary
1506 # data. See xen-save-devices-state.txt for a description of the binary
1507 # format.
1508 #
1509 # @live: Optional argument to ask QEMU to treat this command as part of a live
1510 # migration. Default to true. (since 2.11)
1511 #
1512 # Returns: Nothing on success
1513 #
1514 # Since: 1.1
1515 #
1516 # Example:
1517 #
1518 # -> { "execute": "xen-save-devices-state",
1519 # "arguments": { "filename": "/tmp/save" } }
1520 # <- { "return": {} }
1521 #
1522 ##
1523 { 'command': 'xen-save-devices-state',
1524 'data': {'filename': 'str', '*live':'bool' } }
1525
1526 ##
1527 # @xen-set-global-dirty-log:
1528 #
1529 # Enable or disable the global dirty log mode.
1530 #
1531 # @enable: true to enable, false to disable.
1532 #
1533 # Returns: nothing
1534 #
1535 # Since: 1.3
1536 #
1537 # Example:
1538 #
1539 # -> { "execute": "xen-set-global-dirty-log",
1540 # "arguments": { "enable": true } }
1541 # <- { "return": {} }
1542 #
1543 ##
1544 { 'command': 'xen-set-global-dirty-log', 'data': { 'enable': 'bool' } }
1545
1546 ##
1547 # @xen-load-devices-state:
1548 #
1549 # Load the state of all devices from file. The RAM and the block devices
1550 # of the VM are not loaded by this command.
1551 #
1552 # @filename: the file to load the state of the devices from as binary
1553 # data. See xen-save-devices-state.txt for a description of the binary
1554 # format.
1555 #
1556 # Since: 2.7
1557 #
1558 # Example:
1559 #
1560 # -> { "execute": "xen-load-devices-state",
1561 # "arguments": { "filename": "/tmp/resume" } }
1562 # <- { "return": {} }
1563 #
1564 ##
1565 { 'command': 'xen-load-devices-state', 'data': {'filename': 'str'} }
1566
1567 ##
1568 # @xen-set-replication:
1569 #
1570 # Enable or disable replication.
1571 #
1572 # @enable: true to enable, false to disable.
1573 #
1574 # @primary: true for primary or false for secondary.
1575 #
1576 # @failover: true to do failover, false to stop. but cannot be
1577 # specified if 'enable' is true. default value is false.
1578 #
1579 # Returns: nothing.
1580 #
1581 # Example:
1582 #
1583 # -> { "execute": "xen-set-replication",
1584 # "arguments": {"enable": true, "primary": false} }
1585 # <- { "return": {} }
1586 #
1587 # Since: 2.9
1588 ##
1589 { 'command': 'xen-set-replication',
1590 'data': { 'enable': 'bool', 'primary': 'bool', '*failover' : 'bool' },
1591 'if': 'CONFIG_REPLICATION' }
1592
1593 ##
1594 # @ReplicationStatus:
1595 #
1596 # The result format for 'query-xen-replication-status'.
1597 #
1598 # @error: true if an error happened, false if replication is normal.
1599 #
1600 # @desc: the human readable error description string, when
1601 # @error is 'true'.
1602 #
1603 # Since: 2.9
1604 ##
1605 { 'struct': 'ReplicationStatus',
1606 'data': { 'error': 'bool', '*desc': 'str' },
1607 'if': 'CONFIG_REPLICATION' }
1608
1609 ##
1610 # @query-xen-replication-status:
1611 #
1612 # Query replication status while the vm is running.
1613 #
1614 # Returns: A @ReplicationStatus object showing the status.
1615 #
1616 # Example:
1617 #
1618 # -> { "execute": "query-xen-replication-status" }
1619 # <- { "return": { "error": false } }
1620 #
1621 # Since: 2.9
1622 ##
1623 { 'command': 'query-xen-replication-status',
1624 'returns': 'ReplicationStatus',
1625 'if': 'CONFIG_REPLICATION' }
1626
1627 ##
1628 # @xen-colo-do-checkpoint:
1629 #
1630 # Xen uses this command to notify replication to trigger a checkpoint.
1631 #
1632 # Returns: nothing.
1633 #
1634 # Example:
1635 #
1636 # -> { "execute": "xen-colo-do-checkpoint" }
1637 # <- { "return": {} }
1638 #
1639 # Since: 2.9
1640 ##
1641 { 'command': 'xen-colo-do-checkpoint',
1642 'if': 'CONFIG_REPLICATION' }
1643
1644 ##
1645 # @COLOStatus:
1646 #
1647 # The result format for 'query-colo-status'.
1648 #
1649 # @mode: COLO running mode. If COLO is running, this field will return
1650 # 'primary' or 'secondary'.
1651 #
1652 # @last-mode: COLO last running mode. If COLO is running, this field
1653 # will return same like mode field, after failover we can
1654 # use this field to get last colo mode. (since 4.0)
1655 #
1656 # @reason: describes the reason for the COLO exit.
1657 #
1658 # Since: 3.1
1659 ##
1660 { 'struct': 'COLOStatus',
1661 'data': { 'mode': 'COLOMode', 'last-mode': 'COLOMode',
1662 'reason': 'COLOExitReason' } }
1663
1664 ##
1665 # @query-colo-status:
1666 #
1667 # Query COLO status while the vm is running.
1668 #
1669 # Returns: A @COLOStatus object showing the status.
1670 #
1671 # Example:
1672 #
1673 # -> { "execute": "query-colo-status" }
1674 # <- { "return": { "mode": "primary", "last-mode": "none", "reason": "request" } }
1675 #
1676 # Since: 3.1
1677 ##
1678 { 'command': 'query-colo-status',
1679 'returns': 'COLOStatus' }
1680
1681 ##
1682 # @migrate-recover:
1683 #
1684 # Provide a recovery migration stream URI.
1685 #
1686 # @uri: the URI to be used for the recovery of migration stream.
1687 #
1688 # Returns: nothing.
1689 #
1690 # Example:
1691 #
1692 # -> { "execute": "migrate-recover",
1693 # "arguments": { "uri": "tcp:192.168.1.200:12345" } }
1694 # <- { "return": {} }
1695 #
1696 # Since: 3.0
1697 ##
1698 { 'command': 'migrate-recover',
1699 'data': { 'uri': 'str' },
1700 'allow-oob': true }
1701
1702 ##
1703 # @migrate-pause:
1704 #
1705 # Pause a migration. Currently it only supports postcopy.
1706 #
1707 # Returns: nothing.
1708 #
1709 # Example:
1710 #
1711 # -> { "execute": "migrate-pause" }
1712 # <- { "return": {} }
1713 #
1714 # Since: 3.0
1715 ##
1716 { 'command': 'migrate-pause', 'allow-oob': true }
1717
1718 ##
1719 # @UNPLUG_PRIMARY:
1720 #
1721 # Emitted from source side of a migration when migration state is
1722 # WAIT_UNPLUG. Device was unplugged by guest operating system.
1723 # Device resources in QEMU are kept on standby to be able to re-plug it in case
1724 # of migration failure.
1725 #
1726 # @device-id: QEMU device id of the unplugged device
1727 #
1728 # Since: 4.2
1729 #
1730 # Example:
1731 #
1732 # <- { "event": "UNPLUG_PRIMARY",
1733 # "data": { "device-id": "hostdev0" },
1734 # "timestamp": { "seconds": 1265044230, "microseconds": 450486 } }
1735 #
1736 ##
1737 { 'event': 'UNPLUG_PRIMARY',
1738 'data': { 'device-id': 'str' } }
1739
1740 ##
1741 # @DirtyRateVcpu:
1742 #
1743 # Dirty rate of vcpu.
1744 #
1745 # @id: vcpu index.
1746 #
1747 # @dirty-rate: dirty rate.
1748 #
1749 # Since: 6.2
1750 ##
1751 { 'struct': 'DirtyRateVcpu',
1752 'data': { 'id': 'int', 'dirty-rate': 'int64' } }
1753
1754 ##
1755 # @DirtyRateStatus:
1756 #
1757 # An enumeration of dirtyrate status.
1758 #
1759 # @unstarted: the dirtyrate thread has not been started.
1760 #
1761 # @measuring: the dirtyrate thread is measuring.
1762 #
1763 # @measured: the dirtyrate thread has measured and results are available.
1764 #
1765 # Since: 5.2
1766 ##
1767 { 'enum': 'DirtyRateStatus',
1768 'data': [ 'unstarted', 'measuring', 'measured'] }
1769
1770 ##
1771 # @DirtyRateMeasureMode:
1772 #
1773 # An enumeration of mode of measuring dirtyrate.
1774 #
1775 # @page-sampling: calculate dirtyrate by sampling pages.
1776 #
1777 # @dirty-ring: calculate dirtyrate by dirty ring.
1778 #
1779 # @dirty-bitmap: calculate dirtyrate by dirty bitmap.
1780 #
1781 # Since: 6.2
1782 ##
1783 { 'enum': 'DirtyRateMeasureMode',
1784 'data': ['page-sampling', 'dirty-ring', 'dirty-bitmap'] }
1785
1786 ##
1787 # @DirtyRateInfo:
1788 #
1789 # Information about current dirty page rate of vm.
1790 #
1791 # @dirty-rate: an estimate of the dirty page rate of the VM in units of
1792 # MB/s, present only when estimating the rate has completed.
1793 #
1794 # @status: status containing dirtyrate query status includes
1795 # 'unstarted' or 'measuring' or 'measured'
1796 #
1797 # @start-time: start time in units of second for calculation
1798 #
1799 # @calc-time: time in units of second for sample dirty pages
1800 #
1801 # @sample-pages: page count per GB for sample dirty pages
1802 # the default value is 512 (since 6.1)
1803 #
1804 # @mode: mode containing method of calculate dirtyrate includes
1805 # 'page-sampling' and 'dirty-ring' (Since 6.2)
1806 #
1807 # @vcpu-dirty-rate: dirtyrate for each vcpu if dirty-ring
1808 # mode specified (Since 6.2)
1809 #
1810 # Since: 5.2
1811 ##
1812 { 'struct': 'DirtyRateInfo',
1813 'data': {'*dirty-rate': 'int64',
1814 'status': 'DirtyRateStatus',
1815 'start-time': 'int64',
1816 'calc-time': 'int64',
1817 'sample-pages': 'uint64',
1818 'mode': 'DirtyRateMeasureMode',
1819 '*vcpu-dirty-rate': [ 'DirtyRateVcpu' ] } }
1820
1821 ##
1822 # @calc-dirty-rate:
1823 #
1824 # start calculating dirty page rate for vm
1825 #
1826 # @calc-time: time in units of second for sample dirty pages
1827 #
1828 # @sample-pages: page count per GB for sample dirty pages
1829 # the default value is 512 (since 6.1)
1830 #
1831 # @mode: mechanism of calculating dirtyrate includes
1832 # 'page-sampling' and 'dirty-ring' (Since 6.1)
1833 #
1834 # Since: 5.2
1835 #
1836 # Example:
1837 #
1838 # -> {"execute": "calc-dirty-rate", "arguments": {"calc-time": 1,
1839 # 'sample-pages': 512} }
1840 # <- { "return": {} }
1841 #
1842 ##
1843 { 'command': 'calc-dirty-rate', 'data': {'calc-time': 'int64',
1844 '*sample-pages': 'int',
1845 '*mode': 'DirtyRateMeasureMode'} }
1846
1847 ##
1848 # @query-dirty-rate:
1849 #
1850 # query dirty page rate in units of MB/s for vm
1851 #
1852 # Since: 5.2
1853 ##
1854 { 'command': 'query-dirty-rate', 'returns': 'DirtyRateInfo' }
1855
1856 ##
1857 # @DirtyLimitInfo:
1858 #
1859 # Dirty page rate limit information of a virtual CPU.
1860 #
1861 # @cpu-index: index of a virtual CPU.
1862 #
1863 # @limit-rate: upper limit of dirty page rate (MB/s) for a virtual
1864 # CPU, 0 means unlimited.
1865 #
1866 # @current-rate: current dirty page rate (MB/s) for a virtual CPU.
1867 #
1868 # Since: 7.1
1869 #
1870 ##
1871 { 'struct': 'DirtyLimitInfo',
1872 'data': { 'cpu-index': 'int',
1873 'limit-rate': 'uint64',
1874 'current-rate': 'uint64' } }
1875
1876 ##
1877 # @set-vcpu-dirty-limit:
1878 #
1879 # Set the upper limit of dirty page rate for virtual CPUs.
1880 #
1881 # Requires KVM with accelerator property "dirty-ring-size" set.
1882 # A virtual CPU's dirty page rate is a measure of its memory load.
1883 # To observe dirty page rates, use @calc-dirty-rate.
1884 #
1885 # @cpu-index: index of a virtual CPU, default is all.
1886 #
1887 # @dirty-rate: upper limit of dirty page rate (MB/s) for virtual CPUs.
1888 #
1889 # Since: 7.1
1890 #
1891 # Example:
1892 #
1893 # -> {"execute": "set-vcpu-dirty-limit"}
1894 # "arguments": { "dirty-rate": 200,
1895 # "cpu-index": 1 } }
1896 # <- { "return": {} }
1897 #
1898 ##
1899 { 'command': 'set-vcpu-dirty-limit',
1900 'data': { '*cpu-index': 'int',
1901 'dirty-rate': 'uint64' } }
1902
1903 ##
1904 # @cancel-vcpu-dirty-limit:
1905 #
1906 # Cancel the upper limit of dirty page rate for virtual CPUs.
1907 #
1908 # Cancel the dirty page limit for the vCPU which has been set with
1909 # set-vcpu-dirty-limit command. Note that this command requires
1910 # support from dirty ring, same as the "set-vcpu-dirty-limit".
1911 #
1912 # @cpu-index: index of a virtual CPU, default is all.
1913 #
1914 # Since: 7.1
1915 #
1916 # Example:
1917 #
1918 # -> {"execute": "cancel-vcpu-dirty-limit"},
1919 # "arguments": { "cpu-index": 1 } }
1920 # <- { "return": {} }
1921 #
1922 ##
1923 { 'command': 'cancel-vcpu-dirty-limit',
1924 'data': { '*cpu-index': 'int'} }
1925
1926 ##
1927 # @query-vcpu-dirty-limit:
1928 #
1929 # Returns information about virtual CPU dirty page rate limits, if any.
1930 #
1931 # Since: 7.1
1932 #
1933 # Example:
1934 #
1935 # -> {"execute": "query-vcpu-dirty-limit"}
1936 # <- {"return": [
1937 # { "limit-rate": 60, "current-rate": 3, "cpu-index": 0},
1938 # { "limit-rate": 60, "current-rate": 3, "cpu-index": 1}]}
1939 #
1940 ##
1941 { 'command': 'query-vcpu-dirty-limit',
1942 'returns': [ 'DirtyLimitInfo' ] }
1943
1944 ##
1945 # @MigrationThreadInfo:
1946 #
1947 # Information about migrationthreads
1948 #
1949 # @name: the name of migration thread
1950 #
1951 # @thread-id: ID of the underlying host thread
1952 #
1953 # Since: 7.2
1954 ##
1955 { 'struct': 'MigrationThreadInfo',
1956 'data': {'name': 'str',
1957 'thread-id': 'int'} }
1958
1959 ##
1960 # @query-migrationthreads:
1961 #
1962 # Returns information of migration threads
1963 #
1964 # data: migration thread name
1965 #
1966 # returns: information about migration threads
1967 #
1968 # Since: 7.2
1969 ##
1970 { 'command': 'query-migrationthreads',
1971 'returns': ['MigrationThreadInfo'] }
1972
1973 ##
1974 # @snapshot-save:
1975 #
1976 # Save a VM snapshot
1977 #
1978 # @job-id: identifier for the newly created job
1979 # @tag: name of the snapshot to create
1980 # @vmstate: block device node name to save vmstate to
1981 # @devices: list of block device node names to save a snapshot to
1982 #
1983 # Applications should not assume that the snapshot save is complete
1984 # when this command returns. The job commands / events must be used
1985 # to determine completion and to fetch details of any errors that arise.
1986 #
1987 # Note that execution of the guest CPUs may be stopped during the
1988 # time it takes to save the snapshot. A future version of QEMU
1989 # may ensure CPUs are executing continuously.
1990 #
1991 # It is strongly recommended that @devices contain all writable
1992 # block device nodes if a consistent snapshot is required.
1993 #
1994 # If @tag already exists, an error will be reported
1995 #
1996 # Returns: nothing
1997 #
1998 # Example:
1999 #
2000 # -> { "execute": "snapshot-save",
2001 # "arguments": {
2002 # "job-id": "snapsave0",
2003 # "tag": "my-snap",
2004 # "vmstate": "disk0",
2005 # "devices": ["disk0", "disk1"]
2006 # }
2007 # }
2008 # <- { "return": { } }
2009 # <- {"event": "JOB_STATUS_CHANGE",
2010 # "timestamp": {"seconds": 1432121972, "microseconds": 744001},
2011 # "data": {"status": "created", "id": "snapsave0"}}
2012 # <- {"event": "JOB_STATUS_CHANGE",
2013 # "timestamp": {"seconds": 1432122172, "microseconds": 744001},
2014 # "data": {"status": "running", "id": "snapsave0"}}
2015 # <- {"event": "STOP",
2016 # "timestamp": {"seconds": 1432122372, "microseconds": 744001} }
2017 # <- {"event": "RESUME",
2018 # "timestamp": {"seconds": 1432122572, "microseconds": 744001} }
2019 # <- {"event": "JOB_STATUS_CHANGE",
2020 # "timestamp": {"seconds": 1432122772, "microseconds": 744001},
2021 # "data": {"status": "waiting", "id": "snapsave0"}}
2022 # <- {"event": "JOB_STATUS_CHANGE",
2023 # "timestamp": {"seconds": 1432122972, "microseconds": 744001},
2024 # "data": {"status": "pending", "id": "snapsave0"}}
2025 # <- {"event": "JOB_STATUS_CHANGE",
2026 # "timestamp": {"seconds": 1432123172, "microseconds": 744001},
2027 # "data": {"status": "concluded", "id": "snapsave0"}}
2028 # -> {"execute": "query-jobs"}
2029 # <- {"return": [{"current-progress": 1,
2030 # "status": "concluded",
2031 # "total-progress": 1,
2032 # "type": "snapshot-save",
2033 # "id": "snapsave0"}]}
2034 #
2035 # Since: 6.0
2036 ##
2037 { 'command': 'snapshot-save',
2038 'data': { 'job-id': 'str',
2039 'tag': 'str',
2040 'vmstate': 'str',
2041 'devices': ['str'] } }
2042
2043 ##
2044 # @snapshot-load:
2045 #
2046 # Load a VM snapshot
2047 #
2048 # @job-id: identifier for the newly created job
2049 # @tag: name of the snapshot to load.
2050 # @vmstate: block device node name to load vmstate from
2051 # @devices: list of block device node names to load a snapshot from
2052 #
2053 # Applications should not assume that the snapshot load is complete
2054 # when this command returns. The job commands / events must be used
2055 # to determine completion and to fetch details of any errors that arise.
2056 #
2057 # Note that execution of the guest CPUs will be stopped during the
2058 # time it takes to load the snapshot.
2059 #
2060 # It is strongly recommended that @devices contain all writable
2061 # block device nodes that can have changed since the original
2062 # @snapshot-save command execution.
2063 #
2064 # Returns: nothing
2065 #
2066 # Example:
2067 #
2068 # -> { "execute": "snapshot-load",
2069 # "arguments": {
2070 # "job-id": "snapload0",
2071 # "tag": "my-snap",
2072 # "vmstate": "disk0",
2073 # "devices": ["disk0", "disk1"]
2074 # }
2075 # }
2076 # <- { "return": { } }
2077 # <- {"event": "JOB_STATUS_CHANGE",
2078 # "timestamp": {"seconds": 1472124172, "microseconds": 744001},
2079 # "data": {"status": "created", "id": "snapload0"}}
2080 # <- {"event": "JOB_STATUS_CHANGE",
2081 # "timestamp": {"seconds": 1472125172, "microseconds": 744001},
2082 # "data": {"status": "running", "id": "snapload0"}}
2083 # <- {"event": "STOP",
2084 # "timestamp": {"seconds": 1472125472, "microseconds": 744001} }
2085 # <- {"event": "RESUME",
2086 # "timestamp": {"seconds": 1472125872, "microseconds": 744001} }
2087 # <- {"event": "JOB_STATUS_CHANGE",
2088 # "timestamp": {"seconds": 1472126172, "microseconds": 744001},
2089 # "data": {"status": "waiting", "id": "snapload0"}}
2090 # <- {"event": "JOB_STATUS_CHANGE",
2091 # "timestamp": {"seconds": 1472127172, "microseconds": 744001},
2092 # "data": {"status": "pending", "id": "snapload0"}}
2093 # <- {"event": "JOB_STATUS_CHANGE",
2094 # "timestamp": {"seconds": 1472128172, "microseconds": 744001},
2095 # "data": {"status": "concluded", "id": "snapload0"}}
2096 # -> {"execute": "query-jobs"}
2097 # <- {"return": [{"current-progress": 1,
2098 # "status": "concluded",
2099 # "total-progress": 1,
2100 # "type": "snapshot-load",
2101 # "id": "snapload0"}]}
2102 #
2103 # Since: 6.0
2104 ##
2105 { 'command': 'snapshot-load',
2106 'data': { 'job-id': 'str',
2107 'tag': 'str',
2108 'vmstate': 'str',
2109 'devices': ['str'] } }
2110
2111 ##
2112 # @snapshot-delete:
2113 #
2114 # Delete a VM snapshot
2115 #
2116 # @job-id: identifier for the newly created job
2117 # @tag: name of the snapshot to delete.
2118 # @devices: list of block device node names to delete a snapshot from
2119 #
2120 # Applications should not assume that the snapshot delete is complete
2121 # when this command returns. The job commands / events must be used
2122 # to determine completion and to fetch details of any errors that arise.
2123 #
2124 # Returns: nothing
2125 #
2126 # Example:
2127 #
2128 # -> { "execute": "snapshot-delete",
2129 # "arguments": {
2130 # "job-id": "snapdelete0",
2131 # "tag": "my-snap",
2132 # "devices": ["disk0", "disk1"]
2133 # }
2134 # }
2135 # <- { "return": { } }
2136 # <- {"event": "JOB_STATUS_CHANGE",
2137 # "timestamp": {"seconds": 1442124172, "microseconds": 744001},
2138 # "data": {"status": "created", "id": "snapdelete0"}}
2139 # <- {"event": "JOB_STATUS_CHANGE",
2140 # "timestamp": {"seconds": 1442125172, "microseconds": 744001},
2141 # "data": {"status": "running", "id": "snapdelete0"}}
2142 # <- {"event": "JOB_STATUS_CHANGE",
2143 # "timestamp": {"seconds": 1442126172, "microseconds": 744001},
2144 # "data": {"status": "waiting", "id": "snapdelete0"}}
2145 # <- {"event": "JOB_STATUS_CHANGE",
2146 # "timestamp": {"seconds": 1442127172, "microseconds": 744001},
2147 # "data": {"status": "pending", "id": "snapdelete0"}}
2148 # <- {"event": "JOB_STATUS_CHANGE",
2149 # "timestamp": {"seconds": 1442128172, "microseconds": 744001},
2150 # "data": {"status": "concluded", "id": "snapdelete0"}}
2151 # -> {"execute": "query-jobs"}
2152 # <- {"return": [{"current-progress": 1,
2153 # "status": "concluded",
2154 # "total-progress": 1,
2155 # "type": "snapshot-delete",
2156 # "id": "snapdelete0"}]}
2157 #
2158 # Since: 6.0
2159 ##
2160 { 'command': 'snapshot-delete',
2161 'data': { 'job-id': 'str',
2162 'tag': 'str',
2163 'devices': ['str'] } }