]> git.proxmox.com Git - rustc.git/blob - src/llvm/docs/tutorial/OCamlLangImpl2.html
Imported Upstream version 0.6
[rustc.git] / src / llvm / docs / tutorial / OCamlLangImpl2.html
1 <!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
2 "http://www.w3.org/TR/html4/strict.dtd">
3
4 <html>
5 <head>
6 <title>Kaleidoscope: Implementing a Parser and AST</title>
7 <meta http-equiv="Content-Type" content="text/html; charset=utf-8">
8 <meta name="author" content="Chris Lattner">
9 <meta name="author" content="Erick Tryzelaar">
10 <link rel="stylesheet" href="../_static/llvm.css" type="text/css">
11 </head>
12
13 <body>
14
15 <h1>Kaleidoscope: Implementing a Parser and AST</h1>
16
17 <ul>
18 <li><a href="index.html">Up to Tutorial Index</a></li>
19 <li>Chapter 2
20 <ol>
21 <li><a href="#intro">Chapter 2 Introduction</a></li>
22 <li><a href="#ast">The Abstract Syntax Tree (AST)</a></li>
23 <li><a href="#parserbasics">Parser Basics</a></li>
24 <li><a href="#parserprimexprs">Basic Expression Parsing</a></li>
25 <li><a href="#parserbinops">Binary Expression Parsing</a></li>
26 <li><a href="#parsertop">Parsing the Rest</a></li>
27 <li><a href="#driver">The Driver</a></li>
28 <li><a href="#conclusions">Conclusions</a></li>
29 <li><a href="#code">Full Code Listing</a></li>
30 </ol>
31 </li>
32 <li><a href="OCamlLangImpl3.html">Chapter 3</a>: Code generation to LLVM IR</li>
33 </ul>
34
35 <div class="doc_author">
36 <p>
37 Written by <a href="mailto:sabre@nondot.org">Chris Lattner</a>
38 and <a href="mailto:idadesub@users.sourceforge.net">Erick Tryzelaar</a>
39 </p>
40 </div>
41
42 <!-- *********************************************************************** -->
43 <h2><a name="intro">Chapter 2 Introduction</a></h2>
44 <!-- *********************************************************************** -->
45
46 <div>
47
48 <p>Welcome to Chapter 2 of the "<a href="index.html">Implementing a language
49 with LLVM in Objective Caml</a>" tutorial. This chapter shows you how to use
50 the lexer, built in <a href="OCamlLangImpl1.html">Chapter 1</a>, to build a
51 full <a href="http://en.wikipedia.org/wiki/Parsing">parser</a> for our
52 Kaleidoscope language. Once we have a parser, we'll define and build an <a
53 href="http://en.wikipedia.org/wiki/Abstract_syntax_tree">Abstract Syntax
54 Tree</a> (AST).</p>
55
56 <p>The parser we will build uses a combination of <a
57 href="http://en.wikipedia.org/wiki/Recursive_descent_parser">Recursive Descent
58 Parsing</a> and <a href=
59 "http://en.wikipedia.org/wiki/Operator-precedence_parser">Operator-Precedence
60 Parsing</a> to parse the Kaleidoscope language (the latter for
61 binary expressions and the former for everything else). Before we get to
62 parsing though, lets talk about the output of the parser: the Abstract Syntax
63 Tree.</p>
64
65 </div>
66
67 <!-- *********************************************************************** -->
68 <h2><a name="ast">The Abstract Syntax Tree (AST)</a></h2>
69 <!-- *********************************************************************** -->
70
71 <div>
72
73 <p>The AST for a program captures its behavior in such a way that it is easy for
74 later stages of the compiler (e.g. code generation) to interpret. We basically
75 want one object for each construct in the language, and the AST should closely
76 model the language. In Kaleidoscope, we have expressions, a prototype, and a
77 function object. We'll start with expressions first:</p>
78
79 <div class="doc_code">
80 <pre>
81 (* expr - Base type for all expression nodes. *)
82 type expr =
83 (* variant for numeric literals like "1.0". *)
84 | Number of float
85 </pre>
86 </div>
87
88 <p>The code above shows the definition of the base ExprAST class and one
89 subclass which we use for numeric literals. The important thing to note about
90 this code is that the Number variant captures the numeric value of the
91 literal as an instance variable. This allows later phases of the compiler to
92 know what the stored numeric value is.</p>
93
94 <p>Right now we only create the AST, so there are no useful functions on
95 them. It would be very easy to add a function to pretty print the code,
96 for example. Here are the other expression AST node definitions that we'll use
97 in the basic form of the Kaleidoscope language:
98 </p>
99
100 <div class="doc_code">
101 <pre>
102 (* variant for referencing a variable, like "a". *)
103 | Variable of string
104
105 (* variant for a binary operator. *)
106 | Binary of char * expr * expr
107
108 (* variant for function calls. *)
109 | Call of string * expr array
110 </pre>
111 </div>
112
113 <p>This is all (intentionally) rather straight-forward: variables capture the
114 variable name, binary operators capture their opcode (e.g. '+'), and calls
115 capture a function name as well as a list of any argument expressions. One thing
116 that is nice about our AST is that it captures the language features without
117 talking about the syntax of the language. Note that there is no discussion about
118 precedence of binary operators, lexical structure, etc.</p>
119
120 <p>For our basic language, these are all of the expression nodes we'll define.
121 Because it doesn't have conditional control flow, it isn't Turing-complete;
122 we'll fix that in a later installment. The two things we need next are a way
123 to talk about the interface to a function, and a way to talk about functions
124 themselves:</p>
125
126 <div class="doc_code">
127 <pre>
128 (* proto - This type represents the "prototype" for a function, which captures
129 * its name, and its argument names (thus implicitly the number of arguments the
130 * function takes). *)
131 type proto = Prototype of string * string array
132
133 (* func - This type represents a function definition itself. *)
134 type func = Function of proto * expr
135 </pre>
136 </div>
137
138 <p>In Kaleidoscope, functions are typed with just a count of their arguments.
139 Since all values are double precision floating point, the type of each argument
140 doesn't need to be stored anywhere. In a more aggressive and realistic
141 language, the "expr" variants would probably have a type field.</p>
142
143 <p>With this scaffolding, we can now talk about parsing expressions and function
144 bodies in Kaleidoscope.</p>
145
146 </div>
147
148 <!-- *********************************************************************** -->
149 <h2><a name="parserbasics">Parser Basics</a></h2>
150 <!-- *********************************************************************** -->
151
152 <div>
153
154 <p>Now that we have an AST to build, we need to define the parser code to build
155 it. The idea here is that we want to parse something like "x+y" (which is
156 returned as three tokens by the lexer) into an AST that could be generated with
157 calls like this:</p>
158
159 <div class="doc_code">
160 <pre>
161 let x = Variable "x" in
162 let y = Variable "y" in
163 let result = Binary ('+', x, y) in
164 ...
165 </pre>
166 </div>
167
168 <p>
169 The error handling routines make use of the builtin <tt>Stream.Failure</tt> and
170 <tt>Stream.Error</tt>s. <tt>Stream.Failure</tt> is raised when the parser is
171 unable to find any matching token in the first position of a pattern.
172 <tt>Stream.Error</tt> is raised when the first token matches, but the rest do
173 not. The error recovery in our parser will not be the best and is not
174 particular user-friendly, but it will be enough for our tutorial. These
175 exceptions make it easier to handle errors in routines that have various return
176 types.</p>
177
178 <p>With these basic types and exceptions, we can implement the first
179 piece of our grammar: numeric literals.</p>
180
181 </div>
182
183 <!-- *********************************************************************** -->
184 <h2><a name="parserprimexprs">Basic Expression Parsing</a></h2>
185 <!-- *********************************************************************** -->
186
187 <div>
188
189 <p>We start with numeric literals, because they are the simplest to process.
190 For each production in our grammar, we'll define a function which parses that
191 production. We call this class of expressions "primary" expressions, for
192 reasons that will become more clear <a href="OCamlLangImpl6.html#unary">
193 later in the tutorial</a>. In order to parse an arbitrary primary expression,
194 we need to determine what sort of expression it is. For numeric literals, we
195 have:</p>
196
197 <div class="doc_code">
198 <pre>
199 (* primary
200 * ::= identifier
201 * ::= numberexpr
202 * ::= parenexpr *)
203 parse_primary = parser
204 (* numberexpr ::= number *)
205 | [&lt; 'Token.Number n &gt;] -&gt; Ast.Number n
206 </pre>
207 </div>
208
209 <p>This routine is very simple: it expects to be called when the current token
210 is a <tt>Token.Number</tt> token. It takes the current number value, creates
211 a <tt>Ast.Number</tt> node, advances the lexer to the next token, and finally
212 returns.</p>
213
214 <p>There are some interesting aspects to this. The most important one is that
215 this routine eats all of the tokens that correspond to the production and
216 returns the lexer buffer with the next token (which is not part of the grammar
217 production) ready to go. This is a fairly standard way to go for recursive
218 descent parsers. For a better example, the parenthesis operator is defined like
219 this:</p>
220
221 <div class="doc_code">
222 <pre>
223 (* parenexpr ::= '(' expression ')' *)
224 | [&lt; 'Token.Kwd '('; e=parse_expr; 'Token.Kwd ')' ?? "expected ')'" &gt;] -&gt; e
225 </pre>
226 </div>
227
228 <p>This function illustrates a number of interesting things about the
229 parser:</p>
230
231 <p>
232 1) It shows how we use the <tt>Stream.Error</tt> exception. When called, this
233 function expects that the current token is a '(' token, but after parsing the
234 subexpression, it is possible that there is no ')' waiting. For example, if
235 the user types in "(4 x" instead of "(4)", the parser should emit an error.
236 Because errors can occur, the parser needs a way to indicate that they
237 happened. In our parser, we use the camlp4 shortcut syntax <tt>token ?? "parse
238 error"</tt>, where if the token before the <tt>??</tt> does not match, then
239 <tt>Stream.Error "parse error"</tt> will be raised.</p>
240
241 <p>2) Another interesting aspect of this function is that it uses recursion by
242 calling <tt>Parser.parse_primary</tt> (we will soon see that
243 <tt>Parser.parse_primary</tt> can call <tt>Parser.parse_primary</tt>). This is
244 powerful because it allows us to handle recursive grammars, and keeps each
245 production very simple. Note that parentheses do not cause construction of AST
246 nodes themselves. While we could do it this way, the most important role of
247 parentheses are to guide the parser and provide grouping. Once the parser
248 constructs the AST, parentheses are not needed.</p>
249
250 <p>The next simple production is for handling variable references and function
251 calls:</p>
252
253 <div class="doc_code">
254 <pre>
255 (* identifierexpr
256 * ::= identifier
257 * ::= identifier '(' argumentexpr ')' *)
258 | [&lt; 'Token.Ident id; stream &gt;] -&gt;
259 let rec parse_args accumulator = parser
260 | [&lt; e=parse_expr; stream &gt;] -&gt;
261 begin parser
262 | [&lt; 'Token.Kwd ','; e=parse_args (e :: accumulator) &gt;] -&gt; e
263 | [&lt; &gt;] -&gt; e :: accumulator
264 end stream
265 | [&lt; &gt;] -&gt; accumulator
266 in
267 let rec parse_ident id = parser
268 (* Call. *)
269 | [&lt; 'Token.Kwd '(';
270 args=parse_args [];
271 'Token.Kwd ')' ?? "expected ')'"&gt;] -&gt;
272 Ast.Call (id, Array.of_list (List.rev args))
273
274 (* Simple variable ref. *)
275 | [&lt; &gt;] -&gt; Ast.Variable id
276 in
277 parse_ident id stream
278 </pre>
279 </div>
280
281 <p>This routine follows the same style as the other routines. (It expects to be
282 called if the current token is a <tt>Token.Ident</tt> token). It also has
283 recursion and error handling. One interesting aspect of this is that it uses
284 <em>look-ahead</em> to determine if the current identifier is a stand alone
285 variable reference or if it is a function call expression. It handles this by
286 checking to see if the token after the identifier is a '(' token, constructing
287 either a <tt>Ast.Variable</tt> or <tt>Ast.Call</tt> node as appropriate.
288 </p>
289
290 <p>We finish up by raising an exception if we received a token we didn't
291 expect:</p>
292
293 <div class="doc_code">
294 <pre>
295 | [&lt; &gt;] -&gt; raise (Stream.Error "unknown token when expecting an expression.")
296 </pre>
297 </div>
298
299 <p>Now that basic expressions are handled, we need to handle binary expressions.
300 They are a bit more complex.</p>
301
302 </div>
303
304 <!-- *********************************************************************** -->
305 <h2><a name="parserbinops">Binary Expression Parsing</a></h2>
306 <!-- *********************************************************************** -->
307
308 <div>
309
310 <p>Binary expressions are significantly harder to parse because they are often
311 ambiguous. For example, when given the string "x+y*z", the parser can choose
312 to parse it as either "(x+y)*z" or "x+(y*z)". With common definitions from
313 mathematics, we expect the later parse, because "*" (multiplication) has
314 higher <em>precedence</em> than "+" (addition).</p>
315
316 <p>There are many ways to handle this, but an elegant and efficient way is to
317 use <a href=
318 "http://en.wikipedia.org/wiki/Operator-precedence_parser">Operator-Precedence
319 Parsing</a>. This parsing technique uses the precedence of binary operators to
320 guide recursion. To start with, we need a table of precedences:</p>
321
322 <div class="doc_code">
323 <pre>
324 (* binop_precedence - This holds the precedence for each binary operator that is
325 * defined *)
326 let binop_precedence:(char, int) Hashtbl.t = Hashtbl.create 10
327
328 (* precedence - Get the precedence of the pending binary operator token. *)
329 let precedence c = try Hashtbl.find binop_precedence c with Not_found -&gt; -1
330
331 ...
332
333 let main () =
334 (* Install standard binary operators.
335 * 1 is the lowest precedence. *)
336 Hashtbl.add Parser.binop_precedence '&lt;' 10;
337 Hashtbl.add Parser.binop_precedence '+' 20;
338 Hashtbl.add Parser.binop_precedence '-' 20;
339 Hashtbl.add Parser.binop_precedence '*' 40; (* highest. *)
340 ...
341 </pre>
342 </div>
343
344 <p>For the basic form of Kaleidoscope, we will only support 4 binary operators
345 (this can obviously be extended by you, our brave and intrepid reader). The
346 <tt>Parser.precedence</tt> function returns the precedence for the current
347 token, or -1 if the token is not a binary operator. Having a <tt>Hashtbl.t</tt>
348 makes it easy to add new operators and makes it clear that the algorithm doesn't
349 depend on the specific operators involved, but it would be easy enough to
350 eliminate the <tt>Hashtbl.t</tt> and do the comparisons in the
351 <tt>Parser.precedence</tt> function. (Or just use a fixed-size array).</p>
352
353 <p>With the helper above defined, we can now start parsing binary expressions.
354 The basic idea of operator precedence parsing is to break down an expression
355 with potentially ambiguous binary operators into pieces. Consider ,for example,
356 the expression "a+b+(c+d)*e*f+g". Operator precedence parsing considers this
357 as a stream of primary expressions separated by binary operators. As such,
358 it will first parse the leading primary expression "a", then it will see the
359 pairs [+, b] [+, (c+d)] [*, e] [*, f] and [+, g]. Note that because parentheses
360 are primary expressions, the binary expression parser doesn't need to worry
361 about nested subexpressions like (c+d) at all.
362 </p>
363
364 <p>
365 To start, an expression is a primary expression potentially followed by a
366 sequence of [binop,primaryexpr] pairs:</p>
367
368 <div class="doc_code">
369 <pre>
370 (* expression
371 * ::= primary binoprhs *)
372 and parse_expr = parser
373 | [&lt; lhs=parse_primary; stream &gt;] -&gt; parse_bin_rhs 0 lhs stream
374 </pre>
375 </div>
376
377 <p><tt>Parser.parse_bin_rhs</tt> is the function that parses the sequence of
378 pairs for us. It takes a precedence and a pointer to an expression for the part
379 that has been parsed so far. Note that "x" is a perfectly valid expression: As
380 such, "binoprhs" is allowed to be empty, in which case it returns the expression
381 that is passed into it. In our example above, the code passes the expression for
382 "a" into <tt>Parser.parse_bin_rhs</tt> and the current token is "+".</p>
383
384 <p>The precedence value passed into <tt>Parser.parse_bin_rhs</tt> indicates the
385 <em>minimal operator precedence</em> that the function is allowed to eat. For
386 example, if the current pair stream is [+, x] and <tt>Parser.parse_bin_rhs</tt>
387 is passed in a precedence of 40, it will not consume any tokens (because the
388 precedence of '+' is only 20). With this in mind, <tt>Parser.parse_bin_rhs</tt>
389 starts with:</p>
390
391 <div class="doc_code">
392 <pre>
393 (* binoprhs
394 * ::= ('+' primary)* *)
395 and parse_bin_rhs expr_prec lhs stream =
396 match Stream.peek stream with
397 (* If this is a binop, find its precedence. *)
398 | Some (Token.Kwd c) when Hashtbl.mem binop_precedence c -&gt;
399 let token_prec = precedence c in
400
401 (* If this is a binop that binds at least as tightly as the current binop,
402 * consume it, otherwise we are done. *)
403 if token_prec &lt; expr_prec then lhs else begin
404 </pre>
405 </div>
406
407 <p>This code gets the precedence of the current token and checks to see if if is
408 too low. Because we defined invalid tokens to have a precedence of -1, this
409 check implicitly knows that the pair-stream ends when the token stream runs out
410 of binary operators. If this check succeeds, we know that the token is a binary
411 operator and that it will be included in this expression:</p>
412
413 <div class="doc_code">
414 <pre>
415 (* Eat the binop. *)
416 Stream.junk stream;
417
418 (* Okay, we know this is a binop. *)
419 let rhs =
420 match Stream.peek stream with
421 | Some (Token.Kwd c2) -&gt;
422 </pre>
423 </div>
424
425 <p>As such, this code eats (and remembers) the binary operator and then parses
426 the primary expression that follows. This builds up the whole pair, the first of
427 which is [+, b] for the running example.</p>
428
429 <p>Now that we parsed the left-hand side of an expression and one pair of the
430 RHS sequence, we have to decide which way the expression associates. In
431 particular, we could have "(a+b) binop unparsed" or "a + (b binop unparsed)".
432 To determine this, we look ahead at "binop" to determine its precedence and
433 compare it to BinOp's precedence (which is '+' in this case):</p>
434
435 <div class="doc_code">
436 <pre>
437 (* If BinOp binds less tightly with rhs than the operator after
438 * rhs, let the pending operator take rhs as its lhs. *)
439 let next_prec = precedence c2 in
440 if token_prec &lt; next_prec
441 </pre>
442 </div>
443
444 <p>If the precedence of the binop to the right of "RHS" is lower or equal to the
445 precedence of our current operator, then we know that the parentheses associate
446 as "(a+b) binop ...". In our example, the current operator is "+" and the next
447 operator is "+", we know that they have the same precedence. In this case we'll
448 create the AST node for "a+b", and then continue parsing:</p>
449
450 <div class="doc_code">
451 <pre>
452 ... if body omitted ...
453 in
454
455 (* Merge lhs/rhs. *)
456 let lhs = Ast.Binary (c, lhs, rhs) in
457 parse_bin_rhs expr_prec lhs stream
458 end
459 </pre>
460 </div>
461
462 <p>In our example above, this will turn "a+b+" into "(a+b)" and execute the next
463 iteration of the loop, with "+" as the current token. The code above will eat,
464 remember, and parse "(c+d)" as the primary expression, which makes the
465 current pair equal to [+, (c+d)]. It will then evaluate the 'if' conditional above with
466 "*" as the binop to the right of the primary. In this case, the precedence of "*" is
467 higher than the precedence of "+" so the if condition will be entered.</p>
468
469 <p>The critical question left here is "how can the if condition parse the right
470 hand side in full"? In particular, to build the AST correctly for our example,
471 it needs to get all of "(c+d)*e*f" as the RHS expression variable. The code to
472 do this is surprisingly simple (code from the above two blocks duplicated for
473 context):</p>
474
475 <div class="doc_code">
476 <pre>
477 match Stream.peek stream with
478 | Some (Token.Kwd c2) -&gt;
479 (* If BinOp binds less tightly with rhs than the operator after
480 * rhs, let the pending operator take rhs as its lhs. *)
481 if token_prec &lt; precedence c2
482 then <b>parse_bin_rhs (token_prec + 1) rhs stream</b>
483 else rhs
484 | _ -&gt; rhs
485 in
486
487 (* Merge lhs/rhs. *)
488 let lhs = Ast.Binary (c, lhs, rhs) in
489 parse_bin_rhs expr_prec lhs stream
490 end
491 </pre>
492 </div>
493
494 <p>At this point, we know that the binary operator to the RHS of our primary
495 has higher precedence than the binop we are currently parsing. As such, we know
496 that any sequence of pairs whose operators are all higher precedence than "+"
497 should be parsed together and returned as "RHS". To do this, we recursively
498 invoke the <tt>Parser.parse_bin_rhs</tt> function specifying "token_prec+1" as
499 the minimum precedence required for it to continue. In our example above, this
500 will cause it to return the AST node for "(c+d)*e*f" as RHS, which is then set
501 as the RHS of the '+' expression.</p>
502
503 <p>Finally, on the next iteration of the while loop, the "+g" piece is parsed
504 and added to the AST. With this little bit of code (14 non-trivial lines), we
505 correctly handle fully general binary expression parsing in a very elegant way.
506 This was a whirlwind tour of this code, and it is somewhat subtle. I recommend
507 running through it with a few tough examples to see how it works.
508 </p>
509
510 <p>This wraps up handling of expressions. At this point, we can point the
511 parser at an arbitrary token stream and build an expression from it, stopping
512 at the first token that is not part of the expression. Next up we need to
513 handle function definitions, etc.</p>
514
515 </div>
516
517 <!-- *********************************************************************** -->
518 <h2><a name="parsertop">Parsing the Rest</a></h2>
519 <!-- *********************************************************************** -->
520
521 <div>
522
523 <p>
524 The next thing missing is handling of function prototypes. In Kaleidoscope,
525 these are used both for 'extern' function declarations as well as function body
526 definitions. The code to do this is straight-forward and not very interesting
527 (once you've survived expressions):
528 </p>
529
530 <div class="doc_code">
531 <pre>
532 (* prototype
533 * ::= id '(' id* ')' *)
534 let parse_prototype =
535 let rec parse_args accumulator = parser
536 | [&lt; 'Token.Ident id; e=parse_args (id::accumulator) &gt;] -&gt; e
537 | [&lt; &gt;] -&gt; accumulator
538 in
539
540 parser
541 | [&lt; 'Token.Ident id;
542 'Token.Kwd '(' ?? "expected '(' in prototype";
543 args=parse_args [];
544 'Token.Kwd ')' ?? "expected ')' in prototype" &gt;] -&gt;
545 (* success. *)
546 Ast.Prototype (id, Array.of_list (List.rev args))
547
548 | [&lt; &gt;] -&gt;
549 raise (Stream.Error "expected function name in prototype")
550 </pre>
551 </div>
552
553 <p>Given this, a function definition is very simple, just a prototype plus
554 an expression to implement the body:</p>
555
556 <div class="doc_code">
557 <pre>
558 (* definition ::= 'def' prototype expression *)
559 let parse_definition = parser
560 | [&lt; 'Token.Def; p=parse_prototype; e=parse_expr &gt;] -&gt;
561 Ast.Function (p, e)
562 </pre>
563 </div>
564
565 <p>In addition, we support 'extern' to declare functions like 'sin' and 'cos' as
566 well as to support forward declaration of user functions. These 'extern's are just
567 prototypes with no body:</p>
568
569 <div class="doc_code">
570 <pre>
571 (* external ::= 'extern' prototype *)
572 let parse_extern = parser
573 | [&lt; 'Token.Extern; e=parse_prototype &gt;] -&gt; e
574 </pre>
575 </div>
576
577 <p>Finally, we'll also let the user type in arbitrary top-level expressions and
578 evaluate them on the fly. We will handle this by defining anonymous nullary
579 (zero argument) functions for them:</p>
580
581 <div class="doc_code">
582 <pre>
583 (* toplevelexpr ::= expression *)
584 let parse_toplevel = parser
585 | [&lt; e=parse_expr &gt;] -&gt;
586 (* Make an anonymous proto. *)
587 Ast.Function (Ast.Prototype ("", [||]), e)
588 </pre>
589 </div>
590
591 <p>Now that we have all the pieces, let's build a little driver that will let us
592 actually <em>execute</em> this code we've built!</p>
593
594 </div>
595
596 <!-- *********************************************************************** -->
597 <h2><a name="driver">The Driver</a></h2>
598 <!-- *********************************************************************** -->
599
600 <div>
601
602 <p>The driver for this simply invokes all of the parsing pieces with a top-level
603 dispatch loop. There isn't much interesting here, so I'll just include the
604 top-level loop. See <a href="#code">below</a> for full code in the "Top-Level
605 Parsing" section.</p>
606
607 <div class="doc_code">
608 <pre>
609 (* top ::= definition | external | expression | ';' *)
610 let rec main_loop stream =
611 match Stream.peek stream with
612 | None -&gt; ()
613
614 (* ignore top-level semicolons. *)
615 | Some (Token.Kwd ';') -&gt;
616 Stream.junk stream;
617 main_loop stream
618
619 | Some token -&gt;
620 begin
621 try match token with
622 | Token.Def -&gt;
623 ignore(Parser.parse_definition stream);
624 print_endline "parsed a function definition.";
625 | Token.Extern -&gt;
626 ignore(Parser.parse_extern stream);
627 print_endline "parsed an extern.";
628 | _ -&gt;
629 (* Evaluate a top-level expression into an anonymous function. *)
630 ignore(Parser.parse_toplevel stream);
631 print_endline "parsed a top-level expr";
632 with Stream.Error s -&gt;
633 (* Skip token for error recovery. *)
634 Stream.junk stream;
635 print_endline s;
636 end;
637 print_string "ready&gt; "; flush stdout;
638 main_loop stream
639 </pre>
640 </div>
641
642 <p>The most interesting part of this is that we ignore top-level semicolons.
643 Why is this, you ask? The basic reason is that if you type "4 + 5" at the
644 command line, the parser doesn't know whether that is the end of what you will type
645 or not. For example, on the next line you could type "def foo..." in which case
646 4+5 is the end of a top-level expression. Alternatively you could type "* 6",
647 which would continue the expression. Having top-level semicolons allows you to
648 type "4+5;", and the parser will know you are done.</p>
649
650 </div>
651
652 <!-- *********************************************************************** -->
653 <h2><a name="conclusions">Conclusions</a></h2>
654 <!-- *********************************************************************** -->
655
656 <div>
657
658 <p>With just under 300 lines of commented code (240 lines of non-comment,
659 non-blank code), we fully defined our minimal language, including a lexer,
660 parser, and AST builder. With this done, the executable will validate
661 Kaleidoscope code and tell us if it is grammatically invalid. For
662 example, here is a sample interaction:</p>
663
664 <div class="doc_code">
665 <pre>
666 $ <b>./toy.byte</b>
667 ready&gt; <b>def foo(x y) x+foo(y, 4.0);</b>
668 Parsed a function definition.
669 ready&gt; <b>def foo(x y) x+y y;</b>
670 Parsed a function definition.
671 Parsed a top-level expr
672 ready&gt; <b>def foo(x y) x+y );</b>
673 Parsed a function definition.
674 Error: unknown token when expecting an expression
675 ready&gt; <b>extern sin(a);</b>
676 ready&gt; Parsed an extern
677 ready&gt; <b>^D</b>
678 $
679 </pre>
680 </div>
681
682 <p>There is a lot of room for extension here. You can define new AST nodes,
683 extend the language in many ways, etc. In the <a href="OCamlLangImpl3.html">
684 next installment</a>, we will describe how to generate LLVM Intermediate
685 Representation (IR) from the AST.</p>
686
687 </div>
688
689 <!-- *********************************************************************** -->
690 <h2><a name="code">Full Code Listing</a></h2>
691 <!-- *********************************************************************** -->
692
693 <div>
694
695 <p>
696 Here is the complete code listing for this and the previous chapter.
697 Note that it is fully self-contained: you don't need LLVM or any external
698 libraries at all for this. (Besides the ocaml standard libraries, of
699 course.) To build this, just compile with:</p>
700
701 <div class="doc_code">
702 <pre>
703 # Compile
704 ocamlbuild toy.byte
705 # Run
706 ./toy.byte
707 </pre>
708 </div>
709
710 <p>Here is the code:</p>
711
712 <dl>
713 <dt>_tags:</dt>
714 <dd class="doc_code">
715 <pre>
716 &lt;{lexer,parser}.ml&gt;: use_camlp4, pp(camlp4of)
717 </pre>
718 </dd>
719
720 <dt>token.ml:</dt>
721 <dd class="doc_code">
722 <pre>
723 (*===----------------------------------------------------------------------===
724 * Lexer Tokens
725 *===----------------------------------------------------------------------===*)
726
727 (* The lexer returns these 'Kwd' if it is an unknown character, otherwise one of
728 * these others for known things. *)
729 type token =
730 (* commands *)
731 | Def | Extern
732
733 (* primary *)
734 | Ident of string | Number of float
735
736 (* unknown *)
737 | Kwd of char
738 </pre>
739 </dd>
740
741 <dt>lexer.ml:</dt>
742 <dd class="doc_code">
743 <pre>
744 (*===----------------------------------------------------------------------===
745 * Lexer
746 *===----------------------------------------------------------------------===*)
747
748 let rec lex = parser
749 (* Skip any whitespace. *)
750 | [&lt; ' (' ' | '\n' | '\r' | '\t'); stream &gt;] -&gt; lex stream
751
752 (* identifier: [a-zA-Z][a-zA-Z0-9] *)
753 | [&lt; ' ('A' .. 'Z' | 'a' .. 'z' as c); stream &gt;] -&gt;
754 let buffer = Buffer.create 1 in
755 Buffer.add_char buffer c;
756 lex_ident buffer stream
757
758 (* number: [0-9.]+ *)
759 | [&lt; ' ('0' .. '9' as c); stream &gt;] -&gt;
760 let buffer = Buffer.create 1 in
761 Buffer.add_char buffer c;
762 lex_number buffer stream
763
764 (* Comment until end of line. *)
765 | [&lt; ' ('#'); stream &gt;] -&gt;
766 lex_comment stream
767
768 (* Otherwise, just return the character as its ascii value. *)
769 | [&lt; 'c; stream &gt;] -&gt;
770 [&lt; 'Token.Kwd c; lex stream &gt;]
771
772 (* end of stream. *)
773 | [&lt; &gt;] -&gt; [&lt; &gt;]
774
775 and lex_number buffer = parser
776 | [&lt; ' ('0' .. '9' | '.' as c); stream &gt;] -&gt;
777 Buffer.add_char buffer c;
778 lex_number buffer stream
779 | [&lt; stream=lex &gt;] -&gt;
780 [&lt; 'Token.Number (float_of_string (Buffer.contents buffer)); stream &gt;]
781
782 and lex_ident buffer = parser
783 | [&lt; ' ('A' .. 'Z' | 'a' .. 'z' | '0' .. '9' as c); stream &gt;] -&gt;
784 Buffer.add_char buffer c;
785 lex_ident buffer stream
786 | [&lt; stream=lex &gt;] -&gt;
787 match Buffer.contents buffer with
788 | "def" -&gt; [&lt; 'Token.Def; stream &gt;]
789 | "extern" -&gt; [&lt; 'Token.Extern; stream &gt;]
790 | id -&gt; [&lt; 'Token.Ident id; stream &gt;]
791
792 and lex_comment = parser
793 | [&lt; ' ('\n'); stream=lex &gt;] -&gt; stream
794 | [&lt; 'c; e=lex_comment &gt;] -&gt; e
795 | [&lt; &gt;] -&gt; [&lt; &gt;]
796 </pre>
797 </dd>
798
799 <dt>ast.ml:</dt>
800 <dd class="doc_code">
801 <pre>
802 (*===----------------------------------------------------------------------===
803 * Abstract Syntax Tree (aka Parse Tree)
804 *===----------------------------------------------------------------------===*)
805
806 (* expr - Base type for all expression nodes. *)
807 type expr =
808 (* variant for numeric literals like "1.0". *)
809 | Number of float
810
811 (* variant for referencing a variable, like "a". *)
812 | Variable of string
813
814 (* variant for a binary operator. *)
815 | Binary of char * expr * expr
816
817 (* variant for function calls. *)
818 | Call of string * expr array
819
820 (* proto - This type represents the "prototype" for a function, which captures
821 * its name, and its argument names (thus implicitly the number of arguments the
822 * function takes). *)
823 type proto = Prototype of string * string array
824
825 (* func - This type represents a function definition itself. *)
826 type func = Function of proto * expr
827 </pre>
828 </dd>
829
830 <dt>parser.ml:</dt>
831 <dd class="doc_code">
832 <pre>
833 (*===---------------------------------------------------------------------===
834 * Parser
835 *===---------------------------------------------------------------------===*)
836
837 (* binop_precedence - This holds the precedence for each binary operator that is
838 * defined *)
839 let binop_precedence:(char, int) Hashtbl.t = Hashtbl.create 10
840
841 (* precedence - Get the precedence of the pending binary operator token. *)
842 let precedence c = try Hashtbl.find binop_precedence c with Not_found -&gt; -1
843
844 (* primary
845 * ::= identifier
846 * ::= numberexpr
847 * ::= parenexpr *)
848 let rec parse_primary = parser
849 (* numberexpr ::= number *)
850 | [&lt; 'Token.Number n &gt;] -&gt; Ast.Number n
851
852 (* parenexpr ::= '(' expression ')' *)
853 | [&lt; 'Token.Kwd '('; e=parse_expr; 'Token.Kwd ')' ?? "expected ')'" &gt;] -&gt; e
854
855 (* identifierexpr
856 * ::= identifier
857 * ::= identifier '(' argumentexpr ')' *)
858 | [&lt; 'Token.Ident id; stream &gt;] -&gt;
859 let rec parse_args accumulator = parser
860 | [&lt; e=parse_expr; stream &gt;] -&gt;
861 begin parser
862 | [&lt; 'Token.Kwd ','; e=parse_args (e :: accumulator) &gt;] -&gt; e
863 | [&lt; &gt;] -&gt; e :: accumulator
864 end stream
865 | [&lt; &gt;] -&gt; accumulator
866 in
867 let rec parse_ident id = parser
868 (* Call. *)
869 | [&lt; 'Token.Kwd '(';
870 args=parse_args [];
871 'Token.Kwd ')' ?? "expected ')'"&gt;] -&gt;
872 Ast.Call (id, Array.of_list (List.rev args))
873
874 (* Simple variable ref. *)
875 | [&lt; &gt;] -&gt; Ast.Variable id
876 in
877 parse_ident id stream
878
879 | [&lt; &gt;] -&gt; raise (Stream.Error "unknown token when expecting an expression.")
880
881 (* binoprhs
882 * ::= ('+' primary)* *)
883 and parse_bin_rhs expr_prec lhs stream =
884 match Stream.peek stream with
885 (* If this is a binop, find its precedence. *)
886 | Some (Token.Kwd c) when Hashtbl.mem binop_precedence c -&gt;
887 let token_prec = precedence c in
888
889 (* If this is a binop that binds at least as tightly as the current binop,
890 * consume it, otherwise we are done. *)
891 if token_prec &lt; expr_prec then lhs else begin
892 (* Eat the binop. *)
893 Stream.junk stream;
894
895 (* Parse the primary expression after the binary operator. *)
896 let rhs = parse_primary stream in
897
898 (* Okay, we know this is a binop. *)
899 let rhs =
900 match Stream.peek stream with
901 | Some (Token.Kwd c2) -&gt;
902 (* If BinOp binds less tightly with rhs than the operator after
903 * rhs, let the pending operator take rhs as its lhs. *)
904 let next_prec = precedence c2 in
905 if token_prec &lt; next_prec
906 then parse_bin_rhs (token_prec + 1) rhs stream
907 else rhs
908 | _ -&gt; rhs
909 in
910
911 (* Merge lhs/rhs. *)
912 let lhs = Ast.Binary (c, lhs, rhs) in
913 parse_bin_rhs expr_prec lhs stream
914 end
915 | _ -&gt; lhs
916
917 (* expression
918 * ::= primary binoprhs *)
919 and parse_expr = parser
920 | [&lt; lhs=parse_primary; stream &gt;] -&gt; parse_bin_rhs 0 lhs stream
921
922 (* prototype
923 * ::= id '(' id* ')' *)
924 let parse_prototype =
925 let rec parse_args accumulator = parser
926 | [&lt; 'Token.Ident id; e=parse_args (id::accumulator) &gt;] -&gt; e
927 | [&lt; &gt;] -&gt; accumulator
928 in
929
930 parser
931 | [&lt; 'Token.Ident id;
932 'Token.Kwd '(' ?? "expected '(' in prototype";
933 args=parse_args [];
934 'Token.Kwd ')' ?? "expected ')' in prototype" &gt;] -&gt;
935 (* success. *)
936 Ast.Prototype (id, Array.of_list (List.rev args))
937
938 | [&lt; &gt;] -&gt;
939 raise (Stream.Error "expected function name in prototype")
940
941 (* definition ::= 'def' prototype expression *)
942 let parse_definition = parser
943 | [&lt; 'Token.Def; p=parse_prototype; e=parse_expr &gt;] -&gt;
944 Ast.Function (p, e)
945
946 (* toplevelexpr ::= expression *)
947 let parse_toplevel = parser
948 | [&lt; e=parse_expr &gt;] -&gt;
949 (* Make an anonymous proto. *)
950 Ast.Function (Ast.Prototype ("", [||]), e)
951
952 (* external ::= 'extern' prototype *)
953 let parse_extern = parser
954 | [&lt; 'Token.Extern; e=parse_prototype &gt;] -&gt; e
955 </pre>
956 </dd>
957
958 <dt>toplevel.ml:</dt>
959 <dd class="doc_code">
960 <pre>
961 (*===----------------------------------------------------------------------===
962 * Top-Level parsing and JIT Driver
963 *===----------------------------------------------------------------------===*)
964
965 (* top ::= definition | external | expression | ';' *)
966 let rec main_loop stream =
967 match Stream.peek stream with
968 | None -&gt; ()
969
970 (* ignore top-level semicolons. *)
971 | Some (Token.Kwd ';') -&gt;
972 Stream.junk stream;
973 main_loop stream
974
975 | Some token -&gt;
976 begin
977 try match token with
978 | Token.Def -&gt;
979 ignore(Parser.parse_definition stream);
980 print_endline "parsed a function definition.";
981 | Token.Extern -&gt;
982 ignore(Parser.parse_extern stream);
983 print_endline "parsed an extern.";
984 | _ -&gt;
985 (* Evaluate a top-level expression into an anonymous function. *)
986 ignore(Parser.parse_toplevel stream);
987 print_endline "parsed a top-level expr";
988 with Stream.Error s -&gt;
989 (* Skip token for error recovery. *)
990 Stream.junk stream;
991 print_endline s;
992 end;
993 print_string "ready&gt; "; flush stdout;
994 main_loop stream
995 </pre>
996 </dd>
997
998 <dt>toy.ml:</dt>
999 <dd class="doc_code">
1000 <pre>
1001 (*===----------------------------------------------------------------------===
1002 * Main driver code.
1003 *===----------------------------------------------------------------------===*)
1004
1005 let main () =
1006 (* Install standard binary operators.
1007 * 1 is the lowest precedence. *)
1008 Hashtbl.add Parser.binop_precedence '&lt;' 10;
1009 Hashtbl.add Parser.binop_precedence '+' 20;
1010 Hashtbl.add Parser.binop_precedence '-' 20;
1011 Hashtbl.add Parser.binop_precedence '*' 40; (* highest. *)
1012
1013 (* Prime the first token. *)
1014 print_string "ready&gt; "; flush stdout;
1015 let stream = Lexer.lex (Stream.of_channel stdin) in
1016
1017 (* Run the main "interpreter loop" now. *)
1018 Toplevel.main_loop stream;
1019 ;;
1020
1021 main ()
1022 </pre>
1023 </dd>
1024 </dl>
1025
1026 <a href="OCamlLangImpl3.html">Next: Implementing Code Generation to LLVM IR</a>
1027 </div>
1028
1029 <!-- *********************************************************************** -->
1030 <hr>
1031 <address>
1032 <a href="http://jigsaw.w3.org/css-validator/check/referer"><img
1033 src="http://jigsaw.w3.org/css-validator/images/vcss" alt="Valid CSS!"></a>
1034 <a href="http://validator.w3.org/check/referer"><img
1035 src="http://www.w3.org/Icons/valid-html401" alt="Valid HTML 4.01!"></a>
1036
1037 <a href="mailto:sabre@nondot.org">Chris Lattner</a>
1038 <a href="mailto:erickt@users.sourceforge.net">Erick Tryzelaar</a><br>
1039 <a href="http://llvm.org/">The LLVM Compiler Infrastructure</a><br>
1040 Last modified: $Date$
1041 </address>
1042 </body>
1043 </html>