]> git.proxmox.com Git - mirror_qemu.git/blob - savevm.c
migration: use a single I/O operation when writev_buffer is not defined
[mirror_qemu.git] / savevm.c
1 /*
2 * QEMU System Emulator
3 *
4 * Copyright (c) 2003-2008 Fabrice Bellard
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
23 */
24
25 #include "config-host.h"
26 #include "qemu-common.h"
27 #include "hw/hw.h"
28 #include "hw/qdev.h"
29 #include "net/net.h"
30 #include "monitor/monitor.h"
31 #include "sysemu/sysemu.h"
32 #include "qemu/timer.h"
33 #include "audio/audio.h"
34 #include "migration/migration.h"
35 #include "qemu/sockets.h"
36 #include "qemu/queue.h"
37 #include "sysemu/cpus.h"
38 #include "exec/memory.h"
39 #include "qmp-commands.h"
40 #include "trace.h"
41 #include "qemu/bitops.h"
42 #include "qemu/iov.h"
43
44 #define SELF_ANNOUNCE_ROUNDS 5
45
46 #ifndef ETH_P_RARP
47 #define ETH_P_RARP 0x8035
48 #endif
49 #define ARP_HTYPE_ETH 0x0001
50 #define ARP_PTYPE_IP 0x0800
51 #define ARP_OP_REQUEST_REV 0x3
52
53 static int announce_self_create(uint8_t *buf,
54 uint8_t *mac_addr)
55 {
56 /* Ethernet header. */
57 memset(buf, 0xff, 6); /* destination MAC addr */
58 memcpy(buf + 6, mac_addr, 6); /* source MAC addr */
59 *(uint16_t *)(buf + 12) = htons(ETH_P_RARP); /* ethertype */
60
61 /* RARP header. */
62 *(uint16_t *)(buf + 14) = htons(ARP_HTYPE_ETH); /* hardware addr space */
63 *(uint16_t *)(buf + 16) = htons(ARP_PTYPE_IP); /* protocol addr space */
64 *(buf + 18) = 6; /* hardware addr length (ethernet) */
65 *(buf + 19) = 4; /* protocol addr length (IPv4) */
66 *(uint16_t *)(buf + 20) = htons(ARP_OP_REQUEST_REV); /* opcode */
67 memcpy(buf + 22, mac_addr, 6); /* source hw addr */
68 memset(buf + 28, 0x00, 4); /* source protocol addr */
69 memcpy(buf + 32, mac_addr, 6); /* target hw addr */
70 memset(buf + 38, 0x00, 4); /* target protocol addr */
71
72 /* Padding to get up to 60 bytes (ethernet min packet size, minus FCS). */
73 memset(buf + 42, 0x00, 18);
74
75 return 60; /* len (FCS will be added by hardware) */
76 }
77
78 static void qemu_announce_self_iter(NICState *nic, void *opaque)
79 {
80 uint8_t buf[60];
81 int len;
82
83 len = announce_self_create(buf, nic->conf->macaddr.a);
84
85 qemu_send_packet_raw(qemu_get_queue(nic), buf, len);
86 }
87
88
89 static void qemu_announce_self_once(void *opaque)
90 {
91 static int count = SELF_ANNOUNCE_ROUNDS;
92 QEMUTimer *timer = *(QEMUTimer **)opaque;
93
94 qemu_foreach_nic(qemu_announce_self_iter, NULL);
95
96 if (--count) {
97 /* delay 50ms, 150ms, 250ms, ... */
98 qemu_mod_timer(timer, qemu_get_clock_ms(rt_clock) +
99 50 + (SELF_ANNOUNCE_ROUNDS - count - 1) * 100);
100 } else {
101 qemu_del_timer(timer);
102 qemu_free_timer(timer);
103 }
104 }
105
106 void qemu_announce_self(void)
107 {
108 static QEMUTimer *timer;
109 timer = qemu_new_timer_ms(rt_clock, qemu_announce_self_once, &timer);
110 qemu_announce_self_once(&timer);
111 }
112
113 /***********************************************************/
114 /* savevm/loadvm support */
115
116 #define IO_BUF_SIZE 32768
117 #define MAX_IOV_SIZE MIN(IOV_MAX, 64)
118
119 struct QEMUFile {
120 const QEMUFileOps *ops;
121 void *opaque;
122 int is_write;
123
124 int64_t bytes_xfer;
125 int64_t xfer_limit;
126
127 int64_t pos; /* start of buffer when writing, end of buffer
128 when reading */
129 int buf_index;
130 int buf_size; /* 0 when writing */
131 uint8_t buf[IO_BUF_SIZE];
132
133 struct iovec iov[MAX_IOV_SIZE];
134 unsigned int iovcnt;
135
136 int last_error;
137 };
138
139 typedef struct QEMUFileStdio
140 {
141 FILE *stdio_file;
142 QEMUFile *file;
143 } QEMUFileStdio;
144
145 typedef struct QEMUFileSocket
146 {
147 int fd;
148 QEMUFile *file;
149 } QEMUFileSocket;
150
151 typedef struct {
152 Coroutine *co;
153 int fd;
154 } FDYieldUntilData;
155
156 static void fd_coroutine_enter(void *opaque)
157 {
158 FDYieldUntilData *data = opaque;
159 qemu_set_fd_handler(data->fd, NULL, NULL, NULL);
160 qemu_coroutine_enter(data->co, NULL);
161 }
162
163 /**
164 * Yield until a file descriptor becomes readable
165 *
166 * Note that this function clobbers the handlers for the file descriptor.
167 */
168 static void coroutine_fn yield_until_fd_readable(int fd)
169 {
170 FDYieldUntilData data;
171
172 assert(qemu_in_coroutine());
173 data.co = qemu_coroutine_self();
174 data.fd = fd;
175 qemu_set_fd_handler(fd, fd_coroutine_enter, NULL, &data);
176 qemu_coroutine_yield();
177 }
178
179 static ssize_t socket_writev_buffer(void *opaque, struct iovec *iov, int iovcnt)
180 {
181 QEMUFileSocket *s = opaque;
182 ssize_t len;
183 ssize_t size = iov_size(iov, iovcnt);
184
185 len = iov_send(s->fd, iov, iovcnt, 0, size);
186 if (len < size) {
187 len = -socket_error();
188 }
189 return len;
190 }
191
192 static int socket_get_fd(void *opaque)
193 {
194 QEMUFileSocket *s = opaque;
195
196 return s->fd;
197 }
198
199 static int socket_get_buffer(void *opaque, uint8_t *buf, int64_t pos, int size)
200 {
201 QEMUFileSocket *s = opaque;
202 ssize_t len;
203
204 for (;;) {
205 len = qemu_recv(s->fd, buf, size, 0);
206 if (len != -1) {
207 break;
208 }
209 if (socket_error() == EAGAIN) {
210 yield_until_fd_readable(s->fd);
211 } else if (socket_error() != EINTR) {
212 break;
213 }
214 }
215
216 if (len == -1) {
217 len = -socket_error();
218 }
219 return len;
220 }
221
222 static int socket_put_buffer(void *opaque, const uint8_t *buf, int64_t pos, int size)
223 {
224 QEMUFileSocket *s = opaque;
225 ssize_t len;
226
227 len = qemu_send_full(s->fd, buf, size, 0);
228 if (len < size) {
229 len = -socket_error();
230 }
231 return len;
232 }
233
234 static int socket_close(void *opaque)
235 {
236 QEMUFileSocket *s = opaque;
237 closesocket(s->fd);
238 g_free(s);
239 return 0;
240 }
241
242 static int stdio_get_fd(void *opaque)
243 {
244 QEMUFileStdio *s = opaque;
245
246 return fileno(s->stdio_file);
247 }
248
249 static int stdio_put_buffer(void *opaque, const uint8_t *buf, int64_t pos, int size)
250 {
251 QEMUFileStdio *s = opaque;
252 return fwrite(buf, 1, size, s->stdio_file);
253 }
254
255 static int stdio_get_buffer(void *opaque, uint8_t *buf, int64_t pos, int size)
256 {
257 QEMUFileStdio *s = opaque;
258 FILE *fp = s->stdio_file;
259 int bytes;
260
261 for (;;) {
262 clearerr(fp);
263 bytes = fread(buf, 1, size, fp);
264 if (bytes != 0 || !ferror(fp)) {
265 break;
266 }
267 if (errno == EAGAIN) {
268 yield_until_fd_readable(fileno(fp));
269 } else if (errno != EINTR) {
270 break;
271 }
272 }
273 return bytes;
274 }
275
276 static int stdio_pclose(void *opaque)
277 {
278 QEMUFileStdio *s = opaque;
279 int ret;
280 ret = pclose(s->stdio_file);
281 if (ret == -1) {
282 ret = -errno;
283 } else if (!WIFEXITED(ret) || WEXITSTATUS(ret) != 0) {
284 /* close succeeded, but non-zero exit code: */
285 ret = -EIO; /* fake errno value */
286 }
287 g_free(s);
288 return ret;
289 }
290
291 static int stdio_fclose(void *opaque)
292 {
293 QEMUFileStdio *s = opaque;
294 int ret = 0;
295
296 if (s->file->ops->put_buffer || s->file->ops->writev_buffer) {
297 int fd = fileno(s->stdio_file);
298 struct stat st;
299
300 ret = fstat(fd, &st);
301 if (ret == 0 && S_ISREG(st.st_mode)) {
302 /*
303 * If the file handle is a regular file make sure the
304 * data is flushed to disk before signaling success.
305 */
306 ret = fsync(fd);
307 if (ret != 0) {
308 ret = -errno;
309 return ret;
310 }
311 }
312 }
313 if (fclose(s->stdio_file) == EOF) {
314 ret = -errno;
315 }
316 g_free(s);
317 return ret;
318 }
319
320 static const QEMUFileOps stdio_pipe_read_ops = {
321 .get_fd = stdio_get_fd,
322 .get_buffer = stdio_get_buffer,
323 .close = stdio_pclose
324 };
325
326 static const QEMUFileOps stdio_pipe_write_ops = {
327 .get_fd = stdio_get_fd,
328 .put_buffer = stdio_put_buffer,
329 .close = stdio_pclose
330 };
331
332 QEMUFile *qemu_popen_cmd(const char *command, const char *mode)
333 {
334 FILE *stdio_file;
335 QEMUFileStdio *s;
336
337 stdio_file = popen(command, mode);
338 if (stdio_file == NULL) {
339 return NULL;
340 }
341
342 if (mode == NULL || (mode[0] != 'r' && mode[0] != 'w') || mode[1] != 0) {
343 fprintf(stderr, "qemu_popen: Argument validity check failed\n");
344 return NULL;
345 }
346
347 s = g_malloc0(sizeof(QEMUFileStdio));
348
349 s->stdio_file = stdio_file;
350
351 if(mode[0] == 'r') {
352 s->file = qemu_fopen_ops(s, &stdio_pipe_read_ops);
353 } else {
354 s->file = qemu_fopen_ops(s, &stdio_pipe_write_ops);
355 }
356 return s->file;
357 }
358
359 static const QEMUFileOps stdio_file_read_ops = {
360 .get_fd = stdio_get_fd,
361 .get_buffer = stdio_get_buffer,
362 .close = stdio_fclose
363 };
364
365 static const QEMUFileOps stdio_file_write_ops = {
366 .get_fd = stdio_get_fd,
367 .put_buffer = stdio_put_buffer,
368 .close = stdio_fclose
369 };
370
371 QEMUFile *qemu_fdopen(int fd, const char *mode)
372 {
373 QEMUFileStdio *s;
374
375 if (mode == NULL ||
376 (mode[0] != 'r' && mode[0] != 'w') ||
377 mode[1] != 'b' || mode[2] != 0) {
378 fprintf(stderr, "qemu_fdopen: Argument validity check failed\n");
379 return NULL;
380 }
381
382 s = g_malloc0(sizeof(QEMUFileStdio));
383 s->stdio_file = fdopen(fd, mode);
384 if (!s->stdio_file)
385 goto fail;
386
387 if(mode[0] == 'r') {
388 s->file = qemu_fopen_ops(s, &stdio_file_read_ops);
389 } else {
390 s->file = qemu_fopen_ops(s, &stdio_file_write_ops);
391 }
392 return s->file;
393
394 fail:
395 g_free(s);
396 return NULL;
397 }
398
399 static const QEMUFileOps socket_read_ops = {
400 .get_fd = socket_get_fd,
401 .get_buffer = socket_get_buffer,
402 .close = socket_close
403 };
404
405 static const QEMUFileOps socket_write_ops = {
406 .get_fd = socket_get_fd,
407 .put_buffer = socket_put_buffer,
408 .writev_buffer = socket_writev_buffer,
409 .close = socket_close
410 };
411
412 QEMUFile *qemu_fopen_socket(int fd, const char *mode)
413 {
414 QEMUFileSocket *s = g_malloc0(sizeof(QEMUFileSocket));
415
416 if (mode == NULL ||
417 (mode[0] != 'r' && mode[0] != 'w') ||
418 mode[1] != 'b' || mode[2] != 0) {
419 fprintf(stderr, "qemu_fopen: Argument validity check failed\n");
420 return NULL;
421 }
422
423 s->fd = fd;
424 if (mode[0] == 'w') {
425 qemu_set_block(s->fd);
426 s->file = qemu_fopen_ops(s, &socket_write_ops);
427 } else {
428 s->file = qemu_fopen_ops(s, &socket_read_ops);
429 }
430 return s->file;
431 }
432
433 QEMUFile *qemu_fopen(const char *filename, const char *mode)
434 {
435 QEMUFileStdio *s;
436
437 if (mode == NULL ||
438 (mode[0] != 'r' && mode[0] != 'w') ||
439 mode[1] != 'b' || mode[2] != 0) {
440 fprintf(stderr, "qemu_fopen: Argument validity check failed\n");
441 return NULL;
442 }
443
444 s = g_malloc0(sizeof(QEMUFileStdio));
445
446 s->stdio_file = fopen(filename, mode);
447 if (!s->stdio_file)
448 goto fail;
449
450 if(mode[0] == 'w') {
451 s->file = qemu_fopen_ops(s, &stdio_file_write_ops);
452 } else {
453 s->file = qemu_fopen_ops(s, &stdio_file_read_ops);
454 }
455 return s->file;
456 fail:
457 g_free(s);
458 return NULL;
459 }
460
461 static int block_put_buffer(void *opaque, const uint8_t *buf,
462 int64_t pos, int size)
463 {
464 bdrv_save_vmstate(opaque, buf, pos, size);
465 return size;
466 }
467
468 static int block_get_buffer(void *opaque, uint8_t *buf, int64_t pos, int size)
469 {
470 return bdrv_load_vmstate(opaque, buf, pos, size);
471 }
472
473 static int bdrv_fclose(void *opaque)
474 {
475 return bdrv_flush(opaque);
476 }
477
478 static const QEMUFileOps bdrv_read_ops = {
479 .get_buffer = block_get_buffer,
480 .close = bdrv_fclose
481 };
482
483 static const QEMUFileOps bdrv_write_ops = {
484 .put_buffer = block_put_buffer,
485 .close = bdrv_fclose
486 };
487
488 static QEMUFile *qemu_fopen_bdrv(BlockDriverState *bs, int is_writable)
489 {
490 if (is_writable)
491 return qemu_fopen_ops(bs, &bdrv_write_ops);
492 return qemu_fopen_ops(bs, &bdrv_read_ops);
493 }
494
495 QEMUFile *qemu_fopen_ops(void *opaque, const QEMUFileOps *ops)
496 {
497 QEMUFile *f;
498
499 f = g_malloc0(sizeof(QEMUFile));
500
501 f->opaque = opaque;
502 f->ops = ops;
503 f->is_write = 0;
504 return f;
505 }
506
507 int qemu_file_get_error(QEMUFile *f)
508 {
509 return f->last_error;
510 }
511
512 static void qemu_file_set_error(QEMUFile *f, int ret)
513 {
514 if (f->last_error == 0) {
515 f->last_error = ret;
516 }
517 }
518
519 /**
520 * Flushes QEMUFile buffer
521 *
522 * If there is writev_buffer QEMUFileOps it uses it otherwise uses
523 * put_buffer ops.
524 */
525 static void qemu_fflush(QEMUFile *f)
526 {
527 ssize_t ret = 0;
528
529 if (!f->ops->writev_buffer && !f->ops->put_buffer) {
530 return;
531 }
532
533 if (f->is_write) {
534 if (f->ops->writev_buffer) {
535 if (f->iovcnt > 0) {
536 ret = f->ops->writev_buffer(f->opaque, f->iov, f->iovcnt);
537 }
538 } else {
539 if (f->buf_index > 0) {
540 ret = f->ops->put_buffer(f->opaque, f->buf, f->pos, f->buf_index);
541 }
542 }
543 if (ret >= 0) {
544 f->pos += ret;
545 }
546 f->buf_index = 0;
547 f->iovcnt = 0;
548 }
549 if (ret < 0) {
550 qemu_file_set_error(f, ret);
551 }
552 }
553
554 static void qemu_fill_buffer(QEMUFile *f)
555 {
556 int len;
557 int pending;
558
559 if (!f->ops->get_buffer)
560 return;
561
562 if (f->is_write)
563 abort();
564
565 pending = f->buf_size - f->buf_index;
566 if (pending > 0) {
567 memmove(f->buf, f->buf + f->buf_index, pending);
568 }
569 f->buf_index = 0;
570 f->buf_size = pending;
571
572 len = f->ops->get_buffer(f->opaque, f->buf + pending, f->pos,
573 IO_BUF_SIZE - pending);
574 if (len > 0) {
575 f->buf_size += len;
576 f->pos += len;
577 } else if (len == 0) {
578 qemu_file_set_error(f, -EIO);
579 } else if (len != -EAGAIN)
580 qemu_file_set_error(f, len);
581 }
582
583 int qemu_get_fd(QEMUFile *f)
584 {
585 if (f->ops->get_fd) {
586 return f->ops->get_fd(f->opaque);
587 }
588 return -1;
589 }
590
591 /** Closes the file
592 *
593 * Returns negative error value if any error happened on previous operations or
594 * while closing the file. Returns 0 or positive number on success.
595 *
596 * The meaning of return value on success depends on the specific backend
597 * being used.
598 */
599 int qemu_fclose(QEMUFile *f)
600 {
601 int ret;
602 qemu_fflush(f);
603 ret = qemu_file_get_error(f);
604
605 if (f->ops->close) {
606 int ret2 = f->ops->close(f->opaque);
607 if (ret >= 0) {
608 ret = ret2;
609 }
610 }
611 /* If any error was spotted before closing, we should report it
612 * instead of the close() return value.
613 */
614 if (f->last_error) {
615 ret = f->last_error;
616 }
617 g_free(f);
618 return ret;
619 }
620
621 static void add_to_iovec(QEMUFile *f, const uint8_t *buf, int size)
622 {
623 /* check for adjacent buffer and coalesce them */
624 if (f->iovcnt > 0 && buf == f->iov[f->iovcnt - 1].iov_base +
625 f->iov[f->iovcnt - 1].iov_len) {
626 f->iov[f->iovcnt - 1].iov_len += size;
627 } else {
628 f->iov[f->iovcnt].iov_base = (uint8_t *)buf;
629 f->iov[f->iovcnt++].iov_len = size;
630 }
631
632 f->is_write = 1;
633 if (f->buf_index >= IO_BUF_SIZE || f->iovcnt >= MAX_IOV_SIZE) {
634 qemu_fflush(f);
635 }
636 }
637
638 void qemu_put_buffer_async(QEMUFile *f, const uint8_t *buf, int size)
639 {
640 if (!f->ops->writev_buffer) {
641 qemu_put_buffer(f, buf, size);
642 return;
643 }
644
645 if (f->last_error) {
646 return;
647 }
648
649 if (f->is_write == 0 && f->buf_index > 0) {
650 fprintf(stderr,
651 "Attempted to write to buffer while read buffer is not empty\n");
652 abort();
653 }
654
655 f->bytes_xfer += size;
656 add_to_iovec(f, buf, size);
657 }
658
659 void qemu_put_buffer(QEMUFile *f, const uint8_t *buf, int size)
660 {
661 int l;
662
663 if (f->last_error) {
664 return;
665 }
666
667 if (f->is_write == 0 && f->buf_index > 0) {
668 fprintf(stderr,
669 "Attempted to write to buffer while read buffer is not empty\n");
670 abort();
671 }
672
673 while (size > 0) {
674 l = IO_BUF_SIZE - f->buf_index;
675 if (l > size)
676 l = size;
677 memcpy(f->buf + f->buf_index, buf, l);
678 f->bytes_xfer += size;
679 if (f->ops->writev_buffer) {
680 add_to_iovec(f, f->buf + f->buf_index, l);
681 f->buf_index += l;
682 } else {
683 f->is_write = 1;
684 f->buf_index += l;
685 if (f->buf_index == IO_BUF_SIZE) {
686 qemu_fflush(f);
687 }
688 }
689 if (qemu_file_get_error(f)) {
690 break;
691 }
692 buf += l;
693 size -= l;
694 }
695 }
696
697 void qemu_put_byte(QEMUFile *f, int v)
698 {
699 if (f->last_error) {
700 return;
701 }
702
703 if (f->is_write == 0 && f->buf_index > 0) {
704 fprintf(stderr,
705 "Attempted to write to buffer while read buffer is not empty\n");
706 abort();
707 }
708
709 f->buf[f->buf_index] = v;
710 f->bytes_xfer++;
711 if (f->ops->writev_buffer) {
712 add_to_iovec(f, f->buf + f->buf_index, 1);
713 f->buf_index++;
714 } else {
715 f->is_write = 1;
716 f->buf_index++;
717 if (f->buf_index == IO_BUF_SIZE) {
718 qemu_fflush(f);
719 }
720 }
721 }
722
723 static void qemu_file_skip(QEMUFile *f, int size)
724 {
725 if (f->buf_index + size <= f->buf_size) {
726 f->buf_index += size;
727 }
728 }
729
730 static int qemu_peek_buffer(QEMUFile *f, uint8_t *buf, int size, size_t offset)
731 {
732 int pending;
733 int index;
734
735 if (f->is_write) {
736 abort();
737 }
738
739 index = f->buf_index + offset;
740 pending = f->buf_size - index;
741 if (pending < size) {
742 qemu_fill_buffer(f);
743 index = f->buf_index + offset;
744 pending = f->buf_size - index;
745 }
746
747 if (pending <= 0) {
748 return 0;
749 }
750 if (size > pending) {
751 size = pending;
752 }
753
754 memcpy(buf, f->buf + index, size);
755 return size;
756 }
757
758 int qemu_get_buffer(QEMUFile *f, uint8_t *buf, int size)
759 {
760 int pending = size;
761 int done = 0;
762
763 while (pending > 0) {
764 int res;
765
766 res = qemu_peek_buffer(f, buf, pending, 0);
767 if (res == 0) {
768 return done;
769 }
770 qemu_file_skip(f, res);
771 buf += res;
772 pending -= res;
773 done += res;
774 }
775 return done;
776 }
777
778 static int qemu_peek_byte(QEMUFile *f, int offset)
779 {
780 int index = f->buf_index + offset;
781
782 if (f->is_write) {
783 abort();
784 }
785
786 if (index >= f->buf_size) {
787 qemu_fill_buffer(f);
788 index = f->buf_index + offset;
789 if (index >= f->buf_size) {
790 return 0;
791 }
792 }
793 return f->buf[index];
794 }
795
796 int qemu_get_byte(QEMUFile *f)
797 {
798 int result;
799
800 result = qemu_peek_byte(f, 0);
801 qemu_file_skip(f, 1);
802 return result;
803 }
804
805 int64_t qemu_ftell(QEMUFile *f)
806 {
807 qemu_fflush(f);
808 return f->pos;
809 }
810
811 int qemu_file_rate_limit(QEMUFile *f)
812 {
813 if (qemu_file_get_error(f)) {
814 return 1;
815 }
816 if (f->xfer_limit > 0 && f->bytes_xfer > f->xfer_limit) {
817 return 1;
818 }
819 return 0;
820 }
821
822 int64_t qemu_file_get_rate_limit(QEMUFile *f)
823 {
824 return f->xfer_limit;
825 }
826
827 void qemu_file_set_rate_limit(QEMUFile *f, int64_t limit)
828 {
829 f->xfer_limit = limit;
830 }
831
832 void qemu_file_reset_rate_limit(QEMUFile *f)
833 {
834 f->bytes_xfer = 0;
835 }
836
837 void qemu_put_be16(QEMUFile *f, unsigned int v)
838 {
839 qemu_put_byte(f, v >> 8);
840 qemu_put_byte(f, v);
841 }
842
843 void qemu_put_be32(QEMUFile *f, unsigned int v)
844 {
845 qemu_put_byte(f, v >> 24);
846 qemu_put_byte(f, v >> 16);
847 qemu_put_byte(f, v >> 8);
848 qemu_put_byte(f, v);
849 }
850
851 void qemu_put_be64(QEMUFile *f, uint64_t v)
852 {
853 qemu_put_be32(f, v >> 32);
854 qemu_put_be32(f, v);
855 }
856
857 unsigned int qemu_get_be16(QEMUFile *f)
858 {
859 unsigned int v;
860 v = qemu_get_byte(f) << 8;
861 v |= qemu_get_byte(f);
862 return v;
863 }
864
865 unsigned int qemu_get_be32(QEMUFile *f)
866 {
867 unsigned int v;
868 v = qemu_get_byte(f) << 24;
869 v |= qemu_get_byte(f) << 16;
870 v |= qemu_get_byte(f) << 8;
871 v |= qemu_get_byte(f);
872 return v;
873 }
874
875 uint64_t qemu_get_be64(QEMUFile *f)
876 {
877 uint64_t v;
878 v = (uint64_t)qemu_get_be32(f) << 32;
879 v |= qemu_get_be32(f);
880 return v;
881 }
882
883
884 /* timer */
885
886 void qemu_put_timer(QEMUFile *f, QEMUTimer *ts)
887 {
888 uint64_t expire_time;
889
890 expire_time = qemu_timer_expire_time_ns(ts);
891 qemu_put_be64(f, expire_time);
892 }
893
894 void qemu_get_timer(QEMUFile *f, QEMUTimer *ts)
895 {
896 uint64_t expire_time;
897
898 expire_time = qemu_get_be64(f);
899 if (expire_time != -1) {
900 qemu_mod_timer_ns(ts, expire_time);
901 } else {
902 qemu_del_timer(ts);
903 }
904 }
905
906
907 /* bool */
908
909 static int get_bool(QEMUFile *f, void *pv, size_t size)
910 {
911 bool *v = pv;
912 *v = qemu_get_byte(f);
913 return 0;
914 }
915
916 static void put_bool(QEMUFile *f, void *pv, size_t size)
917 {
918 bool *v = pv;
919 qemu_put_byte(f, *v);
920 }
921
922 const VMStateInfo vmstate_info_bool = {
923 .name = "bool",
924 .get = get_bool,
925 .put = put_bool,
926 };
927
928 /* 8 bit int */
929
930 static int get_int8(QEMUFile *f, void *pv, size_t size)
931 {
932 int8_t *v = pv;
933 qemu_get_s8s(f, v);
934 return 0;
935 }
936
937 static void put_int8(QEMUFile *f, void *pv, size_t size)
938 {
939 int8_t *v = pv;
940 qemu_put_s8s(f, v);
941 }
942
943 const VMStateInfo vmstate_info_int8 = {
944 .name = "int8",
945 .get = get_int8,
946 .put = put_int8,
947 };
948
949 /* 16 bit int */
950
951 static int get_int16(QEMUFile *f, void *pv, size_t size)
952 {
953 int16_t *v = pv;
954 qemu_get_sbe16s(f, v);
955 return 0;
956 }
957
958 static void put_int16(QEMUFile *f, void *pv, size_t size)
959 {
960 int16_t *v = pv;
961 qemu_put_sbe16s(f, v);
962 }
963
964 const VMStateInfo vmstate_info_int16 = {
965 .name = "int16",
966 .get = get_int16,
967 .put = put_int16,
968 };
969
970 /* 32 bit int */
971
972 static int get_int32(QEMUFile *f, void *pv, size_t size)
973 {
974 int32_t *v = pv;
975 qemu_get_sbe32s(f, v);
976 return 0;
977 }
978
979 static void put_int32(QEMUFile *f, void *pv, size_t size)
980 {
981 int32_t *v = pv;
982 qemu_put_sbe32s(f, v);
983 }
984
985 const VMStateInfo vmstate_info_int32 = {
986 .name = "int32",
987 .get = get_int32,
988 .put = put_int32,
989 };
990
991 /* 32 bit int. See that the received value is the same than the one
992 in the field */
993
994 static int get_int32_equal(QEMUFile *f, void *pv, size_t size)
995 {
996 int32_t *v = pv;
997 int32_t v2;
998 qemu_get_sbe32s(f, &v2);
999
1000 if (*v == v2)
1001 return 0;
1002 return -EINVAL;
1003 }
1004
1005 const VMStateInfo vmstate_info_int32_equal = {
1006 .name = "int32 equal",
1007 .get = get_int32_equal,
1008 .put = put_int32,
1009 };
1010
1011 /* 32 bit int. See that the received value is the less or the same
1012 than the one in the field */
1013
1014 static int get_int32_le(QEMUFile *f, void *pv, size_t size)
1015 {
1016 int32_t *old = pv;
1017 int32_t new;
1018 qemu_get_sbe32s(f, &new);
1019
1020 if (*old <= new)
1021 return 0;
1022 return -EINVAL;
1023 }
1024
1025 const VMStateInfo vmstate_info_int32_le = {
1026 .name = "int32 equal",
1027 .get = get_int32_le,
1028 .put = put_int32,
1029 };
1030
1031 /* 64 bit int */
1032
1033 static int get_int64(QEMUFile *f, void *pv, size_t size)
1034 {
1035 int64_t *v = pv;
1036 qemu_get_sbe64s(f, v);
1037 return 0;
1038 }
1039
1040 static void put_int64(QEMUFile *f, void *pv, size_t size)
1041 {
1042 int64_t *v = pv;
1043 qemu_put_sbe64s(f, v);
1044 }
1045
1046 const VMStateInfo vmstate_info_int64 = {
1047 .name = "int64",
1048 .get = get_int64,
1049 .put = put_int64,
1050 };
1051
1052 /* 8 bit unsigned int */
1053
1054 static int get_uint8(QEMUFile *f, void *pv, size_t size)
1055 {
1056 uint8_t *v = pv;
1057 qemu_get_8s(f, v);
1058 return 0;
1059 }
1060
1061 static void put_uint8(QEMUFile *f, void *pv, size_t size)
1062 {
1063 uint8_t *v = pv;
1064 qemu_put_8s(f, v);
1065 }
1066
1067 const VMStateInfo vmstate_info_uint8 = {
1068 .name = "uint8",
1069 .get = get_uint8,
1070 .put = put_uint8,
1071 };
1072
1073 /* 16 bit unsigned int */
1074
1075 static int get_uint16(QEMUFile *f, void *pv, size_t size)
1076 {
1077 uint16_t *v = pv;
1078 qemu_get_be16s(f, v);
1079 return 0;
1080 }
1081
1082 static void put_uint16(QEMUFile *f, void *pv, size_t size)
1083 {
1084 uint16_t *v = pv;
1085 qemu_put_be16s(f, v);
1086 }
1087
1088 const VMStateInfo vmstate_info_uint16 = {
1089 .name = "uint16",
1090 .get = get_uint16,
1091 .put = put_uint16,
1092 };
1093
1094 /* 32 bit unsigned int */
1095
1096 static int get_uint32(QEMUFile *f, void *pv, size_t size)
1097 {
1098 uint32_t *v = pv;
1099 qemu_get_be32s(f, v);
1100 return 0;
1101 }
1102
1103 static void put_uint32(QEMUFile *f, void *pv, size_t size)
1104 {
1105 uint32_t *v = pv;
1106 qemu_put_be32s(f, v);
1107 }
1108
1109 const VMStateInfo vmstate_info_uint32 = {
1110 .name = "uint32",
1111 .get = get_uint32,
1112 .put = put_uint32,
1113 };
1114
1115 /* 32 bit uint. See that the received value is the same than the one
1116 in the field */
1117
1118 static int get_uint32_equal(QEMUFile *f, void *pv, size_t size)
1119 {
1120 uint32_t *v = pv;
1121 uint32_t v2;
1122 qemu_get_be32s(f, &v2);
1123
1124 if (*v == v2) {
1125 return 0;
1126 }
1127 return -EINVAL;
1128 }
1129
1130 const VMStateInfo vmstate_info_uint32_equal = {
1131 .name = "uint32 equal",
1132 .get = get_uint32_equal,
1133 .put = put_uint32,
1134 };
1135
1136 /* 64 bit unsigned int */
1137
1138 static int get_uint64(QEMUFile *f, void *pv, size_t size)
1139 {
1140 uint64_t *v = pv;
1141 qemu_get_be64s(f, v);
1142 return 0;
1143 }
1144
1145 static void put_uint64(QEMUFile *f, void *pv, size_t size)
1146 {
1147 uint64_t *v = pv;
1148 qemu_put_be64s(f, v);
1149 }
1150
1151 const VMStateInfo vmstate_info_uint64 = {
1152 .name = "uint64",
1153 .get = get_uint64,
1154 .put = put_uint64,
1155 };
1156
1157 /* 64 bit unsigned int. See that the received value is the same than the one
1158 in the field */
1159
1160 static int get_uint64_equal(QEMUFile *f, void *pv, size_t size)
1161 {
1162 uint64_t *v = pv;
1163 uint64_t v2;
1164 qemu_get_be64s(f, &v2);
1165
1166 if (*v == v2) {
1167 return 0;
1168 }
1169 return -EINVAL;
1170 }
1171
1172 const VMStateInfo vmstate_info_uint64_equal = {
1173 .name = "int64 equal",
1174 .get = get_uint64_equal,
1175 .put = put_uint64,
1176 };
1177
1178 /* 8 bit int. See that the received value is the same than the one
1179 in the field */
1180
1181 static int get_uint8_equal(QEMUFile *f, void *pv, size_t size)
1182 {
1183 uint8_t *v = pv;
1184 uint8_t v2;
1185 qemu_get_8s(f, &v2);
1186
1187 if (*v == v2)
1188 return 0;
1189 return -EINVAL;
1190 }
1191
1192 const VMStateInfo vmstate_info_uint8_equal = {
1193 .name = "uint8 equal",
1194 .get = get_uint8_equal,
1195 .put = put_uint8,
1196 };
1197
1198 /* 16 bit unsigned int int. See that the received value is the same than the one
1199 in the field */
1200
1201 static int get_uint16_equal(QEMUFile *f, void *pv, size_t size)
1202 {
1203 uint16_t *v = pv;
1204 uint16_t v2;
1205 qemu_get_be16s(f, &v2);
1206
1207 if (*v == v2)
1208 return 0;
1209 return -EINVAL;
1210 }
1211
1212 const VMStateInfo vmstate_info_uint16_equal = {
1213 .name = "uint16 equal",
1214 .get = get_uint16_equal,
1215 .put = put_uint16,
1216 };
1217
1218 /* floating point */
1219
1220 static int get_float64(QEMUFile *f, void *pv, size_t size)
1221 {
1222 float64 *v = pv;
1223
1224 *v = make_float64(qemu_get_be64(f));
1225 return 0;
1226 }
1227
1228 static void put_float64(QEMUFile *f, void *pv, size_t size)
1229 {
1230 uint64_t *v = pv;
1231
1232 qemu_put_be64(f, float64_val(*v));
1233 }
1234
1235 const VMStateInfo vmstate_info_float64 = {
1236 .name = "float64",
1237 .get = get_float64,
1238 .put = put_float64,
1239 };
1240
1241 /* timers */
1242
1243 static int get_timer(QEMUFile *f, void *pv, size_t size)
1244 {
1245 QEMUTimer *v = pv;
1246 qemu_get_timer(f, v);
1247 return 0;
1248 }
1249
1250 static void put_timer(QEMUFile *f, void *pv, size_t size)
1251 {
1252 QEMUTimer *v = pv;
1253 qemu_put_timer(f, v);
1254 }
1255
1256 const VMStateInfo vmstate_info_timer = {
1257 .name = "timer",
1258 .get = get_timer,
1259 .put = put_timer,
1260 };
1261
1262 /* uint8_t buffers */
1263
1264 static int get_buffer(QEMUFile *f, void *pv, size_t size)
1265 {
1266 uint8_t *v = pv;
1267 qemu_get_buffer(f, v, size);
1268 return 0;
1269 }
1270
1271 static void put_buffer(QEMUFile *f, void *pv, size_t size)
1272 {
1273 uint8_t *v = pv;
1274 qemu_put_buffer(f, v, size);
1275 }
1276
1277 const VMStateInfo vmstate_info_buffer = {
1278 .name = "buffer",
1279 .get = get_buffer,
1280 .put = put_buffer,
1281 };
1282
1283 /* unused buffers: space that was used for some fields that are
1284 not useful anymore */
1285
1286 static int get_unused_buffer(QEMUFile *f, void *pv, size_t size)
1287 {
1288 uint8_t buf[1024];
1289 int block_len;
1290
1291 while (size > 0) {
1292 block_len = MIN(sizeof(buf), size);
1293 size -= block_len;
1294 qemu_get_buffer(f, buf, block_len);
1295 }
1296 return 0;
1297 }
1298
1299 static void put_unused_buffer(QEMUFile *f, void *pv, size_t size)
1300 {
1301 static const uint8_t buf[1024];
1302 int block_len;
1303
1304 while (size > 0) {
1305 block_len = MIN(sizeof(buf), size);
1306 size -= block_len;
1307 qemu_put_buffer(f, buf, block_len);
1308 }
1309 }
1310
1311 const VMStateInfo vmstate_info_unused_buffer = {
1312 .name = "unused_buffer",
1313 .get = get_unused_buffer,
1314 .put = put_unused_buffer,
1315 };
1316
1317 /* bitmaps (as defined by bitmap.h). Note that size here is the size
1318 * of the bitmap in bits. The on-the-wire format of a bitmap is 64
1319 * bit words with the bits in big endian order. The in-memory format
1320 * is an array of 'unsigned long', which may be either 32 or 64 bits.
1321 */
1322 /* This is the number of 64 bit words sent over the wire */
1323 #define BITS_TO_U64S(nr) DIV_ROUND_UP(nr, 64)
1324 static int get_bitmap(QEMUFile *f, void *pv, size_t size)
1325 {
1326 unsigned long *bmp = pv;
1327 int i, idx = 0;
1328 for (i = 0; i < BITS_TO_U64S(size); i++) {
1329 uint64_t w = qemu_get_be64(f);
1330 bmp[idx++] = w;
1331 if (sizeof(unsigned long) == 4 && idx < BITS_TO_LONGS(size)) {
1332 bmp[idx++] = w >> 32;
1333 }
1334 }
1335 return 0;
1336 }
1337
1338 static void put_bitmap(QEMUFile *f, void *pv, size_t size)
1339 {
1340 unsigned long *bmp = pv;
1341 int i, idx = 0;
1342 for (i = 0; i < BITS_TO_U64S(size); i++) {
1343 uint64_t w = bmp[idx++];
1344 if (sizeof(unsigned long) == 4 && idx < BITS_TO_LONGS(size)) {
1345 w |= ((uint64_t)bmp[idx++]) << 32;
1346 }
1347 qemu_put_be64(f, w);
1348 }
1349 }
1350
1351 const VMStateInfo vmstate_info_bitmap = {
1352 .name = "bitmap",
1353 .get = get_bitmap,
1354 .put = put_bitmap,
1355 };
1356
1357 typedef struct CompatEntry {
1358 char idstr[256];
1359 int instance_id;
1360 } CompatEntry;
1361
1362 typedef struct SaveStateEntry {
1363 QTAILQ_ENTRY(SaveStateEntry) entry;
1364 char idstr[256];
1365 int instance_id;
1366 int alias_id;
1367 int version_id;
1368 int section_id;
1369 SaveVMHandlers *ops;
1370 const VMStateDescription *vmsd;
1371 void *opaque;
1372 CompatEntry *compat;
1373 int no_migrate;
1374 int is_ram;
1375 } SaveStateEntry;
1376
1377
1378 static QTAILQ_HEAD(savevm_handlers, SaveStateEntry) savevm_handlers =
1379 QTAILQ_HEAD_INITIALIZER(savevm_handlers);
1380 static int global_section_id;
1381
1382 static int calculate_new_instance_id(const char *idstr)
1383 {
1384 SaveStateEntry *se;
1385 int instance_id = 0;
1386
1387 QTAILQ_FOREACH(se, &savevm_handlers, entry) {
1388 if (strcmp(idstr, se->idstr) == 0
1389 && instance_id <= se->instance_id) {
1390 instance_id = se->instance_id + 1;
1391 }
1392 }
1393 return instance_id;
1394 }
1395
1396 static int calculate_compat_instance_id(const char *idstr)
1397 {
1398 SaveStateEntry *se;
1399 int instance_id = 0;
1400
1401 QTAILQ_FOREACH(se, &savevm_handlers, entry) {
1402 if (!se->compat)
1403 continue;
1404
1405 if (strcmp(idstr, se->compat->idstr) == 0
1406 && instance_id <= se->compat->instance_id) {
1407 instance_id = se->compat->instance_id + 1;
1408 }
1409 }
1410 return instance_id;
1411 }
1412
1413 /* TODO: Individual devices generally have very little idea about the rest
1414 of the system, so instance_id should be removed/replaced.
1415 Meanwhile pass -1 as instance_id if you do not already have a clearly
1416 distinguishing id for all instances of your device class. */
1417 int register_savevm_live(DeviceState *dev,
1418 const char *idstr,
1419 int instance_id,
1420 int version_id,
1421 SaveVMHandlers *ops,
1422 void *opaque)
1423 {
1424 SaveStateEntry *se;
1425
1426 se = g_malloc0(sizeof(SaveStateEntry));
1427 se->version_id = version_id;
1428 se->section_id = global_section_id++;
1429 se->ops = ops;
1430 se->opaque = opaque;
1431 se->vmsd = NULL;
1432 se->no_migrate = 0;
1433 /* if this is a live_savem then set is_ram */
1434 if (ops->save_live_setup != NULL) {
1435 se->is_ram = 1;
1436 }
1437
1438 if (dev) {
1439 char *id = qdev_get_dev_path(dev);
1440 if (id) {
1441 pstrcpy(se->idstr, sizeof(se->idstr), id);
1442 pstrcat(se->idstr, sizeof(se->idstr), "/");
1443 g_free(id);
1444
1445 se->compat = g_malloc0(sizeof(CompatEntry));
1446 pstrcpy(se->compat->idstr, sizeof(se->compat->idstr), idstr);
1447 se->compat->instance_id = instance_id == -1 ?
1448 calculate_compat_instance_id(idstr) : instance_id;
1449 instance_id = -1;
1450 }
1451 }
1452 pstrcat(se->idstr, sizeof(se->idstr), idstr);
1453
1454 if (instance_id == -1) {
1455 se->instance_id = calculate_new_instance_id(se->idstr);
1456 } else {
1457 se->instance_id = instance_id;
1458 }
1459 assert(!se->compat || se->instance_id == 0);
1460 /* add at the end of list */
1461 QTAILQ_INSERT_TAIL(&savevm_handlers, se, entry);
1462 return 0;
1463 }
1464
1465 int register_savevm(DeviceState *dev,
1466 const char *idstr,
1467 int instance_id,
1468 int version_id,
1469 SaveStateHandler *save_state,
1470 LoadStateHandler *load_state,
1471 void *opaque)
1472 {
1473 SaveVMHandlers *ops = g_malloc0(sizeof(SaveVMHandlers));
1474 ops->save_state = save_state;
1475 ops->load_state = load_state;
1476 return register_savevm_live(dev, idstr, instance_id, version_id,
1477 ops, opaque);
1478 }
1479
1480 void unregister_savevm(DeviceState *dev, const char *idstr, void *opaque)
1481 {
1482 SaveStateEntry *se, *new_se;
1483 char id[256] = "";
1484
1485 if (dev) {
1486 char *path = qdev_get_dev_path(dev);
1487 if (path) {
1488 pstrcpy(id, sizeof(id), path);
1489 pstrcat(id, sizeof(id), "/");
1490 g_free(path);
1491 }
1492 }
1493 pstrcat(id, sizeof(id), idstr);
1494
1495 QTAILQ_FOREACH_SAFE(se, &savevm_handlers, entry, new_se) {
1496 if (strcmp(se->idstr, id) == 0 && se->opaque == opaque) {
1497 QTAILQ_REMOVE(&savevm_handlers, se, entry);
1498 if (se->compat) {
1499 g_free(se->compat);
1500 }
1501 g_free(se->ops);
1502 g_free(se);
1503 }
1504 }
1505 }
1506
1507 int vmstate_register_with_alias_id(DeviceState *dev, int instance_id,
1508 const VMStateDescription *vmsd,
1509 void *opaque, int alias_id,
1510 int required_for_version)
1511 {
1512 SaveStateEntry *se;
1513
1514 /* If this triggers, alias support can be dropped for the vmsd. */
1515 assert(alias_id == -1 || required_for_version >= vmsd->minimum_version_id);
1516
1517 se = g_malloc0(sizeof(SaveStateEntry));
1518 se->version_id = vmsd->version_id;
1519 se->section_id = global_section_id++;
1520 se->opaque = opaque;
1521 se->vmsd = vmsd;
1522 se->alias_id = alias_id;
1523 se->no_migrate = vmsd->unmigratable;
1524
1525 if (dev) {
1526 char *id = qdev_get_dev_path(dev);
1527 if (id) {
1528 pstrcpy(se->idstr, sizeof(se->idstr), id);
1529 pstrcat(se->idstr, sizeof(se->idstr), "/");
1530 g_free(id);
1531
1532 se->compat = g_malloc0(sizeof(CompatEntry));
1533 pstrcpy(se->compat->idstr, sizeof(se->compat->idstr), vmsd->name);
1534 se->compat->instance_id = instance_id == -1 ?
1535 calculate_compat_instance_id(vmsd->name) : instance_id;
1536 instance_id = -1;
1537 }
1538 }
1539 pstrcat(se->idstr, sizeof(se->idstr), vmsd->name);
1540
1541 if (instance_id == -1) {
1542 se->instance_id = calculate_new_instance_id(se->idstr);
1543 } else {
1544 se->instance_id = instance_id;
1545 }
1546 assert(!se->compat || se->instance_id == 0);
1547 /* add at the end of list */
1548 QTAILQ_INSERT_TAIL(&savevm_handlers, se, entry);
1549 return 0;
1550 }
1551
1552 void vmstate_unregister(DeviceState *dev, const VMStateDescription *vmsd,
1553 void *opaque)
1554 {
1555 SaveStateEntry *se, *new_se;
1556
1557 QTAILQ_FOREACH_SAFE(se, &savevm_handlers, entry, new_se) {
1558 if (se->vmsd == vmsd && se->opaque == opaque) {
1559 QTAILQ_REMOVE(&savevm_handlers, se, entry);
1560 if (se->compat) {
1561 g_free(se->compat);
1562 }
1563 g_free(se);
1564 }
1565 }
1566 }
1567
1568 static void vmstate_subsection_save(QEMUFile *f, const VMStateDescription *vmsd,
1569 void *opaque);
1570 static int vmstate_subsection_load(QEMUFile *f, const VMStateDescription *vmsd,
1571 void *opaque);
1572
1573 int vmstate_load_state(QEMUFile *f, const VMStateDescription *vmsd,
1574 void *opaque, int version_id)
1575 {
1576 VMStateField *field = vmsd->fields;
1577 int ret;
1578
1579 if (version_id > vmsd->version_id) {
1580 return -EINVAL;
1581 }
1582 if (version_id < vmsd->minimum_version_id_old) {
1583 return -EINVAL;
1584 }
1585 if (version_id < vmsd->minimum_version_id) {
1586 return vmsd->load_state_old(f, opaque, version_id);
1587 }
1588 if (vmsd->pre_load) {
1589 int ret = vmsd->pre_load(opaque);
1590 if (ret)
1591 return ret;
1592 }
1593 while(field->name) {
1594 if ((field->field_exists &&
1595 field->field_exists(opaque, version_id)) ||
1596 (!field->field_exists &&
1597 field->version_id <= version_id)) {
1598 void *base_addr = opaque + field->offset;
1599 int i, n_elems = 1;
1600 int size = field->size;
1601
1602 if (field->flags & VMS_VBUFFER) {
1603 size = *(int32_t *)(opaque+field->size_offset);
1604 if (field->flags & VMS_MULTIPLY) {
1605 size *= field->size;
1606 }
1607 }
1608 if (field->flags & VMS_ARRAY) {
1609 n_elems = field->num;
1610 } else if (field->flags & VMS_VARRAY_INT32) {
1611 n_elems = *(int32_t *)(opaque+field->num_offset);
1612 } else if (field->flags & VMS_VARRAY_UINT32) {
1613 n_elems = *(uint32_t *)(opaque+field->num_offset);
1614 } else if (field->flags & VMS_VARRAY_UINT16) {
1615 n_elems = *(uint16_t *)(opaque+field->num_offset);
1616 } else if (field->flags & VMS_VARRAY_UINT8) {
1617 n_elems = *(uint8_t *)(opaque+field->num_offset);
1618 }
1619 if (field->flags & VMS_POINTER) {
1620 base_addr = *(void **)base_addr + field->start;
1621 }
1622 for (i = 0; i < n_elems; i++) {
1623 void *addr = base_addr + size * i;
1624
1625 if (field->flags & VMS_ARRAY_OF_POINTER) {
1626 addr = *(void **)addr;
1627 }
1628 if (field->flags & VMS_STRUCT) {
1629 ret = vmstate_load_state(f, field->vmsd, addr, field->vmsd->version_id);
1630 } else {
1631 ret = field->info->get(f, addr, size);
1632
1633 }
1634 if (ret < 0) {
1635 return ret;
1636 }
1637 }
1638 }
1639 field++;
1640 }
1641 ret = vmstate_subsection_load(f, vmsd, opaque);
1642 if (ret != 0) {
1643 return ret;
1644 }
1645 if (vmsd->post_load) {
1646 return vmsd->post_load(opaque, version_id);
1647 }
1648 return 0;
1649 }
1650
1651 void vmstate_save_state(QEMUFile *f, const VMStateDescription *vmsd,
1652 void *opaque)
1653 {
1654 VMStateField *field = vmsd->fields;
1655
1656 if (vmsd->pre_save) {
1657 vmsd->pre_save(opaque);
1658 }
1659 while(field->name) {
1660 if (!field->field_exists ||
1661 field->field_exists(opaque, vmsd->version_id)) {
1662 void *base_addr = opaque + field->offset;
1663 int i, n_elems = 1;
1664 int size = field->size;
1665
1666 if (field->flags & VMS_VBUFFER) {
1667 size = *(int32_t *)(opaque+field->size_offset);
1668 if (field->flags & VMS_MULTIPLY) {
1669 size *= field->size;
1670 }
1671 }
1672 if (field->flags & VMS_ARRAY) {
1673 n_elems = field->num;
1674 } else if (field->flags & VMS_VARRAY_INT32) {
1675 n_elems = *(int32_t *)(opaque+field->num_offset);
1676 } else if (field->flags & VMS_VARRAY_UINT32) {
1677 n_elems = *(uint32_t *)(opaque+field->num_offset);
1678 } else if (field->flags & VMS_VARRAY_UINT16) {
1679 n_elems = *(uint16_t *)(opaque+field->num_offset);
1680 } else if (field->flags & VMS_VARRAY_UINT8) {
1681 n_elems = *(uint8_t *)(opaque+field->num_offset);
1682 }
1683 if (field->flags & VMS_POINTER) {
1684 base_addr = *(void **)base_addr + field->start;
1685 }
1686 for (i = 0; i < n_elems; i++) {
1687 void *addr = base_addr + size * i;
1688
1689 if (field->flags & VMS_ARRAY_OF_POINTER) {
1690 addr = *(void **)addr;
1691 }
1692 if (field->flags & VMS_STRUCT) {
1693 vmstate_save_state(f, field->vmsd, addr);
1694 } else {
1695 field->info->put(f, addr, size);
1696 }
1697 }
1698 }
1699 field++;
1700 }
1701 vmstate_subsection_save(f, vmsd, opaque);
1702 }
1703
1704 static int vmstate_load(QEMUFile *f, SaveStateEntry *se, int version_id)
1705 {
1706 if (!se->vmsd) { /* Old style */
1707 return se->ops->load_state(f, se->opaque, version_id);
1708 }
1709 return vmstate_load_state(f, se->vmsd, se->opaque, version_id);
1710 }
1711
1712 static void vmstate_save(QEMUFile *f, SaveStateEntry *se)
1713 {
1714 if (!se->vmsd) { /* Old style */
1715 se->ops->save_state(f, se->opaque);
1716 return;
1717 }
1718 vmstate_save_state(f,se->vmsd, se->opaque);
1719 }
1720
1721 #define QEMU_VM_FILE_MAGIC 0x5145564d
1722 #define QEMU_VM_FILE_VERSION_COMPAT 0x00000002
1723 #define QEMU_VM_FILE_VERSION 0x00000003
1724
1725 #define QEMU_VM_EOF 0x00
1726 #define QEMU_VM_SECTION_START 0x01
1727 #define QEMU_VM_SECTION_PART 0x02
1728 #define QEMU_VM_SECTION_END 0x03
1729 #define QEMU_VM_SECTION_FULL 0x04
1730 #define QEMU_VM_SUBSECTION 0x05
1731
1732 bool qemu_savevm_state_blocked(Error **errp)
1733 {
1734 SaveStateEntry *se;
1735
1736 QTAILQ_FOREACH(se, &savevm_handlers, entry) {
1737 if (se->no_migrate) {
1738 error_set(errp, QERR_MIGRATION_NOT_SUPPORTED, se->idstr);
1739 return true;
1740 }
1741 }
1742 return false;
1743 }
1744
1745 void qemu_savevm_state_begin(QEMUFile *f,
1746 const MigrationParams *params)
1747 {
1748 SaveStateEntry *se;
1749 int ret;
1750
1751 QTAILQ_FOREACH(se, &savevm_handlers, entry) {
1752 if (!se->ops || !se->ops->set_params) {
1753 continue;
1754 }
1755 se->ops->set_params(params, se->opaque);
1756 }
1757
1758 qemu_put_be32(f, QEMU_VM_FILE_MAGIC);
1759 qemu_put_be32(f, QEMU_VM_FILE_VERSION);
1760
1761 QTAILQ_FOREACH(se, &savevm_handlers, entry) {
1762 int len;
1763
1764 if (!se->ops || !se->ops->save_live_setup) {
1765 continue;
1766 }
1767 if (se->ops && se->ops->is_active) {
1768 if (!se->ops->is_active(se->opaque)) {
1769 continue;
1770 }
1771 }
1772 /* Section type */
1773 qemu_put_byte(f, QEMU_VM_SECTION_START);
1774 qemu_put_be32(f, se->section_id);
1775
1776 /* ID string */
1777 len = strlen(se->idstr);
1778 qemu_put_byte(f, len);
1779 qemu_put_buffer(f, (uint8_t *)se->idstr, len);
1780
1781 qemu_put_be32(f, se->instance_id);
1782 qemu_put_be32(f, se->version_id);
1783
1784 ret = se->ops->save_live_setup(f, se->opaque);
1785 if (ret < 0) {
1786 qemu_file_set_error(f, ret);
1787 break;
1788 }
1789 }
1790 }
1791
1792 /*
1793 * this function has three return values:
1794 * negative: there was one error, and we have -errno.
1795 * 0 : We haven't finished, caller have to go again
1796 * 1 : We have finished, we can go to complete phase
1797 */
1798 int qemu_savevm_state_iterate(QEMUFile *f)
1799 {
1800 SaveStateEntry *se;
1801 int ret = 1;
1802
1803 QTAILQ_FOREACH(se, &savevm_handlers, entry) {
1804 if (!se->ops || !se->ops->save_live_iterate) {
1805 continue;
1806 }
1807 if (se->ops && se->ops->is_active) {
1808 if (!se->ops->is_active(se->opaque)) {
1809 continue;
1810 }
1811 }
1812 if (qemu_file_rate_limit(f)) {
1813 return 0;
1814 }
1815 trace_savevm_section_start();
1816 /* Section type */
1817 qemu_put_byte(f, QEMU_VM_SECTION_PART);
1818 qemu_put_be32(f, se->section_id);
1819
1820 ret = se->ops->save_live_iterate(f, se->opaque);
1821 trace_savevm_section_end(se->section_id);
1822
1823 if (ret < 0) {
1824 qemu_file_set_error(f, ret);
1825 }
1826 if (ret <= 0) {
1827 /* Do not proceed to the next vmstate before this one reported
1828 completion of the current stage. This serializes the migration
1829 and reduces the probability that a faster changing state is
1830 synchronized over and over again. */
1831 break;
1832 }
1833 }
1834 return ret;
1835 }
1836
1837 void qemu_savevm_state_complete(QEMUFile *f)
1838 {
1839 SaveStateEntry *se;
1840 int ret;
1841
1842 cpu_synchronize_all_states();
1843
1844 QTAILQ_FOREACH(se, &savevm_handlers, entry) {
1845 if (!se->ops || !se->ops->save_live_complete) {
1846 continue;
1847 }
1848 if (se->ops && se->ops->is_active) {
1849 if (!se->ops->is_active(se->opaque)) {
1850 continue;
1851 }
1852 }
1853 trace_savevm_section_start();
1854 /* Section type */
1855 qemu_put_byte(f, QEMU_VM_SECTION_END);
1856 qemu_put_be32(f, se->section_id);
1857
1858 ret = se->ops->save_live_complete(f, se->opaque);
1859 trace_savevm_section_end(se->section_id);
1860 if (ret < 0) {
1861 qemu_file_set_error(f, ret);
1862 return;
1863 }
1864 }
1865
1866 QTAILQ_FOREACH(se, &savevm_handlers, entry) {
1867 int len;
1868
1869 if ((!se->ops || !se->ops->save_state) && !se->vmsd) {
1870 continue;
1871 }
1872 trace_savevm_section_start();
1873 /* Section type */
1874 qemu_put_byte(f, QEMU_VM_SECTION_FULL);
1875 qemu_put_be32(f, se->section_id);
1876
1877 /* ID string */
1878 len = strlen(se->idstr);
1879 qemu_put_byte(f, len);
1880 qemu_put_buffer(f, (uint8_t *)se->idstr, len);
1881
1882 qemu_put_be32(f, se->instance_id);
1883 qemu_put_be32(f, se->version_id);
1884
1885 vmstate_save(f, se);
1886 trace_savevm_section_end(se->section_id);
1887 }
1888
1889 qemu_put_byte(f, QEMU_VM_EOF);
1890 qemu_fflush(f);
1891 }
1892
1893 uint64_t qemu_savevm_state_pending(QEMUFile *f, uint64_t max_size)
1894 {
1895 SaveStateEntry *se;
1896 uint64_t ret = 0;
1897
1898 QTAILQ_FOREACH(se, &savevm_handlers, entry) {
1899 if (!se->ops || !se->ops->save_live_pending) {
1900 continue;
1901 }
1902 if (se->ops && se->ops->is_active) {
1903 if (!se->ops->is_active(se->opaque)) {
1904 continue;
1905 }
1906 }
1907 ret += se->ops->save_live_pending(f, se->opaque, max_size);
1908 }
1909 return ret;
1910 }
1911
1912 void qemu_savevm_state_cancel(void)
1913 {
1914 SaveStateEntry *se;
1915
1916 QTAILQ_FOREACH(se, &savevm_handlers, entry) {
1917 if (se->ops && se->ops->cancel) {
1918 se->ops->cancel(se->opaque);
1919 }
1920 }
1921 }
1922
1923 static int qemu_savevm_state(QEMUFile *f)
1924 {
1925 int ret;
1926 MigrationParams params = {
1927 .blk = 0,
1928 .shared = 0
1929 };
1930
1931 if (qemu_savevm_state_blocked(NULL)) {
1932 return -EINVAL;
1933 }
1934
1935 qemu_mutex_unlock_iothread();
1936 qemu_savevm_state_begin(f, &params);
1937 qemu_mutex_lock_iothread();
1938
1939 while (qemu_file_get_error(f) == 0) {
1940 if (qemu_savevm_state_iterate(f) > 0) {
1941 break;
1942 }
1943 }
1944
1945 ret = qemu_file_get_error(f);
1946 if (ret == 0) {
1947 qemu_savevm_state_complete(f);
1948 ret = qemu_file_get_error(f);
1949 }
1950 if (ret != 0) {
1951 qemu_savevm_state_cancel();
1952 }
1953 return ret;
1954 }
1955
1956 static int qemu_save_device_state(QEMUFile *f)
1957 {
1958 SaveStateEntry *se;
1959
1960 qemu_put_be32(f, QEMU_VM_FILE_MAGIC);
1961 qemu_put_be32(f, QEMU_VM_FILE_VERSION);
1962
1963 cpu_synchronize_all_states();
1964
1965 QTAILQ_FOREACH(se, &savevm_handlers, entry) {
1966 int len;
1967
1968 if (se->is_ram) {
1969 continue;
1970 }
1971 if ((!se->ops || !se->ops->save_state) && !se->vmsd) {
1972 continue;
1973 }
1974
1975 /* Section type */
1976 qemu_put_byte(f, QEMU_VM_SECTION_FULL);
1977 qemu_put_be32(f, se->section_id);
1978
1979 /* ID string */
1980 len = strlen(se->idstr);
1981 qemu_put_byte(f, len);
1982 qemu_put_buffer(f, (uint8_t *)se->idstr, len);
1983
1984 qemu_put_be32(f, se->instance_id);
1985 qemu_put_be32(f, se->version_id);
1986
1987 vmstate_save(f, se);
1988 }
1989
1990 qemu_put_byte(f, QEMU_VM_EOF);
1991
1992 return qemu_file_get_error(f);
1993 }
1994
1995 static SaveStateEntry *find_se(const char *idstr, int instance_id)
1996 {
1997 SaveStateEntry *se;
1998
1999 QTAILQ_FOREACH(se, &savevm_handlers, entry) {
2000 if (!strcmp(se->idstr, idstr) &&
2001 (instance_id == se->instance_id ||
2002 instance_id == se->alias_id))
2003 return se;
2004 /* Migrating from an older version? */
2005 if (strstr(se->idstr, idstr) && se->compat) {
2006 if (!strcmp(se->compat->idstr, idstr) &&
2007 (instance_id == se->compat->instance_id ||
2008 instance_id == se->alias_id))
2009 return se;
2010 }
2011 }
2012 return NULL;
2013 }
2014
2015 static const VMStateDescription *vmstate_get_subsection(const VMStateSubsection *sub, char *idstr)
2016 {
2017 while(sub && sub->needed) {
2018 if (strcmp(idstr, sub->vmsd->name) == 0) {
2019 return sub->vmsd;
2020 }
2021 sub++;
2022 }
2023 return NULL;
2024 }
2025
2026 static int vmstate_subsection_load(QEMUFile *f, const VMStateDescription *vmsd,
2027 void *opaque)
2028 {
2029 while (qemu_peek_byte(f, 0) == QEMU_VM_SUBSECTION) {
2030 char idstr[256];
2031 int ret;
2032 uint8_t version_id, len, size;
2033 const VMStateDescription *sub_vmsd;
2034
2035 len = qemu_peek_byte(f, 1);
2036 if (len < strlen(vmsd->name) + 1) {
2037 /* subsection name has be be "section_name/a" */
2038 return 0;
2039 }
2040 size = qemu_peek_buffer(f, (uint8_t *)idstr, len, 2);
2041 if (size != len) {
2042 return 0;
2043 }
2044 idstr[size] = 0;
2045
2046 if (strncmp(vmsd->name, idstr, strlen(vmsd->name)) != 0) {
2047 /* it don't have a valid subsection name */
2048 return 0;
2049 }
2050 sub_vmsd = vmstate_get_subsection(vmsd->subsections, idstr);
2051 if (sub_vmsd == NULL) {
2052 return -ENOENT;
2053 }
2054 qemu_file_skip(f, 1); /* subsection */
2055 qemu_file_skip(f, 1); /* len */
2056 qemu_file_skip(f, len); /* idstr */
2057 version_id = qemu_get_be32(f);
2058
2059 ret = vmstate_load_state(f, sub_vmsd, opaque, version_id);
2060 if (ret) {
2061 return ret;
2062 }
2063 }
2064 return 0;
2065 }
2066
2067 static void vmstate_subsection_save(QEMUFile *f, const VMStateDescription *vmsd,
2068 void *opaque)
2069 {
2070 const VMStateSubsection *sub = vmsd->subsections;
2071
2072 while (sub && sub->needed) {
2073 if (sub->needed(opaque)) {
2074 const VMStateDescription *vmsd = sub->vmsd;
2075 uint8_t len;
2076
2077 qemu_put_byte(f, QEMU_VM_SUBSECTION);
2078 len = strlen(vmsd->name);
2079 qemu_put_byte(f, len);
2080 qemu_put_buffer(f, (uint8_t *)vmsd->name, len);
2081 qemu_put_be32(f, vmsd->version_id);
2082 vmstate_save_state(f, vmsd, opaque);
2083 }
2084 sub++;
2085 }
2086 }
2087
2088 typedef struct LoadStateEntry {
2089 QLIST_ENTRY(LoadStateEntry) entry;
2090 SaveStateEntry *se;
2091 int section_id;
2092 int version_id;
2093 } LoadStateEntry;
2094
2095 int qemu_loadvm_state(QEMUFile *f)
2096 {
2097 QLIST_HEAD(, LoadStateEntry) loadvm_handlers =
2098 QLIST_HEAD_INITIALIZER(loadvm_handlers);
2099 LoadStateEntry *le, *new_le;
2100 uint8_t section_type;
2101 unsigned int v;
2102 int ret;
2103
2104 if (qemu_savevm_state_blocked(NULL)) {
2105 return -EINVAL;
2106 }
2107
2108 v = qemu_get_be32(f);
2109 if (v != QEMU_VM_FILE_MAGIC)
2110 return -EINVAL;
2111
2112 v = qemu_get_be32(f);
2113 if (v == QEMU_VM_FILE_VERSION_COMPAT) {
2114 fprintf(stderr, "SaveVM v2 format is obsolete and don't work anymore\n");
2115 return -ENOTSUP;
2116 }
2117 if (v != QEMU_VM_FILE_VERSION)
2118 return -ENOTSUP;
2119
2120 while ((section_type = qemu_get_byte(f)) != QEMU_VM_EOF) {
2121 uint32_t instance_id, version_id, section_id;
2122 SaveStateEntry *se;
2123 char idstr[257];
2124 int len;
2125
2126 switch (section_type) {
2127 case QEMU_VM_SECTION_START:
2128 case QEMU_VM_SECTION_FULL:
2129 /* Read section start */
2130 section_id = qemu_get_be32(f);
2131 len = qemu_get_byte(f);
2132 qemu_get_buffer(f, (uint8_t *)idstr, len);
2133 idstr[len] = 0;
2134 instance_id = qemu_get_be32(f);
2135 version_id = qemu_get_be32(f);
2136
2137 /* Find savevm section */
2138 se = find_se(idstr, instance_id);
2139 if (se == NULL) {
2140 fprintf(stderr, "Unknown savevm section or instance '%s' %d\n", idstr, instance_id);
2141 ret = -EINVAL;
2142 goto out;
2143 }
2144
2145 /* Validate version */
2146 if (version_id > se->version_id) {
2147 fprintf(stderr, "savevm: unsupported version %d for '%s' v%d\n",
2148 version_id, idstr, se->version_id);
2149 ret = -EINVAL;
2150 goto out;
2151 }
2152
2153 /* Add entry */
2154 le = g_malloc0(sizeof(*le));
2155
2156 le->se = se;
2157 le->section_id = section_id;
2158 le->version_id = version_id;
2159 QLIST_INSERT_HEAD(&loadvm_handlers, le, entry);
2160
2161 ret = vmstate_load(f, le->se, le->version_id);
2162 if (ret < 0) {
2163 fprintf(stderr, "qemu: warning: error while loading state for instance 0x%x of device '%s'\n",
2164 instance_id, idstr);
2165 goto out;
2166 }
2167 break;
2168 case QEMU_VM_SECTION_PART:
2169 case QEMU_VM_SECTION_END:
2170 section_id = qemu_get_be32(f);
2171
2172 QLIST_FOREACH(le, &loadvm_handlers, entry) {
2173 if (le->section_id == section_id) {
2174 break;
2175 }
2176 }
2177 if (le == NULL) {
2178 fprintf(stderr, "Unknown savevm section %d\n", section_id);
2179 ret = -EINVAL;
2180 goto out;
2181 }
2182
2183 ret = vmstate_load(f, le->se, le->version_id);
2184 if (ret < 0) {
2185 fprintf(stderr, "qemu: warning: error while loading state section id %d\n",
2186 section_id);
2187 goto out;
2188 }
2189 break;
2190 default:
2191 fprintf(stderr, "Unknown savevm section type %d\n", section_type);
2192 ret = -EINVAL;
2193 goto out;
2194 }
2195 }
2196
2197 cpu_synchronize_all_post_init();
2198
2199 ret = 0;
2200
2201 out:
2202 QLIST_FOREACH_SAFE(le, &loadvm_handlers, entry, new_le) {
2203 QLIST_REMOVE(le, entry);
2204 g_free(le);
2205 }
2206
2207 if (ret == 0) {
2208 ret = qemu_file_get_error(f);
2209 }
2210
2211 return ret;
2212 }
2213
2214 static int bdrv_snapshot_find(BlockDriverState *bs, QEMUSnapshotInfo *sn_info,
2215 const char *name)
2216 {
2217 QEMUSnapshotInfo *sn_tab, *sn;
2218 int nb_sns, i, ret;
2219
2220 ret = -ENOENT;
2221 nb_sns = bdrv_snapshot_list(bs, &sn_tab);
2222 if (nb_sns < 0)
2223 return ret;
2224 for(i = 0; i < nb_sns; i++) {
2225 sn = &sn_tab[i];
2226 if (!strcmp(sn->id_str, name) || !strcmp(sn->name, name)) {
2227 *sn_info = *sn;
2228 ret = 0;
2229 break;
2230 }
2231 }
2232 g_free(sn_tab);
2233 return ret;
2234 }
2235
2236 /*
2237 * Deletes snapshots of a given name in all opened images.
2238 */
2239 static int del_existing_snapshots(Monitor *mon, const char *name)
2240 {
2241 BlockDriverState *bs;
2242 QEMUSnapshotInfo sn1, *snapshot = &sn1;
2243 int ret;
2244
2245 bs = NULL;
2246 while ((bs = bdrv_next(bs))) {
2247 if (bdrv_can_snapshot(bs) &&
2248 bdrv_snapshot_find(bs, snapshot, name) >= 0)
2249 {
2250 ret = bdrv_snapshot_delete(bs, name);
2251 if (ret < 0) {
2252 monitor_printf(mon,
2253 "Error while deleting snapshot on '%s'\n",
2254 bdrv_get_device_name(bs));
2255 return -1;
2256 }
2257 }
2258 }
2259
2260 return 0;
2261 }
2262
2263 void do_savevm(Monitor *mon, const QDict *qdict)
2264 {
2265 BlockDriverState *bs, *bs1;
2266 QEMUSnapshotInfo sn1, *sn = &sn1, old_sn1, *old_sn = &old_sn1;
2267 int ret;
2268 QEMUFile *f;
2269 int saved_vm_running;
2270 uint64_t vm_state_size;
2271 qemu_timeval tv;
2272 struct tm tm;
2273 const char *name = qdict_get_try_str(qdict, "name");
2274
2275 /* Verify if there is a device that doesn't support snapshots and is writable */
2276 bs = NULL;
2277 while ((bs = bdrv_next(bs))) {
2278
2279 if (!bdrv_is_inserted(bs) || bdrv_is_read_only(bs)) {
2280 continue;
2281 }
2282
2283 if (!bdrv_can_snapshot(bs)) {
2284 monitor_printf(mon, "Device '%s' is writable but does not support snapshots.\n",
2285 bdrv_get_device_name(bs));
2286 return;
2287 }
2288 }
2289
2290 bs = bdrv_snapshots();
2291 if (!bs) {
2292 monitor_printf(mon, "No block device can accept snapshots\n");
2293 return;
2294 }
2295
2296 saved_vm_running = runstate_is_running();
2297 vm_stop(RUN_STATE_SAVE_VM);
2298
2299 memset(sn, 0, sizeof(*sn));
2300
2301 /* fill auxiliary fields */
2302 qemu_gettimeofday(&tv);
2303 sn->date_sec = tv.tv_sec;
2304 sn->date_nsec = tv.tv_usec * 1000;
2305 sn->vm_clock_nsec = qemu_get_clock_ns(vm_clock);
2306
2307 if (name) {
2308 ret = bdrv_snapshot_find(bs, old_sn, name);
2309 if (ret >= 0) {
2310 pstrcpy(sn->name, sizeof(sn->name), old_sn->name);
2311 pstrcpy(sn->id_str, sizeof(sn->id_str), old_sn->id_str);
2312 } else {
2313 pstrcpy(sn->name, sizeof(sn->name), name);
2314 }
2315 } else {
2316 /* cast below needed for OpenBSD where tv_sec is still 'long' */
2317 localtime_r((const time_t *)&tv.tv_sec, &tm);
2318 strftime(sn->name, sizeof(sn->name), "vm-%Y%m%d%H%M%S", &tm);
2319 }
2320
2321 /* Delete old snapshots of the same name */
2322 if (name && del_existing_snapshots(mon, name) < 0) {
2323 goto the_end;
2324 }
2325
2326 /* save the VM state */
2327 f = qemu_fopen_bdrv(bs, 1);
2328 if (!f) {
2329 monitor_printf(mon, "Could not open VM state file\n");
2330 goto the_end;
2331 }
2332 ret = qemu_savevm_state(f);
2333 vm_state_size = qemu_ftell(f);
2334 qemu_fclose(f);
2335 if (ret < 0) {
2336 monitor_printf(mon, "Error %d while writing VM\n", ret);
2337 goto the_end;
2338 }
2339
2340 /* create the snapshots */
2341
2342 bs1 = NULL;
2343 while ((bs1 = bdrv_next(bs1))) {
2344 if (bdrv_can_snapshot(bs1)) {
2345 /* Write VM state size only to the image that contains the state */
2346 sn->vm_state_size = (bs == bs1 ? vm_state_size : 0);
2347 ret = bdrv_snapshot_create(bs1, sn);
2348 if (ret < 0) {
2349 monitor_printf(mon, "Error while creating snapshot on '%s'\n",
2350 bdrv_get_device_name(bs1));
2351 }
2352 }
2353 }
2354
2355 the_end:
2356 if (saved_vm_running)
2357 vm_start();
2358 }
2359
2360 void qmp_xen_save_devices_state(const char *filename, Error **errp)
2361 {
2362 QEMUFile *f;
2363 int saved_vm_running;
2364 int ret;
2365
2366 saved_vm_running = runstate_is_running();
2367 vm_stop(RUN_STATE_SAVE_VM);
2368
2369 f = qemu_fopen(filename, "wb");
2370 if (!f) {
2371 error_set(errp, QERR_OPEN_FILE_FAILED, filename);
2372 goto the_end;
2373 }
2374 ret = qemu_save_device_state(f);
2375 qemu_fclose(f);
2376 if (ret < 0) {
2377 error_set(errp, QERR_IO_ERROR);
2378 }
2379
2380 the_end:
2381 if (saved_vm_running)
2382 vm_start();
2383 }
2384
2385 int load_vmstate(const char *name)
2386 {
2387 BlockDriverState *bs, *bs_vm_state;
2388 QEMUSnapshotInfo sn;
2389 QEMUFile *f;
2390 int ret;
2391
2392 bs_vm_state = bdrv_snapshots();
2393 if (!bs_vm_state) {
2394 error_report("No block device supports snapshots");
2395 return -ENOTSUP;
2396 }
2397
2398 /* Don't even try to load empty VM states */
2399 ret = bdrv_snapshot_find(bs_vm_state, &sn, name);
2400 if (ret < 0) {
2401 return ret;
2402 } else if (sn.vm_state_size == 0) {
2403 error_report("This is a disk-only snapshot. Revert to it offline "
2404 "using qemu-img.");
2405 return -EINVAL;
2406 }
2407
2408 /* Verify if there is any device that doesn't support snapshots and is
2409 writable and check if the requested snapshot is available too. */
2410 bs = NULL;
2411 while ((bs = bdrv_next(bs))) {
2412
2413 if (!bdrv_is_inserted(bs) || bdrv_is_read_only(bs)) {
2414 continue;
2415 }
2416
2417 if (!bdrv_can_snapshot(bs)) {
2418 error_report("Device '%s' is writable but does not support snapshots.",
2419 bdrv_get_device_name(bs));
2420 return -ENOTSUP;
2421 }
2422
2423 ret = bdrv_snapshot_find(bs, &sn, name);
2424 if (ret < 0) {
2425 error_report("Device '%s' does not have the requested snapshot '%s'",
2426 bdrv_get_device_name(bs), name);
2427 return ret;
2428 }
2429 }
2430
2431 /* Flush all IO requests so they don't interfere with the new state. */
2432 bdrv_drain_all();
2433
2434 bs = NULL;
2435 while ((bs = bdrv_next(bs))) {
2436 if (bdrv_can_snapshot(bs)) {
2437 ret = bdrv_snapshot_goto(bs, name);
2438 if (ret < 0) {
2439 error_report("Error %d while activating snapshot '%s' on '%s'",
2440 ret, name, bdrv_get_device_name(bs));
2441 return ret;
2442 }
2443 }
2444 }
2445
2446 /* restore the VM state */
2447 f = qemu_fopen_bdrv(bs_vm_state, 0);
2448 if (!f) {
2449 error_report("Could not open VM state file");
2450 return -EINVAL;
2451 }
2452
2453 qemu_system_reset(VMRESET_SILENT);
2454 ret = qemu_loadvm_state(f);
2455
2456 qemu_fclose(f);
2457 if (ret < 0) {
2458 error_report("Error %d while loading VM state", ret);
2459 return ret;
2460 }
2461
2462 return 0;
2463 }
2464
2465 void do_delvm(Monitor *mon, const QDict *qdict)
2466 {
2467 BlockDriverState *bs, *bs1;
2468 int ret;
2469 const char *name = qdict_get_str(qdict, "name");
2470
2471 bs = bdrv_snapshots();
2472 if (!bs) {
2473 monitor_printf(mon, "No block device supports snapshots\n");
2474 return;
2475 }
2476
2477 bs1 = NULL;
2478 while ((bs1 = bdrv_next(bs1))) {
2479 if (bdrv_can_snapshot(bs1)) {
2480 ret = bdrv_snapshot_delete(bs1, name);
2481 if (ret < 0) {
2482 if (ret == -ENOTSUP)
2483 monitor_printf(mon,
2484 "Snapshots not supported on device '%s'\n",
2485 bdrv_get_device_name(bs1));
2486 else
2487 monitor_printf(mon, "Error %d while deleting snapshot on "
2488 "'%s'\n", ret, bdrv_get_device_name(bs1));
2489 }
2490 }
2491 }
2492 }
2493
2494 void do_info_snapshots(Monitor *mon, const QDict *qdict)
2495 {
2496 BlockDriverState *bs, *bs1;
2497 QEMUSnapshotInfo *sn_tab, *sn, s, *sn_info = &s;
2498 int nb_sns, i, ret, available;
2499 int total;
2500 int *available_snapshots;
2501 char buf[256];
2502
2503 bs = bdrv_snapshots();
2504 if (!bs) {
2505 monitor_printf(mon, "No available block device supports snapshots\n");
2506 return;
2507 }
2508
2509 nb_sns = bdrv_snapshot_list(bs, &sn_tab);
2510 if (nb_sns < 0) {
2511 monitor_printf(mon, "bdrv_snapshot_list: error %d\n", nb_sns);
2512 return;
2513 }
2514
2515 if (nb_sns == 0) {
2516 monitor_printf(mon, "There is no snapshot available.\n");
2517 return;
2518 }
2519
2520 available_snapshots = g_malloc0(sizeof(int) * nb_sns);
2521 total = 0;
2522 for (i = 0; i < nb_sns; i++) {
2523 sn = &sn_tab[i];
2524 available = 1;
2525 bs1 = NULL;
2526
2527 while ((bs1 = bdrv_next(bs1))) {
2528 if (bdrv_can_snapshot(bs1) && bs1 != bs) {
2529 ret = bdrv_snapshot_find(bs1, sn_info, sn->id_str);
2530 if (ret < 0) {
2531 available = 0;
2532 break;
2533 }
2534 }
2535 }
2536
2537 if (available) {
2538 available_snapshots[total] = i;
2539 total++;
2540 }
2541 }
2542
2543 if (total > 0) {
2544 monitor_printf(mon, "%s\n", bdrv_snapshot_dump(buf, sizeof(buf), NULL));
2545 for (i = 0; i < total; i++) {
2546 sn = &sn_tab[available_snapshots[i]];
2547 monitor_printf(mon, "%s\n", bdrv_snapshot_dump(buf, sizeof(buf), sn));
2548 }
2549 } else {
2550 monitor_printf(mon, "There is no suitable snapshot available\n");
2551 }
2552
2553 g_free(sn_tab);
2554 g_free(available_snapshots);
2555
2556 }
2557
2558 void vmstate_register_ram(MemoryRegion *mr, DeviceState *dev)
2559 {
2560 qemu_ram_set_idstr(memory_region_get_ram_addr(mr) & TARGET_PAGE_MASK,
2561 memory_region_name(mr), dev);
2562 }
2563
2564 void vmstate_unregister_ram(MemoryRegion *mr, DeviceState *dev)
2565 {
2566 /* Nothing do to while the implementation is in RAMBlock */
2567 }
2568
2569 void vmstate_register_ram_global(MemoryRegion *mr)
2570 {
2571 vmstate_register_ram(mr, NULL);
2572 }