]> git.proxmox.com Git - mirror_qemu.git/blob - semihosting/arm-compat-semi.c
replay: Simplify setting replay blockers
[mirror_qemu.git] / semihosting / arm-compat-semi.c
1 /*
2 * Semihosting support for systems modeled on the Arm "Angel"
3 * semihosting syscalls design. This includes Arm and RISC-V processors
4 *
5 * Copyright (c) 2005, 2007 CodeSourcery.
6 * Copyright (c) 2019 Linaro
7 * Written by Paul Brook.
8 *
9 * Copyright © 2020 by Keith Packard <keithp@keithp.com>
10 * Adapted for systems other than ARM, including RISC-V, by Keith Packard
11 *
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License as published by
14 * the Free Software Foundation; either version 2 of the License, or
15 * (at your option) any later version.
16 *
17 * This program is distributed in the hope that it will be useful,
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 * GNU General Public License for more details.
21 *
22 * You should have received a copy of the GNU General Public License
23 * along with this program; if not, see <http://www.gnu.org/licenses/>.
24 *
25 * ARM Semihosting is documented in:
26 * Semihosting for AArch32 and AArch64 Release 2.0
27 * https://github.com/ARM-software/abi-aa/blob/main/semihosting/semihosting.rst
28 *
29 * RISC-V Semihosting is documented in:
30 * RISC-V Semihosting
31 * https://github.com/riscv/riscv-semihosting-spec/blob/main/riscv-semihosting-spec.adoc
32 */
33
34 #include "qemu/osdep.h"
35 #include "qemu/timer.h"
36 #include "exec/gdbstub.h"
37 #include "semihosting/semihost.h"
38 #include "semihosting/console.h"
39 #include "semihosting/common-semi.h"
40 #include "semihosting/guestfd.h"
41 #include "semihosting/syscalls.h"
42
43 #ifdef CONFIG_USER_ONLY
44 #include "qemu.h"
45
46 #define COMMON_SEMI_HEAP_SIZE (128 * 1024 * 1024)
47 #else
48 #include "qemu/cutils.h"
49 #include "hw/loader.h"
50 #include "hw/boards.h"
51 #endif
52
53 #define TARGET_SYS_OPEN 0x01
54 #define TARGET_SYS_CLOSE 0x02
55 #define TARGET_SYS_WRITEC 0x03
56 #define TARGET_SYS_WRITE0 0x04
57 #define TARGET_SYS_WRITE 0x05
58 #define TARGET_SYS_READ 0x06
59 #define TARGET_SYS_READC 0x07
60 #define TARGET_SYS_ISERROR 0x08
61 #define TARGET_SYS_ISTTY 0x09
62 #define TARGET_SYS_SEEK 0x0a
63 #define TARGET_SYS_FLEN 0x0c
64 #define TARGET_SYS_TMPNAM 0x0d
65 #define TARGET_SYS_REMOVE 0x0e
66 #define TARGET_SYS_RENAME 0x0f
67 #define TARGET_SYS_CLOCK 0x10
68 #define TARGET_SYS_TIME 0x11
69 #define TARGET_SYS_SYSTEM 0x12
70 #define TARGET_SYS_ERRNO 0x13
71 #define TARGET_SYS_GET_CMDLINE 0x15
72 #define TARGET_SYS_HEAPINFO 0x16
73 #define TARGET_SYS_EXIT 0x18
74 #define TARGET_SYS_SYNCCACHE 0x19
75 #define TARGET_SYS_EXIT_EXTENDED 0x20
76 #define TARGET_SYS_ELAPSED 0x30
77 #define TARGET_SYS_TICKFREQ 0x31
78
79 /* ADP_Stopped_ApplicationExit is used for exit(0),
80 * anything else is implemented as exit(1) */
81 #define ADP_Stopped_ApplicationExit (0x20026)
82
83 #ifndef O_BINARY
84 #define O_BINARY 0
85 #endif
86
87 static int gdb_open_modeflags[12] = {
88 GDB_O_RDONLY,
89 GDB_O_RDONLY,
90 GDB_O_RDWR,
91 GDB_O_RDWR,
92 GDB_O_WRONLY | GDB_O_CREAT | GDB_O_TRUNC,
93 GDB_O_WRONLY | GDB_O_CREAT | GDB_O_TRUNC,
94 GDB_O_RDWR | GDB_O_CREAT | GDB_O_TRUNC,
95 GDB_O_RDWR | GDB_O_CREAT | GDB_O_TRUNC,
96 GDB_O_WRONLY | GDB_O_CREAT | GDB_O_APPEND,
97 GDB_O_WRONLY | GDB_O_CREAT | GDB_O_APPEND,
98 GDB_O_RDWR | GDB_O_CREAT | GDB_O_APPEND,
99 GDB_O_RDWR | GDB_O_CREAT | GDB_O_APPEND,
100 };
101
102 #ifndef CONFIG_USER_ONLY
103
104 /**
105 * common_semi_find_bases: find information about ram and heap base
106 *
107 * This function attempts to provide meaningful numbers for RAM and
108 * HEAP base addresses. The rambase is simply the lowest addressable
109 * RAM position. For the heapbase we ask the loader to scan the
110 * address space and the largest available gap by querying the "ROM"
111 * regions.
112 *
113 * Returns: a structure with the numbers we need.
114 */
115
116 typedef struct LayoutInfo {
117 target_ulong rambase;
118 size_t ramsize;
119 hwaddr heapbase;
120 hwaddr heaplimit;
121 } LayoutInfo;
122
123 static bool find_ram_cb(Int128 start, Int128 len, const MemoryRegion *mr,
124 hwaddr offset_in_region, void *opaque)
125 {
126 LayoutInfo *info = (LayoutInfo *) opaque;
127 uint64_t size = int128_get64(len);
128
129 if (!mr->ram || mr->readonly) {
130 return false;
131 }
132
133 if (size > info->ramsize) {
134 info->rambase = int128_get64(start);
135 info->ramsize = size;
136 }
137
138 /* search exhaustively for largest RAM */
139 return false;
140 }
141
142 static LayoutInfo common_semi_find_bases(CPUState *cs)
143 {
144 FlatView *fv;
145 LayoutInfo info = { 0, 0, 0, 0 };
146
147 RCU_READ_LOCK_GUARD();
148
149 fv = address_space_to_flatview(cs->as);
150 flatview_for_each_range(fv, find_ram_cb, &info);
151
152 /*
153 * If we have found the RAM lets iterate through the ROM blobs to
154 * work out the best place for the remainder of RAM and split it
155 * equally between stack and heap.
156 */
157 if (info.rambase || info.ramsize > 0) {
158 RomGap gap = rom_find_largest_gap_between(info.rambase, info.ramsize);
159 info.heapbase = gap.base;
160 info.heaplimit = gap.base + gap.size;
161 }
162
163 return info;
164 }
165
166 #endif
167
168 #include "common-semi-target.h"
169
170 /*
171 * Read the input value from the argument block; fail the semihosting
172 * call if the memory read fails. Eventually we could use a generic
173 * CPUState helper function here.
174 * Note that GET_ARG() handles memory access errors by jumping to
175 * do_fault, so must be used as the first thing done in handling a
176 * semihosting call, to avoid accidentally leaking allocated resources.
177 * SET_ARG(), since it unavoidably happens late, instead returns an
178 * error indication (0 on success, non-0 for error) which the caller
179 * should check.
180 */
181
182 #define GET_ARG(n) do { \
183 if (is_64bit_semihosting(env)) { \
184 if (get_user_u64(arg ## n, args + (n) * 8)) { \
185 goto do_fault; \
186 } \
187 } else { \
188 if (get_user_u32(arg ## n, args + (n) * 4)) { \
189 goto do_fault; \
190 } \
191 } \
192 } while (0)
193
194 #define SET_ARG(n, val) \
195 (is_64bit_semihosting(env) ? \
196 put_user_u64(val, args + (n) * 8) : \
197 put_user_u32(val, args + (n) * 4))
198
199
200 /*
201 * The semihosting API has no concept of its errno being thread-safe,
202 * as the API design predates SMP CPUs and was intended as a simple
203 * real-hardware set of debug functionality. For QEMU, we make the
204 * errno be per-thread in linux-user mode; in softmmu it is a simple
205 * global, and we assume that the guest takes care of avoiding any races.
206 */
207 #ifndef CONFIG_USER_ONLY
208 static target_ulong syscall_err;
209
210 #include "semihosting/softmmu-uaccess.h"
211 #endif
212
213 static inline uint32_t get_swi_errno(CPUState *cs)
214 {
215 #ifdef CONFIG_USER_ONLY
216 TaskState *ts = cs->opaque;
217
218 return ts->swi_errno;
219 #else
220 return syscall_err;
221 #endif
222 }
223
224 static void common_semi_cb(CPUState *cs, uint64_t ret, int err)
225 {
226 if (err) {
227 #ifdef CONFIG_USER_ONLY
228 TaskState *ts = cs->opaque;
229 ts->swi_errno = err;
230 #else
231 syscall_err = err;
232 #endif
233 }
234 common_semi_set_ret(cs, ret);
235 }
236
237 /*
238 * Use 0xdeadbeef as the return value when there isn't a defined
239 * return value for the call.
240 */
241 static void common_semi_dead_cb(CPUState *cs, uint64_t ret, int err)
242 {
243 common_semi_set_ret(cs, 0xdeadbeef);
244 }
245
246 /*
247 * SYS_READ and SYS_WRITE always return the number of bytes not read/written.
248 * There is no error condition, other than returning the original length.
249 */
250 static void common_semi_rw_cb(CPUState *cs, uint64_t ret, int err)
251 {
252 /* Recover the original length from the third argument. */
253 CPUArchState *env G_GNUC_UNUSED = cs->env_ptr;
254 target_ulong args = common_semi_arg(cs, 1);
255 target_ulong arg2;
256 GET_ARG(2);
257
258 if (err) {
259 do_fault:
260 ret = 0; /* error: no bytes transmitted */
261 }
262 common_semi_set_ret(cs, arg2 - ret);
263 }
264
265 /*
266 * Convert from Posix ret+errno to Arm SYS_ISTTY return values.
267 * With gdbstub, err is only ever set for protocol errors to EIO.
268 */
269 static void common_semi_istty_cb(CPUState *cs, uint64_t ret, int err)
270 {
271 if (err) {
272 ret = (err == ENOTTY ? 0 : -1);
273 }
274 common_semi_cb(cs, ret, err);
275 }
276
277 /*
278 * SYS_SEEK returns 0 on success, not the resulting offset.
279 */
280 static void common_semi_seek_cb(CPUState *cs, uint64_t ret, int err)
281 {
282 if (!err) {
283 ret = 0;
284 }
285 common_semi_cb(cs, ret, err);
286 }
287
288 /*
289 * Return an address in target memory of 64 bytes where the remote
290 * gdb should write its stat struct. (The format of this structure
291 * is defined by GDB's remote protocol and is not target-specific.)
292 * We put this on the guest's stack just below SP.
293 */
294 static target_ulong common_semi_flen_buf(CPUState *cs)
295 {
296 target_ulong sp = common_semi_stack_bottom(cs);
297 return sp - 64;
298 }
299
300 static void
301 common_semi_flen_fstat_cb(CPUState *cs, uint64_t ret, int err)
302 {
303 if (!err) {
304 /* The size is always stored in big-endian order, extract the value. */
305 uint64_t size;
306 if (cpu_memory_rw_debug(cs, common_semi_flen_buf(cs) +
307 offsetof(struct gdb_stat, gdb_st_size),
308 &size, 8, 0)) {
309 ret = -1, err = EFAULT;
310 } else {
311 size = be64_to_cpu(size);
312 if (ret != size) {
313 ret = -1, err = EOVERFLOW;
314 }
315 }
316 }
317 common_semi_cb(cs, ret, err);
318 }
319
320 static void
321 common_semi_readc_cb(CPUState *cs, uint64_t ret, int err)
322 {
323 if (!err) {
324 CPUArchState *env G_GNUC_UNUSED = cs->env_ptr;
325 uint8_t ch;
326
327 if (get_user_u8(ch, common_semi_stack_bottom(cs) - 1)) {
328 ret = -1, err = EFAULT;
329 } else {
330 ret = ch;
331 }
332 }
333 common_semi_cb(cs, ret, err);
334 }
335
336 #define SHFB_MAGIC_0 0x53
337 #define SHFB_MAGIC_1 0x48
338 #define SHFB_MAGIC_2 0x46
339 #define SHFB_MAGIC_3 0x42
340
341 /* Feature bits reportable in feature byte 0 */
342 #define SH_EXT_EXIT_EXTENDED (1 << 0)
343 #define SH_EXT_STDOUT_STDERR (1 << 1)
344
345 static const uint8_t featurefile_data[] = {
346 SHFB_MAGIC_0,
347 SHFB_MAGIC_1,
348 SHFB_MAGIC_2,
349 SHFB_MAGIC_3,
350 SH_EXT_EXIT_EXTENDED | SH_EXT_STDOUT_STDERR, /* Feature byte 0 */
351 };
352
353 /*
354 * Do a semihosting call.
355 *
356 * The specification always says that the "return register" either
357 * returns a specific value or is corrupted, so we don't need to
358 * report to our caller whether we are returning a value or trying to
359 * leave the register unchanged.
360 */
361 void do_common_semihosting(CPUState *cs)
362 {
363 CPUArchState *env = cs->env_ptr;
364 target_ulong args;
365 target_ulong arg0, arg1, arg2, arg3;
366 target_ulong ul_ret;
367 char * s;
368 int nr;
369 uint32_t ret;
370 int64_t elapsed;
371
372 nr = common_semi_arg(cs, 0) & 0xffffffffU;
373 args = common_semi_arg(cs, 1);
374
375 switch (nr) {
376 case TARGET_SYS_OPEN:
377 {
378 int ret, err = 0;
379 int hostfd;
380
381 GET_ARG(0);
382 GET_ARG(1);
383 GET_ARG(2);
384 s = lock_user_string(arg0);
385 if (!s) {
386 goto do_fault;
387 }
388 if (arg1 >= 12) {
389 unlock_user(s, arg0, 0);
390 common_semi_cb(cs, -1, EINVAL);
391 break;
392 }
393
394 if (strcmp(s, ":tt") == 0) {
395 /*
396 * We implement SH_EXT_STDOUT_STDERR, so:
397 * open for read == stdin
398 * open for write == stdout
399 * open for append == stderr
400 */
401 if (arg1 < 4) {
402 hostfd = STDIN_FILENO;
403 } else if (arg1 < 8) {
404 hostfd = STDOUT_FILENO;
405 } else {
406 hostfd = STDERR_FILENO;
407 }
408 ret = alloc_guestfd();
409 associate_guestfd(ret, hostfd);
410 } else if (strcmp(s, ":semihosting-features") == 0) {
411 /* We must fail opens for modes other than 0 ('r') or 1 ('rb') */
412 if (arg1 != 0 && arg1 != 1) {
413 ret = -1;
414 err = EACCES;
415 } else {
416 ret = alloc_guestfd();
417 staticfile_guestfd(ret, featurefile_data,
418 sizeof(featurefile_data));
419 }
420 } else {
421 unlock_user(s, arg0, 0);
422 semihost_sys_open(cs, common_semi_cb, arg0, arg2 + 1,
423 gdb_open_modeflags[arg1], 0644);
424 break;
425 }
426 unlock_user(s, arg0, 0);
427 common_semi_cb(cs, ret, err);
428 break;
429 }
430
431 case TARGET_SYS_CLOSE:
432 GET_ARG(0);
433 semihost_sys_close(cs, common_semi_cb, arg0);
434 break;
435
436 case TARGET_SYS_WRITEC:
437 /*
438 * FIXME: the byte to be written is in a target_ulong slot,
439 * which means this is wrong for a big-endian guest.
440 */
441 semihost_sys_write_gf(cs, common_semi_dead_cb,
442 &console_out_gf, args, 1);
443 break;
444
445 case TARGET_SYS_WRITE0:
446 {
447 ssize_t len = target_strlen(args);
448 if (len < 0) {
449 common_semi_dead_cb(cs, -1, EFAULT);
450 } else {
451 semihost_sys_write_gf(cs, common_semi_dead_cb,
452 &console_out_gf, args, len);
453 }
454 }
455 break;
456
457 case TARGET_SYS_WRITE:
458 GET_ARG(0);
459 GET_ARG(1);
460 GET_ARG(2);
461 semihost_sys_write(cs, common_semi_rw_cb, arg0, arg1, arg2);
462 break;
463
464 case TARGET_SYS_READ:
465 GET_ARG(0);
466 GET_ARG(1);
467 GET_ARG(2);
468 semihost_sys_read(cs, common_semi_rw_cb, arg0, arg1, arg2);
469 break;
470
471 case TARGET_SYS_READC:
472 semihost_sys_read_gf(cs, common_semi_readc_cb, &console_in_gf,
473 common_semi_stack_bottom(cs) - 1, 1);
474 break;
475
476 case TARGET_SYS_ISERROR:
477 GET_ARG(0);
478 common_semi_set_ret(cs, (target_long)arg0 < 0);
479 break;
480
481 case TARGET_SYS_ISTTY:
482 GET_ARG(0);
483 semihost_sys_isatty(cs, common_semi_istty_cb, arg0);
484 break;
485
486 case TARGET_SYS_SEEK:
487 GET_ARG(0);
488 GET_ARG(1);
489 semihost_sys_lseek(cs, common_semi_seek_cb, arg0, arg1, GDB_SEEK_SET);
490 break;
491
492 case TARGET_SYS_FLEN:
493 GET_ARG(0);
494 semihost_sys_flen(cs, common_semi_flen_fstat_cb, common_semi_cb,
495 arg0, common_semi_flen_buf(cs));
496 break;
497
498 case TARGET_SYS_TMPNAM:
499 {
500 int len;
501 char *p;
502
503 GET_ARG(0);
504 GET_ARG(1);
505 GET_ARG(2);
506 len = asprintf(&s, "%s/qemu-%x%02x", g_get_tmp_dir(),
507 getpid(), (int)arg1 & 0xff);
508 if (len < 0) {
509 common_semi_set_ret(cs, -1);
510 break;
511 }
512
513 /* Allow for trailing NUL */
514 len++;
515 /* Make sure there's enough space in the buffer */
516 if (len > arg2) {
517 free(s);
518 common_semi_set_ret(cs, -1);
519 break;
520 }
521 p = lock_user(VERIFY_WRITE, arg0, len, 0);
522 if (!p) {
523 free(s);
524 goto do_fault;
525 }
526 memcpy(p, s, len);
527 unlock_user(p, arg0, len);
528 free(s);
529 common_semi_set_ret(cs, 0);
530 break;
531 }
532
533 case TARGET_SYS_REMOVE:
534 GET_ARG(0);
535 GET_ARG(1);
536 semihost_sys_remove(cs, common_semi_cb, arg0, arg1 + 1);
537 break;
538
539 case TARGET_SYS_RENAME:
540 GET_ARG(0);
541 GET_ARG(1);
542 GET_ARG(2);
543 GET_ARG(3);
544 semihost_sys_rename(cs, common_semi_cb, arg0, arg1 + 1, arg2, arg3 + 1);
545 break;
546
547 case TARGET_SYS_CLOCK:
548 common_semi_set_ret(cs, clock() / (CLOCKS_PER_SEC / 100));
549 break;
550
551 case TARGET_SYS_TIME:
552 ul_ret = time(NULL);
553 common_semi_cb(cs, ul_ret, ul_ret == -1 ? errno : 0);
554 break;
555
556 case TARGET_SYS_SYSTEM:
557 GET_ARG(0);
558 GET_ARG(1);
559 semihost_sys_system(cs, common_semi_cb, arg0, arg1 + 1);
560 break;
561
562 case TARGET_SYS_ERRNO:
563 common_semi_set_ret(cs, get_swi_errno(cs));
564 break;
565
566 case TARGET_SYS_GET_CMDLINE:
567 {
568 /* Build a command-line from the original argv.
569 *
570 * The inputs are:
571 * * arg0, pointer to a buffer of at least the size
572 * specified in arg1.
573 * * arg1, size of the buffer pointed to by arg0 in
574 * bytes.
575 *
576 * The outputs are:
577 * * arg0, pointer to null-terminated string of the
578 * command line.
579 * * arg1, length of the string pointed to by arg0.
580 */
581
582 char *output_buffer;
583 size_t input_size;
584 size_t output_size;
585 int status = 0;
586 #if !defined(CONFIG_USER_ONLY)
587 const char *cmdline;
588 #else
589 TaskState *ts = cs->opaque;
590 #endif
591 GET_ARG(0);
592 GET_ARG(1);
593 input_size = arg1;
594 /* Compute the size of the output string. */
595 #if !defined(CONFIG_USER_ONLY)
596 cmdline = semihosting_get_cmdline();
597 if (cmdline == NULL) {
598 cmdline = ""; /* Default to an empty line. */
599 }
600 output_size = strlen(cmdline) + 1; /* Count terminating 0. */
601 #else
602 unsigned int i;
603
604 output_size = ts->info->env_strings - ts->info->arg_strings;
605 if (!output_size) {
606 /*
607 * We special-case the "empty command line" case (argc==0).
608 * Just provide the terminating 0.
609 */
610 output_size = 1;
611 }
612 #endif
613
614 if (output_size > input_size) {
615 /* Not enough space to store command-line arguments. */
616 common_semi_cb(cs, -1, E2BIG);
617 break;
618 }
619
620 /* Adjust the command-line length. */
621 if (SET_ARG(1, output_size - 1)) {
622 /* Couldn't write back to argument block */
623 goto do_fault;
624 }
625
626 /* Lock the buffer on the ARM side. */
627 output_buffer = lock_user(VERIFY_WRITE, arg0, output_size, 0);
628 if (!output_buffer) {
629 goto do_fault;
630 }
631
632 /* Copy the command-line arguments. */
633 #if !defined(CONFIG_USER_ONLY)
634 pstrcpy(output_buffer, output_size, cmdline);
635 #else
636 if (output_size == 1) {
637 /* Empty command-line. */
638 output_buffer[0] = '\0';
639 goto out;
640 }
641
642 if (copy_from_user(output_buffer, ts->info->arg_strings,
643 output_size)) {
644 unlock_user(output_buffer, arg0, 0);
645 goto do_fault;
646 }
647
648 /* Separate arguments by white spaces. */
649 for (i = 0; i < output_size - 1; i++) {
650 if (output_buffer[i] == 0) {
651 output_buffer[i] = ' ';
652 }
653 }
654 out:
655 #endif
656 /* Unlock the buffer on the ARM side. */
657 unlock_user(output_buffer, arg0, output_size);
658 common_semi_cb(cs, status, 0);
659 }
660 break;
661
662 case TARGET_SYS_HEAPINFO:
663 {
664 target_ulong retvals[4];
665 int i;
666 #ifdef CONFIG_USER_ONLY
667 TaskState *ts = cs->opaque;
668 target_ulong limit;
669 #else
670 LayoutInfo info = common_semi_find_bases(cs);
671 #endif
672
673 GET_ARG(0);
674
675 #ifdef CONFIG_USER_ONLY
676 /*
677 * Some C libraries assume the heap immediately follows .bss, so
678 * allocate it using sbrk.
679 */
680 if (!ts->heap_limit) {
681 abi_ulong ret;
682
683 ts->heap_base = do_brk(0);
684 limit = ts->heap_base + COMMON_SEMI_HEAP_SIZE;
685 /* Try a big heap, and reduce the size if that fails. */
686 for (;;) {
687 ret = do_brk(limit);
688 if (ret >= limit) {
689 break;
690 }
691 limit = (ts->heap_base >> 1) + (limit >> 1);
692 }
693 ts->heap_limit = limit;
694 }
695
696 retvals[0] = ts->heap_base;
697 retvals[1] = ts->heap_limit;
698 retvals[2] = ts->stack_base;
699 retvals[3] = 0; /* Stack limit. */
700 #else
701 retvals[0] = info.heapbase; /* Heap Base */
702 retvals[1] = info.heaplimit; /* Heap Limit */
703 retvals[2] = info.heaplimit; /* Stack base */
704 retvals[3] = info.heapbase; /* Stack limit. */
705 #endif
706
707 for (i = 0; i < ARRAY_SIZE(retvals); i++) {
708 bool fail;
709
710 if (is_64bit_semihosting(env)) {
711 fail = put_user_u64(retvals[i], arg0 + i * 8);
712 } else {
713 fail = put_user_u32(retvals[i], arg0 + i * 4);
714 }
715
716 if (fail) {
717 /* Couldn't write back to argument block */
718 goto do_fault;
719 }
720 }
721 common_semi_set_ret(cs, 0);
722 }
723 break;
724
725 case TARGET_SYS_EXIT:
726 case TARGET_SYS_EXIT_EXTENDED:
727 if (common_semi_sys_exit_extended(cs, nr)) {
728 /*
729 * The A64 version of SYS_EXIT takes a parameter block,
730 * so the application-exit type can return a subcode which
731 * is the exit status code from the application.
732 * SYS_EXIT_EXTENDED is an a new-in-v2.0 optional function
733 * which allows A32/T32 guests to also provide a status code.
734 */
735 GET_ARG(0);
736 GET_ARG(1);
737
738 if (arg0 == ADP_Stopped_ApplicationExit) {
739 ret = arg1;
740 } else {
741 ret = 1;
742 }
743 } else {
744 /*
745 * The A32/T32 version of SYS_EXIT specifies only
746 * Stopped_ApplicationExit as normal exit, but does not
747 * allow the guest to specify the exit status code.
748 * Everything else is considered an error.
749 */
750 ret = (args == ADP_Stopped_ApplicationExit) ? 0 : 1;
751 }
752 gdb_exit(ret);
753 exit(ret);
754
755 case TARGET_SYS_ELAPSED:
756 elapsed = get_clock() - clock_start;
757 if (sizeof(target_ulong) == 8) {
758 if (SET_ARG(0, elapsed)) {
759 goto do_fault;
760 }
761 } else {
762 if (SET_ARG(0, (uint32_t) elapsed) ||
763 SET_ARG(1, (uint32_t) (elapsed >> 32))) {
764 goto do_fault;
765 }
766 }
767 common_semi_set_ret(cs, 0);
768 break;
769
770 case TARGET_SYS_TICKFREQ:
771 /* qemu always uses nsec */
772 common_semi_set_ret(cs, 1000000000);
773 break;
774
775 case TARGET_SYS_SYNCCACHE:
776 /*
777 * Clean the D-cache and invalidate the I-cache for the specified
778 * virtual address range. This is a nop for us since we don't
779 * implement caches. This is only present on A64.
780 */
781 if (common_semi_has_synccache(env)) {
782 common_semi_set_ret(cs, 0);
783 break;
784 }
785 /* fall through */
786 default:
787 fprintf(stderr, "qemu: Unsupported SemiHosting SWI 0x%02x\n", nr);
788 cpu_dump_state(cs, stderr, 0);
789 abort();
790
791 do_fault:
792 common_semi_cb(cs, -1, EFAULT);
793 break;
794 }
795 }