]> git.proxmox.com Git - qemu.git/blob - qemu-doc.texi
telnet protocol and more consistent syntax (Jason Wessel)
[qemu.git] / qemu-doc.texi
1 \input texinfo @c -*- texinfo -*-
2 @c %**start of header
3 @setfilename qemu-doc.info
4 @settitle QEMU CPU Emulator User Documentation
5 @exampleindent 0
6 @paragraphindent 0
7 @c %**end of header
8
9 @iftex
10 @titlepage
11 @sp 7
12 @center @titlefont{QEMU CPU Emulator}
13 @sp 1
14 @center @titlefont{User Documentation}
15 @sp 3
16 @end titlepage
17 @end iftex
18
19 @ifnottex
20 @node Top
21 @top
22
23 @menu
24 * Introduction::
25 * Installation::
26 * QEMU PC System emulator::
27 * QEMU System emulator for non PC targets::
28 * QEMU Linux User space emulator::
29 * compilation:: Compilation from the sources
30 * Index::
31 @end menu
32 @end ifnottex
33
34 @contents
35
36 @node Introduction
37 @chapter Introduction
38
39 @menu
40 * intro_features:: Features
41 @end menu
42
43 @node intro_features
44 @section Features
45
46 QEMU is a FAST! processor emulator using dynamic translation to
47 achieve good emulation speed.
48
49 QEMU has two operating modes:
50
51 @itemize @minus
52
53 @item
54 Full system emulation. In this mode, QEMU emulates a full system (for
55 example a PC), including one or several processors and various
56 peripherals. It can be used to launch different Operating Systems
57 without rebooting the PC or to debug system code.
58
59 @item
60 User mode emulation (Linux host only). In this mode, QEMU can launch
61 Linux processes compiled for one CPU on another CPU. It can be used to
62 launch the Wine Windows API emulator (@url{http://www.winehq.org}) or
63 to ease cross-compilation and cross-debugging.
64
65 @end itemize
66
67 QEMU can run without an host kernel driver and yet gives acceptable
68 performance.
69
70 For system emulation, the following hardware targets are supported:
71 @itemize
72 @item PC (x86 or x86_64 processor)
73 @item ISA PC (old style PC without PCI bus)
74 @item PREP (PowerPC processor)
75 @item G3 BW PowerMac (PowerPC processor)
76 @item Mac99 PowerMac (PowerPC processor, in progress)
77 @item Sun4m (32-bit Sparc processor)
78 @item Sun4u (64-bit Sparc processor, in progress)
79 @item Malta board (32-bit MIPS processor)
80 @item ARM Integrator/CP (ARM926E or 1026E processor)
81 @item ARM Versatile baseboard (ARM926E)
82 @end itemize
83
84 For user emulation, x86, PowerPC, ARM, MIPS, and Sparc32/64 CPUs are supported.
85
86 @node Installation
87 @chapter Installation
88
89 If you want to compile QEMU yourself, see @ref{compilation}.
90
91 @menu
92 * install_linux:: Linux
93 * install_windows:: Windows
94 * install_mac:: Macintosh
95 @end menu
96
97 @node install_linux
98 @section Linux
99
100 If a precompiled package is available for your distribution - you just
101 have to install it. Otherwise, see @ref{compilation}.
102
103 @node install_windows
104 @section Windows
105
106 Download the experimental binary installer at
107 @url{http://www.free.oszoo.org/@/download.html}.
108
109 @node install_mac
110 @section Mac OS X
111
112 Download the experimental binary installer at
113 @url{http://www.free.oszoo.org/@/download.html}.
114
115 @node QEMU PC System emulator
116 @chapter QEMU PC System emulator
117
118 @menu
119 * pcsys_introduction:: Introduction
120 * pcsys_quickstart:: Quick Start
121 * sec_invocation:: Invocation
122 * pcsys_keys:: Keys
123 * pcsys_monitor:: QEMU Monitor
124 * disk_images:: Disk Images
125 * pcsys_network:: Network emulation
126 * direct_linux_boot:: Direct Linux Boot
127 * pcsys_usb:: USB emulation
128 * gdb_usage:: GDB usage
129 * pcsys_os_specific:: Target OS specific information
130 @end menu
131
132 @node pcsys_introduction
133 @section Introduction
134
135 @c man begin DESCRIPTION
136
137 The QEMU PC System emulator simulates the
138 following peripherals:
139
140 @itemize @minus
141 @item
142 i440FX host PCI bridge and PIIX3 PCI to ISA bridge
143 @item
144 Cirrus CLGD 5446 PCI VGA card or dummy VGA card with Bochs VESA
145 extensions (hardware level, including all non standard modes).
146 @item
147 PS/2 mouse and keyboard
148 @item
149 2 PCI IDE interfaces with hard disk and CD-ROM support
150 @item
151 Floppy disk
152 @item
153 NE2000 PCI network adapters
154 @item
155 Serial ports
156 @item
157 Creative SoundBlaster 16 sound card
158 @item
159 ENSONIQ AudioPCI ES1370 sound card
160 @item
161 Adlib(OPL2) - Yamaha YM3812 compatible chip
162 @item
163 PCI UHCI USB controller and a virtual USB hub.
164 @end itemize
165
166 SMP is supported with up to 255 CPUs.
167
168 Note that adlib is only available when QEMU was configured with
169 -enable-adlib
170
171 QEMU uses the PC BIOS from the Bochs project and the Plex86/Bochs LGPL
172 VGA BIOS.
173
174 QEMU uses YM3812 emulation by Tatsuyuki Satoh.
175
176 @c man end
177
178 @node pcsys_quickstart
179 @section Quick Start
180
181 Download and uncompress the linux image (@file{linux.img}) and type:
182
183 @example
184 qemu linux.img
185 @end example
186
187 Linux should boot and give you a prompt.
188
189 @node sec_invocation
190 @section Invocation
191
192 @example
193 @c man begin SYNOPSIS
194 usage: qemu [options] [disk_image]
195 @c man end
196 @end example
197
198 @c man begin OPTIONS
199 @var{disk_image} is a raw hard disk image for IDE hard disk 0.
200
201 General options:
202 @table @option
203 @item -M machine
204 Select the emulated machine (@code{-M ?} for list)
205
206 @item -fda file
207 @item -fdb file
208 Use @var{file} as floppy disk 0/1 image (@pxref{disk_images}). You can
209 use the host floppy by using @file{/dev/fd0} as filename.
210
211 @item -hda file
212 @item -hdb file
213 @item -hdc file
214 @item -hdd file
215 Use @var{file} as hard disk 0, 1, 2 or 3 image (@pxref{disk_images}).
216
217 @item -cdrom file
218 Use @var{file} as CD-ROM image (you cannot use @option{-hdc} and and
219 @option{-cdrom} at the same time). You can use the host CD-ROM by
220 using @file{/dev/cdrom} as filename.
221
222 @item -boot [a|c|d]
223 Boot on floppy (a), hard disk (c) or CD-ROM (d). Hard disk boot is
224 the default.
225
226 @item -snapshot
227 Write to temporary files instead of disk image files. In this case,
228 the raw disk image you use is not written back. You can however force
229 the write back by pressing @key{C-a s} (@pxref{disk_images}).
230
231 @item -no-fd-bootchk
232 Disable boot signature checking for floppy disks in Bochs BIOS. It may
233 be needed to boot from old floppy disks.
234
235 @item -m megs
236 Set virtual RAM size to @var{megs} megabytes. Default is 128 MB.
237
238 @item -smp n
239 Simulate an SMP system with @var{n} CPUs. On the PC target, up to 255
240 CPUs are supported.
241
242 @item -nographic
243
244 Normally, QEMU uses SDL to display the VGA output. With this option,
245 you can totally disable graphical output so that QEMU is a simple
246 command line application. The emulated serial port is redirected on
247 the console. Therefore, you can still use QEMU to debug a Linux kernel
248 with a serial console.
249
250 @item -vnc d
251
252 Normally, QEMU uses SDL to display the VGA output. With this option,
253 you can have QEMU listen on VNC display d and redirect the VGA display
254 over the VNC session. It is very useful to enable the usb tablet device
255 when using this option (option @option{-usbdevice tablet}).
256
257 @item -k language
258
259 Use keyboard layout @var{language} (for example @code{fr} for
260 French). This option is only needed where it is not easy to get raw PC
261 keycodes (e.g. on Macs or with some X11 servers). You don't need to
262 use it on PC/Linux or PC/Windows hosts.
263
264 The available layouts are:
265 @example
266 ar de-ch es fo fr-ca hu ja mk no pt-br sv
267 da en-gb et fr fr-ch is lt nl pl ru th
268 de en-us fi fr-be hr it lv nl-be pt sl tr
269 @end example
270
271 The default is @code{en-us}.
272
273 @item -audio-help
274
275 Will show the audio subsystem help: list of drivers, tunable
276 parameters.
277
278 @item -soundhw card1,card2,... or -soundhw all
279
280 Enable audio and selected sound hardware. Use ? to print all
281 available sound hardware.
282
283 @example
284 qemu -soundhw sb16,adlib hda
285 qemu -soundhw es1370 hda
286 qemu -soundhw all hda
287 qemu -soundhw ?
288 @end example
289
290 @item -localtime
291 Set the real time clock to local time (the default is to UTC
292 time). This option is needed to have correct date in MS-DOS or
293 Windows.
294
295 @item -full-screen
296 Start in full screen.
297
298 @item -pidfile file
299 Store the QEMU process PID in @var{file}. It is useful if you launch QEMU
300 from a script.
301
302 @item -win2k-hack
303 Use it when installing Windows 2000 to avoid a disk full bug. After
304 Windows 2000 is installed, you no longer need this option (this option
305 slows down the IDE transfers).
306
307 @end table
308
309 USB options:
310 @table @option
311
312 @item -usb
313 Enable the USB driver (will be the default soon)
314
315 @item -usbdevice devname
316 Add the USB device @var{devname}. @xref{usb_devices}.
317 @end table
318
319 Network options:
320
321 @table @option
322
323 @item -net nic[,vlan=n][,macaddr=addr][,model=type]
324 Create a new Network Interface Card and connect it to VLAN @var{n} (@var{n}
325 = 0 is the default). The NIC is currently an NE2000 on the PC
326 target. Optionally, the MAC address can be changed. If no
327 @option{-net} option is specified, a single NIC is created.
328 Qemu can emulate several different models of network card. Valid values for
329 @var{type} are @code{ne2k_pci}, @code{ne2k_isa}, @code{rtl8139},
330 @code{smc91c111} and @code{lance}. Not all devices are supported on all
331 targets.
332
333 @item -net user[,vlan=n][,hostname=name]
334 Use the user mode network stack which requires no administrator
335 priviledge to run. @option{hostname=name} can be used to specify the client
336 hostname reported by the builtin DHCP server.
337
338 @item -net tap[,vlan=n][,fd=h][,ifname=name][,script=file]
339 Connect the host TAP network interface @var{name} to VLAN @var{n} and
340 use the network script @var{file} to configure it. The default
341 network script is @file{/etc/qemu-ifup}. If @var{name} is not
342 provided, the OS automatically provides one. @option{fd=h} can be
343 used to specify the handle of an already opened host TAP interface. Example:
344
345 @example
346 qemu linux.img -net nic -net tap
347 @end example
348
349 More complicated example (two NICs, each one connected to a TAP device)
350 @example
351 qemu linux.img -net nic,vlan=0 -net tap,vlan=0,ifname=tap0 \
352 -net nic,vlan=1 -net tap,vlan=1,ifname=tap1
353 @end example
354
355
356 @item -net socket[,vlan=n][,fd=h][,listen=[host]:port][,connect=host:port]
357
358 Connect the VLAN @var{n} to a remote VLAN in another QEMU virtual
359 machine using a TCP socket connection. If @option{listen} is
360 specified, QEMU waits for incoming connections on @var{port}
361 (@var{host} is optional). @option{connect} is used to connect to
362 another QEMU instance using the @option{listen} option. @option{fd=h}
363 specifies an already opened TCP socket.
364
365 Example:
366 @example
367 # launch a first QEMU instance
368 qemu linux.img -net nic,macaddr=52:54:00:12:34:56 \
369 -net socket,listen=:1234
370 # connect the VLAN 0 of this instance to the VLAN 0
371 # of the first instance
372 qemu linux.img -net nic,macaddr=52:54:00:12:34:57 \
373 -net socket,connect=127.0.0.1:1234
374 @end example
375
376 @item -net socket[,vlan=n][,fd=h][,mcast=maddr:port]
377
378 Create a VLAN @var{n} shared with another QEMU virtual
379 machines using a UDP multicast socket, effectively making a bus for
380 every QEMU with same multicast address @var{maddr} and @var{port}.
381 NOTES:
382 @enumerate
383 @item
384 Several QEMU can be running on different hosts and share same bus (assuming
385 correct multicast setup for these hosts).
386 @item
387 mcast support is compatible with User Mode Linux (argument @option{eth@var{N}=mcast}), see
388 @url{http://user-mode-linux.sf.net}.
389 @item Use @option{fd=h} to specify an already opened UDP multicast socket.
390 @end enumerate
391
392 Example:
393 @example
394 # launch one QEMU instance
395 qemu linux.img -net nic,macaddr=52:54:00:12:34:56 \
396 -net socket,mcast=230.0.0.1:1234
397 # launch another QEMU instance on same "bus"
398 qemu linux.img -net nic,macaddr=52:54:00:12:34:57 \
399 -net socket,mcast=230.0.0.1:1234
400 # launch yet another QEMU instance on same "bus"
401 qemu linux.img -net nic,macaddr=52:54:00:12:34:58 \
402 -net socket,mcast=230.0.0.1:1234
403 @end example
404
405 Example (User Mode Linux compat.):
406 @example
407 # launch QEMU instance (note mcast address selected
408 # is UML's default)
409 qemu linux.img -net nic,macaddr=52:54:00:12:34:56 \
410 -net socket,mcast=239.192.168.1:1102
411 # launch UML
412 /path/to/linux ubd0=/path/to/root_fs eth0=mcast
413 @end example
414
415 @item -net none
416 Indicate that no network devices should be configured. It is used to
417 override the default configuration (@option{-net nic -net user}) which
418 is activated if no @option{-net} options are provided.
419
420 @item -tftp prefix
421 When using the user mode network stack, activate a built-in TFTP
422 server. All filenames beginning with @var{prefix} can be downloaded
423 from the host to the guest using a TFTP client. The TFTP client on the
424 guest must be configured in binary mode (use the command @code{bin} of
425 the Unix TFTP client). The host IP address on the guest is as usual
426 10.0.2.2.
427
428 @item -smb dir
429 When using the user mode network stack, activate a built-in SMB
430 server so that Windows OSes can access to the host files in @file{dir}
431 transparently.
432
433 In the guest Windows OS, the line:
434 @example
435 10.0.2.4 smbserver
436 @end example
437 must be added in the file @file{C:\WINDOWS\LMHOSTS} (for windows 9x/Me)
438 or @file{C:\WINNT\SYSTEM32\DRIVERS\ETC\LMHOSTS} (Windows NT/2000).
439
440 Then @file{dir} can be accessed in @file{\\smbserver\qemu}.
441
442 Note that a SAMBA server must be installed on the host OS in
443 @file{/usr/sbin/smbd}. QEMU was tested succesfully with smbd version
444 2.2.7a from the Red Hat 9 and version 3.0.10-1.fc3 from Fedora Core 3.
445
446 @item -redir [tcp|udp]:host-port:[guest-host]:guest-port
447
448 When using the user mode network stack, redirect incoming TCP or UDP
449 connections to the host port @var{host-port} to the guest
450 @var{guest-host} on guest port @var{guest-port}. If @var{guest-host}
451 is not specified, its value is 10.0.2.15 (default address given by the
452 built-in DHCP server).
453
454 For example, to redirect host X11 connection from screen 1 to guest
455 screen 0, use the following:
456
457 @example
458 # on the host
459 qemu -redir tcp:6001::6000 [...]
460 # this host xterm should open in the guest X11 server
461 xterm -display :1
462 @end example
463
464 To redirect telnet connections from host port 5555 to telnet port on
465 the guest, use the following:
466
467 @example
468 # on the host
469 qemu -redir tcp:5555::23 [...]
470 telnet localhost 5555
471 @end example
472
473 Then when you use on the host @code{telnet localhost 5555}, you
474 connect to the guest telnet server.
475
476 @end table
477
478 Linux boot specific: When using these options, you can use a given
479 Linux kernel without installing it in the disk image. It can be useful
480 for easier testing of various kernels.
481
482 @table @option
483
484 @item -kernel bzImage
485 Use @var{bzImage} as kernel image.
486
487 @item -append cmdline
488 Use @var{cmdline} as kernel command line
489
490 @item -initrd file
491 Use @var{file} as initial ram disk.
492
493 @end table
494
495 Debug/Expert options:
496 @table @option
497
498 @item -serial dev
499 Redirect the virtual serial port to host character device
500 @var{dev}. The default device is @code{vc} in graphical mode and
501 @code{stdio} in non graphical mode.
502
503 This option can be used several times to simulate up to 4 serials
504 ports.
505
506 Available character devices are:
507 @table @code
508 @item vc
509 Virtual console
510 @item pty
511 [Linux only] Pseudo TTY (a new PTY is automatically allocated)
512 @item null
513 void device
514 @item /dev/XXX
515 [Linux only] Use host tty, e.g. @file{/dev/ttyS0}. The host serial port
516 parameters are set according to the emulated ones.
517 @item /dev/parportN
518 [Linux only, parallel port only] Use host parallel port
519 @var{N}. Currently only SPP parallel port features can be used.
520 @item file:filename
521 Write output to filename. No character can be read.
522 @item stdio
523 [Unix only] standard input/output
524 @item pipe:filename
525 name pipe @var{filename}
526 @item COMn
527 [Windows only] Use host serial port @var{n}
528 @item udp:[remote_host]:remote_port[@@[src_ip]:src_port]
529 This implements UDP Net Console. When @var{remote_host} or @var{src_ip} are not specified they default to @code{0.0.0.0}. When not using a specifed @var{src_port} a random port is automatically chosen.
530
531 If you just want a simple readonly console you can use @code{netcat} or
532 @code{nc}, by starting qemu with: @code{-serial udp::4555} and nc as:
533 @code{nc -u -l -p 4555}. Any time qemu writes something to that port it
534 will appear in the netconsole session.
535
536 If you plan to send characters back via netconsole or you want to stop
537 and start qemu a lot of times, you should have qemu use the same
538 source port each time by using something like @code{-serial
539 udp::4555@@:4556} to qemu. Another approach is to use a patched
540 version of netcat which can listen to a TCP port and send and receive
541 characters via udp. If you have a patched version of netcat which
542 activates telnet remote echo and single char transfer, then you can
543 use the following options to step up a netcat redirector to allow
544 telnet on port 5555 to access the qemu port.
545 @table @code
546 @item Qemu Options:
547 -serial udp::4555@@:4556
548 @item netcat options:
549 -u -P 4555 -L 0.0.0.0:4556 -t -p 5555 -I -T
550 @item telnet options:
551 localhost 5555
552 @end table
553
554
555 @item tcp:[host]:port[,server][,nowait]
556 The TCP Net Console has two modes of operation. It can send the serial
557 I/O to a location or wait for a connection from a location. By default
558 the TCP Net Console is sent to @var{host} at the @var{port}. If you use
559 the @var{,server} option QEMU will wait for a client socket application
560 to connect to the port before continuing, unless the @code{,nowait}
561 option was specified. If @var{host} is omitted, 0.0.0.0 is assumed. Only
562 one TCP connection at a time is accepted. You can use @code{telnet} to
563 connect to the corresponding character device.
564 @table @code
565 @item Example to send tcp console to 192.168.0.2 port 4444
566 -serial tcp:192.168.0.2:4444
567 @item Example to listen and wait on port 4444 for connection
568 -serial tcp::4444,server
569 @item Example to not wait and listen on ip 192.168.0.100 port 4444
570 -serial tcp:192.168.0.100:4444,server,nowait
571 @end table
572
573 @item telnet:host:port[,server][,nowait]
574 The telnet protocol is used instead of raw tcp sockets. The options
575 work the same as if you had specified @code{-serial tcp}. The
576 difference is that the port acts like a telnet server or client using
577 telnet option negotiation. This will also allow you to send the
578 MAGIC_SYSRQ sequence if you use a telnet that supports sending the break
579 sequence. Typically in unix telnet you do it with Control-] and then
580 type "send break" followed by pressing the enter key.
581
582 @end table
583
584 @item -parallel dev
585 Redirect the virtual parallel port to host device @var{dev} (same
586 devices as the serial port). On Linux hosts, @file{/dev/parportN} can
587 be used to use hardware devices connected on the corresponding host
588 parallel port.
589
590 This option can be used several times to simulate up to 3 parallel
591 ports.
592
593 @item -monitor dev
594 Redirect the monitor to host device @var{dev} (same devices as the
595 serial port).
596 The default device is @code{vc} in graphical mode and @code{stdio} in
597 non graphical mode.
598
599 @item -s
600 Wait gdb connection to port 1234 (@pxref{gdb_usage}).
601 @item -p port
602 Change gdb connection port.
603 @item -S
604 Do not start CPU at startup (you must type 'c' in the monitor).
605 @item -d
606 Output log in /tmp/qemu.log
607 @item -hdachs c,h,s,[,t]
608 Force hard disk 0 physical geometry (1 <= @var{c} <= 16383, 1 <=
609 @var{h} <= 16, 1 <= @var{s} <= 63) and optionally force the BIOS
610 translation mode (@var{t}=none, lba or auto). Usually QEMU can guess
611 all thoses parameters. This option is useful for old MS-DOS disk
612 images.
613
614 @item -std-vga
615 Simulate a standard VGA card with Bochs VBE extensions (default is
616 Cirrus Logic GD5446 PCI VGA). If your guest OS supports the VESA 2.0
617 VBE extensions (e.g. Windows XP) and if you want to use high
618 resolution modes (>= 1280x1024x16) then you should use this option.
619
620 @item -loadvm file
621 Start right away with a saved state (@code{loadvm} in monitor)
622 @end table
623
624 @c man end
625
626 @node pcsys_keys
627 @section Keys
628
629 @c man begin OPTIONS
630
631 During the graphical emulation, you can use the following keys:
632 @table @key
633 @item Ctrl-Alt-f
634 Toggle full screen
635
636 @item Ctrl-Alt-n
637 Switch to virtual console 'n'. Standard console mappings are:
638 @table @emph
639 @item 1
640 Target system display
641 @item 2
642 Monitor
643 @item 3
644 Serial port
645 @end table
646
647 @item Ctrl-Alt
648 Toggle mouse and keyboard grab.
649 @end table
650
651 In the virtual consoles, you can use @key{Ctrl-Up}, @key{Ctrl-Down},
652 @key{Ctrl-PageUp} and @key{Ctrl-PageDown} to move in the back log.
653
654 During emulation, if you are using the @option{-nographic} option, use
655 @key{Ctrl-a h} to get terminal commands:
656
657 @table @key
658 @item Ctrl-a h
659 Print this help
660 @item Ctrl-a x
661 Exit emulatior
662 @item Ctrl-a s
663 Save disk data back to file (if -snapshot)
664 @item Ctrl-a b
665 Send break (magic sysrq in Linux)
666 @item Ctrl-a c
667 Switch between console and monitor
668 @item Ctrl-a Ctrl-a
669 Send Ctrl-a
670 @end table
671 @c man end
672
673 @ignore
674
675 @c man begin SEEALSO
676 The HTML documentation of QEMU for more precise information and Linux
677 user mode emulator invocation.
678 @c man end
679
680 @c man begin AUTHOR
681 Fabrice Bellard
682 @c man end
683
684 @end ignore
685
686 @node pcsys_monitor
687 @section QEMU Monitor
688
689 The QEMU monitor is used to give complex commands to the QEMU
690 emulator. You can use it to:
691
692 @itemize @minus
693
694 @item
695 Remove or insert removable medias images
696 (such as CD-ROM or floppies)
697
698 @item
699 Freeze/unfreeze the Virtual Machine (VM) and save or restore its state
700 from a disk file.
701
702 @item Inspect the VM state without an external debugger.
703
704 @end itemize
705
706 @subsection Commands
707
708 The following commands are available:
709
710 @table @option
711
712 @item help or ? [cmd]
713 Show the help for all commands or just for command @var{cmd}.
714
715 @item commit
716 Commit changes to the disk images (if -snapshot is used)
717
718 @item info subcommand
719 show various information about the system state
720
721 @table @option
722 @item info network
723 show the various VLANs and the associated devices
724 @item info block
725 show the block devices
726 @item info registers
727 show the cpu registers
728 @item info history
729 show the command line history
730 @item info pci
731 show emulated PCI device
732 @item info usb
733 show USB devices plugged on the virtual USB hub
734 @item info usbhost
735 show all USB host devices
736 @end table
737
738 @item q or quit
739 Quit the emulator.
740
741 @item eject [-f] device
742 Eject a removable media (use -f to force it).
743
744 @item change device filename
745 Change a removable media.
746
747 @item screendump filename
748 Save screen into PPM image @var{filename}.
749
750 @item log item1[,...]
751 Activate logging of the specified items to @file{/tmp/qemu.log}.
752
753 @item savevm filename
754 Save the whole virtual machine state to @var{filename}.
755
756 @item loadvm filename
757 Restore the whole virtual machine state from @var{filename}.
758
759 @item stop
760 Stop emulation.
761
762 @item c or cont
763 Resume emulation.
764
765 @item gdbserver [port]
766 Start gdbserver session (default port=1234)
767
768 @item x/fmt addr
769 Virtual memory dump starting at @var{addr}.
770
771 @item xp /fmt addr
772 Physical memory dump starting at @var{addr}.
773
774 @var{fmt} is a format which tells the command how to format the
775 data. Its syntax is: @option{/@{count@}@{format@}@{size@}}
776
777 @table @var
778 @item count
779 is the number of items to be dumped.
780
781 @item format
782 can be x (hexa), d (signed decimal), u (unsigned decimal), o (octal),
783 c (char) or i (asm instruction).
784
785 @item size
786 can be b (8 bits), h (16 bits), w (32 bits) or g (64 bits). On x86,
787 @code{h} or @code{w} can be specified with the @code{i} format to
788 respectively select 16 or 32 bit code instruction size.
789
790 @end table
791
792 Examples:
793 @itemize
794 @item
795 Dump 10 instructions at the current instruction pointer:
796 @example
797 (qemu) x/10i $eip
798 0x90107063: ret
799 0x90107064: sti
800 0x90107065: lea 0x0(%esi,1),%esi
801 0x90107069: lea 0x0(%edi,1),%edi
802 0x90107070: ret
803 0x90107071: jmp 0x90107080
804 0x90107073: nop
805 0x90107074: nop
806 0x90107075: nop
807 0x90107076: nop
808 @end example
809
810 @item
811 Dump 80 16 bit values at the start of the video memory.
812 @smallexample
813 (qemu) xp/80hx 0xb8000
814 0x000b8000: 0x0b50 0x0b6c 0x0b65 0x0b78 0x0b38 0x0b36 0x0b2f 0x0b42
815 0x000b8010: 0x0b6f 0x0b63 0x0b68 0x0b73 0x0b20 0x0b56 0x0b47 0x0b41
816 0x000b8020: 0x0b42 0x0b69 0x0b6f 0x0b73 0x0b20 0x0b63 0x0b75 0x0b72
817 0x000b8030: 0x0b72 0x0b65 0x0b6e 0x0b74 0x0b2d 0x0b63 0x0b76 0x0b73
818 0x000b8040: 0x0b20 0x0b30 0x0b35 0x0b20 0x0b4e 0x0b6f 0x0b76 0x0b20
819 0x000b8050: 0x0b32 0x0b30 0x0b30 0x0b33 0x0720 0x0720 0x0720 0x0720
820 0x000b8060: 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720
821 0x000b8070: 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720
822 0x000b8080: 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720
823 0x000b8090: 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720
824 @end smallexample
825 @end itemize
826
827 @item p or print/fmt expr
828
829 Print expression value. Only the @var{format} part of @var{fmt} is
830 used.
831
832 @item sendkey keys
833
834 Send @var{keys} to the emulator. Use @code{-} to press several keys
835 simultaneously. Example:
836 @example
837 sendkey ctrl-alt-f1
838 @end example
839
840 This command is useful to send keys that your graphical user interface
841 intercepts at low level, such as @code{ctrl-alt-f1} in X Window.
842
843 @item system_reset
844
845 Reset the system.
846
847 @item usb_add devname
848
849 Add the USB device @var{devname}. For details of available devices see
850 @ref{usb_devices}
851
852 @item usb_del devname
853
854 Remove the USB device @var{devname} from the QEMU virtual USB
855 hub. @var{devname} has the syntax @code{bus.addr}. Use the monitor
856 command @code{info usb} to see the devices you can remove.
857
858 @end table
859
860 @subsection Integer expressions
861
862 The monitor understands integers expressions for every integer
863 argument. You can use register names to get the value of specifics
864 CPU registers by prefixing them with @emph{$}.
865
866 @node disk_images
867 @section Disk Images
868
869 Since version 0.6.1, QEMU supports many disk image formats, including
870 growable disk images (their size increase as non empty sectors are
871 written), compressed and encrypted disk images.
872
873 @menu
874 * disk_images_quickstart:: Quick start for disk image creation
875 * disk_images_snapshot_mode:: Snapshot mode
876 * qemu_img_invocation:: qemu-img Invocation
877 * disk_images_fat_images:: Virtual FAT disk images
878 @end menu
879
880 @node disk_images_quickstart
881 @subsection Quick start for disk image creation
882
883 You can create a disk image with the command:
884 @example
885 qemu-img create myimage.img mysize
886 @end example
887 where @var{myimage.img} is the disk image filename and @var{mysize} is its
888 size in kilobytes. You can add an @code{M} suffix to give the size in
889 megabytes and a @code{G} suffix for gigabytes.
890
891 See @ref{qemu_img_invocation} for more information.
892
893 @node disk_images_snapshot_mode
894 @subsection Snapshot mode
895
896 If you use the option @option{-snapshot}, all disk images are
897 considered as read only. When sectors in written, they are written in
898 a temporary file created in @file{/tmp}. You can however force the
899 write back to the raw disk images by using the @code{commit} monitor
900 command (or @key{C-a s} in the serial console).
901
902 @node qemu_img_invocation
903 @subsection @code{qemu-img} Invocation
904
905 @include qemu-img.texi
906
907 @node disk_images_fat_images
908 @subsection Virtual FAT disk images
909
910 QEMU can automatically create a virtual FAT disk image from a
911 directory tree. In order to use it, just type:
912
913 @example
914 qemu linux.img -hdb fat:/my_directory
915 @end example
916
917 Then you access access to all the files in the @file{/my_directory}
918 directory without having to copy them in a disk image or to export
919 them via SAMBA or NFS. The default access is @emph{read-only}.
920
921 Floppies can be emulated with the @code{:floppy:} option:
922
923 @example
924 qemu linux.img -fda fat:floppy:/my_directory
925 @end example
926
927 A read/write support is available for testing (beta stage) with the
928 @code{:rw:} option:
929
930 @example
931 qemu linux.img -fda fat:floppy:rw:/my_directory
932 @end example
933
934 What you should @emph{never} do:
935 @itemize
936 @item use non-ASCII filenames ;
937 @item use "-snapshot" together with ":rw:" ;
938 @item expect it to work when loadvm'ing ;
939 @item write to the FAT directory on the host system while accessing it with the guest system.
940 @end itemize
941
942 @node pcsys_network
943 @section Network emulation
944
945 QEMU can simulate several networks cards (NE2000 boards on the PC
946 target) and can connect them to an arbitrary number of Virtual Local
947 Area Networks (VLANs). Host TAP devices can be connected to any QEMU
948 VLAN. VLAN can be connected between separate instances of QEMU to
949 simulate large networks. For simpler usage, a non priviledged user mode
950 network stack can replace the TAP device to have a basic network
951 connection.
952
953 @subsection VLANs
954
955 QEMU simulates several VLANs. A VLAN can be symbolised as a virtual
956 connection between several network devices. These devices can be for
957 example QEMU virtual Ethernet cards or virtual Host ethernet devices
958 (TAP devices).
959
960 @subsection Using TAP network interfaces
961
962 This is the standard way to connect QEMU to a real network. QEMU adds
963 a virtual network device on your host (called @code{tapN}), and you
964 can then configure it as if it was a real ethernet card.
965
966 As an example, you can download the @file{linux-test-xxx.tar.gz}
967 archive and copy the script @file{qemu-ifup} in @file{/etc} and
968 configure properly @code{sudo} so that the command @code{ifconfig}
969 contained in @file{qemu-ifup} can be executed as root. You must verify
970 that your host kernel supports the TAP network interfaces: the
971 device @file{/dev/net/tun} must be present.
972
973 See @ref{direct_linux_boot} to have an example of network use with a
974 Linux distribution and @ref{sec_invocation} to have examples of
975 command lines using the TAP network interfaces.
976
977 @subsection Using the user mode network stack
978
979 By using the option @option{-net user} (default configuration if no
980 @option{-net} option is specified), QEMU uses a completely user mode
981 network stack (you don't need root priviledge to use the virtual
982 network). The virtual network configuration is the following:
983
984 @example
985
986 QEMU VLAN <------> Firewall/DHCP server <-----> Internet
987 | (10.0.2.2)
988 |
989 ----> DNS server (10.0.2.3)
990 |
991 ----> SMB server (10.0.2.4)
992 @end example
993
994 The QEMU VM behaves as if it was behind a firewall which blocks all
995 incoming connections. You can use a DHCP client to automatically
996 configure the network in the QEMU VM. The DHCP server assign addresses
997 to the hosts starting from 10.0.2.15.
998
999 In order to check that the user mode network is working, you can ping
1000 the address 10.0.2.2 and verify that you got an address in the range
1001 10.0.2.x from the QEMU virtual DHCP server.
1002
1003 Note that @code{ping} is not supported reliably to the internet as it
1004 would require root priviledges. It means you can only ping the local
1005 router (10.0.2.2).
1006
1007 When using the built-in TFTP server, the router is also the TFTP
1008 server.
1009
1010 When using the @option{-redir} option, TCP or UDP connections can be
1011 redirected from the host to the guest. It allows for example to
1012 redirect X11, telnet or SSH connections.
1013
1014 @subsection Connecting VLANs between QEMU instances
1015
1016 Using the @option{-net socket} option, it is possible to make VLANs
1017 that span several QEMU instances. See @ref{sec_invocation} to have a
1018 basic example.
1019
1020 @node direct_linux_boot
1021 @section Direct Linux Boot
1022
1023 This section explains how to launch a Linux kernel inside QEMU without
1024 having to make a full bootable image. It is very useful for fast Linux
1025 kernel testing. The QEMU network configuration is also explained.
1026
1027 @enumerate
1028 @item
1029 Download the archive @file{linux-test-xxx.tar.gz} containing a Linux
1030 kernel and a disk image.
1031
1032 @item Optional: If you want network support (for example to launch X11 examples), you
1033 must copy the script @file{qemu-ifup} in @file{/etc} and configure
1034 properly @code{sudo} so that the command @code{ifconfig} contained in
1035 @file{qemu-ifup} can be executed as root. You must verify that your host
1036 kernel supports the TUN/TAP network interfaces: the device
1037 @file{/dev/net/tun} must be present.
1038
1039 When network is enabled, there is a virtual network connection between
1040 the host kernel and the emulated kernel. The emulated kernel is seen
1041 from the host kernel at IP address 172.20.0.2 and the host kernel is
1042 seen from the emulated kernel at IP address 172.20.0.1.
1043
1044 @item Launch @code{qemu.sh}. You should have the following output:
1045
1046 @smallexample
1047 > ./qemu.sh
1048 Connected to host network interface: tun0
1049 Linux version 2.4.21 (bellard@@voyager.localdomain) (gcc version 3.2.2 20030222 @/(Red Hat @/Linux 3.2.2-5)) #5 Tue Nov 11 18:18:53 CET 2003
1050 BIOS-provided physical RAM map:
1051 BIOS-e801: 0000000000000000 - 000000000009f000 (usable)
1052 BIOS-e801: 0000000000100000 - 0000000002000000 (usable)
1053 32MB LOWMEM available.
1054 On node 0 totalpages: 8192
1055 zone(0): 4096 pages.
1056 zone(1): 4096 pages.
1057 zone(2): 0 pages.
1058 Kernel command line: root=/dev/hda sb=0x220,5,1,5 ide2=noprobe ide3=noprobe ide4=noprobe @/ide5=noprobe console=ttyS0
1059 ide_setup: ide2=noprobe
1060 ide_setup: ide3=noprobe
1061 ide_setup: ide4=noprobe
1062 ide_setup: ide5=noprobe
1063 Initializing CPU#0
1064 Detected 2399.621 MHz processor.
1065 Console: colour EGA 80x25
1066 Calibrating delay loop... 4744.80 BogoMIPS
1067 Memory: 28872k/32768k available (1210k kernel code, 3508k reserved, 266k data, 64k init, @/0k highmem)
1068 Dentry cache hash table entries: 4096 (order: 3, 32768 bytes)
1069 Inode cache hash table entries: 2048 (order: 2, 16384 bytes)
1070 Mount cache hash table entries: 512 (order: 0, 4096 bytes)
1071 Buffer-cache hash table entries: 1024 (order: 0, 4096 bytes)
1072 Page-cache hash table entries: 8192 (order: 3, 32768 bytes)
1073 CPU: Intel Pentium Pro stepping 03
1074 Checking 'hlt' instruction... OK.
1075 POSIX conformance testing by UNIFIX
1076 Linux NET4.0 for Linux 2.4
1077 Based upon Swansea University Computer Society NET3.039
1078 Initializing RT netlink socket
1079 apm: BIOS not found.
1080 Starting kswapd
1081 Journalled Block Device driver loaded
1082 Detected PS/2 Mouse Port.
1083 pty: 256 Unix98 ptys configured
1084 Serial driver version 5.05c (2001-07-08) with no serial options enabled
1085 ttyS00 at 0x03f8 (irq = 4) is a 16450
1086 ne.c:v1.10 9/23/94 Donald Becker (becker@@scyld.com)
1087 Last modified Nov 1, 2000 by Paul Gortmaker
1088 NE*000 ethercard probe at 0x300: 52 54 00 12 34 56
1089 eth0: NE2000 found at 0x300, using IRQ 9.
1090 RAMDISK driver initialized: 16 RAM disks of 4096K size 1024 blocksize
1091 Uniform Multi-Platform E-IDE driver Revision: 7.00beta4-2.4
1092 ide: Assuming 50MHz system bus speed for PIO modes; override with idebus=xx
1093 hda: QEMU HARDDISK, ATA DISK drive
1094 ide0 at 0x1f0-0x1f7,0x3f6 on irq 14
1095 hda: attached ide-disk driver.
1096 hda: 20480 sectors (10 MB) w/256KiB Cache, CHS=20/16/63
1097 Partition check:
1098 hda:
1099 Soundblaster audio driver Copyright (C) by Hannu Savolainen 1993-1996
1100 NET4: Linux TCP/IP 1.0 for NET4.0
1101 IP Protocols: ICMP, UDP, TCP, IGMP
1102 IP: routing cache hash table of 512 buckets, 4Kbytes
1103 TCP: Hash tables configured (established 2048 bind 4096)
1104 NET4: Unix domain sockets 1.0/SMP for Linux NET4.0.
1105 EXT2-fs warning: mounting unchecked fs, running e2fsck is recommended
1106 VFS: Mounted root (ext2 filesystem).
1107 Freeing unused kernel memory: 64k freed
1108
1109 Linux version 2.4.21 (bellard@@voyager.localdomain) (gcc version 3.2.2 20030222 @/(Red Hat @/Linux 3.2.2-5)) #5 Tue Nov 11 18:18:53 CET 2003
1110
1111 QEMU Linux test distribution (based on Redhat 9)
1112
1113 Type 'exit' to halt the system
1114
1115 sh-2.05b#
1116 @end smallexample
1117
1118 @item
1119 Then you can play with the kernel inside the virtual serial console. You
1120 can launch @code{ls} for example. Type @key{Ctrl-a h} to have an help
1121 about the keys you can type inside the virtual serial console. In
1122 particular, use @key{Ctrl-a x} to exit QEMU and use @key{Ctrl-a b} as
1123 the Magic SysRq key.
1124
1125 @item
1126 If the network is enabled, launch the script @file{/etc/linuxrc} in the
1127 emulator (don't forget the leading dot):
1128 @example
1129 . /etc/linuxrc
1130 @end example
1131
1132 Then enable X11 connections on your PC from the emulated Linux:
1133 @example
1134 xhost +172.20.0.2
1135 @end example
1136
1137 You can now launch @file{xterm} or @file{xlogo} and verify that you have
1138 a real Virtual Linux system !
1139
1140 @end enumerate
1141
1142 NOTES:
1143 @enumerate
1144 @item
1145 A 2.5.74 kernel is also included in the archive. Just
1146 replace the bzImage in qemu.sh to try it.
1147
1148 @item
1149 In order to exit cleanly from qemu, you can do a @emph{shutdown} inside
1150 qemu. qemu will automatically exit when the Linux shutdown is done.
1151
1152 @item
1153 You can boot slightly faster by disabling the probe of non present IDE
1154 interfaces. To do so, add the following options on the kernel command
1155 line:
1156 @example
1157 ide1=noprobe ide2=noprobe ide3=noprobe ide4=noprobe ide5=noprobe
1158 @end example
1159
1160 @item
1161 The example disk image is a modified version of the one made by Kevin
1162 Lawton for the plex86 Project (@url{www.plex86.org}).
1163
1164 @end enumerate
1165
1166 @node pcsys_usb
1167 @section USB emulation
1168
1169 QEMU emulates a PCI UHCI USB controller. You can virtually plug
1170 virtual USB devices or real host USB devices (experimental, works only
1171 on Linux hosts). Qemu will automatically create and connect virtual USB hubs
1172 as neccessary to connect multiple USB devices.
1173
1174 @menu
1175 * usb_devices::
1176 * host_usb_devices::
1177 @end menu
1178 @node usb_devices
1179 @subsection Connecting USB devices
1180
1181 USB devices can be connected with the @option{-usbdevice} commandline option
1182 or the @code{usb_add} monitor command. Available devices are:
1183
1184 @table @var
1185 @item @code{mouse}
1186 Virtual Mouse. This will override the PS/2 mouse emulation when activated.
1187 @item @code{tablet}
1188 Pointer device that uses abolsute coordinates (like a touchscreen).
1189 This means qemu is able to report the mouse position without having
1190 to grab the mouse. Also overrides the PS/2 mouse emulation when activated.
1191 @item @code{disk:file}
1192 Mass storage device based on @var{file} (@pxref{disk_images})
1193 @item @code{host:bus.addr}
1194 Pass through the host device identified by @var{bus.addr}
1195 (Linux only)
1196 @item @code{host:vendor_id:product_id}
1197 Pass through the host device identified by @var{vendor_id:product_id}
1198 (Linux only)
1199 @end table
1200
1201 @node host_usb_devices
1202 @subsection Using host USB devices on a Linux host
1203
1204 WARNING: this is an experimental feature. QEMU will slow down when
1205 using it. USB devices requiring real time streaming (i.e. USB Video
1206 Cameras) are not supported yet.
1207
1208 @enumerate
1209 @item If you use an early Linux 2.4 kernel, verify that no Linux driver
1210 is actually using the USB device. A simple way to do that is simply to
1211 disable the corresponding kernel module by renaming it from @file{mydriver.o}
1212 to @file{mydriver.o.disabled}.
1213
1214 @item Verify that @file{/proc/bus/usb} is working (most Linux distributions should enable it by default). You should see something like that:
1215 @example
1216 ls /proc/bus/usb
1217 001 devices drivers
1218 @end example
1219
1220 @item Since only root can access to the USB devices directly, you can either launch QEMU as root or change the permissions of the USB devices you want to use. For testing, the following suffices:
1221 @example
1222 chown -R myuid /proc/bus/usb
1223 @end example
1224
1225 @item Launch QEMU and do in the monitor:
1226 @example
1227 info usbhost
1228 Device 1.2, speed 480 Mb/s
1229 Class 00: USB device 1234:5678, USB DISK
1230 @end example
1231 You should see the list of the devices you can use (Never try to use
1232 hubs, it won't work).
1233
1234 @item Add the device in QEMU by using:
1235 @example
1236 usb_add host:1234:5678
1237 @end example
1238
1239 Normally the guest OS should report that a new USB device is
1240 plugged. You can use the option @option{-usbdevice} to do the same.
1241
1242 @item Now you can try to use the host USB device in QEMU.
1243
1244 @end enumerate
1245
1246 When relaunching QEMU, you may have to unplug and plug again the USB
1247 device to make it work again (this is a bug).
1248
1249 @node gdb_usage
1250 @section GDB usage
1251
1252 QEMU has a primitive support to work with gdb, so that you can do
1253 'Ctrl-C' while the virtual machine is running and inspect its state.
1254
1255 In order to use gdb, launch qemu with the '-s' option. It will wait for a
1256 gdb connection:
1257 @example
1258 > qemu -s -kernel arch/i386/boot/bzImage -hda root-2.4.20.img \
1259 -append "root=/dev/hda"
1260 Connected to host network interface: tun0
1261 Waiting gdb connection on port 1234
1262 @end example
1263
1264 Then launch gdb on the 'vmlinux' executable:
1265 @example
1266 > gdb vmlinux
1267 @end example
1268
1269 In gdb, connect to QEMU:
1270 @example
1271 (gdb) target remote localhost:1234
1272 @end example
1273
1274 Then you can use gdb normally. For example, type 'c' to launch the kernel:
1275 @example
1276 (gdb) c
1277 @end example
1278
1279 Here are some useful tips in order to use gdb on system code:
1280
1281 @enumerate
1282 @item
1283 Use @code{info reg} to display all the CPU registers.
1284 @item
1285 Use @code{x/10i $eip} to display the code at the PC position.
1286 @item
1287 Use @code{set architecture i8086} to dump 16 bit code. Then use
1288 @code{x/10i $cs*16+$eip} to dump the code at the PC position.
1289 @end enumerate
1290
1291 @node pcsys_os_specific
1292 @section Target OS specific information
1293
1294 @subsection Linux
1295
1296 To have access to SVGA graphic modes under X11, use the @code{vesa} or
1297 the @code{cirrus} X11 driver. For optimal performances, use 16 bit
1298 color depth in the guest and the host OS.
1299
1300 When using a 2.6 guest Linux kernel, you should add the option
1301 @code{clock=pit} on the kernel command line because the 2.6 Linux
1302 kernels make very strict real time clock checks by default that QEMU
1303 cannot simulate exactly.
1304
1305 When using a 2.6 guest Linux kernel, verify that the 4G/4G patch is
1306 not activated because QEMU is slower with this patch. The QEMU
1307 Accelerator Module is also much slower in this case. Earlier Fedora
1308 Core 3 Linux kernel (< 2.6.9-1.724_FC3) were known to incorporte this
1309 patch by default. Newer kernels don't have it.
1310
1311 @subsection Windows
1312
1313 If you have a slow host, using Windows 95 is better as it gives the
1314 best speed. Windows 2000 is also a good choice.
1315
1316 @subsubsection SVGA graphic modes support
1317
1318 QEMU emulates a Cirrus Logic GD5446 Video
1319 card. All Windows versions starting from Windows 95 should recognize
1320 and use this graphic card. For optimal performances, use 16 bit color
1321 depth in the guest and the host OS.
1322
1323 If you are using Windows XP as guest OS and if you want to use high
1324 resolution modes which the Cirrus Logic BIOS does not support (i.e. >=
1325 1280x1024x16), then you should use the VESA VBE virtual graphic card
1326 (option @option{-std-vga}).
1327
1328 @subsubsection CPU usage reduction
1329
1330 Windows 9x does not correctly use the CPU HLT
1331 instruction. The result is that it takes host CPU cycles even when
1332 idle. You can install the utility from
1333 @url{http://www.user.cityline.ru/~maxamn/amnhltm.zip} to solve this
1334 problem. Note that no such tool is needed for NT, 2000 or XP.
1335
1336 @subsubsection Windows 2000 disk full problem
1337
1338 Windows 2000 has a bug which gives a disk full problem during its
1339 installation. When installing it, use the @option{-win2k-hack} QEMU
1340 option to enable a specific workaround. After Windows 2000 is
1341 installed, you no longer need this option (this option slows down the
1342 IDE transfers).
1343
1344 @subsubsection Windows 2000 shutdown
1345
1346 Windows 2000 cannot automatically shutdown in QEMU although Windows 98
1347 can. It comes from the fact that Windows 2000 does not automatically
1348 use the APM driver provided by the BIOS.
1349
1350 In order to correct that, do the following (thanks to Struan
1351 Bartlett): go to the Control Panel => Add/Remove Hardware & Next =>
1352 Add/Troubleshoot a device => Add a new device & Next => No, select the
1353 hardware from a list & Next => NT Apm/Legacy Support & Next => Next
1354 (again) a few times. Now the driver is installed and Windows 2000 now
1355 correctly instructs QEMU to shutdown at the appropriate moment.
1356
1357 @subsubsection Share a directory between Unix and Windows
1358
1359 See @ref{sec_invocation} about the help of the option @option{-smb}.
1360
1361 @subsubsection Windows XP security problems
1362
1363 Some releases of Windows XP install correctly but give a security
1364 error when booting:
1365 @example
1366 A problem is preventing Windows from accurately checking the
1367 license for this computer. Error code: 0x800703e6.
1368 @end example
1369 The only known workaround is to boot in Safe mode
1370 without networking support.
1371
1372 Future QEMU releases are likely to correct this bug.
1373
1374 @subsection MS-DOS and FreeDOS
1375
1376 @subsubsection CPU usage reduction
1377
1378 DOS does not correctly use the CPU HLT instruction. The result is that
1379 it takes host CPU cycles even when idle. You can install the utility
1380 from @url{http://www.vmware.com/software/dosidle210.zip} to solve this
1381 problem.
1382
1383 @node QEMU System emulator for non PC targets
1384 @chapter QEMU System emulator for non PC targets
1385
1386 QEMU is a generic emulator and it emulates many non PC
1387 machines. Most of the options are similar to the PC emulator. The
1388 differences are mentionned in the following sections.
1389
1390 @menu
1391 * QEMU PowerPC System emulator::
1392 * Sparc32 System emulator invocation::
1393 * Sparc64 System emulator invocation::
1394 * MIPS System emulator invocation::
1395 * ARM System emulator invocation::
1396 @end menu
1397
1398 @node QEMU PowerPC System emulator
1399 @section QEMU PowerPC System emulator
1400
1401 Use the executable @file{qemu-system-ppc} to simulate a complete PREP
1402 or PowerMac PowerPC system.
1403
1404 QEMU emulates the following PowerMac peripherals:
1405
1406 @itemize @minus
1407 @item
1408 UniNorth PCI Bridge
1409 @item
1410 PCI VGA compatible card with VESA Bochs Extensions
1411 @item
1412 2 PMAC IDE interfaces with hard disk and CD-ROM support
1413 @item
1414 NE2000 PCI adapters
1415 @item
1416 Non Volatile RAM
1417 @item
1418 VIA-CUDA with ADB keyboard and mouse.
1419 @end itemize
1420
1421 QEMU emulates the following PREP peripherals:
1422
1423 @itemize @minus
1424 @item
1425 PCI Bridge
1426 @item
1427 PCI VGA compatible card with VESA Bochs Extensions
1428 @item
1429 2 IDE interfaces with hard disk and CD-ROM support
1430 @item
1431 Floppy disk
1432 @item
1433 NE2000 network adapters
1434 @item
1435 Serial port
1436 @item
1437 PREP Non Volatile RAM
1438 @item
1439 PC compatible keyboard and mouse.
1440 @end itemize
1441
1442 QEMU uses the Open Hack'Ware Open Firmware Compatible BIOS available at
1443 @url{http://perso.magic.fr/l_indien/OpenHackWare/index.htm}.
1444
1445 @c man begin OPTIONS
1446
1447 The following options are specific to the PowerPC emulation:
1448
1449 @table @option
1450
1451 @item -g WxH[xDEPTH]
1452
1453 Set the initial VGA graphic mode. The default is 800x600x15.
1454
1455 @end table
1456
1457 @c man end
1458
1459
1460 More information is available at
1461 @url{http://perso.magic.fr/l_indien/qemu-ppc/}.
1462
1463 @node Sparc32 System emulator invocation
1464 @section Sparc32 System emulator invocation
1465
1466 Use the executable @file{qemu-system-sparc} to simulate a SparcStation 5
1467 (sun4m architecture). The emulation is somewhat complete.
1468
1469 QEMU emulates the following sun4m peripherals:
1470
1471 @itemize @minus
1472 @item
1473 IOMMU
1474 @item
1475 TCX Frame buffer
1476 @item
1477 Lance (Am7990) Ethernet
1478 @item
1479 Non Volatile RAM M48T08
1480 @item
1481 Slave I/O: timers, interrupt controllers, Zilog serial ports, keyboard
1482 and power/reset logic
1483 @item
1484 ESP SCSI controller with hard disk and CD-ROM support
1485 @item
1486 Floppy drive
1487 @end itemize
1488
1489 The number of peripherals is fixed in the architecture.
1490
1491 Since version 0.8.2, QEMU uses OpenBIOS
1492 @url{http://www.openbios.org/}. OpenBIOS is a free (GPL v2) portable
1493 firmware implementation. The goal is to implement a 100% IEEE
1494 1275-1994 (referred to as Open Firmware) compliant firmware.
1495
1496 A sample Linux 2.6 series kernel and ram disk image are available on
1497 the QEMU web site. Please note that currently NetBSD, OpenBSD or
1498 Solaris kernels don't work.
1499
1500 @c man begin OPTIONS
1501
1502 The following options are specific to the Sparc emulation:
1503
1504 @table @option
1505
1506 @item -g WxH
1507
1508 Set the initial TCX graphic mode. The default is 1024x768.
1509
1510 @end table
1511
1512 @c man end
1513
1514 @node Sparc64 System emulator invocation
1515 @section Sparc64 System emulator invocation
1516
1517 Use the executable @file{qemu-system-sparc64} to simulate a Sun4u machine.
1518 The emulator is not usable for anything yet.
1519
1520 QEMU emulates the following sun4u peripherals:
1521
1522 @itemize @minus
1523 @item
1524 UltraSparc IIi APB PCI Bridge
1525 @item
1526 PCI VGA compatible card with VESA Bochs Extensions
1527 @item
1528 Non Volatile RAM M48T59
1529 @item
1530 PC-compatible serial ports
1531 @end itemize
1532
1533 @node MIPS System emulator invocation
1534 @section MIPS System emulator invocation
1535
1536 Use the executable @file{qemu-system-mips} to simulate a MIPS machine.
1537 The emulator is able to boot a Linux kernel and to run a Linux Debian
1538 installation from NFS. The following devices are emulated:
1539
1540 @itemize @minus
1541 @item
1542 MIPS R4K CPU
1543 @item
1544 PC style serial port
1545 @item
1546 NE2000 network card
1547 @end itemize
1548
1549 More information is available in the QEMU mailing-list archive.
1550
1551 @node ARM System emulator invocation
1552 @section ARM System emulator invocation
1553
1554 Use the executable @file{qemu-system-arm} to simulate a ARM
1555 machine. The ARM Integrator/CP board is emulated with the following
1556 devices:
1557
1558 @itemize @minus
1559 @item
1560 ARM926E or ARM1026E CPU
1561 @item
1562 Two PL011 UARTs
1563 @item
1564 SMC 91c111 Ethernet adapter
1565 @item
1566 PL110 LCD controller
1567 @item
1568 PL050 KMI with PS/2 keyboard and mouse.
1569 @end itemize
1570
1571 The ARM Versatile baseboard is emulated with the following devices:
1572
1573 @itemize @minus
1574 @item
1575 ARM926E CPU
1576 @item
1577 PL190 Vectored Interrupt Controller
1578 @item
1579 Four PL011 UARTs
1580 @item
1581 SMC 91c111 Ethernet adapter
1582 @item
1583 PL110 LCD controller
1584 @item
1585 PL050 KMI with PS/2 keyboard and mouse.
1586 @item
1587 PCI host bridge. Note the emulated PCI bridge only provides access to
1588 PCI memory space. It does not provide access to PCI IO space.
1589 This means some devices (eg. ne2k_pci NIC) are not useable, and others
1590 (eg. rtl8139 NIC) are only useable when the guest drivers use the memory
1591 mapped control registers.
1592 @item
1593 PCI OHCI USB controller.
1594 @item
1595 LSI53C895A PCI SCSI Host Bus Adapter with hard disk and CD-ROM devices.
1596 @end itemize
1597
1598 A Linux 2.6 test image is available on the QEMU web site. More
1599 information is available in the QEMU mailing-list archive.
1600
1601 @node QEMU Linux User space emulator
1602 @chapter QEMU Linux User space emulator
1603
1604 @menu
1605 * Quick Start::
1606 * Wine launch::
1607 * Command line options::
1608 * Other binaries::
1609 @end menu
1610
1611 @node Quick Start
1612 @section Quick Start
1613
1614 In order to launch a Linux process, QEMU needs the process executable
1615 itself and all the target (x86) dynamic libraries used by it.
1616
1617 @itemize
1618
1619 @item On x86, you can just try to launch any process by using the native
1620 libraries:
1621
1622 @example
1623 qemu-i386 -L / /bin/ls
1624 @end example
1625
1626 @code{-L /} tells that the x86 dynamic linker must be searched with a
1627 @file{/} prefix.
1628
1629 @item Since QEMU is also a linux process, you can launch qemu with qemu (NOTE: you can only do that if you compiled QEMU from the sources):
1630
1631 @example
1632 qemu-i386 -L / qemu-i386 -L / /bin/ls
1633 @end example
1634
1635 @item On non x86 CPUs, you need first to download at least an x86 glibc
1636 (@file{qemu-runtime-i386-XXX-.tar.gz} on the QEMU web page). Ensure that
1637 @code{LD_LIBRARY_PATH} is not set:
1638
1639 @example
1640 unset LD_LIBRARY_PATH
1641 @end example
1642
1643 Then you can launch the precompiled @file{ls} x86 executable:
1644
1645 @example
1646 qemu-i386 tests/i386/ls
1647 @end example
1648 You can look at @file{qemu-binfmt-conf.sh} so that
1649 QEMU is automatically launched by the Linux kernel when you try to
1650 launch x86 executables. It requires the @code{binfmt_misc} module in the
1651 Linux kernel.
1652
1653 @item The x86 version of QEMU is also included. You can try weird things such as:
1654 @example
1655 qemu-i386 /usr/local/qemu-i386/bin/qemu-i386 \
1656 /usr/local/qemu-i386/bin/ls-i386
1657 @end example
1658
1659 @end itemize
1660
1661 @node Wine launch
1662 @section Wine launch
1663
1664 @itemize
1665
1666 @item Ensure that you have a working QEMU with the x86 glibc
1667 distribution (see previous section). In order to verify it, you must be
1668 able to do:
1669
1670 @example
1671 qemu-i386 /usr/local/qemu-i386/bin/ls-i386
1672 @end example
1673
1674 @item Download the binary x86 Wine install
1675 (@file{qemu-XXX-i386-wine.tar.gz} on the QEMU web page).
1676
1677 @item Configure Wine on your account. Look at the provided script
1678 @file{/usr/local/qemu-i386/@/bin/wine-conf.sh}. Your previous
1679 @code{$@{HOME@}/.wine} directory is saved to @code{$@{HOME@}/.wine.org}.
1680
1681 @item Then you can try the example @file{putty.exe}:
1682
1683 @example
1684 qemu-i386 /usr/local/qemu-i386/wine/bin/wine \
1685 /usr/local/qemu-i386/wine/c/Program\ Files/putty.exe
1686 @end example
1687
1688 @end itemize
1689
1690 @node Command line options
1691 @section Command line options
1692
1693 @example
1694 usage: qemu-i386 [-h] [-d] [-L path] [-s size] program [arguments...]
1695 @end example
1696
1697 @table @option
1698 @item -h
1699 Print the help
1700 @item -L path
1701 Set the x86 elf interpreter prefix (default=/usr/local/qemu-i386)
1702 @item -s size
1703 Set the x86 stack size in bytes (default=524288)
1704 @end table
1705
1706 Debug options:
1707
1708 @table @option
1709 @item -d
1710 Activate log (logfile=/tmp/qemu.log)
1711 @item -p pagesize
1712 Act as if the host page size was 'pagesize' bytes
1713 @end table
1714
1715 @node Other binaries
1716 @section Other binaries
1717
1718 @command{qemu-arm} is also capable of running ARM "Angel" semihosted ELF
1719 binaries (as implemented by the arm-elf and arm-eabi Newlib/GDB
1720 configurations), and arm-uclinux bFLT format binaries.
1721
1722 The binary format is detected automatically.
1723
1724 @node compilation
1725 @chapter Compilation from the sources
1726
1727 @menu
1728 * Linux/Unix::
1729 * Windows::
1730 * Cross compilation for Windows with Linux::
1731 * Mac OS X::
1732 @end menu
1733
1734 @node Linux/Unix
1735 @section Linux/Unix
1736
1737 @subsection Compilation
1738
1739 First you must decompress the sources:
1740 @example
1741 cd /tmp
1742 tar zxvf qemu-x.y.z.tar.gz
1743 cd qemu-x.y.z
1744 @end example
1745
1746 Then you configure QEMU and build it (usually no options are needed):
1747 @example
1748 ./configure
1749 make
1750 @end example
1751
1752 Then type as root user:
1753 @example
1754 make install
1755 @end example
1756 to install QEMU in @file{/usr/local}.
1757
1758 @subsection Tested tool versions
1759
1760 In order to compile QEMU succesfully, it is very important that you
1761 have the right tools. The most important one is gcc. I cannot guaranty
1762 that QEMU works if you do not use a tested gcc version. Look at
1763 'configure' and 'Makefile' if you want to make a different gcc
1764 version work.
1765
1766 @example
1767 host gcc binutils glibc linux distribution
1768 ----------------------------------------------------------------------
1769 x86 3.2 2.13.2 2.1.3 2.4.18
1770 2.96 2.11.93.0.2 2.2.5 2.4.18 Red Hat 7.3
1771 3.2.2 2.13.90.0.18 2.3.2 2.4.20 Red Hat 9
1772
1773 PowerPC 3.3 [4] 2.13.90.0.18 2.3.1 2.4.20briq
1774 3.2
1775
1776 Alpha 3.3 [1] 2.14.90.0.4 2.2.5 2.2.20 [2] Debian 3.0
1777
1778 Sparc32 2.95.4 2.12.90.0.1 2.2.5 2.4.18 Debian 3.0
1779
1780 ARM 2.95.4 2.12.90.0.1 2.2.5 2.4.9 [3] Debian 3.0
1781
1782 [1] On Alpha, QEMU needs the gcc 'visibility' attribute only available
1783 for gcc version >= 3.3.
1784 [2] Linux >= 2.4.20 is necessary for precise exception support
1785 (untested).
1786 [3] 2.4.9-ac10-rmk2-np1-cerf2
1787
1788 [4] gcc 2.95.x generates invalid code when using too many register
1789 variables. You must use gcc 3.x on PowerPC.
1790 @end example
1791
1792 @node Windows
1793 @section Windows
1794
1795 @itemize
1796 @item Install the current versions of MSYS and MinGW from
1797 @url{http://www.mingw.org/}. You can find detailed installation
1798 instructions in the download section and the FAQ.
1799
1800 @item Download
1801 the MinGW development library of SDL 1.2.x
1802 (@file{SDL-devel-1.2.x-@/mingw32.tar.gz}) from
1803 @url{http://www.libsdl.org}. Unpack it in a temporary place, and
1804 unpack the archive @file{i386-mingw32msvc.tar.gz} in the MinGW tool
1805 directory. Edit the @file{sdl-config} script so that it gives the
1806 correct SDL directory when invoked.
1807
1808 @item Extract the current version of QEMU.
1809
1810 @item Start the MSYS shell (file @file{msys.bat}).
1811
1812 @item Change to the QEMU directory. Launch @file{./configure} and
1813 @file{make}. If you have problems using SDL, verify that
1814 @file{sdl-config} can be launched from the MSYS command line.
1815
1816 @item You can install QEMU in @file{Program Files/Qemu} by typing
1817 @file{make install}. Don't forget to copy @file{SDL.dll} in
1818 @file{Program Files/Qemu}.
1819
1820 @end itemize
1821
1822 @node Cross compilation for Windows with Linux
1823 @section Cross compilation for Windows with Linux
1824
1825 @itemize
1826 @item
1827 Install the MinGW cross compilation tools available at
1828 @url{http://www.mingw.org/}.
1829
1830 @item
1831 Install the Win32 version of SDL (@url{http://www.libsdl.org}) by
1832 unpacking @file{i386-mingw32msvc.tar.gz}. Set up the PATH environment
1833 variable so that @file{i386-mingw32msvc-sdl-config} can be launched by
1834 the QEMU configuration script.
1835
1836 @item
1837 Configure QEMU for Windows cross compilation:
1838 @example
1839 ./configure --enable-mingw32
1840 @end example
1841 If necessary, you can change the cross-prefix according to the prefix
1842 choosen for the MinGW tools with --cross-prefix. You can also use
1843 --prefix to set the Win32 install path.
1844
1845 @item You can install QEMU in the installation directory by typing
1846 @file{make install}. Don't forget to copy @file{SDL.dll} in the
1847 installation directory.
1848
1849 @end itemize
1850
1851 Note: Currently, Wine does not seem able to launch
1852 QEMU for Win32.
1853
1854 @node Mac OS X
1855 @section Mac OS X
1856
1857 The Mac OS X patches are not fully merged in QEMU, so you should look
1858 at the QEMU mailing list archive to have all the necessary
1859 information.
1860
1861 @node Index
1862 @chapter Index
1863 @printindex cp
1864
1865 @bye