]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - security/selinux/hooks.c
[AF_UNIX]: Kernel memory leak fix for af_unix datagram getpeersec patch
[mirror_ubuntu-bionic-kernel.git] / security / selinux / hooks.c
1 /*
2 * NSA Security-Enhanced Linux (SELinux) security module
3 *
4 * This file contains the SELinux hook function implementations.
5 *
6 * Authors: Stephen Smalley, <sds@epoch.ncsc.mil>
7 * Chris Vance, <cvance@nai.com>
8 * Wayne Salamon, <wsalamon@nai.com>
9 * James Morris <jmorris@redhat.com>
10 *
11 * Copyright (C) 2001,2002 Networks Associates Technology, Inc.
12 * Copyright (C) 2003 Red Hat, Inc., James Morris <jmorris@redhat.com>
13 * Copyright (C) 2004-2005 Trusted Computer Solutions, Inc.
14 * <dgoeddel@trustedcs.com>
15 *
16 * This program is free software; you can redistribute it and/or modify
17 * it under the terms of the GNU General Public License version 2,
18 * as published by the Free Software Foundation.
19 */
20
21 #include <linux/module.h>
22 #include <linux/init.h>
23 #include <linux/kernel.h>
24 #include <linux/ptrace.h>
25 #include <linux/errno.h>
26 #include <linux/sched.h>
27 #include <linux/security.h>
28 #include <linux/xattr.h>
29 #include <linux/capability.h>
30 #include <linux/unistd.h>
31 #include <linux/mm.h>
32 #include <linux/mman.h>
33 #include <linux/slab.h>
34 #include <linux/pagemap.h>
35 #include <linux/swap.h>
36 #include <linux/smp_lock.h>
37 #include <linux/spinlock.h>
38 #include <linux/syscalls.h>
39 #include <linux/file.h>
40 #include <linux/namei.h>
41 #include <linux/mount.h>
42 #include <linux/ext2_fs.h>
43 #include <linux/proc_fs.h>
44 #include <linux/kd.h>
45 #include <linux/netfilter_ipv4.h>
46 #include <linux/netfilter_ipv6.h>
47 #include <linux/tty.h>
48 #include <net/icmp.h>
49 #include <net/ip.h> /* for sysctl_local_port_range[] */
50 #include <net/tcp.h> /* struct or_callable used in sock_rcv_skb */
51 #include <asm/uaccess.h>
52 #include <asm/semaphore.h>
53 #include <asm/ioctls.h>
54 #include <linux/bitops.h>
55 #include <linux/interrupt.h>
56 #include <linux/netdevice.h> /* for network interface checks */
57 #include <linux/netlink.h>
58 #include <linux/tcp.h>
59 #include <linux/udp.h>
60 #include <linux/quota.h>
61 #include <linux/un.h> /* for Unix socket types */
62 #include <net/af_unix.h> /* for Unix socket types */
63 #include <linux/parser.h>
64 #include <linux/nfs_mount.h>
65 #include <net/ipv6.h>
66 #include <linux/hugetlb.h>
67 #include <linux/personality.h>
68 #include <linux/sysctl.h>
69 #include <linux/audit.h>
70 #include <linux/string.h>
71 #include <linux/selinux.h>
72
73 #include "avc.h"
74 #include "objsec.h"
75 #include "netif.h"
76 #include "xfrm.h"
77
78 #define XATTR_SELINUX_SUFFIX "selinux"
79 #define XATTR_NAME_SELINUX XATTR_SECURITY_PREFIX XATTR_SELINUX_SUFFIX
80
81 extern unsigned int policydb_loaded_version;
82 extern int selinux_nlmsg_lookup(u16 sclass, u16 nlmsg_type, u32 *perm);
83 extern int selinux_compat_net;
84
85 #ifdef CONFIG_SECURITY_SELINUX_DEVELOP
86 int selinux_enforcing = 0;
87
88 static int __init enforcing_setup(char *str)
89 {
90 selinux_enforcing = simple_strtol(str,NULL,0);
91 return 1;
92 }
93 __setup("enforcing=", enforcing_setup);
94 #endif
95
96 #ifdef CONFIG_SECURITY_SELINUX_BOOTPARAM
97 int selinux_enabled = CONFIG_SECURITY_SELINUX_BOOTPARAM_VALUE;
98
99 static int __init selinux_enabled_setup(char *str)
100 {
101 selinux_enabled = simple_strtol(str, NULL, 0);
102 return 1;
103 }
104 __setup("selinux=", selinux_enabled_setup);
105 #else
106 int selinux_enabled = 1;
107 #endif
108
109 /* Original (dummy) security module. */
110 static struct security_operations *original_ops = NULL;
111
112 /* Minimal support for a secondary security module,
113 just to allow the use of the dummy or capability modules.
114 The owlsm module can alternatively be used as a secondary
115 module as long as CONFIG_OWLSM_FD is not enabled. */
116 static struct security_operations *secondary_ops = NULL;
117
118 /* Lists of inode and superblock security structures initialized
119 before the policy was loaded. */
120 static LIST_HEAD(superblock_security_head);
121 static DEFINE_SPINLOCK(sb_security_lock);
122
123 static kmem_cache_t *sel_inode_cache;
124
125 /* Return security context for a given sid or just the context
126 length if the buffer is null or length is 0 */
127 static int selinux_getsecurity(u32 sid, void *buffer, size_t size)
128 {
129 char *context;
130 unsigned len;
131 int rc;
132
133 rc = security_sid_to_context(sid, &context, &len);
134 if (rc)
135 return rc;
136
137 if (!buffer || !size)
138 goto getsecurity_exit;
139
140 if (size < len) {
141 len = -ERANGE;
142 goto getsecurity_exit;
143 }
144 memcpy(buffer, context, len);
145
146 getsecurity_exit:
147 kfree(context);
148 return len;
149 }
150
151 /* Allocate and free functions for each kind of security blob. */
152
153 static int task_alloc_security(struct task_struct *task)
154 {
155 struct task_security_struct *tsec;
156
157 tsec = kzalloc(sizeof(struct task_security_struct), GFP_KERNEL);
158 if (!tsec)
159 return -ENOMEM;
160
161 tsec->task = task;
162 tsec->osid = tsec->sid = tsec->ptrace_sid = SECINITSID_UNLABELED;
163 task->security = tsec;
164
165 return 0;
166 }
167
168 static void task_free_security(struct task_struct *task)
169 {
170 struct task_security_struct *tsec = task->security;
171 task->security = NULL;
172 kfree(tsec);
173 }
174
175 static int inode_alloc_security(struct inode *inode)
176 {
177 struct task_security_struct *tsec = current->security;
178 struct inode_security_struct *isec;
179
180 isec = kmem_cache_alloc(sel_inode_cache, SLAB_KERNEL);
181 if (!isec)
182 return -ENOMEM;
183
184 memset(isec, 0, sizeof(*isec));
185 init_MUTEX(&isec->sem);
186 INIT_LIST_HEAD(&isec->list);
187 isec->inode = inode;
188 isec->sid = SECINITSID_UNLABELED;
189 isec->sclass = SECCLASS_FILE;
190 isec->task_sid = tsec->sid;
191 inode->i_security = isec;
192
193 return 0;
194 }
195
196 static void inode_free_security(struct inode *inode)
197 {
198 struct inode_security_struct *isec = inode->i_security;
199 struct superblock_security_struct *sbsec = inode->i_sb->s_security;
200
201 spin_lock(&sbsec->isec_lock);
202 if (!list_empty(&isec->list))
203 list_del_init(&isec->list);
204 spin_unlock(&sbsec->isec_lock);
205
206 inode->i_security = NULL;
207 kmem_cache_free(sel_inode_cache, isec);
208 }
209
210 static int file_alloc_security(struct file *file)
211 {
212 struct task_security_struct *tsec = current->security;
213 struct file_security_struct *fsec;
214
215 fsec = kzalloc(sizeof(struct file_security_struct), GFP_KERNEL);
216 if (!fsec)
217 return -ENOMEM;
218
219 fsec->file = file;
220 fsec->sid = tsec->sid;
221 fsec->fown_sid = tsec->sid;
222 file->f_security = fsec;
223
224 return 0;
225 }
226
227 static void file_free_security(struct file *file)
228 {
229 struct file_security_struct *fsec = file->f_security;
230 file->f_security = NULL;
231 kfree(fsec);
232 }
233
234 static int superblock_alloc_security(struct super_block *sb)
235 {
236 struct superblock_security_struct *sbsec;
237
238 sbsec = kzalloc(sizeof(struct superblock_security_struct), GFP_KERNEL);
239 if (!sbsec)
240 return -ENOMEM;
241
242 init_MUTEX(&sbsec->sem);
243 INIT_LIST_HEAD(&sbsec->list);
244 INIT_LIST_HEAD(&sbsec->isec_head);
245 spin_lock_init(&sbsec->isec_lock);
246 sbsec->sb = sb;
247 sbsec->sid = SECINITSID_UNLABELED;
248 sbsec->def_sid = SECINITSID_FILE;
249 sbsec->mntpoint_sid = SECINITSID_UNLABELED;
250 sb->s_security = sbsec;
251
252 return 0;
253 }
254
255 static void superblock_free_security(struct super_block *sb)
256 {
257 struct superblock_security_struct *sbsec = sb->s_security;
258
259 spin_lock(&sb_security_lock);
260 if (!list_empty(&sbsec->list))
261 list_del_init(&sbsec->list);
262 spin_unlock(&sb_security_lock);
263
264 sb->s_security = NULL;
265 kfree(sbsec);
266 }
267
268 static int sk_alloc_security(struct sock *sk, int family, gfp_t priority)
269 {
270 struct sk_security_struct *ssec;
271
272 if (family != PF_UNIX)
273 return 0;
274
275 ssec = kzalloc(sizeof(*ssec), priority);
276 if (!ssec)
277 return -ENOMEM;
278
279 ssec->sk = sk;
280 ssec->peer_sid = SECINITSID_UNLABELED;
281 sk->sk_security = ssec;
282
283 return 0;
284 }
285
286 static void sk_free_security(struct sock *sk)
287 {
288 struct sk_security_struct *ssec = sk->sk_security;
289
290 if (sk->sk_family != PF_UNIX)
291 return;
292
293 sk->sk_security = NULL;
294 kfree(ssec);
295 }
296
297 /* The security server must be initialized before
298 any labeling or access decisions can be provided. */
299 extern int ss_initialized;
300
301 /* The file system's label must be initialized prior to use. */
302
303 static char *labeling_behaviors[6] = {
304 "uses xattr",
305 "uses transition SIDs",
306 "uses task SIDs",
307 "uses genfs_contexts",
308 "not configured for labeling",
309 "uses mountpoint labeling",
310 };
311
312 static int inode_doinit_with_dentry(struct inode *inode, struct dentry *opt_dentry);
313
314 static inline int inode_doinit(struct inode *inode)
315 {
316 return inode_doinit_with_dentry(inode, NULL);
317 }
318
319 enum {
320 Opt_context = 1,
321 Opt_fscontext = 2,
322 Opt_defcontext = 4,
323 Opt_rootcontext = 8,
324 };
325
326 static match_table_t tokens = {
327 {Opt_context, "context=%s"},
328 {Opt_fscontext, "fscontext=%s"},
329 {Opt_defcontext, "defcontext=%s"},
330 {Opt_rootcontext, "rootcontext=%s"},
331 };
332
333 #define SEL_MOUNT_FAIL_MSG "SELinux: duplicate or incompatible mount options\n"
334
335 static int may_context_mount_sb_relabel(u32 sid,
336 struct superblock_security_struct *sbsec,
337 struct task_security_struct *tsec)
338 {
339 int rc;
340
341 rc = avc_has_perm(tsec->sid, sbsec->sid, SECCLASS_FILESYSTEM,
342 FILESYSTEM__RELABELFROM, NULL);
343 if (rc)
344 return rc;
345
346 rc = avc_has_perm(tsec->sid, sid, SECCLASS_FILESYSTEM,
347 FILESYSTEM__RELABELTO, NULL);
348 return rc;
349 }
350
351 static int may_context_mount_inode_relabel(u32 sid,
352 struct superblock_security_struct *sbsec,
353 struct task_security_struct *tsec)
354 {
355 int rc;
356 rc = avc_has_perm(tsec->sid, sbsec->sid, SECCLASS_FILESYSTEM,
357 FILESYSTEM__RELABELFROM, NULL);
358 if (rc)
359 return rc;
360
361 rc = avc_has_perm(sid, sbsec->sid, SECCLASS_FILESYSTEM,
362 FILESYSTEM__ASSOCIATE, NULL);
363 return rc;
364 }
365
366 static int try_context_mount(struct super_block *sb, void *data)
367 {
368 char *context = NULL, *defcontext = NULL;
369 char *fscontext = NULL, *rootcontext = NULL;
370 const char *name;
371 u32 sid;
372 int alloc = 0, rc = 0, seen = 0;
373 struct task_security_struct *tsec = current->security;
374 struct superblock_security_struct *sbsec = sb->s_security;
375
376 if (!data)
377 goto out;
378
379 name = sb->s_type->name;
380
381 if (sb->s_type->fs_flags & FS_BINARY_MOUNTDATA) {
382
383 /* NFS we understand. */
384 if (!strcmp(name, "nfs")) {
385 struct nfs_mount_data *d = data;
386
387 if (d->version < NFS_MOUNT_VERSION)
388 goto out;
389
390 if (d->context[0]) {
391 context = d->context;
392 seen |= Opt_context;
393 }
394 } else
395 goto out;
396
397 } else {
398 /* Standard string-based options. */
399 char *p, *options = data;
400
401 while ((p = strsep(&options, ",")) != NULL) {
402 int token;
403 substring_t args[MAX_OPT_ARGS];
404
405 if (!*p)
406 continue;
407
408 token = match_token(p, tokens, args);
409
410 switch (token) {
411 case Opt_context:
412 if (seen & (Opt_context|Opt_defcontext)) {
413 rc = -EINVAL;
414 printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
415 goto out_free;
416 }
417 context = match_strdup(&args[0]);
418 if (!context) {
419 rc = -ENOMEM;
420 goto out_free;
421 }
422 if (!alloc)
423 alloc = 1;
424 seen |= Opt_context;
425 break;
426
427 case Opt_fscontext:
428 if (seen & Opt_fscontext) {
429 rc = -EINVAL;
430 printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
431 goto out_free;
432 }
433 fscontext = match_strdup(&args[0]);
434 if (!fscontext) {
435 rc = -ENOMEM;
436 goto out_free;
437 }
438 if (!alloc)
439 alloc = 1;
440 seen |= Opt_fscontext;
441 break;
442
443 case Opt_rootcontext:
444 if (seen & Opt_rootcontext) {
445 rc = -EINVAL;
446 printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
447 goto out_free;
448 }
449 rootcontext = match_strdup(&args[0]);
450 if (!rootcontext) {
451 rc = -ENOMEM;
452 goto out_free;
453 }
454 if (!alloc)
455 alloc = 1;
456 seen |= Opt_rootcontext;
457 break;
458
459 case Opt_defcontext:
460 if (sbsec->behavior != SECURITY_FS_USE_XATTR) {
461 rc = -EINVAL;
462 printk(KERN_WARNING "SELinux: "
463 "defcontext option is invalid "
464 "for this filesystem type\n");
465 goto out_free;
466 }
467 if (seen & (Opt_context|Opt_defcontext)) {
468 rc = -EINVAL;
469 printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
470 goto out_free;
471 }
472 defcontext = match_strdup(&args[0]);
473 if (!defcontext) {
474 rc = -ENOMEM;
475 goto out_free;
476 }
477 if (!alloc)
478 alloc = 1;
479 seen |= Opt_defcontext;
480 break;
481
482 default:
483 rc = -EINVAL;
484 printk(KERN_WARNING "SELinux: unknown mount "
485 "option\n");
486 goto out_free;
487
488 }
489 }
490 }
491
492 if (!seen)
493 goto out;
494
495 /* sets the context of the superblock for the fs being mounted. */
496 if (fscontext) {
497 rc = security_context_to_sid(fscontext, strlen(fscontext), &sid);
498 if (rc) {
499 printk(KERN_WARNING "SELinux: security_context_to_sid"
500 "(%s) failed for (dev %s, type %s) errno=%d\n",
501 fscontext, sb->s_id, name, rc);
502 goto out_free;
503 }
504
505 rc = may_context_mount_sb_relabel(sid, sbsec, tsec);
506 if (rc)
507 goto out_free;
508
509 sbsec->sid = sid;
510 }
511
512 /*
513 * Switch to using mount point labeling behavior.
514 * sets the label used on all file below the mountpoint, and will set
515 * the superblock context if not already set.
516 */
517 if (context) {
518 rc = security_context_to_sid(context, strlen(context), &sid);
519 if (rc) {
520 printk(KERN_WARNING "SELinux: security_context_to_sid"
521 "(%s) failed for (dev %s, type %s) errno=%d\n",
522 context, sb->s_id, name, rc);
523 goto out_free;
524 }
525
526 if (!fscontext) {
527 rc = may_context_mount_sb_relabel(sid, sbsec, tsec);
528 if (rc)
529 goto out_free;
530 sbsec->sid = sid;
531 } else {
532 rc = may_context_mount_inode_relabel(sid, sbsec, tsec);
533 if (rc)
534 goto out_free;
535 }
536 sbsec->mntpoint_sid = sid;
537
538 sbsec->behavior = SECURITY_FS_USE_MNTPOINT;
539 }
540
541 if (rootcontext) {
542 struct inode *inode = sb->s_root->d_inode;
543 struct inode_security_struct *isec = inode->i_security;
544 rc = security_context_to_sid(rootcontext, strlen(rootcontext), &sid);
545 if (rc) {
546 printk(KERN_WARNING "SELinux: security_context_to_sid"
547 "(%s) failed for (dev %s, type %s) errno=%d\n",
548 rootcontext, sb->s_id, name, rc);
549 goto out_free;
550 }
551
552 rc = may_context_mount_inode_relabel(sid, sbsec, tsec);
553 if (rc)
554 goto out_free;
555
556 isec->sid = sid;
557 isec->initialized = 1;
558 }
559
560 if (defcontext) {
561 rc = security_context_to_sid(defcontext, strlen(defcontext), &sid);
562 if (rc) {
563 printk(KERN_WARNING "SELinux: security_context_to_sid"
564 "(%s) failed for (dev %s, type %s) errno=%d\n",
565 defcontext, sb->s_id, name, rc);
566 goto out_free;
567 }
568
569 if (sid == sbsec->def_sid)
570 goto out_free;
571
572 rc = may_context_mount_inode_relabel(sid, sbsec, tsec);
573 if (rc)
574 goto out_free;
575
576 sbsec->def_sid = sid;
577 }
578
579 out_free:
580 if (alloc) {
581 kfree(context);
582 kfree(defcontext);
583 kfree(fscontext);
584 kfree(rootcontext);
585 }
586 out:
587 return rc;
588 }
589
590 static int superblock_doinit(struct super_block *sb, void *data)
591 {
592 struct superblock_security_struct *sbsec = sb->s_security;
593 struct dentry *root = sb->s_root;
594 struct inode *inode = root->d_inode;
595 int rc = 0;
596
597 down(&sbsec->sem);
598 if (sbsec->initialized)
599 goto out;
600
601 if (!ss_initialized) {
602 /* Defer initialization until selinux_complete_init,
603 after the initial policy is loaded and the security
604 server is ready to handle calls. */
605 spin_lock(&sb_security_lock);
606 if (list_empty(&sbsec->list))
607 list_add(&sbsec->list, &superblock_security_head);
608 spin_unlock(&sb_security_lock);
609 goto out;
610 }
611
612 /* Determine the labeling behavior to use for this filesystem type. */
613 rc = security_fs_use(sb->s_type->name, &sbsec->behavior, &sbsec->sid);
614 if (rc) {
615 printk(KERN_WARNING "%s: security_fs_use(%s) returned %d\n",
616 __FUNCTION__, sb->s_type->name, rc);
617 goto out;
618 }
619
620 rc = try_context_mount(sb, data);
621 if (rc)
622 goto out;
623
624 if (sbsec->behavior == SECURITY_FS_USE_XATTR) {
625 /* Make sure that the xattr handler exists and that no
626 error other than -ENODATA is returned by getxattr on
627 the root directory. -ENODATA is ok, as this may be
628 the first boot of the SELinux kernel before we have
629 assigned xattr values to the filesystem. */
630 if (!inode->i_op->getxattr) {
631 printk(KERN_WARNING "SELinux: (dev %s, type %s) has no "
632 "xattr support\n", sb->s_id, sb->s_type->name);
633 rc = -EOPNOTSUPP;
634 goto out;
635 }
636 rc = inode->i_op->getxattr(root, XATTR_NAME_SELINUX, NULL, 0);
637 if (rc < 0 && rc != -ENODATA) {
638 if (rc == -EOPNOTSUPP)
639 printk(KERN_WARNING "SELinux: (dev %s, type "
640 "%s) has no security xattr handler\n",
641 sb->s_id, sb->s_type->name);
642 else
643 printk(KERN_WARNING "SELinux: (dev %s, type "
644 "%s) getxattr errno %d\n", sb->s_id,
645 sb->s_type->name, -rc);
646 goto out;
647 }
648 }
649
650 if (strcmp(sb->s_type->name, "proc") == 0)
651 sbsec->proc = 1;
652
653 sbsec->initialized = 1;
654
655 if (sbsec->behavior > ARRAY_SIZE(labeling_behaviors)) {
656 printk(KERN_INFO "SELinux: initialized (dev %s, type %s), unknown behavior\n",
657 sb->s_id, sb->s_type->name);
658 }
659 else {
660 printk(KERN_INFO "SELinux: initialized (dev %s, type %s), %s\n",
661 sb->s_id, sb->s_type->name,
662 labeling_behaviors[sbsec->behavior-1]);
663 }
664
665 /* Initialize the root inode. */
666 rc = inode_doinit_with_dentry(sb->s_root->d_inode, sb->s_root);
667
668 /* Initialize any other inodes associated with the superblock, e.g.
669 inodes created prior to initial policy load or inodes created
670 during get_sb by a pseudo filesystem that directly
671 populates itself. */
672 spin_lock(&sbsec->isec_lock);
673 next_inode:
674 if (!list_empty(&sbsec->isec_head)) {
675 struct inode_security_struct *isec =
676 list_entry(sbsec->isec_head.next,
677 struct inode_security_struct, list);
678 struct inode *inode = isec->inode;
679 spin_unlock(&sbsec->isec_lock);
680 inode = igrab(inode);
681 if (inode) {
682 if (!IS_PRIVATE (inode))
683 inode_doinit(inode);
684 iput(inode);
685 }
686 spin_lock(&sbsec->isec_lock);
687 list_del_init(&isec->list);
688 goto next_inode;
689 }
690 spin_unlock(&sbsec->isec_lock);
691 out:
692 up(&sbsec->sem);
693 return rc;
694 }
695
696 static inline u16 inode_mode_to_security_class(umode_t mode)
697 {
698 switch (mode & S_IFMT) {
699 case S_IFSOCK:
700 return SECCLASS_SOCK_FILE;
701 case S_IFLNK:
702 return SECCLASS_LNK_FILE;
703 case S_IFREG:
704 return SECCLASS_FILE;
705 case S_IFBLK:
706 return SECCLASS_BLK_FILE;
707 case S_IFDIR:
708 return SECCLASS_DIR;
709 case S_IFCHR:
710 return SECCLASS_CHR_FILE;
711 case S_IFIFO:
712 return SECCLASS_FIFO_FILE;
713
714 }
715
716 return SECCLASS_FILE;
717 }
718
719 static inline int default_protocol_stream(int protocol)
720 {
721 return (protocol == IPPROTO_IP || protocol == IPPROTO_TCP);
722 }
723
724 static inline int default_protocol_dgram(int protocol)
725 {
726 return (protocol == IPPROTO_IP || protocol == IPPROTO_UDP);
727 }
728
729 static inline u16 socket_type_to_security_class(int family, int type, int protocol)
730 {
731 switch (family) {
732 case PF_UNIX:
733 switch (type) {
734 case SOCK_STREAM:
735 case SOCK_SEQPACKET:
736 return SECCLASS_UNIX_STREAM_SOCKET;
737 case SOCK_DGRAM:
738 return SECCLASS_UNIX_DGRAM_SOCKET;
739 }
740 break;
741 case PF_INET:
742 case PF_INET6:
743 switch (type) {
744 case SOCK_STREAM:
745 if (default_protocol_stream(protocol))
746 return SECCLASS_TCP_SOCKET;
747 else
748 return SECCLASS_RAWIP_SOCKET;
749 case SOCK_DGRAM:
750 if (default_protocol_dgram(protocol))
751 return SECCLASS_UDP_SOCKET;
752 else
753 return SECCLASS_RAWIP_SOCKET;
754 default:
755 return SECCLASS_RAWIP_SOCKET;
756 }
757 break;
758 case PF_NETLINK:
759 switch (protocol) {
760 case NETLINK_ROUTE:
761 return SECCLASS_NETLINK_ROUTE_SOCKET;
762 case NETLINK_FIREWALL:
763 return SECCLASS_NETLINK_FIREWALL_SOCKET;
764 case NETLINK_INET_DIAG:
765 return SECCLASS_NETLINK_TCPDIAG_SOCKET;
766 case NETLINK_NFLOG:
767 return SECCLASS_NETLINK_NFLOG_SOCKET;
768 case NETLINK_XFRM:
769 return SECCLASS_NETLINK_XFRM_SOCKET;
770 case NETLINK_SELINUX:
771 return SECCLASS_NETLINK_SELINUX_SOCKET;
772 case NETLINK_AUDIT:
773 return SECCLASS_NETLINK_AUDIT_SOCKET;
774 case NETLINK_IP6_FW:
775 return SECCLASS_NETLINK_IP6FW_SOCKET;
776 case NETLINK_DNRTMSG:
777 return SECCLASS_NETLINK_DNRT_SOCKET;
778 case NETLINK_KOBJECT_UEVENT:
779 return SECCLASS_NETLINK_KOBJECT_UEVENT_SOCKET;
780 default:
781 return SECCLASS_NETLINK_SOCKET;
782 }
783 case PF_PACKET:
784 return SECCLASS_PACKET_SOCKET;
785 case PF_KEY:
786 return SECCLASS_KEY_SOCKET;
787 case PF_APPLETALK:
788 return SECCLASS_APPLETALK_SOCKET;
789 }
790
791 return SECCLASS_SOCKET;
792 }
793
794 #ifdef CONFIG_PROC_FS
795 static int selinux_proc_get_sid(struct proc_dir_entry *de,
796 u16 tclass,
797 u32 *sid)
798 {
799 int buflen, rc;
800 char *buffer, *path, *end;
801
802 buffer = (char*)__get_free_page(GFP_KERNEL);
803 if (!buffer)
804 return -ENOMEM;
805
806 buflen = PAGE_SIZE;
807 end = buffer+buflen;
808 *--end = '\0';
809 buflen--;
810 path = end-1;
811 *path = '/';
812 while (de && de != de->parent) {
813 buflen -= de->namelen + 1;
814 if (buflen < 0)
815 break;
816 end -= de->namelen;
817 memcpy(end, de->name, de->namelen);
818 *--end = '/';
819 path = end;
820 de = de->parent;
821 }
822 rc = security_genfs_sid("proc", path, tclass, sid);
823 free_page((unsigned long)buffer);
824 return rc;
825 }
826 #else
827 static int selinux_proc_get_sid(struct proc_dir_entry *de,
828 u16 tclass,
829 u32 *sid)
830 {
831 return -EINVAL;
832 }
833 #endif
834
835 /* The inode's security attributes must be initialized before first use. */
836 static int inode_doinit_with_dentry(struct inode *inode, struct dentry *opt_dentry)
837 {
838 struct superblock_security_struct *sbsec = NULL;
839 struct inode_security_struct *isec = inode->i_security;
840 u32 sid;
841 struct dentry *dentry;
842 #define INITCONTEXTLEN 255
843 char *context = NULL;
844 unsigned len = 0;
845 int rc = 0;
846 int hold_sem = 0;
847
848 if (isec->initialized)
849 goto out;
850
851 down(&isec->sem);
852 hold_sem = 1;
853 if (isec->initialized)
854 goto out;
855
856 sbsec = inode->i_sb->s_security;
857 if (!sbsec->initialized) {
858 /* Defer initialization until selinux_complete_init,
859 after the initial policy is loaded and the security
860 server is ready to handle calls. */
861 spin_lock(&sbsec->isec_lock);
862 if (list_empty(&isec->list))
863 list_add(&isec->list, &sbsec->isec_head);
864 spin_unlock(&sbsec->isec_lock);
865 goto out;
866 }
867
868 switch (sbsec->behavior) {
869 case SECURITY_FS_USE_XATTR:
870 if (!inode->i_op->getxattr) {
871 isec->sid = sbsec->def_sid;
872 break;
873 }
874
875 /* Need a dentry, since the xattr API requires one.
876 Life would be simpler if we could just pass the inode. */
877 if (opt_dentry) {
878 /* Called from d_instantiate or d_splice_alias. */
879 dentry = dget(opt_dentry);
880 } else {
881 /* Called from selinux_complete_init, try to find a dentry. */
882 dentry = d_find_alias(inode);
883 }
884 if (!dentry) {
885 printk(KERN_WARNING "%s: no dentry for dev=%s "
886 "ino=%ld\n", __FUNCTION__, inode->i_sb->s_id,
887 inode->i_ino);
888 goto out;
889 }
890
891 len = INITCONTEXTLEN;
892 context = kmalloc(len, GFP_KERNEL);
893 if (!context) {
894 rc = -ENOMEM;
895 dput(dentry);
896 goto out;
897 }
898 rc = inode->i_op->getxattr(dentry, XATTR_NAME_SELINUX,
899 context, len);
900 if (rc == -ERANGE) {
901 /* Need a larger buffer. Query for the right size. */
902 rc = inode->i_op->getxattr(dentry, XATTR_NAME_SELINUX,
903 NULL, 0);
904 if (rc < 0) {
905 dput(dentry);
906 goto out;
907 }
908 kfree(context);
909 len = rc;
910 context = kmalloc(len, GFP_KERNEL);
911 if (!context) {
912 rc = -ENOMEM;
913 dput(dentry);
914 goto out;
915 }
916 rc = inode->i_op->getxattr(dentry,
917 XATTR_NAME_SELINUX,
918 context, len);
919 }
920 dput(dentry);
921 if (rc < 0) {
922 if (rc != -ENODATA) {
923 printk(KERN_WARNING "%s: getxattr returned "
924 "%d for dev=%s ino=%ld\n", __FUNCTION__,
925 -rc, inode->i_sb->s_id, inode->i_ino);
926 kfree(context);
927 goto out;
928 }
929 /* Map ENODATA to the default file SID */
930 sid = sbsec->def_sid;
931 rc = 0;
932 } else {
933 rc = security_context_to_sid_default(context, rc, &sid,
934 sbsec->def_sid);
935 if (rc) {
936 printk(KERN_WARNING "%s: context_to_sid(%s) "
937 "returned %d for dev=%s ino=%ld\n",
938 __FUNCTION__, context, -rc,
939 inode->i_sb->s_id, inode->i_ino);
940 kfree(context);
941 /* Leave with the unlabeled SID */
942 rc = 0;
943 break;
944 }
945 }
946 kfree(context);
947 isec->sid = sid;
948 break;
949 case SECURITY_FS_USE_TASK:
950 isec->sid = isec->task_sid;
951 break;
952 case SECURITY_FS_USE_TRANS:
953 /* Default to the fs SID. */
954 isec->sid = sbsec->sid;
955
956 /* Try to obtain a transition SID. */
957 isec->sclass = inode_mode_to_security_class(inode->i_mode);
958 rc = security_transition_sid(isec->task_sid,
959 sbsec->sid,
960 isec->sclass,
961 &sid);
962 if (rc)
963 goto out;
964 isec->sid = sid;
965 break;
966 case SECURITY_FS_USE_MNTPOINT:
967 isec->sid = sbsec->mntpoint_sid;
968 break;
969 default:
970 /* Default to the fs superblock SID. */
971 isec->sid = sbsec->sid;
972
973 if (sbsec->proc) {
974 struct proc_inode *proci = PROC_I(inode);
975 if (proci->pde) {
976 isec->sclass = inode_mode_to_security_class(inode->i_mode);
977 rc = selinux_proc_get_sid(proci->pde,
978 isec->sclass,
979 &sid);
980 if (rc)
981 goto out;
982 isec->sid = sid;
983 }
984 }
985 break;
986 }
987
988 isec->initialized = 1;
989
990 out:
991 if (isec->sclass == SECCLASS_FILE)
992 isec->sclass = inode_mode_to_security_class(inode->i_mode);
993
994 if (hold_sem)
995 up(&isec->sem);
996 return rc;
997 }
998
999 /* Convert a Linux signal to an access vector. */
1000 static inline u32 signal_to_av(int sig)
1001 {
1002 u32 perm = 0;
1003
1004 switch (sig) {
1005 case SIGCHLD:
1006 /* Commonly granted from child to parent. */
1007 perm = PROCESS__SIGCHLD;
1008 break;
1009 case SIGKILL:
1010 /* Cannot be caught or ignored */
1011 perm = PROCESS__SIGKILL;
1012 break;
1013 case SIGSTOP:
1014 /* Cannot be caught or ignored */
1015 perm = PROCESS__SIGSTOP;
1016 break;
1017 default:
1018 /* All other signals. */
1019 perm = PROCESS__SIGNAL;
1020 break;
1021 }
1022
1023 return perm;
1024 }
1025
1026 /* Check permission betweeen a pair of tasks, e.g. signal checks,
1027 fork check, ptrace check, etc. */
1028 static int task_has_perm(struct task_struct *tsk1,
1029 struct task_struct *tsk2,
1030 u32 perms)
1031 {
1032 struct task_security_struct *tsec1, *tsec2;
1033
1034 tsec1 = tsk1->security;
1035 tsec2 = tsk2->security;
1036 return avc_has_perm(tsec1->sid, tsec2->sid,
1037 SECCLASS_PROCESS, perms, NULL);
1038 }
1039
1040 /* Check whether a task is allowed to use a capability. */
1041 static int task_has_capability(struct task_struct *tsk,
1042 int cap)
1043 {
1044 struct task_security_struct *tsec;
1045 struct avc_audit_data ad;
1046
1047 tsec = tsk->security;
1048
1049 AVC_AUDIT_DATA_INIT(&ad,CAP);
1050 ad.tsk = tsk;
1051 ad.u.cap = cap;
1052
1053 return avc_has_perm(tsec->sid, tsec->sid,
1054 SECCLASS_CAPABILITY, CAP_TO_MASK(cap), &ad);
1055 }
1056
1057 /* Check whether a task is allowed to use a system operation. */
1058 static int task_has_system(struct task_struct *tsk,
1059 u32 perms)
1060 {
1061 struct task_security_struct *tsec;
1062
1063 tsec = tsk->security;
1064
1065 return avc_has_perm(tsec->sid, SECINITSID_KERNEL,
1066 SECCLASS_SYSTEM, perms, NULL);
1067 }
1068
1069 /* Check whether a task has a particular permission to an inode.
1070 The 'adp' parameter is optional and allows other audit
1071 data to be passed (e.g. the dentry). */
1072 static int inode_has_perm(struct task_struct *tsk,
1073 struct inode *inode,
1074 u32 perms,
1075 struct avc_audit_data *adp)
1076 {
1077 struct task_security_struct *tsec;
1078 struct inode_security_struct *isec;
1079 struct avc_audit_data ad;
1080
1081 tsec = tsk->security;
1082 isec = inode->i_security;
1083
1084 if (!adp) {
1085 adp = &ad;
1086 AVC_AUDIT_DATA_INIT(&ad, FS);
1087 ad.u.fs.inode = inode;
1088 }
1089
1090 return avc_has_perm(tsec->sid, isec->sid, isec->sclass, perms, adp);
1091 }
1092
1093 /* Same as inode_has_perm, but pass explicit audit data containing
1094 the dentry to help the auditing code to more easily generate the
1095 pathname if needed. */
1096 static inline int dentry_has_perm(struct task_struct *tsk,
1097 struct vfsmount *mnt,
1098 struct dentry *dentry,
1099 u32 av)
1100 {
1101 struct inode *inode = dentry->d_inode;
1102 struct avc_audit_data ad;
1103 AVC_AUDIT_DATA_INIT(&ad,FS);
1104 ad.u.fs.mnt = mnt;
1105 ad.u.fs.dentry = dentry;
1106 return inode_has_perm(tsk, inode, av, &ad);
1107 }
1108
1109 /* Check whether a task can use an open file descriptor to
1110 access an inode in a given way. Check access to the
1111 descriptor itself, and then use dentry_has_perm to
1112 check a particular permission to the file.
1113 Access to the descriptor is implicitly granted if it
1114 has the same SID as the process. If av is zero, then
1115 access to the file is not checked, e.g. for cases
1116 where only the descriptor is affected like seek. */
1117 static int file_has_perm(struct task_struct *tsk,
1118 struct file *file,
1119 u32 av)
1120 {
1121 struct task_security_struct *tsec = tsk->security;
1122 struct file_security_struct *fsec = file->f_security;
1123 struct vfsmount *mnt = file->f_vfsmnt;
1124 struct dentry *dentry = file->f_dentry;
1125 struct inode *inode = dentry->d_inode;
1126 struct avc_audit_data ad;
1127 int rc;
1128
1129 AVC_AUDIT_DATA_INIT(&ad, FS);
1130 ad.u.fs.mnt = mnt;
1131 ad.u.fs.dentry = dentry;
1132
1133 if (tsec->sid != fsec->sid) {
1134 rc = avc_has_perm(tsec->sid, fsec->sid,
1135 SECCLASS_FD,
1136 FD__USE,
1137 &ad);
1138 if (rc)
1139 return rc;
1140 }
1141
1142 /* av is zero if only checking access to the descriptor. */
1143 if (av)
1144 return inode_has_perm(tsk, inode, av, &ad);
1145
1146 return 0;
1147 }
1148
1149 /* Check whether a task can create a file. */
1150 static int may_create(struct inode *dir,
1151 struct dentry *dentry,
1152 u16 tclass)
1153 {
1154 struct task_security_struct *tsec;
1155 struct inode_security_struct *dsec;
1156 struct superblock_security_struct *sbsec;
1157 u32 newsid;
1158 struct avc_audit_data ad;
1159 int rc;
1160
1161 tsec = current->security;
1162 dsec = dir->i_security;
1163 sbsec = dir->i_sb->s_security;
1164
1165 AVC_AUDIT_DATA_INIT(&ad, FS);
1166 ad.u.fs.dentry = dentry;
1167
1168 rc = avc_has_perm(tsec->sid, dsec->sid, SECCLASS_DIR,
1169 DIR__ADD_NAME | DIR__SEARCH,
1170 &ad);
1171 if (rc)
1172 return rc;
1173
1174 if (tsec->create_sid && sbsec->behavior != SECURITY_FS_USE_MNTPOINT) {
1175 newsid = tsec->create_sid;
1176 } else {
1177 rc = security_transition_sid(tsec->sid, dsec->sid, tclass,
1178 &newsid);
1179 if (rc)
1180 return rc;
1181 }
1182
1183 rc = avc_has_perm(tsec->sid, newsid, tclass, FILE__CREATE, &ad);
1184 if (rc)
1185 return rc;
1186
1187 return avc_has_perm(newsid, sbsec->sid,
1188 SECCLASS_FILESYSTEM,
1189 FILESYSTEM__ASSOCIATE, &ad);
1190 }
1191
1192 /* Check whether a task can create a key. */
1193 static int may_create_key(u32 ksid,
1194 struct task_struct *ctx)
1195 {
1196 struct task_security_struct *tsec;
1197
1198 tsec = ctx->security;
1199
1200 return avc_has_perm(tsec->sid, ksid, SECCLASS_KEY, KEY__CREATE, NULL);
1201 }
1202
1203 #define MAY_LINK 0
1204 #define MAY_UNLINK 1
1205 #define MAY_RMDIR 2
1206
1207 /* Check whether a task can link, unlink, or rmdir a file/directory. */
1208 static int may_link(struct inode *dir,
1209 struct dentry *dentry,
1210 int kind)
1211
1212 {
1213 struct task_security_struct *tsec;
1214 struct inode_security_struct *dsec, *isec;
1215 struct avc_audit_data ad;
1216 u32 av;
1217 int rc;
1218
1219 tsec = current->security;
1220 dsec = dir->i_security;
1221 isec = dentry->d_inode->i_security;
1222
1223 AVC_AUDIT_DATA_INIT(&ad, FS);
1224 ad.u.fs.dentry = dentry;
1225
1226 av = DIR__SEARCH;
1227 av |= (kind ? DIR__REMOVE_NAME : DIR__ADD_NAME);
1228 rc = avc_has_perm(tsec->sid, dsec->sid, SECCLASS_DIR, av, &ad);
1229 if (rc)
1230 return rc;
1231
1232 switch (kind) {
1233 case MAY_LINK:
1234 av = FILE__LINK;
1235 break;
1236 case MAY_UNLINK:
1237 av = FILE__UNLINK;
1238 break;
1239 case MAY_RMDIR:
1240 av = DIR__RMDIR;
1241 break;
1242 default:
1243 printk(KERN_WARNING "may_link: unrecognized kind %d\n", kind);
1244 return 0;
1245 }
1246
1247 rc = avc_has_perm(tsec->sid, isec->sid, isec->sclass, av, &ad);
1248 return rc;
1249 }
1250
1251 static inline int may_rename(struct inode *old_dir,
1252 struct dentry *old_dentry,
1253 struct inode *new_dir,
1254 struct dentry *new_dentry)
1255 {
1256 struct task_security_struct *tsec;
1257 struct inode_security_struct *old_dsec, *new_dsec, *old_isec, *new_isec;
1258 struct avc_audit_data ad;
1259 u32 av;
1260 int old_is_dir, new_is_dir;
1261 int rc;
1262
1263 tsec = current->security;
1264 old_dsec = old_dir->i_security;
1265 old_isec = old_dentry->d_inode->i_security;
1266 old_is_dir = S_ISDIR(old_dentry->d_inode->i_mode);
1267 new_dsec = new_dir->i_security;
1268
1269 AVC_AUDIT_DATA_INIT(&ad, FS);
1270
1271 ad.u.fs.dentry = old_dentry;
1272 rc = avc_has_perm(tsec->sid, old_dsec->sid, SECCLASS_DIR,
1273 DIR__REMOVE_NAME | DIR__SEARCH, &ad);
1274 if (rc)
1275 return rc;
1276 rc = avc_has_perm(tsec->sid, old_isec->sid,
1277 old_isec->sclass, FILE__RENAME, &ad);
1278 if (rc)
1279 return rc;
1280 if (old_is_dir && new_dir != old_dir) {
1281 rc = avc_has_perm(tsec->sid, old_isec->sid,
1282 old_isec->sclass, DIR__REPARENT, &ad);
1283 if (rc)
1284 return rc;
1285 }
1286
1287 ad.u.fs.dentry = new_dentry;
1288 av = DIR__ADD_NAME | DIR__SEARCH;
1289 if (new_dentry->d_inode)
1290 av |= DIR__REMOVE_NAME;
1291 rc = avc_has_perm(tsec->sid, new_dsec->sid, SECCLASS_DIR, av, &ad);
1292 if (rc)
1293 return rc;
1294 if (new_dentry->d_inode) {
1295 new_isec = new_dentry->d_inode->i_security;
1296 new_is_dir = S_ISDIR(new_dentry->d_inode->i_mode);
1297 rc = avc_has_perm(tsec->sid, new_isec->sid,
1298 new_isec->sclass,
1299 (new_is_dir ? DIR__RMDIR : FILE__UNLINK), &ad);
1300 if (rc)
1301 return rc;
1302 }
1303
1304 return 0;
1305 }
1306
1307 /* Check whether a task can perform a filesystem operation. */
1308 static int superblock_has_perm(struct task_struct *tsk,
1309 struct super_block *sb,
1310 u32 perms,
1311 struct avc_audit_data *ad)
1312 {
1313 struct task_security_struct *tsec;
1314 struct superblock_security_struct *sbsec;
1315
1316 tsec = tsk->security;
1317 sbsec = sb->s_security;
1318 return avc_has_perm(tsec->sid, sbsec->sid, SECCLASS_FILESYSTEM,
1319 perms, ad);
1320 }
1321
1322 /* Convert a Linux mode and permission mask to an access vector. */
1323 static inline u32 file_mask_to_av(int mode, int mask)
1324 {
1325 u32 av = 0;
1326
1327 if ((mode & S_IFMT) != S_IFDIR) {
1328 if (mask & MAY_EXEC)
1329 av |= FILE__EXECUTE;
1330 if (mask & MAY_READ)
1331 av |= FILE__READ;
1332
1333 if (mask & MAY_APPEND)
1334 av |= FILE__APPEND;
1335 else if (mask & MAY_WRITE)
1336 av |= FILE__WRITE;
1337
1338 } else {
1339 if (mask & MAY_EXEC)
1340 av |= DIR__SEARCH;
1341 if (mask & MAY_WRITE)
1342 av |= DIR__WRITE;
1343 if (mask & MAY_READ)
1344 av |= DIR__READ;
1345 }
1346
1347 return av;
1348 }
1349
1350 /* Convert a Linux file to an access vector. */
1351 static inline u32 file_to_av(struct file *file)
1352 {
1353 u32 av = 0;
1354
1355 if (file->f_mode & FMODE_READ)
1356 av |= FILE__READ;
1357 if (file->f_mode & FMODE_WRITE) {
1358 if (file->f_flags & O_APPEND)
1359 av |= FILE__APPEND;
1360 else
1361 av |= FILE__WRITE;
1362 }
1363
1364 return av;
1365 }
1366
1367 /* Set an inode's SID to a specified value. */
1368 static int inode_security_set_sid(struct inode *inode, u32 sid)
1369 {
1370 struct inode_security_struct *isec = inode->i_security;
1371 struct superblock_security_struct *sbsec = inode->i_sb->s_security;
1372
1373 if (!sbsec->initialized) {
1374 /* Defer initialization to selinux_complete_init. */
1375 return 0;
1376 }
1377
1378 down(&isec->sem);
1379 isec->sclass = inode_mode_to_security_class(inode->i_mode);
1380 isec->sid = sid;
1381 isec->initialized = 1;
1382 up(&isec->sem);
1383 return 0;
1384 }
1385
1386 /* Hook functions begin here. */
1387
1388 static int selinux_ptrace(struct task_struct *parent, struct task_struct *child)
1389 {
1390 struct task_security_struct *psec = parent->security;
1391 struct task_security_struct *csec = child->security;
1392 int rc;
1393
1394 rc = secondary_ops->ptrace(parent,child);
1395 if (rc)
1396 return rc;
1397
1398 rc = task_has_perm(parent, child, PROCESS__PTRACE);
1399 /* Save the SID of the tracing process for later use in apply_creds. */
1400 if (!(child->ptrace & PT_PTRACED) && !rc)
1401 csec->ptrace_sid = psec->sid;
1402 return rc;
1403 }
1404
1405 static int selinux_capget(struct task_struct *target, kernel_cap_t *effective,
1406 kernel_cap_t *inheritable, kernel_cap_t *permitted)
1407 {
1408 int error;
1409
1410 error = task_has_perm(current, target, PROCESS__GETCAP);
1411 if (error)
1412 return error;
1413
1414 return secondary_ops->capget(target, effective, inheritable, permitted);
1415 }
1416
1417 static int selinux_capset_check(struct task_struct *target, kernel_cap_t *effective,
1418 kernel_cap_t *inheritable, kernel_cap_t *permitted)
1419 {
1420 int error;
1421
1422 error = secondary_ops->capset_check(target, effective, inheritable, permitted);
1423 if (error)
1424 return error;
1425
1426 return task_has_perm(current, target, PROCESS__SETCAP);
1427 }
1428
1429 static void selinux_capset_set(struct task_struct *target, kernel_cap_t *effective,
1430 kernel_cap_t *inheritable, kernel_cap_t *permitted)
1431 {
1432 secondary_ops->capset_set(target, effective, inheritable, permitted);
1433 }
1434
1435 static int selinux_capable(struct task_struct *tsk, int cap)
1436 {
1437 int rc;
1438
1439 rc = secondary_ops->capable(tsk, cap);
1440 if (rc)
1441 return rc;
1442
1443 return task_has_capability(tsk,cap);
1444 }
1445
1446 static int selinux_sysctl(ctl_table *table, int op)
1447 {
1448 int error = 0;
1449 u32 av;
1450 struct task_security_struct *tsec;
1451 u32 tsid;
1452 int rc;
1453
1454 rc = secondary_ops->sysctl(table, op);
1455 if (rc)
1456 return rc;
1457
1458 tsec = current->security;
1459
1460 rc = selinux_proc_get_sid(table->de, (op == 001) ?
1461 SECCLASS_DIR : SECCLASS_FILE, &tsid);
1462 if (rc) {
1463 /* Default to the well-defined sysctl SID. */
1464 tsid = SECINITSID_SYSCTL;
1465 }
1466
1467 /* The op values are "defined" in sysctl.c, thereby creating
1468 * a bad coupling between this module and sysctl.c */
1469 if(op == 001) {
1470 error = avc_has_perm(tsec->sid, tsid,
1471 SECCLASS_DIR, DIR__SEARCH, NULL);
1472 } else {
1473 av = 0;
1474 if (op & 004)
1475 av |= FILE__READ;
1476 if (op & 002)
1477 av |= FILE__WRITE;
1478 if (av)
1479 error = avc_has_perm(tsec->sid, tsid,
1480 SECCLASS_FILE, av, NULL);
1481 }
1482
1483 return error;
1484 }
1485
1486 static int selinux_quotactl(int cmds, int type, int id, struct super_block *sb)
1487 {
1488 int rc = 0;
1489
1490 if (!sb)
1491 return 0;
1492
1493 switch (cmds) {
1494 case Q_SYNC:
1495 case Q_QUOTAON:
1496 case Q_QUOTAOFF:
1497 case Q_SETINFO:
1498 case Q_SETQUOTA:
1499 rc = superblock_has_perm(current,
1500 sb,
1501 FILESYSTEM__QUOTAMOD, NULL);
1502 break;
1503 case Q_GETFMT:
1504 case Q_GETINFO:
1505 case Q_GETQUOTA:
1506 rc = superblock_has_perm(current,
1507 sb,
1508 FILESYSTEM__QUOTAGET, NULL);
1509 break;
1510 default:
1511 rc = 0; /* let the kernel handle invalid cmds */
1512 break;
1513 }
1514 return rc;
1515 }
1516
1517 static int selinux_quota_on(struct dentry *dentry)
1518 {
1519 return dentry_has_perm(current, NULL, dentry, FILE__QUOTAON);
1520 }
1521
1522 static int selinux_syslog(int type)
1523 {
1524 int rc;
1525
1526 rc = secondary_ops->syslog(type);
1527 if (rc)
1528 return rc;
1529
1530 switch (type) {
1531 case 3: /* Read last kernel messages */
1532 case 10: /* Return size of the log buffer */
1533 rc = task_has_system(current, SYSTEM__SYSLOG_READ);
1534 break;
1535 case 6: /* Disable logging to console */
1536 case 7: /* Enable logging to console */
1537 case 8: /* Set level of messages printed to console */
1538 rc = task_has_system(current, SYSTEM__SYSLOG_CONSOLE);
1539 break;
1540 case 0: /* Close log */
1541 case 1: /* Open log */
1542 case 2: /* Read from log */
1543 case 4: /* Read/clear last kernel messages */
1544 case 5: /* Clear ring buffer */
1545 default:
1546 rc = task_has_system(current, SYSTEM__SYSLOG_MOD);
1547 break;
1548 }
1549 return rc;
1550 }
1551
1552 /*
1553 * Check that a process has enough memory to allocate a new virtual
1554 * mapping. 0 means there is enough memory for the allocation to
1555 * succeed and -ENOMEM implies there is not.
1556 *
1557 * Note that secondary_ops->capable and task_has_perm_noaudit return 0
1558 * if the capability is granted, but __vm_enough_memory requires 1 if
1559 * the capability is granted.
1560 *
1561 * Do not audit the selinux permission check, as this is applied to all
1562 * processes that allocate mappings.
1563 */
1564 static int selinux_vm_enough_memory(long pages)
1565 {
1566 int rc, cap_sys_admin = 0;
1567 struct task_security_struct *tsec = current->security;
1568
1569 rc = secondary_ops->capable(current, CAP_SYS_ADMIN);
1570 if (rc == 0)
1571 rc = avc_has_perm_noaudit(tsec->sid, tsec->sid,
1572 SECCLASS_CAPABILITY,
1573 CAP_TO_MASK(CAP_SYS_ADMIN),
1574 NULL);
1575
1576 if (rc == 0)
1577 cap_sys_admin = 1;
1578
1579 return __vm_enough_memory(pages, cap_sys_admin);
1580 }
1581
1582 /* binprm security operations */
1583
1584 static int selinux_bprm_alloc_security(struct linux_binprm *bprm)
1585 {
1586 struct bprm_security_struct *bsec;
1587
1588 bsec = kzalloc(sizeof(struct bprm_security_struct), GFP_KERNEL);
1589 if (!bsec)
1590 return -ENOMEM;
1591
1592 bsec->bprm = bprm;
1593 bsec->sid = SECINITSID_UNLABELED;
1594 bsec->set = 0;
1595
1596 bprm->security = bsec;
1597 return 0;
1598 }
1599
1600 static int selinux_bprm_set_security(struct linux_binprm *bprm)
1601 {
1602 struct task_security_struct *tsec;
1603 struct inode *inode = bprm->file->f_dentry->d_inode;
1604 struct inode_security_struct *isec;
1605 struct bprm_security_struct *bsec;
1606 u32 newsid;
1607 struct avc_audit_data ad;
1608 int rc;
1609
1610 rc = secondary_ops->bprm_set_security(bprm);
1611 if (rc)
1612 return rc;
1613
1614 bsec = bprm->security;
1615
1616 if (bsec->set)
1617 return 0;
1618
1619 tsec = current->security;
1620 isec = inode->i_security;
1621
1622 /* Default to the current task SID. */
1623 bsec->sid = tsec->sid;
1624
1625 /* Reset fs, key, and sock SIDs on execve. */
1626 tsec->create_sid = 0;
1627 tsec->keycreate_sid = 0;
1628 tsec->sockcreate_sid = 0;
1629
1630 if (tsec->exec_sid) {
1631 newsid = tsec->exec_sid;
1632 /* Reset exec SID on execve. */
1633 tsec->exec_sid = 0;
1634 } else {
1635 /* Check for a default transition on this program. */
1636 rc = security_transition_sid(tsec->sid, isec->sid,
1637 SECCLASS_PROCESS, &newsid);
1638 if (rc)
1639 return rc;
1640 }
1641
1642 AVC_AUDIT_DATA_INIT(&ad, FS);
1643 ad.u.fs.mnt = bprm->file->f_vfsmnt;
1644 ad.u.fs.dentry = bprm->file->f_dentry;
1645
1646 if (bprm->file->f_vfsmnt->mnt_flags & MNT_NOSUID)
1647 newsid = tsec->sid;
1648
1649 if (tsec->sid == newsid) {
1650 rc = avc_has_perm(tsec->sid, isec->sid,
1651 SECCLASS_FILE, FILE__EXECUTE_NO_TRANS, &ad);
1652 if (rc)
1653 return rc;
1654 } else {
1655 /* Check permissions for the transition. */
1656 rc = avc_has_perm(tsec->sid, newsid,
1657 SECCLASS_PROCESS, PROCESS__TRANSITION, &ad);
1658 if (rc)
1659 return rc;
1660
1661 rc = avc_has_perm(newsid, isec->sid,
1662 SECCLASS_FILE, FILE__ENTRYPOINT, &ad);
1663 if (rc)
1664 return rc;
1665
1666 /* Clear any possibly unsafe personality bits on exec: */
1667 current->personality &= ~PER_CLEAR_ON_SETID;
1668
1669 /* Set the security field to the new SID. */
1670 bsec->sid = newsid;
1671 }
1672
1673 bsec->set = 1;
1674 return 0;
1675 }
1676
1677 static int selinux_bprm_check_security (struct linux_binprm *bprm)
1678 {
1679 return secondary_ops->bprm_check_security(bprm);
1680 }
1681
1682
1683 static int selinux_bprm_secureexec (struct linux_binprm *bprm)
1684 {
1685 struct task_security_struct *tsec = current->security;
1686 int atsecure = 0;
1687
1688 if (tsec->osid != tsec->sid) {
1689 /* Enable secure mode for SIDs transitions unless
1690 the noatsecure permission is granted between
1691 the two SIDs, i.e. ahp returns 0. */
1692 atsecure = avc_has_perm(tsec->osid, tsec->sid,
1693 SECCLASS_PROCESS,
1694 PROCESS__NOATSECURE, NULL);
1695 }
1696
1697 return (atsecure || secondary_ops->bprm_secureexec(bprm));
1698 }
1699
1700 static void selinux_bprm_free_security(struct linux_binprm *bprm)
1701 {
1702 kfree(bprm->security);
1703 bprm->security = NULL;
1704 }
1705
1706 extern struct vfsmount *selinuxfs_mount;
1707 extern struct dentry *selinux_null;
1708
1709 /* Derived from fs/exec.c:flush_old_files. */
1710 static inline void flush_unauthorized_files(struct files_struct * files)
1711 {
1712 struct avc_audit_data ad;
1713 struct file *file, *devnull = NULL;
1714 struct tty_struct *tty = current->signal->tty;
1715 struct fdtable *fdt;
1716 long j = -1;
1717
1718 if (tty) {
1719 file_list_lock();
1720 file = list_entry(tty->tty_files.next, typeof(*file), f_u.fu_list);
1721 if (file) {
1722 /* Revalidate access to controlling tty.
1723 Use inode_has_perm on the tty inode directly rather
1724 than using file_has_perm, as this particular open
1725 file may belong to another process and we are only
1726 interested in the inode-based check here. */
1727 struct inode *inode = file->f_dentry->d_inode;
1728 if (inode_has_perm(current, inode,
1729 FILE__READ | FILE__WRITE, NULL)) {
1730 /* Reset controlling tty. */
1731 current->signal->tty = NULL;
1732 current->signal->tty_old_pgrp = 0;
1733 }
1734 }
1735 file_list_unlock();
1736 }
1737
1738 /* Revalidate access to inherited open files. */
1739
1740 AVC_AUDIT_DATA_INIT(&ad,FS);
1741
1742 spin_lock(&files->file_lock);
1743 for (;;) {
1744 unsigned long set, i;
1745 int fd;
1746
1747 j++;
1748 i = j * __NFDBITS;
1749 fdt = files_fdtable(files);
1750 if (i >= fdt->max_fds || i >= fdt->max_fdset)
1751 break;
1752 set = fdt->open_fds->fds_bits[j];
1753 if (!set)
1754 continue;
1755 spin_unlock(&files->file_lock);
1756 for ( ; set ; i++,set >>= 1) {
1757 if (set & 1) {
1758 file = fget(i);
1759 if (!file)
1760 continue;
1761 if (file_has_perm(current,
1762 file,
1763 file_to_av(file))) {
1764 sys_close(i);
1765 fd = get_unused_fd();
1766 if (fd != i) {
1767 if (fd >= 0)
1768 put_unused_fd(fd);
1769 fput(file);
1770 continue;
1771 }
1772 if (devnull) {
1773 get_file(devnull);
1774 } else {
1775 devnull = dentry_open(dget(selinux_null), mntget(selinuxfs_mount), O_RDWR);
1776 if (!devnull) {
1777 put_unused_fd(fd);
1778 fput(file);
1779 continue;
1780 }
1781 }
1782 fd_install(fd, devnull);
1783 }
1784 fput(file);
1785 }
1786 }
1787 spin_lock(&files->file_lock);
1788
1789 }
1790 spin_unlock(&files->file_lock);
1791 }
1792
1793 static void selinux_bprm_apply_creds(struct linux_binprm *bprm, int unsafe)
1794 {
1795 struct task_security_struct *tsec;
1796 struct bprm_security_struct *bsec;
1797 u32 sid;
1798 int rc;
1799
1800 secondary_ops->bprm_apply_creds(bprm, unsafe);
1801
1802 tsec = current->security;
1803
1804 bsec = bprm->security;
1805 sid = bsec->sid;
1806
1807 tsec->osid = tsec->sid;
1808 bsec->unsafe = 0;
1809 if (tsec->sid != sid) {
1810 /* Check for shared state. If not ok, leave SID
1811 unchanged and kill. */
1812 if (unsafe & LSM_UNSAFE_SHARE) {
1813 rc = avc_has_perm(tsec->sid, sid, SECCLASS_PROCESS,
1814 PROCESS__SHARE, NULL);
1815 if (rc) {
1816 bsec->unsafe = 1;
1817 return;
1818 }
1819 }
1820
1821 /* Check for ptracing, and update the task SID if ok.
1822 Otherwise, leave SID unchanged and kill. */
1823 if (unsafe & (LSM_UNSAFE_PTRACE | LSM_UNSAFE_PTRACE_CAP)) {
1824 rc = avc_has_perm(tsec->ptrace_sid, sid,
1825 SECCLASS_PROCESS, PROCESS__PTRACE,
1826 NULL);
1827 if (rc) {
1828 bsec->unsafe = 1;
1829 return;
1830 }
1831 }
1832 tsec->sid = sid;
1833 }
1834 }
1835
1836 /*
1837 * called after apply_creds without the task lock held
1838 */
1839 static void selinux_bprm_post_apply_creds(struct linux_binprm *bprm)
1840 {
1841 struct task_security_struct *tsec;
1842 struct rlimit *rlim, *initrlim;
1843 struct itimerval itimer;
1844 struct bprm_security_struct *bsec;
1845 int rc, i;
1846
1847 tsec = current->security;
1848 bsec = bprm->security;
1849
1850 if (bsec->unsafe) {
1851 force_sig_specific(SIGKILL, current);
1852 return;
1853 }
1854 if (tsec->osid == tsec->sid)
1855 return;
1856
1857 /* Close files for which the new task SID is not authorized. */
1858 flush_unauthorized_files(current->files);
1859
1860 /* Check whether the new SID can inherit signal state
1861 from the old SID. If not, clear itimers to avoid
1862 subsequent signal generation and flush and unblock
1863 signals. This must occur _after_ the task SID has
1864 been updated so that any kill done after the flush
1865 will be checked against the new SID. */
1866 rc = avc_has_perm(tsec->osid, tsec->sid, SECCLASS_PROCESS,
1867 PROCESS__SIGINH, NULL);
1868 if (rc) {
1869 memset(&itimer, 0, sizeof itimer);
1870 for (i = 0; i < 3; i++)
1871 do_setitimer(i, &itimer, NULL);
1872 flush_signals(current);
1873 spin_lock_irq(&current->sighand->siglock);
1874 flush_signal_handlers(current, 1);
1875 sigemptyset(&current->blocked);
1876 recalc_sigpending();
1877 spin_unlock_irq(&current->sighand->siglock);
1878 }
1879
1880 /* Check whether the new SID can inherit resource limits
1881 from the old SID. If not, reset all soft limits to
1882 the lower of the current task's hard limit and the init
1883 task's soft limit. Note that the setting of hard limits
1884 (even to lower them) can be controlled by the setrlimit
1885 check. The inclusion of the init task's soft limit into
1886 the computation is to avoid resetting soft limits higher
1887 than the default soft limit for cases where the default
1888 is lower than the hard limit, e.g. RLIMIT_CORE or
1889 RLIMIT_STACK.*/
1890 rc = avc_has_perm(tsec->osid, tsec->sid, SECCLASS_PROCESS,
1891 PROCESS__RLIMITINH, NULL);
1892 if (rc) {
1893 for (i = 0; i < RLIM_NLIMITS; i++) {
1894 rlim = current->signal->rlim + i;
1895 initrlim = init_task.signal->rlim+i;
1896 rlim->rlim_cur = min(rlim->rlim_max,initrlim->rlim_cur);
1897 }
1898 if (current->signal->rlim[RLIMIT_CPU].rlim_cur != RLIM_INFINITY) {
1899 /*
1900 * This will cause RLIMIT_CPU calculations
1901 * to be refigured.
1902 */
1903 current->it_prof_expires = jiffies_to_cputime(1);
1904 }
1905 }
1906
1907 /* Wake up the parent if it is waiting so that it can
1908 recheck wait permission to the new task SID. */
1909 wake_up_interruptible(&current->parent->signal->wait_chldexit);
1910 }
1911
1912 /* superblock security operations */
1913
1914 static int selinux_sb_alloc_security(struct super_block *sb)
1915 {
1916 return superblock_alloc_security(sb);
1917 }
1918
1919 static void selinux_sb_free_security(struct super_block *sb)
1920 {
1921 superblock_free_security(sb);
1922 }
1923
1924 static inline int match_prefix(char *prefix, int plen, char *option, int olen)
1925 {
1926 if (plen > olen)
1927 return 0;
1928
1929 return !memcmp(prefix, option, plen);
1930 }
1931
1932 static inline int selinux_option(char *option, int len)
1933 {
1934 return (match_prefix("context=", sizeof("context=")-1, option, len) ||
1935 match_prefix("fscontext=", sizeof("fscontext=")-1, option, len) ||
1936 match_prefix("defcontext=", sizeof("defcontext=")-1, option, len) ||
1937 match_prefix("rootcontext=", sizeof("rootcontext=")-1, option, len));
1938 }
1939
1940 static inline void take_option(char **to, char *from, int *first, int len)
1941 {
1942 if (!*first) {
1943 **to = ',';
1944 *to += 1;
1945 }
1946 else
1947 *first = 0;
1948 memcpy(*to, from, len);
1949 *to += len;
1950 }
1951
1952 static int selinux_sb_copy_data(struct file_system_type *type, void *orig, void *copy)
1953 {
1954 int fnosec, fsec, rc = 0;
1955 char *in_save, *in_curr, *in_end;
1956 char *sec_curr, *nosec_save, *nosec;
1957
1958 in_curr = orig;
1959 sec_curr = copy;
1960
1961 /* Binary mount data: just copy */
1962 if (type->fs_flags & FS_BINARY_MOUNTDATA) {
1963 copy_page(sec_curr, in_curr);
1964 goto out;
1965 }
1966
1967 nosec = (char *)get_zeroed_page(GFP_KERNEL);
1968 if (!nosec) {
1969 rc = -ENOMEM;
1970 goto out;
1971 }
1972
1973 nosec_save = nosec;
1974 fnosec = fsec = 1;
1975 in_save = in_end = orig;
1976
1977 do {
1978 if (*in_end == ',' || *in_end == '\0') {
1979 int len = in_end - in_curr;
1980
1981 if (selinux_option(in_curr, len))
1982 take_option(&sec_curr, in_curr, &fsec, len);
1983 else
1984 take_option(&nosec, in_curr, &fnosec, len);
1985
1986 in_curr = in_end + 1;
1987 }
1988 } while (*in_end++);
1989
1990 strcpy(in_save, nosec_save);
1991 free_page((unsigned long)nosec_save);
1992 out:
1993 return rc;
1994 }
1995
1996 static int selinux_sb_kern_mount(struct super_block *sb, void *data)
1997 {
1998 struct avc_audit_data ad;
1999 int rc;
2000
2001 rc = superblock_doinit(sb, data);
2002 if (rc)
2003 return rc;
2004
2005 AVC_AUDIT_DATA_INIT(&ad,FS);
2006 ad.u.fs.dentry = sb->s_root;
2007 return superblock_has_perm(current, sb, FILESYSTEM__MOUNT, &ad);
2008 }
2009
2010 static int selinux_sb_statfs(struct dentry *dentry)
2011 {
2012 struct avc_audit_data ad;
2013
2014 AVC_AUDIT_DATA_INIT(&ad,FS);
2015 ad.u.fs.dentry = dentry->d_sb->s_root;
2016 return superblock_has_perm(current, dentry->d_sb, FILESYSTEM__GETATTR, &ad);
2017 }
2018
2019 static int selinux_mount(char * dev_name,
2020 struct nameidata *nd,
2021 char * type,
2022 unsigned long flags,
2023 void * data)
2024 {
2025 int rc;
2026
2027 rc = secondary_ops->sb_mount(dev_name, nd, type, flags, data);
2028 if (rc)
2029 return rc;
2030
2031 if (flags & MS_REMOUNT)
2032 return superblock_has_perm(current, nd->mnt->mnt_sb,
2033 FILESYSTEM__REMOUNT, NULL);
2034 else
2035 return dentry_has_perm(current, nd->mnt, nd->dentry,
2036 FILE__MOUNTON);
2037 }
2038
2039 static int selinux_umount(struct vfsmount *mnt, int flags)
2040 {
2041 int rc;
2042
2043 rc = secondary_ops->sb_umount(mnt, flags);
2044 if (rc)
2045 return rc;
2046
2047 return superblock_has_perm(current,mnt->mnt_sb,
2048 FILESYSTEM__UNMOUNT,NULL);
2049 }
2050
2051 /* inode security operations */
2052
2053 static int selinux_inode_alloc_security(struct inode *inode)
2054 {
2055 return inode_alloc_security(inode);
2056 }
2057
2058 static void selinux_inode_free_security(struct inode *inode)
2059 {
2060 inode_free_security(inode);
2061 }
2062
2063 static int selinux_inode_init_security(struct inode *inode, struct inode *dir,
2064 char **name, void **value,
2065 size_t *len)
2066 {
2067 struct task_security_struct *tsec;
2068 struct inode_security_struct *dsec;
2069 struct superblock_security_struct *sbsec;
2070 u32 newsid, clen;
2071 int rc;
2072 char *namep = NULL, *context;
2073
2074 tsec = current->security;
2075 dsec = dir->i_security;
2076 sbsec = dir->i_sb->s_security;
2077
2078 if (tsec->create_sid && sbsec->behavior != SECURITY_FS_USE_MNTPOINT) {
2079 newsid = tsec->create_sid;
2080 } else {
2081 rc = security_transition_sid(tsec->sid, dsec->sid,
2082 inode_mode_to_security_class(inode->i_mode),
2083 &newsid);
2084 if (rc) {
2085 printk(KERN_WARNING "%s: "
2086 "security_transition_sid failed, rc=%d (dev=%s "
2087 "ino=%ld)\n",
2088 __FUNCTION__,
2089 -rc, inode->i_sb->s_id, inode->i_ino);
2090 return rc;
2091 }
2092 }
2093
2094 inode_security_set_sid(inode, newsid);
2095
2096 if (!ss_initialized || sbsec->behavior == SECURITY_FS_USE_MNTPOINT)
2097 return -EOPNOTSUPP;
2098
2099 if (name) {
2100 namep = kstrdup(XATTR_SELINUX_SUFFIX, GFP_KERNEL);
2101 if (!namep)
2102 return -ENOMEM;
2103 *name = namep;
2104 }
2105
2106 if (value && len) {
2107 rc = security_sid_to_context(newsid, &context, &clen);
2108 if (rc) {
2109 kfree(namep);
2110 return rc;
2111 }
2112 *value = context;
2113 *len = clen;
2114 }
2115
2116 return 0;
2117 }
2118
2119 static int selinux_inode_create(struct inode *dir, struct dentry *dentry, int mask)
2120 {
2121 return may_create(dir, dentry, SECCLASS_FILE);
2122 }
2123
2124 static int selinux_inode_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry)
2125 {
2126 int rc;
2127
2128 rc = secondary_ops->inode_link(old_dentry,dir,new_dentry);
2129 if (rc)
2130 return rc;
2131 return may_link(dir, old_dentry, MAY_LINK);
2132 }
2133
2134 static int selinux_inode_unlink(struct inode *dir, struct dentry *dentry)
2135 {
2136 int rc;
2137
2138 rc = secondary_ops->inode_unlink(dir, dentry);
2139 if (rc)
2140 return rc;
2141 return may_link(dir, dentry, MAY_UNLINK);
2142 }
2143
2144 static int selinux_inode_symlink(struct inode *dir, struct dentry *dentry, const char *name)
2145 {
2146 return may_create(dir, dentry, SECCLASS_LNK_FILE);
2147 }
2148
2149 static int selinux_inode_mkdir(struct inode *dir, struct dentry *dentry, int mask)
2150 {
2151 return may_create(dir, dentry, SECCLASS_DIR);
2152 }
2153
2154 static int selinux_inode_rmdir(struct inode *dir, struct dentry *dentry)
2155 {
2156 return may_link(dir, dentry, MAY_RMDIR);
2157 }
2158
2159 static int selinux_inode_mknod(struct inode *dir, struct dentry *dentry, int mode, dev_t dev)
2160 {
2161 int rc;
2162
2163 rc = secondary_ops->inode_mknod(dir, dentry, mode, dev);
2164 if (rc)
2165 return rc;
2166
2167 return may_create(dir, dentry, inode_mode_to_security_class(mode));
2168 }
2169
2170 static int selinux_inode_rename(struct inode *old_inode, struct dentry *old_dentry,
2171 struct inode *new_inode, struct dentry *new_dentry)
2172 {
2173 return may_rename(old_inode, old_dentry, new_inode, new_dentry);
2174 }
2175
2176 static int selinux_inode_readlink(struct dentry *dentry)
2177 {
2178 return dentry_has_perm(current, NULL, dentry, FILE__READ);
2179 }
2180
2181 static int selinux_inode_follow_link(struct dentry *dentry, struct nameidata *nameidata)
2182 {
2183 int rc;
2184
2185 rc = secondary_ops->inode_follow_link(dentry,nameidata);
2186 if (rc)
2187 return rc;
2188 return dentry_has_perm(current, NULL, dentry, FILE__READ);
2189 }
2190
2191 static int selinux_inode_permission(struct inode *inode, int mask,
2192 struct nameidata *nd)
2193 {
2194 int rc;
2195
2196 rc = secondary_ops->inode_permission(inode, mask, nd);
2197 if (rc)
2198 return rc;
2199
2200 if (!mask) {
2201 /* No permission to check. Existence test. */
2202 return 0;
2203 }
2204
2205 return inode_has_perm(current, inode,
2206 file_mask_to_av(inode->i_mode, mask), NULL);
2207 }
2208
2209 static int selinux_inode_setattr(struct dentry *dentry, struct iattr *iattr)
2210 {
2211 int rc;
2212
2213 rc = secondary_ops->inode_setattr(dentry, iattr);
2214 if (rc)
2215 return rc;
2216
2217 if (iattr->ia_valid & ATTR_FORCE)
2218 return 0;
2219
2220 if (iattr->ia_valid & (ATTR_MODE | ATTR_UID | ATTR_GID |
2221 ATTR_ATIME_SET | ATTR_MTIME_SET))
2222 return dentry_has_perm(current, NULL, dentry, FILE__SETATTR);
2223
2224 return dentry_has_perm(current, NULL, dentry, FILE__WRITE);
2225 }
2226
2227 static int selinux_inode_getattr(struct vfsmount *mnt, struct dentry *dentry)
2228 {
2229 return dentry_has_perm(current, mnt, dentry, FILE__GETATTR);
2230 }
2231
2232 static int selinux_inode_setxattr(struct dentry *dentry, char *name, void *value, size_t size, int flags)
2233 {
2234 struct task_security_struct *tsec = current->security;
2235 struct inode *inode = dentry->d_inode;
2236 struct inode_security_struct *isec = inode->i_security;
2237 struct superblock_security_struct *sbsec;
2238 struct avc_audit_data ad;
2239 u32 newsid;
2240 int rc = 0;
2241
2242 if (strcmp(name, XATTR_NAME_SELINUX)) {
2243 if (!strncmp(name, XATTR_SECURITY_PREFIX,
2244 sizeof XATTR_SECURITY_PREFIX - 1) &&
2245 !capable(CAP_SYS_ADMIN)) {
2246 /* A different attribute in the security namespace.
2247 Restrict to administrator. */
2248 return -EPERM;
2249 }
2250
2251 /* Not an attribute we recognize, so just check the
2252 ordinary setattr permission. */
2253 return dentry_has_perm(current, NULL, dentry, FILE__SETATTR);
2254 }
2255
2256 sbsec = inode->i_sb->s_security;
2257 if (sbsec->behavior == SECURITY_FS_USE_MNTPOINT)
2258 return -EOPNOTSUPP;
2259
2260 if ((current->fsuid != inode->i_uid) && !capable(CAP_FOWNER))
2261 return -EPERM;
2262
2263 AVC_AUDIT_DATA_INIT(&ad,FS);
2264 ad.u.fs.dentry = dentry;
2265
2266 rc = avc_has_perm(tsec->sid, isec->sid, isec->sclass,
2267 FILE__RELABELFROM, &ad);
2268 if (rc)
2269 return rc;
2270
2271 rc = security_context_to_sid(value, size, &newsid);
2272 if (rc)
2273 return rc;
2274
2275 rc = avc_has_perm(tsec->sid, newsid, isec->sclass,
2276 FILE__RELABELTO, &ad);
2277 if (rc)
2278 return rc;
2279
2280 rc = security_validate_transition(isec->sid, newsid, tsec->sid,
2281 isec->sclass);
2282 if (rc)
2283 return rc;
2284
2285 return avc_has_perm(newsid,
2286 sbsec->sid,
2287 SECCLASS_FILESYSTEM,
2288 FILESYSTEM__ASSOCIATE,
2289 &ad);
2290 }
2291
2292 static void selinux_inode_post_setxattr(struct dentry *dentry, char *name,
2293 void *value, size_t size, int flags)
2294 {
2295 struct inode *inode = dentry->d_inode;
2296 struct inode_security_struct *isec = inode->i_security;
2297 u32 newsid;
2298 int rc;
2299
2300 if (strcmp(name, XATTR_NAME_SELINUX)) {
2301 /* Not an attribute we recognize, so nothing to do. */
2302 return;
2303 }
2304
2305 rc = security_context_to_sid(value, size, &newsid);
2306 if (rc) {
2307 printk(KERN_WARNING "%s: unable to obtain SID for context "
2308 "%s, rc=%d\n", __FUNCTION__, (char*)value, -rc);
2309 return;
2310 }
2311
2312 isec->sid = newsid;
2313 return;
2314 }
2315
2316 static int selinux_inode_getxattr (struct dentry *dentry, char *name)
2317 {
2318 return dentry_has_perm(current, NULL, dentry, FILE__GETATTR);
2319 }
2320
2321 static int selinux_inode_listxattr (struct dentry *dentry)
2322 {
2323 return dentry_has_perm(current, NULL, dentry, FILE__GETATTR);
2324 }
2325
2326 static int selinux_inode_removexattr (struct dentry *dentry, char *name)
2327 {
2328 if (strcmp(name, XATTR_NAME_SELINUX)) {
2329 if (!strncmp(name, XATTR_SECURITY_PREFIX,
2330 sizeof XATTR_SECURITY_PREFIX - 1) &&
2331 !capable(CAP_SYS_ADMIN)) {
2332 /* A different attribute in the security namespace.
2333 Restrict to administrator. */
2334 return -EPERM;
2335 }
2336
2337 /* Not an attribute we recognize, so just check the
2338 ordinary setattr permission. Might want a separate
2339 permission for removexattr. */
2340 return dentry_has_perm(current, NULL, dentry, FILE__SETATTR);
2341 }
2342
2343 /* No one is allowed to remove a SELinux security label.
2344 You can change the label, but all data must be labeled. */
2345 return -EACCES;
2346 }
2347
2348 static const char *selinux_inode_xattr_getsuffix(void)
2349 {
2350 return XATTR_SELINUX_SUFFIX;
2351 }
2352
2353 /*
2354 * Copy the in-core inode security context value to the user. If the
2355 * getxattr() prior to this succeeded, check to see if we need to
2356 * canonicalize the value to be finally returned to the user.
2357 *
2358 * Permission check is handled by selinux_inode_getxattr hook.
2359 */
2360 static int selinux_inode_getsecurity(const struct inode *inode, const char *name, void *buffer, size_t size, int err)
2361 {
2362 struct inode_security_struct *isec = inode->i_security;
2363
2364 if (strcmp(name, XATTR_SELINUX_SUFFIX))
2365 return -EOPNOTSUPP;
2366
2367 return selinux_getsecurity(isec->sid, buffer, size);
2368 }
2369
2370 static int selinux_inode_setsecurity(struct inode *inode, const char *name,
2371 const void *value, size_t size, int flags)
2372 {
2373 struct inode_security_struct *isec = inode->i_security;
2374 u32 newsid;
2375 int rc;
2376
2377 if (strcmp(name, XATTR_SELINUX_SUFFIX))
2378 return -EOPNOTSUPP;
2379
2380 if (!value || !size)
2381 return -EACCES;
2382
2383 rc = security_context_to_sid((void*)value, size, &newsid);
2384 if (rc)
2385 return rc;
2386
2387 isec->sid = newsid;
2388 return 0;
2389 }
2390
2391 static int selinux_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size)
2392 {
2393 const int len = sizeof(XATTR_NAME_SELINUX);
2394 if (buffer && len <= buffer_size)
2395 memcpy(buffer, XATTR_NAME_SELINUX, len);
2396 return len;
2397 }
2398
2399 /* file security operations */
2400
2401 static int selinux_file_permission(struct file *file, int mask)
2402 {
2403 struct inode *inode = file->f_dentry->d_inode;
2404
2405 if (!mask) {
2406 /* No permission to check. Existence test. */
2407 return 0;
2408 }
2409
2410 /* file_mask_to_av won't add FILE__WRITE if MAY_APPEND is set */
2411 if ((file->f_flags & O_APPEND) && (mask & MAY_WRITE))
2412 mask |= MAY_APPEND;
2413
2414 return file_has_perm(current, file,
2415 file_mask_to_av(inode->i_mode, mask));
2416 }
2417
2418 static int selinux_file_alloc_security(struct file *file)
2419 {
2420 return file_alloc_security(file);
2421 }
2422
2423 static void selinux_file_free_security(struct file *file)
2424 {
2425 file_free_security(file);
2426 }
2427
2428 static int selinux_file_ioctl(struct file *file, unsigned int cmd,
2429 unsigned long arg)
2430 {
2431 int error = 0;
2432
2433 switch (cmd) {
2434 case FIONREAD:
2435 /* fall through */
2436 case FIBMAP:
2437 /* fall through */
2438 case FIGETBSZ:
2439 /* fall through */
2440 case EXT2_IOC_GETFLAGS:
2441 /* fall through */
2442 case EXT2_IOC_GETVERSION:
2443 error = file_has_perm(current, file, FILE__GETATTR);
2444 break;
2445
2446 case EXT2_IOC_SETFLAGS:
2447 /* fall through */
2448 case EXT2_IOC_SETVERSION:
2449 error = file_has_perm(current, file, FILE__SETATTR);
2450 break;
2451
2452 /* sys_ioctl() checks */
2453 case FIONBIO:
2454 /* fall through */
2455 case FIOASYNC:
2456 error = file_has_perm(current, file, 0);
2457 break;
2458
2459 case KDSKBENT:
2460 case KDSKBSENT:
2461 error = task_has_capability(current,CAP_SYS_TTY_CONFIG);
2462 break;
2463
2464 /* default case assumes that the command will go
2465 * to the file's ioctl() function.
2466 */
2467 default:
2468 error = file_has_perm(current, file, FILE__IOCTL);
2469
2470 }
2471 return error;
2472 }
2473
2474 static int file_map_prot_check(struct file *file, unsigned long prot, int shared)
2475 {
2476 #ifndef CONFIG_PPC32
2477 if ((prot & PROT_EXEC) && (!file || (!shared && (prot & PROT_WRITE)))) {
2478 /*
2479 * We are making executable an anonymous mapping or a
2480 * private file mapping that will also be writable.
2481 * This has an additional check.
2482 */
2483 int rc = task_has_perm(current, current, PROCESS__EXECMEM);
2484 if (rc)
2485 return rc;
2486 }
2487 #endif
2488
2489 if (file) {
2490 /* read access is always possible with a mapping */
2491 u32 av = FILE__READ;
2492
2493 /* write access only matters if the mapping is shared */
2494 if (shared && (prot & PROT_WRITE))
2495 av |= FILE__WRITE;
2496
2497 if (prot & PROT_EXEC)
2498 av |= FILE__EXECUTE;
2499
2500 return file_has_perm(current, file, av);
2501 }
2502 return 0;
2503 }
2504
2505 static int selinux_file_mmap(struct file *file, unsigned long reqprot,
2506 unsigned long prot, unsigned long flags)
2507 {
2508 int rc;
2509
2510 rc = secondary_ops->file_mmap(file, reqprot, prot, flags);
2511 if (rc)
2512 return rc;
2513
2514 if (selinux_checkreqprot)
2515 prot = reqprot;
2516
2517 return file_map_prot_check(file, prot,
2518 (flags & MAP_TYPE) == MAP_SHARED);
2519 }
2520
2521 static int selinux_file_mprotect(struct vm_area_struct *vma,
2522 unsigned long reqprot,
2523 unsigned long prot)
2524 {
2525 int rc;
2526
2527 rc = secondary_ops->file_mprotect(vma, reqprot, prot);
2528 if (rc)
2529 return rc;
2530
2531 if (selinux_checkreqprot)
2532 prot = reqprot;
2533
2534 #ifndef CONFIG_PPC32
2535 if ((prot & PROT_EXEC) && !(vma->vm_flags & VM_EXEC)) {
2536 rc = 0;
2537 if (vma->vm_start >= vma->vm_mm->start_brk &&
2538 vma->vm_end <= vma->vm_mm->brk) {
2539 rc = task_has_perm(current, current,
2540 PROCESS__EXECHEAP);
2541 } else if (!vma->vm_file &&
2542 vma->vm_start <= vma->vm_mm->start_stack &&
2543 vma->vm_end >= vma->vm_mm->start_stack) {
2544 rc = task_has_perm(current, current, PROCESS__EXECSTACK);
2545 } else if (vma->vm_file && vma->anon_vma) {
2546 /*
2547 * We are making executable a file mapping that has
2548 * had some COW done. Since pages might have been
2549 * written, check ability to execute the possibly
2550 * modified content. This typically should only
2551 * occur for text relocations.
2552 */
2553 rc = file_has_perm(current, vma->vm_file,
2554 FILE__EXECMOD);
2555 }
2556 if (rc)
2557 return rc;
2558 }
2559 #endif
2560
2561 return file_map_prot_check(vma->vm_file, prot, vma->vm_flags&VM_SHARED);
2562 }
2563
2564 static int selinux_file_lock(struct file *file, unsigned int cmd)
2565 {
2566 return file_has_perm(current, file, FILE__LOCK);
2567 }
2568
2569 static int selinux_file_fcntl(struct file *file, unsigned int cmd,
2570 unsigned long arg)
2571 {
2572 int err = 0;
2573
2574 switch (cmd) {
2575 case F_SETFL:
2576 if (!file->f_dentry || !file->f_dentry->d_inode) {
2577 err = -EINVAL;
2578 break;
2579 }
2580
2581 if ((file->f_flags & O_APPEND) && !(arg & O_APPEND)) {
2582 err = file_has_perm(current, file,FILE__WRITE);
2583 break;
2584 }
2585 /* fall through */
2586 case F_SETOWN:
2587 case F_SETSIG:
2588 case F_GETFL:
2589 case F_GETOWN:
2590 case F_GETSIG:
2591 /* Just check FD__USE permission */
2592 err = file_has_perm(current, file, 0);
2593 break;
2594 case F_GETLK:
2595 case F_SETLK:
2596 case F_SETLKW:
2597 #if BITS_PER_LONG == 32
2598 case F_GETLK64:
2599 case F_SETLK64:
2600 case F_SETLKW64:
2601 #endif
2602 if (!file->f_dentry || !file->f_dentry->d_inode) {
2603 err = -EINVAL;
2604 break;
2605 }
2606 err = file_has_perm(current, file, FILE__LOCK);
2607 break;
2608 }
2609
2610 return err;
2611 }
2612
2613 static int selinux_file_set_fowner(struct file *file)
2614 {
2615 struct task_security_struct *tsec;
2616 struct file_security_struct *fsec;
2617
2618 tsec = current->security;
2619 fsec = file->f_security;
2620 fsec->fown_sid = tsec->sid;
2621
2622 return 0;
2623 }
2624
2625 static int selinux_file_send_sigiotask(struct task_struct *tsk,
2626 struct fown_struct *fown, int signum)
2627 {
2628 struct file *file;
2629 u32 perm;
2630 struct task_security_struct *tsec;
2631 struct file_security_struct *fsec;
2632
2633 /* struct fown_struct is never outside the context of a struct file */
2634 file = (struct file *)((long)fown - offsetof(struct file,f_owner));
2635
2636 tsec = tsk->security;
2637 fsec = file->f_security;
2638
2639 if (!signum)
2640 perm = signal_to_av(SIGIO); /* as per send_sigio_to_task */
2641 else
2642 perm = signal_to_av(signum);
2643
2644 return avc_has_perm(fsec->fown_sid, tsec->sid,
2645 SECCLASS_PROCESS, perm, NULL);
2646 }
2647
2648 static int selinux_file_receive(struct file *file)
2649 {
2650 return file_has_perm(current, file, file_to_av(file));
2651 }
2652
2653 /* task security operations */
2654
2655 static int selinux_task_create(unsigned long clone_flags)
2656 {
2657 int rc;
2658
2659 rc = secondary_ops->task_create(clone_flags);
2660 if (rc)
2661 return rc;
2662
2663 return task_has_perm(current, current, PROCESS__FORK);
2664 }
2665
2666 static int selinux_task_alloc_security(struct task_struct *tsk)
2667 {
2668 struct task_security_struct *tsec1, *tsec2;
2669 int rc;
2670
2671 tsec1 = current->security;
2672
2673 rc = task_alloc_security(tsk);
2674 if (rc)
2675 return rc;
2676 tsec2 = tsk->security;
2677
2678 tsec2->osid = tsec1->osid;
2679 tsec2->sid = tsec1->sid;
2680
2681 /* Retain the exec, fs, key, and sock SIDs across fork */
2682 tsec2->exec_sid = tsec1->exec_sid;
2683 tsec2->create_sid = tsec1->create_sid;
2684 tsec2->keycreate_sid = tsec1->keycreate_sid;
2685 tsec2->sockcreate_sid = tsec1->sockcreate_sid;
2686
2687 /* Retain ptracer SID across fork, if any.
2688 This will be reset by the ptrace hook upon any
2689 subsequent ptrace_attach operations. */
2690 tsec2->ptrace_sid = tsec1->ptrace_sid;
2691
2692 return 0;
2693 }
2694
2695 static void selinux_task_free_security(struct task_struct *tsk)
2696 {
2697 task_free_security(tsk);
2698 }
2699
2700 static int selinux_task_setuid(uid_t id0, uid_t id1, uid_t id2, int flags)
2701 {
2702 /* Since setuid only affects the current process, and
2703 since the SELinux controls are not based on the Linux
2704 identity attributes, SELinux does not need to control
2705 this operation. However, SELinux does control the use
2706 of the CAP_SETUID and CAP_SETGID capabilities using the
2707 capable hook. */
2708 return 0;
2709 }
2710
2711 static int selinux_task_post_setuid(uid_t id0, uid_t id1, uid_t id2, int flags)
2712 {
2713 return secondary_ops->task_post_setuid(id0,id1,id2,flags);
2714 }
2715
2716 static int selinux_task_setgid(gid_t id0, gid_t id1, gid_t id2, int flags)
2717 {
2718 /* See the comment for setuid above. */
2719 return 0;
2720 }
2721
2722 static int selinux_task_setpgid(struct task_struct *p, pid_t pgid)
2723 {
2724 return task_has_perm(current, p, PROCESS__SETPGID);
2725 }
2726
2727 static int selinux_task_getpgid(struct task_struct *p)
2728 {
2729 return task_has_perm(current, p, PROCESS__GETPGID);
2730 }
2731
2732 static int selinux_task_getsid(struct task_struct *p)
2733 {
2734 return task_has_perm(current, p, PROCESS__GETSESSION);
2735 }
2736
2737 static void selinux_task_getsecid(struct task_struct *p, u32 *secid)
2738 {
2739 selinux_get_task_sid(p, secid);
2740 }
2741
2742 static int selinux_task_setgroups(struct group_info *group_info)
2743 {
2744 /* See the comment for setuid above. */
2745 return 0;
2746 }
2747
2748 static int selinux_task_setnice(struct task_struct *p, int nice)
2749 {
2750 int rc;
2751
2752 rc = secondary_ops->task_setnice(p, nice);
2753 if (rc)
2754 return rc;
2755
2756 return task_has_perm(current,p, PROCESS__SETSCHED);
2757 }
2758
2759 static int selinux_task_setioprio(struct task_struct *p, int ioprio)
2760 {
2761 return task_has_perm(current, p, PROCESS__SETSCHED);
2762 }
2763
2764 static int selinux_task_getioprio(struct task_struct *p)
2765 {
2766 return task_has_perm(current, p, PROCESS__GETSCHED);
2767 }
2768
2769 static int selinux_task_setrlimit(unsigned int resource, struct rlimit *new_rlim)
2770 {
2771 struct rlimit *old_rlim = current->signal->rlim + resource;
2772 int rc;
2773
2774 rc = secondary_ops->task_setrlimit(resource, new_rlim);
2775 if (rc)
2776 return rc;
2777
2778 /* Control the ability to change the hard limit (whether
2779 lowering or raising it), so that the hard limit can
2780 later be used as a safe reset point for the soft limit
2781 upon context transitions. See selinux_bprm_apply_creds. */
2782 if (old_rlim->rlim_max != new_rlim->rlim_max)
2783 return task_has_perm(current, current, PROCESS__SETRLIMIT);
2784
2785 return 0;
2786 }
2787
2788 static int selinux_task_setscheduler(struct task_struct *p, int policy, struct sched_param *lp)
2789 {
2790 return task_has_perm(current, p, PROCESS__SETSCHED);
2791 }
2792
2793 static int selinux_task_getscheduler(struct task_struct *p)
2794 {
2795 return task_has_perm(current, p, PROCESS__GETSCHED);
2796 }
2797
2798 static int selinux_task_movememory(struct task_struct *p)
2799 {
2800 return task_has_perm(current, p, PROCESS__SETSCHED);
2801 }
2802
2803 static int selinux_task_kill(struct task_struct *p, struct siginfo *info,
2804 int sig, u32 secid)
2805 {
2806 u32 perm;
2807 int rc;
2808 struct task_security_struct *tsec;
2809
2810 rc = secondary_ops->task_kill(p, info, sig, secid);
2811 if (rc)
2812 return rc;
2813
2814 if (info != SEND_SIG_NOINFO && (is_si_special(info) || SI_FROMKERNEL(info)))
2815 return 0;
2816
2817 if (!sig)
2818 perm = PROCESS__SIGNULL; /* null signal; existence test */
2819 else
2820 perm = signal_to_av(sig);
2821 tsec = p->security;
2822 if (secid)
2823 rc = avc_has_perm(secid, tsec->sid, SECCLASS_PROCESS, perm, NULL);
2824 else
2825 rc = task_has_perm(current, p, perm);
2826 return rc;
2827 }
2828
2829 static int selinux_task_prctl(int option,
2830 unsigned long arg2,
2831 unsigned long arg3,
2832 unsigned long arg4,
2833 unsigned long arg5)
2834 {
2835 /* The current prctl operations do not appear to require
2836 any SELinux controls since they merely observe or modify
2837 the state of the current process. */
2838 return 0;
2839 }
2840
2841 static int selinux_task_wait(struct task_struct *p)
2842 {
2843 u32 perm;
2844
2845 perm = signal_to_av(p->exit_signal);
2846
2847 return task_has_perm(p, current, perm);
2848 }
2849
2850 static void selinux_task_reparent_to_init(struct task_struct *p)
2851 {
2852 struct task_security_struct *tsec;
2853
2854 secondary_ops->task_reparent_to_init(p);
2855
2856 tsec = p->security;
2857 tsec->osid = tsec->sid;
2858 tsec->sid = SECINITSID_KERNEL;
2859 return;
2860 }
2861
2862 static void selinux_task_to_inode(struct task_struct *p,
2863 struct inode *inode)
2864 {
2865 struct task_security_struct *tsec = p->security;
2866 struct inode_security_struct *isec = inode->i_security;
2867
2868 isec->sid = tsec->sid;
2869 isec->initialized = 1;
2870 return;
2871 }
2872
2873 /* Returns error only if unable to parse addresses */
2874 static int selinux_parse_skb_ipv4(struct sk_buff *skb, struct avc_audit_data *ad)
2875 {
2876 int offset, ihlen, ret = -EINVAL;
2877 struct iphdr _iph, *ih;
2878
2879 offset = skb->nh.raw - skb->data;
2880 ih = skb_header_pointer(skb, offset, sizeof(_iph), &_iph);
2881 if (ih == NULL)
2882 goto out;
2883
2884 ihlen = ih->ihl * 4;
2885 if (ihlen < sizeof(_iph))
2886 goto out;
2887
2888 ad->u.net.v4info.saddr = ih->saddr;
2889 ad->u.net.v4info.daddr = ih->daddr;
2890 ret = 0;
2891
2892 switch (ih->protocol) {
2893 case IPPROTO_TCP: {
2894 struct tcphdr _tcph, *th;
2895
2896 if (ntohs(ih->frag_off) & IP_OFFSET)
2897 break;
2898
2899 offset += ihlen;
2900 th = skb_header_pointer(skb, offset, sizeof(_tcph), &_tcph);
2901 if (th == NULL)
2902 break;
2903
2904 ad->u.net.sport = th->source;
2905 ad->u.net.dport = th->dest;
2906 break;
2907 }
2908
2909 case IPPROTO_UDP: {
2910 struct udphdr _udph, *uh;
2911
2912 if (ntohs(ih->frag_off) & IP_OFFSET)
2913 break;
2914
2915 offset += ihlen;
2916 uh = skb_header_pointer(skb, offset, sizeof(_udph), &_udph);
2917 if (uh == NULL)
2918 break;
2919
2920 ad->u.net.sport = uh->source;
2921 ad->u.net.dport = uh->dest;
2922 break;
2923 }
2924
2925 default:
2926 break;
2927 }
2928 out:
2929 return ret;
2930 }
2931
2932 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
2933
2934 /* Returns error only if unable to parse addresses */
2935 static int selinux_parse_skb_ipv6(struct sk_buff *skb, struct avc_audit_data *ad)
2936 {
2937 u8 nexthdr;
2938 int ret = -EINVAL, offset;
2939 struct ipv6hdr _ipv6h, *ip6;
2940
2941 offset = skb->nh.raw - skb->data;
2942 ip6 = skb_header_pointer(skb, offset, sizeof(_ipv6h), &_ipv6h);
2943 if (ip6 == NULL)
2944 goto out;
2945
2946 ipv6_addr_copy(&ad->u.net.v6info.saddr, &ip6->saddr);
2947 ipv6_addr_copy(&ad->u.net.v6info.daddr, &ip6->daddr);
2948 ret = 0;
2949
2950 nexthdr = ip6->nexthdr;
2951 offset += sizeof(_ipv6h);
2952 offset = ipv6_skip_exthdr(skb, offset, &nexthdr);
2953 if (offset < 0)
2954 goto out;
2955
2956 switch (nexthdr) {
2957 case IPPROTO_TCP: {
2958 struct tcphdr _tcph, *th;
2959
2960 th = skb_header_pointer(skb, offset, sizeof(_tcph), &_tcph);
2961 if (th == NULL)
2962 break;
2963
2964 ad->u.net.sport = th->source;
2965 ad->u.net.dport = th->dest;
2966 break;
2967 }
2968
2969 case IPPROTO_UDP: {
2970 struct udphdr _udph, *uh;
2971
2972 uh = skb_header_pointer(skb, offset, sizeof(_udph), &_udph);
2973 if (uh == NULL)
2974 break;
2975
2976 ad->u.net.sport = uh->source;
2977 ad->u.net.dport = uh->dest;
2978 break;
2979 }
2980
2981 /* includes fragments */
2982 default:
2983 break;
2984 }
2985 out:
2986 return ret;
2987 }
2988
2989 #endif /* IPV6 */
2990
2991 static int selinux_parse_skb(struct sk_buff *skb, struct avc_audit_data *ad,
2992 char **addrp, int *len, int src)
2993 {
2994 int ret = 0;
2995
2996 switch (ad->u.net.family) {
2997 case PF_INET:
2998 ret = selinux_parse_skb_ipv4(skb, ad);
2999 if (ret || !addrp)
3000 break;
3001 *len = 4;
3002 *addrp = (char *)(src ? &ad->u.net.v4info.saddr :
3003 &ad->u.net.v4info.daddr);
3004 break;
3005
3006 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
3007 case PF_INET6:
3008 ret = selinux_parse_skb_ipv6(skb, ad);
3009 if (ret || !addrp)
3010 break;
3011 *len = 16;
3012 *addrp = (char *)(src ? &ad->u.net.v6info.saddr :
3013 &ad->u.net.v6info.daddr);
3014 break;
3015 #endif /* IPV6 */
3016 default:
3017 break;
3018 }
3019
3020 return ret;
3021 }
3022
3023 /* socket security operations */
3024 static int socket_has_perm(struct task_struct *task, struct socket *sock,
3025 u32 perms)
3026 {
3027 struct inode_security_struct *isec;
3028 struct task_security_struct *tsec;
3029 struct avc_audit_data ad;
3030 int err = 0;
3031
3032 tsec = task->security;
3033 isec = SOCK_INODE(sock)->i_security;
3034
3035 if (isec->sid == SECINITSID_KERNEL)
3036 goto out;
3037
3038 AVC_AUDIT_DATA_INIT(&ad,NET);
3039 ad.u.net.sk = sock->sk;
3040 err = avc_has_perm(tsec->sid, isec->sid, isec->sclass, perms, &ad);
3041
3042 out:
3043 return err;
3044 }
3045
3046 static int selinux_socket_create(int family, int type,
3047 int protocol, int kern)
3048 {
3049 int err = 0;
3050 struct task_security_struct *tsec;
3051 u32 newsid;
3052
3053 if (kern)
3054 goto out;
3055
3056 tsec = current->security;
3057 newsid = tsec->sockcreate_sid ? : tsec->sid;
3058 err = avc_has_perm(tsec->sid, newsid,
3059 socket_type_to_security_class(family, type,
3060 protocol), SOCKET__CREATE, NULL);
3061
3062 out:
3063 return err;
3064 }
3065
3066 static void selinux_socket_post_create(struct socket *sock, int family,
3067 int type, int protocol, int kern)
3068 {
3069 struct inode_security_struct *isec;
3070 struct task_security_struct *tsec;
3071 u32 newsid;
3072
3073 isec = SOCK_INODE(sock)->i_security;
3074
3075 tsec = current->security;
3076 newsid = tsec->sockcreate_sid ? : tsec->sid;
3077 isec->sclass = socket_type_to_security_class(family, type, protocol);
3078 isec->sid = kern ? SECINITSID_KERNEL : newsid;
3079 isec->initialized = 1;
3080
3081 return;
3082 }
3083
3084 /* Range of port numbers used to automatically bind.
3085 Need to determine whether we should perform a name_bind
3086 permission check between the socket and the port number. */
3087 #define ip_local_port_range_0 sysctl_local_port_range[0]
3088 #define ip_local_port_range_1 sysctl_local_port_range[1]
3089
3090 static int selinux_socket_bind(struct socket *sock, struct sockaddr *address, int addrlen)
3091 {
3092 u16 family;
3093 int err;
3094
3095 err = socket_has_perm(current, sock, SOCKET__BIND);
3096 if (err)
3097 goto out;
3098
3099 /*
3100 * If PF_INET or PF_INET6, check name_bind permission for the port.
3101 * Multiple address binding for SCTP is not supported yet: we just
3102 * check the first address now.
3103 */
3104 family = sock->sk->sk_family;
3105 if (family == PF_INET || family == PF_INET6) {
3106 char *addrp;
3107 struct inode_security_struct *isec;
3108 struct task_security_struct *tsec;
3109 struct avc_audit_data ad;
3110 struct sockaddr_in *addr4 = NULL;
3111 struct sockaddr_in6 *addr6 = NULL;
3112 unsigned short snum;
3113 struct sock *sk = sock->sk;
3114 u32 sid, node_perm, addrlen;
3115
3116 tsec = current->security;
3117 isec = SOCK_INODE(sock)->i_security;
3118
3119 if (family == PF_INET) {
3120 addr4 = (struct sockaddr_in *)address;
3121 snum = ntohs(addr4->sin_port);
3122 addrlen = sizeof(addr4->sin_addr.s_addr);
3123 addrp = (char *)&addr4->sin_addr.s_addr;
3124 } else {
3125 addr6 = (struct sockaddr_in6 *)address;
3126 snum = ntohs(addr6->sin6_port);
3127 addrlen = sizeof(addr6->sin6_addr.s6_addr);
3128 addrp = (char *)&addr6->sin6_addr.s6_addr;
3129 }
3130
3131 if (snum&&(snum < max(PROT_SOCK,ip_local_port_range_0) ||
3132 snum > ip_local_port_range_1)) {
3133 err = security_port_sid(sk->sk_family, sk->sk_type,
3134 sk->sk_protocol, snum, &sid);
3135 if (err)
3136 goto out;
3137 AVC_AUDIT_DATA_INIT(&ad,NET);
3138 ad.u.net.sport = htons(snum);
3139 ad.u.net.family = family;
3140 err = avc_has_perm(isec->sid, sid,
3141 isec->sclass,
3142 SOCKET__NAME_BIND, &ad);
3143 if (err)
3144 goto out;
3145 }
3146
3147 switch(isec->sclass) {
3148 case SECCLASS_TCP_SOCKET:
3149 node_perm = TCP_SOCKET__NODE_BIND;
3150 break;
3151
3152 case SECCLASS_UDP_SOCKET:
3153 node_perm = UDP_SOCKET__NODE_BIND;
3154 break;
3155
3156 default:
3157 node_perm = RAWIP_SOCKET__NODE_BIND;
3158 break;
3159 }
3160
3161 err = security_node_sid(family, addrp, addrlen, &sid);
3162 if (err)
3163 goto out;
3164
3165 AVC_AUDIT_DATA_INIT(&ad,NET);
3166 ad.u.net.sport = htons(snum);
3167 ad.u.net.family = family;
3168
3169 if (family == PF_INET)
3170 ad.u.net.v4info.saddr = addr4->sin_addr.s_addr;
3171 else
3172 ipv6_addr_copy(&ad.u.net.v6info.saddr, &addr6->sin6_addr);
3173
3174 err = avc_has_perm(isec->sid, sid,
3175 isec->sclass, node_perm, &ad);
3176 if (err)
3177 goto out;
3178 }
3179 out:
3180 return err;
3181 }
3182
3183 static int selinux_socket_connect(struct socket *sock, struct sockaddr *address, int addrlen)
3184 {
3185 struct inode_security_struct *isec;
3186 int err;
3187
3188 err = socket_has_perm(current, sock, SOCKET__CONNECT);
3189 if (err)
3190 return err;
3191
3192 /*
3193 * If a TCP socket, check name_connect permission for the port.
3194 */
3195 isec = SOCK_INODE(sock)->i_security;
3196 if (isec->sclass == SECCLASS_TCP_SOCKET) {
3197 struct sock *sk = sock->sk;
3198 struct avc_audit_data ad;
3199 struct sockaddr_in *addr4 = NULL;
3200 struct sockaddr_in6 *addr6 = NULL;
3201 unsigned short snum;
3202 u32 sid;
3203
3204 if (sk->sk_family == PF_INET) {
3205 addr4 = (struct sockaddr_in *)address;
3206 if (addrlen < sizeof(struct sockaddr_in))
3207 return -EINVAL;
3208 snum = ntohs(addr4->sin_port);
3209 } else {
3210 addr6 = (struct sockaddr_in6 *)address;
3211 if (addrlen < SIN6_LEN_RFC2133)
3212 return -EINVAL;
3213 snum = ntohs(addr6->sin6_port);
3214 }
3215
3216 err = security_port_sid(sk->sk_family, sk->sk_type,
3217 sk->sk_protocol, snum, &sid);
3218 if (err)
3219 goto out;
3220
3221 AVC_AUDIT_DATA_INIT(&ad,NET);
3222 ad.u.net.dport = htons(snum);
3223 ad.u.net.family = sk->sk_family;
3224 err = avc_has_perm(isec->sid, sid, isec->sclass,
3225 TCP_SOCKET__NAME_CONNECT, &ad);
3226 if (err)
3227 goto out;
3228 }
3229
3230 out:
3231 return err;
3232 }
3233
3234 static int selinux_socket_listen(struct socket *sock, int backlog)
3235 {
3236 return socket_has_perm(current, sock, SOCKET__LISTEN);
3237 }
3238
3239 static int selinux_socket_accept(struct socket *sock, struct socket *newsock)
3240 {
3241 int err;
3242 struct inode_security_struct *isec;
3243 struct inode_security_struct *newisec;
3244
3245 err = socket_has_perm(current, sock, SOCKET__ACCEPT);
3246 if (err)
3247 return err;
3248
3249 newisec = SOCK_INODE(newsock)->i_security;
3250
3251 isec = SOCK_INODE(sock)->i_security;
3252 newisec->sclass = isec->sclass;
3253 newisec->sid = isec->sid;
3254 newisec->initialized = 1;
3255
3256 return 0;
3257 }
3258
3259 static int selinux_socket_sendmsg(struct socket *sock, struct msghdr *msg,
3260 int size)
3261 {
3262 return socket_has_perm(current, sock, SOCKET__WRITE);
3263 }
3264
3265 static int selinux_socket_recvmsg(struct socket *sock, struct msghdr *msg,
3266 int size, int flags)
3267 {
3268 return socket_has_perm(current, sock, SOCKET__READ);
3269 }
3270
3271 static int selinux_socket_getsockname(struct socket *sock)
3272 {
3273 return socket_has_perm(current, sock, SOCKET__GETATTR);
3274 }
3275
3276 static int selinux_socket_getpeername(struct socket *sock)
3277 {
3278 return socket_has_perm(current, sock, SOCKET__GETATTR);
3279 }
3280
3281 static int selinux_socket_setsockopt(struct socket *sock,int level,int optname)
3282 {
3283 return socket_has_perm(current, sock, SOCKET__SETOPT);
3284 }
3285
3286 static int selinux_socket_getsockopt(struct socket *sock, int level,
3287 int optname)
3288 {
3289 return socket_has_perm(current, sock, SOCKET__GETOPT);
3290 }
3291
3292 static int selinux_socket_shutdown(struct socket *sock, int how)
3293 {
3294 return socket_has_perm(current, sock, SOCKET__SHUTDOWN);
3295 }
3296
3297 static int selinux_socket_unix_stream_connect(struct socket *sock,
3298 struct socket *other,
3299 struct sock *newsk)
3300 {
3301 struct sk_security_struct *ssec;
3302 struct inode_security_struct *isec;
3303 struct inode_security_struct *other_isec;
3304 struct avc_audit_data ad;
3305 int err;
3306
3307 err = secondary_ops->unix_stream_connect(sock, other, newsk);
3308 if (err)
3309 return err;
3310
3311 isec = SOCK_INODE(sock)->i_security;
3312 other_isec = SOCK_INODE(other)->i_security;
3313
3314 AVC_AUDIT_DATA_INIT(&ad,NET);
3315 ad.u.net.sk = other->sk;
3316
3317 err = avc_has_perm(isec->sid, other_isec->sid,
3318 isec->sclass,
3319 UNIX_STREAM_SOCKET__CONNECTTO, &ad);
3320 if (err)
3321 return err;
3322
3323 /* connecting socket */
3324 ssec = sock->sk->sk_security;
3325 ssec->peer_sid = other_isec->sid;
3326
3327 /* server child socket */
3328 ssec = newsk->sk_security;
3329 ssec->peer_sid = isec->sid;
3330
3331 return 0;
3332 }
3333
3334 static int selinux_socket_unix_may_send(struct socket *sock,
3335 struct socket *other)
3336 {
3337 struct inode_security_struct *isec;
3338 struct inode_security_struct *other_isec;
3339 struct avc_audit_data ad;
3340 int err;
3341
3342 isec = SOCK_INODE(sock)->i_security;
3343 other_isec = SOCK_INODE(other)->i_security;
3344
3345 AVC_AUDIT_DATA_INIT(&ad,NET);
3346 ad.u.net.sk = other->sk;
3347
3348 err = avc_has_perm(isec->sid, other_isec->sid,
3349 isec->sclass, SOCKET__SENDTO, &ad);
3350 if (err)
3351 return err;
3352
3353 return 0;
3354 }
3355
3356 static int selinux_sock_rcv_skb_compat(struct sock *sk, struct sk_buff *skb,
3357 struct avc_audit_data *ad, u32 sock_sid, u16 sock_class,
3358 u16 family, char *addrp, int len)
3359 {
3360 int err = 0;
3361 u32 netif_perm, node_perm, node_sid, if_sid, recv_perm = 0;
3362
3363 if (!skb->dev)
3364 goto out;
3365
3366 err = sel_netif_sids(skb->dev, &if_sid, NULL);
3367 if (err)
3368 goto out;
3369
3370 switch (sock_class) {
3371 case SECCLASS_UDP_SOCKET:
3372 netif_perm = NETIF__UDP_RECV;
3373 node_perm = NODE__UDP_RECV;
3374 recv_perm = UDP_SOCKET__RECV_MSG;
3375 break;
3376
3377 case SECCLASS_TCP_SOCKET:
3378 netif_perm = NETIF__TCP_RECV;
3379 node_perm = NODE__TCP_RECV;
3380 recv_perm = TCP_SOCKET__RECV_MSG;
3381 break;
3382
3383 default:
3384 netif_perm = NETIF__RAWIP_RECV;
3385 node_perm = NODE__RAWIP_RECV;
3386 break;
3387 }
3388
3389 err = avc_has_perm(sock_sid, if_sid, SECCLASS_NETIF, netif_perm, ad);
3390 if (err)
3391 goto out;
3392
3393 err = security_node_sid(family, addrp, len, &node_sid);
3394 if (err)
3395 goto out;
3396
3397 err = avc_has_perm(sock_sid, node_sid, SECCLASS_NODE, node_perm, ad);
3398 if (err)
3399 goto out;
3400
3401 if (recv_perm) {
3402 u32 port_sid;
3403
3404 err = security_port_sid(sk->sk_family, sk->sk_type,
3405 sk->sk_protocol, ntohs(ad->u.net.sport),
3406 &port_sid);
3407 if (err)
3408 goto out;
3409
3410 err = avc_has_perm(sock_sid, port_sid,
3411 sock_class, recv_perm, ad);
3412 }
3413
3414 out:
3415 return err;
3416 }
3417
3418 static int selinux_socket_sock_rcv_skb(struct sock *sk, struct sk_buff *skb)
3419 {
3420 u16 family;
3421 u16 sock_class = 0;
3422 char *addrp;
3423 int len, err = 0;
3424 u32 sock_sid = 0;
3425 struct socket *sock;
3426 struct avc_audit_data ad;
3427
3428 family = sk->sk_family;
3429 if (family != PF_INET && family != PF_INET6)
3430 goto out;
3431
3432 /* Handle mapped IPv4 packets arriving via IPv6 sockets */
3433 if (family == PF_INET6 && skb->protocol == ntohs(ETH_P_IP))
3434 family = PF_INET;
3435
3436 read_lock_bh(&sk->sk_callback_lock);
3437 sock = sk->sk_socket;
3438 if (sock) {
3439 struct inode *inode;
3440 inode = SOCK_INODE(sock);
3441 if (inode) {
3442 struct inode_security_struct *isec;
3443 isec = inode->i_security;
3444 sock_sid = isec->sid;
3445 sock_class = isec->sclass;
3446 }
3447 }
3448 read_unlock_bh(&sk->sk_callback_lock);
3449 if (!sock_sid)
3450 goto out;
3451
3452 AVC_AUDIT_DATA_INIT(&ad, NET);
3453 ad.u.net.netif = skb->dev ? skb->dev->name : "[unknown]";
3454 ad.u.net.family = family;
3455
3456 err = selinux_parse_skb(skb, &ad, &addrp, &len, 1);
3457 if (err)
3458 goto out;
3459
3460 if (selinux_compat_net)
3461 err = selinux_sock_rcv_skb_compat(sk, skb, &ad, sock_sid,
3462 sock_class, family,
3463 addrp, len);
3464 else
3465 err = avc_has_perm(sock_sid, skb->secmark, SECCLASS_PACKET,
3466 PACKET__RECV, &ad);
3467 if (err)
3468 goto out;
3469
3470 err = selinux_xfrm_sock_rcv_skb(sock_sid, skb);
3471 out:
3472 return err;
3473 }
3474
3475 static int selinux_socket_getpeersec_stream(struct socket *sock, char __user *optval,
3476 int __user *optlen, unsigned len)
3477 {
3478 int err = 0;
3479 char *scontext;
3480 u32 scontext_len;
3481 struct sk_security_struct *ssec;
3482 struct inode_security_struct *isec;
3483 u32 peer_sid = 0;
3484
3485 isec = SOCK_INODE(sock)->i_security;
3486
3487 /* if UNIX_STREAM check peer_sid, if TCP check dst for labelled sa */
3488 if (isec->sclass == SECCLASS_UNIX_STREAM_SOCKET) {
3489 ssec = sock->sk->sk_security;
3490 peer_sid = ssec->peer_sid;
3491 }
3492 else if (isec->sclass == SECCLASS_TCP_SOCKET) {
3493 peer_sid = selinux_socket_getpeer_stream(sock->sk);
3494
3495 if (peer_sid == SECSID_NULL) {
3496 err = -ENOPROTOOPT;
3497 goto out;
3498 }
3499 }
3500 else {
3501 err = -ENOPROTOOPT;
3502 goto out;
3503 }
3504
3505 err = security_sid_to_context(peer_sid, &scontext, &scontext_len);
3506
3507 if (err)
3508 goto out;
3509
3510 if (scontext_len > len) {
3511 err = -ERANGE;
3512 goto out_len;
3513 }
3514
3515 if (copy_to_user(optval, scontext, scontext_len))
3516 err = -EFAULT;
3517
3518 out_len:
3519 if (put_user(scontext_len, optlen))
3520 err = -EFAULT;
3521
3522 kfree(scontext);
3523 out:
3524 return err;
3525 }
3526
3527 static int selinux_socket_getpeersec_dgram(struct socket *sock, struct sk_buff *skb, u32 *secid)
3528 {
3529 u32 peer_secid = SECSID_NULL;
3530 int err = 0;
3531
3532 if (sock && (sock->sk->sk_family == PF_UNIX))
3533 selinux_get_inode_sid(SOCK_INODE(sock), &peer_secid);
3534 else if (skb)
3535 peer_secid = selinux_socket_getpeer_dgram(skb);
3536
3537 if (peer_secid == SECSID_NULL)
3538 err = -EINVAL;
3539 *secid = peer_secid;
3540
3541 return err;
3542 }
3543
3544 static int selinux_sk_alloc_security(struct sock *sk, int family, gfp_t priority)
3545 {
3546 return sk_alloc_security(sk, family, priority);
3547 }
3548
3549 static void selinux_sk_free_security(struct sock *sk)
3550 {
3551 sk_free_security(sk);
3552 }
3553
3554 static unsigned int selinux_sk_getsid_security(struct sock *sk, struct flowi *fl, u8 dir)
3555 {
3556 struct inode_security_struct *isec;
3557 u32 sock_sid = SECINITSID_ANY_SOCKET;
3558
3559 if (!sk)
3560 return selinux_no_sk_sid(fl);
3561
3562 read_lock_bh(&sk->sk_callback_lock);
3563 isec = get_sock_isec(sk);
3564
3565 if (isec)
3566 sock_sid = isec->sid;
3567
3568 read_unlock_bh(&sk->sk_callback_lock);
3569 return sock_sid;
3570 }
3571
3572 static int selinux_nlmsg_perm(struct sock *sk, struct sk_buff *skb)
3573 {
3574 int err = 0;
3575 u32 perm;
3576 struct nlmsghdr *nlh;
3577 struct socket *sock = sk->sk_socket;
3578 struct inode_security_struct *isec = SOCK_INODE(sock)->i_security;
3579
3580 if (skb->len < NLMSG_SPACE(0)) {
3581 err = -EINVAL;
3582 goto out;
3583 }
3584 nlh = (struct nlmsghdr *)skb->data;
3585
3586 err = selinux_nlmsg_lookup(isec->sclass, nlh->nlmsg_type, &perm);
3587 if (err) {
3588 if (err == -EINVAL) {
3589 audit_log(current->audit_context, GFP_KERNEL, AUDIT_SELINUX_ERR,
3590 "SELinux: unrecognized netlink message"
3591 " type=%hu for sclass=%hu\n",
3592 nlh->nlmsg_type, isec->sclass);
3593 if (!selinux_enforcing)
3594 err = 0;
3595 }
3596
3597 /* Ignore */
3598 if (err == -ENOENT)
3599 err = 0;
3600 goto out;
3601 }
3602
3603 err = socket_has_perm(current, sock, perm);
3604 out:
3605 return err;
3606 }
3607
3608 #ifdef CONFIG_NETFILTER
3609
3610 static int selinux_ip_postroute_last_compat(struct sock *sk, struct net_device *dev,
3611 struct inode_security_struct *isec,
3612 struct avc_audit_data *ad,
3613 u16 family, char *addrp, int len)
3614 {
3615 int err;
3616 u32 netif_perm, node_perm, node_sid, if_sid, send_perm = 0;
3617
3618 err = sel_netif_sids(dev, &if_sid, NULL);
3619 if (err)
3620 goto out;
3621
3622 switch (isec->sclass) {
3623 case SECCLASS_UDP_SOCKET:
3624 netif_perm = NETIF__UDP_SEND;
3625 node_perm = NODE__UDP_SEND;
3626 send_perm = UDP_SOCKET__SEND_MSG;
3627 break;
3628
3629 case SECCLASS_TCP_SOCKET:
3630 netif_perm = NETIF__TCP_SEND;
3631 node_perm = NODE__TCP_SEND;
3632 send_perm = TCP_SOCKET__SEND_MSG;
3633 break;
3634
3635 default:
3636 netif_perm = NETIF__RAWIP_SEND;
3637 node_perm = NODE__RAWIP_SEND;
3638 break;
3639 }
3640
3641 err = avc_has_perm(isec->sid, if_sid, SECCLASS_NETIF, netif_perm, ad);
3642 if (err)
3643 goto out;
3644
3645 err = security_node_sid(family, addrp, len, &node_sid);
3646 if (err)
3647 goto out;
3648
3649 err = avc_has_perm(isec->sid, node_sid, SECCLASS_NODE, node_perm, ad);
3650 if (err)
3651 goto out;
3652
3653 if (send_perm) {
3654 u32 port_sid;
3655
3656 err = security_port_sid(sk->sk_family,
3657 sk->sk_type,
3658 sk->sk_protocol,
3659 ntohs(ad->u.net.dport),
3660 &port_sid);
3661 if (err)
3662 goto out;
3663
3664 err = avc_has_perm(isec->sid, port_sid, isec->sclass,
3665 send_perm, ad);
3666 }
3667 out:
3668 return err;
3669 }
3670
3671 static unsigned int selinux_ip_postroute_last(unsigned int hooknum,
3672 struct sk_buff **pskb,
3673 const struct net_device *in,
3674 const struct net_device *out,
3675 int (*okfn)(struct sk_buff *),
3676 u16 family)
3677 {
3678 char *addrp;
3679 int len, err = 0;
3680 struct sock *sk;
3681 struct socket *sock;
3682 struct inode *inode;
3683 struct sk_buff *skb = *pskb;
3684 struct inode_security_struct *isec;
3685 struct avc_audit_data ad;
3686 struct net_device *dev = (struct net_device *)out;
3687
3688 sk = skb->sk;
3689 if (!sk)
3690 goto out;
3691
3692 sock = sk->sk_socket;
3693 if (!sock)
3694 goto out;
3695
3696 inode = SOCK_INODE(sock);
3697 if (!inode)
3698 goto out;
3699
3700 isec = inode->i_security;
3701
3702 AVC_AUDIT_DATA_INIT(&ad, NET);
3703 ad.u.net.netif = dev->name;
3704 ad.u.net.family = family;
3705
3706 err = selinux_parse_skb(skb, &ad, &addrp, &len, 0);
3707 if (err)
3708 goto out;
3709
3710 if (selinux_compat_net)
3711 err = selinux_ip_postroute_last_compat(sk, dev, isec, &ad,
3712 family, addrp, len);
3713 else
3714 err = avc_has_perm(isec->sid, skb->secmark, SECCLASS_PACKET,
3715 PACKET__SEND, &ad);
3716
3717 if (err)
3718 goto out;
3719
3720 err = selinux_xfrm_postroute_last(isec->sid, skb);
3721 out:
3722 return err ? NF_DROP : NF_ACCEPT;
3723 }
3724
3725 static unsigned int selinux_ipv4_postroute_last(unsigned int hooknum,
3726 struct sk_buff **pskb,
3727 const struct net_device *in,
3728 const struct net_device *out,
3729 int (*okfn)(struct sk_buff *))
3730 {
3731 return selinux_ip_postroute_last(hooknum, pskb, in, out, okfn, PF_INET);
3732 }
3733
3734 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
3735
3736 static unsigned int selinux_ipv6_postroute_last(unsigned int hooknum,
3737 struct sk_buff **pskb,
3738 const struct net_device *in,
3739 const struct net_device *out,
3740 int (*okfn)(struct sk_buff *))
3741 {
3742 return selinux_ip_postroute_last(hooknum, pskb, in, out, okfn, PF_INET6);
3743 }
3744
3745 #endif /* IPV6 */
3746
3747 #endif /* CONFIG_NETFILTER */
3748
3749 static int selinux_netlink_send(struct sock *sk, struct sk_buff *skb)
3750 {
3751 int err;
3752
3753 err = secondary_ops->netlink_send(sk, skb);
3754 if (err)
3755 return err;
3756
3757 if (policydb_loaded_version >= POLICYDB_VERSION_NLCLASS)
3758 err = selinux_nlmsg_perm(sk, skb);
3759
3760 return err;
3761 }
3762
3763 static int selinux_netlink_recv(struct sk_buff *skb, int capability)
3764 {
3765 int err;
3766 struct avc_audit_data ad;
3767
3768 err = secondary_ops->netlink_recv(skb, capability);
3769 if (err)
3770 return err;
3771
3772 AVC_AUDIT_DATA_INIT(&ad, CAP);
3773 ad.u.cap = capability;
3774
3775 return avc_has_perm(NETLINK_CB(skb).sid, NETLINK_CB(skb).sid,
3776 SECCLASS_CAPABILITY, CAP_TO_MASK(capability), &ad);
3777 }
3778
3779 static int ipc_alloc_security(struct task_struct *task,
3780 struct kern_ipc_perm *perm,
3781 u16 sclass)
3782 {
3783 struct task_security_struct *tsec = task->security;
3784 struct ipc_security_struct *isec;
3785
3786 isec = kzalloc(sizeof(struct ipc_security_struct), GFP_KERNEL);
3787 if (!isec)
3788 return -ENOMEM;
3789
3790 isec->sclass = sclass;
3791 isec->ipc_perm = perm;
3792 isec->sid = tsec->sid;
3793 perm->security = isec;
3794
3795 return 0;
3796 }
3797
3798 static void ipc_free_security(struct kern_ipc_perm *perm)
3799 {
3800 struct ipc_security_struct *isec = perm->security;
3801 perm->security = NULL;
3802 kfree(isec);
3803 }
3804
3805 static int msg_msg_alloc_security(struct msg_msg *msg)
3806 {
3807 struct msg_security_struct *msec;
3808
3809 msec = kzalloc(sizeof(struct msg_security_struct), GFP_KERNEL);
3810 if (!msec)
3811 return -ENOMEM;
3812
3813 msec->msg = msg;
3814 msec->sid = SECINITSID_UNLABELED;
3815 msg->security = msec;
3816
3817 return 0;
3818 }
3819
3820 static void msg_msg_free_security(struct msg_msg *msg)
3821 {
3822 struct msg_security_struct *msec = msg->security;
3823
3824 msg->security = NULL;
3825 kfree(msec);
3826 }
3827
3828 static int ipc_has_perm(struct kern_ipc_perm *ipc_perms,
3829 u32 perms)
3830 {
3831 struct task_security_struct *tsec;
3832 struct ipc_security_struct *isec;
3833 struct avc_audit_data ad;
3834
3835 tsec = current->security;
3836 isec = ipc_perms->security;
3837
3838 AVC_AUDIT_DATA_INIT(&ad, IPC);
3839 ad.u.ipc_id = ipc_perms->key;
3840
3841 return avc_has_perm(tsec->sid, isec->sid, isec->sclass, perms, &ad);
3842 }
3843
3844 static int selinux_msg_msg_alloc_security(struct msg_msg *msg)
3845 {
3846 return msg_msg_alloc_security(msg);
3847 }
3848
3849 static void selinux_msg_msg_free_security(struct msg_msg *msg)
3850 {
3851 msg_msg_free_security(msg);
3852 }
3853
3854 /* message queue security operations */
3855 static int selinux_msg_queue_alloc_security(struct msg_queue *msq)
3856 {
3857 struct task_security_struct *tsec;
3858 struct ipc_security_struct *isec;
3859 struct avc_audit_data ad;
3860 int rc;
3861
3862 rc = ipc_alloc_security(current, &msq->q_perm, SECCLASS_MSGQ);
3863 if (rc)
3864 return rc;
3865
3866 tsec = current->security;
3867 isec = msq->q_perm.security;
3868
3869 AVC_AUDIT_DATA_INIT(&ad, IPC);
3870 ad.u.ipc_id = msq->q_perm.key;
3871
3872 rc = avc_has_perm(tsec->sid, isec->sid, SECCLASS_MSGQ,
3873 MSGQ__CREATE, &ad);
3874 if (rc) {
3875 ipc_free_security(&msq->q_perm);
3876 return rc;
3877 }
3878 return 0;
3879 }
3880
3881 static void selinux_msg_queue_free_security(struct msg_queue *msq)
3882 {
3883 ipc_free_security(&msq->q_perm);
3884 }
3885
3886 static int selinux_msg_queue_associate(struct msg_queue *msq, int msqflg)
3887 {
3888 struct task_security_struct *tsec;
3889 struct ipc_security_struct *isec;
3890 struct avc_audit_data ad;
3891
3892 tsec = current->security;
3893 isec = msq->q_perm.security;
3894
3895 AVC_AUDIT_DATA_INIT(&ad, IPC);
3896 ad.u.ipc_id = msq->q_perm.key;
3897
3898 return avc_has_perm(tsec->sid, isec->sid, SECCLASS_MSGQ,
3899 MSGQ__ASSOCIATE, &ad);
3900 }
3901
3902 static int selinux_msg_queue_msgctl(struct msg_queue *msq, int cmd)
3903 {
3904 int err;
3905 int perms;
3906
3907 switch(cmd) {
3908 case IPC_INFO:
3909 case MSG_INFO:
3910 /* No specific object, just general system-wide information. */
3911 return task_has_system(current, SYSTEM__IPC_INFO);
3912 case IPC_STAT:
3913 case MSG_STAT:
3914 perms = MSGQ__GETATTR | MSGQ__ASSOCIATE;
3915 break;
3916 case IPC_SET:
3917 perms = MSGQ__SETATTR;
3918 break;
3919 case IPC_RMID:
3920 perms = MSGQ__DESTROY;
3921 break;
3922 default:
3923 return 0;
3924 }
3925
3926 err = ipc_has_perm(&msq->q_perm, perms);
3927 return err;
3928 }
3929
3930 static int selinux_msg_queue_msgsnd(struct msg_queue *msq, struct msg_msg *msg, int msqflg)
3931 {
3932 struct task_security_struct *tsec;
3933 struct ipc_security_struct *isec;
3934 struct msg_security_struct *msec;
3935 struct avc_audit_data ad;
3936 int rc;
3937
3938 tsec = current->security;
3939 isec = msq->q_perm.security;
3940 msec = msg->security;
3941
3942 /*
3943 * First time through, need to assign label to the message
3944 */
3945 if (msec->sid == SECINITSID_UNLABELED) {
3946 /*
3947 * Compute new sid based on current process and
3948 * message queue this message will be stored in
3949 */
3950 rc = security_transition_sid(tsec->sid,
3951 isec->sid,
3952 SECCLASS_MSG,
3953 &msec->sid);
3954 if (rc)
3955 return rc;
3956 }
3957
3958 AVC_AUDIT_DATA_INIT(&ad, IPC);
3959 ad.u.ipc_id = msq->q_perm.key;
3960
3961 /* Can this process write to the queue? */
3962 rc = avc_has_perm(tsec->sid, isec->sid, SECCLASS_MSGQ,
3963 MSGQ__WRITE, &ad);
3964 if (!rc)
3965 /* Can this process send the message */
3966 rc = avc_has_perm(tsec->sid, msec->sid,
3967 SECCLASS_MSG, MSG__SEND, &ad);
3968 if (!rc)
3969 /* Can the message be put in the queue? */
3970 rc = avc_has_perm(msec->sid, isec->sid,
3971 SECCLASS_MSGQ, MSGQ__ENQUEUE, &ad);
3972
3973 return rc;
3974 }
3975
3976 static int selinux_msg_queue_msgrcv(struct msg_queue *msq, struct msg_msg *msg,
3977 struct task_struct *target,
3978 long type, int mode)
3979 {
3980 struct task_security_struct *tsec;
3981 struct ipc_security_struct *isec;
3982 struct msg_security_struct *msec;
3983 struct avc_audit_data ad;
3984 int rc;
3985
3986 tsec = target->security;
3987 isec = msq->q_perm.security;
3988 msec = msg->security;
3989
3990 AVC_AUDIT_DATA_INIT(&ad, IPC);
3991 ad.u.ipc_id = msq->q_perm.key;
3992
3993 rc = avc_has_perm(tsec->sid, isec->sid,
3994 SECCLASS_MSGQ, MSGQ__READ, &ad);
3995 if (!rc)
3996 rc = avc_has_perm(tsec->sid, msec->sid,
3997 SECCLASS_MSG, MSG__RECEIVE, &ad);
3998 return rc;
3999 }
4000
4001 /* Shared Memory security operations */
4002 static int selinux_shm_alloc_security(struct shmid_kernel *shp)
4003 {
4004 struct task_security_struct *tsec;
4005 struct ipc_security_struct *isec;
4006 struct avc_audit_data ad;
4007 int rc;
4008
4009 rc = ipc_alloc_security(current, &shp->shm_perm, SECCLASS_SHM);
4010 if (rc)
4011 return rc;
4012
4013 tsec = current->security;
4014 isec = shp->shm_perm.security;
4015
4016 AVC_AUDIT_DATA_INIT(&ad, IPC);
4017 ad.u.ipc_id = shp->shm_perm.key;
4018
4019 rc = avc_has_perm(tsec->sid, isec->sid, SECCLASS_SHM,
4020 SHM__CREATE, &ad);
4021 if (rc) {
4022 ipc_free_security(&shp->shm_perm);
4023 return rc;
4024 }
4025 return 0;
4026 }
4027
4028 static void selinux_shm_free_security(struct shmid_kernel *shp)
4029 {
4030 ipc_free_security(&shp->shm_perm);
4031 }
4032
4033 static int selinux_shm_associate(struct shmid_kernel *shp, int shmflg)
4034 {
4035 struct task_security_struct *tsec;
4036 struct ipc_security_struct *isec;
4037 struct avc_audit_data ad;
4038
4039 tsec = current->security;
4040 isec = shp->shm_perm.security;
4041
4042 AVC_AUDIT_DATA_INIT(&ad, IPC);
4043 ad.u.ipc_id = shp->shm_perm.key;
4044
4045 return avc_has_perm(tsec->sid, isec->sid, SECCLASS_SHM,
4046 SHM__ASSOCIATE, &ad);
4047 }
4048
4049 /* Note, at this point, shp is locked down */
4050 static int selinux_shm_shmctl(struct shmid_kernel *shp, int cmd)
4051 {
4052 int perms;
4053 int err;
4054
4055 switch(cmd) {
4056 case IPC_INFO:
4057 case SHM_INFO:
4058 /* No specific object, just general system-wide information. */
4059 return task_has_system(current, SYSTEM__IPC_INFO);
4060 case IPC_STAT:
4061 case SHM_STAT:
4062 perms = SHM__GETATTR | SHM__ASSOCIATE;
4063 break;
4064 case IPC_SET:
4065 perms = SHM__SETATTR;
4066 break;
4067 case SHM_LOCK:
4068 case SHM_UNLOCK:
4069 perms = SHM__LOCK;
4070 break;
4071 case IPC_RMID:
4072 perms = SHM__DESTROY;
4073 break;
4074 default:
4075 return 0;
4076 }
4077
4078 err = ipc_has_perm(&shp->shm_perm, perms);
4079 return err;
4080 }
4081
4082 static int selinux_shm_shmat(struct shmid_kernel *shp,
4083 char __user *shmaddr, int shmflg)
4084 {
4085 u32 perms;
4086 int rc;
4087
4088 rc = secondary_ops->shm_shmat(shp, shmaddr, shmflg);
4089 if (rc)
4090 return rc;
4091
4092 if (shmflg & SHM_RDONLY)
4093 perms = SHM__READ;
4094 else
4095 perms = SHM__READ | SHM__WRITE;
4096
4097 return ipc_has_perm(&shp->shm_perm, perms);
4098 }
4099
4100 /* Semaphore security operations */
4101 static int selinux_sem_alloc_security(struct sem_array *sma)
4102 {
4103 struct task_security_struct *tsec;
4104 struct ipc_security_struct *isec;
4105 struct avc_audit_data ad;
4106 int rc;
4107
4108 rc = ipc_alloc_security(current, &sma->sem_perm, SECCLASS_SEM);
4109 if (rc)
4110 return rc;
4111
4112 tsec = current->security;
4113 isec = sma->sem_perm.security;
4114
4115 AVC_AUDIT_DATA_INIT(&ad, IPC);
4116 ad.u.ipc_id = sma->sem_perm.key;
4117
4118 rc = avc_has_perm(tsec->sid, isec->sid, SECCLASS_SEM,
4119 SEM__CREATE, &ad);
4120 if (rc) {
4121 ipc_free_security(&sma->sem_perm);
4122 return rc;
4123 }
4124 return 0;
4125 }
4126
4127 static void selinux_sem_free_security(struct sem_array *sma)
4128 {
4129 ipc_free_security(&sma->sem_perm);
4130 }
4131
4132 static int selinux_sem_associate(struct sem_array *sma, int semflg)
4133 {
4134 struct task_security_struct *tsec;
4135 struct ipc_security_struct *isec;
4136 struct avc_audit_data ad;
4137
4138 tsec = current->security;
4139 isec = sma->sem_perm.security;
4140
4141 AVC_AUDIT_DATA_INIT(&ad, IPC);
4142 ad.u.ipc_id = sma->sem_perm.key;
4143
4144 return avc_has_perm(tsec->sid, isec->sid, SECCLASS_SEM,
4145 SEM__ASSOCIATE, &ad);
4146 }
4147
4148 /* Note, at this point, sma is locked down */
4149 static int selinux_sem_semctl(struct sem_array *sma, int cmd)
4150 {
4151 int err;
4152 u32 perms;
4153
4154 switch(cmd) {
4155 case IPC_INFO:
4156 case SEM_INFO:
4157 /* No specific object, just general system-wide information. */
4158 return task_has_system(current, SYSTEM__IPC_INFO);
4159 case GETPID:
4160 case GETNCNT:
4161 case GETZCNT:
4162 perms = SEM__GETATTR;
4163 break;
4164 case GETVAL:
4165 case GETALL:
4166 perms = SEM__READ;
4167 break;
4168 case SETVAL:
4169 case SETALL:
4170 perms = SEM__WRITE;
4171 break;
4172 case IPC_RMID:
4173 perms = SEM__DESTROY;
4174 break;
4175 case IPC_SET:
4176 perms = SEM__SETATTR;
4177 break;
4178 case IPC_STAT:
4179 case SEM_STAT:
4180 perms = SEM__GETATTR | SEM__ASSOCIATE;
4181 break;
4182 default:
4183 return 0;
4184 }
4185
4186 err = ipc_has_perm(&sma->sem_perm, perms);
4187 return err;
4188 }
4189
4190 static int selinux_sem_semop(struct sem_array *sma,
4191 struct sembuf *sops, unsigned nsops, int alter)
4192 {
4193 u32 perms;
4194
4195 if (alter)
4196 perms = SEM__READ | SEM__WRITE;
4197 else
4198 perms = SEM__READ;
4199
4200 return ipc_has_perm(&sma->sem_perm, perms);
4201 }
4202
4203 static int selinux_ipc_permission(struct kern_ipc_perm *ipcp, short flag)
4204 {
4205 u32 av = 0;
4206
4207 av = 0;
4208 if (flag & S_IRUGO)
4209 av |= IPC__UNIX_READ;
4210 if (flag & S_IWUGO)
4211 av |= IPC__UNIX_WRITE;
4212
4213 if (av == 0)
4214 return 0;
4215
4216 return ipc_has_perm(ipcp, av);
4217 }
4218
4219 /* module stacking operations */
4220 static int selinux_register_security (const char *name, struct security_operations *ops)
4221 {
4222 if (secondary_ops != original_ops) {
4223 printk(KERN_INFO "%s: There is already a secondary security "
4224 "module registered.\n", __FUNCTION__);
4225 return -EINVAL;
4226 }
4227
4228 secondary_ops = ops;
4229
4230 printk(KERN_INFO "%s: Registering secondary module %s\n",
4231 __FUNCTION__,
4232 name);
4233
4234 return 0;
4235 }
4236
4237 static int selinux_unregister_security (const char *name, struct security_operations *ops)
4238 {
4239 if (ops != secondary_ops) {
4240 printk (KERN_INFO "%s: trying to unregister a security module "
4241 "that is not registered.\n", __FUNCTION__);
4242 return -EINVAL;
4243 }
4244
4245 secondary_ops = original_ops;
4246
4247 return 0;
4248 }
4249
4250 static void selinux_d_instantiate (struct dentry *dentry, struct inode *inode)
4251 {
4252 if (inode)
4253 inode_doinit_with_dentry(inode, dentry);
4254 }
4255
4256 static int selinux_getprocattr(struct task_struct *p,
4257 char *name, void *value, size_t size)
4258 {
4259 struct task_security_struct *tsec;
4260 u32 sid;
4261 int error;
4262
4263 if (current != p) {
4264 error = task_has_perm(current, p, PROCESS__GETATTR);
4265 if (error)
4266 return error;
4267 }
4268
4269 tsec = p->security;
4270
4271 if (!strcmp(name, "current"))
4272 sid = tsec->sid;
4273 else if (!strcmp(name, "prev"))
4274 sid = tsec->osid;
4275 else if (!strcmp(name, "exec"))
4276 sid = tsec->exec_sid;
4277 else if (!strcmp(name, "fscreate"))
4278 sid = tsec->create_sid;
4279 else if (!strcmp(name, "keycreate"))
4280 sid = tsec->keycreate_sid;
4281 else if (!strcmp(name, "sockcreate"))
4282 sid = tsec->sockcreate_sid;
4283 else
4284 return -EINVAL;
4285
4286 if (!sid)
4287 return 0;
4288
4289 return selinux_getsecurity(sid, value, size);
4290 }
4291
4292 static int selinux_setprocattr(struct task_struct *p,
4293 char *name, void *value, size_t size)
4294 {
4295 struct task_security_struct *tsec;
4296 u32 sid = 0;
4297 int error;
4298 char *str = value;
4299
4300 if (current != p) {
4301 /* SELinux only allows a process to change its own
4302 security attributes. */
4303 return -EACCES;
4304 }
4305
4306 /*
4307 * Basic control over ability to set these attributes at all.
4308 * current == p, but we'll pass them separately in case the
4309 * above restriction is ever removed.
4310 */
4311 if (!strcmp(name, "exec"))
4312 error = task_has_perm(current, p, PROCESS__SETEXEC);
4313 else if (!strcmp(name, "fscreate"))
4314 error = task_has_perm(current, p, PROCESS__SETFSCREATE);
4315 else if (!strcmp(name, "keycreate"))
4316 error = task_has_perm(current, p, PROCESS__SETKEYCREATE);
4317 else if (!strcmp(name, "sockcreate"))
4318 error = task_has_perm(current, p, PROCESS__SETSOCKCREATE);
4319 else if (!strcmp(name, "current"))
4320 error = task_has_perm(current, p, PROCESS__SETCURRENT);
4321 else
4322 error = -EINVAL;
4323 if (error)
4324 return error;
4325
4326 /* Obtain a SID for the context, if one was specified. */
4327 if (size && str[1] && str[1] != '\n') {
4328 if (str[size-1] == '\n') {
4329 str[size-1] = 0;
4330 size--;
4331 }
4332 error = security_context_to_sid(value, size, &sid);
4333 if (error)
4334 return error;
4335 }
4336
4337 /* Permission checking based on the specified context is
4338 performed during the actual operation (execve,
4339 open/mkdir/...), when we know the full context of the
4340 operation. See selinux_bprm_set_security for the execve
4341 checks and may_create for the file creation checks. The
4342 operation will then fail if the context is not permitted. */
4343 tsec = p->security;
4344 if (!strcmp(name, "exec"))
4345 tsec->exec_sid = sid;
4346 else if (!strcmp(name, "fscreate"))
4347 tsec->create_sid = sid;
4348 else if (!strcmp(name, "keycreate")) {
4349 error = may_create_key(sid, p);
4350 if (error)
4351 return error;
4352 tsec->keycreate_sid = sid;
4353 } else if (!strcmp(name, "sockcreate"))
4354 tsec->sockcreate_sid = sid;
4355 else if (!strcmp(name, "current")) {
4356 struct av_decision avd;
4357
4358 if (sid == 0)
4359 return -EINVAL;
4360
4361 /* Only allow single threaded processes to change context */
4362 if (atomic_read(&p->mm->mm_users) != 1) {
4363 struct task_struct *g, *t;
4364 struct mm_struct *mm = p->mm;
4365 read_lock(&tasklist_lock);
4366 do_each_thread(g, t)
4367 if (t->mm == mm && t != p) {
4368 read_unlock(&tasklist_lock);
4369 return -EPERM;
4370 }
4371 while_each_thread(g, t);
4372 read_unlock(&tasklist_lock);
4373 }
4374
4375 /* Check permissions for the transition. */
4376 error = avc_has_perm(tsec->sid, sid, SECCLASS_PROCESS,
4377 PROCESS__DYNTRANSITION, NULL);
4378 if (error)
4379 return error;
4380
4381 /* Check for ptracing, and update the task SID if ok.
4382 Otherwise, leave SID unchanged and fail. */
4383 task_lock(p);
4384 if (p->ptrace & PT_PTRACED) {
4385 error = avc_has_perm_noaudit(tsec->ptrace_sid, sid,
4386 SECCLASS_PROCESS,
4387 PROCESS__PTRACE, &avd);
4388 if (!error)
4389 tsec->sid = sid;
4390 task_unlock(p);
4391 avc_audit(tsec->ptrace_sid, sid, SECCLASS_PROCESS,
4392 PROCESS__PTRACE, &avd, error, NULL);
4393 if (error)
4394 return error;
4395 } else {
4396 tsec->sid = sid;
4397 task_unlock(p);
4398 }
4399 }
4400 else
4401 return -EINVAL;
4402
4403 return size;
4404 }
4405
4406 static int selinux_secid_to_secctx(u32 secid, char **secdata, u32 *seclen)
4407 {
4408 return security_sid_to_context(secid, secdata, seclen);
4409 }
4410
4411 static void selinux_release_secctx(char *secdata, u32 seclen)
4412 {
4413 if (secdata)
4414 kfree(secdata);
4415 }
4416
4417 #ifdef CONFIG_KEYS
4418
4419 static int selinux_key_alloc(struct key *k, struct task_struct *tsk,
4420 unsigned long flags)
4421 {
4422 struct task_security_struct *tsec = tsk->security;
4423 struct key_security_struct *ksec;
4424
4425 ksec = kzalloc(sizeof(struct key_security_struct), GFP_KERNEL);
4426 if (!ksec)
4427 return -ENOMEM;
4428
4429 ksec->obj = k;
4430 if (tsec->keycreate_sid)
4431 ksec->sid = tsec->keycreate_sid;
4432 else
4433 ksec->sid = tsec->sid;
4434 k->security = ksec;
4435
4436 return 0;
4437 }
4438
4439 static void selinux_key_free(struct key *k)
4440 {
4441 struct key_security_struct *ksec = k->security;
4442
4443 k->security = NULL;
4444 kfree(ksec);
4445 }
4446
4447 static int selinux_key_permission(key_ref_t key_ref,
4448 struct task_struct *ctx,
4449 key_perm_t perm)
4450 {
4451 struct key *key;
4452 struct task_security_struct *tsec;
4453 struct key_security_struct *ksec;
4454
4455 key = key_ref_to_ptr(key_ref);
4456
4457 tsec = ctx->security;
4458 ksec = key->security;
4459
4460 /* if no specific permissions are requested, we skip the
4461 permission check. No serious, additional covert channels
4462 appear to be created. */
4463 if (perm == 0)
4464 return 0;
4465
4466 return avc_has_perm(tsec->sid, ksec->sid,
4467 SECCLASS_KEY, perm, NULL);
4468 }
4469
4470 #endif
4471
4472 static struct security_operations selinux_ops = {
4473 .ptrace = selinux_ptrace,
4474 .capget = selinux_capget,
4475 .capset_check = selinux_capset_check,
4476 .capset_set = selinux_capset_set,
4477 .sysctl = selinux_sysctl,
4478 .capable = selinux_capable,
4479 .quotactl = selinux_quotactl,
4480 .quota_on = selinux_quota_on,
4481 .syslog = selinux_syslog,
4482 .vm_enough_memory = selinux_vm_enough_memory,
4483
4484 .netlink_send = selinux_netlink_send,
4485 .netlink_recv = selinux_netlink_recv,
4486
4487 .bprm_alloc_security = selinux_bprm_alloc_security,
4488 .bprm_free_security = selinux_bprm_free_security,
4489 .bprm_apply_creds = selinux_bprm_apply_creds,
4490 .bprm_post_apply_creds = selinux_bprm_post_apply_creds,
4491 .bprm_set_security = selinux_bprm_set_security,
4492 .bprm_check_security = selinux_bprm_check_security,
4493 .bprm_secureexec = selinux_bprm_secureexec,
4494
4495 .sb_alloc_security = selinux_sb_alloc_security,
4496 .sb_free_security = selinux_sb_free_security,
4497 .sb_copy_data = selinux_sb_copy_data,
4498 .sb_kern_mount = selinux_sb_kern_mount,
4499 .sb_statfs = selinux_sb_statfs,
4500 .sb_mount = selinux_mount,
4501 .sb_umount = selinux_umount,
4502
4503 .inode_alloc_security = selinux_inode_alloc_security,
4504 .inode_free_security = selinux_inode_free_security,
4505 .inode_init_security = selinux_inode_init_security,
4506 .inode_create = selinux_inode_create,
4507 .inode_link = selinux_inode_link,
4508 .inode_unlink = selinux_inode_unlink,
4509 .inode_symlink = selinux_inode_symlink,
4510 .inode_mkdir = selinux_inode_mkdir,
4511 .inode_rmdir = selinux_inode_rmdir,
4512 .inode_mknod = selinux_inode_mknod,
4513 .inode_rename = selinux_inode_rename,
4514 .inode_readlink = selinux_inode_readlink,
4515 .inode_follow_link = selinux_inode_follow_link,
4516 .inode_permission = selinux_inode_permission,
4517 .inode_setattr = selinux_inode_setattr,
4518 .inode_getattr = selinux_inode_getattr,
4519 .inode_setxattr = selinux_inode_setxattr,
4520 .inode_post_setxattr = selinux_inode_post_setxattr,
4521 .inode_getxattr = selinux_inode_getxattr,
4522 .inode_listxattr = selinux_inode_listxattr,
4523 .inode_removexattr = selinux_inode_removexattr,
4524 .inode_xattr_getsuffix = selinux_inode_xattr_getsuffix,
4525 .inode_getsecurity = selinux_inode_getsecurity,
4526 .inode_setsecurity = selinux_inode_setsecurity,
4527 .inode_listsecurity = selinux_inode_listsecurity,
4528
4529 .file_permission = selinux_file_permission,
4530 .file_alloc_security = selinux_file_alloc_security,
4531 .file_free_security = selinux_file_free_security,
4532 .file_ioctl = selinux_file_ioctl,
4533 .file_mmap = selinux_file_mmap,
4534 .file_mprotect = selinux_file_mprotect,
4535 .file_lock = selinux_file_lock,
4536 .file_fcntl = selinux_file_fcntl,
4537 .file_set_fowner = selinux_file_set_fowner,
4538 .file_send_sigiotask = selinux_file_send_sigiotask,
4539 .file_receive = selinux_file_receive,
4540
4541 .task_create = selinux_task_create,
4542 .task_alloc_security = selinux_task_alloc_security,
4543 .task_free_security = selinux_task_free_security,
4544 .task_setuid = selinux_task_setuid,
4545 .task_post_setuid = selinux_task_post_setuid,
4546 .task_setgid = selinux_task_setgid,
4547 .task_setpgid = selinux_task_setpgid,
4548 .task_getpgid = selinux_task_getpgid,
4549 .task_getsid = selinux_task_getsid,
4550 .task_getsecid = selinux_task_getsecid,
4551 .task_setgroups = selinux_task_setgroups,
4552 .task_setnice = selinux_task_setnice,
4553 .task_setioprio = selinux_task_setioprio,
4554 .task_getioprio = selinux_task_getioprio,
4555 .task_setrlimit = selinux_task_setrlimit,
4556 .task_setscheduler = selinux_task_setscheduler,
4557 .task_getscheduler = selinux_task_getscheduler,
4558 .task_movememory = selinux_task_movememory,
4559 .task_kill = selinux_task_kill,
4560 .task_wait = selinux_task_wait,
4561 .task_prctl = selinux_task_prctl,
4562 .task_reparent_to_init = selinux_task_reparent_to_init,
4563 .task_to_inode = selinux_task_to_inode,
4564
4565 .ipc_permission = selinux_ipc_permission,
4566
4567 .msg_msg_alloc_security = selinux_msg_msg_alloc_security,
4568 .msg_msg_free_security = selinux_msg_msg_free_security,
4569
4570 .msg_queue_alloc_security = selinux_msg_queue_alloc_security,
4571 .msg_queue_free_security = selinux_msg_queue_free_security,
4572 .msg_queue_associate = selinux_msg_queue_associate,
4573 .msg_queue_msgctl = selinux_msg_queue_msgctl,
4574 .msg_queue_msgsnd = selinux_msg_queue_msgsnd,
4575 .msg_queue_msgrcv = selinux_msg_queue_msgrcv,
4576
4577 .shm_alloc_security = selinux_shm_alloc_security,
4578 .shm_free_security = selinux_shm_free_security,
4579 .shm_associate = selinux_shm_associate,
4580 .shm_shmctl = selinux_shm_shmctl,
4581 .shm_shmat = selinux_shm_shmat,
4582
4583 .sem_alloc_security = selinux_sem_alloc_security,
4584 .sem_free_security = selinux_sem_free_security,
4585 .sem_associate = selinux_sem_associate,
4586 .sem_semctl = selinux_sem_semctl,
4587 .sem_semop = selinux_sem_semop,
4588
4589 .register_security = selinux_register_security,
4590 .unregister_security = selinux_unregister_security,
4591
4592 .d_instantiate = selinux_d_instantiate,
4593
4594 .getprocattr = selinux_getprocattr,
4595 .setprocattr = selinux_setprocattr,
4596
4597 .secid_to_secctx = selinux_secid_to_secctx,
4598 .release_secctx = selinux_release_secctx,
4599
4600 .unix_stream_connect = selinux_socket_unix_stream_connect,
4601 .unix_may_send = selinux_socket_unix_may_send,
4602
4603 .socket_create = selinux_socket_create,
4604 .socket_post_create = selinux_socket_post_create,
4605 .socket_bind = selinux_socket_bind,
4606 .socket_connect = selinux_socket_connect,
4607 .socket_listen = selinux_socket_listen,
4608 .socket_accept = selinux_socket_accept,
4609 .socket_sendmsg = selinux_socket_sendmsg,
4610 .socket_recvmsg = selinux_socket_recvmsg,
4611 .socket_getsockname = selinux_socket_getsockname,
4612 .socket_getpeername = selinux_socket_getpeername,
4613 .socket_getsockopt = selinux_socket_getsockopt,
4614 .socket_setsockopt = selinux_socket_setsockopt,
4615 .socket_shutdown = selinux_socket_shutdown,
4616 .socket_sock_rcv_skb = selinux_socket_sock_rcv_skb,
4617 .socket_getpeersec_stream = selinux_socket_getpeersec_stream,
4618 .socket_getpeersec_dgram = selinux_socket_getpeersec_dgram,
4619 .sk_alloc_security = selinux_sk_alloc_security,
4620 .sk_free_security = selinux_sk_free_security,
4621 .sk_getsid = selinux_sk_getsid_security,
4622
4623 #ifdef CONFIG_SECURITY_NETWORK_XFRM
4624 .xfrm_policy_alloc_security = selinux_xfrm_policy_alloc,
4625 .xfrm_policy_clone_security = selinux_xfrm_policy_clone,
4626 .xfrm_policy_free_security = selinux_xfrm_policy_free,
4627 .xfrm_policy_delete_security = selinux_xfrm_policy_delete,
4628 .xfrm_state_alloc_security = selinux_xfrm_state_alloc,
4629 .xfrm_state_free_security = selinux_xfrm_state_free,
4630 .xfrm_state_delete_security = selinux_xfrm_state_delete,
4631 .xfrm_policy_lookup = selinux_xfrm_policy_lookup,
4632 #endif
4633
4634 #ifdef CONFIG_KEYS
4635 .key_alloc = selinux_key_alloc,
4636 .key_free = selinux_key_free,
4637 .key_permission = selinux_key_permission,
4638 #endif
4639 };
4640
4641 static __init int selinux_init(void)
4642 {
4643 struct task_security_struct *tsec;
4644
4645 if (!selinux_enabled) {
4646 printk(KERN_INFO "SELinux: Disabled at boot.\n");
4647 return 0;
4648 }
4649
4650 printk(KERN_INFO "SELinux: Initializing.\n");
4651
4652 /* Set the security state for the initial task. */
4653 if (task_alloc_security(current))
4654 panic("SELinux: Failed to initialize initial task.\n");
4655 tsec = current->security;
4656 tsec->osid = tsec->sid = SECINITSID_KERNEL;
4657
4658 sel_inode_cache = kmem_cache_create("selinux_inode_security",
4659 sizeof(struct inode_security_struct),
4660 0, SLAB_PANIC, NULL, NULL);
4661 avc_init();
4662
4663 original_ops = secondary_ops = security_ops;
4664 if (!secondary_ops)
4665 panic ("SELinux: No initial security operations\n");
4666 if (register_security (&selinux_ops))
4667 panic("SELinux: Unable to register with kernel.\n");
4668
4669 if (selinux_enforcing) {
4670 printk(KERN_INFO "SELinux: Starting in enforcing mode\n");
4671 } else {
4672 printk(KERN_INFO "SELinux: Starting in permissive mode\n");
4673 }
4674
4675 #ifdef CONFIG_KEYS
4676 /* Add security information to initial keyrings */
4677 selinux_key_alloc(&root_user_keyring, current,
4678 KEY_ALLOC_NOT_IN_QUOTA);
4679 selinux_key_alloc(&root_session_keyring, current,
4680 KEY_ALLOC_NOT_IN_QUOTA);
4681 #endif
4682
4683 return 0;
4684 }
4685
4686 void selinux_complete_init(void)
4687 {
4688 printk(KERN_INFO "SELinux: Completing initialization.\n");
4689
4690 /* Set up any superblocks initialized prior to the policy load. */
4691 printk(KERN_INFO "SELinux: Setting up existing superblocks.\n");
4692 spin_lock(&sb_lock);
4693 spin_lock(&sb_security_lock);
4694 next_sb:
4695 if (!list_empty(&superblock_security_head)) {
4696 struct superblock_security_struct *sbsec =
4697 list_entry(superblock_security_head.next,
4698 struct superblock_security_struct,
4699 list);
4700 struct super_block *sb = sbsec->sb;
4701 sb->s_count++;
4702 spin_unlock(&sb_security_lock);
4703 spin_unlock(&sb_lock);
4704 down_read(&sb->s_umount);
4705 if (sb->s_root)
4706 superblock_doinit(sb, NULL);
4707 drop_super(sb);
4708 spin_lock(&sb_lock);
4709 spin_lock(&sb_security_lock);
4710 list_del_init(&sbsec->list);
4711 goto next_sb;
4712 }
4713 spin_unlock(&sb_security_lock);
4714 spin_unlock(&sb_lock);
4715 }
4716
4717 /* SELinux requires early initialization in order to label
4718 all processes and objects when they are created. */
4719 security_initcall(selinux_init);
4720
4721 #if defined(CONFIG_NETFILTER)
4722
4723 static struct nf_hook_ops selinux_ipv4_op = {
4724 .hook = selinux_ipv4_postroute_last,
4725 .owner = THIS_MODULE,
4726 .pf = PF_INET,
4727 .hooknum = NF_IP_POST_ROUTING,
4728 .priority = NF_IP_PRI_SELINUX_LAST,
4729 };
4730
4731 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
4732
4733 static struct nf_hook_ops selinux_ipv6_op = {
4734 .hook = selinux_ipv6_postroute_last,
4735 .owner = THIS_MODULE,
4736 .pf = PF_INET6,
4737 .hooknum = NF_IP6_POST_ROUTING,
4738 .priority = NF_IP6_PRI_SELINUX_LAST,
4739 };
4740
4741 #endif /* IPV6 */
4742
4743 static int __init selinux_nf_ip_init(void)
4744 {
4745 int err = 0;
4746
4747 if (!selinux_enabled)
4748 goto out;
4749
4750 printk(KERN_INFO "SELinux: Registering netfilter hooks\n");
4751
4752 err = nf_register_hook(&selinux_ipv4_op);
4753 if (err)
4754 panic("SELinux: nf_register_hook for IPv4: error %d\n", err);
4755
4756 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
4757
4758 err = nf_register_hook(&selinux_ipv6_op);
4759 if (err)
4760 panic("SELinux: nf_register_hook for IPv6: error %d\n", err);
4761
4762 #endif /* IPV6 */
4763
4764 out:
4765 return err;
4766 }
4767
4768 __initcall(selinux_nf_ip_init);
4769
4770 #ifdef CONFIG_SECURITY_SELINUX_DISABLE
4771 static void selinux_nf_ip_exit(void)
4772 {
4773 printk(KERN_INFO "SELinux: Unregistering netfilter hooks\n");
4774
4775 nf_unregister_hook(&selinux_ipv4_op);
4776 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
4777 nf_unregister_hook(&selinux_ipv6_op);
4778 #endif /* IPV6 */
4779 }
4780 #endif
4781
4782 #else /* CONFIG_NETFILTER */
4783
4784 #ifdef CONFIG_SECURITY_SELINUX_DISABLE
4785 #define selinux_nf_ip_exit()
4786 #endif
4787
4788 #endif /* CONFIG_NETFILTER */
4789
4790 #ifdef CONFIG_SECURITY_SELINUX_DISABLE
4791 int selinux_disable(void)
4792 {
4793 extern void exit_sel_fs(void);
4794 static int selinux_disabled = 0;
4795
4796 if (ss_initialized) {
4797 /* Not permitted after initial policy load. */
4798 return -EINVAL;
4799 }
4800
4801 if (selinux_disabled) {
4802 /* Only do this once. */
4803 return -EINVAL;
4804 }
4805
4806 printk(KERN_INFO "SELinux: Disabled at runtime.\n");
4807
4808 selinux_disabled = 1;
4809 selinux_enabled = 0;
4810
4811 /* Reset security_ops to the secondary module, dummy or capability. */
4812 security_ops = secondary_ops;
4813
4814 /* Unregister netfilter hooks. */
4815 selinux_nf_ip_exit();
4816
4817 /* Unregister selinuxfs. */
4818 exit_sel_fs();
4819
4820 return 0;
4821 }
4822 #endif
4823
4824