]> git.proxmox.com Git - mirror_qemu.git/blob - softmmu/physmem.c
Merge tag 'audio-pull-request' of https://gitlab.com/marcandre.lureau/qemu into staging
[mirror_qemu.git] / softmmu / physmem.c
1 /*
2 * RAM allocation and memory access
3 *
4 * Copyright (c) 2003 Fabrice Bellard
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2.1 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18 */
19
20 #include "qemu/osdep.h"
21 #include "exec/page-vary.h"
22 #include "qapi/error.h"
23
24 #include "qemu/cutils.h"
25 #include "qemu/cacheflush.h"
26 #include "qemu/hbitmap.h"
27 #include "qemu/madvise.h"
28
29 #ifdef CONFIG_TCG
30 #include "hw/core/tcg-cpu-ops.h"
31 #endif /* CONFIG_TCG */
32
33 #include "exec/exec-all.h"
34 #include "exec/target_page.h"
35 #include "hw/qdev-core.h"
36 #include "hw/qdev-properties.h"
37 #include "hw/boards.h"
38 #include "hw/xen/xen.h"
39 #include "sysemu/kvm.h"
40 #include "sysemu/tcg.h"
41 #include "sysemu/qtest.h"
42 #include "qemu/timer.h"
43 #include "qemu/config-file.h"
44 #include "qemu/error-report.h"
45 #include "qemu/qemu-print.h"
46 #include "qemu/log.h"
47 #include "qemu/memalign.h"
48 #include "exec/memory.h"
49 #include "exec/ioport.h"
50 #include "sysemu/dma.h"
51 #include "sysemu/hostmem.h"
52 #include "sysemu/hw_accel.h"
53 #include "sysemu/xen-mapcache.h"
54 #include "trace/trace-root.h"
55
56 #ifdef CONFIG_FALLOCATE_PUNCH_HOLE
57 #include <linux/falloc.h>
58 #endif
59
60 #include "qemu/rcu_queue.h"
61 #include "qemu/main-loop.h"
62 #include "exec/translate-all.h"
63 #include "sysemu/replay.h"
64
65 #include "exec/memory-internal.h"
66 #include "exec/ram_addr.h"
67
68 #include "qemu/pmem.h"
69
70 #include "migration/vmstate.h"
71
72 #include "qemu/range.h"
73 #ifndef _WIN32
74 #include "qemu/mmap-alloc.h"
75 #endif
76
77 #include "monitor/monitor.h"
78
79 #ifdef CONFIG_LIBDAXCTL
80 #include <daxctl/libdaxctl.h>
81 #endif
82
83 //#define DEBUG_SUBPAGE
84
85 /* ram_list is read under rcu_read_lock()/rcu_read_unlock(). Writes
86 * are protected by the ramlist lock.
87 */
88 RAMList ram_list = { .blocks = QLIST_HEAD_INITIALIZER(ram_list.blocks) };
89
90 static MemoryRegion *system_memory;
91 static MemoryRegion *system_io;
92
93 AddressSpace address_space_io;
94 AddressSpace address_space_memory;
95
96 static MemoryRegion io_mem_unassigned;
97
98 typedef struct PhysPageEntry PhysPageEntry;
99
100 struct PhysPageEntry {
101 /* How many bits skip to next level (in units of L2_SIZE). 0 for a leaf. */
102 uint32_t skip : 6;
103 /* index into phys_sections (!skip) or phys_map_nodes (skip) */
104 uint32_t ptr : 26;
105 };
106
107 #define PHYS_MAP_NODE_NIL (((uint32_t)~0) >> 6)
108
109 /* Size of the L2 (and L3, etc) page tables. */
110 #define ADDR_SPACE_BITS 64
111
112 #define P_L2_BITS 9
113 #define P_L2_SIZE (1 << P_L2_BITS)
114
115 #define P_L2_LEVELS (((ADDR_SPACE_BITS - TARGET_PAGE_BITS - 1) / P_L2_BITS) + 1)
116
117 typedef PhysPageEntry Node[P_L2_SIZE];
118
119 typedef struct PhysPageMap {
120 struct rcu_head rcu;
121
122 unsigned sections_nb;
123 unsigned sections_nb_alloc;
124 unsigned nodes_nb;
125 unsigned nodes_nb_alloc;
126 Node *nodes;
127 MemoryRegionSection *sections;
128 } PhysPageMap;
129
130 struct AddressSpaceDispatch {
131 MemoryRegionSection *mru_section;
132 /* This is a multi-level map on the physical address space.
133 * The bottom level has pointers to MemoryRegionSections.
134 */
135 PhysPageEntry phys_map;
136 PhysPageMap map;
137 };
138
139 #define SUBPAGE_IDX(addr) ((addr) & ~TARGET_PAGE_MASK)
140 typedef struct subpage_t {
141 MemoryRegion iomem;
142 FlatView *fv;
143 hwaddr base;
144 uint16_t sub_section[];
145 } subpage_t;
146
147 #define PHYS_SECTION_UNASSIGNED 0
148
149 static void io_mem_init(void);
150 static void memory_map_init(void);
151 static void tcg_log_global_after_sync(MemoryListener *listener);
152 static void tcg_commit(MemoryListener *listener);
153
154 /**
155 * CPUAddressSpace: all the information a CPU needs about an AddressSpace
156 * @cpu: the CPU whose AddressSpace this is
157 * @as: the AddressSpace itself
158 * @memory_dispatch: its dispatch pointer (cached, RCU protected)
159 * @tcg_as_listener: listener for tracking changes to the AddressSpace
160 */
161 struct CPUAddressSpace {
162 CPUState *cpu;
163 AddressSpace *as;
164 struct AddressSpaceDispatch *memory_dispatch;
165 MemoryListener tcg_as_listener;
166 };
167
168 struct DirtyBitmapSnapshot {
169 ram_addr_t start;
170 ram_addr_t end;
171 unsigned long dirty[];
172 };
173
174 static void phys_map_node_reserve(PhysPageMap *map, unsigned nodes)
175 {
176 static unsigned alloc_hint = 16;
177 if (map->nodes_nb + nodes > map->nodes_nb_alloc) {
178 map->nodes_nb_alloc = MAX(alloc_hint, map->nodes_nb + nodes);
179 map->nodes = g_renew(Node, map->nodes, map->nodes_nb_alloc);
180 alloc_hint = map->nodes_nb_alloc;
181 }
182 }
183
184 static uint32_t phys_map_node_alloc(PhysPageMap *map, bool leaf)
185 {
186 unsigned i;
187 uint32_t ret;
188 PhysPageEntry e;
189 PhysPageEntry *p;
190
191 ret = map->nodes_nb++;
192 p = map->nodes[ret];
193 assert(ret != PHYS_MAP_NODE_NIL);
194 assert(ret != map->nodes_nb_alloc);
195
196 e.skip = leaf ? 0 : 1;
197 e.ptr = leaf ? PHYS_SECTION_UNASSIGNED : PHYS_MAP_NODE_NIL;
198 for (i = 0; i < P_L2_SIZE; ++i) {
199 memcpy(&p[i], &e, sizeof(e));
200 }
201 return ret;
202 }
203
204 static void phys_page_set_level(PhysPageMap *map, PhysPageEntry *lp,
205 hwaddr *index, uint64_t *nb, uint16_t leaf,
206 int level)
207 {
208 PhysPageEntry *p;
209 hwaddr step = (hwaddr)1 << (level * P_L2_BITS);
210
211 if (lp->skip && lp->ptr == PHYS_MAP_NODE_NIL) {
212 lp->ptr = phys_map_node_alloc(map, level == 0);
213 }
214 p = map->nodes[lp->ptr];
215 lp = &p[(*index >> (level * P_L2_BITS)) & (P_L2_SIZE - 1)];
216
217 while (*nb && lp < &p[P_L2_SIZE]) {
218 if ((*index & (step - 1)) == 0 && *nb >= step) {
219 lp->skip = 0;
220 lp->ptr = leaf;
221 *index += step;
222 *nb -= step;
223 } else {
224 phys_page_set_level(map, lp, index, nb, leaf, level - 1);
225 }
226 ++lp;
227 }
228 }
229
230 static void phys_page_set(AddressSpaceDispatch *d,
231 hwaddr index, uint64_t nb,
232 uint16_t leaf)
233 {
234 /* Wildly overreserve - it doesn't matter much. */
235 phys_map_node_reserve(&d->map, 3 * P_L2_LEVELS);
236
237 phys_page_set_level(&d->map, &d->phys_map, &index, &nb, leaf, P_L2_LEVELS - 1);
238 }
239
240 /* Compact a non leaf page entry. Simply detect that the entry has a single child,
241 * and update our entry so we can skip it and go directly to the destination.
242 */
243 static void phys_page_compact(PhysPageEntry *lp, Node *nodes)
244 {
245 unsigned valid_ptr = P_L2_SIZE;
246 int valid = 0;
247 PhysPageEntry *p;
248 int i;
249
250 if (lp->ptr == PHYS_MAP_NODE_NIL) {
251 return;
252 }
253
254 p = nodes[lp->ptr];
255 for (i = 0; i < P_L2_SIZE; i++) {
256 if (p[i].ptr == PHYS_MAP_NODE_NIL) {
257 continue;
258 }
259
260 valid_ptr = i;
261 valid++;
262 if (p[i].skip) {
263 phys_page_compact(&p[i], nodes);
264 }
265 }
266
267 /* We can only compress if there's only one child. */
268 if (valid != 1) {
269 return;
270 }
271
272 assert(valid_ptr < P_L2_SIZE);
273
274 /* Don't compress if it won't fit in the # of bits we have. */
275 if (P_L2_LEVELS >= (1 << 6) &&
276 lp->skip + p[valid_ptr].skip >= (1 << 6)) {
277 return;
278 }
279
280 lp->ptr = p[valid_ptr].ptr;
281 if (!p[valid_ptr].skip) {
282 /* If our only child is a leaf, make this a leaf. */
283 /* By design, we should have made this node a leaf to begin with so we
284 * should never reach here.
285 * But since it's so simple to handle this, let's do it just in case we
286 * change this rule.
287 */
288 lp->skip = 0;
289 } else {
290 lp->skip += p[valid_ptr].skip;
291 }
292 }
293
294 void address_space_dispatch_compact(AddressSpaceDispatch *d)
295 {
296 if (d->phys_map.skip) {
297 phys_page_compact(&d->phys_map, d->map.nodes);
298 }
299 }
300
301 static inline bool section_covers_addr(const MemoryRegionSection *section,
302 hwaddr addr)
303 {
304 /* Memory topology clips a memory region to [0, 2^64); size.hi > 0 means
305 * the section must cover the entire address space.
306 */
307 return int128_gethi(section->size) ||
308 range_covers_byte(section->offset_within_address_space,
309 int128_getlo(section->size), addr);
310 }
311
312 static MemoryRegionSection *phys_page_find(AddressSpaceDispatch *d, hwaddr addr)
313 {
314 PhysPageEntry lp = d->phys_map, *p;
315 Node *nodes = d->map.nodes;
316 MemoryRegionSection *sections = d->map.sections;
317 hwaddr index = addr >> TARGET_PAGE_BITS;
318 int i;
319
320 for (i = P_L2_LEVELS; lp.skip && (i -= lp.skip) >= 0;) {
321 if (lp.ptr == PHYS_MAP_NODE_NIL) {
322 return &sections[PHYS_SECTION_UNASSIGNED];
323 }
324 p = nodes[lp.ptr];
325 lp = p[(index >> (i * P_L2_BITS)) & (P_L2_SIZE - 1)];
326 }
327
328 if (section_covers_addr(&sections[lp.ptr], addr)) {
329 return &sections[lp.ptr];
330 } else {
331 return &sections[PHYS_SECTION_UNASSIGNED];
332 }
333 }
334
335 /* Called from RCU critical section */
336 static MemoryRegionSection *address_space_lookup_region(AddressSpaceDispatch *d,
337 hwaddr addr,
338 bool resolve_subpage)
339 {
340 MemoryRegionSection *section = qatomic_read(&d->mru_section);
341 subpage_t *subpage;
342
343 if (!section || section == &d->map.sections[PHYS_SECTION_UNASSIGNED] ||
344 !section_covers_addr(section, addr)) {
345 section = phys_page_find(d, addr);
346 qatomic_set(&d->mru_section, section);
347 }
348 if (resolve_subpage && section->mr->subpage) {
349 subpage = container_of(section->mr, subpage_t, iomem);
350 section = &d->map.sections[subpage->sub_section[SUBPAGE_IDX(addr)]];
351 }
352 return section;
353 }
354
355 /* Called from RCU critical section */
356 static MemoryRegionSection *
357 address_space_translate_internal(AddressSpaceDispatch *d, hwaddr addr, hwaddr *xlat,
358 hwaddr *plen, bool resolve_subpage)
359 {
360 MemoryRegionSection *section;
361 MemoryRegion *mr;
362 Int128 diff;
363
364 section = address_space_lookup_region(d, addr, resolve_subpage);
365 /* Compute offset within MemoryRegionSection */
366 addr -= section->offset_within_address_space;
367
368 /* Compute offset within MemoryRegion */
369 *xlat = addr + section->offset_within_region;
370
371 mr = section->mr;
372
373 /* MMIO registers can be expected to perform full-width accesses based only
374 * on their address, without considering adjacent registers that could
375 * decode to completely different MemoryRegions. When such registers
376 * exist (e.g. I/O ports 0xcf8 and 0xcf9 on most PC chipsets), MMIO
377 * regions overlap wildly. For this reason we cannot clamp the accesses
378 * here.
379 *
380 * If the length is small (as is the case for address_space_ldl/stl),
381 * everything works fine. If the incoming length is large, however,
382 * the caller really has to do the clamping through memory_access_size.
383 */
384 if (memory_region_is_ram(mr)) {
385 diff = int128_sub(section->size, int128_make64(addr));
386 *plen = int128_get64(int128_min(diff, int128_make64(*plen)));
387 }
388 return section;
389 }
390
391 /**
392 * address_space_translate_iommu - translate an address through an IOMMU
393 * memory region and then through the target address space.
394 *
395 * @iommu_mr: the IOMMU memory region that we start the translation from
396 * @addr: the address to be translated through the MMU
397 * @xlat: the translated address offset within the destination memory region.
398 * It cannot be %NULL.
399 * @plen_out: valid read/write length of the translated address. It
400 * cannot be %NULL.
401 * @page_mask_out: page mask for the translated address. This
402 * should only be meaningful for IOMMU translated
403 * addresses, since there may be huge pages that this bit
404 * would tell. It can be %NULL if we don't care about it.
405 * @is_write: whether the translation operation is for write
406 * @is_mmio: whether this can be MMIO, set true if it can
407 * @target_as: the address space targeted by the IOMMU
408 * @attrs: transaction attributes
409 *
410 * This function is called from RCU critical section. It is the common
411 * part of flatview_do_translate and address_space_translate_cached.
412 */
413 static MemoryRegionSection address_space_translate_iommu(IOMMUMemoryRegion *iommu_mr,
414 hwaddr *xlat,
415 hwaddr *plen_out,
416 hwaddr *page_mask_out,
417 bool is_write,
418 bool is_mmio,
419 AddressSpace **target_as,
420 MemTxAttrs attrs)
421 {
422 MemoryRegionSection *section;
423 hwaddr page_mask = (hwaddr)-1;
424
425 do {
426 hwaddr addr = *xlat;
427 IOMMUMemoryRegionClass *imrc = memory_region_get_iommu_class_nocheck(iommu_mr);
428 int iommu_idx = 0;
429 IOMMUTLBEntry iotlb;
430
431 if (imrc->attrs_to_index) {
432 iommu_idx = imrc->attrs_to_index(iommu_mr, attrs);
433 }
434
435 iotlb = imrc->translate(iommu_mr, addr, is_write ?
436 IOMMU_WO : IOMMU_RO, iommu_idx);
437
438 if (!(iotlb.perm & (1 << is_write))) {
439 goto unassigned;
440 }
441
442 addr = ((iotlb.translated_addr & ~iotlb.addr_mask)
443 | (addr & iotlb.addr_mask));
444 page_mask &= iotlb.addr_mask;
445 *plen_out = MIN(*plen_out, (addr | iotlb.addr_mask) - addr + 1);
446 *target_as = iotlb.target_as;
447
448 section = address_space_translate_internal(
449 address_space_to_dispatch(iotlb.target_as), addr, xlat,
450 plen_out, is_mmio);
451
452 iommu_mr = memory_region_get_iommu(section->mr);
453 } while (unlikely(iommu_mr));
454
455 if (page_mask_out) {
456 *page_mask_out = page_mask;
457 }
458 return *section;
459
460 unassigned:
461 return (MemoryRegionSection) { .mr = &io_mem_unassigned };
462 }
463
464 /**
465 * flatview_do_translate - translate an address in FlatView
466 *
467 * @fv: the flat view that we want to translate on
468 * @addr: the address to be translated in above address space
469 * @xlat: the translated address offset within memory region. It
470 * cannot be @NULL.
471 * @plen_out: valid read/write length of the translated address. It
472 * can be @NULL when we don't care about it.
473 * @page_mask_out: page mask for the translated address. This
474 * should only be meaningful for IOMMU translated
475 * addresses, since there may be huge pages that this bit
476 * would tell. It can be @NULL if we don't care about it.
477 * @is_write: whether the translation operation is for write
478 * @is_mmio: whether this can be MMIO, set true if it can
479 * @target_as: the address space targeted by the IOMMU
480 * @attrs: memory transaction attributes
481 *
482 * This function is called from RCU critical section
483 */
484 static MemoryRegionSection flatview_do_translate(FlatView *fv,
485 hwaddr addr,
486 hwaddr *xlat,
487 hwaddr *plen_out,
488 hwaddr *page_mask_out,
489 bool is_write,
490 bool is_mmio,
491 AddressSpace **target_as,
492 MemTxAttrs attrs)
493 {
494 MemoryRegionSection *section;
495 IOMMUMemoryRegion *iommu_mr;
496 hwaddr plen = (hwaddr)(-1);
497
498 if (!plen_out) {
499 plen_out = &plen;
500 }
501
502 section = address_space_translate_internal(
503 flatview_to_dispatch(fv), addr, xlat,
504 plen_out, is_mmio);
505
506 iommu_mr = memory_region_get_iommu(section->mr);
507 if (unlikely(iommu_mr)) {
508 return address_space_translate_iommu(iommu_mr, xlat,
509 plen_out, page_mask_out,
510 is_write, is_mmio,
511 target_as, attrs);
512 }
513 if (page_mask_out) {
514 /* Not behind an IOMMU, use default page size. */
515 *page_mask_out = ~TARGET_PAGE_MASK;
516 }
517
518 return *section;
519 }
520
521 /* Called from RCU critical section */
522 IOMMUTLBEntry address_space_get_iotlb_entry(AddressSpace *as, hwaddr addr,
523 bool is_write, MemTxAttrs attrs)
524 {
525 MemoryRegionSection section;
526 hwaddr xlat, page_mask;
527
528 /*
529 * This can never be MMIO, and we don't really care about plen,
530 * but page mask.
531 */
532 section = flatview_do_translate(address_space_to_flatview(as), addr, &xlat,
533 NULL, &page_mask, is_write, false, &as,
534 attrs);
535
536 /* Illegal translation */
537 if (section.mr == &io_mem_unassigned) {
538 goto iotlb_fail;
539 }
540
541 /* Convert memory region offset into address space offset */
542 xlat += section.offset_within_address_space -
543 section.offset_within_region;
544
545 return (IOMMUTLBEntry) {
546 .target_as = as,
547 .iova = addr & ~page_mask,
548 .translated_addr = xlat & ~page_mask,
549 .addr_mask = page_mask,
550 /* IOTLBs are for DMAs, and DMA only allows on RAMs. */
551 .perm = IOMMU_RW,
552 };
553
554 iotlb_fail:
555 return (IOMMUTLBEntry) {0};
556 }
557
558 /* Called from RCU critical section */
559 MemoryRegion *flatview_translate(FlatView *fv, hwaddr addr, hwaddr *xlat,
560 hwaddr *plen, bool is_write,
561 MemTxAttrs attrs)
562 {
563 MemoryRegion *mr;
564 MemoryRegionSection section;
565 AddressSpace *as = NULL;
566
567 /* This can be MMIO, so setup MMIO bit. */
568 section = flatview_do_translate(fv, addr, xlat, plen, NULL,
569 is_write, true, &as, attrs);
570 mr = section.mr;
571
572 if (xen_enabled() && memory_access_is_direct(mr, is_write)) {
573 hwaddr page = ((addr & TARGET_PAGE_MASK) + TARGET_PAGE_SIZE) - addr;
574 *plen = MIN(page, *plen);
575 }
576
577 return mr;
578 }
579
580 typedef struct TCGIOMMUNotifier {
581 IOMMUNotifier n;
582 MemoryRegion *mr;
583 CPUState *cpu;
584 int iommu_idx;
585 bool active;
586 } TCGIOMMUNotifier;
587
588 static void tcg_iommu_unmap_notify(IOMMUNotifier *n, IOMMUTLBEntry *iotlb)
589 {
590 TCGIOMMUNotifier *notifier = container_of(n, TCGIOMMUNotifier, n);
591
592 if (!notifier->active) {
593 return;
594 }
595 tlb_flush(notifier->cpu);
596 notifier->active = false;
597 /* We leave the notifier struct on the list to avoid reallocating it later.
598 * Generally the number of IOMMUs a CPU deals with will be small.
599 * In any case we can't unregister the iommu notifier from a notify
600 * callback.
601 */
602 }
603
604 static void tcg_register_iommu_notifier(CPUState *cpu,
605 IOMMUMemoryRegion *iommu_mr,
606 int iommu_idx)
607 {
608 /* Make sure this CPU has an IOMMU notifier registered for this
609 * IOMMU/IOMMU index combination, so that we can flush its TLB
610 * when the IOMMU tells us the mappings we've cached have changed.
611 */
612 MemoryRegion *mr = MEMORY_REGION(iommu_mr);
613 TCGIOMMUNotifier *notifier = NULL;
614 int i;
615
616 for (i = 0; i < cpu->iommu_notifiers->len; i++) {
617 notifier = g_array_index(cpu->iommu_notifiers, TCGIOMMUNotifier *, i);
618 if (notifier->mr == mr && notifier->iommu_idx == iommu_idx) {
619 break;
620 }
621 }
622 if (i == cpu->iommu_notifiers->len) {
623 /* Not found, add a new entry at the end of the array */
624 cpu->iommu_notifiers = g_array_set_size(cpu->iommu_notifiers, i + 1);
625 notifier = g_new0(TCGIOMMUNotifier, 1);
626 g_array_index(cpu->iommu_notifiers, TCGIOMMUNotifier *, i) = notifier;
627
628 notifier->mr = mr;
629 notifier->iommu_idx = iommu_idx;
630 notifier->cpu = cpu;
631 /* Rather than trying to register interest in the specific part
632 * of the iommu's address space that we've accessed and then
633 * expand it later as subsequent accesses touch more of it, we
634 * just register interest in the whole thing, on the assumption
635 * that iommu reconfiguration will be rare.
636 */
637 iommu_notifier_init(&notifier->n,
638 tcg_iommu_unmap_notify,
639 IOMMU_NOTIFIER_UNMAP,
640 0,
641 HWADDR_MAX,
642 iommu_idx);
643 memory_region_register_iommu_notifier(notifier->mr, &notifier->n,
644 &error_fatal);
645 }
646
647 if (!notifier->active) {
648 notifier->active = true;
649 }
650 }
651
652 void tcg_iommu_free_notifier_list(CPUState *cpu)
653 {
654 /* Destroy the CPU's notifier list */
655 int i;
656 TCGIOMMUNotifier *notifier;
657
658 for (i = 0; i < cpu->iommu_notifiers->len; i++) {
659 notifier = g_array_index(cpu->iommu_notifiers, TCGIOMMUNotifier *, i);
660 memory_region_unregister_iommu_notifier(notifier->mr, &notifier->n);
661 g_free(notifier);
662 }
663 g_array_free(cpu->iommu_notifiers, true);
664 }
665
666 void tcg_iommu_init_notifier_list(CPUState *cpu)
667 {
668 cpu->iommu_notifiers = g_array_new(false, true, sizeof(TCGIOMMUNotifier *));
669 }
670
671 /* Called from RCU critical section */
672 MemoryRegionSection *
673 address_space_translate_for_iotlb(CPUState *cpu, int asidx, hwaddr orig_addr,
674 hwaddr *xlat, hwaddr *plen,
675 MemTxAttrs attrs, int *prot)
676 {
677 MemoryRegionSection *section;
678 IOMMUMemoryRegion *iommu_mr;
679 IOMMUMemoryRegionClass *imrc;
680 IOMMUTLBEntry iotlb;
681 int iommu_idx;
682 hwaddr addr = orig_addr;
683 AddressSpaceDispatch *d =
684 qatomic_rcu_read(&cpu->cpu_ases[asidx].memory_dispatch);
685
686 for (;;) {
687 section = address_space_translate_internal(d, addr, &addr, plen, false);
688
689 iommu_mr = memory_region_get_iommu(section->mr);
690 if (!iommu_mr) {
691 break;
692 }
693
694 imrc = memory_region_get_iommu_class_nocheck(iommu_mr);
695
696 iommu_idx = imrc->attrs_to_index(iommu_mr, attrs);
697 tcg_register_iommu_notifier(cpu, iommu_mr, iommu_idx);
698 /* We need all the permissions, so pass IOMMU_NONE so the IOMMU
699 * doesn't short-cut its translation table walk.
700 */
701 iotlb = imrc->translate(iommu_mr, addr, IOMMU_NONE, iommu_idx);
702 addr = ((iotlb.translated_addr & ~iotlb.addr_mask)
703 | (addr & iotlb.addr_mask));
704 /* Update the caller's prot bits to remove permissions the IOMMU
705 * is giving us a failure response for. If we get down to no
706 * permissions left at all we can give up now.
707 */
708 if (!(iotlb.perm & IOMMU_RO)) {
709 *prot &= ~(PAGE_READ | PAGE_EXEC);
710 }
711 if (!(iotlb.perm & IOMMU_WO)) {
712 *prot &= ~PAGE_WRITE;
713 }
714
715 if (!*prot) {
716 goto translate_fail;
717 }
718
719 d = flatview_to_dispatch(address_space_to_flatview(iotlb.target_as));
720 }
721
722 assert(!memory_region_is_iommu(section->mr));
723 *xlat = addr;
724 return section;
725
726 translate_fail:
727 /*
728 * We should be given a page-aligned address -- certainly
729 * tlb_set_page_with_attrs() does so. The page offset of xlat
730 * is used to index sections[], and PHYS_SECTION_UNASSIGNED = 0.
731 * The page portion of xlat will be logged by memory_region_access_valid()
732 * when this memory access is rejected, so use the original untranslated
733 * physical address.
734 */
735 assert((orig_addr & ~TARGET_PAGE_MASK) == 0);
736 *xlat = orig_addr;
737 return &d->map.sections[PHYS_SECTION_UNASSIGNED];
738 }
739
740 void cpu_address_space_init(CPUState *cpu, int asidx,
741 const char *prefix, MemoryRegion *mr)
742 {
743 CPUAddressSpace *newas;
744 AddressSpace *as = g_new0(AddressSpace, 1);
745 char *as_name;
746
747 assert(mr);
748 as_name = g_strdup_printf("%s-%d", prefix, cpu->cpu_index);
749 address_space_init(as, mr, as_name);
750 g_free(as_name);
751
752 /* Target code should have set num_ases before calling us */
753 assert(asidx < cpu->num_ases);
754
755 if (asidx == 0) {
756 /* address space 0 gets the convenience alias */
757 cpu->as = as;
758 }
759
760 /* KVM cannot currently support multiple address spaces. */
761 assert(asidx == 0 || !kvm_enabled());
762
763 if (!cpu->cpu_ases) {
764 cpu->cpu_ases = g_new0(CPUAddressSpace, cpu->num_ases);
765 }
766
767 newas = &cpu->cpu_ases[asidx];
768 newas->cpu = cpu;
769 newas->as = as;
770 if (tcg_enabled()) {
771 newas->tcg_as_listener.log_global_after_sync = tcg_log_global_after_sync;
772 newas->tcg_as_listener.commit = tcg_commit;
773 newas->tcg_as_listener.name = "tcg";
774 memory_listener_register(&newas->tcg_as_listener, as);
775 }
776 }
777
778 AddressSpace *cpu_get_address_space(CPUState *cpu, int asidx)
779 {
780 /* Return the AddressSpace corresponding to the specified index */
781 return cpu->cpu_ases[asidx].as;
782 }
783
784 /* Called from RCU critical section */
785 static RAMBlock *qemu_get_ram_block(ram_addr_t addr)
786 {
787 RAMBlock *block;
788
789 block = qatomic_rcu_read(&ram_list.mru_block);
790 if (block && addr - block->offset < block->max_length) {
791 return block;
792 }
793 RAMBLOCK_FOREACH(block) {
794 if (addr - block->offset < block->max_length) {
795 goto found;
796 }
797 }
798
799 fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr);
800 abort();
801
802 found:
803 /* It is safe to write mru_block outside the iothread lock. This
804 * is what happens:
805 *
806 * mru_block = xxx
807 * rcu_read_unlock()
808 * xxx removed from list
809 * rcu_read_lock()
810 * read mru_block
811 * mru_block = NULL;
812 * call_rcu(reclaim_ramblock, xxx);
813 * rcu_read_unlock()
814 *
815 * qatomic_rcu_set is not needed here. The block was already published
816 * when it was placed into the list. Here we're just making an extra
817 * copy of the pointer.
818 */
819 ram_list.mru_block = block;
820 return block;
821 }
822
823 static void tlb_reset_dirty_range_all(ram_addr_t start, ram_addr_t length)
824 {
825 CPUState *cpu;
826 ram_addr_t start1;
827 RAMBlock *block;
828 ram_addr_t end;
829
830 assert(tcg_enabled());
831 end = TARGET_PAGE_ALIGN(start + length);
832 start &= TARGET_PAGE_MASK;
833
834 RCU_READ_LOCK_GUARD();
835 block = qemu_get_ram_block(start);
836 assert(block == qemu_get_ram_block(end - 1));
837 start1 = (uintptr_t)ramblock_ptr(block, start - block->offset);
838 CPU_FOREACH(cpu) {
839 tlb_reset_dirty(cpu, start1, length);
840 }
841 }
842
843 /* Note: start and end must be within the same ram block. */
844 bool cpu_physical_memory_test_and_clear_dirty(ram_addr_t start,
845 ram_addr_t length,
846 unsigned client)
847 {
848 DirtyMemoryBlocks *blocks;
849 unsigned long end, page, start_page;
850 bool dirty = false;
851 RAMBlock *ramblock;
852 uint64_t mr_offset, mr_size;
853
854 if (length == 0) {
855 return false;
856 }
857
858 end = TARGET_PAGE_ALIGN(start + length) >> TARGET_PAGE_BITS;
859 start_page = start >> TARGET_PAGE_BITS;
860 page = start_page;
861
862 WITH_RCU_READ_LOCK_GUARD() {
863 blocks = qatomic_rcu_read(&ram_list.dirty_memory[client]);
864 ramblock = qemu_get_ram_block(start);
865 /* Range sanity check on the ramblock */
866 assert(start >= ramblock->offset &&
867 start + length <= ramblock->offset + ramblock->used_length);
868
869 while (page < end) {
870 unsigned long idx = page / DIRTY_MEMORY_BLOCK_SIZE;
871 unsigned long offset = page % DIRTY_MEMORY_BLOCK_SIZE;
872 unsigned long num = MIN(end - page,
873 DIRTY_MEMORY_BLOCK_SIZE - offset);
874
875 dirty |= bitmap_test_and_clear_atomic(blocks->blocks[idx],
876 offset, num);
877 page += num;
878 }
879
880 mr_offset = (ram_addr_t)(start_page << TARGET_PAGE_BITS) - ramblock->offset;
881 mr_size = (end - start_page) << TARGET_PAGE_BITS;
882 memory_region_clear_dirty_bitmap(ramblock->mr, mr_offset, mr_size);
883 }
884
885 if (dirty && tcg_enabled()) {
886 tlb_reset_dirty_range_all(start, length);
887 }
888
889 return dirty;
890 }
891
892 DirtyBitmapSnapshot *cpu_physical_memory_snapshot_and_clear_dirty
893 (MemoryRegion *mr, hwaddr offset, hwaddr length, unsigned client)
894 {
895 DirtyMemoryBlocks *blocks;
896 ram_addr_t start = memory_region_get_ram_addr(mr) + offset;
897 unsigned long align = 1UL << (TARGET_PAGE_BITS + BITS_PER_LEVEL);
898 ram_addr_t first = QEMU_ALIGN_DOWN(start, align);
899 ram_addr_t last = QEMU_ALIGN_UP(start + length, align);
900 DirtyBitmapSnapshot *snap;
901 unsigned long page, end, dest;
902
903 snap = g_malloc0(sizeof(*snap) +
904 ((last - first) >> (TARGET_PAGE_BITS + 3)));
905 snap->start = first;
906 snap->end = last;
907
908 page = first >> TARGET_PAGE_BITS;
909 end = last >> TARGET_PAGE_BITS;
910 dest = 0;
911
912 WITH_RCU_READ_LOCK_GUARD() {
913 blocks = qatomic_rcu_read(&ram_list.dirty_memory[client]);
914
915 while (page < end) {
916 unsigned long idx = page / DIRTY_MEMORY_BLOCK_SIZE;
917 unsigned long offset = page % DIRTY_MEMORY_BLOCK_SIZE;
918 unsigned long num = MIN(end - page,
919 DIRTY_MEMORY_BLOCK_SIZE - offset);
920
921 assert(QEMU_IS_ALIGNED(offset, (1 << BITS_PER_LEVEL)));
922 assert(QEMU_IS_ALIGNED(num, (1 << BITS_PER_LEVEL)));
923 offset >>= BITS_PER_LEVEL;
924
925 bitmap_copy_and_clear_atomic(snap->dirty + dest,
926 blocks->blocks[idx] + offset,
927 num);
928 page += num;
929 dest += num >> BITS_PER_LEVEL;
930 }
931 }
932
933 if (tcg_enabled()) {
934 tlb_reset_dirty_range_all(start, length);
935 }
936
937 memory_region_clear_dirty_bitmap(mr, offset, length);
938
939 return snap;
940 }
941
942 bool cpu_physical_memory_snapshot_get_dirty(DirtyBitmapSnapshot *snap,
943 ram_addr_t start,
944 ram_addr_t length)
945 {
946 unsigned long page, end;
947
948 assert(start >= snap->start);
949 assert(start + length <= snap->end);
950
951 end = TARGET_PAGE_ALIGN(start + length - snap->start) >> TARGET_PAGE_BITS;
952 page = (start - snap->start) >> TARGET_PAGE_BITS;
953
954 while (page < end) {
955 if (test_bit(page, snap->dirty)) {
956 return true;
957 }
958 page++;
959 }
960 return false;
961 }
962
963 /* Called from RCU critical section */
964 hwaddr memory_region_section_get_iotlb(CPUState *cpu,
965 MemoryRegionSection *section)
966 {
967 AddressSpaceDispatch *d = flatview_to_dispatch(section->fv);
968 return section - d->map.sections;
969 }
970
971 static int subpage_register(subpage_t *mmio, uint32_t start, uint32_t end,
972 uint16_t section);
973 static subpage_t *subpage_init(FlatView *fv, hwaddr base);
974
975 static uint16_t phys_section_add(PhysPageMap *map,
976 MemoryRegionSection *section)
977 {
978 /* The physical section number is ORed with a page-aligned
979 * pointer to produce the iotlb entries. Thus it should
980 * never overflow into the page-aligned value.
981 */
982 assert(map->sections_nb < TARGET_PAGE_SIZE);
983
984 if (map->sections_nb == map->sections_nb_alloc) {
985 map->sections_nb_alloc = MAX(map->sections_nb_alloc * 2, 16);
986 map->sections = g_renew(MemoryRegionSection, map->sections,
987 map->sections_nb_alloc);
988 }
989 map->sections[map->sections_nb] = *section;
990 memory_region_ref(section->mr);
991 return map->sections_nb++;
992 }
993
994 static void phys_section_destroy(MemoryRegion *mr)
995 {
996 bool have_sub_page = mr->subpage;
997
998 memory_region_unref(mr);
999
1000 if (have_sub_page) {
1001 subpage_t *subpage = container_of(mr, subpage_t, iomem);
1002 object_unref(OBJECT(&subpage->iomem));
1003 g_free(subpage);
1004 }
1005 }
1006
1007 static void phys_sections_free(PhysPageMap *map)
1008 {
1009 while (map->sections_nb > 0) {
1010 MemoryRegionSection *section = &map->sections[--map->sections_nb];
1011 phys_section_destroy(section->mr);
1012 }
1013 g_free(map->sections);
1014 g_free(map->nodes);
1015 }
1016
1017 static void register_subpage(FlatView *fv, MemoryRegionSection *section)
1018 {
1019 AddressSpaceDispatch *d = flatview_to_dispatch(fv);
1020 subpage_t *subpage;
1021 hwaddr base = section->offset_within_address_space
1022 & TARGET_PAGE_MASK;
1023 MemoryRegionSection *existing = phys_page_find(d, base);
1024 MemoryRegionSection subsection = {
1025 .offset_within_address_space = base,
1026 .size = int128_make64(TARGET_PAGE_SIZE),
1027 };
1028 hwaddr start, end;
1029
1030 assert(existing->mr->subpage || existing->mr == &io_mem_unassigned);
1031
1032 if (!(existing->mr->subpage)) {
1033 subpage = subpage_init(fv, base);
1034 subsection.fv = fv;
1035 subsection.mr = &subpage->iomem;
1036 phys_page_set(d, base >> TARGET_PAGE_BITS, 1,
1037 phys_section_add(&d->map, &subsection));
1038 } else {
1039 subpage = container_of(existing->mr, subpage_t, iomem);
1040 }
1041 start = section->offset_within_address_space & ~TARGET_PAGE_MASK;
1042 end = start + int128_get64(section->size) - 1;
1043 subpage_register(subpage, start, end,
1044 phys_section_add(&d->map, section));
1045 }
1046
1047
1048 static void register_multipage(FlatView *fv,
1049 MemoryRegionSection *section)
1050 {
1051 AddressSpaceDispatch *d = flatview_to_dispatch(fv);
1052 hwaddr start_addr = section->offset_within_address_space;
1053 uint16_t section_index = phys_section_add(&d->map, section);
1054 uint64_t num_pages = int128_get64(int128_rshift(section->size,
1055 TARGET_PAGE_BITS));
1056
1057 assert(num_pages);
1058 phys_page_set(d, start_addr >> TARGET_PAGE_BITS, num_pages, section_index);
1059 }
1060
1061 /*
1062 * The range in *section* may look like this:
1063 *
1064 * |s|PPPPPPP|s|
1065 *
1066 * where s stands for subpage and P for page.
1067 */
1068 void flatview_add_to_dispatch(FlatView *fv, MemoryRegionSection *section)
1069 {
1070 MemoryRegionSection remain = *section;
1071 Int128 page_size = int128_make64(TARGET_PAGE_SIZE);
1072
1073 /* register first subpage */
1074 if (remain.offset_within_address_space & ~TARGET_PAGE_MASK) {
1075 uint64_t left = TARGET_PAGE_ALIGN(remain.offset_within_address_space)
1076 - remain.offset_within_address_space;
1077
1078 MemoryRegionSection now = remain;
1079 now.size = int128_min(int128_make64(left), now.size);
1080 register_subpage(fv, &now);
1081 if (int128_eq(remain.size, now.size)) {
1082 return;
1083 }
1084 remain.size = int128_sub(remain.size, now.size);
1085 remain.offset_within_address_space += int128_get64(now.size);
1086 remain.offset_within_region += int128_get64(now.size);
1087 }
1088
1089 /* register whole pages */
1090 if (int128_ge(remain.size, page_size)) {
1091 MemoryRegionSection now = remain;
1092 now.size = int128_and(now.size, int128_neg(page_size));
1093 register_multipage(fv, &now);
1094 if (int128_eq(remain.size, now.size)) {
1095 return;
1096 }
1097 remain.size = int128_sub(remain.size, now.size);
1098 remain.offset_within_address_space += int128_get64(now.size);
1099 remain.offset_within_region += int128_get64(now.size);
1100 }
1101
1102 /* register last subpage */
1103 register_subpage(fv, &remain);
1104 }
1105
1106 void qemu_flush_coalesced_mmio_buffer(void)
1107 {
1108 if (kvm_enabled())
1109 kvm_flush_coalesced_mmio_buffer();
1110 }
1111
1112 void qemu_mutex_lock_ramlist(void)
1113 {
1114 qemu_mutex_lock(&ram_list.mutex);
1115 }
1116
1117 void qemu_mutex_unlock_ramlist(void)
1118 {
1119 qemu_mutex_unlock(&ram_list.mutex);
1120 }
1121
1122 GString *ram_block_format(void)
1123 {
1124 RAMBlock *block;
1125 char *psize;
1126 GString *buf = g_string_new("");
1127
1128 RCU_READ_LOCK_GUARD();
1129 g_string_append_printf(buf, "%24s %8s %18s %18s %18s\n",
1130 "Block Name", "PSize", "Offset", "Used", "Total");
1131 RAMBLOCK_FOREACH(block) {
1132 psize = size_to_str(block->page_size);
1133 g_string_append_printf(buf, "%24s %8s 0x%016" PRIx64 " 0x%016" PRIx64
1134 " 0x%016" PRIx64 "\n", block->idstr, psize,
1135 (uint64_t)block->offset,
1136 (uint64_t)block->used_length,
1137 (uint64_t)block->max_length);
1138 g_free(psize);
1139 }
1140
1141 return buf;
1142 }
1143
1144 static int find_min_backend_pagesize(Object *obj, void *opaque)
1145 {
1146 long *hpsize_min = opaque;
1147
1148 if (object_dynamic_cast(obj, TYPE_MEMORY_BACKEND)) {
1149 HostMemoryBackend *backend = MEMORY_BACKEND(obj);
1150 long hpsize = host_memory_backend_pagesize(backend);
1151
1152 if (host_memory_backend_is_mapped(backend) && (hpsize < *hpsize_min)) {
1153 *hpsize_min = hpsize;
1154 }
1155 }
1156
1157 return 0;
1158 }
1159
1160 static int find_max_backend_pagesize(Object *obj, void *opaque)
1161 {
1162 long *hpsize_max = opaque;
1163
1164 if (object_dynamic_cast(obj, TYPE_MEMORY_BACKEND)) {
1165 HostMemoryBackend *backend = MEMORY_BACKEND(obj);
1166 long hpsize = host_memory_backend_pagesize(backend);
1167
1168 if (host_memory_backend_is_mapped(backend) && (hpsize > *hpsize_max)) {
1169 *hpsize_max = hpsize;
1170 }
1171 }
1172
1173 return 0;
1174 }
1175
1176 /*
1177 * TODO: We assume right now that all mapped host memory backends are
1178 * used as RAM, however some might be used for different purposes.
1179 */
1180 long qemu_minrampagesize(void)
1181 {
1182 long hpsize = LONG_MAX;
1183 Object *memdev_root = object_resolve_path("/objects", NULL);
1184
1185 object_child_foreach(memdev_root, find_min_backend_pagesize, &hpsize);
1186 return hpsize;
1187 }
1188
1189 long qemu_maxrampagesize(void)
1190 {
1191 long pagesize = 0;
1192 Object *memdev_root = object_resolve_path("/objects", NULL);
1193
1194 object_child_foreach(memdev_root, find_max_backend_pagesize, &pagesize);
1195 return pagesize;
1196 }
1197
1198 #ifdef CONFIG_POSIX
1199 static int64_t get_file_size(int fd)
1200 {
1201 int64_t size;
1202 #if defined(__linux__)
1203 struct stat st;
1204
1205 if (fstat(fd, &st) < 0) {
1206 return -errno;
1207 }
1208
1209 /* Special handling for devdax character devices */
1210 if (S_ISCHR(st.st_mode)) {
1211 g_autofree char *subsystem_path = NULL;
1212 g_autofree char *subsystem = NULL;
1213
1214 subsystem_path = g_strdup_printf("/sys/dev/char/%d:%d/subsystem",
1215 major(st.st_rdev), minor(st.st_rdev));
1216 subsystem = g_file_read_link(subsystem_path, NULL);
1217
1218 if (subsystem && g_str_has_suffix(subsystem, "/dax")) {
1219 g_autofree char *size_path = NULL;
1220 g_autofree char *size_str = NULL;
1221
1222 size_path = g_strdup_printf("/sys/dev/char/%d:%d/size",
1223 major(st.st_rdev), minor(st.st_rdev));
1224
1225 if (g_file_get_contents(size_path, &size_str, NULL, NULL)) {
1226 return g_ascii_strtoll(size_str, NULL, 0);
1227 }
1228 }
1229 }
1230 #endif /* defined(__linux__) */
1231
1232 /* st.st_size may be zero for special files yet lseek(2) works */
1233 size = lseek(fd, 0, SEEK_END);
1234 if (size < 0) {
1235 return -errno;
1236 }
1237 return size;
1238 }
1239
1240 static int64_t get_file_align(int fd)
1241 {
1242 int64_t align = -1;
1243 #if defined(__linux__) && defined(CONFIG_LIBDAXCTL)
1244 struct stat st;
1245
1246 if (fstat(fd, &st) < 0) {
1247 return -errno;
1248 }
1249
1250 /* Special handling for devdax character devices */
1251 if (S_ISCHR(st.st_mode)) {
1252 g_autofree char *path = NULL;
1253 g_autofree char *rpath = NULL;
1254 struct daxctl_ctx *ctx;
1255 struct daxctl_region *region;
1256 int rc = 0;
1257
1258 path = g_strdup_printf("/sys/dev/char/%d:%d",
1259 major(st.st_rdev), minor(st.st_rdev));
1260 rpath = realpath(path, NULL);
1261 if (!rpath) {
1262 return -errno;
1263 }
1264
1265 rc = daxctl_new(&ctx);
1266 if (rc) {
1267 return -1;
1268 }
1269
1270 daxctl_region_foreach(ctx, region) {
1271 if (strstr(rpath, daxctl_region_get_path(region))) {
1272 align = daxctl_region_get_align(region);
1273 break;
1274 }
1275 }
1276 daxctl_unref(ctx);
1277 }
1278 #endif /* defined(__linux__) && defined(CONFIG_LIBDAXCTL) */
1279
1280 return align;
1281 }
1282
1283 static int file_ram_open(const char *path,
1284 const char *region_name,
1285 bool readonly,
1286 bool *created,
1287 Error **errp)
1288 {
1289 char *filename;
1290 char *sanitized_name;
1291 char *c;
1292 int fd = -1;
1293
1294 *created = false;
1295 for (;;) {
1296 fd = open(path, readonly ? O_RDONLY : O_RDWR);
1297 if (fd >= 0) {
1298 /* @path names an existing file, use it */
1299 break;
1300 }
1301 if (errno == ENOENT) {
1302 /* @path names a file that doesn't exist, create it */
1303 fd = open(path, O_RDWR | O_CREAT | O_EXCL, 0644);
1304 if (fd >= 0) {
1305 *created = true;
1306 break;
1307 }
1308 } else if (errno == EISDIR) {
1309 /* @path names a directory, create a file there */
1310 /* Make name safe to use with mkstemp by replacing '/' with '_'. */
1311 sanitized_name = g_strdup(region_name);
1312 for (c = sanitized_name; *c != '\0'; c++) {
1313 if (*c == '/') {
1314 *c = '_';
1315 }
1316 }
1317
1318 filename = g_strdup_printf("%s/qemu_back_mem.%s.XXXXXX", path,
1319 sanitized_name);
1320 g_free(sanitized_name);
1321
1322 fd = mkstemp(filename);
1323 if (fd >= 0) {
1324 unlink(filename);
1325 g_free(filename);
1326 break;
1327 }
1328 g_free(filename);
1329 }
1330 if (errno != EEXIST && errno != EINTR) {
1331 error_setg_errno(errp, errno,
1332 "can't open backing store %s for guest RAM",
1333 path);
1334 return -1;
1335 }
1336 /*
1337 * Try again on EINTR and EEXIST. The latter happens when
1338 * something else creates the file between our two open().
1339 */
1340 }
1341
1342 return fd;
1343 }
1344
1345 static void *file_ram_alloc(RAMBlock *block,
1346 ram_addr_t memory,
1347 int fd,
1348 bool readonly,
1349 bool truncate,
1350 off_t offset,
1351 Error **errp)
1352 {
1353 uint32_t qemu_map_flags;
1354 void *area;
1355
1356 block->page_size = qemu_fd_getpagesize(fd);
1357 if (block->mr->align % block->page_size) {
1358 error_setg(errp, "alignment 0x%" PRIx64
1359 " must be multiples of page size 0x%zx",
1360 block->mr->align, block->page_size);
1361 return NULL;
1362 } else if (block->mr->align && !is_power_of_2(block->mr->align)) {
1363 error_setg(errp, "alignment 0x%" PRIx64
1364 " must be a power of two", block->mr->align);
1365 return NULL;
1366 }
1367 block->mr->align = MAX(block->page_size, block->mr->align);
1368 #if defined(__s390x__)
1369 if (kvm_enabled()) {
1370 block->mr->align = MAX(block->mr->align, QEMU_VMALLOC_ALIGN);
1371 }
1372 #endif
1373
1374 if (memory < block->page_size) {
1375 error_setg(errp, "memory size 0x" RAM_ADDR_FMT " must be equal to "
1376 "or larger than page size 0x%zx",
1377 memory, block->page_size);
1378 return NULL;
1379 }
1380
1381 memory = ROUND_UP(memory, block->page_size);
1382
1383 /*
1384 * ftruncate is not supported by hugetlbfs in older
1385 * hosts, so don't bother bailing out on errors.
1386 * If anything goes wrong with it under other filesystems,
1387 * mmap will fail.
1388 *
1389 * Do not truncate the non-empty backend file to avoid corrupting
1390 * the existing data in the file. Disabling shrinking is not
1391 * enough. For example, the current vNVDIMM implementation stores
1392 * the guest NVDIMM labels at the end of the backend file. If the
1393 * backend file is later extended, QEMU will not be able to find
1394 * those labels. Therefore, extending the non-empty backend file
1395 * is disabled as well.
1396 */
1397 if (truncate && ftruncate(fd, memory)) {
1398 perror("ftruncate");
1399 }
1400
1401 qemu_map_flags = readonly ? QEMU_MAP_READONLY : 0;
1402 qemu_map_flags |= (block->flags & RAM_SHARED) ? QEMU_MAP_SHARED : 0;
1403 qemu_map_flags |= (block->flags & RAM_PMEM) ? QEMU_MAP_SYNC : 0;
1404 qemu_map_flags |= (block->flags & RAM_NORESERVE) ? QEMU_MAP_NORESERVE : 0;
1405 area = qemu_ram_mmap(fd, memory, block->mr->align, qemu_map_flags, offset);
1406 if (area == MAP_FAILED) {
1407 error_setg_errno(errp, errno,
1408 "unable to map backing store for guest RAM");
1409 return NULL;
1410 }
1411
1412 block->fd = fd;
1413 return area;
1414 }
1415 #endif
1416
1417 /* Allocate space within the ram_addr_t space that governs the
1418 * dirty bitmaps.
1419 * Called with the ramlist lock held.
1420 */
1421 static ram_addr_t find_ram_offset(ram_addr_t size)
1422 {
1423 RAMBlock *block, *next_block;
1424 ram_addr_t offset = RAM_ADDR_MAX, mingap = RAM_ADDR_MAX;
1425
1426 assert(size != 0); /* it would hand out same offset multiple times */
1427
1428 if (QLIST_EMPTY_RCU(&ram_list.blocks)) {
1429 return 0;
1430 }
1431
1432 RAMBLOCK_FOREACH(block) {
1433 ram_addr_t candidate, next = RAM_ADDR_MAX;
1434
1435 /* Align blocks to start on a 'long' in the bitmap
1436 * which makes the bitmap sync'ing take the fast path.
1437 */
1438 candidate = block->offset + block->max_length;
1439 candidate = ROUND_UP(candidate, BITS_PER_LONG << TARGET_PAGE_BITS);
1440
1441 /* Search for the closest following block
1442 * and find the gap.
1443 */
1444 RAMBLOCK_FOREACH(next_block) {
1445 if (next_block->offset >= candidate) {
1446 next = MIN(next, next_block->offset);
1447 }
1448 }
1449
1450 /* If it fits remember our place and remember the size
1451 * of gap, but keep going so that we might find a smaller
1452 * gap to fill so avoiding fragmentation.
1453 */
1454 if (next - candidate >= size && next - candidate < mingap) {
1455 offset = candidate;
1456 mingap = next - candidate;
1457 }
1458
1459 trace_find_ram_offset_loop(size, candidate, offset, next, mingap);
1460 }
1461
1462 if (offset == RAM_ADDR_MAX) {
1463 fprintf(stderr, "Failed to find gap of requested size: %" PRIu64 "\n",
1464 (uint64_t)size);
1465 abort();
1466 }
1467
1468 trace_find_ram_offset(size, offset);
1469
1470 return offset;
1471 }
1472
1473 static unsigned long last_ram_page(void)
1474 {
1475 RAMBlock *block;
1476 ram_addr_t last = 0;
1477
1478 RCU_READ_LOCK_GUARD();
1479 RAMBLOCK_FOREACH(block) {
1480 last = MAX(last, block->offset + block->max_length);
1481 }
1482 return last >> TARGET_PAGE_BITS;
1483 }
1484
1485 static void qemu_ram_setup_dump(void *addr, ram_addr_t size)
1486 {
1487 int ret;
1488
1489 /* Use MADV_DONTDUMP, if user doesn't want the guest memory in the core */
1490 if (!machine_dump_guest_core(current_machine)) {
1491 ret = qemu_madvise(addr, size, QEMU_MADV_DONTDUMP);
1492 if (ret) {
1493 perror("qemu_madvise");
1494 fprintf(stderr, "madvise doesn't support MADV_DONTDUMP, "
1495 "but dump_guest_core=off specified\n");
1496 }
1497 }
1498 }
1499
1500 const char *qemu_ram_get_idstr(RAMBlock *rb)
1501 {
1502 return rb->idstr;
1503 }
1504
1505 void *qemu_ram_get_host_addr(RAMBlock *rb)
1506 {
1507 return rb->host;
1508 }
1509
1510 ram_addr_t qemu_ram_get_offset(RAMBlock *rb)
1511 {
1512 return rb->offset;
1513 }
1514
1515 ram_addr_t qemu_ram_get_used_length(RAMBlock *rb)
1516 {
1517 return rb->used_length;
1518 }
1519
1520 ram_addr_t qemu_ram_get_max_length(RAMBlock *rb)
1521 {
1522 return rb->max_length;
1523 }
1524
1525 bool qemu_ram_is_shared(RAMBlock *rb)
1526 {
1527 return rb->flags & RAM_SHARED;
1528 }
1529
1530 bool qemu_ram_is_noreserve(RAMBlock *rb)
1531 {
1532 return rb->flags & RAM_NORESERVE;
1533 }
1534
1535 /* Note: Only set at the start of postcopy */
1536 bool qemu_ram_is_uf_zeroable(RAMBlock *rb)
1537 {
1538 return rb->flags & RAM_UF_ZEROPAGE;
1539 }
1540
1541 void qemu_ram_set_uf_zeroable(RAMBlock *rb)
1542 {
1543 rb->flags |= RAM_UF_ZEROPAGE;
1544 }
1545
1546 bool qemu_ram_is_migratable(RAMBlock *rb)
1547 {
1548 return rb->flags & RAM_MIGRATABLE;
1549 }
1550
1551 void qemu_ram_set_migratable(RAMBlock *rb)
1552 {
1553 rb->flags |= RAM_MIGRATABLE;
1554 }
1555
1556 void qemu_ram_unset_migratable(RAMBlock *rb)
1557 {
1558 rb->flags &= ~RAM_MIGRATABLE;
1559 }
1560
1561 int qemu_ram_get_fd(RAMBlock *rb)
1562 {
1563 return rb->fd;
1564 }
1565
1566 /* Called with iothread lock held. */
1567 void qemu_ram_set_idstr(RAMBlock *new_block, const char *name, DeviceState *dev)
1568 {
1569 RAMBlock *block;
1570
1571 assert(new_block);
1572 assert(!new_block->idstr[0]);
1573
1574 if (dev) {
1575 char *id = qdev_get_dev_path(dev);
1576 if (id) {
1577 snprintf(new_block->idstr, sizeof(new_block->idstr), "%s/", id);
1578 g_free(id);
1579 }
1580 }
1581 pstrcat(new_block->idstr, sizeof(new_block->idstr), name);
1582
1583 RCU_READ_LOCK_GUARD();
1584 RAMBLOCK_FOREACH(block) {
1585 if (block != new_block &&
1586 !strcmp(block->idstr, new_block->idstr)) {
1587 fprintf(stderr, "RAMBlock \"%s\" already registered, abort!\n",
1588 new_block->idstr);
1589 abort();
1590 }
1591 }
1592 }
1593
1594 /* Called with iothread lock held. */
1595 void qemu_ram_unset_idstr(RAMBlock *block)
1596 {
1597 /* FIXME: arch_init.c assumes that this is not called throughout
1598 * migration. Ignore the problem since hot-unplug during migration
1599 * does not work anyway.
1600 */
1601 if (block) {
1602 memset(block->idstr, 0, sizeof(block->idstr));
1603 }
1604 }
1605
1606 size_t qemu_ram_pagesize(RAMBlock *rb)
1607 {
1608 return rb->page_size;
1609 }
1610
1611 /* Returns the largest size of page in use */
1612 size_t qemu_ram_pagesize_largest(void)
1613 {
1614 RAMBlock *block;
1615 size_t largest = 0;
1616
1617 RAMBLOCK_FOREACH(block) {
1618 largest = MAX(largest, qemu_ram_pagesize(block));
1619 }
1620
1621 return largest;
1622 }
1623
1624 static int memory_try_enable_merging(void *addr, size_t len)
1625 {
1626 if (!machine_mem_merge(current_machine)) {
1627 /* disabled by the user */
1628 return 0;
1629 }
1630
1631 return qemu_madvise(addr, len, QEMU_MADV_MERGEABLE);
1632 }
1633
1634 /*
1635 * Resizing RAM while migrating can result in the migration being canceled.
1636 * Care has to be taken if the guest might have already detected the memory.
1637 *
1638 * As memory core doesn't know how is memory accessed, it is up to
1639 * resize callback to update device state and/or add assertions to detect
1640 * misuse, if necessary.
1641 */
1642 int qemu_ram_resize(RAMBlock *block, ram_addr_t newsize, Error **errp)
1643 {
1644 const ram_addr_t oldsize = block->used_length;
1645 const ram_addr_t unaligned_size = newsize;
1646
1647 assert(block);
1648
1649 newsize = HOST_PAGE_ALIGN(newsize);
1650
1651 if (block->used_length == newsize) {
1652 /*
1653 * We don't have to resize the ram block (which only knows aligned
1654 * sizes), however, we have to notify if the unaligned size changed.
1655 */
1656 if (unaligned_size != memory_region_size(block->mr)) {
1657 memory_region_set_size(block->mr, unaligned_size);
1658 if (block->resized) {
1659 block->resized(block->idstr, unaligned_size, block->host);
1660 }
1661 }
1662 return 0;
1663 }
1664
1665 if (!(block->flags & RAM_RESIZEABLE)) {
1666 error_setg_errno(errp, EINVAL,
1667 "Size mismatch: %s: 0x" RAM_ADDR_FMT
1668 " != 0x" RAM_ADDR_FMT, block->idstr,
1669 newsize, block->used_length);
1670 return -EINVAL;
1671 }
1672
1673 if (block->max_length < newsize) {
1674 error_setg_errno(errp, EINVAL,
1675 "Size too large: %s: 0x" RAM_ADDR_FMT
1676 " > 0x" RAM_ADDR_FMT, block->idstr,
1677 newsize, block->max_length);
1678 return -EINVAL;
1679 }
1680
1681 /* Notify before modifying the ram block and touching the bitmaps. */
1682 if (block->host) {
1683 ram_block_notify_resize(block->host, oldsize, newsize);
1684 }
1685
1686 cpu_physical_memory_clear_dirty_range(block->offset, block->used_length);
1687 block->used_length = newsize;
1688 cpu_physical_memory_set_dirty_range(block->offset, block->used_length,
1689 DIRTY_CLIENTS_ALL);
1690 memory_region_set_size(block->mr, unaligned_size);
1691 if (block->resized) {
1692 block->resized(block->idstr, unaligned_size, block->host);
1693 }
1694 return 0;
1695 }
1696
1697 /*
1698 * Trigger sync on the given ram block for range [start, start + length]
1699 * with the backing store if one is available.
1700 * Otherwise no-op.
1701 * @Note: this is supposed to be a synchronous op.
1702 */
1703 void qemu_ram_msync(RAMBlock *block, ram_addr_t start, ram_addr_t length)
1704 {
1705 /* The requested range should fit in within the block range */
1706 g_assert((start + length) <= block->used_length);
1707
1708 #ifdef CONFIG_LIBPMEM
1709 /* The lack of support for pmem should not block the sync */
1710 if (ramblock_is_pmem(block)) {
1711 void *addr = ramblock_ptr(block, start);
1712 pmem_persist(addr, length);
1713 return;
1714 }
1715 #endif
1716 if (block->fd >= 0) {
1717 /**
1718 * Case there is no support for PMEM or the memory has not been
1719 * specified as persistent (or is not one) - use the msync.
1720 * Less optimal but still achieves the same goal
1721 */
1722 void *addr = ramblock_ptr(block, start);
1723 if (qemu_msync(addr, length, block->fd)) {
1724 warn_report("%s: failed to sync memory range: start: "
1725 RAM_ADDR_FMT " length: " RAM_ADDR_FMT,
1726 __func__, start, length);
1727 }
1728 }
1729 }
1730
1731 /* Called with ram_list.mutex held */
1732 static void dirty_memory_extend(ram_addr_t old_ram_size,
1733 ram_addr_t new_ram_size)
1734 {
1735 ram_addr_t old_num_blocks = DIV_ROUND_UP(old_ram_size,
1736 DIRTY_MEMORY_BLOCK_SIZE);
1737 ram_addr_t new_num_blocks = DIV_ROUND_UP(new_ram_size,
1738 DIRTY_MEMORY_BLOCK_SIZE);
1739 int i;
1740
1741 /* Only need to extend if block count increased */
1742 if (new_num_blocks <= old_num_blocks) {
1743 return;
1744 }
1745
1746 for (i = 0; i < DIRTY_MEMORY_NUM; i++) {
1747 DirtyMemoryBlocks *old_blocks;
1748 DirtyMemoryBlocks *new_blocks;
1749 int j;
1750
1751 old_blocks = qatomic_rcu_read(&ram_list.dirty_memory[i]);
1752 new_blocks = g_malloc(sizeof(*new_blocks) +
1753 sizeof(new_blocks->blocks[0]) * new_num_blocks);
1754
1755 if (old_num_blocks) {
1756 memcpy(new_blocks->blocks, old_blocks->blocks,
1757 old_num_blocks * sizeof(old_blocks->blocks[0]));
1758 }
1759
1760 for (j = old_num_blocks; j < new_num_blocks; j++) {
1761 new_blocks->blocks[j] = bitmap_new(DIRTY_MEMORY_BLOCK_SIZE);
1762 }
1763
1764 qatomic_rcu_set(&ram_list.dirty_memory[i], new_blocks);
1765
1766 if (old_blocks) {
1767 g_free_rcu(old_blocks, rcu);
1768 }
1769 }
1770 }
1771
1772 static void ram_block_add(RAMBlock *new_block, Error **errp)
1773 {
1774 const bool noreserve = qemu_ram_is_noreserve(new_block);
1775 const bool shared = qemu_ram_is_shared(new_block);
1776 RAMBlock *block;
1777 RAMBlock *last_block = NULL;
1778 ram_addr_t old_ram_size, new_ram_size;
1779 Error *err = NULL;
1780
1781 old_ram_size = last_ram_page();
1782
1783 qemu_mutex_lock_ramlist();
1784 new_block->offset = find_ram_offset(new_block->max_length);
1785
1786 if (!new_block->host) {
1787 if (xen_enabled()) {
1788 xen_ram_alloc(new_block->offset, new_block->max_length,
1789 new_block->mr, &err);
1790 if (err) {
1791 error_propagate(errp, err);
1792 qemu_mutex_unlock_ramlist();
1793 return;
1794 }
1795 } else {
1796 new_block->host = qemu_anon_ram_alloc(new_block->max_length,
1797 &new_block->mr->align,
1798 shared, noreserve);
1799 if (!new_block->host) {
1800 error_setg_errno(errp, errno,
1801 "cannot set up guest memory '%s'",
1802 memory_region_name(new_block->mr));
1803 qemu_mutex_unlock_ramlist();
1804 return;
1805 }
1806 memory_try_enable_merging(new_block->host, new_block->max_length);
1807 }
1808 }
1809
1810 new_ram_size = MAX(old_ram_size,
1811 (new_block->offset + new_block->max_length) >> TARGET_PAGE_BITS);
1812 if (new_ram_size > old_ram_size) {
1813 dirty_memory_extend(old_ram_size, new_ram_size);
1814 }
1815 /* Keep the list sorted from biggest to smallest block. Unlike QTAILQ,
1816 * QLIST (which has an RCU-friendly variant) does not have insertion at
1817 * tail, so save the last element in last_block.
1818 */
1819 RAMBLOCK_FOREACH(block) {
1820 last_block = block;
1821 if (block->max_length < new_block->max_length) {
1822 break;
1823 }
1824 }
1825 if (block) {
1826 QLIST_INSERT_BEFORE_RCU(block, new_block, next);
1827 } else if (last_block) {
1828 QLIST_INSERT_AFTER_RCU(last_block, new_block, next);
1829 } else { /* list is empty */
1830 QLIST_INSERT_HEAD_RCU(&ram_list.blocks, new_block, next);
1831 }
1832 ram_list.mru_block = NULL;
1833
1834 /* Write list before version */
1835 smp_wmb();
1836 ram_list.version++;
1837 qemu_mutex_unlock_ramlist();
1838
1839 cpu_physical_memory_set_dirty_range(new_block->offset,
1840 new_block->used_length,
1841 DIRTY_CLIENTS_ALL);
1842
1843 if (new_block->host) {
1844 qemu_ram_setup_dump(new_block->host, new_block->max_length);
1845 qemu_madvise(new_block->host, new_block->max_length, QEMU_MADV_HUGEPAGE);
1846 /*
1847 * MADV_DONTFORK is also needed by KVM in absence of synchronous MMU
1848 * Configure it unless the machine is a qtest server, in which case
1849 * KVM is not used and it may be forked (eg for fuzzing purposes).
1850 */
1851 if (!qtest_enabled()) {
1852 qemu_madvise(new_block->host, new_block->max_length,
1853 QEMU_MADV_DONTFORK);
1854 }
1855 ram_block_notify_add(new_block->host, new_block->used_length,
1856 new_block->max_length);
1857 }
1858 }
1859
1860 #ifdef CONFIG_POSIX
1861 RAMBlock *qemu_ram_alloc_from_fd(ram_addr_t size, MemoryRegion *mr,
1862 uint32_t ram_flags, int fd, off_t offset,
1863 bool readonly, Error **errp)
1864 {
1865 RAMBlock *new_block;
1866 Error *local_err = NULL;
1867 int64_t file_size, file_align;
1868
1869 /* Just support these ram flags by now. */
1870 assert((ram_flags & ~(RAM_SHARED | RAM_PMEM | RAM_NORESERVE |
1871 RAM_PROTECTED)) == 0);
1872
1873 if (xen_enabled()) {
1874 error_setg(errp, "-mem-path not supported with Xen");
1875 return NULL;
1876 }
1877
1878 if (kvm_enabled() && !kvm_has_sync_mmu()) {
1879 error_setg(errp,
1880 "host lacks kvm mmu notifiers, -mem-path unsupported");
1881 return NULL;
1882 }
1883
1884 size = HOST_PAGE_ALIGN(size);
1885 file_size = get_file_size(fd);
1886 if (file_size > 0 && file_size < size) {
1887 error_setg(errp, "backing store size 0x%" PRIx64
1888 " does not match 'size' option 0x" RAM_ADDR_FMT,
1889 file_size, size);
1890 return NULL;
1891 }
1892
1893 file_align = get_file_align(fd);
1894 if (file_align > 0 && file_align > mr->align) {
1895 error_setg(errp, "backing store align 0x%" PRIx64
1896 " is larger than 'align' option 0x%" PRIx64,
1897 file_align, mr->align);
1898 return NULL;
1899 }
1900
1901 new_block = g_malloc0(sizeof(*new_block));
1902 new_block->mr = mr;
1903 new_block->used_length = size;
1904 new_block->max_length = size;
1905 new_block->flags = ram_flags;
1906 new_block->host = file_ram_alloc(new_block, size, fd, readonly,
1907 !file_size, offset, errp);
1908 if (!new_block->host) {
1909 g_free(new_block);
1910 return NULL;
1911 }
1912
1913 ram_block_add(new_block, &local_err);
1914 if (local_err) {
1915 g_free(new_block);
1916 error_propagate(errp, local_err);
1917 return NULL;
1918 }
1919 return new_block;
1920
1921 }
1922
1923
1924 RAMBlock *qemu_ram_alloc_from_file(ram_addr_t size, MemoryRegion *mr,
1925 uint32_t ram_flags, const char *mem_path,
1926 bool readonly, Error **errp)
1927 {
1928 int fd;
1929 bool created;
1930 RAMBlock *block;
1931
1932 fd = file_ram_open(mem_path, memory_region_name(mr), readonly, &created,
1933 errp);
1934 if (fd < 0) {
1935 return NULL;
1936 }
1937
1938 block = qemu_ram_alloc_from_fd(size, mr, ram_flags, fd, 0, readonly, errp);
1939 if (!block) {
1940 if (created) {
1941 unlink(mem_path);
1942 }
1943 close(fd);
1944 return NULL;
1945 }
1946
1947 return block;
1948 }
1949 #endif
1950
1951 static
1952 RAMBlock *qemu_ram_alloc_internal(ram_addr_t size, ram_addr_t max_size,
1953 void (*resized)(const char*,
1954 uint64_t length,
1955 void *host),
1956 void *host, uint32_t ram_flags,
1957 MemoryRegion *mr, Error **errp)
1958 {
1959 RAMBlock *new_block;
1960 Error *local_err = NULL;
1961
1962 assert((ram_flags & ~(RAM_SHARED | RAM_RESIZEABLE | RAM_PREALLOC |
1963 RAM_NORESERVE)) == 0);
1964 assert(!host ^ (ram_flags & RAM_PREALLOC));
1965
1966 size = HOST_PAGE_ALIGN(size);
1967 max_size = HOST_PAGE_ALIGN(max_size);
1968 new_block = g_malloc0(sizeof(*new_block));
1969 new_block->mr = mr;
1970 new_block->resized = resized;
1971 new_block->used_length = size;
1972 new_block->max_length = max_size;
1973 assert(max_size >= size);
1974 new_block->fd = -1;
1975 new_block->page_size = qemu_real_host_page_size();
1976 new_block->host = host;
1977 new_block->flags = ram_flags;
1978 ram_block_add(new_block, &local_err);
1979 if (local_err) {
1980 g_free(new_block);
1981 error_propagate(errp, local_err);
1982 return NULL;
1983 }
1984 return new_block;
1985 }
1986
1987 RAMBlock *qemu_ram_alloc_from_ptr(ram_addr_t size, void *host,
1988 MemoryRegion *mr, Error **errp)
1989 {
1990 return qemu_ram_alloc_internal(size, size, NULL, host, RAM_PREALLOC, mr,
1991 errp);
1992 }
1993
1994 RAMBlock *qemu_ram_alloc(ram_addr_t size, uint32_t ram_flags,
1995 MemoryRegion *mr, Error **errp)
1996 {
1997 assert((ram_flags & ~(RAM_SHARED | RAM_NORESERVE)) == 0);
1998 return qemu_ram_alloc_internal(size, size, NULL, NULL, ram_flags, mr, errp);
1999 }
2000
2001 RAMBlock *qemu_ram_alloc_resizeable(ram_addr_t size, ram_addr_t maxsz,
2002 void (*resized)(const char*,
2003 uint64_t length,
2004 void *host),
2005 MemoryRegion *mr, Error **errp)
2006 {
2007 return qemu_ram_alloc_internal(size, maxsz, resized, NULL,
2008 RAM_RESIZEABLE, mr, errp);
2009 }
2010
2011 static void reclaim_ramblock(RAMBlock *block)
2012 {
2013 if (block->flags & RAM_PREALLOC) {
2014 ;
2015 } else if (xen_enabled()) {
2016 xen_invalidate_map_cache_entry(block->host);
2017 #ifndef _WIN32
2018 } else if (block->fd >= 0) {
2019 qemu_ram_munmap(block->fd, block->host, block->max_length);
2020 close(block->fd);
2021 #endif
2022 } else {
2023 qemu_anon_ram_free(block->host, block->max_length);
2024 }
2025 g_free(block);
2026 }
2027
2028 void qemu_ram_free(RAMBlock *block)
2029 {
2030 if (!block) {
2031 return;
2032 }
2033
2034 if (block->host) {
2035 ram_block_notify_remove(block->host, block->used_length,
2036 block->max_length);
2037 }
2038
2039 qemu_mutex_lock_ramlist();
2040 QLIST_REMOVE_RCU(block, next);
2041 ram_list.mru_block = NULL;
2042 /* Write list before version */
2043 smp_wmb();
2044 ram_list.version++;
2045 call_rcu(block, reclaim_ramblock, rcu);
2046 qemu_mutex_unlock_ramlist();
2047 }
2048
2049 #ifndef _WIN32
2050 void qemu_ram_remap(ram_addr_t addr, ram_addr_t length)
2051 {
2052 RAMBlock *block;
2053 ram_addr_t offset;
2054 int flags;
2055 void *area, *vaddr;
2056
2057 RAMBLOCK_FOREACH(block) {
2058 offset = addr - block->offset;
2059 if (offset < block->max_length) {
2060 vaddr = ramblock_ptr(block, offset);
2061 if (block->flags & RAM_PREALLOC) {
2062 ;
2063 } else if (xen_enabled()) {
2064 abort();
2065 } else {
2066 flags = MAP_FIXED;
2067 flags |= block->flags & RAM_SHARED ?
2068 MAP_SHARED : MAP_PRIVATE;
2069 flags |= block->flags & RAM_NORESERVE ? MAP_NORESERVE : 0;
2070 if (block->fd >= 0) {
2071 area = mmap(vaddr, length, PROT_READ | PROT_WRITE,
2072 flags, block->fd, offset);
2073 } else {
2074 flags |= MAP_ANONYMOUS;
2075 area = mmap(vaddr, length, PROT_READ | PROT_WRITE,
2076 flags, -1, 0);
2077 }
2078 if (area != vaddr) {
2079 error_report("Could not remap addr: "
2080 RAM_ADDR_FMT "@" RAM_ADDR_FMT "",
2081 length, addr);
2082 exit(1);
2083 }
2084 memory_try_enable_merging(vaddr, length);
2085 qemu_ram_setup_dump(vaddr, length);
2086 }
2087 }
2088 }
2089 }
2090 #endif /* !_WIN32 */
2091
2092 /* Return a host pointer to ram allocated with qemu_ram_alloc.
2093 * This should not be used for general purpose DMA. Use address_space_map
2094 * or address_space_rw instead. For local memory (e.g. video ram) that the
2095 * device owns, use memory_region_get_ram_ptr.
2096 *
2097 * Called within RCU critical section.
2098 */
2099 void *qemu_map_ram_ptr(RAMBlock *ram_block, ram_addr_t addr)
2100 {
2101 RAMBlock *block = ram_block;
2102
2103 if (block == NULL) {
2104 block = qemu_get_ram_block(addr);
2105 addr -= block->offset;
2106 }
2107
2108 if (xen_enabled() && block->host == NULL) {
2109 /* We need to check if the requested address is in the RAM
2110 * because we don't want to map the entire memory in QEMU.
2111 * In that case just map until the end of the page.
2112 */
2113 if (block->offset == 0) {
2114 return xen_map_cache(addr, 0, 0, false);
2115 }
2116
2117 block->host = xen_map_cache(block->offset, block->max_length, 1, false);
2118 }
2119 return ramblock_ptr(block, addr);
2120 }
2121
2122 /* Return a host pointer to guest's ram. Similar to qemu_map_ram_ptr
2123 * but takes a size argument.
2124 *
2125 * Called within RCU critical section.
2126 */
2127 static void *qemu_ram_ptr_length(RAMBlock *ram_block, ram_addr_t addr,
2128 hwaddr *size, bool lock)
2129 {
2130 RAMBlock *block = ram_block;
2131 if (*size == 0) {
2132 return NULL;
2133 }
2134
2135 if (block == NULL) {
2136 block = qemu_get_ram_block(addr);
2137 addr -= block->offset;
2138 }
2139 *size = MIN(*size, block->max_length - addr);
2140
2141 if (xen_enabled() && block->host == NULL) {
2142 /* We need to check if the requested address is in the RAM
2143 * because we don't want to map the entire memory in QEMU.
2144 * In that case just map the requested area.
2145 */
2146 if (block->offset == 0) {
2147 return xen_map_cache(addr, *size, lock, lock);
2148 }
2149
2150 block->host = xen_map_cache(block->offset, block->max_length, 1, lock);
2151 }
2152
2153 return ramblock_ptr(block, addr);
2154 }
2155
2156 /* Return the offset of a hostpointer within a ramblock */
2157 ram_addr_t qemu_ram_block_host_offset(RAMBlock *rb, void *host)
2158 {
2159 ram_addr_t res = (uint8_t *)host - (uint8_t *)rb->host;
2160 assert((uintptr_t)host >= (uintptr_t)rb->host);
2161 assert(res < rb->max_length);
2162
2163 return res;
2164 }
2165
2166 /*
2167 * Translates a host ptr back to a RAMBlock, a ram_addr and an offset
2168 * in that RAMBlock.
2169 *
2170 * ptr: Host pointer to look up
2171 * round_offset: If true round the result offset down to a page boundary
2172 * *ram_addr: set to result ram_addr
2173 * *offset: set to result offset within the RAMBlock
2174 *
2175 * Returns: RAMBlock (or NULL if not found)
2176 *
2177 * By the time this function returns, the returned pointer is not protected
2178 * by RCU anymore. If the caller is not within an RCU critical section and
2179 * does not hold the iothread lock, it must have other means of protecting the
2180 * pointer, such as a reference to the region that includes the incoming
2181 * ram_addr_t.
2182 */
2183 RAMBlock *qemu_ram_block_from_host(void *ptr, bool round_offset,
2184 ram_addr_t *offset)
2185 {
2186 RAMBlock *block;
2187 uint8_t *host = ptr;
2188
2189 if (xen_enabled()) {
2190 ram_addr_t ram_addr;
2191 RCU_READ_LOCK_GUARD();
2192 ram_addr = xen_ram_addr_from_mapcache(ptr);
2193 block = qemu_get_ram_block(ram_addr);
2194 if (block) {
2195 *offset = ram_addr - block->offset;
2196 }
2197 return block;
2198 }
2199
2200 RCU_READ_LOCK_GUARD();
2201 block = qatomic_rcu_read(&ram_list.mru_block);
2202 if (block && block->host && host - block->host < block->max_length) {
2203 goto found;
2204 }
2205
2206 RAMBLOCK_FOREACH(block) {
2207 /* This case append when the block is not mapped. */
2208 if (block->host == NULL) {
2209 continue;
2210 }
2211 if (host - block->host < block->max_length) {
2212 goto found;
2213 }
2214 }
2215
2216 return NULL;
2217
2218 found:
2219 *offset = (host - block->host);
2220 if (round_offset) {
2221 *offset &= TARGET_PAGE_MASK;
2222 }
2223 return block;
2224 }
2225
2226 /*
2227 * Finds the named RAMBlock
2228 *
2229 * name: The name of RAMBlock to find
2230 *
2231 * Returns: RAMBlock (or NULL if not found)
2232 */
2233 RAMBlock *qemu_ram_block_by_name(const char *name)
2234 {
2235 RAMBlock *block;
2236
2237 RAMBLOCK_FOREACH(block) {
2238 if (!strcmp(name, block->idstr)) {
2239 return block;
2240 }
2241 }
2242
2243 return NULL;
2244 }
2245
2246 /* Some of the softmmu routines need to translate from a host pointer
2247 (typically a TLB entry) back to a ram offset. */
2248 ram_addr_t qemu_ram_addr_from_host(void *ptr)
2249 {
2250 RAMBlock *block;
2251 ram_addr_t offset;
2252
2253 block = qemu_ram_block_from_host(ptr, false, &offset);
2254 if (!block) {
2255 return RAM_ADDR_INVALID;
2256 }
2257
2258 return block->offset + offset;
2259 }
2260
2261 ram_addr_t qemu_ram_addr_from_host_nofail(void *ptr)
2262 {
2263 ram_addr_t ram_addr;
2264
2265 ram_addr = qemu_ram_addr_from_host(ptr);
2266 if (ram_addr == RAM_ADDR_INVALID) {
2267 error_report("Bad ram pointer %p", ptr);
2268 abort();
2269 }
2270 return ram_addr;
2271 }
2272
2273 static MemTxResult flatview_read(FlatView *fv, hwaddr addr,
2274 MemTxAttrs attrs, void *buf, hwaddr len);
2275 static MemTxResult flatview_write(FlatView *fv, hwaddr addr, MemTxAttrs attrs,
2276 const void *buf, hwaddr len);
2277 static bool flatview_access_valid(FlatView *fv, hwaddr addr, hwaddr len,
2278 bool is_write, MemTxAttrs attrs);
2279
2280 static MemTxResult subpage_read(void *opaque, hwaddr addr, uint64_t *data,
2281 unsigned len, MemTxAttrs attrs)
2282 {
2283 subpage_t *subpage = opaque;
2284 uint8_t buf[8];
2285 MemTxResult res;
2286
2287 #if defined(DEBUG_SUBPAGE)
2288 printf("%s: subpage %p len %u addr " HWADDR_FMT_plx "\n", __func__,
2289 subpage, len, addr);
2290 #endif
2291 res = flatview_read(subpage->fv, addr + subpage->base, attrs, buf, len);
2292 if (res) {
2293 return res;
2294 }
2295 *data = ldn_p(buf, len);
2296 return MEMTX_OK;
2297 }
2298
2299 static MemTxResult subpage_write(void *opaque, hwaddr addr,
2300 uint64_t value, unsigned len, MemTxAttrs attrs)
2301 {
2302 subpage_t *subpage = opaque;
2303 uint8_t buf[8];
2304
2305 #if defined(DEBUG_SUBPAGE)
2306 printf("%s: subpage %p len %u addr " HWADDR_FMT_plx
2307 " value %"PRIx64"\n",
2308 __func__, subpage, len, addr, value);
2309 #endif
2310 stn_p(buf, len, value);
2311 return flatview_write(subpage->fv, addr + subpage->base, attrs, buf, len);
2312 }
2313
2314 static bool subpage_accepts(void *opaque, hwaddr addr,
2315 unsigned len, bool is_write,
2316 MemTxAttrs attrs)
2317 {
2318 subpage_t *subpage = opaque;
2319 #if defined(DEBUG_SUBPAGE)
2320 printf("%s: subpage %p %c len %u addr " HWADDR_FMT_plx "\n",
2321 __func__, subpage, is_write ? 'w' : 'r', len, addr);
2322 #endif
2323
2324 return flatview_access_valid(subpage->fv, addr + subpage->base,
2325 len, is_write, attrs);
2326 }
2327
2328 static const MemoryRegionOps subpage_ops = {
2329 .read_with_attrs = subpage_read,
2330 .write_with_attrs = subpage_write,
2331 .impl.min_access_size = 1,
2332 .impl.max_access_size = 8,
2333 .valid.min_access_size = 1,
2334 .valid.max_access_size = 8,
2335 .valid.accepts = subpage_accepts,
2336 .endianness = DEVICE_NATIVE_ENDIAN,
2337 };
2338
2339 static int subpage_register(subpage_t *mmio, uint32_t start, uint32_t end,
2340 uint16_t section)
2341 {
2342 int idx, eidx;
2343
2344 if (start >= TARGET_PAGE_SIZE || end >= TARGET_PAGE_SIZE)
2345 return -1;
2346 idx = SUBPAGE_IDX(start);
2347 eidx = SUBPAGE_IDX(end);
2348 #if defined(DEBUG_SUBPAGE)
2349 printf("%s: %p start %08x end %08x idx %08x eidx %08x section %d\n",
2350 __func__, mmio, start, end, idx, eidx, section);
2351 #endif
2352 for (; idx <= eidx; idx++) {
2353 mmio->sub_section[idx] = section;
2354 }
2355
2356 return 0;
2357 }
2358
2359 static subpage_t *subpage_init(FlatView *fv, hwaddr base)
2360 {
2361 subpage_t *mmio;
2362
2363 /* mmio->sub_section is set to PHYS_SECTION_UNASSIGNED with g_malloc0 */
2364 mmio = g_malloc0(sizeof(subpage_t) + TARGET_PAGE_SIZE * sizeof(uint16_t));
2365 mmio->fv = fv;
2366 mmio->base = base;
2367 memory_region_init_io(&mmio->iomem, NULL, &subpage_ops, mmio,
2368 NULL, TARGET_PAGE_SIZE);
2369 mmio->iomem.subpage = true;
2370 #if defined(DEBUG_SUBPAGE)
2371 printf("%s: %p base " HWADDR_FMT_plx " len %08x\n", __func__,
2372 mmio, base, TARGET_PAGE_SIZE);
2373 #endif
2374
2375 return mmio;
2376 }
2377
2378 static uint16_t dummy_section(PhysPageMap *map, FlatView *fv, MemoryRegion *mr)
2379 {
2380 assert(fv);
2381 MemoryRegionSection section = {
2382 .fv = fv,
2383 .mr = mr,
2384 .offset_within_address_space = 0,
2385 .offset_within_region = 0,
2386 .size = int128_2_64(),
2387 };
2388
2389 return phys_section_add(map, &section);
2390 }
2391
2392 MemoryRegionSection *iotlb_to_section(CPUState *cpu,
2393 hwaddr index, MemTxAttrs attrs)
2394 {
2395 int asidx = cpu_asidx_from_attrs(cpu, attrs);
2396 CPUAddressSpace *cpuas = &cpu->cpu_ases[asidx];
2397 AddressSpaceDispatch *d = qatomic_rcu_read(&cpuas->memory_dispatch);
2398 MemoryRegionSection *sections = d->map.sections;
2399
2400 return &sections[index & ~TARGET_PAGE_MASK];
2401 }
2402
2403 static void io_mem_init(void)
2404 {
2405 memory_region_init_io(&io_mem_unassigned, NULL, &unassigned_mem_ops, NULL,
2406 NULL, UINT64_MAX);
2407 }
2408
2409 AddressSpaceDispatch *address_space_dispatch_new(FlatView *fv)
2410 {
2411 AddressSpaceDispatch *d = g_new0(AddressSpaceDispatch, 1);
2412 uint16_t n;
2413
2414 n = dummy_section(&d->map, fv, &io_mem_unassigned);
2415 assert(n == PHYS_SECTION_UNASSIGNED);
2416
2417 d->phys_map = (PhysPageEntry) { .ptr = PHYS_MAP_NODE_NIL, .skip = 1 };
2418
2419 return d;
2420 }
2421
2422 void address_space_dispatch_free(AddressSpaceDispatch *d)
2423 {
2424 phys_sections_free(&d->map);
2425 g_free(d);
2426 }
2427
2428 static void do_nothing(CPUState *cpu, run_on_cpu_data d)
2429 {
2430 }
2431
2432 static void tcg_log_global_after_sync(MemoryListener *listener)
2433 {
2434 CPUAddressSpace *cpuas;
2435
2436 /* Wait for the CPU to end the current TB. This avoids the following
2437 * incorrect race:
2438 *
2439 * vCPU migration
2440 * ---------------------- -------------------------
2441 * TLB check -> slow path
2442 * notdirty_mem_write
2443 * write to RAM
2444 * mark dirty
2445 * clear dirty flag
2446 * TLB check -> fast path
2447 * read memory
2448 * write to RAM
2449 *
2450 * by pushing the migration thread's memory read after the vCPU thread has
2451 * written the memory.
2452 */
2453 if (replay_mode == REPLAY_MODE_NONE) {
2454 /*
2455 * VGA can make calls to this function while updating the screen.
2456 * In record/replay mode this causes a deadlock, because
2457 * run_on_cpu waits for rr mutex. Therefore no races are possible
2458 * in this case and no need for making run_on_cpu when
2459 * record/replay is enabled.
2460 */
2461 cpuas = container_of(listener, CPUAddressSpace, tcg_as_listener);
2462 run_on_cpu(cpuas->cpu, do_nothing, RUN_ON_CPU_NULL);
2463 }
2464 }
2465
2466 static void tcg_commit(MemoryListener *listener)
2467 {
2468 CPUAddressSpace *cpuas;
2469 AddressSpaceDispatch *d;
2470
2471 assert(tcg_enabled());
2472 /* since each CPU stores ram addresses in its TLB cache, we must
2473 reset the modified entries */
2474 cpuas = container_of(listener, CPUAddressSpace, tcg_as_listener);
2475 cpu_reloading_memory_map();
2476 /* The CPU and TLB are protected by the iothread lock.
2477 * We reload the dispatch pointer now because cpu_reloading_memory_map()
2478 * may have split the RCU critical section.
2479 */
2480 d = address_space_to_dispatch(cpuas->as);
2481 qatomic_rcu_set(&cpuas->memory_dispatch, d);
2482 tlb_flush(cpuas->cpu);
2483 }
2484
2485 static void memory_map_init(void)
2486 {
2487 system_memory = g_malloc(sizeof(*system_memory));
2488
2489 memory_region_init(system_memory, NULL, "system", UINT64_MAX);
2490 address_space_init(&address_space_memory, system_memory, "memory");
2491
2492 system_io = g_malloc(sizeof(*system_io));
2493 memory_region_init_io(system_io, NULL, &unassigned_io_ops, NULL, "io",
2494 65536);
2495 address_space_init(&address_space_io, system_io, "I/O");
2496 }
2497
2498 MemoryRegion *get_system_memory(void)
2499 {
2500 return system_memory;
2501 }
2502
2503 MemoryRegion *get_system_io(void)
2504 {
2505 return system_io;
2506 }
2507
2508 static void invalidate_and_set_dirty(MemoryRegion *mr, hwaddr addr,
2509 hwaddr length)
2510 {
2511 uint8_t dirty_log_mask = memory_region_get_dirty_log_mask(mr);
2512 addr += memory_region_get_ram_addr(mr);
2513
2514 /* No early return if dirty_log_mask is or becomes 0, because
2515 * cpu_physical_memory_set_dirty_range will still call
2516 * xen_modified_memory.
2517 */
2518 if (dirty_log_mask) {
2519 dirty_log_mask =
2520 cpu_physical_memory_range_includes_clean(addr, length, dirty_log_mask);
2521 }
2522 if (dirty_log_mask & (1 << DIRTY_MEMORY_CODE)) {
2523 assert(tcg_enabled());
2524 tb_invalidate_phys_range(addr, addr + length);
2525 dirty_log_mask &= ~(1 << DIRTY_MEMORY_CODE);
2526 }
2527 cpu_physical_memory_set_dirty_range(addr, length, dirty_log_mask);
2528 }
2529
2530 void memory_region_flush_rom_device(MemoryRegion *mr, hwaddr addr, hwaddr size)
2531 {
2532 /*
2533 * In principle this function would work on other memory region types too,
2534 * but the ROM device use case is the only one where this operation is
2535 * necessary. Other memory regions should use the
2536 * address_space_read/write() APIs.
2537 */
2538 assert(memory_region_is_romd(mr));
2539
2540 invalidate_and_set_dirty(mr, addr, size);
2541 }
2542
2543 int memory_access_size(MemoryRegion *mr, unsigned l, hwaddr addr)
2544 {
2545 unsigned access_size_max = mr->ops->valid.max_access_size;
2546
2547 /* Regions are assumed to support 1-4 byte accesses unless
2548 otherwise specified. */
2549 if (access_size_max == 0) {
2550 access_size_max = 4;
2551 }
2552
2553 /* Bound the maximum access by the alignment of the address. */
2554 if (!mr->ops->impl.unaligned) {
2555 unsigned align_size_max = addr & -addr;
2556 if (align_size_max != 0 && align_size_max < access_size_max) {
2557 access_size_max = align_size_max;
2558 }
2559 }
2560
2561 /* Don't attempt accesses larger than the maximum. */
2562 if (l > access_size_max) {
2563 l = access_size_max;
2564 }
2565 l = pow2floor(l);
2566
2567 return l;
2568 }
2569
2570 bool prepare_mmio_access(MemoryRegion *mr)
2571 {
2572 bool release_lock = false;
2573
2574 if (!qemu_mutex_iothread_locked()) {
2575 qemu_mutex_lock_iothread();
2576 release_lock = true;
2577 }
2578 if (mr->flush_coalesced_mmio) {
2579 qemu_flush_coalesced_mmio_buffer();
2580 }
2581
2582 return release_lock;
2583 }
2584
2585 /**
2586 * flatview_access_allowed
2587 * @mr: #MemoryRegion to be accessed
2588 * @attrs: memory transaction attributes
2589 * @addr: address within that memory region
2590 * @len: the number of bytes to access
2591 *
2592 * Check if a memory transaction is allowed.
2593 *
2594 * Returns: true if transaction is allowed, false if denied.
2595 */
2596 static bool flatview_access_allowed(MemoryRegion *mr, MemTxAttrs attrs,
2597 hwaddr addr, hwaddr len)
2598 {
2599 if (likely(!attrs.memory)) {
2600 return true;
2601 }
2602 if (memory_region_is_ram(mr)) {
2603 return true;
2604 }
2605 qemu_log_mask(LOG_GUEST_ERROR,
2606 "Invalid access to non-RAM device at "
2607 "addr 0x%" HWADDR_PRIX ", size %" HWADDR_PRIu ", "
2608 "region '%s'\n", addr, len, memory_region_name(mr));
2609 return false;
2610 }
2611
2612 /* Called within RCU critical section. */
2613 static MemTxResult flatview_write_continue(FlatView *fv, hwaddr addr,
2614 MemTxAttrs attrs,
2615 const void *ptr,
2616 hwaddr len, hwaddr addr1,
2617 hwaddr l, MemoryRegion *mr)
2618 {
2619 uint8_t *ram_ptr;
2620 uint64_t val;
2621 MemTxResult result = MEMTX_OK;
2622 bool release_lock = false;
2623 const uint8_t *buf = ptr;
2624
2625 for (;;) {
2626 if (!flatview_access_allowed(mr, attrs, addr1, l)) {
2627 result |= MEMTX_ACCESS_ERROR;
2628 /* Keep going. */
2629 } else if (!memory_access_is_direct(mr, true)) {
2630 release_lock |= prepare_mmio_access(mr);
2631 l = memory_access_size(mr, l, addr1);
2632 /* XXX: could force current_cpu to NULL to avoid
2633 potential bugs */
2634 val = ldn_he_p(buf, l);
2635 result |= memory_region_dispatch_write(mr, addr1, val,
2636 size_memop(l), attrs);
2637 } else {
2638 /* RAM case */
2639 ram_ptr = qemu_ram_ptr_length(mr->ram_block, addr1, &l, false);
2640 memmove(ram_ptr, buf, l);
2641 invalidate_and_set_dirty(mr, addr1, l);
2642 }
2643
2644 if (release_lock) {
2645 qemu_mutex_unlock_iothread();
2646 release_lock = false;
2647 }
2648
2649 len -= l;
2650 buf += l;
2651 addr += l;
2652
2653 if (!len) {
2654 break;
2655 }
2656
2657 l = len;
2658 mr = flatview_translate(fv, addr, &addr1, &l, true, attrs);
2659 }
2660
2661 return result;
2662 }
2663
2664 /* Called from RCU critical section. */
2665 static MemTxResult flatview_write(FlatView *fv, hwaddr addr, MemTxAttrs attrs,
2666 const void *buf, hwaddr len)
2667 {
2668 hwaddr l;
2669 hwaddr addr1;
2670 MemoryRegion *mr;
2671
2672 l = len;
2673 mr = flatview_translate(fv, addr, &addr1, &l, true, attrs);
2674 if (!flatview_access_allowed(mr, attrs, addr, len)) {
2675 return MEMTX_ACCESS_ERROR;
2676 }
2677 return flatview_write_continue(fv, addr, attrs, buf, len,
2678 addr1, l, mr);
2679 }
2680
2681 /* Called within RCU critical section. */
2682 MemTxResult flatview_read_continue(FlatView *fv, hwaddr addr,
2683 MemTxAttrs attrs, void *ptr,
2684 hwaddr len, hwaddr addr1, hwaddr l,
2685 MemoryRegion *mr)
2686 {
2687 uint8_t *ram_ptr;
2688 uint64_t val;
2689 MemTxResult result = MEMTX_OK;
2690 bool release_lock = false;
2691 uint8_t *buf = ptr;
2692
2693 fuzz_dma_read_cb(addr, len, mr);
2694 for (;;) {
2695 if (!flatview_access_allowed(mr, attrs, addr1, l)) {
2696 result |= MEMTX_ACCESS_ERROR;
2697 /* Keep going. */
2698 } else if (!memory_access_is_direct(mr, false)) {
2699 /* I/O case */
2700 release_lock |= prepare_mmio_access(mr);
2701 l = memory_access_size(mr, l, addr1);
2702 result |= memory_region_dispatch_read(mr, addr1, &val,
2703 size_memop(l), attrs);
2704 stn_he_p(buf, l, val);
2705 } else {
2706 /* RAM case */
2707 ram_ptr = qemu_ram_ptr_length(mr->ram_block, addr1, &l, false);
2708 memcpy(buf, ram_ptr, l);
2709 }
2710
2711 if (release_lock) {
2712 qemu_mutex_unlock_iothread();
2713 release_lock = false;
2714 }
2715
2716 len -= l;
2717 buf += l;
2718 addr += l;
2719
2720 if (!len) {
2721 break;
2722 }
2723
2724 l = len;
2725 mr = flatview_translate(fv, addr, &addr1, &l, false, attrs);
2726 }
2727
2728 return result;
2729 }
2730
2731 /* Called from RCU critical section. */
2732 static MemTxResult flatview_read(FlatView *fv, hwaddr addr,
2733 MemTxAttrs attrs, void *buf, hwaddr len)
2734 {
2735 hwaddr l;
2736 hwaddr addr1;
2737 MemoryRegion *mr;
2738
2739 l = len;
2740 mr = flatview_translate(fv, addr, &addr1, &l, false, attrs);
2741 if (!flatview_access_allowed(mr, attrs, addr, len)) {
2742 return MEMTX_ACCESS_ERROR;
2743 }
2744 return flatview_read_continue(fv, addr, attrs, buf, len,
2745 addr1, l, mr);
2746 }
2747
2748 MemTxResult address_space_read_full(AddressSpace *as, hwaddr addr,
2749 MemTxAttrs attrs, void *buf, hwaddr len)
2750 {
2751 MemTxResult result = MEMTX_OK;
2752 FlatView *fv;
2753
2754 if (len > 0) {
2755 RCU_READ_LOCK_GUARD();
2756 fv = address_space_to_flatview(as);
2757 result = flatview_read(fv, addr, attrs, buf, len);
2758 }
2759
2760 return result;
2761 }
2762
2763 MemTxResult address_space_write(AddressSpace *as, hwaddr addr,
2764 MemTxAttrs attrs,
2765 const void *buf, hwaddr len)
2766 {
2767 MemTxResult result = MEMTX_OK;
2768 FlatView *fv;
2769
2770 if (len > 0) {
2771 RCU_READ_LOCK_GUARD();
2772 fv = address_space_to_flatview(as);
2773 result = flatview_write(fv, addr, attrs, buf, len);
2774 }
2775
2776 return result;
2777 }
2778
2779 MemTxResult address_space_rw(AddressSpace *as, hwaddr addr, MemTxAttrs attrs,
2780 void *buf, hwaddr len, bool is_write)
2781 {
2782 if (is_write) {
2783 return address_space_write(as, addr, attrs, buf, len);
2784 } else {
2785 return address_space_read_full(as, addr, attrs, buf, len);
2786 }
2787 }
2788
2789 MemTxResult address_space_set(AddressSpace *as, hwaddr addr,
2790 uint8_t c, hwaddr len, MemTxAttrs attrs)
2791 {
2792 #define FILLBUF_SIZE 512
2793 uint8_t fillbuf[FILLBUF_SIZE];
2794 int l;
2795 MemTxResult error = MEMTX_OK;
2796
2797 memset(fillbuf, c, FILLBUF_SIZE);
2798 while (len > 0) {
2799 l = len < FILLBUF_SIZE ? len : FILLBUF_SIZE;
2800 error |= address_space_write(as, addr, attrs, fillbuf, l);
2801 len -= l;
2802 addr += l;
2803 }
2804
2805 return error;
2806 }
2807
2808 void cpu_physical_memory_rw(hwaddr addr, void *buf,
2809 hwaddr len, bool is_write)
2810 {
2811 address_space_rw(&address_space_memory, addr, MEMTXATTRS_UNSPECIFIED,
2812 buf, len, is_write);
2813 }
2814
2815 enum write_rom_type {
2816 WRITE_DATA,
2817 FLUSH_CACHE,
2818 };
2819
2820 static inline MemTxResult address_space_write_rom_internal(AddressSpace *as,
2821 hwaddr addr,
2822 MemTxAttrs attrs,
2823 const void *ptr,
2824 hwaddr len,
2825 enum write_rom_type type)
2826 {
2827 hwaddr l;
2828 uint8_t *ram_ptr;
2829 hwaddr addr1;
2830 MemoryRegion *mr;
2831 const uint8_t *buf = ptr;
2832
2833 RCU_READ_LOCK_GUARD();
2834 while (len > 0) {
2835 l = len;
2836 mr = address_space_translate(as, addr, &addr1, &l, true, attrs);
2837
2838 if (!(memory_region_is_ram(mr) ||
2839 memory_region_is_romd(mr))) {
2840 l = memory_access_size(mr, l, addr1);
2841 } else {
2842 /* ROM/RAM case */
2843 ram_ptr = qemu_map_ram_ptr(mr->ram_block, addr1);
2844 switch (type) {
2845 case WRITE_DATA:
2846 memcpy(ram_ptr, buf, l);
2847 invalidate_and_set_dirty(mr, addr1, l);
2848 break;
2849 case FLUSH_CACHE:
2850 flush_idcache_range((uintptr_t)ram_ptr, (uintptr_t)ram_ptr, l);
2851 break;
2852 }
2853 }
2854 len -= l;
2855 buf += l;
2856 addr += l;
2857 }
2858 return MEMTX_OK;
2859 }
2860
2861 /* used for ROM loading : can write in RAM and ROM */
2862 MemTxResult address_space_write_rom(AddressSpace *as, hwaddr addr,
2863 MemTxAttrs attrs,
2864 const void *buf, hwaddr len)
2865 {
2866 return address_space_write_rom_internal(as, addr, attrs,
2867 buf, len, WRITE_DATA);
2868 }
2869
2870 void cpu_flush_icache_range(hwaddr start, hwaddr len)
2871 {
2872 /*
2873 * This function should do the same thing as an icache flush that was
2874 * triggered from within the guest. For TCG we are always cache coherent,
2875 * so there is no need to flush anything. For KVM / Xen we need to flush
2876 * the host's instruction cache at least.
2877 */
2878 if (tcg_enabled()) {
2879 return;
2880 }
2881
2882 address_space_write_rom_internal(&address_space_memory,
2883 start, MEMTXATTRS_UNSPECIFIED,
2884 NULL, len, FLUSH_CACHE);
2885 }
2886
2887 typedef struct {
2888 MemoryRegion *mr;
2889 void *buffer;
2890 hwaddr addr;
2891 hwaddr len;
2892 bool in_use;
2893 } BounceBuffer;
2894
2895 static BounceBuffer bounce;
2896
2897 typedef struct MapClient {
2898 QEMUBH *bh;
2899 QLIST_ENTRY(MapClient) link;
2900 } MapClient;
2901
2902 QemuMutex map_client_list_lock;
2903 static QLIST_HEAD(, MapClient) map_client_list
2904 = QLIST_HEAD_INITIALIZER(map_client_list);
2905
2906 static void cpu_unregister_map_client_do(MapClient *client)
2907 {
2908 QLIST_REMOVE(client, link);
2909 g_free(client);
2910 }
2911
2912 static void cpu_notify_map_clients_locked(void)
2913 {
2914 MapClient *client;
2915
2916 while (!QLIST_EMPTY(&map_client_list)) {
2917 client = QLIST_FIRST(&map_client_list);
2918 qemu_bh_schedule(client->bh);
2919 cpu_unregister_map_client_do(client);
2920 }
2921 }
2922
2923 void cpu_register_map_client(QEMUBH *bh)
2924 {
2925 MapClient *client = g_malloc(sizeof(*client));
2926
2927 qemu_mutex_lock(&map_client_list_lock);
2928 client->bh = bh;
2929 QLIST_INSERT_HEAD(&map_client_list, client, link);
2930 if (!qatomic_read(&bounce.in_use)) {
2931 cpu_notify_map_clients_locked();
2932 }
2933 qemu_mutex_unlock(&map_client_list_lock);
2934 }
2935
2936 void cpu_exec_init_all(void)
2937 {
2938 qemu_mutex_init(&ram_list.mutex);
2939 /* The data structures we set up here depend on knowing the page size,
2940 * so no more changes can be made after this point.
2941 * In an ideal world, nothing we did before we had finished the
2942 * machine setup would care about the target page size, and we could
2943 * do this much later, rather than requiring board models to state
2944 * up front what their requirements are.
2945 */
2946 finalize_target_page_bits();
2947 io_mem_init();
2948 memory_map_init();
2949 qemu_mutex_init(&map_client_list_lock);
2950 }
2951
2952 void cpu_unregister_map_client(QEMUBH *bh)
2953 {
2954 MapClient *client;
2955
2956 qemu_mutex_lock(&map_client_list_lock);
2957 QLIST_FOREACH(client, &map_client_list, link) {
2958 if (client->bh == bh) {
2959 cpu_unregister_map_client_do(client);
2960 break;
2961 }
2962 }
2963 qemu_mutex_unlock(&map_client_list_lock);
2964 }
2965
2966 static void cpu_notify_map_clients(void)
2967 {
2968 qemu_mutex_lock(&map_client_list_lock);
2969 cpu_notify_map_clients_locked();
2970 qemu_mutex_unlock(&map_client_list_lock);
2971 }
2972
2973 static bool flatview_access_valid(FlatView *fv, hwaddr addr, hwaddr len,
2974 bool is_write, MemTxAttrs attrs)
2975 {
2976 MemoryRegion *mr;
2977 hwaddr l, xlat;
2978
2979 while (len > 0) {
2980 l = len;
2981 mr = flatview_translate(fv, addr, &xlat, &l, is_write, attrs);
2982 if (!memory_access_is_direct(mr, is_write)) {
2983 l = memory_access_size(mr, l, addr);
2984 if (!memory_region_access_valid(mr, xlat, l, is_write, attrs)) {
2985 return false;
2986 }
2987 }
2988
2989 len -= l;
2990 addr += l;
2991 }
2992 return true;
2993 }
2994
2995 bool address_space_access_valid(AddressSpace *as, hwaddr addr,
2996 hwaddr len, bool is_write,
2997 MemTxAttrs attrs)
2998 {
2999 FlatView *fv;
3000
3001 RCU_READ_LOCK_GUARD();
3002 fv = address_space_to_flatview(as);
3003 return flatview_access_valid(fv, addr, len, is_write, attrs);
3004 }
3005
3006 static hwaddr
3007 flatview_extend_translation(FlatView *fv, hwaddr addr,
3008 hwaddr target_len,
3009 MemoryRegion *mr, hwaddr base, hwaddr len,
3010 bool is_write, MemTxAttrs attrs)
3011 {
3012 hwaddr done = 0;
3013 hwaddr xlat;
3014 MemoryRegion *this_mr;
3015
3016 for (;;) {
3017 target_len -= len;
3018 addr += len;
3019 done += len;
3020 if (target_len == 0) {
3021 return done;
3022 }
3023
3024 len = target_len;
3025 this_mr = flatview_translate(fv, addr, &xlat,
3026 &len, is_write, attrs);
3027 if (this_mr != mr || xlat != base + done) {
3028 return done;
3029 }
3030 }
3031 }
3032
3033 /* Map a physical memory region into a host virtual address.
3034 * May map a subset of the requested range, given by and returned in *plen.
3035 * May return NULL if resources needed to perform the mapping are exhausted.
3036 * Use only for reads OR writes - not for read-modify-write operations.
3037 * Use cpu_register_map_client() to know when retrying the map operation is
3038 * likely to succeed.
3039 */
3040 void *address_space_map(AddressSpace *as,
3041 hwaddr addr,
3042 hwaddr *plen,
3043 bool is_write,
3044 MemTxAttrs attrs)
3045 {
3046 hwaddr len = *plen;
3047 hwaddr l, xlat;
3048 MemoryRegion *mr;
3049 FlatView *fv;
3050
3051 if (len == 0) {
3052 return NULL;
3053 }
3054
3055 l = len;
3056 RCU_READ_LOCK_GUARD();
3057 fv = address_space_to_flatview(as);
3058 mr = flatview_translate(fv, addr, &xlat, &l, is_write, attrs);
3059
3060 if (!memory_access_is_direct(mr, is_write)) {
3061 if (qatomic_xchg(&bounce.in_use, true)) {
3062 *plen = 0;
3063 return NULL;
3064 }
3065 /* Avoid unbounded allocations */
3066 l = MIN(l, TARGET_PAGE_SIZE);
3067 bounce.buffer = qemu_memalign(TARGET_PAGE_SIZE, l);
3068 bounce.addr = addr;
3069 bounce.len = l;
3070
3071 memory_region_ref(mr);
3072 bounce.mr = mr;
3073 if (!is_write) {
3074 flatview_read(fv, addr, MEMTXATTRS_UNSPECIFIED,
3075 bounce.buffer, l);
3076 }
3077
3078 *plen = l;
3079 return bounce.buffer;
3080 }
3081
3082
3083 memory_region_ref(mr);
3084 *plen = flatview_extend_translation(fv, addr, len, mr, xlat,
3085 l, is_write, attrs);
3086 fuzz_dma_read_cb(addr, *plen, mr);
3087 return qemu_ram_ptr_length(mr->ram_block, xlat, plen, true);
3088 }
3089
3090 /* Unmaps a memory region previously mapped by address_space_map().
3091 * Will also mark the memory as dirty if is_write is true. access_len gives
3092 * the amount of memory that was actually read or written by the caller.
3093 */
3094 void address_space_unmap(AddressSpace *as, void *buffer, hwaddr len,
3095 bool is_write, hwaddr access_len)
3096 {
3097 if (buffer != bounce.buffer) {
3098 MemoryRegion *mr;
3099 ram_addr_t addr1;
3100
3101 mr = memory_region_from_host(buffer, &addr1);
3102 assert(mr != NULL);
3103 if (is_write) {
3104 invalidate_and_set_dirty(mr, addr1, access_len);
3105 }
3106 if (xen_enabled()) {
3107 xen_invalidate_map_cache_entry(buffer);
3108 }
3109 memory_region_unref(mr);
3110 return;
3111 }
3112 if (is_write) {
3113 address_space_write(as, bounce.addr, MEMTXATTRS_UNSPECIFIED,
3114 bounce.buffer, access_len);
3115 }
3116 qemu_vfree(bounce.buffer);
3117 bounce.buffer = NULL;
3118 memory_region_unref(bounce.mr);
3119 qatomic_mb_set(&bounce.in_use, false);
3120 cpu_notify_map_clients();
3121 }
3122
3123 void *cpu_physical_memory_map(hwaddr addr,
3124 hwaddr *plen,
3125 bool is_write)
3126 {
3127 return address_space_map(&address_space_memory, addr, plen, is_write,
3128 MEMTXATTRS_UNSPECIFIED);
3129 }
3130
3131 void cpu_physical_memory_unmap(void *buffer, hwaddr len,
3132 bool is_write, hwaddr access_len)
3133 {
3134 return address_space_unmap(&address_space_memory, buffer, len, is_write, access_len);
3135 }
3136
3137 #define ARG1_DECL AddressSpace *as
3138 #define ARG1 as
3139 #define SUFFIX
3140 #define TRANSLATE(...) address_space_translate(as, __VA_ARGS__)
3141 #define RCU_READ_LOCK(...) rcu_read_lock()
3142 #define RCU_READ_UNLOCK(...) rcu_read_unlock()
3143 #include "memory_ldst.c.inc"
3144
3145 int64_t address_space_cache_init(MemoryRegionCache *cache,
3146 AddressSpace *as,
3147 hwaddr addr,
3148 hwaddr len,
3149 bool is_write)
3150 {
3151 AddressSpaceDispatch *d;
3152 hwaddr l;
3153 MemoryRegion *mr;
3154 Int128 diff;
3155
3156 assert(len > 0);
3157
3158 l = len;
3159 cache->fv = address_space_get_flatview(as);
3160 d = flatview_to_dispatch(cache->fv);
3161 cache->mrs = *address_space_translate_internal(d, addr, &cache->xlat, &l, true);
3162
3163 /*
3164 * cache->xlat is now relative to cache->mrs.mr, not to the section itself.
3165 * Take that into account to compute how many bytes are there between
3166 * cache->xlat and the end of the section.
3167 */
3168 diff = int128_sub(cache->mrs.size,
3169 int128_make64(cache->xlat - cache->mrs.offset_within_region));
3170 l = int128_get64(int128_min(diff, int128_make64(l)));
3171
3172 mr = cache->mrs.mr;
3173 memory_region_ref(mr);
3174 if (memory_access_is_direct(mr, is_write)) {
3175 /* We don't care about the memory attributes here as we're only
3176 * doing this if we found actual RAM, which behaves the same
3177 * regardless of attributes; so UNSPECIFIED is fine.
3178 */
3179 l = flatview_extend_translation(cache->fv, addr, len, mr,
3180 cache->xlat, l, is_write,
3181 MEMTXATTRS_UNSPECIFIED);
3182 cache->ptr = qemu_ram_ptr_length(mr->ram_block, cache->xlat, &l, true);
3183 } else {
3184 cache->ptr = NULL;
3185 }
3186
3187 cache->len = l;
3188 cache->is_write = is_write;
3189 return l;
3190 }
3191
3192 void address_space_cache_invalidate(MemoryRegionCache *cache,
3193 hwaddr addr,
3194 hwaddr access_len)
3195 {
3196 assert(cache->is_write);
3197 if (likely(cache->ptr)) {
3198 invalidate_and_set_dirty(cache->mrs.mr, addr + cache->xlat, access_len);
3199 }
3200 }
3201
3202 void address_space_cache_destroy(MemoryRegionCache *cache)
3203 {
3204 if (!cache->mrs.mr) {
3205 return;
3206 }
3207
3208 if (xen_enabled()) {
3209 xen_invalidate_map_cache_entry(cache->ptr);
3210 }
3211 memory_region_unref(cache->mrs.mr);
3212 flatview_unref(cache->fv);
3213 cache->mrs.mr = NULL;
3214 cache->fv = NULL;
3215 }
3216
3217 /* Called from RCU critical section. This function has the same
3218 * semantics as address_space_translate, but it only works on a
3219 * predefined range of a MemoryRegion that was mapped with
3220 * address_space_cache_init.
3221 */
3222 static inline MemoryRegion *address_space_translate_cached(
3223 MemoryRegionCache *cache, hwaddr addr, hwaddr *xlat,
3224 hwaddr *plen, bool is_write, MemTxAttrs attrs)
3225 {
3226 MemoryRegionSection section;
3227 MemoryRegion *mr;
3228 IOMMUMemoryRegion *iommu_mr;
3229 AddressSpace *target_as;
3230
3231 assert(!cache->ptr);
3232 *xlat = addr + cache->xlat;
3233
3234 mr = cache->mrs.mr;
3235 iommu_mr = memory_region_get_iommu(mr);
3236 if (!iommu_mr) {
3237 /* MMIO region. */
3238 return mr;
3239 }
3240
3241 section = address_space_translate_iommu(iommu_mr, xlat, plen,
3242 NULL, is_write, true,
3243 &target_as, attrs);
3244 return section.mr;
3245 }
3246
3247 /* Called from RCU critical section. address_space_read_cached uses this
3248 * out of line function when the target is an MMIO or IOMMU region.
3249 */
3250 MemTxResult
3251 address_space_read_cached_slow(MemoryRegionCache *cache, hwaddr addr,
3252 void *buf, hwaddr len)
3253 {
3254 hwaddr addr1, l;
3255 MemoryRegion *mr;
3256
3257 l = len;
3258 mr = address_space_translate_cached(cache, addr, &addr1, &l, false,
3259 MEMTXATTRS_UNSPECIFIED);
3260 return flatview_read_continue(cache->fv,
3261 addr, MEMTXATTRS_UNSPECIFIED, buf, len,
3262 addr1, l, mr);
3263 }
3264
3265 /* Called from RCU critical section. address_space_write_cached uses this
3266 * out of line function when the target is an MMIO or IOMMU region.
3267 */
3268 MemTxResult
3269 address_space_write_cached_slow(MemoryRegionCache *cache, hwaddr addr,
3270 const void *buf, hwaddr len)
3271 {
3272 hwaddr addr1, l;
3273 MemoryRegion *mr;
3274
3275 l = len;
3276 mr = address_space_translate_cached(cache, addr, &addr1, &l, true,
3277 MEMTXATTRS_UNSPECIFIED);
3278 return flatview_write_continue(cache->fv,
3279 addr, MEMTXATTRS_UNSPECIFIED, buf, len,
3280 addr1, l, mr);
3281 }
3282
3283 #define ARG1_DECL MemoryRegionCache *cache
3284 #define ARG1 cache
3285 #define SUFFIX _cached_slow
3286 #define TRANSLATE(...) address_space_translate_cached(cache, __VA_ARGS__)
3287 #define RCU_READ_LOCK() ((void)0)
3288 #define RCU_READ_UNLOCK() ((void)0)
3289 #include "memory_ldst.c.inc"
3290
3291 /* virtual memory access for debug (includes writing to ROM) */
3292 int cpu_memory_rw_debug(CPUState *cpu, vaddr addr,
3293 void *ptr, size_t len, bool is_write)
3294 {
3295 hwaddr phys_addr;
3296 vaddr l, page;
3297 uint8_t *buf = ptr;
3298
3299 cpu_synchronize_state(cpu);
3300 while (len > 0) {
3301 int asidx;
3302 MemTxAttrs attrs;
3303 MemTxResult res;
3304
3305 page = addr & TARGET_PAGE_MASK;
3306 phys_addr = cpu_get_phys_page_attrs_debug(cpu, page, &attrs);
3307 asidx = cpu_asidx_from_attrs(cpu, attrs);
3308 /* if no physical page mapped, return an error */
3309 if (phys_addr == -1)
3310 return -1;
3311 l = (page + TARGET_PAGE_SIZE) - addr;
3312 if (l > len)
3313 l = len;
3314 phys_addr += (addr & ~TARGET_PAGE_MASK);
3315 if (is_write) {
3316 res = address_space_write_rom(cpu->cpu_ases[asidx].as, phys_addr,
3317 attrs, buf, l);
3318 } else {
3319 res = address_space_read(cpu->cpu_ases[asidx].as, phys_addr,
3320 attrs, buf, l);
3321 }
3322 if (res != MEMTX_OK) {
3323 return -1;
3324 }
3325 len -= l;
3326 buf += l;
3327 addr += l;
3328 }
3329 return 0;
3330 }
3331
3332 /*
3333 * Allows code that needs to deal with migration bitmaps etc to still be built
3334 * target independent.
3335 */
3336 size_t qemu_target_page_size(void)
3337 {
3338 return TARGET_PAGE_SIZE;
3339 }
3340
3341 int qemu_target_page_bits(void)
3342 {
3343 return TARGET_PAGE_BITS;
3344 }
3345
3346 int qemu_target_page_bits_min(void)
3347 {
3348 return TARGET_PAGE_BITS_MIN;
3349 }
3350
3351 bool cpu_physical_memory_is_io(hwaddr phys_addr)
3352 {
3353 MemoryRegion*mr;
3354 hwaddr l = 1;
3355
3356 RCU_READ_LOCK_GUARD();
3357 mr = address_space_translate(&address_space_memory,
3358 phys_addr, &phys_addr, &l, false,
3359 MEMTXATTRS_UNSPECIFIED);
3360
3361 return !(memory_region_is_ram(mr) || memory_region_is_romd(mr));
3362 }
3363
3364 int qemu_ram_foreach_block(RAMBlockIterFunc func, void *opaque)
3365 {
3366 RAMBlock *block;
3367 int ret = 0;
3368
3369 RCU_READ_LOCK_GUARD();
3370 RAMBLOCK_FOREACH(block) {
3371 ret = func(block, opaque);
3372 if (ret) {
3373 break;
3374 }
3375 }
3376 return ret;
3377 }
3378
3379 /*
3380 * Unmap pages of memory from start to start+length such that
3381 * they a) read as 0, b) Trigger whatever fault mechanism
3382 * the OS provides for postcopy.
3383 * The pages must be unmapped by the end of the function.
3384 * Returns: 0 on success, none-0 on failure
3385 *
3386 */
3387 int ram_block_discard_range(RAMBlock *rb, uint64_t start, size_t length)
3388 {
3389 int ret = -1;
3390
3391 uint8_t *host_startaddr = rb->host + start;
3392
3393 if (!QEMU_PTR_IS_ALIGNED(host_startaddr, rb->page_size)) {
3394 error_report("ram_block_discard_range: Unaligned start address: %p",
3395 host_startaddr);
3396 goto err;
3397 }
3398
3399 if ((start + length) <= rb->max_length) {
3400 bool need_madvise, need_fallocate;
3401 if (!QEMU_IS_ALIGNED(length, rb->page_size)) {
3402 error_report("ram_block_discard_range: Unaligned length: %zx",
3403 length);
3404 goto err;
3405 }
3406
3407 errno = ENOTSUP; /* If we are missing MADVISE etc */
3408
3409 /* The logic here is messy;
3410 * madvise DONTNEED fails for hugepages
3411 * fallocate works on hugepages and shmem
3412 * shared anonymous memory requires madvise REMOVE
3413 */
3414 need_madvise = (rb->page_size == qemu_host_page_size);
3415 need_fallocate = rb->fd != -1;
3416 if (need_fallocate) {
3417 /* For a file, this causes the area of the file to be zero'd
3418 * if read, and for hugetlbfs also causes it to be unmapped
3419 * so a userfault will trigger.
3420 */
3421 #ifdef CONFIG_FALLOCATE_PUNCH_HOLE
3422 ret = fallocate(rb->fd, FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE,
3423 start, length);
3424 if (ret) {
3425 ret = -errno;
3426 error_report("ram_block_discard_range: Failed to fallocate "
3427 "%s:%" PRIx64 " +%zx (%d)",
3428 rb->idstr, start, length, ret);
3429 goto err;
3430 }
3431 #else
3432 ret = -ENOSYS;
3433 error_report("ram_block_discard_range: fallocate not available/file"
3434 "%s:%" PRIx64 " +%zx (%d)",
3435 rb->idstr, start, length, ret);
3436 goto err;
3437 #endif
3438 }
3439 if (need_madvise) {
3440 /* For normal RAM this causes it to be unmapped,
3441 * for shared memory it causes the local mapping to disappear
3442 * and to fall back on the file contents (which we just
3443 * fallocate'd away).
3444 */
3445 #if defined(CONFIG_MADVISE)
3446 if (qemu_ram_is_shared(rb) && rb->fd < 0) {
3447 ret = madvise(host_startaddr, length, QEMU_MADV_REMOVE);
3448 } else {
3449 ret = madvise(host_startaddr, length, QEMU_MADV_DONTNEED);
3450 }
3451 if (ret) {
3452 ret = -errno;
3453 error_report("ram_block_discard_range: Failed to discard range "
3454 "%s:%" PRIx64 " +%zx (%d)",
3455 rb->idstr, start, length, ret);
3456 goto err;
3457 }
3458 #else
3459 ret = -ENOSYS;
3460 error_report("ram_block_discard_range: MADVISE not available"
3461 "%s:%" PRIx64 " +%zx (%d)",
3462 rb->idstr, start, length, ret);
3463 goto err;
3464 #endif
3465 }
3466 trace_ram_block_discard_range(rb->idstr, host_startaddr, length,
3467 need_madvise, need_fallocate, ret);
3468 } else {
3469 error_report("ram_block_discard_range: Overrun block '%s' (%" PRIu64
3470 "/%zx/" RAM_ADDR_FMT")",
3471 rb->idstr, start, length, rb->max_length);
3472 }
3473
3474 err:
3475 return ret;
3476 }
3477
3478 bool ramblock_is_pmem(RAMBlock *rb)
3479 {
3480 return rb->flags & RAM_PMEM;
3481 }
3482
3483 static void mtree_print_phys_entries(int start, int end, int skip, int ptr)
3484 {
3485 if (start == end - 1) {
3486 qemu_printf("\t%3d ", start);
3487 } else {
3488 qemu_printf("\t%3d..%-3d ", start, end - 1);
3489 }
3490 qemu_printf(" skip=%d ", skip);
3491 if (ptr == PHYS_MAP_NODE_NIL) {
3492 qemu_printf(" ptr=NIL");
3493 } else if (!skip) {
3494 qemu_printf(" ptr=#%d", ptr);
3495 } else {
3496 qemu_printf(" ptr=[%d]", ptr);
3497 }
3498 qemu_printf("\n");
3499 }
3500
3501 #define MR_SIZE(size) (int128_nz(size) ? (hwaddr)int128_get64( \
3502 int128_sub((size), int128_one())) : 0)
3503
3504 void mtree_print_dispatch(AddressSpaceDispatch *d, MemoryRegion *root)
3505 {
3506 int i;
3507
3508 qemu_printf(" Dispatch\n");
3509 qemu_printf(" Physical sections\n");
3510
3511 for (i = 0; i < d->map.sections_nb; ++i) {
3512 MemoryRegionSection *s = d->map.sections + i;
3513 const char *names[] = { " [unassigned]", " [not dirty]",
3514 " [ROM]", " [watch]" };
3515
3516 qemu_printf(" #%d @" HWADDR_FMT_plx ".." HWADDR_FMT_plx
3517 " %s%s%s%s%s",
3518 i,
3519 s->offset_within_address_space,
3520 s->offset_within_address_space + MR_SIZE(s->size),
3521 s->mr->name ? s->mr->name : "(noname)",
3522 i < ARRAY_SIZE(names) ? names[i] : "",
3523 s->mr == root ? " [ROOT]" : "",
3524 s == d->mru_section ? " [MRU]" : "",
3525 s->mr->is_iommu ? " [iommu]" : "");
3526
3527 if (s->mr->alias) {
3528 qemu_printf(" alias=%s", s->mr->alias->name ?
3529 s->mr->alias->name : "noname");
3530 }
3531 qemu_printf("\n");
3532 }
3533
3534 qemu_printf(" Nodes (%d bits per level, %d levels) ptr=[%d] skip=%d\n",
3535 P_L2_BITS, P_L2_LEVELS, d->phys_map.ptr, d->phys_map.skip);
3536 for (i = 0; i < d->map.nodes_nb; ++i) {
3537 int j, jprev;
3538 PhysPageEntry prev;
3539 Node *n = d->map.nodes + i;
3540
3541 qemu_printf(" [%d]\n", i);
3542
3543 for (j = 0, jprev = 0, prev = *n[0]; j < ARRAY_SIZE(*n); ++j) {
3544 PhysPageEntry *pe = *n + j;
3545
3546 if (pe->ptr == prev.ptr && pe->skip == prev.skip) {
3547 continue;
3548 }
3549
3550 mtree_print_phys_entries(jprev, j, prev.skip, prev.ptr);
3551
3552 jprev = j;
3553 prev = *pe;
3554 }
3555
3556 if (jprev != ARRAY_SIZE(*n)) {
3557 mtree_print_phys_entries(jprev, j, prev.skip, prev.ptr);
3558 }
3559 }
3560 }
3561
3562 /* Require any discards to work. */
3563 static unsigned int ram_block_discard_required_cnt;
3564 /* Require only coordinated discards to work. */
3565 static unsigned int ram_block_coordinated_discard_required_cnt;
3566 /* Disable any discards. */
3567 static unsigned int ram_block_discard_disabled_cnt;
3568 /* Disable only uncoordinated discards. */
3569 static unsigned int ram_block_uncoordinated_discard_disabled_cnt;
3570 static QemuMutex ram_block_discard_disable_mutex;
3571
3572 static void ram_block_discard_disable_mutex_lock(void)
3573 {
3574 static gsize initialized;
3575
3576 if (g_once_init_enter(&initialized)) {
3577 qemu_mutex_init(&ram_block_discard_disable_mutex);
3578 g_once_init_leave(&initialized, 1);
3579 }
3580 qemu_mutex_lock(&ram_block_discard_disable_mutex);
3581 }
3582
3583 static void ram_block_discard_disable_mutex_unlock(void)
3584 {
3585 qemu_mutex_unlock(&ram_block_discard_disable_mutex);
3586 }
3587
3588 int ram_block_discard_disable(bool state)
3589 {
3590 int ret = 0;
3591
3592 ram_block_discard_disable_mutex_lock();
3593 if (!state) {
3594 ram_block_discard_disabled_cnt--;
3595 } else if (ram_block_discard_required_cnt ||
3596 ram_block_coordinated_discard_required_cnt) {
3597 ret = -EBUSY;
3598 } else {
3599 ram_block_discard_disabled_cnt++;
3600 }
3601 ram_block_discard_disable_mutex_unlock();
3602 return ret;
3603 }
3604
3605 int ram_block_uncoordinated_discard_disable(bool state)
3606 {
3607 int ret = 0;
3608
3609 ram_block_discard_disable_mutex_lock();
3610 if (!state) {
3611 ram_block_uncoordinated_discard_disabled_cnt--;
3612 } else if (ram_block_discard_required_cnt) {
3613 ret = -EBUSY;
3614 } else {
3615 ram_block_uncoordinated_discard_disabled_cnt++;
3616 }
3617 ram_block_discard_disable_mutex_unlock();
3618 return ret;
3619 }
3620
3621 int ram_block_discard_require(bool state)
3622 {
3623 int ret = 0;
3624
3625 ram_block_discard_disable_mutex_lock();
3626 if (!state) {
3627 ram_block_discard_required_cnt--;
3628 } else if (ram_block_discard_disabled_cnt ||
3629 ram_block_uncoordinated_discard_disabled_cnt) {
3630 ret = -EBUSY;
3631 } else {
3632 ram_block_discard_required_cnt++;
3633 }
3634 ram_block_discard_disable_mutex_unlock();
3635 return ret;
3636 }
3637
3638 int ram_block_coordinated_discard_require(bool state)
3639 {
3640 int ret = 0;
3641
3642 ram_block_discard_disable_mutex_lock();
3643 if (!state) {
3644 ram_block_coordinated_discard_required_cnt--;
3645 } else if (ram_block_discard_disabled_cnt) {
3646 ret = -EBUSY;
3647 } else {
3648 ram_block_coordinated_discard_required_cnt++;
3649 }
3650 ram_block_discard_disable_mutex_unlock();
3651 return ret;
3652 }
3653
3654 bool ram_block_discard_is_disabled(void)
3655 {
3656 return qatomic_read(&ram_block_discard_disabled_cnt) ||
3657 qatomic_read(&ram_block_uncoordinated_discard_disabled_cnt);
3658 }
3659
3660 bool ram_block_discard_is_required(void)
3661 {
3662 return qatomic_read(&ram_block_discard_required_cnt) ||
3663 qatomic_read(&ram_block_coordinated_discard_required_cnt);
3664 }