]> git.proxmox.com Git - rustc.git/blob - src/llvm/include/llvm/Analysis/AliasAnalysis.h
Imported Upstream version 0.6
[rustc.git] / src / llvm / include / llvm / Analysis / AliasAnalysis.h
1 //===- llvm/Analysis/AliasAnalysis.h - Alias Analysis Interface -*- C++ -*-===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file defines the generic AliasAnalysis interface, which is used as the
11 // common interface used by all clients of alias analysis information, and
12 // implemented by all alias analysis implementations. Mod/Ref information is
13 // also captured by this interface.
14 //
15 // Implementations of this interface must implement the various virtual methods,
16 // which automatically provides functionality for the entire suite of client
17 // APIs.
18 //
19 // This API identifies memory regions with the Location class. The pointer
20 // component specifies the base memory address of the region. The Size specifies
21 // the maximum size (in address units) of the memory region, or UnknownSize if
22 // the size is not known. The TBAA tag identifies the "type" of the memory
23 // reference; see the TypeBasedAliasAnalysis class for details.
24 //
25 // Some non-obvious details include:
26 // - Pointers that point to two completely different objects in memory never
27 // alias, regardless of the value of the Size component.
28 // - NoAlias doesn't imply inequal pointers. The most obvious example of this
29 // is two pointers to constant memory. Even if they are equal, constant
30 // memory is never stored to, so there will never be any dependencies.
31 // In this and other situations, the pointers may be both NoAlias and
32 // MustAlias at the same time. The current API can only return one result,
33 // though this is rarely a problem in practice.
34 //
35 //===----------------------------------------------------------------------===//
36
37 #ifndef LLVM_ANALYSIS_ALIAS_ANALYSIS_H
38 #define LLVM_ANALYSIS_ALIAS_ANALYSIS_H
39
40 #include "llvm/Support/CallSite.h"
41 #include "llvm/ADT/DenseMap.h"
42
43 namespace llvm {
44
45 class LoadInst;
46 class StoreInst;
47 class VAArgInst;
48 class TargetData;
49 class TargetLibraryInfo;
50 class Pass;
51 class AnalysisUsage;
52 class MemTransferInst;
53 class MemIntrinsic;
54 class DominatorTree;
55
56 class AliasAnalysis {
57 protected:
58 const TargetData *TD;
59 const TargetLibraryInfo *TLI;
60
61 private:
62 AliasAnalysis *AA; // Previous Alias Analysis to chain to.
63
64 protected:
65 /// InitializeAliasAnalysis - Subclasses must call this method to initialize
66 /// the AliasAnalysis interface before any other methods are called. This is
67 /// typically called by the run* methods of these subclasses. This may be
68 /// called multiple times.
69 ///
70 void InitializeAliasAnalysis(Pass *P);
71
72 /// getAnalysisUsage - All alias analysis implementations should invoke this
73 /// directly (using AliasAnalysis::getAnalysisUsage(AU)).
74 virtual void getAnalysisUsage(AnalysisUsage &AU) const;
75
76 public:
77 static char ID; // Class identification, replacement for typeinfo
78 AliasAnalysis() : TD(0), TLI(0), AA(0) {}
79 virtual ~AliasAnalysis(); // We want to be subclassed
80
81 /// UnknownSize - This is a special value which can be used with the
82 /// size arguments in alias queries to indicate that the caller does not
83 /// know the sizes of the potential memory references.
84 static uint64_t const UnknownSize = ~UINT64_C(0);
85
86 /// getTargetData - Return a pointer to the current TargetData object, or
87 /// null if no TargetData object is available.
88 ///
89 const TargetData *getTargetData() const { return TD; }
90
91 /// getTargetLibraryInfo - Return a pointer to the current TargetLibraryInfo
92 /// object, or null if no TargetLibraryInfo object is available.
93 ///
94 const TargetLibraryInfo *getTargetLibraryInfo() const { return TLI; }
95
96 /// getTypeStoreSize - Return the TargetData store size for the given type,
97 /// if known, or a conservative value otherwise.
98 ///
99 uint64_t getTypeStoreSize(Type *Ty);
100
101 //===--------------------------------------------------------------------===//
102 /// Alias Queries...
103 ///
104
105 /// Location - A description of a memory location.
106 struct Location {
107 /// Ptr - The address of the start of the location.
108 const Value *Ptr;
109 /// Size - The maximum size of the location, in address-units, or
110 /// UnknownSize if the size is not known. Note that an unknown size does
111 /// not mean the pointer aliases the entire virtual address space, because
112 /// there are restrictions on stepping out of one object and into another.
113 /// See http://llvm.org/docs/LangRef.html#pointeraliasing
114 uint64_t Size;
115 /// TBAATag - The metadata node which describes the TBAA type of
116 /// the location, or null if there is no known unique tag.
117 const MDNode *TBAATag;
118
119 explicit Location(const Value *P = 0, uint64_t S = UnknownSize,
120 const MDNode *N = 0)
121 : Ptr(P), Size(S), TBAATag(N) {}
122
123 Location getWithNewPtr(const Value *NewPtr) const {
124 Location Copy(*this);
125 Copy.Ptr = NewPtr;
126 return Copy;
127 }
128
129 Location getWithNewSize(uint64_t NewSize) const {
130 Location Copy(*this);
131 Copy.Size = NewSize;
132 return Copy;
133 }
134
135 Location getWithoutTBAATag() const {
136 Location Copy(*this);
137 Copy.TBAATag = 0;
138 return Copy;
139 }
140 };
141
142 /// getLocation - Fill in Loc with information about the memory reference by
143 /// the given instruction.
144 Location getLocation(const LoadInst *LI);
145 Location getLocation(const StoreInst *SI);
146 Location getLocation(const VAArgInst *VI);
147 Location getLocation(const AtomicCmpXchgInst *CXI);
148 Location getLocation(const AtomicRMWInst *RMWI);
149 static Location getLocationForSource(const MemTransferInst *MTI);
150 static Location getLocationForDest(const MemIntrinsic *MI);
151
152 /// Alias analysis result - Either we know for sure that it does not alias, we
153 /// know for sure it must alias, or we don't know anything: The two pointers
154 /// _might_ alias. This enum is designed so you can do things like:
155 /// if (AA.alias(P1, P2)) { ... }
156 /// to check to see if two pointers might alias.
157 ///
158 /// See docs/AliasAnalysis.html for more information on the specific meanings
159 /// of these values.
160 ///
161 enum AliasResult {
162 NoAlias = 0, ///< No dependencies.
163 MayAlias, ///< Anything goes.
164 PartialAlias, ///< Pointers differ, but pointees overlap.
165 MustAlias ///< Pointers are equal.
166 };
167
168 /// alias - The main low level interface to the alias analysis implementation.
169 /// Returns an AliasResult indicating whether the two pointers are aliased to
170 /// each other. This is the interface that must be implemented by specific
171 /// alias analysis implementations.
172 virtual AliasResult alias(const Location &LocA, const Location &LocB);
173
174 /// alias - A convenience wrapper.
175 AliasResult alias(const Value *V1, uint64_t V1Size,
176 const Value *V2, uint64_t V2Size) {
177 return alias(Location(V1, V1Size), Location(V2, V2Size));
178 }
179
180 /// alias - A convenience wrapper.
181 AliasResult alias(const Value *V1, const Value *V2) {
182 return alias(V1, UnknownSize, V2, UnknownSize);
183 }
184
185 /// isNoAlias - A trivial helper function to check to see if the specified
186 /// pointers are no-alias.
187 bool isNoAlias(const Location &LocA, const Location &LocB) {
188 return alias(LocA, LocB) == NoAlias;
189 }
190
191 /// isNoAlias - A convenience wrapper.
192 bool isNoAlias(const Value *V1, uint64_t V1Size,
193 const Value *V2, uint64_t V2Size) {
194 return isNoAlias(Location(V1, V1Size), Location(V2, V2Size));
195 }
196
197 /// isNoAlias - A convenience wrapper.
198 bool isNoAlias(const Value *V1, const Value *V2) {
199 return isNoAlias(Location(V1), Location(V2));
200 }
201
202 /// isMustAlias - A convenience wrapper.
203 bool isMustAlias(const Location &LocA, const Location &LocB) {
204 return alias(LocA, LocB) == MustAlias;
205 }
206
207 /// isMustAlias - A convenience wrapper.
208 bool isMustAlias(const Value *V1, const Value *V2) {
209 return alias(V1, 1, V2, 1) == MustAlias;
210 }
211
212 /// pointsToConstantMemory - If the specified memory location is
213 /// known to be constant, return true. If OrLocal is true and the
214 /// specified memory location is known to be "local" (derived from
215 /// an alloca), return true. Otherwise return false.
216 virtual bool pointsToConstantMemory(const Location &Loc,
217 bool OrLocal = false);
218
219 /// pointsToConstantMemory - A convenient wrapper.
220 bool pointsToConstantMemory(const Value *P, bool OrLocal = false) {
221 return pointsToConstantMemory(Location(P), OrLocal);
222 }
223
224 //===--------------------------------------------------------------------===//
225 /// Simple mod/ref information...
226 ///
227
228 /// ModRefResult - Represent the result of a mod/ref query. Mod and Ref are
229 /// bits which may be or'd together.
230 ///
231 enum ModRefResult { NoModRef = 0, Ref = 1, Mod = 2, ModRef = 3 };
232
233 /// These values define additional bits used to define the
234 /// ModRefBehavior values.
235 enum { Nowhere = 0, ArgumentPointees = 4, Anywhere = 8 | ArgumentPointees };
236
237 /// ModRefBehavior - Summary of how a function affects memory in the program.
238 /// Loads from constant globals are not considered memory accesses for this
239 /// interface. Also, functions may freely modify stack space local to their
240 /// invocation without having to report it through these interfaces.
241 enum ModRefBehavior {
242 /// DoesNotAccessMemory - This function does not perform any non-local loads
243 /// or stores to memory.
244 ///
245 /// This property corresponds to the GCC 'const' attribute.
246 /// This property corresponds to the LLVM IR 'readnone' attribute.
247 /// This property corresponds to the IntrNoMem LLVM intrinsic flag.
248 DoesNotAccessMemory = Nowhere | NoModRef,
249
250 /// OnlyReadsArgumentPointees - The only memory references in this function
251 /// (if it has any) are non-volatile loads from objects pointed to by its
252 /// pointer-typed arguments, with arbitrary offsets.
253 ///
254 /// This property corresponds to the IntrReadArgMem LLVM intrinsic flag.
255 OnlyReadsArgumentPointees = ArgumentPointees | Ref,
256
257 /// OnlyAccessesArgumentPointees - The only memory references in this
258 /// function (if it has any) are non-volatile loads and stores from objects
259 /// pointed to by its pointer-typed arguments, with arbitrary offsets.
260 ///
261 /// This property corresponds to the IntrReadWriteArgMem LLVM intrinsic flag.
262 OnlyAccessesArgumentPointees = ArgumentPointees | ModRef,
263
264 /// OnlyReadsMemory - This function does not perform any non-local stores or
265 /// volatile loads, but may read from any memory location.
266 ///
267 /// This property corresponds to the GCC 'pure' attribute.
268 /// This property corresponds to the LLVM IR 'readonly' attribute.
269 /// This property corresponds to the IntrReadMem LLVM intrinsic flag.
270 OnlyReadsMemory = Anywhere | Ref,
271
272 /// UnknownModRefBehavior - This indicates that the function could not be
273 /// classified into one of the behaviors above.
274 UnknownModRefBehavior = Anywhere | ModRef
275 };
276
277 /// getModRefBehavior - Return the behavior when calling the given call site.
278 virtual ModRefBehavior getModRefBehavior(ImmutableCallSite CS);
279
280 /// getModRefBehavior - Return the behavior when calling the given function.
281 /// For use when the call site is not known.
282 virtual ModRefBehavior getModRefBehavior(const Function *F);
283
284 /// doesNotAccessMemory - If the specified call is known to never read or
285 /// write memory, return true. If the call only reads from known-constant
286 /// memory, it is also legal to return true. Calls that unwind the stack
287 /// are legal for this predicate.
288 ///
289 /// Many optimizations (such as CSE and LICM) can be performed on such calls
290 /// without worrying about aliasing properties, and many calls have this
291 /// property (e.g. calls to 'sin' and 'cos').
292 ///
293 /// This property corresponds to the GCC 'const' attribute.
294 ///
295 bool doesNotAccessMemory(ImmutableCallSite CS) {
296 return getModRefBehavior(CS) == DoesNotAccessMemory;
297 }
298
299 /// doesNotAccessMemory - If the specified function is known to never read or
300 /// write memory, return true. For use when the call site is not known.
301 ///
302 bool doesNotAccessMemory(const Function *F) {
303 return getModRefBehavior(F) == DoesNotAccessMemory;
304 }
305
306 /// onlyReadsMemory - If the specified call is known to only read from
307 /// non-volatile memory (or not access memory at all), return true. Calls
308 /// that unwind the stack are legal for this predicate.
309 ///
310 /// This property allows many common optimizations to be performed in the
311 /// absence of interfering store instructions, such as CSE of strlen calls.
312 ///
313 /// This property corresponds to the GCC 'pure' attribute.
314 ///
315 bool onlyReadsMemory(ImmutableCallSite CS) {
316 return onlyReadsMemory(getModRefBehavior(CS));
317 }
318
319 /// onlyReadsMemory - If the specified function is known to only read from
320 /// non-volatile memory (or not access memory at all), return true. For use
321 /// when the call site is not known.
322 ///
323 bool onlyReadsMemory(const Function *F) {
324 return onlyReadsMemory(getModRefBehavior(F));
325 }
326
327 /// onlyReadsMemory - Return true if functions with the specified behavior are
328 /// known to only read from non-volatile memory (or not access memory at all).
329 ///
330 static bool onlyReadsMemory(ModRefBehavior MRB) {
331 return !(MRB & Mod);
332 }
333
334 /// onlyAccessesArgPointees - Return true if functions with the specified
335 /// behavior are known to read and write at most from objects pointed to by
336 /// their pointer-typed arguments (with arbitrary offsets).
337 ///
338 static bool onlyAccessesArgPointees(ModRefBehavior MRB) {
339 return !(MRB & Anywhere & ~ArgumentPointees);
340 }
341
342 /// doesAccessArgPointees - Return true if functions with the specified
343 /// behavior are known to potentially read or write from objects pointed
344 /// to be their pointer-typed arguments (with arbitrary offsets).
345 ///
346 static bool doesAccessArgPointees(ModRefBehavior MRB) {
347 return (MRB & ModRef) && (MRB & ArgumentPointees);
348 }
349
350 /// getModRefInfo - Return information about whether or not an instruction may
351 /// read or write the specified memory location. An instruction
352 /// that doesn't read or write memory may be trivially LICM'd for example.
353 ModRefResult getModRefInfo(const Instruction *I,
354 const Location &Loc) {
355 switch (I->getOpcode()) {
356 case Instruction::VAArg: return getModRefInfo((const VAArgInst*)I, Loc);
357 case Instruction::Load: return getModRefInfo((const LoadInst*)I, Loc);
358 case Instruction::Store: return getModRefInfo((const StoreInst*)I, Loc);
359 case Instruction::Fence: return getModRefInfo((const FenceInst*)I, Loc);
360 case Instruction::AtomicCmpXchg:
361 return getModRefInfo((const AtomicCmpXchgInst*)I, Loc);
362 case Instruction::AtomicRMW:
363 return getModRefInfo((const AtomicRMWInst*)I, Loc);
364 case Instruction::Call: return getModRefInfo((const CallInst*)I, Loc);
365 case Instruction::Invoke: return getModRefInfo((const InvokeInst*)I,Loc);
366 default: return NoModRef;
367 }
368 }
369
370 /// getModRefInfo - A convenience wrapper.
371 ModRefResult getModRefInfo(const Instruction *I,
372 const Value *P, uint64_t Size) {
373 return getModRefInfo(I, Location(P, Size));
374 }
375
376 /// getModRefInfo (for call sites) - Return whether information about whether
377 /// a particular call site modifies or reads the specified memory location.
378 virtual ModRefResult getModRefInfo(ImmutableCallSite CS,
379 const Location &Loc);
380
381 /// getModRefInfo (for call sites) - A convenience wrapper.
382 ModRefResult getModRefInfo(ImmutableCallSite CS,
383 const Value *P, uint64_t Size) {
384 return getModRefInfo(CS, Location(P, Size));
385 }
386
387 /// getModRefInfo (for calls) - Return whether information about whether
388 /// a particular call modifies or reads the specified memory location.
389 ModRefResult getModRefInfo(const CallInst *C, const Location &Loc) {
390 return getModRefInfo(ImmutableCallSite(C), Loc);
391 }
392
393 /// getModRefInfo (for calls) - A convenience wrapper.
394 ModRefResult getModRefInfo(const CallInst *C, const Value *P, uint64_t Size) {
395 return getModRefInfo(C, Location(P, Size));
396 }
397
398 /// getModRefInfo (for invokes) - Return whether information about whether
399 /// a particular invoke modifies or reads the specified memory location.
400 ModRefResult getModRefInfo(const InvokeInst *I,
401 const Location &Loc) {
402 return getModRefInfo(ImmutableCallSite(I), Loc);
403 }
404
405 /// getModRefInfo (for invokes) - A convenience wrapper.
406 ModRefResult getModRefInfo(const InvokeInst *I,
407 const Value *P, uint64_t Size) {
408 return getModRefInfo(I, Location(P, Size));
409 }
410
411 /// getModRefInfo (for loads) - Return whether information about whether
412 /// a particular load modifies or reads the specified memory location.
413 ModRefResult getModRefInfo(const LoadInst *L, const Location &Loc);
414
415 /// getModRefInfo (for loads) - A convenience wrapper.
416 ModRefResult getModRefInfo(const LoadInst *L, const Value *P, uint64_t Size) {
417 return getModRefInfo(L, Location(P, Size));
418 }
419
420 /// getModRefInfo (for stores) - Return whether information about whether
421 /// a particular store modifies or reads the specified memory location.
422 ModRefResult getModRefInfo(const StoreInst *S, const Location &Loc);
423
424 /// getModRefInfo (for stores) - A convenience wrapper.
425 ModRefResult getModRefInfo(const StoreInst *S, const Value *P, uint64_t Size){
426 return getModRefInfo(S, Location(P, Size));
427 }
428
429 /// getModRefInfo (for fences) - Return whether information about whether
430 /// a particular store modifies or reads the specified memory location.
431 ModRefResult getModRefInfo(const FenceInst *S, const Location &Loc) {
432 // Conservatively correct. (We could possibly be a bit smarter if
433 // Loc is a alloca that doesn't escape.)
434 return ModRef;
435 }
436
437 /// getModRefInfo (for fences) - A convenience wrapper.
438 ModRefResult getModRefInfo(const FenceInst *S, const Value *P, uint64_t Size){
439 return getModRefInfo(S, Location(P, Size));
440 }
441
442 /// getModRefInfo (for cmpxchges) - Return whether information about whether
443 /// a particular cmpxchg modifies or reads the specified memory location.
444 ModRefResult getModRefInfo(const AtomicCmpXchgInst *CX, const Location &Loc);
445
446 /// getModRefInfo (for cmpxchges) - A convenience wrapper.
447 ModRefResult getModRefInfo(const AtomicCmpXchgInst *CX,
448 const Value *P, unsigned Size) {
449 return getModRefInfo(CX, Location(P, Size));
450 }
451
452 /// getModRefInfo (for atomicrmws) - Return whether information about whether
453 /// a particular atomicrmw modifies or reads the specified memory location.
454 ModRefResult getModRefInfo(const AtomicRMWInst *RMW, const Location &Loc);
455
456 /// getModRefInfo (for atomicrmws) - A convenience wrapper.
457 ModRefResult getModRefInfo(const AtomicRMWInst *RMW,
458 const Value *P, unsigned Size) {
459 return getModRefInfo(RMW, Location(P, Size));
460 }
461
462 /// getModRefInfo (for va_args) - Return whether information about whether
463 /// a particular va_arg modifies or reads the specified memory location.
464 ModRefResult getModRefInfo(const VAArgInst* I, const Location &Loc);
465
466 /// getModRefInfo (for va_args) - A convenience wrapper.
467 ModRefResult getModRefInfo(const VAArgInst* I, const Value* P, uint64_t Size){
468 return getModRefInfo(I, Location(P, Size));
469 }
470
471 /// getModRefInfo - Return information about whether two call sites may refer
472 /// to the same set of memory locations. See
473 /// http://llvm.org/docs/AliasAnalysis.html#ModRefInfo
474 /// for details.
475 virtual ModRefResult getModRefInfo(ImmutableCallSite CS1,
476 ImmutableCallSite CS2);
477
478 /// callCapturesBefore - Return information about whether a particular call
479 /// site modifies or reads the specified memory location.
480 ModRefResult callCapturesBefore(const Instruction *I,
481 const AliasAnalysis::Location &MemLoc,
482 DominatorTree *DT);
483
484 /// callCapturesBefore - A convenience wrapper.
485 ModRefResult callCapturesBefore(const Instruction *I, const Value *P,
486 uint64_t Size, DominatorTree *DT) {
487 return callCapturesBefore(I, Location(P, Size), DT);
488 }
489
490 //===--------------------------------------------------------------------===//
491 /// Higher level methods for querying mod/ref information.
492 ///
493
494 /// canBasicBlockModify - Return true if it is possible for execution of the
495 /// specified basic block to modify the value pointed to by Ptr.
496 bool canBasicBlockModify(const BasicBlock &BB, const Location &Loc);
497
498 /// canBasicBlockModify - A convenience wrapper.
499 bool canBasicBlockModify(const BasicBlock &BB, const Value *P, uint64_t Size){
500 return canBasicBlockModify(BB, Location(P, Size));
501 }
502
503 /// canInstructionRangeModify - Return true if it is possible for the
504 /// execution of the specified instructions to modify the value pointed to by
505 /// Ptr. The instructions to consider are all of the instructions in the
506 /// range of [I1,I2] INCLUSIVE. I1 and I2 must be in the same basic block.
507 bool canInstructionRangeModify(const Instruction &I1, const Instruction &I2,
508 const Location &Loc);
509
510 /// canInstructionRangeModify - A convenience wrapper.
511 bool canInstructionRangeModify(const Instruction &I1, const Instruction &I2,
512 const Value *Ptr, uint64_t Size) {
513 return canInstructionRangeModify(I1, I2, Location(Ptr, Size));
514 }
515
516 //===--------------------------------------------------------------------===//
517 /// Methods that clients should call when they transform the program to allow
518 /// alias analyses to update their internal data structures. Note that these
519 /// methods may be called on any instruction, regardless of whether or not
520 /// they have pointer-analysis implications.
521 ///
522
523 /// deleteValue - This method should be called whenever an LLVM Value is
524 /// deleted from the program, for example when an instruction is found to be
525 /// redundant and is eliminated.
526 ///
527 virtual void deleteValue(Value *V);
528
529 /// copyValue - This method should be used whenever a preexisting value in the
530 /// program is copied or cloned, introducing a new value. Note that analysis
531 /// implementations should tolerate clients that use this method to introduce
532 /// the same value multiple times: if the analysis already knows about a
533 /// value, it should ignore the request.
534 ///
535 virtual void copyValue(Value *From, Value *To);
536
537 /// addEscapingUse - This method should be used whenever an escaping use is
538 /// added to a pointer value. Analysis implementations may either return
539 /// conservative responses for that value in the future, or may recompute
540 /// some or all internal state to continue providing precise responses.
541 ///
542 /// Escaping uses are considered by anything _except_ the following:
543 /// - GEPs or bitcasts of the pointer
544 /// - Loads through the pointer
545 /// - Stores through (but not of) the pointer
546 virtual void addEscapingUse(Use &U);
547
548 /// replaceWithNewValue - This method is the obvious combination of the two
549 /// above, and it provided as a helper to simplify client code.
550 ///
551 void replaceWithNewValue(Value *Old, Value *New) {
552 copyValue(Old, New);
553 deleteValue(Old);
554 }
555 };
556
557 // Specialize DenseMapInfo for Location.
558 template<>
559 struct DenseMapInfo<AliasAnalysis::Location> {
560 static inline AliasAnalysis::Location getEmptyKey() {
561 return
562 AliasAnalysis::Location(DenseMapInfo<const Value *>::getEmptyKey(),
563 0, 0);
564 }
565 static inline AliasAnalysis::Location getTombstoneKey() {
566 return
567 AliasAnalysis::Location(DenseMapInfo<const Value *>::getTombstoneKey(),
568 0, 0);
569 }
570 static unsigned getHashValue(const AliasAnalysis::Location &Val) {
571 return DenseMapInfo<const Value *>::getHashValue(Val.Ptr) ^
572 DenseMapInfo<uint64_t>::getHashValue(Val.Size) ^
573 DenseMapInfo<const MDNode *>::getHashValue(Val.TBAATag);
574 }
575 static bool isEqual(const AliasAnalysis::Location &LHS,
576 const AliasAnalysis::Location &RHS) {
577 return LHS.Ptr == RHS.Ptr &&
578 LHS.Size == RHS.Size &&
579 LHS.TBAATag == RHS.TBAATag;
580 }
581 };
582
583 /// isNoAliasCall - Return true if this pointer is returned by a noalias
584 /// function.
585 bool isNoAliasCall(const Value *V);
586
587 /// isIdentifiedObject - Return true if this pointer refers to a distinct and
588 /// identifiable object. This returns true for:
589 /// Global Variables and Functions (but not Global Aliases)
590 /// Allocas and Mallocs
591 /// ByVal and NoAlias Arguments
592 /// NoAlias returns
593 ///
594 bool isIdentifiedObject(const Value *V);
595
596 /// isKnownNonNull - Return true if this pointer couldn't possibly be null by
597 /// its definition. This returns true for allocas, non-extern-weak globals and
598 /// byval arguments.
599 bool isKnownNonNull(const Value *V);
600
601 } // End llvm namespace
602
603 #endif