]> git.proxmox.com Git - rustc.git/blob - src/librustc_privacy/lib.rs
Move away from hash to the same rust naming schema
[rustc.git] / src / librustc_privacy / lib.rs
1 // Copyright 2012-2014 The Rust Project Developers. See the COPYRIGHT
2 // file at the top-level directory of this distribution and at
3 // http://rust-lang.org/COPYRIGHT.
4 //
5 // Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
6 // http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
7 // <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
8 // option. This file may not be copied, modified, or distributed
9 // except according to those terms.
10
11 // Do not remove on snapshot creation. Needed for bootstrap. (Issue #22364)
12 #![cfg_attr(stage0, feature(custom_attribute))]
13 #![crate_name = "rustc_privacy"]
14 #![unstable(feature = "rustc_private", issue = "27812")]
15 #![staged_api]
16 #![crate_type = "dylib"]
17 #![crate_type = "rlib"]
18 #![doc(html_logo_url = "https://www.rust-lang.org/logos/rust-logo-128x128-blk-v2.png",
19 html_favicon_url = "https://doc.rust-lang.org/favicon.ico",
20 html_root_url = "https://doc.rust-lang.org/nightly/")]
21
22 #![feature(rustc_diagnostic_macros)]
23 #![feature(rustc_private)]
24 #![feature(staged_api)]
25
26 #[macro_use] extern crate log;
27 #[macro_use] extern crate syntax;
28
29 extern crate rustc;
30 extern crate rustc_front;
31
32 use self::PrivacyResult::*;
33 use self::FieldName::*;
34
35 use std::mem::replace;
36
37 use rustc_front::hir;
38 use rustc_front::visit::{self, Visitor};
39
40 use rustc::middle::def;
41 use rustc::middle::def_id::DefId;
42 use rustc::middle::privacy::ImportUse::*;
43 use rustc::middle::privacy::LastPrivate::*;
44 use rustc::middle::privacy::PrivateDep::*;
45 use rustc::middle::privacy::{ExternalExports, ExportedItems, PublicItems};
46 use rustc::middle::ty::{self, Ty};
47 use rustc::util::nodemap::{NodeMap, NodeSet};
48 use rustc::front::map as ast_map;
49
50 use syntax::ast;
51 use syntax::codemap::Span;
52
53 pub mod diagnostics;
54
55 type Context<'a, 'tcx> = (&'a ty::MethodMap<'tcx>, &'a def::ExportMap);
56
57 /// Result of a checking operation - None => no errors were found. Some => an
58 /// error and contains the span and message for reporting that error and
59 /// optionally the same for a note about the error.
60 type CheckResult = Option<(Span, String, Option<(Span, String)>)>;
61
62 ////////////////////////////////////////////////////////////////////////////////
63 /// The parent visitor, used to determine what's the parent of what (node-wise)
64 ////////////////////////////////////////////////////////////////////////////////
65
66 struct ParentVisitor {
67 parents: NodeMap<ast::NodeId>,
68 curparent: ast::NodeId,
69 }
70
71 impl<'v> Visitor<'v> for ParentVisitor {
72 fn visit_item(&mut self, item: &hir::Item) {
73 self.parents.insert(item.id, self.curparent);
74
75 let prev = self.curparent;
76 match item.node {
77 hir::ItemMod(..) => { self.curparent = item.id; }
78 // Enum variants are parented to the enum definition itself because
79 // they inherit privacy
80 hir::ItemEnum(ref def, _) => {
81 for variant in &def.variants {
82 // The parent is considered the enclosing enum because the
83 // enum will dictate the privacy visibility of this variant
84 // instead.
85 self.parents.insert(variant.node.id, item.id);
86 }
87 }
88
89 // Trait methods are always considered "public", but if the trait is
90 // private then we need some private item in the chain from the
91 // method to the root. In this case, if the trait is private, then
92 // parent all the methods to the trait to indicate that they're
93 // private.
94 hir::ItemTrait(_, _, _, ref trait_items) if item.vis != hir::Public => {
95 for trait_item in trait_items {
96 self.parents.insert(trait_item.id, item.id);
97 }
98 }
99
100 _ => {}
101 }
102 visit::walk_item(self, item);
103 self.curparent = prev;
104 }
105
106 fn visit_foreign_item(&mut self, a: &hir::ForeignItem) {
107 self.parents.insert(a.id, self.curparent);
108 visit::walk_foreign_item(self, a);
109 }
110
111 fn visit_fn(&mut self, a: visit::FnKind<'v>, b: &'v hir::FnDecl,
112 c: &'v hir::Block, d: Span, id: ast::NodeId) {
113 // We already took care of some trait methods above, otherwise things
114 // like impl methods and pub trait methods are parented to the
115 // containing module, not the containing trait.
116 if !self.parents.contains_key(&id) {
117 self.parents.insert(id, self.curparent);
118 }
119 visit::walk_fn(self, a, b, c, d);
120 }
121
122 fn visit_impl_item(&mut self, ii: &'v hir::ImplItem) {
123 // visit_fn handles methods, but associated consts have to be handled
124 // here.
125 if !self.parents.contains_key(&ii.id) {
126 self.parents.insert(ii.id, self.curparent);
127 }
128 visit::walk_impl_item(self, ii);
129 }
130
131 fn visit_struct_def(&mut self, s: &hir::StructDef, _: ast::Ident,
132 _: &'v hir::Generics, n: ast::NodeId) {
133 // Struct constructors are parented to their struct definitions because
134 // they essentially are the struct definitions.
135 match s.ctor_id {
136 Some(id) => { self.parents.insert(id, n); }
137 None => {}
138 }
139
140 // While we have the id of the struct definition, go ahead and parent
141 // all the fields.
142 for field in &s.fields {
143 self.parents.insert(field.node.id, self.curparent);
144 }
145 visit::walk_struct_def(self, s)
146 }
147 }
148
149 ////////////////////////////////////////////////////////////////////////////////
150 /// The embargo visitor, used to determine the exports of the ast
151 ////////////////////////////////////////////////////////////////////////////////
152
153 struct EmbargoVisitor<'a, 'tcx: 'a> {
154 tcx: &'a ty::ctxt<'tcx>,
155 export_map: &'a def::ExportMap,
156
157 // This flag is an indicator of whether the previous item in the
158 // hierarchical chain was exported or not. This is the indicator of whether
159 // children should be exported as well. Note that this can flip from false
160 // to true if a reexported module is entered (or an action similar).
161 prev_exported: bool,
162
163 // This is a list of all exported items in the AST. An exported item is any
164 // function/method/item which is usable by external crates. This essentially
165 // means that the result is "public all the way down", but the "path down"
166 // may jump across private boundaries through reexport statements.
167 exported_items: ExportedItems,
168
169 // This sets contains all the destination nodes which are publicly
170 // re-exported. This is *not* a set of all reexported nodes, only a set of
171 // all nodes which are reexported *and* reachable from external crates. This
172 // means that the destination of the reexport is exported, and hence the
173 // destination must also be exported.
174 reexports: NodeSet,
175
176 // These two fields are closely related to one another in that they are only
177 // used for generation of the 'PublicItems' set, not for privacy checking at
178 // all
179 public_items: PublicItems,
180 prev_public: bool,
181 }
182
183 impl<'a, 'tcx> EmbargoVisitor<'a, 'tcx> {
184 // There are checks inside of privacy which depend on knowing whether a
185 // trait should be exported or not. The two current consumers of this are:
186 //
187 // 1. Should default methods of a trait be exported?
188 // 2. Should the methods of an implementation of a trait be exported?
189 //
190 // The answer to both of these questions partly rely on whether the trait
191 // itself is exported or not. If the trait is somehow exported, then the
192 // answers to both questions must be yes. Right now this question involves
193 // more analysis than is currently done in rustc, so we conservatively
194 // answer "yes" so that all traits need to be exported.
195 fn exported_trait(&self, _id: ast::NodeId) -> bool {
196 true
197 }
198 }
199
200 impl<'a, 'tcx, 'v> Visitor<'v> for EmbargoVisitor<'a, 'tcx> {
201 fn visit_item(&mut self, item: &hir::Item) {
202 let orig_all_pub = self.prev_public;
203 self.prev_public = orig_all_pub && item.vis == hir::Public;
204 if self.prev_public {
205 self.public_items.insert(item.id);
206 }
207
208 let orig_all_exported = self.prev_exported;
209 match item.node {
210 // impls/extern blocks do not break the "public chain" because they
211 // cannot have visibility qualifiers on them anyway
212 hir::ItemImpl(..) | hir::ItemDefaultImpl(..) | hir::ItemForeignMod(..) => {}
213
214 // Traits are a little special in that even if they themselves are
215 // not public they may still be exported.
216 hir::ItemTrait(..) => {
217 self.prev_exported = self.exported_trait(item.id);
218 }
219
220 // Private by default, hence we only retain the "public chain" if
221 // `pub` is explicitly listed.
222 _ => {
223 self.prev_exported =
224 (orig_all_exported && item.vis == hir::Public) ||
225 self.reexports.contains(&item.id);
226 }
227 }
228
229 let public_first = self.prev_exported &&
230 self.exported_items.insert(item.id);
231
232 match item.node {
233 // Enum variants inherit from their parent, so if the enum is
234 // public all variants are public unless they're explicitly priv
235 hir::ItemEnum(ref def, _) if public_first => {
236 for variant in &def.variants {
237 self.exported_items.insert(variant.node.id);
238 self.public_items.insert(variant.node.id);
239 }
240 }
241
242 // Implementations are a little tricky to determine what's exported
243 // out of them. Here's a few cases which are currently defined:
244 //
245 // * Impls for private types do not need to export their methods
246 // (either public or private methods)
247 //
248 // * Impls for public types only have public methods exported
249 //
250 // * Public trait impls for public types must have all methods
251 // exported.
252 //
253 // * Private trait impls for public types can be ignored
254 //
255 // * Public trait impls for private types have their methods
256 // exported. I'm not entirely certain that this is the correct
257 // thing to do, but I have seen use cases of where this will cause
258 // undefined symbols at linkage time if this case is not handled.
259 //
260 // * Private trait impls for private types can be completely ignored
261 hir::ItemImpl(_, _, _, _, ref ty, ref impl_items) => {
262 let public_ty = match ty.node {
263 hir::TyPath(..) => {
264 match self.tcx.def_map.borrow().get(&ty.id).unwrap().full_def() {
265 def::DefPrimTy(..) => true,
266 def => {
267 let did = def.def_id();
268 !did.is_local() ||
269 self.exported_items.contains(&did.node)
270 }
271 }
272 }
273 _ => true,
274 };
275 let tr = self.tcx.impl_trait_ref(DefId::local(item.id));
276 let public_trait = tr.clone().map_or(false, |tr| {
277 !tr.def_id.is_local() ||
278 self.exported_items.contains(&tr.def_id.node)
279 });
280
281 if public_ty || public_trait {
282 for impl_item in impl_items {
283 match impl_item.node {
284 hir::ConstImplItem(..) => {
285 if (public_ty && impl_item.vis == hir::Public)
286 || tr.is_some() {
287 self.exported_items.insert(impl_item.id);
288 }
289 }
290 hir::MethodImplItem(ref sig, _) => {
291 let meth_public = match sig.explicit_self.node {
292 hir::SelfStatic => public_ty,
293 _ => true,
294 } && impl_item.vis == hir::Public;
295 if meth_public || tr.is_some() {
296 self.exported_items.insert(impl_item.id);
297 }
298 }
299 hir::TypeImplItem(_) => {}
300 }
301 }
302 }
303 }
304
305 // Default methods on traits are all public so long as the trait
306 // is public
307 hir::ItemTrait(_, _, _, ref trait_items) if public_first => {
308 for trait_item in trait_items {
309 debug!("trait item {}", trait_item.id);
310 self.exported_items.insert(trait_item.id);
311 }
312 }
313
314 // Struct constructors are public if the struct is all public.
315 hir::ItemStruct(ref def, _) if public_first => {
316 match def.ctor_id {
317 Some(id) => { self.exported_items.insert(id); }
318 None => {}
319 }
320 // fields can be public or private, so lets check
321 for field in &def.fields {
322 let vis = match field.node.kind {
323 hir::NamedField(_, vis) | hir::UnnamedField(vis) => vis
324 };
325 if vis == hir::Public {
326 self.public_items.insert(field.node.id);
327 }
328 }
329 }
330
331 hir::ItemTy(ref ty, _) if public_first => {
332 if let hir::TyPath(..) = ty.node {
333 match self.tcx.def_map.borrow().get(&ty.id).unwrap().full_def() {
334 def::DefPrimTy(..) | def::DefTyParam(..) => {},
335 def => {
336 let did = def.def_id();
337 if did.is_local() {
338 self.exported_items.insert(did.node);
339 }
340 }
341 }
342 }
343 }
344
345 _ => {}
346 }
347
348 visit::walk_item(self, item);
349
350 self.prev_exported = orig_all_exported;
351 self.prev_public = orig_all_pub;
352 }
353
354 fn visit_foreign_item(&mut self, a: &hir::ForeignItem) {
355 if (self.prev_exported && a.vis == hir::Public) || self.reexports.contains(&a.id) {
356 self.exported_items.insert(a.id);
357 }
358 }
359
360 fn visit_mod(&mut self, m: &hir::Mod, _sp: Span, id: ast::NodeId) {
361 // This code is here instead of in visit_item so that the
362 // crate module gets processed as well.
363 if self.prev_exported {
364 assert!(self.export_map.contains_key(&id), "wut {}", id);
365 for export in self.export_map.get(&id).unwrap() {
366 if export.def_id.is_local() {
367 self.reexports.insert(export.def_id.node);
368 }
369 }
370 }
371 visit::walk_mod(self, m)
372 }
373 }
374
375 ////////////////////////////////////////////////////////////////////////////////
376 /// The privacy visitor, where privacy checks take place (violations reported)
377 ////////////////////////////////////////////////////////////////////////////////
378
379 struct PrivacyVisitor<'a, 'tcx: 'a> {
380 tcx: &'a ty::ctxt<'tcx>,
381 curitem: ast::NodeId,
382 in_foreign: bool,
383 parents: NodeMap<ast::NodeId>,
384 external_exports: ExternalExports,
385 }
386
387 enum PrivacyResult {
388 Allowable,
389 ExternallyDenied,
390 DisallowedBy(ast::NodeId),
391 }
392
393 enum FieldName {
394 UnnamedField(usize), // index
395 // (Name, not Ident, because struct fields are not macro-hygienic)
396 NamedField(ast::Name),
397 }
398
399 impl<'a, 'tcx> PrivacyVisitor<'a, 'tcx> {
400 // used when debugging
401 fn nodestr(&self, id: ast::NodeId) -> String {
402 self.tcx.map.node_to_string(id).to_string()
403 }
404
405 // Determines whether the given definition is public from the point of view
406 // of the current item.
407 fn def_privacy(&self, did: DefId) -> PrivacyResult {
408 if !did.is_local() {
409 if self.external_exports.contains(&did) {
410 debug!("privacy - {:?} was externally exported", did);
411 return Allowable;
412 }
413 debug!("privacy - is {:?} a public method", did);
414
415 return match self.tcx.impl_or_trait_items.borrow().get(&did) {
416 Some(&ty::ConstTraitItem(ref ac)) => {
417 debug!("privacy - it's a const: {:?}", *ac);
418 match ac.container {
419 ty::TraitContainer(id) => {
420 debug!("privacy - recursing on trait {:?}", id);
421 self.def_privacy(id)
422 }
423 ty::ImplContainer(id) => {
424 match self.tcx.impl_trait_ref(id) {
425 Some(t) => {
426 debug!("privacy - impl of trait {:?}", id);
427 self.def_privacy(t.def_id)
428 }
429 None => {
430 debug!("privacy - found inherent \
431 associated constant {:?}",
432 ac.vis);
433 if ac.vis == hir::Public {
434 Allowable
435 } else {
436 ExternallyDenied
437 }
438 }
439 }
440 }
441 }
442 }
443 Some(&ty::MethodTraitItem(ref meth)) => {
444 debug!("privacy - well at least it's a method: {:?}",
445 *meth);
446 match meth.container {
447 ty::TraitContainer(id) => {
448 debug!("privacy - recursing on trait {:?}", id);
449 self.def_privacy(id)
450 }
451 ty::ImplContainer(id) => {
452 match self.tcx.impl_trait_ref(id) {
453 Some(t) => {
454 debug!("privacy - impl of trait {:?}", id);
455 self.def_privacy(t.def_id)
456 }
457 None => {
458 debug!("privacy - found a method {:?}",
459 meth.vis);
460 if meth.vis == hir::Public {
461 Allowable
462 } else {
463 ExternallyDenied
464 }
465 }
466 }
467 }
468 }
469 }
470 Some(&ty::TypeTraitItem(ref typedef)) => {
471 match typedef.container {
472 ty::TraitContainer(id) => {
473 debug!("privacy - recursing on trait {:?}", id);
474 self.def_privacy(id)
475 }
476 ty::ImplContainer(id) => {
477 match self.tcx.impl_trait_ref(id) {
478 Some(t) => {
479 debug!("privacy - impl of trait {:?}", id);
480 self.def_privacy(t.def_id)
481 }
482 None => {
483 debug!("privacy - found a typedef {:?}",
484 typedef.vis);
485 if typedef.vis == hir::Public {
486 Allowable
487 } else {
488 ExternallyDenied
489 }
490 }
491 }
492 }
493 }
494 }
495 None => {
496 debug!("privacy - nope, not even a method");
497 ExternallyDenied
498 }
499 };
500 }
501
502 debug!("privacy - local {} not public all the way down",
503 self.tcx.map.node_to_string(did.node));
504 // return quickly for things in the same module
505 if self.parents.get(&did.node) == self.parents.get(&self.curitem) {
506 debug!("privacy - same parent, we're done here");
507 return Allowable;
508 }
509
510 // We now know that there is at least one private member between the
511 // destination and the root.
512 let mut closest_private_id = did.node;
513 loop {
514 debug!("privacy - examining {}", self.nodestr(closest_private_id));
515 let vis = match self.tcx.map.find(closest_private_id) {
516 // If this item is a method, then we know for sure that it's an
517 // actual method and not a static method. The reason for this is
518 // that these cases are only hit in the ExprMethodCall
519 // expression, and ExprCall will have its path checked later
520 // (the path of the trait/impl) if it's a static method.
521 //
522 // With this information, then we can completely ignore all
523 // trait methods. The privacy violation would be if the trait
524 // couldn't get imported, not if the method couldn't be used
525 // (all trait methods are public).
526 //
527 // However, if this is an impl method, then we dictate this
528 // decision solely based on the privacy of the method
529 // invocation.
530 // FIXME(#10573) is this the right behavior? Why not consider
531 // where the method was defined?
532 Some(ast_map::NodeImplItem(ii)) => {
533 match ii.node {
534 hir::ConstImplItem(..) |
535 hir::MethodImplItem(..) => {
536 let imp = self.tcx.map
537 .get_parent_did(closest_private_id);
538 match self.tcx.impl_trait_ref(imp) {
539 Some(..) => return Allowable,
540 _ if ii.vis == hir::Public => {
541 return Allowable
542 }
543 _ => ii.vis
544 }
545 }
546 hir::TypeImplItem(_) => return Allowable,
547 }
548 }
549 Some(ast_map::NodeTraitItem(_)) => {
550 return Allowable;
551 }
552
553 // This is not a method call, extract the visibility as one
554 // would normally look at it
555 Some(ast_map::NodeItem(it)) => it.vis,
556 Some(ast_map::NodeForeignItem(_)) => {
557 self.tcx.map.get_foreign_vis(closest_private_id)
558 }
559 Some(ast_map::NodeVariant(..)) => {
560 hir::Public // need to move up a level (to the enum)
561 }
562 _ => hir::Public,
563 };
564 if vis != hir::Public { break }
565 // if we've reached the root, then everything was allowable and this
566 // access is public.
567 if closest_private_id == ast::CRATE_NODE_ID { return Allowable }
568 closest_private_id = *self.parents.get(&closest_private_id).unwrap();
569
570 // If we reached the top, then we were public all the way down and
571 // we can allow this access.
572 if closest_private_id == ast::DUMMY_NODE_ID { return Allowable }
573 }
574 debug!("privacy - closest priv {}", self.nodestr(closest_private_id));
575 if self.private_accessible(closest_private_id) {
576 Allowable
577 } else {
578 DisallowedBy(closest_private_id)
579 }
580 }
581
582 /// For a local private node in the AST, this function will determine
583 /// whether the node is accessible by the current module that iteration is
584 /// inside.
585 fn private_accessible(&self, id: ast::NodeId) -> bool {
586 let parent = *self.parents.get(&id).unwrap();
587 debug!("privacy - accessible parent {}", self.nodestr(parent));
588
589 // After finding `did`'s closest private member, we roll ourselves back
590 // to see if this private member's parent is anywhere in our ancestry.
591 // By the privacy rules, we can access all of our ancestor's private
592 // members, so that's why we test the parent, and not the did itself.
593 let mut cur = self.curitem;
594 loop {
595 debug!("privacy - questioning {}, {}", self.nodestr(cur), cur);
596 match cur {
597 // If the relevant parent is in our history, then we're allowed
598 // to look inside any of our ancestor's immediate private items,
599 // so this access is valid.
600 x if x == parent => return true,
601
602 // If we've reached the root, then we couldn't access this item
603 // in the first place
604 ast::DUMMY_NODE_ID => return false,
605
606 // Keep going up
607 _ => {}
608 }
609
610 cur = *self.parents.get(&cur).unwrap();
611 }
612 }
613
614 fn report_error(&self, result: CheckResult) -> bool {
615 match result {
616 None => true,
617 Some((span, msg, note)) => {
618 self.tcx.sess.span_err(span, &msg[..]);
619 match note {
620 Some((span, msg)) => {
621 self.tcx.sess.span_note(span, &msg[..])
622 }
623 None => {},
624 }
625 false
626 },
627 }
628 }
629
630 /// Guarantee that a particular definition is public. Returns a CheckResult
631 /// which contains any errors found. These can be reported using `report_error`.
632 /// If the result is `None`, no errors were found.
633 fn ensure_public(&self, span: Span, to_check: DefId,
634 source_did: Option<DefId>, msg: &str) -> CheckResult {
635 let id = match self.def_privacy(to_check) {
636 ExternallyDenied => {
637 return Some((span, format!("{} is private", msg), None))
638 }
639 Allowable => return None,
640 DisallowedBy(id) => id,
641 };
642
643 // If we're disallowed by a particular id, then we attempt to give a
644 // nice error message to say why it was disallowed. It was either
645 // because the item itself is private or because its parent is private
646 // and its parent isn't in our ancestry.
647 let (err_span, err_msg) = if id == source_did.unwrap_or(to_check).node {
648 return Some((span, format!("{} is private", msg), None));
649 } else {
650 (span, format!("{} is inaccessible", msg))
651 };
652 let item = match self.tcx.map.find(id) {
653 Some(ast_map::NodeItem(item)) => {
654 match item.node {
655 // If an impl disallowed this item, then this is resolve's
656 // way of saying that a struct/enum's static method was
657 // invoked, and the struct/enum itself is private. Crawl
658 // back up the chains to find the relevant struct/enum that
659 // was private.
660 hir::ItemImpl(_, _, _, _, ref ty, _) => {
661 match ty.node {
662 hir::TyPath(..) => {}
663 _ => return Some((err_span, err_msg, None)),
664 };
665 let def = self.tcx.def_map.borrow().get(&ty.id).unwrap().full_def();
666 let did = def.def_id();
667 assert!(did.is_local());
668 match self.tcx.map.get(did.node) {
669 ast_map::NodeItem(item) => item,
670 _ => self.tcx.sess.span_bug(item.span,
671 "path is not an item")
672 }
673 }
674 _ => item
675 }
676 }
677 Some(..) | None => return Some((err_span, err_msg, None)),
678 };
679 let desc = match item.node {
680 hir::ItemMod(..) => "module",
681 hir::ItemTrait(..) => "trait",
682 hir::ItemStruct(..) => "struct",
683 hir::ItemEnum(..) => "enum",
684 _ => return Some((err_span, err_msg, None))
685 };
686 let msg = format!("{} `{}` is private", desc, item.ident);
687 Some((err_span, err_msg, Some((span, msg))))
688 }
689
690 // Checks that a field is in scope.
691 fn check_field(&mut self,
692 span: Span,
693 def: ty::AdtDef<'tcx>,
694 v: ty::VariantDef<'tcx>,
695 name: FieldName) {
696 let field = match name {
697 NamedField(f_name) => {
698 debug!("privacy - check named field {} in struct {:?}", f_name, def);
699 v.field_named(f_name)
700 }
701 UnnamedField(idx) => &v.fields[idx]
702 };
703 if field.vis == hir::Public ||
704 (field.did.is_local() && self.private_accessible(field.did.node)) {
705 return
706 }
707
708 let struct_desc = match def.adt_kind() {
709 ty::AdtKind::Struct =>
710 format!("struct `{}`", self.tcx.item_path_str(def.did)),
711 // struct variant fields have inherited visibility
712 ty::AdtKind::Enum => return
713 };
714 let msg = match name {
715 NamedField(name) => format!("field `{}` of {} is private",
716 name, struct_desc),
717 UnnamedField(idx) => format!("field #{} of {} is private",
718 idx + 1, struct_desc),
719 };
720 span_err!(self.tcx.sess, span, E0451,
721 "{}", &msg[..]);
722 }
723
724 // Given the ID of a method, checks to ensure it's in scope.
725 fn check_static_method(&mut self,
726 span: Span,
727 method_id: DefId,
728 name: ast::Name) {
729 // If the method is a default method, we need to use the def_id of
730 // the default implementation.
731 let method_id = match self.tcx.impl_or_trait_item(method_id) {
732 ty::MethodTraitItem(method_type) => {
733 method_type.provided_source.unwrap_or(method_id)
734 }
735 _ => {
736 self.tcx.sess
737 .span_bug(span,
738 "got non-method item in check_static_method")
739 }
740 };
741
742 self.report_error(self.ensure_public(span,
743 method_id,
744 None,
745 &format!("method `{}`",
746 name)));
747 }
748
749 // Checks that a path is in scope.
750 fn check_path(&mut self, span: Span, path_id: ast::NodeId, last: ast::Name) {
751 debug!("privacy - path {}", self.nodestr(path_id));
752 let path_res = *self.tcx.def_map.borrow().get(&path_id).unwrap();
753 let ck = |tyname: &str| {
754 let ck_public = |def: DefId| {
755 debug!("privacy - ck_public {:?}", def);
756 let origdid = path_res.def_id();
757 self.ensure_public(span,
758 def,
759 Some(origdid),
760 &format!("{} `{}`", tyname, last))
761 };
762
763 match path_res.last_private {
764 LastMod(AllPublic) => {},
765 LastMod(DependsOn(def)) => {
766 self.report_error(ck_public(def));
767 },
768 LastImport { value_priv,
769 value_used: check_value,
770 type_priv,
771 type_used: check_type } => {
772 // This dance with found_error is because we don't want to
773 // report a privacy error twice for the same directive.
774 let found_error = match (type_priv, check_type) {
775 (Some(DependsOn(def)), Used) => {
776 !self.report_error(ck_public(def))
777 },
778 _ => false,
779 };
780 if !found_error {
781 match (value_priv, check_value) {
782 (Some(DependsOn(def)), Used) => {
783 self.report_error(ck_public(def));
784 },
785 _ => {},
786 }
787 }
788 // If an import is not used in either namespace, we still
789 // want to check that it could be legal. Therefore we check
790 // in both namespaces and only report an error if both would
791 // be illegal. We only report one error, even if it is
792 // illegal to import from both namespaces.
793 match (value_priv, check_value, type_priv, check_type) {
794 (Some(p), Unused, None, _) |
795 (None, _, Some(p), Unused) => {
796 let p = match p {
797 AllPublic => None,
798 DependsOn(def) => ck_public(def),
799 };
800 if p.is_some() {
801 self.report_error(p);
802 }
803 },
804 (Some(v), Unused, Some(t), Unused) => {
805 let v = match v {
806 AllPublic => None,
807 DependsOn(def) => ck_public(def),
808 };
809 let t = match t {
810 AllPublic => None,
811 DependsOn(def) => ck_public(def),
812 };
813 if let (Some(_), Some(t)) = (v, t) {
814 self.report_error(Some(t));
815 }
816 },
817 _ => {},
818 }
819 },
820 }
821 };
822 // FIXME(#12334) Imports can refer to definitions in both the type and
823 // value namespaces. The privacy information is aware of this, but the
824 // def map is not. Therefore the names we work out below will not always
825 // be accurate and we can get slightly wonky error messages (but type
826 // checking is always correct).
827 match path_res.full_def() {
828 def::DefFn(..) => ck("function"),
829 def::DefStatic(..) => ck("static"),
830 def::DefConst(..) => ck("const"),
831 def::DefAssociatedConst(..) => ck("associated const"),
832 def::DefVariant(..) => ck("variant"),
833 def::DefTy(_, false) => ck("type"),
834 def::DefTy(_, true) => ck("enum"),
835 def::DefTrait(..) => ck("trait"),
836 def::DefStruct(..) => ck("struct"),
837 def::DefMethod(..) => ck("method"),
838 def::DefMod(..) => ck("module"),
839 _ => {}
840 }
841 }
842
843 // Checks that a method is in scope.
844 fn check_method(&mut self, span: Span, method_def_id: DefId,
845 name: ast::Name) {
846 match self.tcx.impl_or_trait_item(method_def_id).container() {
847 ty::ImplContainer(_) => {
848 self.check_static_method(span, method_def_id, name)
849 }
850 // Trait methods are always all public. The only controlling factor
851 // is whether the trait itself is accessible or not.
852 ty::TraitContainer(trait_def_id) => {
853 self.report_error(self.ensure_public(span, trait_def_id,
854 None, "source trait"));
855 }
856 }
857 }
858 }
859
860 impl<'a, 'tcx, 'v> Visitor<'v> for PrivacyVisitor<'a, 'tcx> {
861 fn visit_item(&mut self, item: &hir::Item) {
862 if let hir::ItemUse(ref vpath) = item.node {
863 if let hir::ViewPathList(ref prefix, ref list) = vpath.node {
864 for pid in list {
865 match pid.node {
866 hir::PathListIdent { id, name, .. } => {
867 debug!("privacy - ident item {}", id);
868 self.check_path(pid.span, id, name.name);
869 }
870 hir::PathListMod { id, .. } => {
871 debug!("privacy - mod item {}", id);
872 let name = prefix.segments.last().unwrap().identifier.name;
873 self.check_path(pid.span, id, name);
874 }
875 }
876 }
877 }
878 }
879 let orig_curitem = replace(&mut self.curitem, item.id);
880 visit::walk_item(self, item);
881 self.curitem = orig_curitem;
882 }
883
884 fn visit_expr(&mut self, expr: &hir::Expr) {
885 match expr.node {
886 hir::ExprField(ref base, ident) => {
887 if let ty::TyStruct(def, _) = self.tcx.expr_ty_adjusted(&**base).sty {
888 self.check_field(expr.span,
889 def,
890 def.struct_variant(),
891 NamedField(ident.node.name));
892 }
893 }
894 hir::ExprTupField(ref base, idx) => {
895 if let ty::TyStruct(def, _) = self.tcx.expr_ty_adjusted(&**base).sty {
896 self.check_field(expr.span,
897 def,
898 def.struct_variant(),
899 UnnamedField(idx.node));
900 }
901 }
902 hir::ExprMethodCall(ident, _, _) => {
903 let method_call = ty::MethodCall::expr(expr.id);
904 let method = self.tcx.tables.borrow().method_map[&method_call];
905 debug!("(privacy checking) checking impl method");
906 self.check_method(expr.span, method.def_id, ident.node.name);
907 }
908 hir::ExprStruct(..) => {
909 let adt = self.tcx.expr_ty(expr).ty_adt_def().unwrap();
910 let variant = adt.variant_of_def(self.tcx.resolve_expr(expr));
911 // RFC 736: ensure all unmentioned fields are visible.
912 // Rather than computing the set of unmentioned fields
913 // (i.e. `all_fields - fields`), just check them all.
914 for field in &variant.fields {
915 self.check_field(expr.span, adt, variant, NamedField(field.name));
916 }
917 }
918 hir::ExprPath(..) => {
919
920 if let def::DefStruct(_) = self.tcx.resolve_expr(expr) {
921 let expr_ty = self.tcx.expr_ty(expr);
922 let def = match expr_ty.sty {
923 ty::TyBareFn(_, &ty::BareFnTy { sig: ty::Binder(ty::FnSig {
924 output: ty::FnConverging(ty), ..
925 }), ..}) => ty,
926 _ => expr_ty
927 }.ty_adt_def().unwrap();
928 let any_priv = def.struct_variant().fields.iter().any(|f| {
929 f.vis != hir::Public && (
930 !f.did.is_local() ||
931 !self.private_accessible(f.did.node))
932 });
933
934 if any_priv {
935 span_err!(self.tcx.sess, expr.span, E0450,
936 "cannot invoke tuple struct constructor with private \
937 fields");
938 }
939 }
940 }
941 _ => {}
942 }
943
944 visit::walk_expr(self, expr);
945 }
946
947 fn visit_pat(&mut self, pattern: &hir::Pat) {
948 // Foreign functions do not have their patterns mapped in the def_map,
949 // and there's nothing really relevant there anyway, so don't bother
950 // checking privacy. If you can name the type then you can pass it to an
951 // external C function anyway.
952 if self.in_foreign { return }
953
954 match pattern.node {
955 hir::PatStruct(_, ref fields, _) => {
956 let adt = self.tcx.pat_ty(pattern).ty_adt_def().unwrap();
957 let def = self.tcx.def_map.borrow().get(&pattern.id).unwrap().full_def();
958 let variant = adt.variant_of_def(def);
959 for field in fields {
960 self.check_field(pattern.span, adt, variant,
961 NamedField(field.node.ident.name));
962 }
963 }
964
965 // Patterns which bind no fields are allowable (the path is check
966 // elsewhere).
967 hir::PatEnum(_, Some(ref fields)) => {
968 match self.tcx.pat_ty(pattern).sty {
969 ty::TyStruct(def, _) => {
970 for (i, field) in fields.iter().enumerate() {
971 if let hir::PatWild(..) = field.node {
972 continue
973 }
974 self.check_field(field.span,
975 def,
976 def.struct_variant(),
977 UnnamedField(i));
978 }
979 }
980 ty::TyEnum(..) => {
981 // enum fields have no privacy at this time
982 }
983 _ => {}
984 }
985
986 }
987 _ => {}
988 }
989
990 visit::walk_pat(self, pattern);
991 }
992
993 fn visit_foreign_item(&mut self, fi: &hir::ForeignItem) {
994 self.in_foreign = true;
995 visit::walk_foreign_item(self, fi);
996 self.in_foreign = false;
997 }
998
999 fn visit_path(&mut self, path: &hir::Path, id: ast::NodeId) {
1000 self.check_path(path.span, id, path.segments.last().unwrap().identifier.name);
1001 visit::walk_path(self, path);
1002 }
1003 }
1004
1005 ////////////////////////////////////////////////////////////////////////////////
1006 /// The privacy sanity check visitor, ensures unnecessary visibility isn't here
1007 ////////////////////////////////////////////////////////////////////////////////
1008
1009 struct SanePrivacyVisitor<'a, 'tcx: 'a> {
1010 tcx: &'a ty::ctxt<'tcx>,
1011 in_fn: bool,
1012 }
1013
1014 impl<'a, 'tcx, 'v> Visitor<'v> for SanePrivacyVisitor<'a, 'tcx> {
1015 fn visit_item(&mut self, item: &hir::Item) {
1016 if self.in_fn {
1017 self.check_all_inherited(item);
1018 } else {
1019 self.check_sane_privacy(item);
1020 }
1021
1022 let in_fn = self.in_fn;
1023 let orig_in_fn = replace(&mut self.in_fn, match item.node {
1024 hir::ItemMod(..) => false, // modules turn privacy back on
1025 _ => in_fn, // otherwise we inherit
1026 });
1027 visit::walk_item(self, item);
1028 self.in_fn = orig_in_fn;
1029 }
1030
1031 fn visit_fn(&mut self, fk: visit::FnKind<'v>, fd: &'v hir::FnDecl,
1032 b: &'v hir::Block, s: Span, _: ast::NodeId) {
1033 // This catches both functions and methods
1034 let orig_in_fn = replace(&mut self.in_fn, true);
1035 visit::walk_fn(self, fk, fd, b, s);
1036 self.in_fn = orig_in_fn;
1037 }
1038 }
1039
1040 impl<'a, 'tcx> SanePrivacyVisitor<'a, 'tcx> {
1041 /// Validates all of the visibility qualifiers placed on the item given. This
1042 /// ensures that there are no extraneous qualifiers that don't actually do
1043 /// anything. In theory these qualifiers wouldn't parse, but that may happen
1044 /// later on down the road...
1045 fn check_sane_privacy(&self, item: &hir::Item) {
1046 let tcx = self.tcx;
1047 let check_inherited = |sp: Span, vis: hir::Visibility, note: &str| {
1048 if vis != hir::Inherited {
1049 span_err!(tcx.sess, sp, E0449,
1050 "unnecessary visibility qualifier");
1051 if !note.is_empty() {
1052 tcx.sess.span_note(sp, note);
1053 }
1054 }
1055 };
1056 match item.node {
1057 // implementations of traits don't need visibility qualifiers because
1058 // that's controlled by having the trait in scope.
1059 hir::ItemImpl(_, _, _, Some(..), _, ref impl_items) => {
1060 check_inherited(item.span, item.vis,
1061 "visibility qualifiers have no effect on trait \
1062 impls");
1063 for impl_item in impl_items {
1064 check_inherited(impl_item.span, impl_item.vis, "");
1065 }
1066 }
1067
1068 hir::ItemImpl(..) => {
1069 check_inherited(item.span, item.vis,
1070 "place qualifiers on individual methods instead");
1071 }
1072 hir::ItemForeignMod(..) => {
1073 check_inherited(item.span, item.vis,
1074 "place qualifiers on individual functions \
1075 instead");
1076 }
1077
1078 hir::ItemEnum(ref def, _) => {
1079 for v in &def.variants {
1080 match v.node.vis {
1081 hir::Public => {
1082 if item.vis == hir::Public {
1083 span_err!(tcx.sess, v.span, E0448,
1084 "unnecessary `pub` visibility");
1085 }
1086 }
1087 hir::Inherited => {}
1088 }
1089 }
1090 }
1091
1092 hir::ItemTrait(..) | hir::ItemDefaultImpl(..) |
1093 hir::ItemConst(..) | hir::ItemStatic(..) | hir::ItemStruct(..) |
1094 hir::ItemFn(..) | hir::ItemMod(..) | hir::ItemTy(..) |
1095 hir::ItemExternCrate(_) | hir::ItemUse(_) => {}
1096 }
1097 }
1098
1099 /// When inside of something like a function or a method, visibility has no
1100 /// control over anything so this forbids any mention of any visibility
1101 fn check_all_inherited(&self, item: &hir::Item) {
1102 let tcx = self.tcx;
1103 fn check_inherited(tcx: &ty::ctxt, sp: Span, vis: hir::Visibility) {
1104 if vis != hir::Inherited {
1105 span_err!(tcx.sess, sp, E0447,
1106 "visibility has no effect inside functions");
1107 }
1108 }
1109 let check_struct = |def: &hir::StructDef| {
1110 for f in &def.fields {
1111 match f.node.kind {
1112 hir::NamedField(_, p) => check_inherited(tcx, f.span, p),
1113 hir::UnnamedField(..) => {}
1114 }
1115 }
1116 };
1117 check_inherited(tcx, item.span, item.vis);
1118 match item.node {
1119 hir::ItemImpl(_, _, _, _, _, ref impl_items) => {
1120 for impl_item in impl_items {
1121 match impl_item.node {
1122 hir::MethodImplItem(..) => {
1123 check_inherited(tcx, impl_item.span, impl_item.vis);
1124 }
1125 _ => {}
1126 }
1127 }
1128 }
1129 hir::ItemForeignMod(ref fm) => {
1130 for i in &fm.items {
1131 check_inherited(tcx, i.span, i.vis);
1132 }
1133 }
1134 hir::ItemEnum(ref def, _) => {
1135 for v in &def.variants {
1136 check_inherited(tcx, v.span, v.node.vis);
1137 }
1138 }
1139
1140 hir::ItemStruct(ref def, _) => check_struct(&**def),
1141
1142 hir::ItemExternCrate(_) | hir::ItemUse(_) |
1143 hir::ItemTrait(..) | hir::ItemDefaultImpl(..) |
1144 hir::ItemStatic(..) | hir::ItemConst(..) |
1145 hir::ItemFn(..) | hir::ItemMod(..) | hir::ItemTy(..) => {}
1146 }
1147 }
1148 }
1149
1150 struct VisiblePrivateTypesVisitor<'a, 'tcx: 'a> {
1151 tcx: &'a ty::ctxt<'tcx>,
1152 exported_items: &'a ExportedItems,
1153 public_items: &'a PublicItems,
1154 in_variant: bool,
1155 }
1156
1157 struct CheckTypeForPrivatenessVisitor<'a, 'b: 'a, 'tcx: 'b> {
1158 inner: &'a VisiblePrivateTypesVisitor<'b, 'tcx>,
1159 /// whether the type refers to private types.
1160 contains_private: bool,
1161 /// whether we've recurred at all (i.e. if we're pointing at the
1162 /// first type on which visit_ty was called).
1163 at_outer_type: bool,
1164 // whether that first type is a public path.
1165 outer_type_is_public_path: bool,
1166 }
1167
1168 impl<'a, 'tcx> VisiblePrivateTypesVisitor<'a, 'tcx> {
1169 fn path_is_private_type(&self, path_id: ast::NodeId) -> bool {
1170 let did = match self.tcx.def_map.borrow().get(&path_id).map(|d| d.full_def()) {
1171 // `int` etc. (None doesn't seem to occur.)
1172 None | Some(def::DefPrimTy(..)) => return false,
1173 Some(def) => def.def_id(),
1174 };
1175 // A path can only be private if:
1176 // it's in this crate...
1177 if !did.is_local() {
1178 return false
1179 }
1180
1181 // .. and it corresponds to a private type in the AST (this returns
1182 // None for type parameters)
1183 match self.tcx.map.find(did.node) {
1184 Some(ast_map::NodeItem(ref item)) => item.vis != hir::Public,
1185 Some(_) | None => false,
1186 }
1187 }
1188
1189 fn trait_is_public(&self, trait_id: ast::NodeId) -> bool {
1190 // FIXME: this would preferably be using `exported_items`, but all
1191 // traits are exported currently (see `EmbargoVisitor.exported_trait`)
1192 self.public_items.contains(&trait_id)
1193 }
1194
1195 fn check_ty_param_bound(&self,
1196 ty_param_bound: &hir::TyParamBound) {
1197 if let hir::TraitTyParamBound(ref trait_ref, _) = *ty_param_bound {
1198 if !self.tcx.sess.features.borrow().visible_private_types &&
1199 self.path_is_private_type(trait_ref.trait_ref.ref_id) {
1200 let span = trait_ref.trait_ref.path.span;
1201 span_err!(self.tcx.sess, span, E0445,
1202 "private trait in exported type parameter bound");
1203 }
1204 }
1205 }
1206
1207 fn item_is_public(&self, id: &ast::NodeId, vis: hir::Visibility) -> bool {
1208 self.exported_items.contains(id) || vis == hir::Public
1209 }
1210 }
1211
1212 impl<'a, 'b, 'tcx, 'v> Visitor<'v> for CheckTypeForPrivatenessVisitor<'a, 'b, 'tcx> {
1213 fn visit_ty(&mut self, ty: &hir::Ty) {
1214 if let hir::TyPath(..) = ty.node {
1215 if self.inner.path_is_private_type(ty.id) {
1216 self.contains_private = true;
1217 // found what we're looking for so let's stop
1218 // working.
1219 return
1220 } else if self.at_outer_type {
1221 self.outer_type_is_public_path = true;
1222 }
1223 }
1224 self.at_outer_type = false;
1225 visit::walk_ty(self, ty)
1226 }
1227
1228 // don't want to recurse into [, .. expr]
1229 fn visit_expr(&mut self, _: &hir::Expr) {}
1230 }
1231
1232 impl<'a, 'tcx, 'v> Visitor<'v> for VisiblePrivateTypesVisitor<'a, 'tcx> {
1233 fn visit_item(&mut self, item: &hir::Item) {
1234 match item.node {
1235 // contents of a private mod can be reexported, so we need
1236 // to check internals.
1237 hir::ItemMod(_) => {}
1238
1239 // An `extern {}` doesn't introduce a new privacy
1240 // namespace (the contents have their own privacies).
1241 hir::ItemForeignMod(_) => {}
1242
1243 hir::ItemTrait(_, _, ref bounds, _) => {
1244 if !self.trait_is_public(item.id) {
1245 return
1246 }
1247
1248 for bound in bounds.iter() {
1249 self.check_ty_param_bound(bound)
1250 }
1251 }
1252
1253 // impls need some special handling to try to offer useful
1254 // error messages without (too many) false positives
1255 // (i.e. we could just return here to not check them at
1256 // all, or some worse estimation of whether an impl is
1257 // publicly visible).
1258 hir::ItemImpl(_, _, ref g, ref trait_ref, ref self_, ref impl_items) => {
1259 // `impl [... for] Private` is never visible.
1260 let self_contains_private;
1261 // impl [... for] Public<...>, but not `impl [... for]
1262 // Vec<Public>` or `(Public,)` etc.
1263 let self_is_public_path;
1264
1265 // check the properties of the Self type:
1266 {
1267 let mut visitor = CheckTypeForPrivatenessVisitor {
1268 inner: self,
1269 contains_private: false,
1270 at_outer_type: true,
1271 outer_type_is_public_path: false,
1272 };
1273 visitor.visit_ty(&**self_);
1274 self_contains_private = visitor.contains_private;
1275 self_is_public_path = visitor.outer_type_is_public_path;
1276 }
1277
1278 // miscellaneous info about the impl
1279
1280 // `true` iff this is `impl Private for ...`.
1281 let not_private_trait =
1282 trait_ref.as_ref().map_or(true, // no trait counts as public trait
1283 |tr| {
1284 let did = self.tcx.trait_ref_to_def_id(tr);
1285
1286 !did.is_local() || self.trait_is_public(did.node)
1287 });
1288
1289 // `true` iff this is a trait impl or at least one method is public.
1290 //
1291 // `impl Public { $( fn ...() {} )* }` is not visible.
1292 //
1293 // This is required over just using the methods' privacy
1294 // directly because we might have `impl<T: Foo<Private>> ...`,
1295 // and we shouldn't warn about the generics if all the methods
1296 // are private (because `T` won't be visible externally).
1297 let trait_or_some_public_method =
1298 trait_ref.is_some() ||
1299 impl_items.iter()
1300 .any(|impl_item| {
1301 match impl_item.node {
1302 hir::ConstImplItem(..) |
1303 hir::MethodImplItem(..) => {
1304 self.exported_items.contains(&impl_item.id)
1305 }
1306 hir::TypeImplItem(_) => false,
1307 }
1308 });
1309
1310 if !self_contains_private &&
1311 not_private_trait &&
1312 trait_or_some_public_method {
1313
1314 visit::walk_generics(self, g);
1315
1316 match *trait_ref {
1317 None => {
1318 for impl_item in impl_items {
1319 // This is where we choose whether to walk down
1320 // further into the impl to check its items. We
1321 // should only walk into public items so that we
1322 // don't erroneously report errors for private
1323 // types in private items.
1324 match impl_item.node {
1325 hir::ConstImplItem(..) |
1326 hir::MethodImplItem(..)
1327 if self.item_is_public(&impl_item.id, impl_item.vis) =>
1328 {
1329 visit::walk_impl_item(self, impl_item)
1330 }
1331 hir::TypeImplItem(..) => {
1332 visit::walk_impl_item(self, impl_item)
1333 }
1334 _ => {}
1335 }
1336 }
1337 }
1338 Some(ref tr) => {
1339 // Any private types in a trait impl fall into three
1340 // categories.
1341 // 1. mentioned in the trait definition
1342 // 2. mentioned in the type params/generics
1343 // 3. mentioned in the associated types of the impl
1344 //
1345 // Those in 1. can only occur if the trait is in
1346 // this crate and will've been warned about on the
1347 // trait definition (there's no need to warn twice
1348 // so we don't check the methods).
1349 //
1350 // Those in 2. are warned via walk_generics and this
1351 // call here.
1352 visit::walk_path(self, &tr.path);
1353
1354 // Those in 3. are warned with this call.
1355 for impl_item in impl_items {
1356 if let hir::TypeImplItem(ref ty) = impl_item.node {
1357 self.visit_ty(ty);
1358 }
1359 }
1360 }
1361 }
1362 } else if trait_ref.is_none() && self_is_public_path {
1363 // impl Public<Private> { ... }. Any public static
1364 // methods will be visible as `Public::foo`.
1365 let mut found_pub_static = false;
1366 for impl_item in impl_items {
1367 match impl_item.node {
1368 hir::ConstImplItem(..) => {
1369 if self.item_is_public(&impl_item.id, impl_item.vis) {
1370 found_pub_static = true;
1371 visit::walk_impl_item(self, impl_item);
1372 }
1373 }
1374 hir::MethodImplItem(ref sig, _) => {
1375 if sig.explicit_self.node == hir::SelfStatic &&
1376 self.item_is_public(&impl_item.id, impl_item.vis) {
1377 found_pub_static = true;
1378 visit::walk_impl_item(self, impl_item);
1379 }
1380 }
1381 _ => {}
1382 }
1383 }
1384 if found_pub_static {
1385 visit::walk_generics(self, g)
1386 }
1387 }
1388 return
1389 }
1390
1391 // `type ... = ...;` can contain private types, because
1392 // we're introducing a new name.
1393 hir::ItemTy(..) => return,
1394
1395 // not at all public, so we don't care
1396 _ if !self.item_is_public(&item.id, item.vis) => {
1397 return;
1398 }
1399
1400 _ => {}
1401 }
1402
1403 // We've carefully constructed it so that if we're here, then
1404 // any `visit_ty`'s will be called on things that are in
1405 // public signatures, i.e. things that we're interested in for
1406 // this visitor.
1407 debug!("VisiblePrivateTypesVisitor entering item {:?}", item);
1408 visit::walk_item(self, item);
1409 }
1410
1411 fn visit_generics(&mut self, generics: &hir::Generics) {
1412 for ty_param in generics.ty_params.iter() {
1413 for bound in ty_param.bounds.iter() {
1414 self.check_ty_param_bound(bound)
1415 }
1416 }
1417 for predicate in &generics.where_clause.predicates {
1418 match predicate {
1419 &hir::WherePredicate::BoundPredicate(ref bound_pred) => {
1420 for bound in bound_pred.bounds.iter() {
1421 self.check_ty_param_bound(bound)
1422 }
1423 }
1424 &hir::WherePredicate::RegionPredicate(_) => {}
1425 &hir::WherePredicate::EqPredicate(ref eq_pred) => {
1426 self.visit_ty(&*eq_pred.ty);
1427 }
1428 }
1429 }
1430 }
1431
1432 fn visit_foreign_item(&mut self, item: &hir::ForeignItem) {
1433 if self.exported_items.contains(&item.id) {
1434 visit::walk_foreign_item(self, item)
1435 }
1436 }
1437
1438 fn visit_ty(&mut self, t: &hir::Ty) {
1439 debug!("VisiblePrivateTypesVisitor checking ty {:?}", t);
1440 if let hir::TyPath(_, ref p) = t.node {
1441 if !self.tcx.sess.features.borrow().visible_private_types &&
1442 self.path_is_private_type(t.id) {
1443 span_err!(self.tcx.sess, p.span, E0446,
1444 "private type in exported type signature");
1445 }
1446 }
1447 visit::walk_ty(self, t)
1448 }
1449
1450 fn visit_variant(&mut self, v: &hir::Variant, g: &hir::Generics) {
1451 if self.exported_items.contains(&v.node.id) {
1452 self.in_variant = true;
1453 visit::walk_variant(self, v, g);
1454 self.in_variant = false;
1455 }
1456 }
1457
1458 fn visit_struct_field(&mut self, s: &hir::StructField) {
1459 match s.node.kind {
1460 hir::NamedField(_, vis) if vis == hir::Public || self.in_variant => {
1461 visit::walk_struct_field(self, s);
1462 }
1463 _ => {}
1464 }
1465 }
1466
1467
1468 // we don't need to introspect into these at all: an
1469 // expression/block context can't possibly contain exported things.
1470 // (Making them no-ops stops us from traversing the whole AST without
1471 // having to be super careful about our `walk_...` calls above.)
1472 fn visit_block(&mut self, _: &hir::Block) {}
1473 fn visit_expr(&mut self, _: &hir::Expr) {}
1474 }
1475
1476 pub fn check_crate(tcx: &ty::ctxt,
1477 export_map: &def::ExportMap,
1478 external_exports: ExternalExports)
1479 -> (ExportedItems, PublicItems) {
1480 let krate = tcx.map.krate();
1481
1482 // Figure out who everyone's parent is
1483 let mut visitor = ParentVisitor {
1484 parents: NodeMap(),
1485 curparent: ast::DUMMY_NODE_ID,
1486 };
1487 visit::walk_crate(&mut visitor, krate);
1488
1489 // Use the parent map to check the privacy of everything
1490 let mut visitor = PrivacyVisitor {
1491 curitem: ast::DUMMY_NODE_ID,
1492 in_foreign: false,
1493 tcx: tcx,
1494 parents: visitor.parents,
1495 external_exports: external_exports,
1496 };
1497 visit::walk_crate(&mut visitor, krate);
1498
1499 // Sanity check to make sure that all privacy usage and controls are
1500 // reasonable.
1501 let mut visitor = SanePrivacyVisitor {
1502 in_fn: false,
1503 tcx: tcx,
1504 };
1505 visit::walk_crate(&mut visitor, krate);
1506
1507 tcx.sess.abort_if_errors();
1508
1509 // Build up a set of all exported items in the AST. This is a set of all
1510 // items which are reachable from external crates based on visibility.
1511 let mut visitor = EmbargoVisitor {
1512 tcx: tcx,
1513 exported_items: NodeSet(),
1514 public_items: NodeSet(),
1515 reexports: NodeSet(),
1516 export_map: export_map,
1517 prev_exported: true,
1518 prev_public: true,
1519 };
1520 loop {
1521 let before = visitor.exported_items.len();
1522 visit::walk_crate(&mut visitor, krate);
1523 if before == visitor.exported_items.len() {
1524 break
1525 }
1526 }
1527
1528 let EmbargoVisitor { exported_items, public_items, .. } = visitor;
1529
1530 {
1531 let mut visitor = VisiblePrivateTypesVisitor {
1532 tcx: tcx,
1533 exported_items: &exported_items,
1534 public_items: &public_items,
1535 in_variant: false,
1536 };
1537 visit::walk_crate(&mut visitor, krate);
1538 }
1539 return (exported_items, public_items);
1540 }