]> git.proxmox.com Git - rustc.git/blob - src/llvm/include/llvm/Support/Allocator.h
Imported Upstream version 1.0.0~0alpha
[rustc.git] / src / llvm / include / llvm / Support / Allocator.h
1 //===--- Allocator.h - Simple memory allocation abstraction -----*- C++ -*-===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 /// \file
10 ///
11 /// This file defines the MallocAllocator and BumpPtrAllocator interfaces. Both
12 /// of these conform to an LLVM "Allocator" concept which consists of an
13 /// Allocate method accepting a size and alignment, and a Deallocate accepting
14 /// a pointer and size. Further, the LLVM "Allocator" concept has overloads of
15 /// Allocate and Deallocate for setting size and alignment based on the final
16 /// type. These overloads are typically provided by a base class template \c
17 /// AllocatorBase.
18 ///
19 //===----------------------------------------------------------------------===//
20
21 #ifndef LLVM_SUPPORT_ALLOCATOR_H
22 #define LLVM_SUPPORT_ALLOCATOR_H
23
24 #include "llvm/ADT/SmallVector.h"
25 #include "llvm/Support/AlignOf.h"
26 #include "llvm/Support/DataTypes.h"
27 #include "llvm/Support/MathExtras.h"
28 #include "llvm/Support/Memory.h"
29 #include <algorithm>
30 #include <cassert>
31 #include <cstddef>
32 #include <cstdlib>
33
34 namespace llvm {
35
36 /// \brief CRTP base class providing obvious overloads for the core \c
37 /// Allocate() methods of LLVM-style allocators.
38 ///
39 /// This base class both documents the full public interface exposed by all
40 /// LLVM-style allocators, and redirects all of the overloads to a single core
41 /// set of methods which the derived class must define.
42 template <typename DerivedT> class AllocatorBase {
43 public:
44 /// \brief Allocate \a Size bytes of \a Alignment aligned memory. This method
45 /// must be implemented by \c DerivedT.
46 void *Allocate(size_t Size, size_t Alignment) {
47 #ifdef __clang__
48 static_assert(static_cast<void *(AllocatorBase::*)(size_t, size_t)>(
49 &AllocatorBase::Allocate) !=
50 static_cast<void *(DerivedT::*)(size_t, size_t)>(
51 &DerivedT::Allocate),
52 "Class derives from AllocatorBase without implementing the "
53 "core Allocate(size_t, size_t) overload!");
54 #endif
55 return static_cast<DerivedT *>(this)->Allocate(Size, Alignment);
56 }
57
58 /// \brief Deallocate \a Ptr to \a Size bytes of memory allocated by this
59 /// allocator.
60 void Deallocate(const void *Ptr, size_t Size) {
61 #ifdef __clang__
62 static_assert(static_cast<void (AllocatorBase::*)(const void *, size_t)>(
63 &AllocatorBase::Deallocate) !=
64 static_cast<void (DerivedT::*)(const void *, size_t)>(
65 &DerivedT::Deallocate),
66 "Class derives from AllocatorBase without implementing the "
67 "core Deallocate(void *) overload!");
68 #endif
69 return static_cast<DerivedT *>(this)->Deallocate(Ptr, Size);
70 }
71
72 // The rest of these methods are helpers that redirect to one of the above
73 // core methods.
74
75 /// \brief Allocate space for a sequence of objects without constructing them.
76 template <typename T> T *Allocate(size_t Num = 1) {
77 return static_cast<T *>(Allocate(Num * sizeof(T), AlignOf<T>::Alignment));
78 }
79
80 /// \brief Deallocate space for a sequence of objects without constructing them.
81 template <typename T>
82 typename std::enable_if<
83 !std::is_same<typename std::remove_cv<T>::type, void>::value, void>::type
84 Deallocate(T *Ptr, size_t Num = 1) {
85 Deallocate(static_cast<const void *>(Ptr), Num * sizeof(T));
86 }
87 };
88
89 class MallocAllocator : public AllocatorBase<MallocAllocator> {
90 public:
91 void Reset() {}
92
93 LLVM_ATTRIBUTE_RETURNS_NONNULL void *Allocate(size_t Size,
94 size_t /*Alignment*/) {
95 return malloc(Size);
96 }
97
98 // Pull in base class overloads.
99 using AllocatorBase<MallocAllocator>::Allocate;
100
101 void Deallocate(const void *Ptr, size_t /*Size*/) {
102 free(const_cast<void *>(Ptr));
103 }
104
105 // Pull in base class overloads.
106 using AllocatorBase<MallocAllocator>::Deallocate;
107
108 void PrintStats() const {}
109 };
110
111 namespace detail {
112
113 // We call out to an external function to actually print the message as the
114 // printing code uses Allocator.h in its implementation.
115 void printBumpPtrAllocatorStats(unsigned NumSlabs, size_t BytesAllocated,
116 size_t TotalMemory);
117 } // End namespace detail.
118
119 /// \brief Allocate memory in an ever growing pool, as if by bump-pointer.
120 ///
121 /// This isn't strictly a bump-pointer allocator as it uses backing slabs of
122 /// memory rather than relying on boundless contiguous heap. However, it has
123 /// bump-pointer semantics in that is a monotonically growing pool of memory
124 /// where every allocation is found by merely allocating the next N bytes in
125 /// the slab, or the next N bytes in the next slab.
126 ///
127 /// Note that this also has a threshold for forcing allocations above a certain
128 /// size into their own slab.
129 ///
130 /// The BumpPtrAllocatorImpl template defaults to using a MallocAllocator
131 /// object, which wraps malloc, to allocate memory, but it can be changed to
132 /// use a custom allocator.
133 template <typename AllocatorT = MallocAllocator, size_t SlabSize = 4096,
134 size_t SizeThreshold = SlabSize>
135 class BumpPtrAllocatorImpl
136 : public AllocatorBase<
137 BumpPtrAllocatorImpl<AllocatorT, SlabSize, SizeThreshold>> {
138 public:
139 static_assert(SizeThreshold <= SlabSize,
140 "The SizeThreshold must be at most the SlabSize to ensure "
141 "that objects larger than a slab go into their own memory "
142 "allocation.");
143
144 BumpPtrAllocatorImpl()
145 : CurPtr(nullptr), End(nullptr), BytesAllocated(0), Allocator() {}
146 template <typename T>
147 BumpPtrAllocatorImpl(T &&Allocator)
148 : CurPtr(nullptr), End(nullptr), BytesAllocated(0),
149 Allocator(std::forward<T &&>(Allocator)) {}
150
151 // Manually implement a move constructor as we must clear the old allocators
152 // slabs as a matter of correctness.
153 BumpPtrAllocatorImpl(BumpPtrAllocatorImpl &&Old)
154 : CurPtr(Old.CurPtr), End(Old.End), Slabs(std::move(Old.Slabs)),
155 CustomSizedSlabs(std::move(Old.CustomSizedSlabs)),
156 BytesAllocated(Old.BytesAllocated),
157 Allocator(std::move(Old.Allocator)) {
158 Old.CurPtr = Old.End = nullptr;
159 Old.BytesAllocated = 0;
160 Old.Slabs.clear();
161 Old.CustomSizedSlabs.clear();
162 }
163
164 ~BumpPtrAllocatorImpl() {
165 DeallocateSlabs(Slabs.begin(), Slabs.end());
166 DeallocateCustomSizedSlabs();
167 }
168
169 BumpPtrAllocatorImpl &operator=(BumpPtrAllocatorImpl &&RHS) {
170 DeallocateSlabs(Slabs.begin(), Slabs.end());
171 DeallocateCustomSizedSlabs();
172
173 CurPtr = RHS.CurPtr;
174 End = RHS.End;
175 BytesAllocated = RHS.BytesAllocated;
176 Slabs = std::move(RHS.Slabs);
177 CustomSizedSlabs = std::move(RHS.CustomSizedSlabs);
178 Allocator = std::move(RHS.Allocator);
179
180 RHS.CurPtr = RHS.End = nullptr;
181 RHS.BytesAllocated = 0;
182 RHS.Slabs.clear();
183 RHS.CustomSizedSlabs.clear();
184 return *this;
185 }
186
187 /// \brief Deallocate all but the current slab and reset the current pointer
188 /// to the beginning of it, freeing all memory allocated so far.
189 void Reset() {
190 if (Slabs.empty())
191 return;
192
193 // Reset the state.
194 BytesAllocated = 0;
195 CurPtr = (char *)Slabs.front();
196 End = CurPtr + SlabSize;
197
198 // Deallocate all but the first slab, and all custome sized slabs.
199 DeallocateSlabs(std::next(Slabs.begin()), Slabs.end());
200 Slabs.erase(std::next(Slabs.begin()), Slabs.end());
201 DeallocateCustomSizedSlabs();
202 CustomSizedSlabs.clear();
203 }
204
205 /// \brief Allocate space at the specified alignment.
206 LLVM_ATTRIBUTE_RETURNS_NONNULL void *Allocate(size_t Size, size_t Alignment) {
207 assert(Alignment > 0 && "0-byte alignnment is not allowed. Use 1 instead.");
208
209 // Keep track of how many bytes we've allocated.
210 BytesAllocated += Size;
211
212 size_t Adjustment = alignmentAdjustment(CurPtr, Alignment);
213 assert(Adjustment + Size >= Size && "Adjustment + Size must not overflow");
214
215 // Check if we have enough space.
216 if (Adjustment + Size <= size_t(End - CurPtr)) {
217 char *AlignedPtr = CurPtr + Adjustment;
218 CurPtr = AlignedPtr + Size;
219 // Update the allocation point of this memory block in MemorySanitizer.
220 // Without this, MemorySanitizer messages for values originated from here
221 // will point to the allocation of the entire slab.
222 __msan_allocated_memory(AlignedPtr, Size);
223 return AlignedPtr;
224 }
225
226 // If Size is really big, allocate a separate slab for it.
227 size_t PaddedSize = Size + Alignment - 1;
228 if (PaddedSize > SizeThreshold) {
229 void *NewSlab = Allocator.Allocate(PaddedSize, 0);
230 CustomSizedSlabs.push_back(std::make_pair(NewSlab, PaddedSize));
231
232 uintptr_t AlignedAddr = alignAddr(NewSlab, Alignment);
233 assert(AlignedAddr + Size <= (uintptr_t)NewSlab + PaddedSize);
234 char *AlignedPtr = (char*)AlignedAddr;
235 __msan_allocated_memory(AlignedPtr, Size);
236 return AlignedPtr;
237 }
238
239 // Otherwise, start a new slab and try again.
240 StartNewSlab();
241 uintptr_t AlignedAddr = alignAddr(CurPtr, Alignment);
242 assert(AlignedAddr + Size <= (uintptr_t)End &&
243 "Unable to allocate memory!");
244 char *AlignedPtr = (char*)AlignedAddr;
245 CurPtr = AlignedPtr + Size;
246 __msan_allocated_memory(AlignedPtr, Size);
247 return AlignedPtr;
248 }
249
250 // Pull in base class overloads.
251 using AllocatorBase<BumpPtrAllocatorImpl>::Allocate;
252
253 void Deallocate(const void * /*Ptr*/, size_t /*Size*/) {}
254
255 // Pull in base class overloads.
256 using AllocatorBase<BumpPtrAllocatorImpl>::Deallocate;
257
258 size_t GetNumSlabs() const { return Slabs.size() + CustomSizedSlabs.size(); }
259
260 size_t getTotalMemory() const {
261 size_t TotalMemory = 0;
262 for (auto I = Slabs.begin(), E = Slabs.end(); I != E; ++I)
263 TotalMemory += computeSlabSize(std::distance(Slabs.begin(), I));
264 for (auto &PtrAndSize : CustomSizedSlabs)
265 TotalMemory += PtrAndSize.second;
266 return TotalMemory;
267 }
268
269 void PrintStats() const {
270 detail::printBumpPtrAllocatorStats(Slabs.size(), BytesAllocated,
271 getTotalMemory());
272 }
273
274 private:
275 /// \brief The current pointer into the current slab.
276 ///
277 /// This points to the next free byte in the slab.
278 char *CurPtr;
279
280 /// \brief The end of the current slab.
281 char *End;
282
283 /// \brief The slabs allocated so far.
284 SmallVector<void *, 4> Slabs;
285
286 /// \brief Custom-sized slabs allocated for too-large allocation requests.
287 SmallVector<std::pair<void *, size_t>, 0> CustomSizedSlabs;
288
289 /// \brief How many bytes we've allocated.
290 ///
291 /// Used so that we can compute how much space was wasted.
292 size_t BytesAllocated;
293
294 /// \brief The allocator instance we use to get slabs of memory.
295 AllocatorT Allocator;
296
297 static size_t computeSlabSize(unsigned SlabIdx) {
298 // Scale the actual allocated slab size based on the number of slabs
299 // allocated. Every 128 slabs allocated, we double the allocated size to
300 // reduce allocation frequency, but saturate at multiplying the slab size by
301 // 2^30.
302 return SlabSize * ((size_t)1 << std::min<size_t>(30, SlabIdx / 128));
303 }
304
305 /// \brief Allocate a new slab and move the bump pointers over into the new
306 /// slab, modifying CurPtr and End.
307 void StartNewSlab() {
308 size_t AllocatedSlabSize = computeSlabSize(Slabs.size());
309
310 void *NewSlab = Allocator.Allocate(AllocatedSlabSize, 0);
311 Slabs.push_back(NewSlab);
312 CurPtr = (char *)(NewSlab);
313 End = ((char *)NewSlab) + AllocatedSlabSize;
314 }
315
316 /// \brief Deallocate a sequence of slabs.
317 void DeallocateSlabs(SmallVectorImpl<void *>::iterator I,
318 SmallVectorImpl<void *>::iterator E) {
319 for (; I != E; ++I) {
320 size_t AllocatedSlabSize =
321 computeSlabSize(std::distance(Slabs.begin(), I));
322 #ifndef NDEBUG
323 // Poison the memory so stale pointers crash sooner. Note we must
324 // preserve the Size and NextPtr fields at the beginning.
325 if (AllocatedSlabSize != 0) {
326 sys::Memory::setRangeWritable(*I, AllocatedSlabSize);
327 memset(*I, 0xCD, AllocatedSlabSize);
328 }
329 #endif
330 Allocator.Deallocate(*I, AllocatedSlabSize);
331 }
332 }
333
334 /// \brief Deallocate all memory for custom sized slabs.
335 void DeallocateCustomSizedSlabs() {
336 for (auto &PtrAndSize : CustomSizedSlabs) {
337 void *Ptr = PtrAndSize.first;
338 size_t Size = PtrAndSize.second;
339 #ifndef NDEBUG
340 // Poison the memory so stale pointers crash sooner. Note we must
341 // preserve the Size and NextPtr fields at the beginning.
342 sys::Memory::setRangeWritable(Ptr, Size);
343 memset(Ptr, 0xCD, Size);
344 #endif
345 Allocator.Deallocate(Ptr, Size);
346 }
347 }
348
349 template <typename T> friend class SpecificBumpPtrAllocator;
350 };
351
352 /// \brief The standard BumpPtrAllocator which just uses the default template
353 /// paramaters.
354 typedef BumpPtrAllocatorImpl<> BumpPtrAllocator;
355
356 /// \brief A BumpPtrAllocator that allows only elements of a specific type to be
357 /// allocated.
358 ///
359 /// This allows calling the destructor in DestroyAll() and when the allocator is
360 /// destroyed.
361 template <typename T> class SpecificBumpPtrAllocator {
362 BumpPtrAllocator Allocator;
363
364 public:
365 SpecificBumpPtrAllocator() : Allocator() {}
366 SpecificBumpPtrAllocator(SpecificBumpPtrAllocator &&Old)
367 : Allocator(std::move(Old.Allocator)) {}
368 ~SpecificBumpPtrAllocator() { DestroyAll(); }
369
370 SpecificBumpPtrAllocator &operator=(SpecificBumpPtrAllocator &&RHS) {
371 Allocator = std::move(RHS.Allocator);
372 return *this;
373 }
374
375 /// Call the destructor of each allocated object and deallocate all but the
376 /// current slab and reset the current pointer to the beginning of it, freeing
377 /// all memory allocated so far.
378 void DestroyAll() {
379 auto DestroyElements = [](char *Begin, char *End) {
380 assert(Begin == (char*)alignAddr(Begin, alignOf<T>()));
381 for (char *Ptr = Begin; Ptr + sizeof(T) <= End; Ptr += sizeof(T))
382 reinterpret_cast<T *>(Ptr)->~T();
383 };
384
385 for (auto I = Allocator.Slabs.begin(), E = Allocator.Slabs.end(); I != E;
386 ++I) {
387 size_t AllocatedSlabSize = BumpPtrAllocator::computeSlabSize(
388 std::distance(Allocator.Slabs.begin(), I));
389 char *Begin = (char*)alignAddr(*I, alignOf<T>());
390 char *End = *I == Allocator.Slabs.back() ? Allocator.CurPtr
391 : (char *)*I + AllocatedSlabSize;
392
393 DestroyElements(Begin, End);
394 }
395
396 for (auto &PtrAndSize : Allocator.CustomSizedSlabs) {
397 void *Ptr = PtrAndSize.first;
398 size_t Size = PtrAndSize.second;
399 DestroyElements((char*)alignAddr(Ptr, alignOf<T>()), (char *)Ptr + Size);
400 }
401
402 Allocator.Reset();
403 }
404
405 /// \brief Allocate space for an array of objects without constructing them.
406 T *Allocate(size_t num = 1) { return Allocator.Allocate<T>(num); }
407 };
408
409 } // end namespace llvm
410
411 template <typename AllocatorT, size_t SlabSize, size_t SizeThreshold>
412 void *operator new(size_t Size,
413 llvm::BumpPtrAllocatorImpl<AllocatorT, SlabSize,
414 SizeThreshold> &Allocator) {
415 struct S {
416 char c;
417 union {
418 double D;
419 long double LD;
420 long long L;
421 void *P;
422 } x;
423 };
424 return Allocator.Allocate(
425 Size, std::min((size_t)llvm::NextPowerOf2(Size), offsetof(S, x)));
426 }
427
428 template <typename AllocatorT, size_t SlabSize, size_t SizeThreshold>
429 void operator delete(
430 void *, llvm::BumpPtrAllocatorImpl<AllocatorT, SlabSize, SizeThreshold> &) {
431 }
432
433 #endif // LLVM_SUPPORT_ALLOCATOR_H