]> git.proxmox.com Git - rustc.git/blob - src/librustc/ty/fold.rs
New upstream version 1.42.0+dfsg1
[rustc.git] / src / librustc / ty / fold.rs
1 //! Generalized type folding mechanism. The setup is a bit convoluted
2 //! but allows for convenient usage. Let T be an instance of some
3 //! "foldable type" (one which implements `TypeFoldable`) and F be an
4 //! instance of a "folder" (a type which implements `TypeFolder`). Then
5 //! the setup is intended to be:
6 //!
7 //! T.fold_with(F) --calls--> F.fold_T(T) --calls--> T.super_fold_with(F)
8 //!
9 //! This way, when you define a new folder F, you can override
10 //! `fold_T()` to customize the behavior, and invoke `T.super_fold_with()`
11 //! to get the original behavior. Meanwhile, to actually fold
12 //! something, you can just write `T.fold_with(F)`, which is
13 //! convenient. (Note that `fold_with` will also transparently handle
14 //! things like a `Vec<T>` where T is foldable and so on.)
15 //!
16 //! In this ideal setup, the only function that actually *does*
17 //! anything is `T.super_fold_with()`, which traverses the type `T`.
18 //! Moreover, `T.super_fold_with()` should only ever call `T.fold_with()`.
19 //!
20 //! In some cases, we follow a degenerate pattern where we do not have
21 //! a `fold_T` method. Instead, `T.fold_with` traverses the structure directly.
22 //! This is suboptimal because the behavior cannot be overridden, but it's
23 //! much less work to implement. If you ever *do* need an override that
24 //! doesn't exist, it's not hard to convert the degenerate pattern into the
25 //! proper thing.
26 //!
27 //! A `TypeFoldable` T can also be visited by a `TypeVisitor` V using similar setup:
28 //!
29 //! T.visit_with(V) --calls--> V.visit_T(T) --calls--> T.super_visit_with(V).
30 //!
31 //! These methods return true to indicate that the visitor has found what it is
32 //! looking for, and does not need to visit anything else.
33
34 use crate::ty::{self, flags::FlagComputation, Binder, Ty, TyCtxt, TypeFlags};
35 use rustc_hir::def_id::DefId;
36
37 use rustc_data_structures::fx::FxHashSet;
38 use std::collections::BTreeMap;
39 use std::fmt;
40
41 /// This trait is implemented for every type that can be folded.
42 /// Basically, every type that has a corresponding method in `TypeFolder`.
43 ///
44 /// To implement this conveniently, use the derive macro located in librustc_macros.
45 pub trait TypeFoldable<'tcx>: fmt::Debug + Clone {
46 fn super_fold_with<F: TypeFolder<'tcx>>(&self, folder: &mut F) -> Self;
47 fn fold_with<F: TypeFolder<'tcx>>(&self, folder: &mut F) -> Self {
48 self.super_fold_with(folder)
49 }
50
51 fn super_visit_with<V: TypeVisitor<'tcx>>(&self, visitor: &mut V) -> bool;
52 fn visit_with<V: TypeVisitor<'tcx>>(&self, visitor: &mut V) -> bool {
53 self.super_visit_with(visitor)
54 }
55
56 /// Returns `true` if `self` has any late-bound regions that are either
57 /// bound by `binder` or bound by some binder outside of `binder`.
58 /// If `binder` is `ty::INNERMOST`, this indicates whether
59 /// there are any late-bound regions that appear free.
60 fn has_vars_bound_at_or_above(&self, binder: ty::DebruijnIndex) -> bool {
61 self.visit_with(&mut HasEscapingVarsVisitor { outer_index: binder })
62 }
63
64 /// Returns `true` if this `self` has any regions that escape `binder` (and
65 /// hence are not bound by it).
66 fn has_vars_bound_above(&self, binder: ty::DebruijnIndex) -> bool {
67 self.has_vars_bound_at_or_above(binder.shifted_in(1))
68 }
69
70 fn has_escaping_bound_vars(&self) -> bool {
71 self.has_vars_bound_at_or_above(ty::INNERMOST)
72 }
73
74 fn has_type_flags(&self, flags: TypeFlags) -> bool {
75 self.visit_with(&mut HasTypeFlagsVisitor { flags })
76 }
77 fn has_projections(&self) -> bool {
78 self.has_type_flags(TypeFlags::HAS_PROJECTION)
79 }
80 fn references_error(&self) -> bool {
81 self.has_type_flags(TypeFlags::HAS_TY_ERR)
82 }
83 fn has_param_types(&self) -> bool {
84 self.has_type_flags(TypeFlags::HAS_PARAMS)
85 }
86 fn has_infer_types(&self) -> bool {
87 self.has_type_flags(TypeFlags::HAS_TY_INFER)
88 }
89 fn has_infer_consts(&self) -> bool {
90 self.has_type_flags(TypeFlags::HAS_CT_INFER)
91 }
92 fn has_local_value(&self) -> bool {
93 self.has_type_flags(TypeFlags::KEEP_IN_LOCAL_TCX)
94 }
95 fn needs_infer(&self) -> bool {
96 self.has_type_flags(
97 TypeFlags::HAS_TY_INFER | TypeFlags::HAS_RE_INFER | TypeFlags::HAS_CT_INFER,
98 )
99 }
100 fn has_placeholders(&self) -> bool {
101 self.has_type_flags(
102 TypeFlags::HAS_RE_PLACEHOLDER
103 | TypeFlags::HAS_TY_PLACEHOLDER
104 | TypeFlags::HAS_CT_PLACEHOLDER,
105 )
106 }
107 fn needs_subst(&self) -> bool {
108 self.has_type_flags(TypeFlags::NEEDS_SUBST)
109 }
110 fn has_re_placeholders(&self) -> bool {
111 self.has_type_flags(TypeFlags::HAS_RE_PLACEHOLDER)
112 }
113 fn has_closure_types(&self) -> bool {
114 self.has_type_flags(TypeFlags::HAS_TY_CLOSURE)
115 }
116 /// "Free" regions in this context means that it has any region
117 /// that is not (a) erased or (b) late-bound.
118 fn has_free_regions(&self) -> bool {
119 self.has_type_flags(TypeFlags::HAS_FREE_REGIONS)
120 }
121
122 /// True if there are any un-erased free regions.
123 fn has_erasable_regions(&self) -> bool {
124 self.has_type_flags(TypeFlags::HAS_FREE_REGIONS)
125 }
126
127 /// Indicates whether this value references only 'global'
128 /// generic parameters that are the same regardless of what fn we are
129 /// in. This is used for caching.
130 fn is_global(&self) -> bool {
131 !self.has_type_flags(TypeFlags::HAS_FREE_LOCAL_NAMES)
132 }
133
134 /// True if there are any late-bound regions
135 fn has_late_bound_regions(&self) -> bool {
136 self.has_type_flags(TypeFlags::HAS_RE_LATE_BOUND)
137 }
138
139 /// A visitor that does not recurse into types, works like `fn walk_shallow` in `Ty`.
140 fn visit_tys_shallow(&self, visit: impl FnMut(Ty<'tcx>) -> bool) -> bool {
141 pub struct Visitor<F>(F);
142
143 impl<'tcx, F: FnMut(Ty<'tcx>) -> bool> TypeVisitor<'tcx> for Visitor<F> {
144 fn visit_ty(&mut self, ty: Ty<'tcx>) -> bool {
145 self.0(ty)
146 }
147 }
148
149 self.visit_with(&mut Visitor(visit))
150 }
151 }
152
153 impl TypeFoldable<'tcx> for syntax::ast::Constness {
154 fn super_fold_with<F: TypeFolder<'tcx>>(&self, _: &mut F) -> Self {
155 *self
156 }
157 fn super_visit_with<V: TypeVisitor<'tcx>>(&self, _: &mut V) -> bool {
158 false
159 }
160 }
161
162 /// The `TypeFolder` trait defines the actual *folding*. There is a
163 /// method defined for every foldable type. Each of these has a
164 /// default implementation that does an "identity" fold. Within each
165 /// identity fold, it should invoke `foo.fold_with(self)` to fold each
166 /// sub-item.
167 pub trait TypeFolder<'tcx>: Sized {
168 fn tcx<'a>(&'a self) -> TyCtxt<'tcx>;
169
170 fn fold_binder<T>(&mut self, t: &Binder<T>) -> Binder<T>
171 where
172 T: TypeFoldable<'tcx>,
173 {
174 t.super_fold_with(self)
175 }
176
177 fn fold_ty(&mut self, t: Ty<'tcx>) -> Ty<'tcx> {
178 t.super_fold_with(self)
179 }
180
181 fn fold_region(&mut self, r: ty::Region<'tcx>) -> ty::Region<'tcx> {
182 r.super_fold_with(self)
183 }
184
185 fn fold_const(&mut self, c: &'tcx ty::Const<'tcx>) -> &'tcx ty::Const<'tcx> {
186 c.super_fold_with(self)
187 }
188 }
189
190 pub trait TypeVisitor<'tcx>: Sized {
191 fn visit_binder<T: TypeFoldable<'tcx>>(&mut self, t: &Binder<T>) -> bool {
192 t.super_visit_with(self)
193 }
194
195 fn visit_ty(&mut self, t: Ty<'tcx>) -> bool {
196 t.super_visit_with(self)
197 }
198
199 fn visit_region(&mut self, r: ty::Region<'tcx>) -> bool {
200 r.super_visit_with(self)
201 }
202
203 fn visit_const(&mut self, c: &'tcx ty::Const<'tcx>) -> bool {
204 c.super_visit_with(self)
205 }
206 }
207
208 ///////////////////////////////////////////////////////////////////////////
209 // Some sample folders
210
211 pub struct BottomUpFolder<'tcx, F, G, H>
212 where
213 F: FnMut(Ty<'tcx>) -> Ty<'tcx>,
214 G: FnMut(ty::Region<'tcx>) -> ty::Region<'tcx>,
215 H: FnMut(&'tcx ty::Const<'tcx>) -> &'tcx ty::Const<'tcx>,
216 {
217 pub tcx: TyCtxt<'tcx>,
218 pub ty_op: F,
219 pub lt_op: G,
220 pub ct_op: H,
221 }
222
223 impl<'tcx, F, G, H> TypeFolder<'tcx> for BottomUpFolder<'tcx, F, G, H>
224 where
225 F: FnMut(Ty<'tcx>) -> Ty<'tcx>,
226 G: FnMut(ty::Region<'tcx>) -> ty::Region<'tcx>,
227 H: FnMut(&'tcx ty::Const<'tcx>) -> &'tcx ty::Const<'tcx>,
228 {
229 fn tcx<'b>(&'b self) -> TyCtxt<'tcx> {
230 self.tcx
231 }
232
233 fn fold_ty(&mut self, ty: Ty<'tcx>) -> Ty<'tcx> {
234 let t = ty.super_fold_with(self);
235 (self.ty_op)(t)
236 }
237
238 fn fold_region(&mut self, r: ty::Region<'tcx>) -> ty::Region<'tcx> {
239 let r = r.super_fold_with(self);
240 (self.lt_op)(r)
241 }
242
243 fn fold_const(&mut self, ct: &'tcx ty::Const<'tcx>) -> &'tcx ty::Const<'tcx> {
244 let ct = ct.super_fold_with(self);
245 (self.ct_op)(ct)
246 }
247 }
248
249 ///////////////////////////////////////////////////////////////////////////
250 // Region folder
251
252 impl<'tcx> TyCtxt<'tcx> {
253 /// Collects the free and escaping regions in `value` into `region_set`. Returns
254 /// whether any late-bound regions were skipped
255 pub fn collect_regions<T>(self, value: &T, region_set: &mut FxHashSet<ty::Region<'tcx>>) -> bool
256 where
257 T: TypeFoldable<'tcx>,
258 {
259 let mut have_bound_regions = false;
260 self.fold_regions(value, &mut have_bound_regions, |r, d| {
261 region_set.insert(self.mk_region(r.shifted_out_to_binder(d)));
262 r
263 });
264 have_bound_regions
265 }
266
267 /// Folds the escaping and free regions in `value` using `f`, and
268 /// sets `skipped_regions` to true if any late-bound region was found
269 /// and skipped.
270 pub fn fold_regions<T>(
271 self,
272 value: &T,
273 skipped_regions: &mut bool,
274 mut f: impl FnMut(ty::Region<'tcx>, ty::DebruijnIndex) -> ty::Region<'tcx>,
275 ) -> T
276 where
277 T: TypeFoldable<'tcx>,
278 {
279 value.fold_with(&mut RegionFolder::new(self, skipped_regions, &mut f))
280 }
281
282 /// Invoke `callback` on every region appearing free in `value`.
283 pub fn for_each_free_region(
284 self,
285 value: &impl TypeFoldable<'tcx>,
286 mut callback: impl FnMut(ty::Region<'tcx>),
287 ) {
288 self.any_free_region_meets(value, |r| {
289 callback(r);
290 false
291 });
292 }
293
294 /// Returns `true` if `callback` returns true for every region appearing free in `value`.
295 pub fn all_free_regions_meet(
296 self,
297 value: &impl TypeFoldable<'tcx>,
298 mut callback: impl FnMut(ty::Region<'tcx>) -> bool,
299 ) -> bool {
300 !self.any_free_region_meets(value, |r| !callback(r))
301 }
302
303 /// Returns `true` if `callback` returns true for some region appearing free in `value`.
304 pub fn any_free_region_meets(
305 self,
306 value: &impl TypeFoldable<'tcx>,
307 callback: impl FnMut(ty::Region<'tcx>) -> bool,
308 ) -> bool {
309 return value.visit_with(&mut RegionVisitor { outer_index: ty::INNERMOST, callback });
310
311 struct RegionVisitor<F> {
312 /// The index of a binder *just outside* the things we have
313 /// traversed. If we encounter a bound region bound by this
314 /// binder or one outer to it, it appears free. Example:
315 ///
316 /// ```
317 /// for<'a> fn(for<'b> fn(), T)
318 /// ^ ^ ^ ^
319 /// | | | | here, would be shifted in 1
320 /// | | | here, would be shifted in 2
321 /// | | here, would be `INNERMOST` shifted in by 1
322 /// | here, initially, binder would be `INNERMOST`
323 /// ```
324 ///
325 /// You see that, initially, *any* bound value is free,
326 /// because we've not traversed any binders. As we pass
327 /// through a binder, we shift the `outer_index` by 1 to
328 /// account for the new binder that encloses us.
329 outer_index: ty::DebruijnIndex,
330 callback: F,
331 }
332
333 impl<'tcx, F> TypeVisitor<'tcx> for RegionVisitor<F>
334 where
335 F: FnMut(ty::Region<'tcx>) -> bool,
336 {
337 fn visit_binder<T: TypeFoldable<'tcx>>(&mut self, t: &Binder<T>) -> bool {
338 self.outer_index.shift_in(1);
339 let result = t.skip_binder().visit_with(self);
340 self.outer_index.shift_out(1);
341 result
342 }
343
344 fn visit_region(&mut self, r: ty::Region<'tcx>) -> bool {
345 match *r {
346 ty::ReLateBound(debruijn, _) if debruijn < self.outer_index => {
347 false // ignore bound regions, keep visiting
348 }
349 _ => (self.callback)(r),
350 }
351 }
352
353 fn visit_ty(&mut self, ty: Ty<'tcx>) -> bool {
354 // We're only interested in types involving regions
355 if ty.flags.intersects(TypeFlags::HAS_FREE_REGIONS) {
356 ty.super_visit_with(self)
357 } else {
358 false // keep visiting
359 }
360 }
361 }
362 }
363 }
364
365 /// Folds over the substructure of a type, visiting its component
366 /// types and all regions that occur *free* within it.
367 ///
368 /// That is, `Ty` can contain function or method types that bind
369 /// regions at the call site (`ReLateBound`), and occurrences of
370 /// regions (aka "lifetimes") that are bound within a type are not
371 /// visited by this folder; only regions that occur free will be
372 /// visited by `fld_r`.
373
374 pub struct RegionFolder<'a, 'tcx> {
375 tcx: TyCtxt<'tcx>,
376 skipped_regions: &'a mut bool,
377
378 /// Stores the index of a binder *just outside* the stuff we have
379 /// visited. So this begins as INNERMOST; when we pass through a
380 /// binder, it is incremented (via `shift_in`).
381 current_index: ty::DebruijnIndex,
382
383 /// Callback invokes for each free region. The `DebruijnIndex`
384 /// points to the binder *just outside* the ones we have passed
385 /// through.
386 fold_region_fn:
387 &'a mut (dyn FnMut(ty::Region<'tcx>, ty::DebruijnIndex) -> ty::Region<'tcx> + 'a),
388 }
389
390 impl<'a, 'tcx> RegionFolder<'a, 'tcx> {
391 #[inline]
392 pub fn new(
393 tcx: TyCtxt<'tcx>,
394 skipped_regions: &'a mut bool,
395 fold_region_fn: &'a mut dyn FnMut(ty::Region<'tcx>, ty::DebruijnIndex) -> ty::Region<'tcx>,
396 ) -> RegionFolder<'a, 'tcx> {
397 RegionFolder { tcx, skipped_regions, current_index: ty::INNERMOST, fold_region_fn }
398 }
399 }
400
401 impl<'a, 'tcx> TypeFolder<'tcx> for RegionFolder<'a, 'tcx> {
402 fn tcx<'b>(&'b self) -> TyCtxt<'tcx> {
403 self.tcx
404 }
405
406 fn fold_binder<T: TypeFoldable<'tcx>>(&mut self, t: &ty::Binder<T>) -> ty::Binder<T> {
407 self.current_index.shift_in(1);
408 let t = t.super_fold_with(self);
409 self.current_index.shift_out(1);
410 t
411 }
412
413 fn fold_region(&mut self, r: ty::Region<'tcx>) -> ty::Region<'tcx> {
414 match *r {
415 ty::ReLateBound(debruijn, _) if debruijn < self.current_index => {
416 debug!(
417 "RegionFolder.fold_region({:?}) skipped bound region (current index={:?})",
418 r, self.current_index
419 );
420 *self.skipped_regions = true;
421 r
422 }
423 _ => {
424 debug!(
425 "RegionFolder.fold_region({:?}) folding free region (current_index={:?})",
426 r, self.current_index
427 );
428 (self.fold_region_fn)(r, self.current_index)
429 }
430 }
431 }
432 }
433
434 ///////////////////////////////////////////////////////////////////////////
435 // Bound vars replacer
436
437 /// Replaces the escaping bound vars (late bound regions or bound types) in a type.
438 struct BoundVarReplacer<'a, 'tcx> {
439 tcx: TyCtxt<'tcx>,
440
441 /// As with `RegionFolder`, represents the index of a binder *just outside*
442 /// the ones we have visited.
443 current_index: ty::DebruijnIndex,
444
445 fld_r: &'a mut (dyn FnMut(ty::BoundRegion) -> ty::Region<'tcx> + 'a),
446 fld_t: &'a mut (dyn FnMut(ty::BoundTy) -> Ty<'tcx> + 'a),
447 fld_c: &'a mut (dyn FnMut(ty::BoundVar, Ty<'tcx>) -> &'tcx ty::Const<'tcx> + 'a),
448 }
449
450 impl<'a, 'tcx> BoundVarReplacer<'a, 'tcx> {
451 fn new<F, G, H>(tcx: TyCtxt<'tcx>, fld_r: &'a mut F, fld_t: &'a mut G, fld_c: &'a mut H) -> Self
452 where
453 F: FnMut(ty::BoundRegion) -> ty::Region<'tcx>,
454 G: FnMut(ty::BoundTy) -> Ty<'tcx>,
455 H: FnMut(ty::BoundVar, Ty<'tcx>) -> &'tcx ty::Const<'tcx>,
456 {
457 BoundVarReplacer { tcx, current_index: ty::INNERMOST, fld_r, fld_t, fld_c }
458 }
459 }
460
461 impl<'a, 'tcx> TypeFolder<'tcx> for BoundVarReplacer<'a, 'tcx> {
462 fn tcx<'b>(&'b self) -> TyCtxt<'tcx> {
463 self.tcx
464 }
465
466 fn fold_binder<T: TypeFoldable<'tcx>>(&mut self, t: &ty::Binder<T>) -> ty::Binder<T> {
467 self.current_index.shift_in(1);
468 let t = t.super_fold_with(self);
469 self.current_index.shift_out(1);
470 t
471 }
472
473 fn fold_ty(&mut self, t: Ty<'tcx>) -> Ty<'tcx> {
474 match t.kind {
475 ty::Bound(debruijn, bound_ty) => {
476 if debruijn == self.current_index {
477 let fld_t = &mut self.fld_t;
478 let ty = fld_t(bound_ty);
479 ty::fold::shift_vars(self.tcx, &ty, self.current_index.as_u32())
480 } else {
481 t
482 }
483 }
484 _ => {
485 if !t.has_vars_bound_at_or_above(self.current_index) {
486 // Nothing more to substitute.
487 t
488 } else {
489 t.super_fold_with(self)
490 }
491 }
492 }
493 }
494
495 fn fold_region(&mut self, r: ty::Region<'tcx>) -> ty::Region<'tcx> {
496 match *r {
497 ty::ReLateBound(debruijn, br) if debruijn == self.current_index => {
498 let fld_r = &mut self.fld_r;
499 let region = fld_r(br);
500 if let ty::ReLateBound(debruijn1, br) = *region {
501 // If the callback returns a late-bound region,
502 // that region should always use the INNERMOST
503 // debruijn index. Then we adjust it to the
504 // correct depth.
505 assert_eq!(debruijn1, ty::INNERMOST);
506 self.tcx.mk_region(ty::ReLateBound(debruijn, br))
507 } else {
508 region
509 }
510 }
511 _ => r,
512 }
513 }
514
515 fn fold_const(&mut self, ct: &'tcx ty::Const<'tcx>) -> &'tcx ty::Const<'tcx> {
516 if let ty::Const { val: ty::ConstKind::Bound(debruijn, bound_const), ty } = *ct {
517 if debruijn == self.current_index {
518 let fld_c = &mut self.fld_c;
519 let ct = fld_c(bound_const, ty);
520 ty::fold::shift_vars(self.tcx, &ct, self.current_index.as_u32())
521 } else {
522 ct
523 }
524 } else {
525 if !ct.has_vars_bound_at_or_above(self.current_index) {
526 // Nothing more to substitute.
527 ct
528 } else {
529 ct.super_fold_with(self)
530 }
531 }
532 }
533 }
534
535 impl<'tcx> TyCtxt<'tcx> {
536 /// Replaces all regions bound by the given `Binder` with the
537 /// results returned by the closure; the closure is expected to
538 /// return a free region (relative to this binder), and hence the
539 /// binder is removed in the return type. The closure is invoked
540 /// once for each unique `BoundRegion`; multiple references to the
541 /// same `BoundRegion` will reuse the previous result. A map is
542 /// returned at the end with each bound region and the free region
543 /// that replaced it.
544 ///
545 /// This method only replaces late bound regions and the result may still
546 /// contain escaping bound types.
547 pub fn replace_late_bound_regions<T, F>(
548 self,
549 value: &Binder<T>,
550 fld_r: F,
551 ) -> (T, BTreeMap<ty::BoundRegion, ty::Region<'tcx>>)
552 where
553 F: FnMut(ty::BoundRegion) -> ty::Region<'tcx>,
554 T: TypeFoldable<'tcx>,
555 {
556 // identity for bound types and consts
557 let fld_t = |bound_ty| self.mk_ty(ty::Bound(ty::INNERMOST, bound_ty));
558 let fld_c = |bound_ct, ty| {
559 self.mk_const(ty::Const { val: ty::ConstKind::Bound(ty::INNERMOST, bound_ct), ty })
560 };
561 self.replace_escaping_bound_vars(value.skip_binder(), fld_r, fld_t, fld_c)
562 }
563
564 /// Replaces all escaping bound vars. The `fld_r` closure replaces escaping
565 /// bound regions; the `fld_t` closure replaces escaping bound types and the `fld_c`
566 /// closure replaces escaping bound consts.
567 pub fn replace_escaping_bound_vars<T, F, G, H>(
568 self,
569 value: &T,
570 mut fld_r: F,
571 mut fld_t: G,
572 mut fld_c: H,
573 ) -> (T, BTreeMap<ty::BoundRegion, ty::Region<'tcx>>)
574 where
575 F: FnMut(ty::BoundRegion) -> ty::Region<'tcx>,
576 G: FnMut(ty::BoundTy) -> Ty<'tcx>,
577 H: FnMut(ty::BoundVar, Ty<'tcx>) -> &'tcx ty::Const<'tcx>,
578 T: TypeFoldable<'tcx>,
579 {
580 use rustc_data_structures::fx::FxHashMap;
581
582 let mut region_map = BTreeMap::new();
583 let mut type_map = FxHashMap::default();
584 let mut const_map = FxHashMap::default();
585
586 if !value.has_escaping_bound_vars() {
587 (value.clone(), region_map)
588 } else {
589 let mut real_fld_r = |br| *region_map.entry(br).or_insert_with(|| fld_r(br));
590
591 let mut real_fld_t =
592 |bound_ty| *type_map.entry(bound_ty).or_insert_with(|| fld_t(bound_ty));
593
594 let mut real_fld_c =
595 |bound_ct, ty| *const_map.entry(bound_ct).or_insert_with(|| fld_c(bound_ct, ty));
596
597 let mut replacer =
598 BoundVarReplacer::new(self, &mut real_fld_r, &mut real_fld_t, &mut real_fld_c);
599 let result = value.fold_with(&mut replacer);
600 (result, region_map)
601 }
602 }
603
604 /// Replaces all types or regions bound by the given `Binder`. The `fld_r`
605 /// closure replaces bound regions while the `fld_t` closure replaces bound
606 /// types.
607 pub fn replace_bound_vars<T, F, G, H>(
608 self,
609 value: &Binder<T>,
610 fld_r: F,
611 fld_t: G,
612 fld_c: H,
613 ) -> (T, BTreeMap<ty::BoundRegion, ty::Region<'tcx>>)
614 where
615 F: FnMut(ty::BoundRegion) -> ty::Region<'tcx>,
616 G: FnMut(ty::BoundTy) -> Ty<'tcx>,
617 H: FnMut(ty::BoundVar, Ty<'tcx>) -> &'tcx ty::Const<'tcx>,
618 T: TypeFoldable<'tcx>,
619 {
620 self.replace_escaping_bound_vars(value.skip_binder(), fld_r, fld_t, fld_c)
621 }
622
623 /// Replaces any late-bound regions bound in `value` with
624 /// free variants attached to `all_outlive_scope`.
625 pub fn liberate_late_bound_regions<T>(
626 &self,
627 all_outlive_scope: DefId,
628 value: &ty::Binder<T>,
629 ) -> T
630 where
631 T: TypeFoldable<'tcx>,
632 {
633 self.replace_late_bound_regions(value, |br| {
634 self.mk_region(ty::ReFree(ty::FreeRegion {
635 scope: all_outlive_scope,
636 bound_region: br,
637 }))
638 })
639 .0
640 }
641
642 /// Returns a set of all late-bound regions that are constrained
643 /// by `value`, meaning that if we instantiate those LBR with
644 /// variables and equate `value` with something else, those
645 /// variables will also be equated.
646 pub fn collect_constrained_late_bound_regions<T>(
647 &self,
648 value: &Binder<T>,
649 ) -> FxHashSet<ty::BoundRegion>
650 where
651 T: TypeFoldable<'tcx>,
652 {
653 self.collect_late_bound_regions(value, true)
654 }
655
656 /// Returns a set of all late-bound regions that appear in `value` anywhere.
657 pub fn collect_referenced_late_bound_regions<T>(
658 &self,
659 value: &Binder<T>,
660 ) -> FxHashSet<ty::BoundRegion>
661 where
662 T: TypeFoldable<'tcx>,
663 {
664 self.collect_late_bound_regions(value, false)
665 }
666
667 fn collect_late_bound_regions<T>(
668 &self,
669 value: &Binder<T>,
670 just_constraint: bool,
671 ) -> FxHashSet<ty::BoundRegion>
672 where
673 T: TypeFoldable<'tcx>,
674 {
675 let mut collector = LateBoundRegionsCollector::new(just_constraint);
676 let result = value.skip_binder().visit_with(&mut collector);
677 assert!(!result); // should never have stopped early
678 collector.regions
679 }
680
681 /// Replaces any late-bound regions bound in `value` with `'erased`. Useful in codegen but also
682 /// method lookup and a few other places where precise region relationships are not required.
683 pub fn erase_late_bound_regions<T>(self, value: &Binder<T>) -> T
684 where
685 T: TypeFoldable<'tcx>,
686 {
687 self.replace_late_bound_regions(value, |_| self.lifetimes.re_erased).0
688 }
689
690 /// Rewrite any late-bound regions so that they are anonymous. Region numbers are
691 /// assigned starting at 1 and increasing monotonically in the order traversed
692 /// by the fold operation.
693 ///
694 /// The chief purpose of this function is to canonicalize regions so that two
695 /// `FnSig`s or `TraitRef`s which are equivalent up to region naming will become
696 /// structurally identical. For example, `for<'a, 'b> fn(&'a isize, &'b isize)` and
697 /// `for<'a, 'b> fn(&'b isize, &'a isize)` will become identical after anonymization.
698 pub fn anonymize_late_bound_regions<T>(self, sig: &Binder<T>) -> Binder<T>
699 where
700 T: TypeFoldable<'tcx>,
701 {
702 let mut counter = 0;
703 Binder::bind(
704 self.replace_late_bound_regions(sig, |_| {
705 counter += 1;
706 self.mk_region(ty::ReLateBound(ty::INNERMOST, ty::BrAnon(counter)))
707 })
708 .0,
709 )
710 }
711 }
712
713 ///////////////////////////////////////////////////////////////////////////
714 // Shifter
715 //
716 // Shifts the De Bruijn indices on all escaping bound vars by a
717 // fixed amount. Useful in substitution or when otherwise introducing
718 // a binding level that is not intended to capture the existing bound
719 // vars. See comment on `shift_vars_through_binders` method in
720 // `subst.rs` for more details.
721
722 enum Direction {
723 In,
724 Out,
725 }
726
727 struct Shifter<'tcx> {
728 tcx: TyCtxt<'tcx>,
729 current_index: ty::DebruijnIndex,
730 amount: u32,
731 direction: Direction,
732 }
733
734 impl Shifter<'tcx> {
735 pub fn new(tcx: TyCtxt<'tcx>, amount: u32, direction: Direction) -> Self {
736 Shifter { tcx, current_index: ty::INNERMOST, amount, direction }
737 }
738 }
739
740 impl TypeFolder<'tcx> for Shifter<'tcx> {
741 fn tcx<'b>(&'b self) -> TyCtxt<'tcx> {
742 self.tcx
743 }
744
745 fn fold_binder<T: TypeFoldable<'tcx>>(&mut self, t: &ty::Binder<T>) -> ty::Binder<T> {
746 self.current_index.shift_in(1);
747 let t = t.super_fold_with(self);
748 self.current_index.shift_out(1);
749 t
750 }
751
752 fn fold_region(&mut self, r: ty::Region<'tcx>) -> ty::Region<'tcx> {
753 match *r {
754 ty::ReLateBound(debruijn, br) => {
755 if self.amount == 0 || debruijn < self.current_index {
756 r
757 } else {
758 let debruijn = match self.direction {
759 Direction::In => debruijn.shifted_in(self.amount),
760 Direction::Out => {
761 assert!(debruijn.as_u32() >= self.amount);
762 debruijn.shifted_out(self.amount)
763 }
764 };
765 let shifted = ty::ReLateBound(debruijn, br);
766 self.tcx.mk_region(shifted)
767 }
768 }
769 _ => r,
770 }
771 }
772
773 fn fold_ty(&mut self, ty: Ty<'tcx>) -> Ty<'tcx> {
774 match ty.kind {
775 ty::Bound(debruijn, bound_ty) => {
776 if self.amount == 0 || debruijn < self.current_index {
777 ty
778 } else {
779 let debruijn = match self.direction {
780 Direction::In => debruijn.shifted_in(self.amount),
781 Direction::Out => {
782 assert!(debruijn.as_u32() >= self.amount);
783 debruijn.shifted_out(self.amount)
784 }
785 };
786 self.tcx.mk_ty(ty::Bound(debruijn, bound_ty))
787 }
788 }
789
790 _ => ty.super_fold_with(self),
791 }
792 }
793
794 fn fold_const(&mut self, ct: &'tcx ty::Const<'tcx>) -> &'tcx ty::Const<'tcx> {
795 if let ty::Const { val: ty::ConstKind::Bound(debruijn, bound_ct), ty } = *ct {
796 if self.amount == 0 || debruijn < self.current_index {
797 ct
798 } else {
799 let debruijn = match self.direction {
800 Direction::In => debruijn.shifted_in(self.amount),
801 Direction::Out => {
802 assert!(debruijn.as_u32() >= self.amount);
803 debruijn.shifted_out(self.amount)
804 }
805 };
806 self.tcx.mk_const(ty::Const { val: ty::ConstKind::Bound(debruijn, bound_ct), ty })
807 }
808 } else {
809 ct.super_fold_with(self)
810 }
811 }
812 }
813
814 pub fn shift_region<'tcx>(
815 tcx: TyCtxt<'tcx>,
816 region: ty::Region<'tcx>,
817 amount: u32,
818 ) -> ty::Region<'tcx> {
819 match region {
820 ty::ReLateBound(debruijn, br) if amount > 0 => {
821 tcx.mk_region(ty::ReLateBound(debruijn.shifted_in(amount), *br))
822 }
823 _ => region,
824 }
825 }
826
827 pub fn shift_vars<'tcx, T>(tcx: TyCtxt<'tcx>, value: &T, amount: u32) -> T
828 where
829 T: TypeFoldable<'tcx>,
830 {
831 debug!("shift_vars(value={:?}, amount={})", value, amount);
832
833 value.fold_with(&mut Shifter::new(tcx, amount, Direction::In))
834 }
835
836 pub fn shift_out_vars<'tcx, T>(tcx: TyCtxt<'tcx>, value: &T, amount: u32) -> T
837 where
838 T: TypeFoldable<'tcx>,
839 {
840 debug!("shift_out_vars(value={:?}, amount={})", value, amount);
841
842 value.fold_with(&mut Shifter::new(tcx, amount, Direction::Out))
843 }
844
845 /// An "escaping var" is a bound var whose binder is not part of `t`. A bound var can be a
846 /// bound region or a bound type.
847 ///
848 /// So, for example, consider a type like the following, which has two binders:
849 ///
850 /// for<'a> fn(x: for<'b> fn(&'a isize, &'b isize))
851 /// ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ outer scope
852 /// ^~~~~~~~~~~~~~~~~~~~~~~~~~~~ inner scope
853 ///
854 /// This type has *bound regions* (`'a`, `'b`), but it does not have escaping regions, because the
855 /// binders of both `'a` and `'b` are part of the type itself. However, if we consider the *inner
856 /// fn type*, that type has an escaping region: `'a`.
857 ///
858 /// Note that what I'm calling an "escaping var" is often just called a "free var". However,
859 /// we already use the term "free var". It refers to the regions or types that we use to represent
860 /// bound regions or type params on a fn definition while we are type checking its body.
861 ///
862 /// To clarify, conceptually there is no particular difference between
863 /// an "escaping" var and a "free" var. However, there is a big
864 /// difference in practice. Basically, when "entering" a binding
865 /// level, one is generally required to do some sort of processing to
866 /// a bound var, such as replacing it with a fresh/placeholder
867 /// var, or making an entry in the environment to represent the
868 /// scope to which it is attached, etc. An escaping var represents
869 /// a bound var for which this processing has not yet been done.
870 struct HasEscapingVarsVisitor {
871 /// Anything bound by `outer_index` or "above" is escaping.
872 outer_index: ty::DebruijnIndex,
873 }
874
875 impl<'tcx> TypeVisitor<'tcx> for HasEscapingVarsVisitor {
876 fn visit_binder<T: TypeFoldable<'tcx>>(&mut self, t: &Binder<T>) -> bool {
877 self.outer_index.shift_in(1);
878 let result = t.super_visit_with(self);
879 self.outer_index.shift_out(1);
880 result
881 }
882
883 fn visit_ty(&mut self, t: Ty<'tcx>) -> bool {
884 // If the outer-exclusive-binder is *strictly greater* than
885 // `outer_index`, that means that `t` contains some content
886 // bound at `outer_index` or above (because
887 // `outer_exclusive_binder` is always 1 higher than the
888 // content in `t`). Therefore, `t` has some escaping vars.
889 t.outer_exclusive_binder > self.outer_index
890 }
891
892 fn visit_region(&mut self, r: ty::Region<'tcx>) -> bool {
893 // If the region is bound by `outer_index` or anything outside
894 // of outer index, then it escapes the binders we have
895 // visited.
896 r.bound_at_or_above_binder(self.outer_index)
897 }
898
899 fn visit_const(&mut self, ct: &'tcx ty::Const<'tcx>) -> bool {
900 // we don't have a `visit_infer_const` callback, so we have to
901 // hook in here to catch this case (annoying...), but
902 // otherwise we do want to remember to visit the rest of the
903 // const, as it has types/regions embedded in a lot of other
904 // places.
905 match ct.val {
906 ty::ConstKind::Bound(debruijn, _) if debruijn >= self.outer_index => true,
907 _ => ct.super_visit_with(self),
908 }
909 }
910 }
911
912 // FIXME: Optimize for checking for infer flags
913 struct HasTypeFlagsVisitor {
914 flags: ty::TypeFlags,
915 }
916
917 impl<'tcx> TypeVisitor<'tcx> for HasTypeFlagsVisitor {
918 fn visit_ty(&mut self, t: Ty<'_>) -> bool {
919 debug!("HasTypeFlagsVisitor: t={:?} t.flags={:?} self.flags={:?}", t, t.flags, self.flags);
920 t.flags.intersects(self.flags)
921 }
922
923 fn visit_region(&mut self, r: ty::Region<'tcx>) -> bool {
924 let flags = r.type_flags();
925 debug!("HasTypeFlagsVisitor: r={:?} r.flags={:?} self.flags={:?}", r, flags, self.flags);
926 flags.intersects(self.flags)
927 }
928
929 fn visit_const(&mut self, c: &'tcx ty::Const<'tcx>) -> bool {
930 let flags = FlagComputation::for_const(c);
931 debug!("HasTypeFlagsVisitor: c={:?} c.flags={:?} self.flags={:?}", c, flags, self.flags);
932 flags.intersects(self.flags)
933 }
934 }
935
936 /// Collects all the late-bound regions at the innermost binding level
937 /// into a hash set.
938 struct LateBoundRegionsCollector {
939 current_index: ty::DebruijnIndex,
940 regions: FxHashSet<ty::BoundRegion>,
941
942 /// `true` if we only want regions that are known to be
943 /// "constrained" when you equate this type with another type. In
944 /// particular, if you have e.g., `&'a u32` and `&'b u32`, equating
945 /// them constraints `'a == 'b`. But if you have `<&'a u32 as
946 /// Trait>::Foo` and `<&'b u32 as Trait>::Foo`, normalizing those
947 /// types may mean that `'a` and `'b` don't appear in the results,
948 /// so they are not considered *constrained*.
949 just_constrained: bool,
950 }
951
952 impl LateBoundRegionsCollector {
953 fn new(just_constrained: bool) -> Self {
954 LateBoundRegionsCollector {
955 current_index: ty::INNERMOST,
956 regions: Default::default(),
957 just_constrained,
958 }
959 }
960 }
961
962 impl<'tcx> TypeVisitor<'tcx> for LateBoundRegionsCollector {
963 fn visit_binder<T: TypeFoldable<'tcx>>(&mut self, t: &Binder<T>) -> bool {
964 self.current_index.shift_in(1);
965 let result = t.super_visit_with(self);
966 self.current_index.shift_out(1);
967 result
968 }
969
970 fn visit_ty(&mut self, t: Ty<'tcx>) -> bool {
971 // if we are only looking for "constrained" region, we have to
972 // ignore the inputs to a projection, as they may not appear
973 // in the normalized form
974 if self.just_constrained {
975 match t.kind {
976 ty::Projection(..) | ty::Opaque(..) => {
977 return false;
978 }
979 _ => {}
980 }
981 }
982
983 t.super_visit_with(self)
984 }
985
986 fn visit_region(&mut self, r: ty::Region<'tcx>) -> bool {
987 if let ty::ReLateBound(debruijn, br) = *r {
988 if debruijn == self.current_index {
989 self.regions.insert(br);
990 }
991 }
992 false
993 }
994 }