]> git.proxmox.com Git - rustc.git/blob - src/librustc_parse/parser/path.rs
New upstream version 1.44.1+dfsg1
[rustc.git] / src / librustc_parse / parser / path.rs
1 use super::ty::{AllowPlus, RecoverQPath};
2 use super::{Parser, TokenType};
3 use crate::maybe_whole;
4 use rustc_ast::ast::{self, AngleBracketedArg, AngleBracketedArgs, GenericArg, ParenthesizedArgs};
5 use rustc_ast::ast::{AnonConst, AssocTyConstraint, AssocTyConstraintKind, BlockCheckMode};
6 use rustc_ast::ast::{Ident, Path, PathSegment, QSelf};
7 use rustc_ast::ptr::P;
8 use rustc_ast::token::{self, Token};
9 use rustc_errors::{pluralize, Applicability, PResult};
10 use rustc_span::source_map::{BytePos, Span};
11 use rustc_span::symbol::{kw, sym};
12
13 use log::debug;
14 use std::mem;
15
16 /// Specifies how to parse a path.
17 #[derive(Copy, Clone, PartialEq)]
18 pub enum PathStyle {
19 /// In some contexts, notably in expressions, paths with generic arguments are ambiguous
20 /// with something else. For example, in expressions `segment < ....` can be interpreted
21 /// as a comparison and `segment ( ....` can be interpreted as a function call.
22 /// In all such contexts the non-path interpretation is preferred by default for practical
23 /// reasons, but the path interpretation can be forced by the disambiguator `::`, e.g.
24 /// `x<y>` - comparisons, `x::<y>` - unambiguously a path.
25 Expr,
26 /// In other contexts, notably in types, no ambiguity exists and paths can be written
27 /// without the disambiguator, e.g., `x<y>` - unambiguously a path.
28 /// Paths with disambiguators are still accepted, `x::<Y>` - unambiguously a path too.
29 Type,
30 /// A path with generic arguments disallowed, e.g., `foo::bar::Baz`, used in imports,
31 /// visibilities or attributes.
32 /// Technically, this variant is unnecessary and e.g., `Expr` can be used instead
33 /// (paths in "mod" contexts have to be checked later for absence of generic arguments
34 /// anyway, due to macros), but it is used to avoid weird suggestions about expected
35 /// tokens when something goes wrong.
36 Mod,
37 }
38
39 impl<'a> Parser<'a> {
40 /// Parses a qualified path.
41 /// Assumes that the leading `<` has been parsed already.
42 ///
43 /// `qualified_path = <type [as trait_ref]>::path`
44 ///
45 /// # Examples
46 /// `<T>::default`
47 /// `<T as U>::a`
48 /// `<T as U>::F::a<S>` (without disambiguator)
49 /// `<T as U>::F::a::<S>` (with disambiguator)
50 pub(super) fn parse_qpath(&mut self, style: PathStyle) -> PResult<'a, (QSelf, Path)> {
51 let lo = self.prev_token.span;
52 let ty = self.parse_ty()?;
53
54 // `path` will contain the prefix of the path up to the `>`,
55 // if any (e.g., `U` in the `<T as U>::*` examples
56 // above). `path_span` has the span of that path, or an empty
57 // span in the case of something like `<T>::Bar`.
58 let (mut path, path_span);
59 if self.eat_keyword(kw::As) {
60 let path_lo = self.token.span;
61 path = self.parse_path(PathStyle::Type)?;
62 path_span = path_lo.to(self.prev_token.span);
63 } else {
64 path_span = self.token.span.to(self.token.span);
65 path = ast::Path { segments: Vec::new(), span: path_span };
66 }
67
68 // See doc comment for `unmatched_angle_bracket_count`.
69 self.expect(&token::Gt)?;
70 if self.unmatched_angle_bracket_count > 0 {
71 self.unmatched_angle_bracket_count -= 1;
72 debug!("parse_qpath: (decrement) count={:?}", self.unmatched_angle_bracket_count);
73 }
74
75 if !self.recover_colon_before_qpath_proj() {
76 self.expect(&token::ModSep)?;
77 }
78
79 let qself = QSelf { ty, path_span, position: path.segments.len() };
80 self.parse_path_segments(&mut path.segments, style)?;
81
82 Ok((qself, Path { segments: path.segments, span: lo.to(self.prev_token.span) }))
83 }
84
85 /// Recover from an invalid single colon, when the user likely meant a qualified path.
86 /// We avoid emitting this if not followed by an identifier, as our assumption that the user
87 /// intended this to be a qualified path may not be correct.
88 ///
89 /// ```ignore (diagnostics)
90 /// <Bar as Baz<T>>:Qux
91 /// ^ help: use double colon
92 /// ```
93 fn recover_colon_before_qpath_proj(&mut self) -> bool {
94 if self.token.kind != token::Colon
95 || self.look_ahead(1, |t| !t.is_ident() || t.is_reserved_ident())
96 {
97 return false;
98 }
99
100 self.bump(); // colon
101
102 self.diagnostic()
103 .struct_span_err(
104 self.prev_token.span,
105 "found single colon before projection in qualified path",
106 )
107 .span_suggestion(
108 self.prev_token.span,
109 "use double colon",
110 "::".to_string(),
111 Applicability::MachineApplicable,
112 )
113 .emit();
114
115 true
116 }
117
118 /// Parses simple paths.
119 ///
120 /// `path = [::] segment+`
121 /// `segment = ident | ident[::]<args> | ident[::](args) [-> type]`
122 ///
123 /// # Examples
124 /// `a::b::C<D>` (without disambiguator)
125 /// `a::b::C::<D>` (with disambiguator)
126 /// `Fn(Args)` (without disambiguator)
127 /// `Fn::(Args)` (with disambiguator)
128 pub fn parse_path(&mut self, style: PathStyle) -> PResult<'a, Path> {
129 maybe_whole!(self, NtPath, |path| {
130 if style == PathStyle::Mod && path.segments.iter().any(|segment| segment.args.is_some())
131 {
132 self.struct_span_err(path.span, "unexpected generic arguments in path").emit();
133 }
134 path
135 });
136
137 let lo = self.token.span;
138 let mut segments = Vec::new();
139 let mod_sep_ctxt = self.token.span.ctxt();
140 if self.eat(&token::ModSep) {
141 segments.push(PathSegment::path_root(lo.shrink_to_lo().with_ctxt(mod_sep_ctxt)));
142 }
143 self.parse_path_segments(&mut segments, style)?;
144
145 Ok(Path { segments, span: lo.to(self.prev_token.span) })
146 }
147
148 pub(super) fn parse_path_segments(
149 &mut self,
150 segments: &mut Vec<PathSegment>,
151 style: PathStyle,
152 ) -> PResult<'a, ()> {
153 loop {
154 let segment = self.parse_path_segment(style)?;
155 if style == PathStyle::Expr {
156 // In order to check for trailing angle brackets, we must have finished
157 // recursing (`parse_path_segment` can indirectly call this function),
158 // that is, the next token must be the highlighted part of the below example:
159 //
160 // `Foo::<Bar as Baz<T>>::Qux`
161 // ^ here
162 //
163 // As opposed to the below highlight (if we had only finished the first
164 // recursion):
165 //
166 // `Foo::<Bar as Baz<T>>::Qux`
167 // ^ here
168 //
169 // `PathStyle::Expr` is only provided at the root invocation and never in
170 // `parse_path_segment` to recurse and therefore can be checked to maintain
171 // this invariant.
172 self.check_trailing_angle_brackets(&segment, token::ModSep);
173 }
174 segments.push(segment);
175
176 if self.is_import_coupler() || !self.eat(&token::ModSep) {
177 return Ok(());
178 }
179 }
180 }
181
182 pub(super) fn parse_path_segment(&mut self, style: PathStyle) -> PResult<'a, PathSegment> {
183 let ident = self.parse_path_segment_ident()?;
184
185 let is_args_start = |token: &Token| match token.kind {
186 token::Lt
187 | token::BinOp(token::Shl)
188 | token::OpenDelim(token::Paren)
189 | token::LArrow => true,
190 _ => false,
191 };
192 let check_args_start = |this: &mut Self| {
193 this.expected_tokens.extend_from_slice(&[
194 TokenType::Token(token::Lt),
195 TokenType::Token(token::OpenDelim(token::Paren)),
196 ]);
197 is_args_start(&this.token)
198 };
199
200 Ok(
201 if style == PathStyle::Type && check_args_start(self)
202 || style != PathStyle::Mod
203 && self.check(&token::ModSep)
204 && self.look_ahead(1, |t| is_args_start(t))
205 {
206 // We use `style == PathStyle::Expr` to check if this is in a recursion or not. If
207 // it isn't, then we reset the unmatched angle bracket count as we're about to start
208 // parsing a new path.
209 if style == PathStyle::Expr {
210 self.unmatched_angle_bracket_count = 0;
211 self.max_angle_bracket_count = 0;
212 }
213
214 // Generic arguments are found - `<`, `(`, `::<` or `::(`.
215 self.eat(&token::ModSep);
216 let lo = self.token.span;
217 let args = if self.eat_lt() {
218 // `<'a, T, A = U>`
219 let args =
220 self.parse_angle_args_with_leading_angle_bracket_recovery(style, lo)?;
221 self.expect_gt()?;
222 let span = lo.to(self.prev_token.span);
223 AngleBracketedArgs { args, span }.into()
224 } else {
225 // `(T, U) -> R`
226 let (inputs, _) = self.parse_paren_comma_seq(|p| p.parse_ty())?;
227 let span = ident.span.to(self.prev_token.span);
228 let output = self.parse_ret_ty(AllowPlus::No, RecoverQPath::No)?;
229 ParenthesizedArgs { inputs, output, span }.into()
230 };
231
232 PathSegment { ident, args, id: ast::DUMMY_NODE_ID }
233 } else {
234 // Generic arguments are not found.
235 PathSegment::from_ident(ident)
236 },
237 )
238 }
239
240 pub(super) fn parse_path_segment_ident(&mut self) -> PResult<'a, Ident> {
241 match self.token.ident() {
242 Some((ident, false)) if ident.is_path_segment_keyword() => {
243 self.bump();
244 Ok(ident)
245 }
246 _ => self.parse_ident(),
247 }
248 }
249
250 /// Parses generic args (within a path segment) with recovery for extra leading angle brackets.
251 /// For the purposes of understanding the parsing logic of generic arguments, this function
252 /// can be thought of being the same as just calling `self.parse_angle_args()` if the source
253 /// had the correct amount of leading angle brackets.
254 ///
255 /// ```ignore (diagnostics)
256 /// bar::<<<<T as Foo>::Output>();
257 /// ^^ help: remove extra angle brackets
258 /// ```
259 fn parse_angle_args_with_leading_angle_bracket_recovery(
260 &mut self,
261 style: PathStyle,
262 lo: Span,
263 ) -> PResult<'a, Vec<AngleBracketedArg>> {
264 // We need to detect whether there are extra leading left angle brackets and produce an
265 // appropriate error and suggestion. This cannot be implemented by looking ahead at
266 // upcoming tokens for a matching `>` character - if there are unmatched `<` tokens
267 // then there won't be matching `>` tokens to find.
268 //
269 // To explain how this detection works, consider the following example:
270 //
271 // ```ignore (diagnostics)
272 // bar::<<<<T as Foo>::Output>();
273 // ^^ help: remove extra angle brackets
274 // ```
275 //
276 // Parsing of the left angle brackets starts in this function. We start by parsing the
277 // `<` token (incrementing the counter of unmatched angle brackets on `Parser` via
278 // `eat_lt`):
279 //
280 // *Upcoming tokens:* `<<<<T as Foo>::Output>;`
281 // *Unmatched count:* 1
282 // *`parse_path_segment` calls deep:* 0
283 //
284 // This has the effect of recursing as this function is called if a `<` character
285 // is found within the expected generic arguments:
286 //
287 // *Upcoming tokens:* `<<<T as Foo>::Output>;`
288 // *Unmatched count:* 2
289 // *`parse_path_segment` calls deep:* 1
290 //
291 // Eventually we will have recursed until having consumed all of the `<` tokens and
292 // this will be reflected in the count:
293 //
294 // *Upcoming tokens:* `T as Foo>::Output>;`
295 // *Unmatched count:* 4
296 // `parse_path_segment` calls deep:* 3
297 //
298 // The parser will continue until reaching the first `>` - this will decrement the
299 // unmatched angle bracket count and return to the parent invocation of this function
300 // having succeeded in parsing:
301 //
302 // *Upcoming tokens:* `::Output>;`
303 // *Unmatched count:* 3
304 // *`parse_path_segment` calls deep:* 2
305 //
306 // This will continue until the next `>` character which will also return successfully
307 // to the parent invocation of this function and decrement the count:
308 //
309 // *Upcoming tokens:* `;`
310 // *Unmatched count:* 2
311 // *`parse_path_segment` calls deep:* 1
312 //
313 // At this point, this function will expect to find another matching `>` character but
314 // won't be able to and will return an error. This will continue all the way up the
315 // call stack until the first invocation:
316 //
317 // *Upcoming tokens:* `;`
318 // *Unmatched count:* 2
319 // *`parse_path_segment` calls deep:* 0
320 //
321 // In doing this, we have managed to work out how many unmatched leading left angle
322 // brackets there are, but we cannot recover as the unmatched angle brackets have
323 // already been consumed. To remedy this, we keep a snapshot of the parser state
324 // before we do the above. We can then inspect whether we ended up with a parsing error
325 // and unmatched left angle brackets and if so, restore the parser state before we
326 // consumed any `<` characters to emit an error and consume the erroneous tokens to
327 // recover by attempting to parse again.
328 //
329 // In practice, the recursion of this function is indirect and there will be other
330 // locations that consume some `<` characters - as long as we update the count when
331 // this happens, it isn't an issue.
332
333 let is_first_invocation = style == PathStyle::Expr;
334 // Take a snapshot before attempting to parse - we can restore this later.
335 let snapshot = if is_first_invocation { Some(self.clone()) } else { None };
336
337 debug!("parse_generic_args_with_leading_angle_bracket_recovery: (snapshotting)");
338 match self.parse_angle_args() {
339 Ok(args) => Ok(args),
340 Err(ref mut e) if is_first_invocation && self.unmatched_angle_bracket_count > 0 => {
341 // Cancel error from being unable to find `>`. We know the error
342 // must have been this due to a non-zero unmatched angle bracket
343 // count.
344 e.cancel();
345
346 // Swap `self` with our backup of the parser state before attempting to parse
347 // generic arguments.
348 let snapshot = mem::replace(self, snapshot.unwrap());
349
350 debug!(
351 "parse_generic_args_with_leading_angle_bracket_recovery: (snapshot failure) \
352 snapshot.count={:?}",
353 snapshot.unmatched_angle_bracket_count,
354 );
355
356 // Eat the unmatched angle brackets.
357 for _ in 0..snapshot.unmatched_angle_bracket_count {
358 self.eat_lt();
359 }
360
361 // Make a span over ${unmatched angle bracket count} characters.
362 let span = lo.with_hi(lo.lo() + BytePos(snapshot.unmatched_angle_bracket_count));
363 self.struct_span_err(
364 span,
365 &format!(
366 "unmatched angle bracket{}",
367 pluralize!(snapshot.unmatched_angle_bracket_count)
368 ),
369 )
370 .span_suggestion(
371 span,
372 &format!(
373 "remove extra angle bracket{}",
374 pluralize!(snapshot.unmatched_angle_bracket_count)
375 ),
376 String::new(),
377 Applicability::MachineApplicable,
378 )
379 .emit();
380
381 // Try again without unmatched angle bracket characters.
382 self.parse_angle_args()
383 }
384 Err(e) => Err(e),
385 }
386 }
387
388 /// Parses (possibly empty) list of generic arguments / associated item constraints,
389 /// possibly including trailing comma.
390 fn parse_angle_args(&mut self) -> PResult<'a, Vec<AngleBracketedArg>> {
391 let mut args = Vec::new();
392 while let Some(arg) = self.parse_angle_arg()? {
393 args.push(arg);
394 if !self.eat(&token::Comma) {
395 break;
396 }
397 }
398 Ok(args)
399 }
400
401 /// Parses a single argument in the angle arguments `<...>` of a path segment.
402 fn parse_angle_arg(&mut self) -> PResult<'a, Option<AngleBracketedArg>> {
403 if self.check_ident() && self.look_ahead(1, |t| matches!(t.kind, token::Eq | token::Colon))
404 {
405 // Parse associated type constraint.
406 let lo = self.token.span;
407 let ident = self.parse_ident()?;
408 let kind = if self.eat(&token::Eq) {
409 let ty = self.parse_assoc_equality_term(ident, self.prev_token.span)?;
410 AssocTyConstraintKind::Equality { ty }
411 } else if self.eat(&token::Colon) {
412 let bounds = self.parse_generic_bounds(Some(self.prev_token.span))?;
413 AssocTyConstraintKind::Bound { bounds }
414 } else {
415 unreachable!();
416 };
417
418 let span = lo.to(self.prev_token.span);
419
420 // Gate associated type bounds, e.g., `Iterator<Item: Ord>`.
421 if let AssocTyConstraintKind::Bound { .. } = kind {
422 self.sess.gated_spans.gate(sym::associated_type_bounds, span);
423 }
424
425 let constraint = AssocTyConstraint { id: ast::DUMMY_NODE_ID, ident, kind, span };
426 Ok(Some(AngleBracketedArg::Constraint(constraint)))
427 } else {
428 Ok(self.parse_generic_arg()?.map(AngleBracketedArg::Arg))
429 }
430 }
431
432 /// Parse the term to the right of an associated item equality constraint.
433 /// That is, parse `<term>` in `Item = <term>`.
434 /// Right now, this only admits types in `<term>`.
435 fn parse_assoc_equality_term(&mut self, ident: Ident, eq: Span) -> PResult<'a, P<ast::Ty>> {
436 let arg = self.parse_generic_arg()?;
437 let span = ident.span.to(self.prev_token.span);
438 match arg {
439 Some(GenericArg::Type(ty)) => return Ok(ty),
440 Some(GenericArg::Const(expr)) => {
441 self.struct_span_err(span, "cannot constrain an associated constant to a value")
442 .span_label(ident.span, "this associated constant...")
443 .span_label(expr.value.span, "...cannot be constrained to this value")
444 .emit();
445 }
446 Some(GenericArg::Lifetime(lt)) => {
447 self.struct_span_err(span, "associated lifetimes are not supported")
448 .span_label(lt.ident.span, "the lifetime is given here")
449 .help("if you meant to specify a trait object, write `dyn Trait + 'lifetime`")
450 .emit();
451 }
452 None => {
453 let after_eq = eq.shrink_to_hi();
454 let before_next = self.token.span.shrink_to_lo();
455 self.struct_span_err(after_eq.to(before_next), "missing type to the right of `=`")
456 .span_suggestion(
457 self.sess.source_map().next_point(eq).to(before_next),
458 "to constrain the associated type, add a type after `=`",
459 " TheType".to_string(),
460 Applicability::HasPlaceholders,
461 )
462 .span_suggestion(
463 eq.to(before_next),
464 &format!("remove the `=` if `{}` is a type", ident),
465 String::new(),
466 Applicability::MaybeIncorrect,
467 )
468 .emit();
469 }
470 }
471 Ok(self.mk_ty(span, ast::TyKind::Err))
472 }
473
474 /// Parse a generic argument in a path segment.
475 /// This does not include constraints, e.g., `Item = u8`, which is handled in `parse_angle_arg`.
476 fn parse_generic_arg(&mut self) -> PResult<'a, Option<GenericArg>> {
477 let arg = if self.check_lifetime() && self.look_ahead(1, |t| !t.is_like_plus()) {
478 // Parse lifetime argument.
479 GenericArg::Lifetime(self.expect_lifetime())
480 } else if self.check_const_arg() {
481 // Parse const argument.
482 let expr = if let token::OpenDelim(token::Brace) = self.token.kind {
483 self.parse_block_expr(
484 None,
485 self.token.span,
486 BlockCheckMode::Default,
487 ast::AttrVec::new(),
488 )?
489 } else if self.token.is_ident() {
490 // FIXME(const_generics): to distinguish between idents for types and consts,
491 // we should introduce a GenericArg::Ident in the AST and distinguish when
492 // lowering to the HIR. For now, idents for const args are not permitted.
493 if self.token.is_bool_lit() {
494 self.parse_literal_maybe_minus()?
495 } else {
496 let span = self.token.span;
497 let msg = "identifiers may currently not be used for const generics";
498 self.struct_span_err(span, msg).emit();
499 let block = self.mk_block_err(span);
500 self.mk_expr(span, ast::ExprKind::Block(block, None), ast::AttrVec::new())
501 }
502 } else {
503 self.parse_literal_maybe_minus()?
504 };
505 GenericArg::Const(AnonConst { id: ast::DUMMY_NODE_ID, value: expr })
506 } else if self.check_type() {
507 // Parse type argument.
508 GenericArg::Type(self.parse_ty()?)
509 } else {
510 return Ok(None);
511 };
512 Ok(Some(arg))
513 }
514 }