]> git.proxmox.com Git - rustc.git/blob - src/librustc/traits/mod.rs
New upstream version 1.35.0+dfsg1
[rustc.git] / src / librustc / traits / mod.rs
1 //! Trait Resolution. See the [rustc guide] for more information on how this works.
2 //!
3 //! [rustc guide]: https://rust-lang.github.io/rustc-guide/traits/resolution.html
4
5 #[allow(dead_code)]
6 pub mod auto_trait;
7 mod chalk_fulfill;
8 mod coherence;
9 pub mod error_reporting;
10 mod engine;
11 mod fulfill;
12 mod project;
13 mod object_safety;
14 mod on_unimplemented;
15 mod select;
16 mod specialize;
17 mod structural_impls;
18 pub mod codegen;
19 mod util;
20 pub mod query;
21
22 use chalk_engine;
23 use crate::hir;
24 use crate::hir::def_id::DefId;
25 use crate::infer::{InferCtxt, SuppressRegionErrors};
26 use crate::infer::outlives::env::OutlivesEnvironment;
27 use crate::middle::region;
28 use crate::mir::interpret::ErrorHandled;
29 use rustc_data_structures::sync::Lrc;
30 use rustc_macros::HashStable;
31 use syntax::ast;
32 use syntax_pos::{Span, DUMMY_SP};
33 use crate::ty::subst::{InternalSubsts, SubstsRef};
34 use crate::ty::{self, AdtKind, List, Ty, TyCtxt, GenericParamDefKind, ToPredicate};
35 use crate::ty::error::{ExpectedFound, TypeError};
36 use crate::ty::fold::{TypeFolder, TypeFoldable, TypeVisitor};
37 use crate::util::common::ErrorReported;
38
39 use std::fmt::Debug;
40 use std::rc::Rc;
41
42 pub use self::SelectionError::*;
43 pub use self::FulfillmentErrorCode::*;
44 pub use self::Vtable::*;
45 pub use self::ObligationCauseCode::*;
46
47 pub use self::coherence::{add_placeholder_note, orphan_check, overlapping_impls};
48 pub use self::coherence::{OrphanCheckErr, OverlapResult};
49 pub use self::fulfill::{FulfillmentContext, PendingPredicateObligation};
50 pub use self::project::MismatchedProjectionTypes;
51 pub use self::project::{normalize, normalize_projection_type, poly_project_and_unify_type};
52 pub use self::project::{ProjectionCache, ProjectionCacheSnapshot, Reveal, Normalized};
53 pub use self::object_safety::ObjectSafetyViolation;
54 pub use self::object_safety::MethodViolationCode;
55 pub use self::on_unimplemented::{OnUnimplementedDirective, OnUnimplementedNote};
56 pub use self::select::{EvaluationCache, SelectionContext, SelectionCache};
57 pub use self::select::{EvaluationResult, IntercrateAmbiguityCause, OverflowError};
58 pub use self::specialize::{OverlapError, specialization_graph, translate_substs};
59 pub use self::specialize::find_associated_item;
60 pub use self::specialize::specialization_graph::FutureCompatOverlapError;
61 pub use self::specialize::specialization_graph::FutureCompatOverlapErrorKind;
62 pub use self::engine::{TraitEngine, TraitEngineExt};
63 pub use self::util::{elaborate_predicates, elaborate_trait_ref, elaborate_trait_refs};
64 pub use self::util::{supertraits, supertrait_def_ids, transitive_bounds,
65 Supertraits, SupertraitDefIds};
66
67 pub use self::chalk_fulfill::{
68 CanonicalGoal as ChalkCanonicalGoal,
69 FulfillmentContext as ChalkFulfillmentContext
70 };
71
72 pub use self::ObligationCauseCode::*;
73 pub use self::FulfillmentErrorCode::*;
74 pub use self::SelectionError::*;
75 pub use self::Vtable::*;
76
77 /// Whether to enable bug compatibility with issue #43355.
78 #[derive(Copy, Clone, PartialEq, Eq, Debug)]
79 pub enum IntercrateMode {
80 Issue43355,
81 Fixed
82 }
83
84 /// The mode that trait queries run in.
85 #[derive(Copy, Clone, PartialEq, Eq, Debug)]
86 pub enum TraitQueryMode {
87 // Standard/un-canonicalized queries get accurate
88 // spans etc. passed in and hence can do reasonable
89 // error reporting on their own.
90 Standard,
91 // Canonicalized queries get dummy spans and hence
92 // must generally propagate errors to
93 // pre-canonicalization callsites.
94 Canonical,
95 }
96
97 /// An `Obligation` represents some trait reference (e.g., `int: Eq`) for
98 /// which the vtable must be found. The process of finding a vtable is
99 /// called "resolving" the `Obligation`. This process consists of
100 /// either identifying an `impl` (e.g., `impl Eq for int`) that
101 /// provides the required vtable, or else finding a bound that is in
102 /// scope. The eventual result is usually a `Selection` (defined below).
103 #[derive(Clone, PartialEq, Eq, Hash)]
104 pub struct Obligation<'tcx, T> {
105 /// The reason we have to prove this thing.
106 pub cause: ObligationCause<'tcx>,
107
108 /// The environment in which we should prove this thing.
109 pub param_env: ty::ParamEnv<'tcx>,
110
111 /// The thing we are trying to prove.
112 pub predicate: T,
113
114 /// If we started proving this as a result of trying to prove
115 /// something else, track the total depth to ensure termination.
116 /// If this goes over a certain threshold, we abort compilation --
117 /// in such cases, we can not say whether or not the predicate
118 /// holds for certain. Stupid halting problem; such a drag.
119 pub recursion_depth: usize,
120 }
121
122 pub type PredicateObligation<'tcx> = Obligation<'tcx, ty::Predicate<'tcx>>;
123 pub type TraitObligation<'tcx> = Obligation<'tcx, ty::PolyTraitPredicate<'tcx>>;
124
125 /// The reason why we incurred this obligation; used for error reporting.
126 #[derive(Clone, Debug, PartialEq, Eq, Hash)]
127 pub struct ObligationCause<'tcx> {
128 pub span: Span,
129
130 /// The ID of the fn body that triggered this obligation. This is
131 /// used for region obligations to determine the precise
132 /// environment in which the region obligation should be evaluated
133 /// (in particular, closures can add new assumptions). See the
134 /// field `region_obligations` of the `FulfillmentContext` for more
135 /// information.
136 pub body_id: hir::HirId,
137
138 pub code: ObligationCauseCode<'tcx>
139 }
140
141 impl<'tcx> ObligationCause<'tcx> {
142 pub fn span<'a, 'gcx>(&self, tcx: &TyCtxt<'a, 'gcx, 'tcx>) -> Span {
143 match self.code {
144 ObligationCauseCode::CompareImplMethodObligation { .. } |
145 ObligationCauseCode::MainFunctionType |
146 ObligationCauseCode::StartFunctionType => {
147 tcx.sess.source_map().def_span(self.span)
148 }
149 ObligationCauseCode::MatchExpressionArm { arm_span, .. } => arm_span,
150 _ => self.span,
151 }
152 }
153 }
154
155 #[derive(Clone, Debug, PartialEq, Eq, Hash)]
156 pub enum ObligationCauseCode<'tcx> {
157 /// Not well classified or should be obvious from the span.
158 MiscObligation,
159
160 /// A slice or array is WF only if `T: Sized`.
161 SliceOrArrayElem,
162
163 /// A tuple is WF only if its middle elements are `Sized`.
164 TupleElem,
165
166 /// This is the trait reference from the given projection.
167 ProjectionWf(ty::ProjectionTy<'tcx>),
168
169 /// In an impl of trait `X` for type `Y`, type `Y` must
170 /// also implement all supertraits of `X`.
171 ItemObligation(DefId),
172
173 /// A type like `&'a T` is WF only if `T: 'a`.
174 ReferenceOutlivesReferent(Ty<'tcx>),
175
176 /// A type like `Box<Foo<'a> + 'b>` is WF only if `'b: 'a`.
177 ObjectTypeBound(Ty<'tcx>, ty::Region<'tcx>),
178
179 /// Obligation incurred due to an object cast.
180 ObjectCastObligation(/* Object type */ Ty<'tcx>),
181
182 // Various cases where expressions must be sized/copy/etc:
183 /// L = X implies that L is Sized
184 AssignmentLhsSized,
185 /// (x1, .., xn) must be Sized
186 TupleInitializerSized,
187 /// S { ... } must be Sized
188 StructInitializerSized,
189 /// Type of each variable must be Sized
190 VariableType(ast::NodeId),
191 /// Argument type must be Sized
192 SizedArgumentType,
193 /// Return type must be Sized
194 SizedReturnType,
195 /// Yield type must be Sized
196 SizedYieldType,
197 /// [T,..n] --> T must be Copy
198 RepeatVec,
199
200 /// Types of fields (other than the last, except for packed structs) in a struct must be sized.
201 FieldSized { adt_kind: AdtKind, last: bool },
202
203 /// Constant expressions must be sized.
204 ConstSized,
205
206 /// static items must have `Sync` type
207 SharedStatic,
208
209 BuiltinDerivedObligation(DerivedObligationCause<'tcx>),
210
211 ImplDerivedObligation(DerivedObligationCause<'tcx>),
212
213 /// error derived when matching traits/impls; see ObligationCause for more details
214 CompareImplMethodObligation {
215 item_name: ast::Name,
216 impl_item_def_id: DefId,
217 trait_item_def_id: DefId,
218 },
219
220 /// Checking that this expression can be assigned where it needs to be
221 // FIXME(eddyb) #11161 is the original Expr required?
222 ExprAssignable,
223
224 /// Computing common supertype in the arms of a match expression
225 MatchExpressionArm {
226 arm_span: Span,
227 source: hir::MatchSource,
228 prior_arms: Vec<Span>,
229 last_ty: Ty<'tcx>,
230 },
231
232 /// Computing common supertype in the pattern guard for the arms of a match expression
233 MatchExpressionArmPattern { span: Span, ty: Ty<'tcx> },
234
235 /// Computing common supertype in an if expression
236 IfExpression {
237 then: Span,
238 outer: Option<Span>,
239 semicolon: Option<Span>,
240 },
241
242 /// Computing common supertype of an if expression with no else counter-part
243 IfExpressionWithNoElse,
244
245 /// `main` has wrong type
246 MainFunctionType,
247
248 /// `start` has wrong type
249 StartFunctionType,
250
251 /// intrinsic has wrong type
252 IntrinsicType,
253
254 /// method receiver
255 MethodReceiver,
256
257 /// `return` with no expression
258 ReturnNoExpression,
259
260 /// `return` with an expression
261 ReturnType(hir::HirId),
262
263 /// Block implicit return
264 BlockTailExpression(hir::HirId),
265
266 /// #[feature(trivial_bounds)] is not enabled
267 TrivialBound,
268 }
269
270 #[derive(Clone, Debug, PartialEq, Eq, Hash)]
271 pub struct DerivedObligationCause<'tcx> {
272 /// The trait reference of the parent obligation that led to the
273 /// current obligation. Note that only trait obligations lead to
274 /// derived obligations, so we just store the trait reference here
275 /// directly.
276 parent_trait_ref: ty::PolyTraitRef<'tcx>,
277
278 /// The parent trait had this cause.
279 parent_code: Rc<ObligationCauseCode<'tcx>>
280 }
281
282 pub type Obligations<'tcx, O> = Vec<Obligation<'tcx, O>>;
283 pub type PredicateObligations<'tcx> = Vec<PredicateObligation<'tcx>>;
284 pub type TraitObligations<'tcx> = Vec<TraitObligation<'tcx>>;
285
286 /// The following types:
287 /// * `WhereClause`,
288 /// * `WellFormed`,
289 /// * `FromEnv`,
290 /// * `DomainGoal`,
291 /// * `Goal`,
292 /// * `Clause`,
293 /// * `Environment`,
294 /// * `InEnvironment`,
295 /// are used for representing the trait system in the form of
296 /// logic programming clauses. They are part of the interface
297 /// for the chalk SLG solver.
298 #[derive(Clone, Copy, PartialEq, Eq, Hash, Debug, HashStable)]
299 pub enum WhereClause<'tcx> {
300 Implemented(ty::TraitPredicate<'tcx>),
301 ProjectionEq(ty::ProjectionPredicate<'tcx>),
302 RegionOutlives(ty::RegionOutlivesPredicate<'tcx>),
303 TypeOutlives(ty::TypeOutlivesPredicate<'tcx>),
304 }
305
306 #[derive(Clone, Copy, PartialEq, Eq, Hash, Debug, HashStable)]
307 pub enum WellFormed<'tcx> {
308 Trait(ty::TraitPredicate<'tcx>),
309 Ty(Ty<'tcx>),
310 }
311
312 #[derive(Clone, Copy, PartialEq, Eq, Hash, Debug, HashStable)]
313 pub enum FromEnv<'tcx> {
314 Trait(ty::TraitPredicate<'tcx>),
315 Ty(Ty<'tcx>),
316 }
317
318 #[derive(Clone, Copy, PartialEq, Eq, Hash, Debug, HashStable)]
319 pub enum DomainGoal<'tcx> {
320 Holds(WhereClause<'tcx>),
321 WellFormed(WellFormed<'tcx>),
322 FromEnv(FromEnv<'tcx>),
323 Normalize(ty::ProjectionPredicate<'tcx>),
324 }
325
326 pub type PolyDomainGoal<'tcx> = ty::Binder<DomainGoal<'tcx>>;
327
328 #[derive(Copy, Clone, PartialEq, Eq, Hash, Debug, HashStable)]
329 pub enum QuantifierKind {
330 Universal,
331 Existential,
332 }
333
334 #[derive(Copy, Clone, PartialEq, Eq, Hash, Debug, HashStable)]
335 pub enum GoalKind<'tcx> {
336 Implies(Clauses<'tcx>, Goal<'tcx>),
337 And(Goal<'tcx>, Goal<'tcx>),
338 Not(Goal<'tcx>),
339 DomainGoal(DomainGoal<'tcx>),
340 Quantified(QuantifierKind, ty::Binder<Goal<'tcx>>),
341 Subtype(Ty<'tcx>, Ty<'tcx>),
342 CannotProve,
343 }
344
345 pub type Goal<'tcx> = &'tcx GoalKind<'tcx>;
346
347 pub type Goals<'tcx> = &'tcx List<Goal<'tcx>>;
348
349 impl<'tcx> DomainGoal<'tcx> {
350 pub fn into_goal(self) -> GoalKind<'tcx> {
351 GoalKind::DomainGoal(self)
352 }
353
354 pub fn into_program_clause(self) -> ProgramClause<'tcx> {
355 ProgramClause {
356 goal: self,
357 hypotheses: ty::List::empty(),
358 category: ProgramClauseCategory::Other,
359 }
360 }
361 }
362
363 impl<'tcx> GoalKind<'tcx> {
364 pub fn from_poly_domain_goal<'a, 'gcx>(
365 domain_goal: PolyDomainGoal<'tcx>,
366 tcx: TyCtxt<'a, 'gcx, 'tcx>,
367 ) -> GoalKind<'tcx> {
368 match domain_goal.no_bound_vars() {
369 Some(p) => p.into_goal(),
370 None => GoalKind::Quantified(
371 QuantifierKind::Universal,
372 domain_goal.map_bound(|p| tcx.mk_goal(p.into_goal()))
373 ),
374 }
375 }
376 }
377
378 /// This matches the definition from Page 7 of "A Proof Procedure for the Logic of Hereditary
379 /// Harrop Formulas".
380 #[derive(Copy, Clone, PartialEq, Eq, Hash, Debug, HashStable)]
381 pub enum Clause<'tcx> {
382 Implies(ProgramClause<'tcx>),
383 ForAll(ty::Binder<ProgramClause<'tcx>>),
384 }
385
386 impl Clause<'tcx> {
387 pub fn category(self) -> ProgramClauseCategory {
388 match self {
389 Clause::Implies(clause) => clause.category,
390 Clause::ForAll(clause) => clause.skip_binder().category,
391 }
392 }
393 }
394
395 /// Multiple clauses.
396 pub type Clauses<'tcx> = &'tcx List<Clause<'tcx>>;
397
398 /// A "program clause" has the form `D :- G1, ..., Gn`. It is saying
399 /// that the domain goal `D` is true if `G1...Gn` are provable. This
400 /// is equivalent to the implication `G1..Gn => D`; we usually write
401 /// it with the reverse implication operator `:-` to emphasize the way
402 /// that programs are actually solved (via backchaining, which starts
403 /// with the goal to solve and proceeds from there).
404 #[derive(Copy, Clone, PartialEq, Eq, Hash, Debug, HashStable)]
405 pub struct ProgramClause<'tcx> {
406 /// This goal will be considered true ...
407 pub goal: DomainGoal<'tcx>,
408
409 /// ... if we can prove these hypotheses (there may be no hypotheses at all):
410 pub hypotheses: Goals<'tcx>,
411
412 /// Useful for filtering clauses.
413 pub category: ProgramClauseCategory,
414 }
415
416 #[derive(Copy, Clone, PartialEq, Eq, Hash, Debug, HashStable)]
417 pub enum ProgramClauseCategory {
418 ImpliedBound,
419 WellFormed,
420 Other,
421 }
422
423 /// A set of clauses that we assume to be true.
424 #[derive(Copy, Clone, PartialEq, Eq, Hash, Debug, HashStable)]
425 pub struct Environment<'tcx> {
426 pub clauses: Clauses<'tcx>,
427 }
428
429 impl Environment<'tcx> {
430 pub fn with<G>(self, goal: G) -> InEnvironment<'tcx, G> {
431 InEnvironment {
432 environment: self,
433 goal,
434 }
435 }
436 }
437
438 /// Something (usually a goal), along with an environment.
439 #[derive(Copy, Clone, PartialEq, Eq, Hash, Debug, HashStable)]
440 pub struct InEnvironment<'tcx, G> {
441 pub environment: Environment<'tcx>,
442 pub goal: G,
443 }
444
445 pub type Selection<'tcx> = Vtable<'tcx, PredicateObligation<'tcx>>;
446
447 #[derive(Clone,Debug)]
448 pub enum SelectionError<'tcx> {
449 Unimplemented,
450 OutputTypeParameterMismatch(ty::PolyTraitRef<'tcx>,
451 ty::PolyTraitRef<'tcx>,
452 ty::error::TypeError<'tcx>),
453 TraitNotObjectSafe(DefId),
454 ConstEvalFailure(ErrorHandled),
455 Overflow,
456 }
457
458 pub struct FulfillmentError<'tcx> {
459 pub obligation: PredicateObligation<'tcx>,
460 pub code: FulfillmentErrorCode<'tcx>
461 }
462
463 #[derive(Clone)]
464 pub enum FulfillmentErrorCode<'tcx> {
465 CodeSelectionError(SelectionError<'tcx>),
466 CodeProjectionError(MismatchedProjectionTypes<'tcx>),
467 CodeSubtypeError(ExpectedFound<Ty<'tcx>>,
468 TypeError<'tcx>), // always comes from a SubtypePredicate
469 CodeAmbiguity,
470 }
471
472 /// When performing resolution, it is typically the case that there
473 /// can be one of three outcomes:
474 ///
475 /// - `Ok(Some(r))`: success occurred with result `r`
476 /// - `Ok(None)`: could not definitely determine anything, usually due
477 /// to inconclusive type inference.
478 /// - `Err(e)`: error `e` occurred
479 pub type SelectionResult<'tcx, T> = Result<Option<T>, SelectionError<'tcx>>;
480
481 /// Given the successful resolution of an obligation, the `Vtable`
482 /// indicates where the vtable comes from. Note that while we call this
483 /// a "vtable", it does not necessarily indicate dynamic dispatch at
484 /// runtime. `Vtable` instances just tell the compiler where to find
485 /// methods, but in generic code those methods are typically statically
486 /// dispatched -- only when an object is constructed is a `Vtable`
487 /// instance reified into an actual vtable.
488 ///
489 /// For example, the vtable may be tied to a specific impl (case A),
490 /// or it may be relative to some bound that is in scope (case B).
491 ///
492 /// ```
493 /// impl<T:Clone> Clone<T> for Option<T> { ... } // Impl_1
494 /// impl<T:Clone> Clone<T> for Box<T> { ... } // Impl_2
495 /// impl Clone for int { ... } // Impl_3
496 ///
497 /// fn foo<T:Clone>(concrete: Option<Box<int>>,
498 /// param: T,
499 /// mixed: Option<T>) {
500 ///
501 /// // Case A: Vtable points at a specific impl. Only possible when
502 /// // type is concretely known. If the impl itself has bounded
503 /// // type parameters, Vtable will carry resolutions for those as well:
504 /// concrete.clone(); // Vtable(Impl_1, [Vtable(Impl_2, [Vtable(Impl_3)])])
505 ///
506 /// // Case B: Vtable must be provided by caller. This applies when
507 /// // type is a type parameter.
508 /// param.clone(); // VtableParam
509 ///
510 /// // Case C: A mix of cases A and B.
511 /// mixed.clone(); // Vtable(Impl_1, [VtableParam])
512 /// }
513 /// ```
514 ///
515 /// ### The type parameter `N`
516 ///
517 /// See explanation on `VtableImplData`.
518 #[derive(Clone, PartialEq, Eq, RustcEncodable, RustcDecodable, HashStable)]
519 pub enum Vtable<'tcx, N> {
520 /// Vtable identifying a particular impl.
521 VtableImpl(VtableImplData<'tcx, N>),
522
523 /// Vtable for auto trait implementations.
524 /// This carries the information and nested obligations with regards
525 /// to an auto implementation for a trait `Trait`. The nested obligations
526 /// ensure the trait implementation holds for all the constituent types.
527 VtableAutoImpl(VtableAutoImplData<N>),
528
529 /// Successful resolution to an obligation provided by the caller
530 /// for some type parameter. The `Vec<N>` represents the
531 /// obligations incurred from normalizing the where-clause (if
532 /// any).
533 VtableParam(Vec<N>),
534
535 /// Virtual calls through an object.
536 VtableObject(VtableObjectData<'tcx, N>),
537
538 /// Successful resolution for a builtin trait.
539 VtableBuiltin(VtableBuiltinData<N>),
540
541 /// Vtable automatically generated for a closure. The `DefId` is the ID
542 /// of the closure expression. This is a `VtableImpl` in spirit, but the
543 /// impl is generated by the compiler and does not appear in the source.
544 VtableClosure(VtableClosureData<'tcx, N>),
545
546 /// Same as above, but for a function pointer type with the given signature.
547 VtableFnPointer(VtableFnPointerData<'tcx, N>),
548
549 /// Vtable automatically generated for a generator.
550 VtableGenerator(VtableGeneratorData<'tcx, N>),
551
552 /// Vtable for a trait alias.
553 VtableTraitAlias(VtableTraitAliasData<'tcx, N>),
554 }
555
556 /// Identifies a particular impl in the source, along with a set of
557 /// substitutions from the impl's type/lifetime parameters. The
558 /// `nested` vector corresponds to the nested obligations attached to
559 /// the impl's type parameters.
560 ///
561 /// The type parameter `N` indicates the type used for "nested
562 /// obligations" that are required by the impl. During type check, this
563 /// is `Obligation`, as one might expect. During codegen, however, this
564 /// is `()`, because codegen only requires a shallow resolution of an
565 /// impl, and nested obligations are satisfied later.
566 #[derive(Clone, PartialEq, Eq, RustcEncodable, RustcDecodable, HashStable)]
567 pub struct VtableImplData<'tcx, N> {
568 pub impl_def_id: DefId,
569 pub substs: SubstsRef<'tcx>,
570 pub nested: Vec<N>
571 }
572
573 #[derive(Clone, PartialEq, Eq, RustcEncodable, RustcDecodable, HashStable)]
574 pub struct VtableGeneratorData<'tcx, N> {
575 pub generator_def_id: DefId,
576 pub substs: ty::GeneratorSubsts<'tcx>,
577 /// Nested obligations. This can be non-empty if the generator
578 /// signature contains associated types.
579 pub nested: Vec<N>
580 }
581
582 #[derive(Clone, PartialEq, Eq, RustcEncodable, RustcDecodable, HashStable)]
583 pub struct VtableClosureData<'tcx, N> {
584 pub closure_def_id: DefId,
585 pub substs: ty::ClosureSubsts<'tcx>,
586 /// Nested obligations. This can be non-empty if the closure
587 /// signature contains associated types.
588 pub nested: Vec<N>
589 }
590
591 #[derive(Clone, PartialEq, Eq, RustcEncodable, RustcDecodable, HashStable)]
592 pub struct VtableAutoImplData<N> {
593 pub trait_def_id: DefId,
594 pub nested: Vec<N>
595 }
596
597 #[derive(Clone, PartialEq, Eq, RustcEncodable, RustcDecodable, HashStable)]
598 pub struct VtableBuiltinData<N> {
599 pub nested: Vec<N>
600 }
601
602 /// A vtable for some object-safe trait `Foo` automatically derived
603 /// for the object type `Foo`.
604 #[derive(PartialEq, Eq, Clone, RustcEncodable, RustcDecodable, HashStable)]
605 pub struct VtableObjectData<'tcx, N> {
606 /// `Foo` upcast to the obligation trait. This will be some supertrait of `Foo`.
607 pub upcast_trait_ref: ty::PolyTraitRef<'tcx>,
608
609 /// The vtable is formed by concatenating together the method lists of
610 /// the base object trait and all supertraits; this is the start of
611 /// `upcast_trait_ref`'s methods in that vtable.
612 pub vtable_base: usize,
613
614 pub nested: Vec<N>,
615 }
616
617 #[derive(Clone, PartialEq, Eq, RustcEncodable, RustcDecodable, HashStable)]
618 pub struct VtableFnPointerData<'tcx, N> {
619 pub fn_ty: Ty<'tcx>,
620 pub nested: Vec<N>
621 }
622
623 #[derive(Clone, PartialEq, Eq, RustcEncodable, RustcDecodable, HashStable)]
624 pub struct VtableTraitAliasData<'tcx, N> {
625 pub alias_def_id: DefId,
626 pub substs: SubstsRef<'tcx>,
627 pub nested: Vec<N>,
628 }
629
630 /// Creates predicate obligations from the generic bounds.
631 pub fn predicates_for_generics<'tcx>(cause: ObligationCause<'tcx>,
632 param_env: ty::ParamEnv<'tcx>,
633 generic_bounds: &ty::InstantiatedPredicates<'tcx>)
634 -> PredicateObligations<'tcx>
635 {
636 util::predicates_for_generics(cause, 0, param_env, generic_bounds)
637 }
638
639 /// Determines whether the type `ty` is known to meet `bound` and
640 /// returns true if so. Returns false if `ty` either does not meet
641 /// `bound` or is not known to meet bound (note that this is
642 /// conservative towards *no impl*, which is the opposite of the
643 /// `evaluate` methods).
644 pub fn type_known_to_meet_bound_modulo_regions<'a, 'gcx, 'tcx>(
645 infcx: &InferCtxt<'a, 'gcx, 'tcx>,
646 param_env: ty::ParamEnv<'tcx>,
647 ty: Ty<'tcx>,
648 def_id: DefId,
649 span: Span,
650 ) -> bool {
651 debug!("type_known_to_meet_bound_modulo_regions(ty={:?}, bound={:?})",
652 ty,
653 infcx.tcx.def_path_str(def_id));
654
655 let trait_ref = ty::TraitRef {
656 def_id,
657 substs: infcx.tcx.mk_substs_trait(ty, &[]),
658 };
659 let obligation = Obligation {
660 param_env,
661 cause: ObligationCause::misc(span, hir::DUMMY_HIR_ID),
662 recursion_depth: 0,
663 predicate: trait_ref.to_predicate(),
664 };
665
666 let result = infcx.predicate_must_hold_modulo_regions(&obligation);
667 debug!("type_known_to_meet_ty={:?} bound={} => {:?}",
668 ty, infcx.tcx.def_path_str(def_id), result);
669
670 if result && (ty.has_infer_types() || ty.has_closure_types()) {
671 // Because of inference "guessing", selection can sometimes claim
672 // to succeed while the success requires a guess. To ensure
673 // this function's result remains infallible, we must confirm
674 // that guess. While imperfect, I believe this is sound.
675
676 // The handling of regions in this area of the code is terrible,
677 // see issue #29149. We should be able to improve on this with
678 // NLL.
679 let mut fulfill_cx = FulfillmentContext::new_ignoring_regions();
680
681 // We can use a dummy node-id here because we won't pay any mind
682 // to region obligations that arise (there shouldn't really be any
683 // anyhow).
684 let cause = ObligationCause::misc(span, hir::DUMMY_HIR_ID);
685
686 fulfill_cx.register_bound(infcx, param_env, ty, def_id, cause);
687
688 // Note: we only assume something is `Copy` if we can
689 // *definitively* show that it implements `Copy`. Otherwise,
690 // assume it is move; linear is always ok.
691 match fulfill_cx.select_all_or_error(infcx) {
692 Ok(()) => {
693 debug!("type_known_to_meet_bound_modulo_regions: ty={:?} bound={} success",
694 ty,
695 infcx.tcx.def_path_str(def_id));
696 true
697 }
698 Err(e) => {
699 debug!("type_known_to_meet_bound_modulo_regions: ty={:?} bound={} errors={:?}",
700 ty,
701 infcx.tcx.def_path_str(def_id),
702 e);
703 false
704 }
705 }
706 } else {
707 result
708 }
709 }
710
711 fn do_normalize_predicates<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>,
712 region_context: DefId,
713 cause: ObligationCause<'tcx>,
714 elaborated_env: ty::ParamEnv<'tcx>,
715 predicates: Vec<ty::Predicate<'tcx>>)
716 -> Result<Vec<ty::Predicate<'tcx>>, ErrorReported>
717 {
718 debug!(
719 "do_normalize_predicates(predicates={:?}, region_context={:?}, cause={:?})",
720 predicates,
721 region_context,
722 cause,
723 );
724 let span = cause.span;
725 tcx.infer_ctxt().enter(|infcx| {
726 // FIXME. We should really... do something with these region
727 // obligations. But this call just continues the older
728 // behavior (i.e., doesn't cause any new bugs), and it would
729 // take some further refactoring to actually solve them. In
730 // particular, we would have to handle implied bounds
731 // properly, and that code is currently largely confined to
732 // regionck (though I made some efforts to extract it
733 // out). -nmatsakis
734 //
735 // @arielby: In any case, these obligations are checked
736 // by wfcheck anyway, so I'm not sure we have to check
737 // them here too, and we will remove this function when
738 // we move over to lazy normalization *anyway*.
739 let fulfill_cx = FulfillmentContext::new_ignoring_regions();
740 let predicates = match fully_normalize(
741 &infcx,
742 fulfill_cx,
743 cause,
744 elaborated_env,
745 &predicates,
746 ) {
747 Ok(predicates) => predicates,
748 Err(errors) => {
749 infcx.report_fulfillment_errors(&errors, None, false);
750 return Err(ErrorReported)
751 }
752 };
753
754 debug!("do_normalize_predictes: normalized predicates = {:?}", predicates);
755
756 let region_scope_tree = region::ScopeTree::default();
757
758 // We can use the `elaborated_env` here; the region code only
759 // cares about declarations like `'a: 'b`.
760 let outlives_env = OutlivesEnvironment::new(elaborated_env);
761
762 infcx.resolve_regions_and_report_errors(
763 region_context,
764 &region_scope_tree,
765 &outlives_env,
766 SuppressRegionErrors::default(),
767 );
768
769 let predicates = match infcx.fully_resolve(&predicates) {
770 Ok(predicates) => predicates,
771 Err(fixup_err) => {
772 // If we encounter a fixup error, it means that some type
773 // variable wound up unconstrained. I actually don't know
774 // if this can happen, and I certainly don't expect it to
775 // happen often, but if it did happen it probably
776 // represents a legitimate failure due to some kind of
777 // unconstrained variable, and it seems better not to ICE,
778 // all things considered.
779 tcx.sess.span_err(span, &fixup_err.to_string());
780 return Err(ErrorReported)
781 }
782 };
783
784 match tcx.lift_to_global(&predicates) {
785 Some(predicates) => Ok(predicates),
786 None => {
787 // FIXME: shouldn't we, you know, actually report an error here? or an ICE?
788 Err(ErrorReported)
789 }
790 }
791 })
792 }
793
794 // FIXME: this is gonna need to be removed ...
795 /// Normalizes the parameter environment, reporting errors if they occur.
796 pub fn normalize_param_env_or_error<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>,
797 region_context: DefId,
798 unnormalized_env: ty::ParamEnv<'tcx>,
799 cause: ObligationCause<'tcx>)
800 -> ty::ParamEnv<'tcx>
801 {
802 // I'm not wild about reporting errors here; I'd prefer to
803 // have the errors get reported at a defined place (e.g.,
804 // during typeck). Instead I have all parameter
805 // environments, in effect, going through this function
806 // and hence potentially reporting errors. This ensures of
807 // course that we never forget to normalize (the
808 // alternative seemed like it would involve a lot of
809 // manual invocations of this fn -- and then we'd have to
810 // deal with the errors at each of those sites).
811 //
812 // In any case, in practice, typeck constructs all the
813 // parameter environments once for every fn as it goes,
814 // and errors will get reported then; so after typeck we
815 // can be sure that no errors should occur.
816
817 debug!("normalize_param_env_or_error(region_context={:?}, unnormalized_env={:?}, cause={:?})",
818 region_context, unnormalized_env, cause);
819
820 let mut predicates: Vec<_> =
821 util::elaborate_predicates(tcx, unnormalized_env.caller_bounds.to_vec())
822 .collect();
823
824 debug!("normalize_param_env_or_error: elaborated-predicates={:?}",
825 predicates);
826
827 let elaborated_env = ty::ParamEnv::new(
828 tcx.intern_predicates(&predicates),
829 unnormalized_env.reveal,
830 unnormalized_env.def_id
831 );
832
833 // HACK: we are trying to normalize the param-env inside *itself*. The problem is that
834 // normalization expects its param-env to be already normalized, which means we have
835 // a circularity.
836 //
837 // The way we handle this is by normalizing the param-env inside an unnormalized version
838 // of the param-env, which means that if the param-env contains unnormalized projections,
839 // we'll have some normalization failures. This is unfortunate.
840 //
841 // Lazy normalization would basically handle this by treating just the
842 // normalizing-a-trait-ref-requires-itself cycles as evaluation failures.
843 //
844 // Inferred outlives bounds can create a lot of `TypeOutlives` predicates for associated
845 // types, so to make the situation less bad, we normalize all the predicates *but*
846 // the `TypeOutlives` predicates first inside the unnormalized parameter environment, and
847 // then we normalize the `TypeOutlives` bounds inside the normalized parameter environment.
848 //
849 // This works fairly well because trait matching does not actually care about param-env
850 // TypeOutlives predicates - these are normally used by regionck.
851 let outlives_predicates: Vec<_> = predicates.drain_filter(|predicate| {
852 match predicate {
853 ty::Predicate::TypeOutlives(..) => true,
854 _ => false
855 }
856 }).collect();
857
858 debug!("normalize_param_env_or_error: predicates=(non-outlives={:?}, outlives={:?})",
859 predicates, outlives_predicates);
860 let non_outlives_predicates =
861 match do_normalize_predicates(tcx, region_context, cause.clone(),
862 elaborated_env, predicates) {
863 Ok(predicates) => predicates,
864 // An unnormalized env is better than nothing.
865 Err(ErrorReported) => {
866 debug!("normalize_param_env_or_error: errored resolving non-outlives predicates");
867 return elaborated_env
868 }
869 };
870
871 debug!("normalize_param_env_or_error: non-outlives predicates={:?}", non_outlives_predicates);
872
873 // Not sure whether it is better to include the unnormalized TypeOutlives predicates
874 // here. I believe they should not matter, because we are ignoring TypeOutlives param-env
875 // predicates here anyway. Keeping them here anyway because it seems safer.
876 let outlives_env: Vec<_> =
877 non_outlives_predicates.iter().chain(&outlives_predicates).cloned().collect();
878 let outlives_env = ty::ParamEnv::new(
879 tcx.intern_predicates(&outlives_env),
880 unnormalized_env.reveal,
881 None
882 );
883 let outlives_predicates =
884 match do_normalize_predicates(tcx, region_context, cause,
885 outlives_env, outlives_predicates) {
886 Ok(predicates) => predicates,
887 // An unnormalized env is better than nothing.
888 Err(ErrorReported) => {
889 debug!("normalize_param_env_or_error: errored resolving outlives predicates");
890 return elaborated_env
891 }
892 };
893 debug!("normalize_param_env_or_error: outlives predicates={:?}", outlives_predicates);
894
895 let mut predicates = non_outlives_predicates;
896 predicates.extend(outlives_predicates);
897 debug!("normalize_param_env_or_error: final predicates={:?}", predicates);
898 ty::ParamEnv::new(
899 tcx.intern_predicates(&predicates),
900 unnormalized_env.reveal,
901 unnormalized_env.def_id
902 )
903 }
904
905 pub fn fully_normalize<'a, 'gcx, 'tcx, T>(
906 infcx: &InferCtxt<'a, 'gcx, 'tcx>,
907 mut fulfill_cx: FulfillmentContext<'tcx>,
908 cause: ObligationCause<'tcx>,
909 param_env: ty::ParamEnv<'tcx>,
910 value: &T)
911 -> Result<T, Vec<FulfillmentError<'tcx>>>
912 where T : TypeFoldable<'tcx>
913 {
914 debug!("fully_normalize_with_fulfillcx(value={:?})", value);
915 let selcx = &mut SelectionContext::new(infcx);
916 let Normalized { value: normalized_value, obligations } =
917 project::normalize(selcx, param_env, cause, value);
918 debug!("fully_normalize: normalized_value={:?} obligations={:?}",
919 normalized_value,
920 obligations);
921 for obligation in obligations {
922 fulfill_cx.register_predicate_obligation(selcx.infcx(), obligation);
923 }
924
925 debug!("fully_normalize: select_all_or_error start");
926 fulfill_cx.select_all_or_error(infcx)?;
927 debug!("fully_normalize: select_all_or_error complete");
928 let resolved_value = infcx.resolve_type_vars_if_possible(&normalized_value);
929 debug!("fully_normalize: resolved_value={:?}", resolved_value);
930 Ok(resolved_value)
931 }
932
933 /// Normalizes the predicates and checks whether they hold in an empty
934 /// environment. If this returns false, then either normalize
935 /// encountered an error or one of the predicates did not hold. Used
936 /// when creating vtables to check for unsatisfiable methods.
937 fn normalize_and_test_predicates<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>,
938 predicates: Vec<ty::Predicate<'tcx>>)
939 -> bool
940 {
941 debug!("normalize_and_test_predicates(predicates={:?})",
942 predicates);
943
944 let result = tcx.infer_ctxt().enter(|infcx| {
945 let param_env = ty::ParamEnv::reveal_all();
946 let mut selcx = SelectionContext::new(&infcx);
947 let mut fulfill_cx = FulfillmentContext::new();
948 let cause = ObligationCause::dummy();
949 let Normalized { value: predicates, obligations } =
950 normalize(&mut selcx, param_env, cause.clone(), &predicates);
951 for obligation in obligations {
952 fulfill_cx.register_predicate_obligation(&infcx, obligation);
953 }
954 for predicate in predicates {
955 let obligation = Obligation::new(cause.clone(), param_env, predicate);
956 fulfill_cx.register_predicate_obligation(&infcx, obligation);
957 }
958
959 fulfill_cx.select_all_or_error(&infcx).is_ok()
960 });
961 debug!("normalize_and_test_predicates(predicates={:?}) = {:?}",
962 predicates, result);
963 result
964 }
965
966 fn substitute_normalize_and_test_predicates<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>,
967 key: (DefId, SubstsRef<'tcx>))
968 -> bool
969 {
970 debug!("substitute_normalize_and_test_predicates(key={:?})",
971 key);
972
973 let predicates = tcx.predicates_of(key.0).instantiate(tcx, key.1).predicates;
974 let result = normalize_and_test_predicates(tcx, predicates);
975
976 debug!("substitute_normalize_and_test_predicates(key={:?}) = {:?}",
977 key, result);
978 result
979 }
980
981 /// Given a trait `trait_ref`, iterates the vtable entries
982 /// that come from `trait_ref`, including its supertraits.
983 #[inline] // FIXME(#35870): avoid closures being unexported due to `impl Trait`.
984 fn vtable_methods<'a, 'tcx>(
985 tcx: TyCtxt<'a, 'tcx, 'tcx>,
986 trait_ref: ty::PolyTraitRef<'tcx>)
987 -> Lrc<Vec<Option<(DefId, SubstsRef<'tcx>)>>>
988 {
989 debug!("vtable_methods({:?})", trait_ref);
990
991 Lrc::new(
992 supertraits(tcx, trait_ref).flat_map(move |trait_ref| {
993 let trait_methods = tcx.associated_items(trait_ref.def_id())
994 .filter(|item| item.kind == ty::AssociatedKind::Method);
995
996 // Now list each method's DefId and InternalSubsts (for within its trait).
997 // If the method can never be called from this object, produce None.
998 trait_methods.map(move |trait_method| {
999 debug!("vtable_methods: trait_method={:?}", trait_method);
1000 let def_id = trait_method.def_id;
1001
1002 // Some methods cannot be called on an object; skip those.
1003 if !tcx.is_vtable_safe_method(trait_ref.def_id(), &trait_method) {
1004 debug!("vtable_methods: not vtable safe");
1005 return None;
1006 }
1007
1008 // the method may have some early-bound lifetimes, add
1009 // regions for those
1010 let substs = trait_ref.map_bound(|trait_ref|
1011 InternalSubsts::for_item(tcx, def_id, |param, _|
1012 match param.kind {
1013 GenericParamDefKind::Lifetime => tcx.types.re_erased.into(),
1014 GenericParamDefKind::Type { .. } |
1015 GenericParamDefKind::Const => {
1016 trait_ref.substs[param.index as usize]
1017 }
1018 }
1019 )
1020 );
1021
1022 // the trait type may have higher-ranked lifetimes in it;
1023 // so erase them if they appear, so that we get the type
1024 // at some particular call site
1025 let substs = tcx.normalize_erasing_late_bound_regions(
1026 ty::ParamEnv::reveal_all(),
1027 &substs
1028 );
1029
1030 // It's possible that the method relies on where clauses that
1031 // do not hold for this particular set of type parameters.
1032 // Note that this method could then never be called, so we
1033 // do not want to try and codegen it, in that case (see #23435).
1034 let predicates = tcx.predicates_of(def_id).instantiate_own(tcx, substs);
1035 if !normalize_and_test_predicates(tcx, predicates.predicates) {
1036 debug!("vtable_methods: predicates do not hold");
1037 return None;
1038 }
1039
1040 Some((def_id, substs))
1041 })
1042 }).collect()
1043 )
1044 }
1045
1046 impl<'tcx,O> Obligation<'tcx,O> {
1047 pub fn new(cause: ObligationCause<'tcx>,
1048 param_env: ty::ParamEnv<'tcx>,
1049 predicate: O)
1050 -> Obligation<'tcx, O>
1051 {
1052 Obligation { cause, param_env, recursion_depth: 0, predicate }
1053 }
1054
1055 fn with_depth(cause: ObligationCause<'tcx>,
1056 recursion_depth: usize,
1057 param_env: ty::ParamEnv<'tcx>,
1058 predicate: O)
1059 -> Obligation<'tcx, O>
1060 {
1061 Obligation { cause, param_env, recursion_depth, predicate }
1062 }
1063
1064 pub fn misc(span: Span,
1065 body_id: hir::HirId,
1066 param_env: ty::ParamEnv<'tcx>,
1067 trait_ref: O)
1068 -> Obligation<'tcx, O> {
1069 Obligation::new(ObligationCause::misc(span, body_id), param_env, trait_ref)
1070 }
1071
1072 pub fn with<P>(&self, value: P) -> Obligation<'tcx,P> {
1073 Obligation { cause: self.cause.clone(),
1074 param_env: self.param_env,
1075 recursion_depth: self.recursion_depth,
1076 predicate: value }
1077 }
1078 }
1079
1080 impl<'tcx> ObligationCause<'tcx> {
1081 #[inline]
1082 pub fn new(span: Span,
1083 body_id: hir::HirId,
1084 code: ObligationCauseCode<'tcx>)
1085 -> ObligationCause<'tcx> {
1086 ObligationCause { span, body_id, code }
1087 }
1088
1089 pub fn misc(span: Span, body_id: hir::HirId) -> ObligationCause<'tcx> {
1090 ObligationCause { span, body_id, code: MiscObligation }
1091 }
1092
1093 pub fn dummy() -> ObligationCause<'tcx> {
1094 ObligationCause { span: DUMMY_SP, body_id: hir::CRATE_HIR_ID, code: MiscObligation }
1095 }
1096 }
1097
1098 impl<'tcx, N> Vtable<'tcx, N> {
1099 pub fn nested_obligations(self) -> Vec<N> {
1100 match self {
1101 VtableImpl(i) => i.nested,
1102 VtableParam(n) => n,
1103 VtableBuiltin(i) => i.nested,
1104 VtableAutoImpl(d) => d.nested,
1105 VtableClosure(c) => c.nested,
1106 VtableGenerator(c) => c.nested,
1107 VtableObject(d) => d.nested,
1108 VtableFnPointer(d) => d.nested,
1109 VtableTraitAlias(d) => d.nested,
1110 }
1111 }
1112
1113 pub fn map<M, F>(self, f: F) -> Vtable<'tcx, M> where F: FnMut(N) -> M {
1114 match self {
1115 VtableImpl(i) => VtableImpl(VtableImplData {
1116 impl_def_id: i.impl_def_id,
1117 substs: i.substs,
1118 nested: i.nested.into_iter().map(f).collect(),
1119 }),
1120 VtableParam(n) => VtableParam(n.into_iter().map(f).collect()),
1121 VtableBuiltin(i) => VtableBuiltin(VtableBuiltinData {
1122 nested: i.nested.into_iter().map(f).collect(),
1123 }),
1124 VtableObject(o) => VtableObject(VtableObjectData {
1125 upcast_trait_ref: o.upcast_trait_ref,
1126 vtable_base: o.vtable_base,
1127 nested: o.nested.into_iter().map(f).collect(),
1128 }),
1129 VtableAutoImpl(d) => VtableAutoImpl(VtableAutoImplData {
1130 trait_def_id: d.trait_def_id,
1131 nested: d.nested.into_iter().map(f).collect(),
1132 }),
1133 VtableClosure(c) => VtableClosure(VtableClosureData {
1134 closure_def_id: c.closure_def_id,
1135 substs: c.substs,
1136 nested: c.nested.into_iter().map(f).collect(),
1137 }),
1138 VtableGenerator(c) => VtableGenerator(VtableGeneratorData {
1139 generator_def_id: c.generator_def_id,
1140 substs: c.substs,
1141 nested: c.nested.into_iter().map(f).collect(),
1142 }),
1143 VtableFnPointer(p) => VtableFnPointer(VtableFnPointerData {
1144 fn_ty: p.fn_ty,
1145 nested: p.nested.into_iter().map(f).collect(),
1146 }),
1147 VtableTraitAlias(d) => VtableTraitAlias(VtableTraitAliasData {
1148 alias_def_id: d.alias_def_id,
1149 substs: d.substs,
1150 nested: d.nested.into_iter().map(f).collect(),
1151 }),
1152 }
1153 }
1154 }
1155
1156 impl<'tcx> FulfillmentError<'tcx> {
1157 fn new(obligation: PredicateObligation<'tcx>,
1158 code: FulfillmentErrorCode<'tcx>)
1159 -> FulfillmentError<'tcx>
1160 {
1161 FulfillmentError { obligation: obligation, code: code }
1162 }
1163 }
1164
1165 impl<'tcx> TraitObligation<'tcx> {
1166 fn self_ty(&self) -> ty::Binder<Ty<'tcx>> {
1167 self.predicate.map_bound(|p| p.self_ty())
1168 }
1169 }
1170
1171 pub fn provide(providers: &mut ty::query::Providers<'_>) {
1172 *providers = ty::query::Providers {
1173 is_object_safe: object_safety::is_object_safe_provider,
1174 specialization_graph_of: specialize::specialization_graph_provider,
1175 specializes: specialize::specializes,
1176 codegen_fulfill_obligation: codegen::codegen_fulfill_obligation,
1177 vtable_methods,
1178 substitute_normalize_and_test_predicates,
1179 ..*providers
1180 };
1181 }
1182
1183 pub trait ExClauseFold<'tcx>
1184 where
1185 Self: chalk_engine::context::Context + Clone,
1186 {
1187 fn fold_ex_clause_with<'gcx: 'tcx, F: TypeFolder<'gcx, 'tcx>>(
1188 ex_clause: &chalk_engine::ExClause<Self>,
1189 folder: &mut F,
1190 ) -> chalk_engine::ExClause<Self>;
1191
1192 fn visit_ex_clause_with<'gcx: 'tcx, V: TypeVisitor<'tcx>>(
1193 ex_clause: &chalk_engine::ExClause<Self>,
1194 visitor: &mut V,
1195 ) -> bool;
1196 }
1197
1198 pub trait ChalkContextLift<'tcx>
1199 where
1200 Self: chalk_engine::context::Context + Clone,
1201 {
1202 type LiftedExClause: Debug + 'tcx;
1203 type LiftedDelayedLiteral: Debug + 'tcx;
1204 type LiftedLiteral: Debug + 'tcx;
1205
1206 fn lift_ex_clause_to_tcx<'a, 'gcx>(
1207 ex_clause: &chalk_engine::ExClause<Self>,
1208 tcx: TyCtxt<'a, 'gcx, 'tcx>,
1209 ) -> Option<Self::LiftedExClause>;
1210
1211 fn lift_delayed_literal_to_tcx<'a, 'gcx>(
1212 ex_clause: &chalk_engine::DelayedLiteral<Self>,
1213 tcx: TyCtxt<'a, 'gcx, 'tcx>,
1214 ) -> Option<Self::LiftedDelayedLiteral>;
1215
1216 fn lift_literal_to_tcx<'a, 'gcx>(
1217 ex_clause: &chalk_engine::Literal<Self>,
1218 tcx: TyCtxt<'a, 'gcx, 'tcx>,
1219 ) -> Option<Self::LiftedLiteral>;
1220 }