]> git.proxmox.com Git - rustc.git/blob - src/librustc_ast_lowering/lib.rs
New upstream version 1.45.0+dfsg1
[rustc.git] / src / librustc_ast_lowering / lib.rs
1 //! Lowers the AST to the HIR.
2 //!
3 //! Since the AST and HIR are fairly similar, this is mostly a simple procedure,
4 //! much like a fold. Where lowering involves a bit more work things get more
5 //! interesting and there are some invariants you should know about. These mostly
6 //! concern spans and IDs.
7 //!
8 //! Spans are assigned to AST nodes during parsing and then are modified during
9 //! expansion to indicate the origin of a node and the process it went through
10 //! being expanded. IDs are assigned to AST nodes just before lowering.
11 //!
12 //! For the simpler lowering steps, IDs and spans should be preserved. Unlike
13 //! expansion we do not preserve the process of lowering in the spans, so spans
14 //! should not be modified here. When creating a new node (as opposed to
15 //! 'folding' an existing one), then you create a new ID using `next_id()`.
16 //!
17 //! You must ensure that IDs are unique. That means that you should only use the
18 //! ID from an AST node in a single HIR node (you can assume that AST node-IDs
19 //! are unique). Every new node must have a unique ID. Avoid cloning HIR nodes.
20 //! If you do, you must then set the new node's ID to a fresh one.
21 //!
22 //! Spans are used for error messages and for tools to map semantics back to
23 //! source code. It is therefore not as important with spans as IDs to be strict
24 //! about use (you can't break the compiler by screwing up a span). Obviously, a
25 //! HIR node can only have a single span. But multiple nodes can have the same
26 //! span and spans don't need to be kept in order, etc. Where code is preserved
27 //! by lowering, it should have the same span as in the AST. Where HIR nodes are
28 //! new it is probably best to give a span for the whole AST node being lowered.
29 //! All nodes should have real spans, don't use dummy spans. Tools are likely to
30 //! get confused if the spans from leaf AST nodes occur in multiple places
31 //! in the HIR, especially for multiple identifiers.
32
33 #![feature(array_value_iter)]
34 #![feature(crate_visibility_modifier)]
35 #![feature(marker_trait_attr)]
36 #![feature(specialization)] // FIXME: min_specialization does not work
37 #![feature(or_patterns)]
38 #![recursion_limit = "256"]
39
40 use rustc_ast::ast;
41 use rustc_ast::ast::*;
42 use rustc_ast::attr;
43 use rustc_ast::node_id::NodeMap;
44 use rustc_ast::token::{self, Nonterminal, Token};
45 use rustc_ast::tokenstream::{TokenStream, TokenTree};
46 use rustc_ast::visit::{self, AssocCtxt, Visitor};
47 use rustc_ast::walk_list;
48 use rustc_ast_pretty::pprust;
49 use rustc_data_structures::captures::Captures;
50 use rustc_data_structures::fx::FxHashSet;
51 use rustc_data_structures::sync::Lrc;
52 use rustc_errors::struct_span_err;
53 use rustc_hir as hir;
54 use rustc_hir::def::{DefKind, Namespace, PartialRes, PerNS, Res};
55 use rustc_hir::def_id::{DefId, DefIdMap, LocalDefId, CRATE_DEF_INDEX};
56 use rustc_hir::definitions::{DefKey, DefPathData, Definitions};
57 use rustc_hir::intravisit;
58 use rustc_hir::{ConstArg, GenericArg, ParamName};
59 use rustc_index::vec::IndexVec;
60 use rustc_session::config::nightly_options;
61 use rustc_session::lint::{builtin::BARE_TRAIT_OBJECTS, BuiltinLintDiagnostics, LintBuffer};
62 use rustc_session::parse::ParseSess;
63 use rustc_session::Session;
64 use rustc_span::hygiene::ExpnId;
65 use rustc_span::source_map::{respan, DesugaringKind, ExpnData, ExpnKind};
66 use rustc_span::symbol::{kw, sym, Ident, Symbol};
67 use rustc_span::Span;
68
69 use log::{debug, trace};
70 use smallvec::{smallvec, SmallVec};
71 use std::collections::BTreeMap;
72 use std::mem;
73
74 macro_rules! arena_vec {
75 ($this:expr; $($x:expr),*) => ({
76 let a = [$($x),*];
77 $this.arena.alloc_from_iter(std::array::IntoIter::new(a))
78 });
79 }
80
81 mod expr;
82 mod item;
83 mod pat;
84 mod path;
85
86 const HIR_ID_COUNTER_LOCKED: u32 = 0xFFFFFFFF;
87
88 rustc_hir::arena_types!(::arena::declare_arena, [], 'tcx);
89
90 struct LoweringContext<'a, 'hir: 'a> {
91 crate_root: Option<Symbol>,
92
93 /// Used to assign IDs to HIR nodes that do not directly correspond to AST nodes.
94 sess: &'a Session,
95
96 resolver: &'a mut dyn Resolver,
97
98 /// HACK(Centril): there is a cyclic dependency between the parser and lowering
99 /// if we don't have this function pointer. To avoid that dependency so that
100 /// librustc_middle is independent of the parser, we use dynamic dispatch here.
101 nt_to_tokenstream: NtToTokenstream,
102
103 /// Used to allocate HIR nodes
104 arena: &'hir Arena<'hir>,
105
106 /// The items being lowered are collected here.
107 items: BTreeMap<hir::HirId, hir::Item<'hir>>,
108
109 trait_items: BTreeMap<hir::TraitItemId, hir::TraitItem<'hir>>,
110 impl_items: BTreeMap<hir::ImplItemId, hir::ImplItem<'hir>>,
111 bodies: BTreeMap<hir::BodyId, hir::Body<'hir>>,
112 exported_macros: Vec<hir::MacroDef<'hir>>,
113 non_exported_macro_attrs: Vec<ast::Attribute>,
114
115 trait_impls: BTreeMap<DefId, Vec<hir::HirId>>,
116
117 modules: BTreeMap<hir::HirId, hir::ModuleItems>,
118
119 generator_kind: Option<hir::GeneratorKind>,
120
121 /// When inside an `async` context, this is the `HirId` of the
122 /// `task_context` local bound to the resume argument of the generator.
123 task_context: Option<hir::HirId>,
124
125 /// Used to get the current `fn`'s def span to point to when using `await`
126 /// outside of an `async fn`.
127 current_item: Option<Span>,
128
129 catch_scopes: Vec<NodeId>,
130 loop_scopes: Vec<NodeId>,
131 is_in_loop_condition: bool,
132 is_in_trait_impl: bool,
133 is_in_dyn_type: bool,
134
135 /// What to do when we encounter either an "anonymous lifetime
136 /// reference". The term "anonymous" is meant to encompass both
137 /// `'_` lifetimes as well as fully elided cases where nothing is
138 /// written at all (e.g., `&T` or `std::cell::Ref<T>`).
139 anonymous_lifetime_mode: AnonymousLifetimeMode,
140
141 /// Used to create lifetime definitions from in-band lifetime usages.
142 /// e.g., `fn foo(x: &'x u8) -> &'x u8` to `fn foo<'x>(x: &'x u8) -> &'x u8`
143 /// When a named lifetime is encountered in a function or impl header and
144 /// has not been defined
145 /// (i.e., it doesn't appear in the in_scope_lifetimes list), it is added
146 /// to this list. The results of this list are then added to the list of
147 /// lifetime definitions in the corresponding impl or function generics.
148 lifetimes_to_define: Vec<(Span, ParamName)>,
149
150 /// `true` if in-band lifetimes are being collected. This is used to
151 /// indicate whether or not we're in a place where new lifetimes will result
152 /// in in-band lifetime definitions, such a function or an impl header,
153 /// including implicit lifetimes from `impl_header_lifetime_elision`.
154 is_collecting_in_band_lifetimes: bool,
155
156 /// Currently in-scope lifetimes defined in impl headers, fn headers, or HRTB.
157 /// When `is_collectin_in_band_lifetimes` is true, each lifetime is checked
158 /// against this list to see if it is already in-scope, or if a definition
159 /// needs to be created for it.
160 ///
161 /// We always store a `normalize_to_macros_2_0()` version of the param-name in this
162 /// vector.
163 in_scope_lifetimes: Vec<ParamName>,
164
165 current_module: hir::HirId,
166
167 type_def_lifetime_params: DefIdMap<usize>,
168
169 current_hir_id_owner: Vec<(LocalDefId, u32)>,
170 item_local_id_counters: NodeMap<u32>,
171 node_id_to_hir_id: IndexVec<NodeId, Option<hir::HirId>>,
172
173 allow_try_trait: Option<Lrc<[Symbol]>>,
174 allow_gen_future: Option<Lrc<[Symbol]>>,
175 }
176
177 pub trait Resolver {
178 fn def_key(&mut self, id: DefId) -> DefKey;
179
180 fn item_generics_num_lifetimes(&self, def: DefId, sess: &Session) -> usize;
181
182 /// Obtains resolution for a `NodeId` with a single resolution.
183 fn get_partial_res(&mut self, id: NodeId) -> Option<PartialRes>;
184
185 /// Obtains per-namespace resolutions for `use` statement with the given `NodeId`.
186 fn get_import_res(&mut self, id: NodeId) -> PerNS<Option<Res<NodeId>>>;
187
188 /// Obtains resolution for a label with the given `NodeId`.
189 fn get_label_res(&mut self, id: NodeId) -> Option<NodeId>;
190
191 /// We must keep the set of definitions up to date as we add nodes that weren't in the AST.
192 /// This should only return `None` during testing.
193 fn definitions(&mut self) -> &mut Definitions;
194
195 /// Given suffix `["b", "c", "d"]`, creates an AST path for `[::crate_root]::b::c::d` and
196 /// resolves it based on `is_value`.
197 fn resolve_str_path(
198 &mut self,
199 span: Span,
200 crate_root: Option<Symbol>,
201 components: &[Symbol],
202 ns: Namespace,
203 ) -> (ast::Path, Res<NodeId>);
204
205 fn lint_buffer(&mut self) -> &mut LintBuffer;
206
207 fn next_node_id(&mut self) -> NodeId;
208 }
209
210 type NtToTokenstream = fn(&Nonterminal, &ParseSess, Span) -> TokenStream;
211
212 /// Context of `impl Trait` in code, which determines whether it is allowed in an HIR subtree,
213 /// and if so, what meaning it has.
214 #[derive(Debug)]
215 enum ImplTraitContext<'b, 'a> {
216 /// Treat `impl Trait` as shorthand for a new universal generic parameter.
217 /// Example: `fn foo(x: impl Debug)`, where `impl Debug` is conceptually
218 /// equivalent to a fresh universal parameter like `fn foo<T: Debug>(x: T)`.
219 ///
220 /// Newly generated parameters should be inserted into the given `Vec`.
221 Universal(&'b mut Vec<hir::GenericParam<'a>>),
222
223 /// Treat `impl Trait` as shorthand for a new opaque type.
224 /// Example: `fn foo() -> impl Debug`, where `impl Debug` is conceptually
225 /// equivalent to a new opaque type like `type T = impl Debug; fn foo() -> T`.
226 ///
227 /// We optionally store a `DefId` for the parent item here so we can look up necessary
228 /// information later. It is `None` when no information about the context should be stored
229 /// (e.g., for consts and statics).
230 OpaqueTy(Option<DefId> /* fn def-ID */, hir::OpaqueTyOrigin),
231
232 /// `impl Trait` is not accepted in this position.
233 Disallowed(ImplTraitPosition),
234 }
235
236 /// Position in which `impl Trait` is disallowed.
237 #[derive(Debug, Copy, Clone, PartialEq, Eq)]
238 enum ImplTraitPosition {
239 /// Disallowed in `let` / `const` / `static` bindings.
240 Binding,
241
242 /// All other posiitons.
243 Other,
244 }
245
246 impl<'a> ImplTraitContext<'_, 'a> {
247 #[inline]
248 fn disallowed() -> Self {
249 ImplTraitContext::Disallowed(ImplTraitPosition::Other)
250 }
251
252 fn reborrow<'this>(&'this mut self) -> ImplTraitContext<'this, 'a> {
253 use self::ImplTraitContext::*;
254 match self {
255 Universal(params) => Universal(params),
256 OpaqueTy(fn_def_id, origin) => OpaqueTy(*fn_def_id, *origin),
257 Disallowed(pos) => Disallowed(*pos),
258 }
259 }
260 }
261
262 pub fn lower_crate<'a, 'hir>(
263 sess: &'a Session,
264 krate: &'a Crate,
265 resolver: &'a mut dyn Resolver,
266 nt_to_tokenstream: NtToTokenstream,
267 arena: &'hir Arena<'hir>,
268 ) -> hir::Crate<'hir> {
269 let _prof_timer = sess.prof.verbose_generic_activity("hir_lowering");
270
271 LoweringContext {
272 crate_root: sess.parse_sess.injected_crate_name.get().copied(),
273 sess,
274 resolver,
275 nt_to_tokenstream,
276 arena,
277 items: BTreeMap::new(),
278 trait_items: BTreeMap::new(),
279 impl_items: BTreeMap::new(),
280 bodies: BTreeMap::new(),
281 trait_impls: BTreeMap::new(),
282 modules: BTreeMap::new(),
283 exported_macros: Vec::new(),
284 non_exported_macro_attrs: Vec::new(),
285 catch_scopes: Vec::new(),
286 loop_scopes: Vec::new(),
287 is_in_loop_condition: false,
288 is_in_trait_impl: false,
289 is_in_dyn_type: false,
290 anonymous_lifetime_mode: AnonymousLifetimeMode::PassThrough,
291 type_def_lifetime_params: Default::default(),
292 current_module: hir::CRATE_HIR_ID,
293 current_hir_id_owner: vec![(LocalDefId { local_def_index: CRATE_DEF_INDEX }, 0)],
294 item_local_id_counters: Default::default(),
295 node_id_to_hir_id: IndexVec::new(),
296 generator_kind: None,
297 task_context: None,
298 current_item: None,
299 lifetimes_to_define: Vec::new(),
300 is_collecting_in_band_lifetimes: false,
301 in_scope_lifetimes: Vec::new(),
302 allow_try_trait: Some([sym::try_trait][..].into()),
303 allow_gen_future: Some([sym::gen_future][..].into()),
304 }
305 .lower_crate(krate)
306 }
307
308 #[derive(Copy, Clone, PartialEq)]
309 enum ParamMode {
310 /// Any path in a type context.
311 Explicit,
312 /// Path in a type definition, where the anonymous lifetime `'_` is not allowed.
313 ExplicitNamed,
314 /// The `module::Type` in `module::Type::method` in an expression.
315 Optional,
316 }
317
318 enum ParenthesizedGenericArgs {
319 Ok,
320 Err,
321 }
322
323 /// What to do when we encounter an **anonymous** lifetime
324 /// reference. Anonymous lifetime references come in two flavors. You
325 /// have implicit, or fully elided, references to lifetimes, like the
326 /// one in `&T` or `Ref<T>`, and you have `'_` lifetimes, like `&'_ T`
327 /// or `Ref<'_, T>`. These often behave the same, but not always:
328 ///
329 /// - certain usages of implicit references are deprecated, like
330 /// `Ref<T>`, and we sometimes just give hard errors in those cases
331 /// as well.
332 /// - for object bounds there is a difference: `Box<dyn Foo>` is not
333 /// the same as `Box<dyn Foo + '_>`.
334 ///
335 /// We describe the effects of the various modes in terms of three cases:
336 ///
337 /// - **Modern** -- includes all uses of `'_`, but also the lifetime arg
338 /// of a `&` (e.g., the missing lifetime in something like `&T`)
339 /// - **Dyn Bound** -- if you have something like `Box<dyn Foo>`,
340 /// there is an elided lifetime bound (`Box<dyn Foo + 'X>`). These
341 /// elided bounds follow special rules. Note that this only covers
342 /// cases where *nothing* is written; the `'_` in `Box<dyn Foo +
343 /// '_>` is a case of "modern" elision.
344 /// - **Deprecated** -- this coverse cases like `Ref<T>`, where the lifetime
345 /// parameter to ref is completely elided. `Ref<'_, T>` would be the modern,
346 /// non-deprecated equivalent.
347 ///
348 /// Currently, the handling of lifetime elision is somewhat spread out
349 /// between HIR lowering and -- as described below -- the
350 /// `resolve_lifetime` module. Often we "fallthrough" to that code by generating
351 /// an "elided" or "underscore" lifetime name. In the future, we probably want to move
352 /// everything into HIR lowering.
353 #[derive(Copy, Clone, Debug)]
354 enum AnonymousLifetimeMode {
355 /// For **Modern** cases, create a new anonymous region parameter
356 /// and reference that.
357 ///
358 /// For **Dyn Bound** cases, pass responsibility to
359 /// `resolve_lifetime` code.
360 ///
361 /// For **Deprecated** cases, report an error.
362 CreateParameter,
363
364 /// Give a hard error when either `&` or `'_` is written. Used to
365 /// rule out things like `where T: Foo<'_>`. Does not imply an
366 /// error on default object bounds (e.g., `Box<dyn Foo>`).
367 ReportError,
368
369 /// Pass responsibility to `resolve_lifetime` code for all cases.
370 PassThrough,
371 }
372
373 struct ImplTraitTypeIdVisitor<'a> {
374 ids: &'a mut SmallVec<[NodeId; 1]>,
375 }
376
377 impl Visitor<'_> for ImplTraitTypeIdVisitor<'_> {
378 fn visit_ty(&mut self, ty: &Ty) {
379 match ty.kind {
380 TyKind::Typeof(_) | TyKind::BareFn(_) => return,
381
382 TyKind::ImplTrait(id, _) => self.ids.push(id),
383 _ => {}
384 }
385 visit::walk_ty(self, ty);
386 }
387
388 fn visit_path_segment(&mut self, path_span: Span, path_segment: &PathSegment) {
389 if let Some(ref p) = path_segment.args {
390 if let GenericArgs::Parenthesized(_) = **p {
391 return;
392 }
393 }
394 visit::walk_path_segment(self, path_span, path_segment)
395 }
396 }
397
398 impl<'a, 'hir> LoweringContext<'a, 'hir> {
399 fn lower_crate(mut self, c: &Crate) -> hir::Crate<'hir> {
400 /// Full-crate AST visitor that inserts into a fresh
401 /// `LoweringContext` any information that may be
402 /// needed from arbitrary locations in the crate,
403 /// e.g., the number of lifetime generic parameters
404 /// declared for every type and trait definition.
405 struct MiscCollector<'tcx, 'lowering, 'hir> {
406 lctx: &'tcx mut LoweringContext<'lowering, 'hir>,
407 hir_id_owner: Option<NodeId>,
408 }
409
410 impl MiscCollector<'_, '_, '_> {
411 fn allocate_use_tree_hir_id_counters(&mut self, tree: &UseTree, owner: LocalDefId) {
412 match tree.kind {
413 UseTreeKind::Simple(_, id1, id2) => {
414 for &id in &[id1, id2] {
415 self.lctx.resolver.definitions().create_def_with_parent(
416 owner,
417 id,
418 DefPathData::Misc,
419 ExpnId::root(),
420 tree.prefix.span,
421 );
422 self.lctx.allocate_hir_id_counter(id);
423 }
424 }
425 UseTreeKind::Glob => (),
426 UseTreeKind::Nested(ref trees) => {
427 for &(ref use_tree, id) in trees {
428 let hir_id = self.lctx.allocate_hir_id_counter(id);
429 self.allocate_use_tree_hir_id_counters(use_tree, hir_id.owner);
430 }
431 }
432 }
433 }
434
435 fn with_hir_id_owner<T>(
436 &mut self,
437 owner: Option<NodeId>,
438 f: impl FnOnce(&mut Self) -> T,
439 ) -> T {
440 let old = mem::replace(&mut self.hir_id_owner, owner);
441 let r = f(self);
442 self.hir_id_owner = old;
443 r
444 }
445 }
446
447 impl<'tcx> Visitor<'tcx> for MiscCollector<'tcx, '_, '_> {
448 fn visit_pat(&mut self, p: &'tcx Pat) {
449 if let PatKind::Paren(..) | PatKind::Rest = p.kind {
450 // Doesn't generate a HIR node
451 } else if let Some(owner) = self.hir_id_owner {
452 self.lctx.lower_node_id_with_owner(p.id, owner);
453 }
454
455 visit::walk_pat(self, p)
456 }
457
458 fn visit_item(&mut self, item: &'tcx Item) {
459 let hir_id = self.lctx.allocate_hir_id_counter(item.id);
460
461 match item.kind {
462 ItemKind::Struct(_, ref generics)
463 | ItemKind::Union(_, ref generics)
464 | ItemKind::Enum(_, ref generics)
465 | ItemKind::TyAlias(_, ref generics, ..)
466 | ItemKind::Trait(_, _, ref generics, ..) => {
467 let def_id = self.lctx.resolver.definitions().local_def_id(item.id);
468 let count = generics
469 .params
470 .iter()
471 .filter(|param| match param.kind {
472 ast::GenericParamKind::Lifetime { .. } => true,
473 _ => false,
474 })
475 .count();
476 self.lctx.type_def_lifetime_params.insert(def_id.to_def_id(), count);
477 }
478 ItemKind::Use(ref use_tree) => {
479 self.allocate_use_tree_hir_id_counters(use_tree, hir_id.owner);
480 }
481 _ => {}
482 }
483
484 self.with_hir_id_owner(Some(item.id), |this| {
485 visit::walk_item(this, item);
486 });
487 }
488
489 fn visit_assoc_item(&mut self, item: &'tcx AssocItem, ctxt: AssocCtxt) {
490 self.lctx.allocate_hir_id_counter(item.id);
491 let owner = match (&item.kind, ctxt) {
492 // Ignore patterns in trait methods without bodies.
493 (AssocItemKind::Fn(_, _, _, None), AssocCtxt::Trait) => None,
494 _ => Some(item.id),
495 };
496 self.with_hir_id_owner(owner, |this| visit::walk_assoc_item(this, item, ctxt));
497 }
498
499 fn visit_foreign_item(&mut self, i: &'tcx ForeignItem) {
500 // Ignore patterns in foreign items
501 self.with_hir_id_owner(None, |this| visit::walk_foreign_item(this, i));
502 }
503
504 fn visit_ty(&mut self, t: &'tcx Ty) {
505 match t.kind {
506 // Mirrors the case in visit::walk_ty
507 TyKind::BareFn(ref f) => {
508 walk_list!(self, visit_generic_param, &f.generic_params);
509 // Mirrors visit::walk_fn_decl
510 for parameter in &f.decl.inputs {
511 // We don't lower the ids of argument patterns
512 self.with_hir_id_owner(None, |this| {
513 this.visit_pat(&parameter.pat);
514 });
515 self.visit_ty(&parameter.ty)
516 }
517 self.visit_fn_ret_ty(&f.decl.output)
518 }
519 _ => visit::walk_ty(self, t),
520 }
521 }
522 }
523
524 self.lower_node_id(CRATE_NODE_ID);
525 debug_assert!(self.node_id_to_hir_id[CRATE_NODE_ID] == Some(hir::CRATE_HIR_ID));
526
527 visit::walk_crate(&mut MiscCollector { lctx: &mut self, hir_id_owner: None }, c);
528 visit::walk_crate(&mut item::ItemLowerer { lctx: &mut self }, c);
529
530 let module = self.lower_mod(&c.module);
531 let attrs = self.lower_attrs(&c.attrs);
532 let body_ids = body_ids(&self.bodies);
533 let proc_macros =
534 c.proc_macros.iter().map(|id| self.node_id_to_hir_id[*id].unwrap()).collect();
535
536 self.resolver.definitions().init_node_id_to_hir_id_mapping(self.node_id_to_hir_id);
537
538 hir::Crate {
539 item: hir::CrateItem { module, attrs, span: c.span },
540 exported_macros: self.arena.alloc_from_iter(self.exported_macros),
541 non_exported_macro_attrs: self.arena.alloc_from_iter(self.non_exported_macro_attrs),
542 items: self.items,
543 trait_items: self.trait_items,
544 impl_items: self.impl_items,
545 bodies: self.bodies,
546 body_ids,
547 trait_impls: self.trait_impls,
548 modules: self.modules,
549 proc_macros,
550 }
551 }
552
553 fn insert_item(&mut self, item: hir::Item<'hir>) {
554 let id = item.hir_id;
555 // FIXME: Use `debug_asset-rt`.
556 assert_eq!(id.local_id, hir::ItemLocalId::from_u32(0));
557 self.items.insert(id, item);
558 self.modules.get_mut(&self.current_module).unwrap().items.insert(id);
559 }
560
561 fn allocate_hir_id_counter(&mut self, owner: NodeId) -> hir::HirId {
562 // Set up the counter if needed.
563 self.item_local_id_counters.entry(owner).or_insert(0);
564 // Always allocate the first `HirId` for the owner itself.
565 let lowered = self.lower_node_id_with_owner(owner, owner);
566 debug_assert_eq!(lowered.local_id.as_u32(), 0);
567 lowered
568 }
569
570 fn lower_node_id_generic(
571 &mut self,
572 ast_node_id: NodeId,
573 alloc_hir_id: impl FnOnce(&mut Self) -> hir::HirId,
574 ) -> hir::HirId {
575 assert_ne!(ast_node_id, DUMMY_NODE_ID);
576
577 let min_size = ast_node_id.as_usize() + 1;
578
579 if min_size > self.node_id_to_hir_id.len() {
580 self.node_id_to_hir_id.resize(min_size, None);
581 }
582
583 if let Some(existing_hir_id) = self.node_id_to_hir_id[ast_node_id] {
584 existing_hir_id
585 } else {
586 // Generate a new `HirId`.
587 let hir_id = alloc_hir_id(self);
588 self.node_id_to_hir_id[ast_node_id] = Some(hir_id);
589
590 hir_id
591 }
592 }
593
594 fn with_hir_id_owner<T>(&mut self, owner: NodeId, f: impl FnOnce(&mut Self) -> T) -> T {
595 let counter = self
596 .item_local_id_counters
597 .insert(owner, HIR_ID_COUNTER_LOCKED)
598 .unwrap_or_else(|| panic!("no `item_local_id_counters` entry for {:?}", owner));
599 let def_id = self.resolver.definitions().local_def_id(owner);
600 self.current_hir_id_owner.push((def_id, counter));
601 let ret = f(self);
602 let (new_def_id, new_counter) = self.current_hir_id_owner.pop().unwrap();
603
604 debug_assert!(def_id == new_def_id);
605 debug_assert!(new_counter >= counter);
606
607 let prev = self.item_local_id_counters.insert(owner, new_counter).unwrap();
608 debug_assert!(prev == HIR_ID_COUNTER_LOCKED);
609 ret
610 }
611
612 /// This method allocates a new `HirId` for the given `NodeId` and stores it in
613 /// the `LoweringContext`'s `NodeId => HirId` map.
614 /// Take care not to call this method if the resulting `HirId` is then not
615 /// actually used in the HIR, as that would trigger an assertion in the
616 /// `HirIdValidator` later on, which makes sure that all `NodeId`s got mapped
617 /// properly. Calling the method twice with the same `NodeId` is fine though.
618 fn lower_node_id(&mut self, ast_node_id: NodeId) -> hir::HirId {
619 self.lower_node_id_generic(ast_node_id, |this| {
620 let &mut (owner, ref mut local_id_counter) =
621 this.current_hir_id_owner.last_mut().unwrap();
622 let local_id = *local_id_counter;
623 *local_id_counter += 1;
624 hir::HirId { owner, local_id: hir::ItemLocalId::from_u32(local_id) }
625 })
626 }
627
628 fn lower_node_id_with_owner(&mut self, ast_node_id: NodeId, owner: NodeId) -> hir::HirId {
629 self.lower_node_id_generic(ast_node_id, |this| {
630 let local_id_counter = this
631 .item_local_id_counters
632 .get_mut(&owner)
633 .expect("called `lower_node_id_with_owner` before `allocate_hir_id_counter`");
634 let local_id = *local_id_counter;
635
636 // We want to be sure not to modify the counter in the map while it
637 // is also on the stack. Otherwise we'll get lost updates when writing
638 // back from the stack to the map.
639 debug_assert!(local_id != HIR_ID_COUNTER_LOCKED);
640
641 *local_id_counter += 1;
642 let owner = this.resolver.definitions().opt_local_def_id(owner).expect(
643 "you forgot to call `create_def_with_parent` or are lowering node-IDs \
644 that do not belong to the current owner",
645 );
646
647 hir::HirId { owner, local_id: hir::ItemLocalId::from_u32(local_id) }
648 })
649 }
650
651 fn next_id(&mut self) -> hir::HirId {
652 let node_id = self.resolver.next_node_id();
653 self.lower_node_id(node_id)
654 }
655
656 fn lower_res(&mut self, res: Res<NodeId>) -> Res {
657 res.map_id(|id| {
658 self.lower_node_id_generic(id, |_| {
659 panic!("expected `NodeId` to be lowered already for res {:#?}", res);
660 })
661 })
662 }
663
664 fn expect_full_res(&mut self, id: NodeId) -> Res<NodeId> {
665 self.resolver.get_partial_res(id).map_or(Res::Err, |pr| {
666 if pr.unresolved_segments() != 0 {
667 panic!("path not fully resolved: {:?}", pr);
668 }
669 pr.base_res()
670 })
671 }
672
673 fn expect_full_res_from_use(&mut self, id: NodeId) -> impl Iterator<Item = Res<NodeId>> {
674 self.resolver.get_import_res(id).present_items()
675 }
676
677 fn diagnostic(&self) -> &rustc_errors::Handler {
678 self.sess.diagnostic()
679 }
680
681 /// Reuses the span but adds information like the kind of the desugaring and features that are
682 /// allowed inside this span.
683 fn mark_span_with_reason(
684 &self,
685 reason: DesugaringKind,
686 span: Span,
687 allow_internal_unstable: Option<Lrc<[Symbol]>>,
688 ) -> Span {
689 span.fresh_expansion(ExpnData {
690 allow_internal_unstable,
691 ..ExpnData::default(ExpnKind::Desugaring(reason), span, self.sess.edition(), None)
692 })
693 }
694
695 fn with_anonymous_lifetime_mode<R>(
696 &mut self,
697 anonymous_lifetime_mode: AnonymousLifetimeMode,
698 op: impl FnOnce(&mut Self) -> R,
699 ) -> R {
700 debug!(
701 "with_anonymous_lifetime_mode(anonymous_lifetime_mode={:?})",
702 anonymous_lifetime_mode,
703 );
704 let old_anonymous_lifetime_mode = self.anonymous_lifetime_mode;
705 self.anonymous_lifetime_mode = anonymous_lifetime_mode;
706 let result = op(self);
707 self.anonymous_lifetime_mode = old_anonymous_lifetime_mode;
708 debug!(
709 "with_anonymous_lifetime_mode: restoring anonymous_lifetime_mode={:?}",
710 old_anonymous_lifetime_mode
711 );
712 result
713 }
714
715 /// Creates a new `hir::GenericParam` for every new lifetime and
716 /// type parameter encountered while evaluating `f`. Definitions
717 /// are created with the parent provided. If no `parent_id` is
718 /// provided, no definitions will be returned.
719 ///
720 /// Presuming that in-band lifetimes are enabled, then
721 /// `self.anonymous_lifetime_mode` will be updated to match the
722 /// parameter while `f` is running (and restored afterwards).
723 fn collect_in_band_defs<T>(
724 &mut self,
725 parent_def_id: LocalDefId,
726 anonymous_lifetime_mode: AnonymousLifetimeMode,
727 f: impl FnOnce(&mut Self) -> (Vec<hir::GenericParam<'hir>>, T),
728 ) -> (Vec<hir::GenericParam<'hir>>, T) {
729 assert!(!self.is_collecting_in_band_lifetimes);
730 assert!(self.lifetimes_to_define.is_empty());
731 let old_anonymous_lifetime_mode = self.anonymous_lifetime_mode;
732
733 self.anonymous_lifetime_mode = anonymous_lifetime_mode;
734 self.is_collecting_in_band_lifetimes = true;
735
736 let (in_band_ty_params, res) = f(self);
737
738 self.is_collecting_in_band_lifetimes = false;
739 self.anonymous_lifetime_mode = old_anonymous_lifetime_mode;
740
741 let lifetimes_to_define = self.lifetimes_to_define.split_off(0);
742
743 let params = lifetimes_to_define
744 .into_iter()
745 .map(|(span, hir_name)| self.lifetime_to_generic_param(span, hir_name, parent_def_id))
746 .chain(in_band_ty_params.into_iter())
747 .collect();
748
749 (params, res)
750 }
751
752 /// Converts a lifetime into a new generic parameter.
753 fn lifetime_to_generic_param(
754 &mut self,
755 span: Span,
756 hir_name: ParamName,
757 parent_def_id: LocalDefId,
758 ) -> hir::GenericParam<'hir> {
759 let node_id = self.resolver.next_node_id();
760
761 // Get the name we'll use to make the def-path. Note
762 // that collisions are ok here and this shouldn't
763 // really show up for end-user.
764 let (str_name, kind) = match hir_name {
765 ParamName::Plain(ident) => (ident.name, hir::LifetimeParamKind::InBand),
766 ParamName::Fresh(_) => (kw::UnderscoreLifetime, hir::LifetimeParamKind::Elided),
767 ParamName::Error => (kw::UnderscoreLifetime, hir::LifetimeParamKind::Error),
768 };
769
770 // Add a definition for the in-band lifetime def.
771 self.resolver.definitions().create_def_with_parent(
772 parent_def_id,
773 node_id,
774 DefPathData::LifetimeNs(str_name),
775 ExpnId::root(),
776 span,
777 );
778
779 hir::GenericParam {
780 hir_id: self.lower_node_id(node_id),
781 name: hir_name,
782 attrs: &[],
783 bounds: &[],
784 span,
785 pure_wrt_drop: false,
786 kind: hir::GenericParamKind::Lifetime { kind },
787 }
788 }
789
790 /// When there is a reference to some lifetime `'a`, and in-band
791 /// lifetimes are enabled, then we want to push that lifetime into
792 /// the vector of names to define later. In that case, it will get
793 /// added to the appropriate generics.
794 fn maybe_collect_in_band_lifetime(&mut self, ident: Ident) {
795 if !self.is_collecting_in_band_lifetimes {
796 return;
797 }
798
799 if !self.sess.features_untracked().in_band_lifetimes {
800 return;
801 }
802
803 if self.in_scope_lifetimes.contains(&ParamName::Plain(ident.normalize_to_macros_2_0())) {
804 return;
805 }
806
807 let hir_name = ParamName::Plain(ident);
808
809 if self.lifetimes_to_define.iter().any(|(_, lt_name)| {
810 lt_name.normalize_to_macros_2_0() == hir_name.normalize_to_macros_2_0()
811 }) {
812 return;
813 }
814
815 self.lifetimes_to_define.push((ident.span, hir_name));
816 }
817
818 /// When we have either an elided or `'_` lifetime in an impl
819 /// header, we convert it to an in-band lifetime.
820 fn collect_fresh_in_band_lifetime(&mut self, span: Span) -> ParamName {
821 assert!(self.is_collecting_in_band_lifetimes);
822 let index = self.lifetimes_to_define.len() + self.in_scope_lifetimes.len();
823 let hir_name = ParamName::Fresh(index);
824 self.lifetimes_to_define.push((span, hir_name));
825 hir_name
826 }
827
828 // Evaluates `f` with the lifetimes in `params` in-scope.
829 // This is used to track which lifetimes have already been defined, and
830 // which are new in-band lifetimes that need to have a definition created
831 // for them.
832 fn with_in_scope_lifetime_defs<T>(
833 &mut self,
834 params: &[GenericParam],
835 f: impl FnOnce(&mut Self) -> T,
836 ) -> T {
837 let old_len = self.in_scope_lifetimes.len();
838 let lt_def_names = params.iter().filter_map(|param| match param.kind {
839 GenericParamKind::Lifetime { .. } => {
840 Some(ParamName::Plain(param.ident.normalize_to_macros_2_0()))
841 }
842 _ => None,
843 });
844 self.in_scope_lifetimes.extend(lt_def_names);
845
846 let res = f(self);
847
848 self.in_scope_lifetimes.truncate(old_len);
849 res
850 }
851
852 /// Appends in-band lifetime defs and argument-position `impl
853 /// Trait` defs to the existing set of generics.
854 ///
855 /// Presuming that in-band lifetimes are enabled, then
856 /// `self.anonymous_lifetime_mode` will be updated to match the
857 /// parameter while `f` is running (and restored afterwards).
858 fn add_in_band_defs<T>(
859 &mut self,
860 generics: &Generics,
861 parent_def_id: LocalDefId,
862 anonymous_lifetime_mode: AnonymousLifetimeMode,
863 f: impl FnOnce(&mut Self, &mut Vec<hir::GenericParam<'hir>>) -> T,
864 ) -> (hir::Generics<'hir>, T) {
865 let (in_band_defs, (mut lowered_generics, res)) =
866 self.with_in_scope_lifetime_defs(&generics.params, |this| {
867 this.collect_in_band_defs(parent_def_id, anonymous_lifetime_mode, |this| {
868 let mut params = Vec::new();
869 // Note: it is necessary to lower generics *before* calling `f`.
870 // When lowering `async fn`, there's a final step when lowering
871 // the return type that assumes that all in-scope lifetimes have
872 // already been added to either `in_scope_lifetimes` or
873 // `lifetimes_to_define`. If we swapped the order of these two,
874 // in-band-lifetimes introduced by generics or where-clauses
875 // wouldn't have been added yet.
876 let generics =
877 this.lower_generics_mut(generics, ImplTraitContext::Universal(&mut params));
878 let res = f(this, &mut params);
879 (params, (generics, res))
880 })
881 });
882
883 let mut lowered_params: Vec<_> =
884 lowered_generics.params.into_iter().chain(in_band_defs).collect();
885
886 // FIXME(const_generics): the compiler doesn't always cope with
887 // unsorted generic parameters at the moment, so we make sure
888 // that they're ordered correctly here for now. (When we chain
889 // the `in_band_defs`, we might make the order unsorted.)
890 lowered_params.sort_by_key(|param| match param.kind {
891 hir::GenericParamKind::Lifetime { .. } => ParamKindOrd::Lifetime,
892 hir::GenericParamKind::Type { .. } => ParamKindOrd::Type,
893 hir::GenericParamKind::Const { .. } => ParamKindOrd::Const,
894 });
895
896 lowered_generics.params = lowered_params.into();
897
898 let lowered_generics = lowered_generics.into_generics(self.arena);
899 (lowered_generics, res)
900 }
901
902 fn with_dyn_type_scope<T>(&mut self, in_scope: bool, f: impl FnOnce(&mut Self) -> T) -> T {
903 let was_in_dyn_type = self.is_in_dyn_type;
904 self.is_in_dyn_type = in_scope;
905
906 let result = f(self);
907
908 self.is_in_dyn_type = was_in_dyn_type;
909
910 result
911 }
912
913 fn with_new_scopes<T>(&mut self, f: impl FnOnce(&mut Self) -> T) -> T {
914 let was_in_loop_condition = self.is_in_loop_condition;
915 self.is_in_loop_condition = false;
916
917 let catch_scopes = mem::take(&mut self.catch_scopes);
918 let loop_scopes = mem::take(&mut self.loop_scopes);
919 let ret = f(self);
920 self.catch_scopes = catch_scopes;
921 self.loop_scopes = loop_scopes;
922
923 self.is_in_loop_condition = was_in_loop_condition;
924
925 ret
926 }
927
928 fn lower_attrs(&mut self, attrs: &[Attribute]) -> &'hir [Attribute] {
929 self.arena.alloc_from_iter(attrs.iter().map(|a| self.lower_attr(a)))
930 }
931
932 fn lower_attr(&mut self, attr: &Attribute) -> Attribute {
933 // Note that we explicitly do not walk the path. Since we don't really
934 // lower attributes (we use the AST version) there is nowhere to keep
935 // the `HirId`s. We don't actually need HIR version of attributes anyway.
936 let kind = match attr.kind {
937 AttrKind::Normal(ref item) => AttrKind::Normal(AttrItem {
938 path: item.path.clone(),
939 args: self.lower_mac_args(&item.args),
940 }),
941 AttrKind::DocComment(comment) => AttrKind::DocComment(comment),
942 };
943
944 Attribute { kind, id: attr.id, style: attr.style, span: attr.span }
945 }
946
947 fn lower_mac_args(&mut self, args: &MacArgs) -> MacArgs {
948 match *args {
949 MacArgs::Empty => MacArgs::Empty,
950 MacArgs::Delimited(dspan, delim, ref tokens) => {
951 MacArgs::Delimited(dspan, delim, self.lower_token_stream(tokens.clone()))
952 }
953 MacArgs::Eq(eq_span, ref tokens) => {
954 MacArgs::Eq(eq_span, self.lower_token_stream(tokens.clone()))
955 }
956 }
957 }
958
959 fn lower_token_stream(&mut self, tokens: TokenStream) -> TokenStream {
960 tokens.into_trees().flat_map(|tree| self.lower_token_tree(tree).into_trees()).collect()
961 }
962
963 fn lower_token_tree(&mut self, tree: TokenTree) -> TokenStream {
964 match tree {
965 TokenTree::Token(token) => self.lower_token(token),
966 TokenTree::Delimited(span, delim, tts) => {
967 TokenTree::Delimited(span, delim, self.lower_token_stream(tts)).into()
968 }
969 }
970 }
971
972 fn lower_token(&mut self, token: Token) -> TokenStream {
973 match token.kind {
974 token::Interpolated(nt) => {
975 let tts = (self.nt_to_tokenstream)(&nt, &self.sess.parse_sess, token.span);
976 self.lower_token_stream(tts)
977 }
978 _ => TokenTree::Token(token).into(),
979 }
980 }
981
982 /// Given an associated type constraint like one of these:
983 ///
984 /// ```
985 /// T: Iterator<Item: Debug>
986 /// ^^^^^^^^^^^
987 /// T: Iterator<Item = Debug>
988 /// ^^^^^^^^^^^^
989 /// ```
990 ///
991 /// returns a `hir::TypeBinding` representing `Item`.
992 fn lower_assoc_ty_constraint(
993 &mut self,
994 constraint: &AssocTyConstraint,
995 itctx: ImplTraitContext<'_, 'hir>,
996 ) -> hir::TypeBinding<'hir> {
997 debug!("lower_assoc_ty_constraint(constraint={:?}, itctx={:?})", constraint, itctx);
998
999 let kind = match constraint.kind {
1000 AssocTyConstraintKind::Equality { ref ty } => {
1001 hir::TypeBindingKind::Equality { ty: self.lower_ty(ty, itctx) }
1002 }
1003 AssocTyConstraintKind::Bound { ref bounds } => {
1004 // Piggy-back on the `impl Trait` context to figure out the correct behavior.
1005 let (desugar_to_impl_trait, itctx) = match itctx {
1006 // We are in the return position:
1007 //
1008 // fn foo() -> impl Iterator<Item: Debug>
1009 //
1010 // so desugar to
1011 //
1012 // fn foo() -> impl Iterator<Item = impl Debug>
1013 ImplTraitContext::OpaqueTy(..) => (true, itctx),
1014
1015 // We are in the argument position, but within a dyn type:
1016 //
1017 // fn foo(x: dyn Iterator<Item: Debug>)
1018 //
1019 // so desugar to
1020 //
1021 // fn foo(x: dyn Iterator<Item = impl Debug>)
1022 ImplTraitContext::Universal(..) if self.is_in_dyn_type => (true, itctx),
1023
1024 // In `type Foo = dyn Iterator<Item: Debug>` we desugar to
1025 // `type Foo = dyn Iterator<Item = impl Debug>` but we have to override the
1026 // "impl trait context" to permit `impl Debug` in this position (it desugars
1027 // then to an opaque type).
1028 //
1029 // FIXME: this is only needed until `impl Trait` is allowed in type aliases.
1030 ImplTraitContext::Disallowed(_) if self.is_in_dyn_type => {
1031 (true, ImplTraitContext::OpaqueTy(None, hir::OpaqueTyOrigin::Misc))
1032 }
1033
1034 // We are in the parameter position, but not within a dyn type:
1035 //
1036 // fn foo(x: impl Iterator<Item: Debug>)
1037 //
1038 // so we leave it as is and this gets expanded in astconv to a bound like
1039 // `<T as Iterator>::Item: Debug` where `T` is the type parameter for the
1040 // `impl Iterator`.
1041 _ => (false, itctx),
1042 };
1043
1044 if desugar_to_impl_trait {
1045 // Desugar `AssocTy: Bounds` into `AssocTy = impl Bounds`. We do this by
1046 // constructing the HIR for `impl bounds...` and then lowering that.
1047
1048 let impl_trait_node_id = self.resolver.next_node_id();
1049 let parent_def_id = self.current_hir_id_owner.last().unwrap().0;
1050 self.resolver.definitions().create_def_with_parent(
1051 parent_def_id,
1052 impl_trait_node_id,
1053 DefPathData::ImplTrait,
1054 ExpnId::root(),
1055 constraint.span,
1056 );
1057
1058 self.with_dyn_type_scope(false, |this| {
1059 let node_id = this.resolver.next_node_id();
1060 let ty = this.lower_ty(
1061 &Ty {
1062 id: node_id,
1063 kind: TyKind::ImplTrait(impl_trait_node_id, bounds.clone()),
1064 span: constraint.span,
1065 },
1066 itctx,
1067 );
1068
1069 hir::TypeBindingKind::Equality { ty }
1070 })
1071 } else {
1072 // Desugar `AssocTy: Bounds` into a type binding where the
1073 // later desugars into a trait predicate.
1074 let bounds = self.lower_param_bounds(bounds, itctx);
1075
1076 hir::TypeBindingKind::Constraint { bounds }
1077 }
1078 }
1079 };
1080
1081 hir::TypeBinding {
1082 hir_id: self.lower_node_id(constraint.id),
1083 ident: constraint.ident,
1084 kind,
1085 span: constraint.span,
1086 }
1087 }
1088
1089 fn lower_generic_arg(
1090 &mut self,
1091 arg: &ast::GenericArg,
1092 itctx: ImplTraitContext<'_, 'hir>,
1093 ) -> hir::GenericArg<'hir> {
1094 match arg {
1095 ast::GenericArg::Lifetime(lt) => GenericArg::Lifetime(self.lower_lifetime(&lt)),
1096 ast::GenericArg::Type(ty) => {
1097 // We parse const arguments as path types as we cannot distinguish them during
1098 // parsing. We try to resolve that ambiguity by attempting resolution in both the
1099 // type and value namespaces. If we resolved the path in the value namespace, we
1100 // transform it into a generic const argument.
1101 if let TyKind::Path(ref qself, ref path) = ty.kind {
1102 if let Some(partial_res) = self.resolver.get_partial_res(ty.id) {
1103 let res = partial_res.base_res();
1104 if !res.matches_ns(Namespace::TypeNS) {
1105 debug!(
1106 "lower_generic_arg: Lowering type argument as const argument: {:?}",
1107 ty,
1108 );
1109
1110 // Construct a AnonConst where the expr is the "ty"'s path.
1111
1112 let parent_def_id = self.current_hir_id_owner.last().unwrap().0;
1113 let node_id = self.resolver.next_node_id();
1114
1115 // Add a definition for the in-band const def.
1116 self.resolver.definitions().create_def_with_parent(
1117 parent_def_id,
1118 node_id,
1119 DefPathData::AnonConst,
1120 ExpnId::root(),
1121 ty.span,
1122 );
1123
1124 let path_expr = Expr {
1125 id: ty.id,
1126 kind: ExprKind::Path(qself.clone(), path.clone()),
1127 span: ty.span,
1128 attrs: AttrVec::new(),
1129 tokens: None,
1130 };
1131
1132 let ct = self.with_new_scopes(|this| hir::AnonConst {
1133 hir_id: this.lower_node_id(node_id),
1134 body: this.lower_const_body(path_expr.span, Some(&path_expr)),
1135 });
1136 return GenericArg::Const(ConstArg { value: ct, span: ty.span });
1137 }
1138 }
1139 }
1140 GenericArg::Type(self.lower_ty_direct(&ty, itctx))
1141 }
1142 ast::GenericArg::Const(ct) => GenericArg::Const(ConstArg {
1143 value: self.lower_anon_const(&ct),
1144 span: ct.value.span,
1145 }),
1146 }
1147 }
1148
1149 fn lower_ty(&mut self, t: &Ty, itctx: ImplTraitContext<'_, 'hir>) -> &'hir hir::Ty<'hir> {
1150 self.arena.alloc(self.lower_ty_direct(t, itctx))
1151 }
1152
1153 fn lower_path_ty(
1154 &mut self,
1155 t: &Ty,
1156 qself: &Option<QSelf>,
1157 path: &Path,
1158 param_mode: ParamMode,
1159 itctx: ImplTraitContext<'_, 'hir>,
1160 ) -> hir::Ty<'hir> {
1161 let id = self.lower_node_id(t.id);
1162 let qpath = self.lower_qpath(t.id, qself, path, param_mode, itctx);
1163 let ty = self.ty_path(id, t.span, qpath);
1164 if let hir::TyKind::TraitObject(..) = ty.kind {
1165 self.maybe_lint_bare_trait(t.span, t.id, qself.is_none() && path.is_global());
1166 }
1167 ty
1168 }
1169
1170 fn ty(&mut self, span: Span, kind: hir::TyKind<'hir>) -> hir::Ty<'hir> {
1171 hir::Ty { hir_id: self.next_id(), kind, span }
1172 }
1173
1174 fn ty_tup(&mut self, span: Span, tys: &'hir [hir::Ty<'hir>]) -> hir::Ty<'hir> {
1175 self.ty(span, hir::TyKind::Tup(tys))
1176 }
1177
1178 fn lower_ty_direct(&mut self, t: &Ty, mut itctx: ImplTraitContext<'_, 'hir>) -> hir::Ty<'hir> {
1179 let kind = match t.kind {
1180 TyKind::Infer => hir::TyKind::Infer,
1181 TyKind::Err => hir::TyKind::Err,
1182 TyKind::Slice(ref ty) => hir::TyKind::Slice(self.lower_ty(ty, itctx)),
1183 TyKind::Ptr(ref mt) => hir::TyKind::Ptr(self.lower_mt(mt, itctx)),
1184 TyKind::Rptr(ref region, ref mt) => {
1185 let span = self.sess.source_map().next_point(t.span.shrink_to_lo());
1186 let lifetime = match *region {
1187 Some(ref lt) => self.lower_lifetime(lt),
1188 None => self.elided_ref_lifetime(span),
1189 };
1190 hir::TyKind::Rptr(lifetime, self.lower_mt(mt, itctx))
1191 }
1192 TyKind::BareFn(ref f) => self.with_in_scope_lifetime_defs(&f.generic_params, |this| {
1193 this.with_anonymous_lifetime_mode(AnonymousLifetimeMode::PassThrough, |this| {
1194 hir::TyKind::BareFn(this.arena.alloc(hir::BareFnTy {
1195 generic_params: this.lower_generic_params(
1196 &f.generic_params,
1197 &NodeMap::default(),
1198 ImplTraitContext::disallowed(),
1199 ),
1200 unsafety: this.lower_unsafety(f.unsafety),
1201 abi: this.lower_extern(f.ext),
1202 decl: this.lower_fn_decl(&f.decl, None, false, None),
1203 param_names: this.lower_fn_params_to_names(&f.decl),
1204 }))
1205 })
1206 }),
1207 TyKind::Never => hir::TyKind::Never,
1208 TyKind::Tup(ref tys) => {
1209 hir::TyKind::Tup(self.arena.alloc_from_iter(
1210 tys.iter().map(|ty| self.lower_ty_direct(ty, itctx.reborrow())),
1211 ))
1212 }
1213 TyKind::Paren(ref ty) => {
1214 return self.lower_ty_direct(ty, itctx);
1215 }
1216 TyKind::Path(ref qself, ref path) => {
1217 return self.lower_path_ty(t, qself, path, ParamMode::Explicit, itctx);
1218 }
1219 TyKind::ImplicitSelf => {
1220 let res = self.expect_full_res(t.id);
1221 let res = self.lower_res(res);
1222 hir::TyKind::Path(hir::QPath::Resolved(
1223 None,
1224 self.arena.alloc(hir::Path {
1225 res,
1226 segments: arena_vec![self; hir::PathSegment::from_ident(
1227 Ident::with_dummy_span(kw::SelfUpper)
1228 )],
1229 span: t.span,
1230 }),
1231 ))
1232 }
1233 TyKind::Array(ref ty, ref length) => {
1234 hir::TyKind::Array(self.lower_ty(ty, itctx), self.lower_anon_const(length))
1235 }
1236 TyKind::Typeof(ref expr) => hir::TyKind::Typeof(self.lower_anon_const(expr)),
1237 TyKind::TraitObject(ref bounds, kind) => {
1238 let mut lifetime_bound = None;
1239 let (bounds, lifetime_bound) = self.with_dyn_type_scope(true, |this| {
1240 let bounds =
1241 this.arena.alloc_from_iter(bounds.iter().filter_map(
1242 |bound| match *bound {
1243 GenericBound::Trait(
1244 ref ty,
1245 TraitBoundModifier::None | TraitBoundModifier::MaybeConst,
1246 ) => Some(this.lower_poly_trait_ref(ty, itctx.reborrow())),
1247 // `?const ?Bound` will cause an error during AST validation
1248 // anyways, so treat it like `?Bound` as compilation proceeds.
1249 GenericBound::Trait(
1250 _,
1251 TraitBoundModifier::Maybe | TraitBoundModifier::MaybeConstMaybe,
1252 ) => None,
1253 GenericBound::Outlives(ref lifetime) => {
1254 if lifetime_bound.is_none() {
1255 lifetime_bound = Some(this.lower_lifetime(lifetime));
1256 }
1257 None
1258 }
1259 },
1260 ));
1261 let lifetime_bound =
1262 lifetime_bound.unwrap_or_else(|| this.elided_dyn_bound(t.span));
1263 (bounds, lifetime_bound)
1264 });
1265 if kind != TraitObjectSyntax::Dyn {
1266 self.maybe_lint_bare_trait(t.span, t.id, false);
1267 }
1268 hir::TyKind::TraitObject(bounds, lifetime_bound)
1269 }
1270 TyKind::ImplTrait(def_node_id, ref bounds) => {
1271 let span = t.span;
1272 match itctx {
1273 ImplTraitContext::OpaqueTy(fn_def_id, origin) => {
1274 self.lower_opaque_impl_trait(span, fn_def_id, origin, def_node_id, |this| {
1275 this.lower_param_bounds(bounds, itctx)
1276 })
1277 }
1278 ImplTraitContext::Universal(in_band_ty_params) => {
1279 // Add a definition for the in-band `Param`.
1280 let def_id = self.resolver.definitions().local_def_id(def_node_id);
1281
1282 let hir_bounds = self.lower_param_bounds(
1283 bounds,
1284 ImplTraitContext::Universal(in_band_ty_params),
1285 );
1286 // Set the name to `impl Bound1 + Bound2`.
1287 let ident = Ident::from_str_and_span(&pprust::ty_to_string(t), span);
1288 in_band_ty_params.push(hir::GenericParam {
1289 hir_id: self.lower_node_id(def_node_id),
1290 name: ParamName::Plain(ident),
1291 pure_wrt_drop: false,
1292 attrs: &[],
1293 bounds: hir_bounds,
1294 span,
1295 kind: hir::GenericParamKind::Type {
1296 default: None,
1297 synthetic: Some(hir::SyntheticTyParamKind::ImplTrait),
1298 },
1299 });
1300
1301 hir::TyKind::Path(hir::QPath::Resolved(
1302 None,
1303 self.arena.alloc(hir::Path {
1304 span,
1305 res: Res::Def(DefKind::TyParam, def_id.to_def_id()),
1306 segments: arena_vec![self; hir::PathSegment::from_ident(ident)],
1307 }),
1308 ))
1309 }
1310 ImplTraitContext::Disallowed(pos) => {
1311 let allowed_in = if self.sess.features_untracked().impl_trait_in_bindings {
1312 "bindings or function and inherent method return types"
1313 } else {
1314 "function and inherent method return types"
1315 };
1316 let mut err = struct_span_err!(
1317 self.sess,
1318 t.span,
1319 E0562,
1320 "`impl Trait` not allowed outside of {}",
1321 allowed_in,
1322 );
1323 if pos == ImplTraitPosition::Binding && nightly_options::is_nightly_build()
1324 {
1325 err.help(
1326 "add `#![feature(impl_trait_in_bindings)]` to the crate \
1327 attributes to enable",
1328 );
1329 }
1330 err.emit();
1331 hir::TyKind::Err
1332 }
1333 }
1334 }
1335 TyKind::MacCall(_) => panic!("`TyKind::MacCall` should have been expanded by now"),
1336 TyKind::CVarArgs => {
1337 self.sess.delay_span_bug(
1338 t.span,
1339 "`TyKind::CVarArgs` should have been handled elsewhere",
1340 );
1341 hir::TyKind::Err
1342 }
1343 };
1344
1345 hir::Ty { kind, span: t.span, hir_id: self.lower_node_id(t.id) }
1346 }
1347
1348 fn lower_opaque_impl_trait(
1349 &mut self,
1350 span: Span,
1351 fn_def_id: Option<DefId>,
1352 origin: hir::OpaqueTyOrigin,
1353 opaque_ty_node_id: NodeId,
1354 lower_bounds: impl FnOnce(&mut Self) -> hir::GenericBounds<'hir>,
1355 ) -> hir::TyKind<'hir> {
1356 debug!(
1357 "lower_opaque_impl_trait(fn_def_id={:?}, opaque_ty_node_id={:?}, span={:?})",
1358 fn_def_id, opaque_ty_node_id, span,
1359 );
1360
1361 // Make sure we know that some funky desugaring has been going on here.
1362 // This is a first: there is code in other places like for loop
1363 // desugaring that explicitly states that we don't want to track that.
1364 // Not tracking it makes lints in rustc and clippy very fragile, as
1365 // frequently opened issues show.
1366 let opaque_ty_span = self.mark_span_with_reason(DesugaringKind::OpaqueTy, span, None);
1367
1368 let opaque_ty_def_id = self.resolver.definitions().local_def_id(opaque_ty_node_id);
1369
1370 self.allocate_hir_id_counter(opaque_ty_node_id);
1371
1372 let hir_bounds = self.with_hir_id_owner(opaque_ty_node_id, lower_bounds);
1373
1374 let (lifetimes, lifetime_defs) =
1375 self.lifetimes_from_impl_trait_bounds(opaque_ty_node_id, opaque_ty_def_id, &hir_bounds);
1376
1377 debug!("lower_opaque_impl_trait: lifetimes={:#?}", lifetimes,);
1378
1379 debug!("lower_opaque_impl_trait: lifetime_defs={:#?}", lifetime_defs,);
1380
1381 self.with_hir_id_owner(opaque_ty_node_id, move |lctx| {
1382 let opaque_ty_item = hir::OpaqueTy {
1383 generics: hir::Generics {
1384 params: lifetime_defs,
1385 where_clause: hir::WhereClause { predicates: &[], span },
1386 span,
1387 },
1388 bounds: hir_bounds,
1389 impl_trait_fn: fn_def_id,
1390 origin,
1391 };
1392
1393 trace!("lower_opaque_impl_trait: {:#?}", opaque_ty_def_id);
1394 let opaque_ty_id =
1395 lctx.generate_opaque_type(opaque_ty_node_id, opaque_ty_item, span, opaque_ty_span);
1396
1397 // `impl Trait` now just becomes `Foo<'a, 'b, ..>`.
1398 hir::TyKind::Def(hir::ItemId { id: opaque_ty_id }, lifetimes)
1399 })
1400 }
1401
1402 /// Registers a new opaque type with the proper `NodeId`s and
1403 /// returns the lowered node-ID for the opaque type.
1404 fn generate_opaque_type(
1405 &mut self,
1406 opaque_ty_node_id: NodeId,
1407 opaque_ty_item: hir::OpaqueTy<'hir>,
1408 span: Span,
1409 opaque_ty_span: Span,
1410 ) -> hir::HirId {
1411 let opaque_ty_item_kind = hir::ItemKind::OpaqueTy(opaque_ty_item);
1412 let opaque_ty_id = self.lower_node_id(opaque_ty_node_id);
1413 // Generate an `type Foo = impl Trait;` declaration.
1414 trace!("registering opaque type with id {:#?}", opaque_ty_id);
1415 let opaque_ty_item = hir::Item {
1416 hir_id: opaque_ty_id,
1417 ident: Ident::invalid(),
1418 attrs: Default::default(),
1419 kind: opaque_ty_item_kind,
1420 vis: respan(span.shrink_to_lo(), hir::VisibilityKind::Inherited),
1421 span: opaque_ty_span,
1422 };
1423
1424 // Insert the item into the global item list. This usually happens
1425 // automatically for all AST items. But this opaque type item
1426 // does not actually exist in the AST.
1427 self.insert_item(opaque_ty_item);
1428 opaque_ty_id
1429 }
1430
1431 fn lifetimes_from_impl_trait_bounds(
1432 &mut self,
1433 opaque_ty_id: NodeId,
1434 parent_def_id: LocalDefId,
1435 bounds: hir::GenericBounds<'hir>,
1436 ) -> (&'hir [hir::GenericArg<'hir>], &'hir [hir::GenericParam<'hir>]) {
1437 debug!(
1438 "lifetimes_from_impl_trait_bounds(opaque_ty_id={:?}, \
1439 parent_def_id={:?}, \
1440 bounds={:#?})",
1441 opaque_ty_id, parent_def_id, bounds,
1442 );
1443
1444 // This visitor walks over `impl Trait` bounds and creates defs for all lifetimes that
1445 // appear in the bounds, excluding lifetimes that are created within the bounds.
1446 // E.g., `'a`, `'b`, but not `'c` in `impl for<'c> SomeTrait<'a, 'b, 'c>`.
1447 struct ImplTraitLifetimeCollector<'r, 'a, 'hir> {
1448 context: &'r mut LoweringContext<'a, 'hir>,
1449 parent: LocalDefId,
1450 opaque_ty_id: NodeId,
1451 collect_elided_lifetimes: bool,
1452 currently_bound_lifetimes: Vec<hir::LifetimeName>,
1453 already_defined_lifetimes: FxHashSet<hir::LifetimeName>,
1454 output_lifetimes: Vec<hir::GenericArg<'hir>>,
1455 output_lifetime_params: Vec<hir::GenericParam<'hir>>,
1456 }
1457
1458 impl<'r, 'a, 'v, 'hir> intravisit::Visitor<'v> for ImplTraitLifetimeCollector<'r, 'a, 'hir> {
1459 type Map = intravisit::ErasedMap<'v>;
1460
1461 fn nested_visit_map(&mut self) -> intravisit::NestedVisitorMap<Self::Map> {
1462 intravisit::NestedVisitorMap::None
1463 }
1464
1465 fn visit_generic_args(&mut self, span: Span, parameters: &'v hir::GenericArgs<'v>) {
1466 // Don't collect elided lifetimes used inside of `Fn()` syntax.
1467 if parameters.parenthesized {
1468 let old_collect_elided_lifetimes = self.collect_elided_lifetimes;
1469 self.collect_elided_lifetimes = false;
1470 intravisit::walk_generic_args(self, span, parameters);
1471 self.collect_elided_lifetimes = old_collect_elided_lifetimes;
1472 } else {
1473 intravisit::walk_generic_args(self, span, parameters);
1474 }
1475 }
1476
1477 fn visit_ty(&mut self, t: &'v hir::Ty<'v>) {
1478 // Don't collect elided lifetimes used inside of `fn()` syntax.
1479 if let hir::TyKind::BareFn(_) = t.kind {
1480 let old_collect_elided_lifetimes = self.collect_elided_lifetimes;
1481 self.collect_elided_lifetimes = false;
1482
1483 // Record the "stack height" of `for<'a>` lifetime bindings
1484 // to be able to later fully undo their introduction.
1485 let old_len = self.currently_bound_lifetimes.len();
1486 intravisit::walk_ty(self, t);
1487 self.currently_bound_lifetimes.truncate(old_len);
1488
1489 self.collect_elided_lifetimes = old_collect_elided_lifetimes;
1490 } else {
1491 intravisit::walk_ty(self, t)
1492 }
1493 }
1494
1495 fn visit_poly_trait_ref(
1496 &mut self,
1497 trait_ref: &'v hir::PolyTraitRef<'v>,
1498 modifier: hir::TraitBoundModifier,
1499 ) {
1500 // Record the "stack height" of `for<'a>` lifetime bindings
1501 // to be able to later fully undo their introduction.
1502 let old_len = self.currently_bound_lifetimes.len();
1503 intravisit::walk_poly_trait_ref(self, trait_ref, modifier);
1504 self.currently_bound_lifetimes.truncate(old_len);
1505 }
1506
1507 fn visit_generic_param(&mut self, param: &'v hir::GenericParam<'v>) {
1508 // Record the introduction of 'a in `for<'a> ...`.
1509 if let hir::GenericParamKind::Lifetime { .. } = param.kind {
1510 // Introduce lifetimes one at a time so that we can handle
1511 // cases like `fn foo<'d>() -> impl for<'a, 'b: 'a, 'c: 'b + 'd>`.
1512 let lt_name = hir::LifetimeName::Param(param.name);
1513 self.currently_bound_lifetimes.push(lt_name);
1514 }
1515
1516 intravisit::walk_generic_param(self, param);
1517 }
1518
1519 fn visit_lifetime(&mut self, lifetime: &'v hir::Lifetime) {
1520 let name = match lifetime.name {
1521 hir::LifetimeName::Implicit | hir::LifetimeName::Underscore => {
1522 if self.collect_elided_lifetimes {
1523 // Use `'_` for both implicit and underscore lifetimes in
1524 // `type Foo<'_> = impl SomeTrait<'_>;`.
1525 hir::LifetimeName::Underscore
1526 } else {
1527 return;
1528 }
1529 }
1530 hir::LifetimeName::Param(_) => lifetime.name,
1531
1532 // Refers to some other lifetime that is "in
1533 // scope" within the type.
1534 hir::LifetimeName::ImplicitObjectLifetimeDefault => return,
1535
1536 hir::LifetimeName::Error | hir::LifetimeName::Static => return,
1537 };
1538
1539 if !self.currently_bound_lifetimes.contains(&name)
1540 && !self.already_defined_lifetimes.contains(&name)
1541 {
1542 self.already_defined_lifetimes.insert(name);
1543
1544 self.output_lifetimes.push(hir::GenericArg::Lifetime(hir::Lifetime {
1545 hir_id: self.context.next_id(),
1546 span: lifetime.span,
1547 name,
1548 }));
1549
1550 let def_node_id = self.context.resolver.next_node_id();
1551 let hir_id =
1552 self.context.lower_node_id_with_owner(def_node_id, self.opaque_ty_id);
1553 self.context.resolver.definitions().create_def_with_parent(
1554 self.parent,
1555 def_node_id,
1556 DefPathData::LifetimeNs(name.ident().name),
1557 ExpnId::root(),
1558 lifetime.span,
1559 );
1560
1561 let (name, kind) = match name {
1562 hir::LifetimeName::Underscore => (
1563 hir::ParamName::Plain(Ident::with_dummy_span(kw::UnderscoreLifetime)),
1564 hir::LifetimeParamKind::Elided,
1565 ),
1566 hir::LifetimeName::Param(param_name) => {
1567 (param_name, hir::LifetimeParamKind::Explicit)
1568 }
1569 _ => panic!("expected `LifetimeName::Param` or `ParamName::Plain`"),
1570 };
1571
1572 self.output_lifetime_params.push(hir::GenericParam {
1573 hir_id,
1574 name,
1575 span: lifetime.span,
1576 pure_wrt_drop: false,
1577 attrs: &[],
1578 bounds: &[],
1579 kind: hir::GenericParamKind::Lifetime { kind },
1580 });
1581 }
1582 }
1583 }
1584
1585 let mut lifetime_collector = ImplTraitLifetimeCollector {
1586 context: self,
1587 parent: parent_def_id,
1588 opaque_ty_id,
1589 collect_elided_lifetimes: true,
1590 currently_bound_lifetimes: Vec::new(),
1591 already_defined_lifetimes: FxHashSet::default(),
1592 output_lifetimes: Vec::new(),
1593 output_lifetime_params: Vec::new(),
1594 };
1595
1596 for bound in bounds {
1597 intravisit::walk_param_bound(&mut lifetime_collector, &bound);
1598 }
1599
1600 let ImplTraitLifetimeCollector { output_lifetimes, output_lifetime_params, .. } =
1601 lifetime_collector;
1602
1603 (
1604 self.arena.alloc_from_iter(output_lifetimes),
1605 self.arena.alloc_from_iter(output_lifetime_params),
1606 )
1607 }
1608
1609 fn lower_local(&mut self, l: &Local) -> (hir::Local<'hir>, SmallVec<[NodeId; 1]>) {
1610 let mut ids = SmallVec::<[NodeId; 1]>::new();
1611 if self.sess.features_untracked().impl_trait_in_bindings {
1612 if let Some(ref ty) = l.ty {
1613 let mut visitor = ImplTraitTypeIdVisitor { ids: &mut ids };
1614 visitor.visit_ty(ty);
1615 }
1616 }
1617 let parent_def_id = self.current_hir_id_owner.last().unwrap().0;
1618 let ty = l.ty.as_ref().map(|t| {
1619 self.lower_ty(
1620 t,
1621 if self.sess.features_untracked().impl_trait_in_bindings {
1622 ImplTraitContext::OpaqueTy(
1623 Some(parent_def_id.to_def_id()),
1624 hir::OpaqueTyOrigin::Misc,
1625 )
1626 } else {
1627 ImplTraitContext::Disallowed(ImplTraitPosition::Binding)
1628 },
1629 )
1630 });
1631 let init = l.init.as_ref().map(|e| self.lower_expr(e));
1632 (
1633 hir::Local {
1634 hir_id: self.lower_node_id(l.id),
1635 ty,
1636 pat: self.lower_pat(&l.pat),
1637 init,
1638 span: l.span,
1639 attrs: l.attrs.clone(),
1640 source: hir::LocalSource::Normal,
1641 },
1642 ids,
1643 )
1644 }
1645
1646 fn lower_fn_params_to_names(&mut self, decl: &FnDecl) -> &'hir [Ident] {
1647 // Skip the `...` (`CVarArgs`) trailing arguments from the AST,
1648 // as they are not explicit in HIR/Ty function signatures.
1649 // (instead, the `c_variadic` flag is set to `true`)
1650 let mut inputs = &decl.inputs[..];
1651 if decl.c_variadic() {
1652 inputs = &inputs[..inputs.len() - 1];
1653 }
1654 self.arena.alloc_from_iter(inputs.iter().map(|param| match param.pat.kind {
1655 PatKind::Ident(_, ident, _) => ident,
1656 _ => Ident::new(kw::Invalid, param.pat.span),
1657 }))
1658 }
1659
1660 // Lowers a function declaration.
1661 //
1662 // `decl`: the unlowered (AST) function declaration.
1663 // `fn_def_id`: if `Some`, impl Trait arguments are lowered into generic parameters on the
1664 // given DefId, otherwise impl Trait is disallowed. Must be `Some` if
1665 // `make_ret_async` is also `Some`.
1666 // `impl_trait_return_allow`: determines whether `impl Trait` can be used in return position.
1667 // This guards against trait declarations and implementations where `impl Trait` is
1668 // disallowed.
1669 // `make_ret_async`: if `Some`, converts `-> T` into `-> impl Future<Output = T>` in the
1670 // return type. This is used for `async fn` declarations. The `NodeId` is the ID of the
1671 // return type `impl Trait` item.
1672 fn lower_fn_decl(
1673 &mut self,
1674 decl: &FnDecl,
1675 mut in_band_ty_params: Option<(DefId, &mut Vec<hir::GenericParam<'hir>>)>,
1676 impl_trait_return_allow: bool,
1677 make_ret_async: Option<NodeId>,
1678 ) -> &'hir hir::FnDecl<'hir> {
1679 debug!(
1680 "lower_fn_decl(\
1681 fn_decl: {:?}, \
1682 in_band_ty_params: {:?}, \
1683 impl_trait_return_allow: {}, \
1684 make_ret_async: {:?})",
1685 decl, in_band_ty_params, impl_trait_return_allow, make_ret_async,
1686 );
1687 let lt_mode = if make_ret_async.is_some() {
1688 // In `async fn`, argument-position elided lifetimes
1689 // must be transformed into fresh generic parameters so that
1690 // they can be applied to the opaque `impl Trait` return type.
1691 AnonymousLifetimeMode::CreateParameter
1692 } else {
1693 self.anonymous_lifetime_mode
1694 };
1695
1696 let c_variadic = decl.c_variadic();
1697
1698 // Remember how many lifetimes were already around so that we can
1699 // only look at the lifetime parameters introduced by the arguments.
1700 let inputs = self.with_anonymous_lifetime_mode(lt_mode, |this| {
1701 // Skip the `...` (`CVarArgs`) trailing arguments from the AST,
1702 // as they are not explicit in HIR/Ty function signatures.
1703 // (instead, the `c_variadic` flag is set to `true`)
1704 let mut inputs = &decl.inputs[..];
1705 if c_variadic {
1706 inputs = &inputs[..inputs.len() - 1];
1707 }
1708 this.arena.alloc_from_iter(inputs.iter().map(|param| {
1709 if let Some((_, ibty)) = &mut in_band_ty_params {
1710 this.lower_ty_direct(&param.ty, ImplTraitContext::Universal(ibty))
1711 } else {
1712 this.lower_ty_direct(&param.ty, ImplTraitContext::disallowed())
1713 }
1714 }))
1715 });
1716
1717 let output = if let Some(ret_id) = make_ret_async {
1718 self.lower_async_fn_ret_ty(
1719 &decl.output,
1720 in_band_ty_params.expect("`make_ret_async` but no `fn_def_id`").0,
1721 ret_id,
1722 )
1723 } else {
1724 match decl.output {
1725 FnRetTy::Ty(ref ty) => {
1726 let context = match in_band_ty_params {
1727 Some((def_id, _)) if impl_trait_return_allow => {
1728 ImplTraitContext::OpaqueTy(Some(def_id), hir::OpaqueTyOrigin::FnReturn)
1729 }
1730 _ => ImplTraitContext::disallowed(),
1731 };
1732 hir::FnRetTy::Return(self.lower_ty(ty, context))
1733 }
1734 FnRetTy::Default(span) => hir::FnRetTy::DefaultReturn(span),
1735 }
1736 };
1737
1738 self.arena.alloc(hir::FnDecl {
1739 inputs,
1740 output,
1741 c_variadic,
1742 implicit_self: decl.inputs.get(0).map_or(hir::ImplicitSelfKind::None, |arg| {
1743 let is_mutable_pat = match arg.pat.kind {
1744 PatKind::Ident(BindingMode::ByValue(mt) | BindingMode::ByRef(mt), _, _) => {
1745 mt == Mutability::Mut
1746 }
1747 _ => false,
1748 };
1749
1750 match arg.ty.kind {
1751 TyKind::ImplicitSelf if is_mutable_pat => hir::ImplicitSelfKind::Mut,
1752 TyKind::ImplicitSelf => hir::ImplicitSelfKind::Imm,
1753 // Given we are only considering `ImplicitSelf` types, we needn't consider
1754 // the case where we have a mutable pattern to a reference as that would
1755 // no longer be an `ImplicitSelf`.
1756 TyKind::Rptr(_, ref mt)
1757 if mt.ty.kind.is_implicit_self() && mt.mutbl == ast::Mutability::Mut =>
1758 {
1759 hir::ImplicitSelfKind::MutRef
1760 }
1761 TyKind::Rptr(_, ref mt) if mt.ty.kind.is_implicit_self() => {
1762 hir::ImplicitSelfKind::ImmRef
1763 }
1764 _ => hir::ImplicitSelfKind::None,
1765 }
1766 }),
1767 })
1768 }
1769
1770 // Transforms `-> T` for `async fn` into `-> OpaqueTy { .. }`
1771 // combined with the following definition of `OpaqueTy`:
1772 //
1773 // type OpaqueTy<generics_from_parent_fn> = impl Future<Output = T>;
1774 //
1775 // `inputs`: lowered types of parameters to the function (used to collect lifetimes)
1776 // `output`: unlowered output type (`T` in `-> T`)
1777 // `fn_def_id`: `DefId` of the parent function (used to create child impl trait definition)
1778 // `opaque_ty_node_id`: `NodeId` of the opaque `impl Trait` type that should be created
1779 // `elided_lt_replacement`: replacement for elided lifetimes in the return type
1780 fn lower_async_fn_ret_ty(
1781 &mut self,
1782 output: &FnRetTy,
1783 fn_def_id: DefId,
1784 opaque_ty_node_id: NodeId,
1785 ) -> hir::FnRetTy<'hir> {
1786 debug!(
1787 "lower_async_fn_ret_ty(\
1788 output={:?}, \
1789 fn_def_id={:?}, \
1790 opaque_ty_node_id={:?})",
1791 output, fn_def_id, opaque_ty_node_id,
1792 );
1793
1794 let span = output.span();
1795
1796 let opaque_ty_span = self.mark_span_with_reason(DesugaringKind::Async, span, None);
1797
1798 let opaque_ty_def_id = self.resolver.definitions().local_def_id(opaque_ty_node_id);
1799
1800 self.allocate_hir_id_counter(opaque_ty_node_id);
1801
1802 // When we create the opaque type for this async fn, it is going to have
1803 // to capture all the lifetimes involved in the signature (including in the
1804 // return type). This is done by introducing lifetime parameters for:
1805 //
1806 // - all the explicitly declared lifetimes from the impl and function itself;
1807 // - all the elided lifetimes in the fn arguments;
1808 // - all the elided lifetimes in the return type.
1809 //
1810 // So for example in this snippet:
1811 //
1812 // ```rust
1813 // impl<'a> Foo<'a> {
1814 // async fn bar<'b>(&self, x: &'b Vec<f64>, y: &str) -> &u32 {
1815 // // ^ '0 ^ '1 ^ '2
1816 // // elided lifetimes used below
1817 // }
1818 // }
1819 // ```
1820 //
1821 // we would create an opaque type like:
1822 //
1823 // ```
1824 // type Bar<'a, 'b, '0, '1, '2> = impl Future<Output = &'2 u32>;
1825 // ```
1826 //
1827 // and we would then desugar `bar` to the equivalent of:
1828 //
1829 // ```rust
1830 // impl<'a> Foo<'a> {
1831 // fn bar<'b, '0, '1>(&'0 self, x: &'b Vec<f64>, y: &'1 str) -> Bar<'a, 'b, '0, '1, '_>
1832 // }
1833 // ```
1834 //
1835 // Note that the final parameter to `Bar` is `'_`, not `'2` --
1836 // this is because the elided lifetimes from the return type
1837 // should be figured out using the ordinary elision rules, and
1838 // this desugaring achieves that.
1839 //
1840 // The variable `input_lifetimes_count` tracks the number of
1841 // lifetime parameters to the opaque type *not counting* those
1842 // lifetimes elided in the return type. This includes those
1843 // that are explicitly declared (`in_scope_lifetimes`) and
1844 // those elided lifetimes we found in the arguments (current
1845 // content of `lifetimes_to_define`). Next, we will process
1846 // the return type, which will cause `lifetimes_to_define` to
1847 // grow.
1848 let input_lifetimes_count = self.in_scope_lifetimes.len() + self.lifetimes_to_define.len();
1849
1850 let (opaque_ty_id, lifetime_params) = self.with_hir_id_owner(opaque_ty_node_id, |this| {
1851 // We have to be careful to get elision right here. The
1852 // idea is that we create a lifetime parameter for each
1853 // lifetime in the return type. So, given a return type
1854 // like `async fn foo(..) -> &[&u32]`, we lower to `impl
1855 // Future<Output = &'1 [ &'2 u32 ]>`.
1856 //
1857 // Then, we will create `fn foo(..) -> Foo<'_, '_>`, and
1858 // hence the elision takes place at the fn site.
1859 let future_bound = this
1860 .with_anonymous_lifetime_mode(AnonymousLifetimeMode::CreateParameter, |this| {
1861 this.lower_async_fn_output_type_to_future_bound(output, fn_def_id, span)
1862 });
1863
1864 debug!("lower_async_fn_ret_ty: future_bound={:#?}", future_bound);
1865
1866 // Calculate all the lifetimes that should be captured
1867 // by the opaque type. This should include all in-scope
1868 // lifetime parameters, including those defined in-band.
1869 //
1870 // Note: this must be done after lowering the output type,
1871 // as the output type may introduce new in-band lifetimes.
1872 let lifetime_params: Vec<(Span, ParamName)> = this
1873 .in_scope_lifetimes
1874 .iter()
1875 .cloned()
1876 .map(|name| (name.ident().span, name))
1877 .chain(this.lifetimes_to_define.iter().cloned())
1878 .collect();
1879
1880 debug!("lower_async_fn_ret_ty: in_scope_lifetimes={:#?}", this.in_scope_lifetimes);
1881 debug!("lower_async_fn_ret_ty: lifetimes_to_define={:#?}", this.lifetimes_to_define);
1882 debug!("lower_async_fn_ret_ty: lifetime_params={:#?}", lifetime_params);
1883
1884 let generic_params =
1885 this.arena.alloc_from_iter(lifetime_params.iter().map(|(span, hir_name)| {
1886 this.lifetime_to_generic_param(*span, *hir_name, opaque_ty_def_id)
1887 }));
1888
1889 let opaque_ty_item = hir::OpaqueTy {
1890 generics: hir::Generics {
1891 params: generic_params,
1892 where_clause: hir::WhereClause { predicates: &[], span },
1893 span,
1894 },
1895 bounds: arena_vec![this; future_bound],
1896 impl_trait_fn: Some(fn_def_id),
1897 origin: hir::OpaqueTyOrigin::AsyncFn,
1898 };
1899
1900 trace!("exist ty from async fn def id: {:#?}", opaque_ty_def_id);
1901 let opaque_ty_id =
1902 this.generate_opaque_type(opaque_ty_node_id, opaque_ty_item, span, opaque_ty_span);
1903
1904 (opaque_ty_id, lifetime_params)
1905 });
1906
1907 // As documented above on the variable
1908 // `input_lifetimes_count`, we need to create the lifetime
1909 // arguments to our opaque type. Continuing with our example,
1910 // we're creating the type arguments for the return type:
1911 //
1912 // ```
1913 // Bar<'a, 'b, '0, '1, '_>
1914 // ```
1915 //
1916 // For the "input" lifetime parameters, we wish to create
1917 // references to the parameters themselves, including the
1918 // "implicit" ones created from parameter types (`'a`, `'b`,
1919 // '`0`, `'1`).
1920 //
1921 // For the "output" lifetime parameters, we just want to
1922 // generate `'_`.
1923 let mut generic_args: Vec<_> = lifetime_params[..input_lifetimes_count]
1924 .iter()
1925 .map(|&(span, hir_name)| {
1926 // Input lifetime like `'a` or `'1`:
1927 GenericArg::Lifetime(hir::Lifetime {
1928 hir_id: self.next_id(),
1929 span,
1930 name: hir::LifetimeName::Param(hir_name),
1931 })
1932 })
1933 .collect();
1934 generic_args.extend(lifetime_params[input_lifetimes_count..].iter().map(|&(span, _)|
1935 // Output lifetime like `'_`.
1936 GenericArg::Lifetime(hir::Lifetime {
1937 hir_id: self.next_id(),
1938 span,
1939 name: hir::LifetimeName::Implicit,
1940 })));
1941 let generic_args = self.arena.alloc_from_iter(generic_args);
1942
1943 // Create the `Foo<...>` reference itself. Note that the `type
1944 // Foo = impl Trait` is, internally, created as a child of the
1945 // async fn, so the *type parameters* are inherited. It's
1946 // only the lifetime parameters that we must supply.
1947 let opaque_ty_ref = hir::TyKind::Def(hir::ItemId { id: opaque_ty_id }, generic_args);
1948 let opaque_ty = self.ty(opaque_ty_span, opaque_ty_ref);
1949 hir::FnRetTy::Return(self.arena.alloc(opaque_ty))
1950 }
1951
1952 /// Transforms `-> T` into `Future<Output = T>`
1953 fn lower_async_fn_output_type_to_future_bound(
1954 &mut self,
1955 output: &FnRetTy,
1956 fn_def_id: DefId,
1957 span: Span,
1958 ) -> hir::GenericBound<'hir> {
1959 // Compute the `T` in `Future<Output = T>` from the return type.
1960 let output_ty = match output {
1961 FnRetTy::Ty(ty) => {
1962 // Not `OpaqueTyOrigin::AsyncFn`: that's only used for the
1963 // `impl Future` opaque type that `async fn` implicitly
1964 // generates.
1965 let context =
1966 ImplTraitContext::OpaqueTy(Some(fn_def_id), hir::OpaqueTyOrigin::FnReturn);
1967 self.lower_ty(ty, context)
1968 }
1969 FnRetTy::Default(ret_ty_span) => self.arena.alloc(self.ty_tup(*ret_ty_span, &[])),
1970 };
1971
1972 // "<Output = T>"
1973 let future_params = self.arena.alloc(hir::GenericArgs {
1974 args: &[],
1975 bindings: arena_vec![self; self.output_ty_binding(span, output_ty)],
1976 parenthesized: false,
1977 });
1978
1979 // ::std::future::Future<future_params>
1980 let future_path =
1981 self.std_path(span, &[sym::future, sym::Future], Some(future_params), false);
1982
1983 hir::GenericBound::Trait(
1984 hir::PolyTraitRef {
1985 trait_ref: hir::TraitRef { path: future_path, hir_ref_id: self.next_id() },
1986 bound_generic_params: &[],
1987 span,
1988 },
1989 hir::TraitBoundModifier::None,
1990 )
1991 }
1992
1993 fn lower_param_bound(
1994 &mut self,
1995 tpb: &GenericBound,
1996 itctx: ImplTraitContext<'_, 'hir>,
1997 ) -> hir::GenericBound<'hir> {
1998 match *tpb {
1999 GenericBound::Trait(ref ty, modifier) => hir::GenericBound::Trait(
2000 self.lower_poly_trait_ref(ty, itctx),
2001 self.lower_trait_bound_modifier(modifier),
2002 ),
2003 GenericBound::Outlives(ref lifetime) => {
2004 hir::GenericBound::Outlives(self.lower_lifetime(lifetime))
2005 }
2006 }
2007 }
2008
2009 fn lower_lifetime(&mut self, l: &Lifetime) -> hir::Lifetime {
2010 let span = l.ident.span;
2011 match l.ident {
2012 ident if ident.name == kw::StaticLifetime => {
2013 self.new_named_lifetime(l.id, span, hir::LifetimeName::Static)
2014 }
2015 ident if ident.name == kw::UnderscoreLifetime => match self.anonymous_lifetime_mode {
2016 AnonymousLifetimeMode::CreateParameter => {
2017 let fresh_name = self.collect_fresh_in_band_lifetime(span);
2018 self.new_named_lifetime(l.id, span, hir::LifetimeName::Param(fresh_name))
2019 }
2020
2021 AnonymousLifetimeMode::PassThrough => {
2022 self.new_named_lifetime(l.id, span, hir::LifetimeName::Underscore)
2023 }
2024
2025 AnonymousLifetimeMode::ReportError => self.new_error_lifetime(Some(l.id), span),
2026 },
2027 ident => {
2028 self.maybe_collect_in_band_lifetime(ident);
2029 let param_name = ParamName::Plain(ident);
2030 self.new_named_lifetime(l.id, span, hir::LifetimeName::Param(param_name))
2031 }
2032 }
2033 }
2034
2035 fn new_named_lifetime(
2036 &mut self,
2037 id: NodeId,
2038 span: Span,
2039 name: hir::LifetimeName,
2040 ) -> hir::Lifetime {
2041 hir::Lifetime { hir_id: self.lower_node_id(id), span, name }
2042 }
2043
2044 fn lower_generic_params_mut<'s>(
2045 &'s mut self,
2046 params: &'s [GenericParam],
2047 add_bounds: &'s NodeMap<Vec<GenericBound>>,
2048 mut itctx: ImplTraitContext<'s, 'hir>,
2049 ) -> impl Iterator<Item = hir::GenericParam<'hir>> + Captures<'a> + Captures<'s> {
2050 params
2051 .iter()
2052 .map(move |param| self.lower_generic_param(param, add_bounds, itctx.reborrow()))
2053 }
2054
2055 fn lower_generic_params(
2056 &mut self,
2057 params: &[GenericParam],
2058 add_bounds: &NodeMap<Vec<GenericBound>>,
2059 itctx: ImplTraitContext<'_, 'hir>,
2060 ) -> &'hir [hir::GenericParam<'hir>] {
2061 self.arena.alloc_from_iter(self.lower_generic_params_mut(params, add_bounds, itctx))
2062 }
2063
2064 fn lower_generic_param(
2065 &mut self,
2066 param: &GenericParam,
2067 add_bounds: &NodeMap<Vec<GenericBound>>,
2068 mut itctx: ImplTraitContext<'_, 'hir>,
2069 ) -> hir::GenericParam<'hir> {
2070 let mut bounds: Vec<_> = self
2071 .with_anonymous_lifetime_mode(AnonymousLifetimeMode::ReportError, |this| {
2072 this.lower_param_bounds_mut(&param.bounds, itctx.reborrow()).collect()
2073 });
2074
2075 let (name, kind) = match param.kind {
2076 GenericParamKind::Lifetime => {
2077 let was_collecting_in_band = self.is_collecting_in_band_lifetimes;
2078 self.is_collecting_in_band_lifetimes = false;
2079
2080 let lt = self
2081 .with_anonymous_lifetime_mode(AnonymousLifetimeMode::ReportError, |this| {
2082 this.lower_lifetime(&Lifetime { id: param.id, ident: param.ident })
2083 });
2084 let param_name = match lt.name {
2085 hir::LifetimeName::Param(param_name) => param_name,
2086 hir::LifetimeName::Implicit
2087 | hir::LifetimeName::Underscore
2088 | hir::LifetimeName::Static => hir::ParamName::Plain(lt.name.ident()),
2089 hir::LifetimeName::ImplicitObjectLifetimeDefault => {
2090 self.sess.diagnostic().span_bug(
2091 param.ident.span,
2092 "object-lifetime-default should not occur here",
2093 );
2094 }
2095 hir::LifetimeName::Error => ParamName::Error,
2096 };
2097
2098 let kind =
2099 hir::GenericParamKind::Lifetime { kind: hir::LifetimeParamKind::Explicit };
2100
2101 self.is_collecting_in_band_lifetimes = was_collecting_in_band;
2102
2103 (param_name, kind)
2104 }
2105 GenericParamKind::Type { ref default, .. } => {
2106 let add_bounds = add_bounds.get(&param.id).map_or(&[][..], |x| &x);
2107 if !add_bounds.is_empty() {
2108 let params = self.lower_param_bounds_mut(add_bounds, itctx.reborrow());
2109 bounds.extend(params);
2110 }
2111
2112 let kind = hir::GenericParamKind::Type {
2113 default: default.as_ref().map(|x| {
2114 self.lower_ty(
2115 x,
2116 ImplTraitContext::OpaqueTy(None, hir::OpaqueTyOrigin::Misc),
2117 )
2118 }),
2119 synthetic: param
2120 .attrs
2121 .iter()
2122 .filter(|attr| attr.check_name(sym::rustc_synthetic))
2123 .map(|_| hir::SyntheticTyParamKind::ImplTrait)
2124 .next(),
2125 };
2126
2127 (hir::ParamName::Plain(param.ident), kind)
2128 }
2129 GenericParamKind::Const { ref ty } => {
2130 let ty = self
2131 .with_anonymous_lifetime_mode(AnonymousLifetimeMode::ReportError, |this| {
2132 this.lower_ty(&ty, ImplTraitContext::disallowed())
2133 });
2134
2135 (hir::ParamName::Plain(param.ident), hir::GenericParamKind::Const { ty })
2136 }
2137 };
2138
2139 hir::GenericParam {
2140 hir_id: self.lower_node_id(param.id),
2141 name,
2142 span: param.ident.span,
2143 pure_wrt_drop: attr::contains_name(&param.attrs, sym::may_dangle),
2144 attrs: self.lower_attrs(&param.attrs),
2145 bounds: self.arena.alloc_from_iter(bounds),
2146 kind,
2147 }
2148 }
2149
2150 fn lower_trait_ref(
2151 &mut self,
2152 p: &TraitRef,
2153 itctx: ImplTraitContext<'_, 'hir>,
2154 ) -> hir::TraitRef<'hir> {
2155 let path = match self.lower_qpath(p.ref_id, &None, &p.path, ParamMode::Explicit, itctx) {
2156 hir::QPath::Resolved(None, path) => path,
2157 qpath => panic!("lower_trait_ref: unexpected QPath `{:?}`", qpath),
2158 };
2159 hir::TraitRef { path, hir_ref_id: self.lower_node_id(p.ref_id) }
2160 }
2161
2162 fn lower_poly_trait_ref(
2163 &mut self,
2164 p: &PolyTraitRef,
2165 mut itctx: ImplTraitContext<'_, 'hir>,
2166 ) -> hir::PolyTraitRef<'hir> {
2167 let bound_generic_params = self.lower_generic_params(
2168 &p.bound_generic_params,
2169 &NodeMap::default(),
2170 itctx.reborrow(),
2171 );
2172 let trait_ref = self.with_in_scope_lifetime_defs(&p.bound_generic_params, |this| {
2173 this.lower_trait_ref(&p.trait_ref, itctx)
2174 });
2175
2176 hir::PolyTraitRef { bound_generic_params, trait_ref, span: p.span }
2177 }
2178
2179 fn lower_mt(&mut self, mt: &MutTy, itctx: ImplTraitContext<'_, 'hir>) -> hir::MutTy<'hir> {
2180 hir::MutTy { ty: self.lower_ty(&mt.ty, itctx), mutbl: mt.mutbl }
2181 }
2182
2183 fn lower_param_bounds(
2184 &mut self,
2185 bounds: &[GenericBound],
2186 itctx: ImplTraitContext<'_, 'hir>,
2187 ) -> hir::GenericBounds<'hir> {
2188 self.arena.alloc_from_iter(self.lower_param_bounds_mut(bounds, itctx))
2189 }
2190
2191 fn lower_param_bounds_mut<'s>(
2192 &'s mut self,
2193 bounds: &'s [GenericBound],
2194 mut itctx: ImplTraitContext<'s, 'hir>,
2195 ) -> impl Iterator<Item = hir::GenericBound<'hir>> + Captures<'s> + Captures<'a> {
2196 bounds.iter().map(move |bound| self.lower_param_bound(bound, itctx.reborrow()))
2197 }
2198
2199 fn lower_block(&mut self, b: &Block, targeted_by_break: bool) -> &'hir hir::Block<'hir> {
2200 self.arena.alloc(self.lower_block_noalloc(b, targeted_by_break))
2201 }
2202
2203 fn lower_block_noalloc(&mut self, b: &Block, targeted_by_break: bool) -> hir::Block<'hir> {
2204 let mut stmts = vec![];
2205 let mut expr: Option<&'hir _> = None;
2206
2207 for (index, stmt) in b.stmts.iter().enumerate() {
2208 if index == b.stmts.len() - 1 {
2209 if let StmtKind::Expr(ref e) = stmt.kind {
2210 expr = Some(self.lower_expr(e));
2211 } else {
2212 stmts.extend(self.lower_stmt(stmt));
2213 }
2214 } else {
2215 stmts.extend(self.lower_stmt(stmt));
2216 }
2217 }
2218
2219 hir::Block {
2220 hir_id: self.lower_node_id(b.id),
2221 stmts: self.arena.alloc_from_iter(stmts),
2222 expr,
2223 rules: self.lower_block_check_mode(&b.rules),
2224 span: b.span,
2225 targeted_by_break,
2226 }
2227 }
2228
2229 /// Lowers a block directly to an expression, presuming that it
2230 /// has no attributes and is not targeted by a `break`.
2231 fn lower_block_expr(&mut self, b: &Block) -> hir::Expr<'hir> {
2232 let block = self.lower_block(b, false);
2233 self.expr_block(block, AttrVec::new())
2234 }
2235
2236 fn lower_anon_const(&mut self, c: &AnonConst) -> hir::AnonConst {
2237 self.with_new_scopes(|this| hir::AnonConst {
2238 hir_id: this.lower_node_id(c.id),
2239 body: this.lower_const_body(c.value.span, Some(&c.value)),
2240 })
2241 }
2242
2243 fn lower_stmt(&mut self, s: &Stmt) -> SmallVec<[hir::Stmt<'hir>; 1]> {
2244 let kind = match s.kind {
2245 StmtKind::Local(ref l) => {
2246 let (l, item_ids) = self.lower_local(l);
2247 let mut ids: SmallVec<[hir::Stmt<'hir>; 1]> = item_ids
2248 .into_iter()
2249 .map(|item_id| {
2250 let item_id = hir::ItemId { id: self.lower_node_id(item_id) };
2251 self.stmt(s.span, hir::StmtKind::Item(item_id))
2252 })
2253 .collect();
2254 ids.push({
2255 hir::Stmt {
2256 hir_id: self.lower_node_id(s.id),
2257 kind: hir::StmtKind::Local(self.arena.alloc(l)),
2258 span: s.span,
2259 }
2260 });
2261 return ids;
2262 }
2263 StmtKind::Item(ref it) => {
2264 // Can only use the ID once.
2265 let mut id = Some(s.id);
2266 return self
2267 .lower_item_id(it)
2268 .into_iter()
2269 .map(|item_id| {
2270 let hir_id = id
2271 .take()
2272 .map(|id| self.lower_node_id(id))
2273 .unwrap_or_else(|| self.next_id());
2274
2275 hir::Stmt { hir_id, kind: hir::StmtKind::Item(item_id), span: s.span }
2276 })
2277 .collect();
2278 }
2279 StmtKind::Expr(ref e) => hir::StmtKind::Expr(self.lower_expr(e)),
2280 StmtKind::Semi(ref e) => hir::StmtKind::Semi(self.lower_expr(e)),
2281 StmtKind::Empty => return smallvec![],
2282 StmtKind::MacCall(..) => panic!("shouldn't exist here"),
2283 };
2284 smallvec![hir::Stmt { hir_id: self.lower_node_id(s.id), kind, span: s.span }]
2285 }
2286
2287 fn lower_block_check_mode(&mut self, b: &BlockCheckMode) -> hir::BlockCheckMode {
2288 match *b {
2289 BlockCheckMode::Default => hir::BlockCheckMode::DefaultBlock,
2290 BlockCheckMode::Unsafe(u) => {
2291 hir::BlockCheckMode::UnsafeBlock(self.lower_unsafe_source(u))
2292 }
2293 }
2294 }
2295
2296 fn lower_unsafe_source(&mut self, u: UnsafeSource) -> hir::UnsafeSource {
2297 match u {
2298 CompilerGenerated => hir::UnsafeSource::CompilerGenerated,
2299 UserProvided => hir::UnsafeSource::UserProvided,
2300 }
2301 }
2302
2303 fn lower_trait_bound_modifier(&mut self, f: TraitBoundModifier) -> hir::TraitBoundModifier {
2304 match f {
2305 TraitBoundModifier::None => hir::TraitBoundModifier::None,
2306 TraitBoundModifier::MaybeConst => hir::TraitBoundModifier::MaybeConst,
2307
2308 // `MaybeConstMaybe` will cause an error during AST validation, but we need to pick a
2309 // placeholder for compilation to proceed.
2310 TraitBoundModifier::MaybeConstMaybe | TraitBoundModifier::Maybe => {
2311 hir::TraitBoundModifier::Maybe
2312 }
2313 }
2314 }
2315
2316 // Helper methods for building HIR.
2317
2318 fn stmt(&mut self, span: Span, kind: hir::StmtKind<'hir>) -> hir::Stmt<'hir> {
2319 hir::Stmt { span, kind, hir_id: self.next_id() }
2320 }
2321
2322 fn stmt_expr(&mut self, span: Span, expr: hir::Expr<'hir>) -> hir::Stmt<'hir> {
2323 self.stmt(span, hir::StmtKind::Expr(self.arena.alloc(expr)))
2324 }
2325
2326 fn stmt_let_pat(
2327 &mut self,
2328 attrs: AttrVec,
2329 span: Span,
2330 init: Option<&'hir hir::Expr<'hir>>,
2331 pat: &'hir hir::Pat<'hir>,
2332 source: hir::LocalSource,
2333 ) -> hir::Stmt<'hir> {
2334 let local = hir::Local { attrs, hir_id: self.next_id(), init, pat, source, span, ty: None };
2335 self.stmt(span, hir::StmtKind::Local(self.arena.alloc(local)))
2336 }
2337
2338 fn block_expr(&mut self, expr: &'hir hir::Expr<'hir>) -> &'hir hir::Block<'hir> {
2339 self.block_all(expr.span, &[], Some(expr))
2340 }
2341
2342 fn block_all(
2343 &mut self,
2344 span: Span,
2345 stmts: &'hir [hir::Stmt<'hir>],
2346 expr: Option<&'hir hir::Expr<'hir>>,
2347 ) -> &'hir hir::Block<'hir> {
2348 let blk = hir::Block {
2349 stmts,
2350 expr,
2351 hir_id: self.next_id(),
2352 rules: hir::BlockCheckMode::DefaultBlock,
2353 span,
2354 targeted_by_break: false,
2355 };
2356 self.arena.alloc(blk)
2357 }
2358
2359 /// Constructs a `true` or `false` literal pattern.
2360 fn pat_bool(&mut self, span: Span, val: bool) -> &'hir hir::Pat<'hir> {
2361 let expr = self.expr_bool(span, val);
2362 self.pat(span, hir::PatKind::Lit(expr))
2363 }
2364
2365 fn pat_ok(&mut self, span: Span, pat: &'hir hir::Pat<'hir>) -> &'hir hir::Pat<'hir> {
2366 self.pat_std_enum(span, &[sym::result, sym::Result, sym::Ok], arena_vec![self; pat])
2367 }
2368
2369 fn pat_err(&mut self, span: Span, pat: &'hir hir::Pat<'hir>) -> &'hir hir::Pat<'hir> {
2370 self.pat_std_enum(span, &[sym::result, sym::Result, sym::Err], arena_vec![self; pat])
2371 }
2372
2373 fn pat_some(&mut self, span: Span, pat: &'hir hir::Pat<'hir>) -> &'hir hir::Pat<'hir> {
2374 self.pat_std_enum(span, &[sym::option, sym::Option, sym::Some], arena_vec![self; pat])
2375 }
2376
2377 fn pat_none(&mut self, span: Span) -> &'hir hir::Pat<'hir> {
2378 self.pat_std_enum(span, &[sym::option, sym::Option, sym::None], &[])
2379 }
2380
2381 fn pat_std_enum(
2382 &mut self,
2383 span: Span,
2384 components: &[Symbol],
2385 subpats: &'hir [&'hir hir::Pat<'hir>],
2386 ) -> &'hir hir::Pat<'hir> {
2387 let path = self.std_path(span, components, None, true);
2388 let qpath = hir::QPath::Resolved(None, path);
2389 let pt = if subpats.is_empty() {
2390 hir::PatKind::Path(qpath)
2391 } else {
2392 hir::PatKind::TupleStruct(qpath, subpats, None)
2393 };
2394 self.pat(span, pt)
2395 }
2396
2397 fn pat_ident(&mut self, span: Span, ident: Ident) -> (&'hir hir::Pat<'hir>, hir::HirId) {
2398 self.pat_ident_binding_mode(span, ident, hir::BindingAnnotation::Unannotated)
2399 }
2400
2401 fn pat_ident_binding_mode(
2402 &mut self,
2403 span: Span,
2404 ident: Ident,
2405 bm: hir::BindingAnnotation,
2406 ) -> (&'hir hir::Pat<'hir>, hir::HirId) {
2407 let hir_id = self.next_id();
2408
2409 (
2410 self.arena.alloc(hir::Pat {
2411 hir_id,
2412 kind: hir::PatKind::Binding(bm, hir_id, ident.with_span_pos(span), None),
2413 span,
2414 }),
2415 hir_id,
2416 )
2417 }
2418
2419 fn pat_wild(&mut self, span: Span) -> &'hir hir::Pat<'hir> {
2420 self.pat(span, hir::PatKind::Wild)
2421 }
2422
2423 fn pat(&mut self, span: Span, kind: hir::PatKind<'hir>) -> &'hir hir::Pat<'hir> {
2424 self.arena.alloc(hir::Pat { hir_id: self.next_id(), kind, span })
2425 }
2426
2427 /// Given a suffix `["b", "c", "d"]`, returns path `::std::b::c::d` when
2428 /// `fld.cx.use_std`, and `::core::b::c::d` otherwise.
2429 /// The path is also resolved according to `is_value`.
2430 fn std_path(
2431 &mut self,
2432 span: Span,
2433 components: &[Symbol],
2434 params: Option<&'hir hir::GenericArgs<'hir>>,
2435 is_value: bool,
2436 ) -> &'hir hir::Path<'hir> {
2437 let ns = if is_value { Namespace::ValueNS } else { Namespace::TypeNS };
2438 let (path, res) = self.resolver.resolve_str_path(span, self.crate_root, components, ns);
2439
2440 let mut segments: Vec<_> = path
2441 .segments
2442 .iter()
2443 .map(|segment| {
2444 let res = self.expect_full_res(segment.id);
2445 hir::PathSegment {
2446 ident: segment.ident,
2447 hir_id: Some(self.lower_node_id(segment.id)),
2448 res: Some(self.lower_res(res)),
2449 infer_args: true,
2450 args: None,
2451 }
2452 })
2453 .collect();
2454 segments.last_mut().unwrap().args = params;
2455
2456 self.arena.alloc(hir::Path {
2457 span,
2458 res: res.map_id(|_| panic!("unexpected `NodeId`")),
2459 segments: self.arena.alloc_from_iter(segments),
2460 })
2461 }
2462
2463 fn ty_path(
2464 &mut self,
2465 mut hir_id: hir::HirId,
2466 span: Span,
2467 qpath: hir::QPath<'hir>,
2468 ) -> hir::Ty<'hir> {
2469 let kind = match qpath {
2470 hir::QPath::Resolved(None, path) => {
2471 // Turn trait object paths into `TyKind::TraitObject` instead.
2472 match path.res {
2473 Res::Def(DefKind::Trait | DefKind::TraitAlias, _) => {
2474 let principal = hir::PolyTraitRef {
2475 bound_generic_params: &[],
2476 trait_ref: hir::TraitRef { path, hir_ref_id: hir_id },
2477 span,
2478 };
2479
2480 // The original ID is taken by the `PolyTraitRef`,
2481 // so the `Ty` itself needs a different one.
2482 hir_id = self.next_id();
2483 hir::TyKind::TraitObject(
2484 arena_vec![self; principal],
2485 self.elided_dyn_bound(span),
2486 )
2487 }
2488 _ => hir::TyKind::Path(hir::QPath::Resolved(None, path)),
2489 }
2490 }
2491 _ => hir::TyKind::Path(qpath),
2492 };
2493
2494 hir::Ty { hir_id, kind, span }
2495 }
2496
2497 /// Invoked to create the lifetime argument for a type `&T`
2498 /// with no explicit lifetime.
2499 fn elided_ref_lifetime(&mut self, span: Span) -> hir::Lifetime {
2500 match self.anonymous_lifetime_mode {
2501 // Intercept when we are in an impl header or async fn and introduce an in-band
2502 // lifetime.
2503 // Hence `impl Foo for &u32` becomes `impl<'f> Foo for &'f u32` for some fresh
2504 // `'f`.
2505 AnonymousLifetimeMode::CreateParameter => {
2506 let fresh_name = self.collect_fresh_in_band_lifetime(span);
2507 hir::Lifetime {
2508 hir_id: self.next_id(),
2509 span,
2510 name: hir::LifetimeName::Param(fresh_name),
2511 }
2512 }
2513
2514 AnonymousLifetimeMode::ReportError => self.new_error_lifetime(None, span),
2515
2516 AnonymousLifetimeMode::PassThrough => self.new_implicit_lifetime(span),
2517 }
2518 }
2519
2520 /// Report an error on illegal use of `'_` or a `&T` with no explicit lifetime;
2521 /// return a "error lifetime".
2522 fn new_error_lifetime(&mut self, id: Option<NodeId>, span: Span) -> hir::Lifetime {
2523 let (id, msg, label) = match id {
2524 Some(id) => (id, "`'_` cannot be used here", "`'_` is a reserved lifetime name"),
2525
2526 None => (
2527 self.resolver.next_node_id(),
2528 "`&` without an explicit lifetime name cannot be used here",
2529 "explicit lifetime name needed here",
2530 ),
2531 };
2532
2533 let mut err = struct_span_err!(self.sess, span, E0637, "{}", msg,);
2534 err.span_label(span, label);
2535 err.emit();
2536
2537 self.new_named_lifetime(id, span, hir::LifetimeName::Error)
2538 }
2539
2540 /// Invoked to create the lifetime argument(s) for a path like
2541 /// `std::cell::Ref<T>`; note that implicit lifetimes in these
2542 /// sorts of cases are deprecated. This may therefore report a warning or an
2543 /// error, depending on the mode.
2544 fn elided_path_lifetimes<'s>(
2545 &'s mut self,
2546 span: Span,
2547 count: usize,
2548 ) -> impl Iterator<Item = hir::Lifetime> + Captures<'a> + Captures<'s> + Captures<'hir> {
2549 (0..count).map(move |_| self.elided_path_lifetime(span))
2550 }
2551
2552 fn elided_path_lifetime(&mut self, span: Span) -> hir::Lifetime {
2553 match self.anonymous_lifetime_mode {
2554 AnonymousLifetimeMode::CreateParameter => {
2555 // We should have emitted E0726 when processing this path above
2556 self.sess
2557 .delay_span_bug(span, "expected 'implicit elided lifetime not allowed' error");
2558 let id = self.resolver.next_node_id();
2559 self.new_named_lifetime(id, span, hir::LifetimeName::Error)
2560 }
2561 // `PassThrough` is the normal case.
2562 // `new_error_lifetime`, which would usually be used in the case of `ReportError`,
2563 // is unsuitable here, as these can occur from missing lifetime parameters in a
2564 // `PathSegment`, for which there is no associated `'_` or `&T` with no explicit
2565 // lifetime. Instead, we simply create an implicit lifetime, which will be checked
2566 // later, at which point a suitable error will be emitted.
2567 AnonymousLifetimeMode::PassThrough | AnonymousLifetimeMode::ReportError => {
2568 self.new_implicit_lifetime(span)
2569 }
2570 }
2571 }
2572
2573 /// Invoked to create the lifetime argument(s) for an elided trait object
2574 /// bound, like the bound in `Box<dyn Debug>`. This method is not invoked
2575 /// when the bound is written, even if it is written with `'_` like in
2576 /// `Box<dyn Debug + '_>`. In those cases, `lower_lifetime` is invoked.
2577 fn elided_dyn_bound(&mut self, span: Span) -> hir::Lifetime {
2578 match self.anonymous_lifetime_mode {
2579 // NB. We intentionally ignore the create-parameter mode here.
2580 // and instead "pass through" to resolve-lifetimes, which will apply
2581 // the object-lifetime-defaulting rules. Elided object lifetime defaults
2582 // do not act like other elided lifetimes. In other words, given this:
2583 //
2584 // impl Foo for Box<dyn Debug>
2585 //
2586 // we do not introduce a fresh `'_` to serve as the bound, but instead
2587 // ultimately translate to the equivalent of:
2588 //
2589 // impl Foo for Box<dyn Debug + 'static>
2590 //
2591 // `resolve_lifetime` has the code to make that happen.
2592 AnonymousLifetimeMode::CreateParameter => {}
2593
2594 AnonymousLifetimeMode::ReportError => {
2595 // ReportError applies to explicit use of `'_`.
2596 }
2597
2598 // This is the normal case.
2599 AnonymousLifetimeMode::PassThrough => {}
2600 }
2601
2602 let r = hir::Lifetime {
2603 hir_id: self.next_id(),
2604 span,
2605 name: hir::LifetimeName::ImplicitObjectLifetimeDefault,
2606 };
2607 debug!("elided_dyn_bound: r={:?}", r);
2608 r
2609 }
2610
2611 fn new_implicit_lifetime(&mut self, span: Span) -> hir::Lifetime {
2612 hir::Lifetime { hir_id: self.next_id(), span, name: hir::LifetimeName::Implicit }
2613 }
2614
2615 fn maybe_lint_bare_trait(&mut self, span: Span, id: NodeId, is_global: bool) {
2616 // FIXME(davidtwco): This is a hack to detect macros which produce spans of the
2617 // call site which do not have a macro backtrace. See #61963.
2618 let is_macro_callsite = self
2619 .sess
2620 .source_map()
2621 .span_to_snippet(span)
2622 .map(|snippet| snippet.starts_with("#["))
2623 .unwrap_or(true);
2624 if !is_macro_callsite {
2625 self.resolver.lint_buffer().buffer_lint_with_diagnostic(
2626 BARE_TRAIT_OBJECTS,
2627 id,
2628 span,
2629 "trait objects without an explicit `dyn` are deprecated",
2630 BuiltinLintDiagnostics::BareTraitObject(span, is_global),
2631 )
2632 }
2633 }
2634 }
2635
2636 fn body_ids(bodies: &BTreeMap<hir::BodyId, hir::Body<'_>>) -> Vec<hir::BodyId> {
2637 // Sorting by span ensures that we get things in order within a
2638 // file, and also puts the files in a sensible order.
2639 let mut body_ids: Vec<_> = bodies.keys().cloned().collect();
2640 body_ids.sort_by_key(|b| bodies[b].value.span);
2641 body_ids
2642 }
2643
2644 /// Helper struct for delayed construction of GenericArgs.
2645 struct GenericArgsCtor<'hir> {
2646 args: SmallVec<[hir::GenericArg<'hir>; 4]>,
2647 bindings: &'hir [hir::TypeBinding<'hir>],
2648 parenthesized: bool,
2649 }
2650
2651 impl<'hir> GenericArgsCtor<'hir> {
2652 fn is_empty(&self) -> bool {
2653 self.args.is_empty() && self.bindings.is_empty() && !self.parenthesized
2654 }
2655
2656 fn into_generic_args(self, arena: &'hir Arena<'hir>) -> hir::GenericArgs<'hir> {
2657 hir::GenericArgs {
2658 args: arena.alloc_from_iter(self.args),
2659 bindings: self.bindings,
2660 parenthesized: self.parenthesized,
2661 }
2662 }
2663 }