]> git.proxmox.com Git - rustc.git/blob - src/llvm/lib/CodeGen/SelectionDAG/ScheduleDAGRRList.cpp
Imported Upstream version 0.6
[rustc.git] / src / llvm / lib / CodeGen / SelectionDAG / ScheduleDAGRRList.cpp
1 //===----- ScheduleDAGRRList.cpp - Reg pressure reduction list scheduler --===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This implements bottom-up and top-down register pressure reduction list
11 // schedulers, using standard algorithms. The basic approach uses a priority
12 // queue of available nodes to schedule. One at a time, nodes are taken from
13 // the priority queue (thus in priority order), checked for legality to
14 // schedule, and emitted if legal.
15 //
16 //===----------------------------------------------------------------------===//
17
18 #define DEBUG_TYPE "pre-RA-sched"
19 #include "ScheduleDAGSDNodes.h"
20 #include "llvm/InlineAsm.h"
21 #include "llvm/CodeGen/SchedulerRegistry.h"
22 #include "llvm/CodeGen/SelectionDAGISel.h"
23 #include "llvm/CodeGen/ScheduleHazardRecognizer.h"
24 #include "llvm/Target/TargetRegisterInfo.h"
25 #include "llvm/Target/TargetData.h"
26 #include "llvm/Target/TargetMachine.h"
27 #include "llvm/Target/TargetInstrInfo.h"
28 #include "llvm/Target/TargetLowering.h"
29 #include "llvm/ADT/SmallSet.h"
30 #include "llvm/ADT/Statistic.h"
31 #include "llvm/ADT/STLExtras.h"
32 #include "llvm/Support/Debug.h"
33 #include "llvm/Support/ErrorHandling.h"
34 #include "llvm/Support/raw_ostream.h"
35 #include <climits>
36 using namespace llvm;
37
38 STATISTIC(NumBacktracks, "Number of times scheduler backtracked");
39 STATISTIC(NumUnfolds, "Number of nodes unfolded");
40 STATISTIC(NumDups, "Number of duplicated nodes");
41 STATISTIC(NumPRCopies, "Number of physical register copies");
42
43 static RegisterScheduler
44 burrListDAGScheduler("list-burr",
45 "Bottom-up register reduction list scheduling",
46 createBURRListDAGScheduler);
47 static RegisterScheduler
48 sourceListDAGScheduler("source",
49 "Similar to list-burr but schedules in source "
50 "order when possible",
51 createSourceListDAGScheduler);
52
53 static RegisterScheduler
54 hybridListDAGScheduler("list-hybrid",
55 "Bottom-up register pressure aware list scheduling "
56 "which tries to balance latency and register pressure",
57 createHybridListDAGScheduler);
58
59 static RegisterScheduler
60 ILPListDAGScheduler("list-ilp",
61 "Bottom-up register pressure aware list scheduling "
62 "which tries to balance ILP and register pressure",
63 createILPListDAGScheduler);
64
65 static cl::opt<bool> DisableSchedCycles(
66 "disable-sched-cycles", cl::Hidden, cl::init(false),
67 cl::desc("Disable cycle-level precision during preRA scheduling"));
68
69 // Temporary sched=list-ilp flags until the heuristics are robust.
70 // Some options are also available under sched=list-hybrid.
71 static cl::opt<bool> DisableSchedRegPressure(
72 "disable-sched-reg-pressure", cl::Hidden, cl::init(false),
73 cl::desc("Disable regpressure priority in sched=list-ilp"));
74 static cl::opt<bool> DisableSchedLiveUses(
75 "disable-sched-live-uses", cl::Hidden, cl::init(true),
76 cl::desc("Disable live use priority in sched=list-ilp"));
77 static cl::opt<bool> DisableSchedVRegCycle(
78 "disable-sched-vrcycle", cl::Hidden, cl::init(false),
79 cl::desc("Disable virtual register cycle interference checks"));
80 static cl::opt<bool> DisableSchedPhysRegJoin(
81 "disable-sched-physreg-join", cl::Hidden, cl::init(false),
82 cl::desc("Disable physreg def-use affinity"));
83 static cl::opt<bool> DisableSchedStalls(
84 "disable-sched-stalls", cl::Hidden, cl::init(true),
85 cl::desc("Disable no-stall priority in sched=list-ilp"));
86 static cl::opt<bool> DisableSchedCriticalPath(
87 "disable-sched-critical-path", cl::Hidden, cl::init(false),
88 cl::desc("Disable critical path priority in sched=list-ilp"));
89 static cl::opt<bool> DisableSchedHeight(
90 "disable-sched-height", cl::Hidden, cl::init(false),
91 cl::desc("Disable scheduled-height priority in sched=list-ilp"));
92 static cl::opt<bool> Disable2AddrHack(
93 "disable-2addr-hack", cl::Hidden, cl::init(true),
94 cl::desc("Disable scheduler's two-address hack"));
95
96 static cl::opt<int> MaxReorderWindow(
97 "max-sched-reorder", cl::Hidden, cl::init(6),
98 cl::desc("Number of instructions to allow ahead of the critical path "
99 "in sched=list-ilp"));
100
101 static cl::opt<unsigned> AvgIPC(
102 "sched-avg-ipc", cl::Hidden, cl::init(1),
103 cl::desc("Average inst/cycle whan no target itinerary exists."));
104
105 namespace {
106 //===----------------------------------------------------------------------===//
107 /// ScheduleDAGRRList - The actual register reduction list scheduler
108 /// implementation. This supports both top-down and bottom-up scheduling.
109 ///
110 class ScheduleDAGRRList : public ScheduleDAGSDNodes {
111 private:
112 /// NeedLatency - True if the scheduler will make use of latency information.
113 ///
114 bool NeedLatency;
115
116 /// AvailableQueue - The priority queue to use for the available SUnits.
117 SchedulingPriorityQueue *AvailableQueue;
118
119 /// PendingQueue - This contains all of the instructions whose operands have
120 /// been issued, but their results are not ready yet (due to the latency of
121 /// the operation). Once the operands becomes available, the instruction is
122 /// added to the AvailableQueue.
123 std::vector<SUnit*> PendingQueue;
124
125 /// HazardRec - The hazard recognizer to use.
126 ScheduleHazardRecognizer *HazardRec;
127
128 /// CurCycle - The current scheduler state corresponds to this cycle.
129 unsigned CurCycle;
130
131 /// MinAvailableCycle - Cycle of the soonest available instruction.
132 unsigned MinAvailableCycle;
133
134 /// IssueCount - Count instructions issued in this cycle
135 /// Currently valid only for bottom-up scheduling.
136 unsigned IssueCount;
137
138 /// LiveRegDefs - A set of physical registers and their definition
139 /// that are "live". These nodes must be scheduled before any other nodes that
140 /// modifies the registers can be scheduled.
141 unsigned NumLiveRegs;
142 std::vector<SUnit*> LiveRegDefs;
143 std::vector<SUnit*> LiveRegGens;
144
145 /// Topo - A topological ordering for SUnits which permits fast IsReachable
146 /// and similar queries.
147 ScheduleDAGTopologicalSort Topo;
148
149 // Hack to keep track of the inverse of FindCallSeqStart without more crazy
150 // DAG crawling.
151 DenseMap<SUnit*, SUnit*> CallSeqEndForStart;
152
153 public:
154 ScheduleDAGRRList(MachineFunction &mf, bool needlatency,
155 SchedulingPriorityQueue *availqueue,
156 CodeGenOpt::Level OptLevel)
157 : ScheduleDAGSDNodes(mf),
158 NeedLatency(needlatency), AvailableQueue(availqueue), CurCycle(0),
159 Topo(SUnits) {
160
161 const TargetMachine &tm = mf.getTarget();
162 if (DisableSchedCycles || !NeedLatency)
163 HazardRec = new ScheduleHazardRecognizer();
164 else
165 HazardRec = tm.getInstrInfo()->CreateTargetHazardRecognizer(&tm, this);
166 }
167
168 ~ScheduleDAGRRList() {
169 delete HazardRec;
170 delete AvailableQueue;
171 }
172
173 void Schedule();
174
175 ScheduleHazardRecognizer *getHazardRec() { return HazardRec; }
176
177 /// IsReachable - Checks if SU is reachable from TargetSU.
178 bool IsReachable(const SUnit *SU, const SUnit *TargetSU) {
179 return Topo.IsReachable(SU, TargetSU);
180 }
181
182 /// WillCreateCycle - Returns true if adding an edge from SU to TargetSU will
183 /// create a cycle.
184 bool WillCreateCycle(SUnit *SU, SUnit *TargetSU) {
185 return Topo.WillCreateCycle(SU, TargetSU);
186 }
187
188 /// AddPred - adds a predecessor edge to SUnit SU.
189 /// This returns true if this is a new predecessor.
190 /// Updates the topological ordering if required.
191 void AddPred(SUnit *SU, const SDep &D) {
192 Topo.AddPred(SU, D.getSUnit());
193 SU->addPred(D);
194 }
195
196 /// RemovePred - removes a predecessor edge from SUnit SU.
197 /// This returns true if an edge was removed.
198 /// Updates the topological ordering if required.
199 void RemovePred(SUnit *SU, const SDep &D) {
200 Topo.RemovePred(SU, D.getSUnit());
201 SU->removePred(D);
202 }
203
204 private:
205 bool isReady(SUnit *SU) {
206 return DisableSchedCycles || !AvailableQueue->hasReadyFilter() ||
207 AvailableQueue->isReady(SU);
208 }
209
210 void ReleasePred(SUnit *SU, const SDep *PredEdge);
211 void ReleasePredecessors(SUnit *SU);
212 void ReleasePending();
213 void AdvanceToCycle(unsigned NextCycle);
214 void AdvancePastStalls(SUnit *SU);
215 void EmitNode(SUnit *SU);
216 void ScheduleNodeBottomUp(SUnit*);
217 void CapturePred(SDep *PredEdge);
218 void UnscheduleNodeBottomUp(SUnit*);
219 void RestoreHazardCheckerBottomUp();
220 void BacktrackBottomUp(SUnit*, SUnit*);
221 SUnit *CopyAndMoveSuccessors(SUnit*);
222 void InsertCopiesAndMoveSuccs(SUnit*, unsigned,
223 const TargetRegisterClass*,
224 const TargetRegisterClass*,
225 SmallVector<SUnit*, 2>&);
226 bool DelayForLiveRegsBottomUp(SUnit*, SmallVector<unsigned, 4>&);
227
228 SUnit *PickNodeToScheduleBottomUp();
229 void ListScheduleBottomUp();
230
231 /// CreateNewSUnit - Creates a new SUnit and returns a pointer to it.
232 /// Updates the topological ordering if required.
233 SUnit *CreateNewSUnit(SDNode *N) {
234 unsigned NumSUnits = SUnits.size();
235 SUnit *NewNode = newSUnit(N);
236 // Update the topological ordering.
237 if (NewNode->NodeNum >= NumSUnits)
238 Topo.InitDAGTopologicalSorting();
239 return NewNode;
240 }
241
242 /// CreateClone - Creates a new SUnit from an existing one.
243 /// Updates the topological ordering if required.
244 SUnit *CreateClone(SUnit *N) {
245 unsigned NumSUnits = SUnits.size();
246 SUnit *NewNode = Clone(N);
247 // Update the topological ordering.
248 if (NewNode->NodeNum >= NumSUnits)
249 Topo.InitDAGTopologicalSorting();
250 return NewNode;
251 }
252
253 /// forceUnitLatencies - Register-pressure-reducing scheduling doesn't
254 /// need actual latency information but the hybrid scheduler does.
255 bool forceUnitLatencies() const {
256 return !NeedLatency;
257 }
258 };
259 } // end anonymous namespace
260
261 /// GetCostForDef - Looks up the register class and cost for a given definition.
262 /// Typically this just means looking up the representative register class,
263 /// but for untyped values (MVT::Untyped) it means inspecting the node's
264 /// opcode to determine what register class is being generated.
265 static void GetCostForDef(const ScheduleDAGSDNodes::RegDefIter &RegDefPos,
266 const TargetLowering *TLI,
267 const TargetInstrInfo *TII,
268 const TargetRegisterInfo *TRI,
269 unsigned &RegClass, unsigned &Cost,
270 const MachineFunction &MF) {
271 EVT VT = RegDefPos.GetValue();
272
273 // Special handling for untyped values. These values can only come from
274 // the expansion of custom DAG-to-DAG patterns.
275 if (VT == MVT::Untyped) {
276 const SDNode *Node = RegDefPos.GetNode();
277 unsigned Opcode = Node->getMachineOpcode();
278
279 if (Opcode == TargetOpcode::REG_SEQUENCE) {
280 unsigned DstRCIdx = cast<ConstantSDNode>(Node->getOperand(0))->getZExtValue();
281 const TargetRegisterClass *RC = TRI->getRegClass(DstRCIdx);
282 RegClass = RC->getID();
283 Cost = 1;
284 return;
285 }
286
287 unsigned Idx = RegDefPos.GetIdx();
288 const MCInstrDesc Desc = TII->get(Opcode);
289 const TargetRegisterClass *RC = TII->getRegClass(Desc, Idx, TRI, MF);
290 RegClass = RC->getID();
291 // FIXME: Cost arbitrarily set to 1 because there doesn't seem to be a
292 // better way to determine it.
293 Cost = 1;
294 } else {
295 RegClass = TLI->getRepRegClassFor(VT)->getID();
296 Cost = TLI->getRepRegClassCostFor(VT);
297 }
298 }
299
300 /// Schedule - Schedule the DAG using list scheduling.
301 void ScheduleDAGRRList::Schedule() {
302 DEBUG(dbgs()
303 << "********** List Scheduling BB#" << BB->getNumber()
304 << " '" << BB->getName() << "' **********\n");
305
306 CurCycle = 0;
307 IssueCount = 0;
308 MinAvailableCycle = DisableSchedCycles ? 0 : UINT_MAX;
309 NumLiveRegs = 0;
310 // Allocate slots for each physical register, plus one for a special register
311 // to track the virtual resource of a calling sequence.
312 LiveRegDefs.resize(TRI->getNumRegs() + 1, NULL);
313 LiveRegGens.resize(TRI->getNumRegs() + 1, NULL);
314 CallSeqEndForStart.clear();
315
316 // Build the scheduling graph.
317 BuildSchedGraph(NULL);
318
319 DEBUG(for (unsigned su = 0, e = SUnits.size(); su != e; ++su)
320 SUnits[su].dumpAll(this));
321 Topo.InitDAGTopologicalSorting();
322
323 AvailableQueue->initNodes(SUnits);
324
325 HazardRec->Reset();
326
327 // Execute the actual scheduling loop.
328 ListScheduleBottomUp();
329
330 AvailableQueue->releaseState();
331
332 DEBUG({
333 dbgs() << "*** Final schedule ***\n";
334 dumpSchedule();
335 dbgs() << '\n';
336 });
337 }
338
339 //===----------------------------------------------------------------------===//
340 // Bottom-Up Scheduling
341 //===----------------------------------------------------------------------===//
342
343 /// ReleasePred - Decrement the NumSuccsLeft count of a predecessor. Add it to
344 /// the AvailableQueue if the count reaches zero. Also update its cycle bound.
345 void ScheduleDAGRRList::ReleasePred(SUnit *SU, const SDep *PredEdge) {
346 SUnit *PredSU = PredEdge->getSUnit();
347
348 #ifndef NDEBUG
349 if (PredSU->NumSuccsLeft == 0) {
350 dbgs() << "*** Scheduling failed! ***\n";
351 PredSU->dump(this);
352 dbgs() << " has been released too many times!\n";
353 llvm_unreachable(0);
354 }
355 #endif
356 --PredSU->NumSuccsLeft;
357
358 if (!forceUnitLatencies()) {
359 // Updating predecessor's height. This is now the cycle when the
360 // predecessor can be scheduled without causing a pipeline stall.
361 PredSU->setHeightToAtLeast(SU->getHeight() + PredEdge->getLatency());
362 }
363
364 // If all the node's successors are scheduled, this node is ready
365 // to be scheduled. Ignore the special EntrySU node.
366 if (PredSU->NumSuccsLeft == 0 && PredSU != &EntrySU) {
367 PredSU->isAvailable = true;
368
369 unsigned Height = PredSU->getHeight();
370 if (Height < MinAvailableCycle)
371 MinAvailableCycle = Height;
372
373 if (isReady(PredSU)) {
374 AvailableQueue->push(PredSU);
375 }
376 // CapturePred and others may have left the node in the pending queue, avoid
377 // adding it twice.
378 else if (!PredSU->isPending) {
379 PredSU->isPending = true;
380 PendingQueue.push_back(PredSU);
381 }
382 }
383 }
384
385 /// IsChainDependent - Test if Outer is reachable from Inner through
386 /// chain dependencies.
387 static bool IsChainDependent(SDNode *Outer, SDNode *Inner,
388 unsigned NestLevel,
389 const TargetInstrInfo *TII) {
390 SDNode *N = Outer;
391 for (;;) {
392 if (N == Inner)
393 return true;
394 // For a TokenFactor, examine each operand. There may be multiple ways
395 // to get to the CALLSEQ_BEGIN, but we need to find the path with the
396 // most nesting in order to ensure that we find the corresponding match.
397 if (N->getOpcode() == ISD::TokenFactor) {
398 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
399 if (IsChainDependent(N->getOperand(i).getNode(), Inner, NestLevel, TII))
400 return true;
401 return false;
402 }
403 // Check for a lowered CALLSEQ_BEGIN or CALLSEQ_END.
404 if (N->isMachineOpcode()) {
405 if (N->getMachineOpcode() ==
406 (unsigned)TII->getCallFrameDestroyOpcode()) {
407 ++NestLevel;
408 } else if (N->getMachineOpcode() ==
409 (unsigned)TII->getCallFrameSetupOpcode()) {
410 if (NestLevel == 0)
411 return false;
412 --NestLevel;
413 }
414 }
415 // Otherwise, find the chain and continue climbing.
416 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
417 if (N->getOperand(i).getValueType() == MVT::Other) {
418 N = N->getOperand(i).getNode();
419 goto found_chain_operand;
420 }
421 return false;
422 found_chain_operand:;
423 if (N->getOpcode() == ISD::EntryToken)
424 return false;
425 }
426 }
427
428 /// FindCallSeqStart - Starting from the (lowered) CALLSEQ_END node, locate
429 /// the corresponding (lowered) CALLSEQ_BEGIN node.
430 ///
431 /// NestLevel and MaxNested are used in recursion to indcate the current level
432 /// of nesting of CALLSEQ_BEGIN and CALLSEQ_END pairs, as well as the maximum
433 /// level seen so far.
434 ///
435 /// TODO: It would be better to give CALLSEQ_END an explicit operand to point
436 /// to the corresponding CALLSEQ_BEGIN to avoid needing to search for it.
437 static SDNode *
438 FindCallSeqStart(SDNode *N, unsigned &NestLevel, unsigned &MaxNest,
439 const TargetInstrInfo *TII) {
440 for (;;) {
441 // For a TokenFactor, examine each operand. There may be multiple ways
442 // to get to the CALLSEQ_BEGIN, but we need to find the path with the
443 // most nesting in order to ensure that we find the corresponding match.
444 if (N->getOpcode() == ISD::TokenFactor) {
445 SDNode *Best = 0;
446 unsigned BestMaxNest = MaxNest;
447 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
448 unsigned MyNestLevel = NestLevel;
449 unsigned MyMaxNest = MaxNest;
450 if (SDNode *New = FindCallSeqStart(N->getOperand(i).getNode(),
451 MyNestLevel, MyMaxNest, TII))
452 if (!Best || (MyMaxNest > BestMaxNest)) {
453 Best = New;
454 BestMaxNest = MyMaxNest;
455 }
456 }
457 assert(Best);
458 MaxNest = BestMaxNest;
459 return Best;
460 }
461 // Check for a lowered CALLSEQ_BEGIN or CALLSEQ_END.
462 if (N->isMachineOpcode()) {
463 if (N->getMachineOpcode() ==
464 (unsigned)TII->getCallFrameDestroyOpcode()) {
465 ++NestLevel;
466 MaxNest = std::max(MaxNest, NestLevel);
467 } else if (N->getMachineOpcode() ==
468 (unsigned)TII->getCallFrameSetupOpcode()) {
469 assert(NestLevel != 0);
470 --NestLevel;
471 if (NestLevel == 0)
472 return N;
473 }
474 }
475 // Otherwise, find the chain and continue climbing.
476 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
477 if (N->getOperand(i).getValueType() == MVT::Other) {
478 N = N->getOperand(i).getNode();
479 goto found_chain_operand;
480 }
481 return 0;
482 found_chain_operand:;
483 if (N->getOpcode() == ISD::EntryToken)
484 return 0;
485 }
486 }
487
488 /// Call ReleasePred for each predecessor, then update register live def/gen.
489 /// Always update LiveRegDefs for a register dependence even if the current SU
490 /// also defines the register. This effectively create one large live range
491 /// across a sequence of two-address node. This is important because the
492 /// entire chain must be scheduled together. Example:
493 ///
494 /// flags = (3) add
495 /// flags = (2) addc flags
496 /// flags = (1) addc flags
497 ///
498 /// results in
499 ///
500 /// LiveRegDefs[flags] = 3
501 /// LiveRegGens[flags] = 1
502 ///
503 /// If (2) addc is unscheduled, then (1) addc must also be unscheduled to avoid
504 /// interference on flags.
505 void ScheduleDAGRRList::ReleasePredecessors(SUnit *SU) {
506 // Bottom up: release predecessors
507 for (SUnit::pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
508 I != E; ++I) {
509 ReleasePred(SU, &*I);
510 if (I->isAssignedRegDep()) {
511 // This is a physical register dependency and it's impossible or
512 // expensive to copy the register. Make sure nothing that can
513 // clobber the register is scheduled between the predecessor and
514 // this node.
515 SUnit *RegDef = LiveRegDefs[I->getReg()]; (void)RegDef;
516 assert((!RegDef || RegDef == SU || RegDef == I->getSUnit()) &&
517 "interference on register dependence");
518 LiveRegDefs[I->getReg()] = I->getSUnit();
519 if (!LiveRegGens[I->getReg()]) {
520 ++NumLiveRegs;
521 LiveRegGens[I->getReg()] = SU;
522 }
523 }
524 }
525
526 // If we're scheduling a lowered CALLSEQ_END, find the corresponding
527 // CALLSEQ_BEGIN. Inject an artificial physical register dependence between
528 // these nodes, to prevent other calls from being interscheduled with them.
529 unsigned CallResource = TRI->getNumRegs();
530 if (!LiveRegDefs[CallResource])
531 for (SDNode *Node = SU->getNode(); Node; Node = Node->getGluedNode())
532 if (Node->isMachineOpcode() &&
533 Node->getMachineOpcode() == (unsigned)TII->getCallFrameDestroyOpcode()) {
534 unsigned NestLevel = 0;
535 unsigned MaxNest = 0;
536 SDNode *N = FindCallSeqStart(Node, NestLevel, MaxNest, TII);
537
538 SUnit *Def = &SUnits[N->getNodeId()];
539 CallSeqEndForStart[Def] = SU;
540
541 ++NumLiveRegs;
542 LiveRegDefs[CallResource] = Def;
543 LiveRegGens[CallResource] = SU;
544 break;
545 }
546 }
547
548 /// Check to see if any of the pending instructions are ready to issue. If
549 /// so, add them to the available queue.
550 void ScheduleDAGRRList::ReleasePending() {
551 if (DisableSchedCycles) {
552 assert(PendingQueue.empty() && "pending instrs not allowed in this mode");
553 return;
554 }
555
556 // If the available queue is empty, it is safe to reset MinAvailableCycle.
557 if (AvailableQueue->empty())
558 MinAvailableCycle = UINT_MAX;
559
560 // Check to see if any of the pending instructions are ready to issue. If
561 // so, add them to the available queue.
562 for (unsigned i = 0, e = PendingQueue.size(); i != e; ++i) {
563 unsigned ReadyCycle = PendingQueue[i]->getHeight();
564 if (ReadyCycle < MinAvailableCycle)
565 MinAvailableCycle = ReadyCycle;
566
567 if (PendingQueue[i]->isAvailable) {
568 if (!isReady(PendingQueue[i]))
569 continue;
570 AvailableQueue->push(PendingQueue[i]);
571 }
572 PendingQueue[i]->isPending = false;
573 PendingQueue[i] = PendingQueue.back();
574 PendingQueue.pop_back();
575 --i; --e;
576 }
577 }
578
579 /// Move the scheduler state forward by the specified number of Cycles.
580 void ScheduleDAGRRList::AdvanceToCycle(unsigned NextCycle) {
581 if (NextCycle <= CurCycle)
582 return;
583
584 IssueCount = 0;
585 AvailableQueue->setCurCycle(NextCycle);
586 if (!HazardRec->isEnabled()) {
587 // Bypass lots of virtual calls in case of long latency.
588 CurCycle = NextCycle;
589 }
590 else {
591 for (; CurCycle != NextCycle; ++CurCycle) {
592 HazardRec->RecedeCycle();
593 }
594 }
595 // FIXME: Instead of visiting the pending Q each time, set a dirty flag on the
596 // available Q to release pending nodes at least once before popping.
597 ReleasePending();
598 }
599
600 /// Move the scheduler state forward until the specified node's dependents are
601 /// ready and can be scheduled with no resource conflicts.
602 void ScheduleDAGRRList::AdvancePastStalls(SUnit *SU) {
603 if (DisableSchedCycles)
604 return;
605
606 // FIXME: Nodes such as CopyFromReg probably should not advance the current
607 // cycle. Otherwise, we can wrongly mask real stalls. If the non-machine node
608 // has predecessors the cycle will be advanced when they are scheduled.
609 // But given the crude nature of modeling latency though such nodes, we
610 // currently need to treat these nodes like real instructions.
611 // if (!SU->getNode() || !SU->getNode()->isMachineOpcode()) return;
612
613 unsigned ReadyCycle = SU->getHeight();
614
615 // Bump CurCycle to account for latency. We assume the latency of other
616 // available instructions may be hidden by the stall (not a full pipe stall).
617 // This updates the hazard recognizer's cycle before reserving resources for
618 // this instruction.
619 AdvanceToCycle(ReadyCycle);
620
621 // Calls are scheduled in their preceding cycle, so don't conflict with
622 // hazards from instructions after the call. EmitNode will reset the
623 // scoreboard state before emitting the call.
624 if (SU->isCall)
625 return;
626
627 // FIXME: For resource conflicts in very long non-pipelined stages, we
628 // should probably skip ahead here to avoid useless scoreboard checks.
629 int Stalls = 0;
630 while (true) {
631 ScheduleHazardRecognizer::HazardType HT =
632 HazardRec->getHazardType(SU, -Stalls);
633
634 if (HT == ScheduleHazardRecognizer::NoHazard)
635 break;
636
637 ++Stalls;
638 }
639 AdvanceToCycle(CurCycle + Stalls);
640 }
641
642 /// Record this SUnit in the HazardRecognizer.
643 /// Does not update CurCycle.
644 void ScheduleDAGRRList::EmitNode(SUnit *SU) {
645 if (!HazardRec->isEnabled())
646 return;
647
648 // Check for phys reg copy.
649 if (!SU->getNode())
650 return;
651
652 switch (SU->getNode()->getOpcode()) {
653 default:
654 assert(SU->getNode()->isMachineOpcode() &&
655 "This target-independent node should not be scheduled.");
656 break;
657 case ISD::MERGE_VALUES:
658 case ISD::TokenFactor:
659 case ISD::LIFETIME_START:
660 case ISD::LIFETIME_END:
661 case ISD::CopyToReg:
662 case ISD::CopyFromReg:
663 case ISD::EH_LABEL:
664 // Noops don't affect the scoreboard state. Copies are likely to be
665 // removed.
666 return;
667 case ISD::INLINEASM:
668 // For inline asm, clear the pipeline state.
669 HazardRec->Reset();
670 return;
671 }
672 if (SU->isCall) {
673 // Calls are scheduled with their preceding instructions. For bottom-up
674 // scheduling, clear the pipeline state before emitting.
675 HazardRec->Reset();
676 }
677
678 HazardRec->EmitInstruction(SU);
679 }
680
681 static void resetVRegCycle(SUnit *SU);
682
683 /// ScheduleNodeBottomUp - Add the node to the schedule. Decrement the pending
684 /// count of its predecessors. If a predecessor pending count is zero, add it to
685 /// the Available queue.
686 void ScheduleDAGRRList::ScheduleNodeBottomUp(SUnit *SU) {
687 DEBUG(dbgs() << "\n*** Scheduling [" << CurCycle << "]: ");
688 DEBUG(SU->dump(this));
689
690 #ifndef NDEBUG
691 if (CurCycle < SU->getHeight())
692 DEBUG(dbgs() << " Height [" << SU->getHeight()
693 << "] pipeline stall!\n");
694 #endif
695
696 // FIXME: Do not modify node height. It may interfere with
697 // backtracking. Instead add a "ready cycle" to SUnit. Before scheduling the
698 // node its ready cycle can aid heuristics, and after scheduling it can
699 // indicate the scheduled cycle.
700 SU->setHeightToAtLeast(CurCycle);
701
702 // Reserve resources for the scheduled intruction.
703 EmitNode(SU);
704
705 Sequence.push_back(SU);
706
707 AvailableQueue->scheduledNode(SU);
708
709 // If HazardRec is disabled, and each inst counts as one cycle, then
710 // advance CurCycle before ReleasePredecessors to avoid useless pushes to
711 // PendingQueue for schedulers that implement HasReadyFilter.
712 if (!HazardRec->isEnabled() && AvgIPC < 2)
713 AdvanceToCycle(CurCycle + 1);
714
715 // Update liveness of predecessors before successors to avoid treating a
716 // two-address node as a live range def.
717 ReleasePredecessors(SU);
718
719 // Release all the implicit physical register defs that are live.
720 for (SUnit::succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
721 I != E; ++I) {
722 // LiveRegDegs[I->getReg()] != SU when SU is a two-address node.
723 if (I->isAssignedRegDep() && LiveRegDefs[I->getReg()] == SU) {
724 assert(NumLiveRegs > 0 && "NumLiveRegs is already zero!");
725 --NumLiveRegs;
726 LiveRegDefs[I->getReg()] = NULL;
727 LiveRegGens[I->getReg()] = NULL;
728 }
729 }
730 // Release the special call resource dependence, if this is the beginning
731 // of a call.
732 unsigned CallResource = TRI->getNumRegs();
733 if (LiveRegDefs[CallResource] == SU)
734 for (const SDNode *SUNode = SU->getNode(); SUNode;
735 SUNode = SUNode->getGluedNode()) {
736 if (SUNode->isMachineOpcode() &&
737 SUNode->getMachineOpcode() == (unsigned)TII->getCallFrameSetupOpcode()) {
738 assert(NumLiveRegs > 0 && "NumLiveRegs is already zero!");
739 --NumLiveRegs;
740 LiveRegDefs[CallResource] = NULL;
741 LiveRegGens[CallResource] = NULL;
742 }
743 }
744
745 resetVRegCycle(SU);
746
747 SU->isScheduled = true;
748
749 // Conditions under which the scheduler should eagerly advance the cycle:
750 // (1) No available instructions
751 // (2) All pipelines full, so available instructions must have hazards.
752 //
753 // If HazardRec is disabled, the cycle was pre-advanced before calling
754 // ReleasePredecessors. In that case, IssueCount should remain 0.
755 //
756 // Check AvailableQueue after ReleasePredecessors in case of zero latency.
757 if (HazardRec->isEnabled() || AvgIPC > 1) {
758 if (SU->getNode() && SU->getNode()->isMachineOpcode())
759 ++IssueCount;
760 if ((HazardRec->isEnabled() && HazardRec->atIssueLimit())
761 || (!HazardRec->isEnabled() && IssueCount == AvgIPC))
762 AdvanceToCycle(CurCycle + 1);
763 }
764 }
765
766 /// CapturePred - This does the opposite of ReleasePred. Since SU is being
767 /// unscheduled, incrcease the succ left count of its predecessors. Remove
768 /// them from AvailableQueue if necessary.
769 void ScheduleDAGRRList::CapturePred(SDep *PredEdge) {
770 SUnit *PredSU = PredEdge->getSUnit();
771 if (PredSU->isAvailable) {
772 PredSU->isAvailable = false;
773 if (!PredSU->isPending)
774 AvailableQueue->remove(PredSU);
775 }
776
777 assert(PredSU->NumSuccsLeft < UINT_MAX && "NumSuccsLeft will overflow!");
778 ++PredSU->NumSuccsLeft;
779 }
780
781 /// UnscheduleNodeBottomUp - Remove the node from the schedule, update its and
782 /// its predecessor states to reflect the change.
783 void ScheduleDAGRRList::UnscheduleNodeBottomUp(SUnit *SU) {
784 DEBUG(dbgs() << "*** Unscheduling [" << SU->getHeight() << "]: ");
785 DEBUG(SU->dump(this));
786
787 for (SUnit::pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
788 I != E; ++I) {
789 CapturePred(&*I);
790 if (I->isAssignedRegDep() && SU == LiveRegGens[I->getReg()]){
791 assert(NumLiveRegs > 0 && "NumLiveRegs is already zero!");
792 assert(LiveRegDefs[I->getReg()] == I->getSUnit() &&
793 "Physical register dependency violated?");
794 --NumLiveRegs;
795 LiveRegDefs[I->getReg()] = NULL;
796 LiveRegGens[I->getReg()] = NULL;
797 }
798 }
799
800 // Reclaim the special call resource dependence, if this is the beginning
801 // of a call.
802 unsigned CallResource = TRI->getNumRegs();
803 for (const SDNode *SUNode = SU->getNode(); SUNode;
804 SUNode = SUNode->getGluedNode()) {
805 if (SUNode->isMachineOpcode() &&
806 SUNode->getMachineOpcode() == (unsigned)TII->getCallFrameSetupOpcode()) {
807 ++NumLiveRegs;
808 LiveRegDefs[CallResource] = SU;
809 LiveRegGens[CallResource] = CallSeqEndForStart[SU];
810 }
811 }
812
813 // Release the special call resource dependence, if this is the end
814 // of a call.
815 if (LiveRegGens[CallResource] == SU)
816 for (const SDNode *SUNode = SU->getNode(); SUNode;
817 SUNode = SUNode->getGluedNode()) {
818 if (SUNode->isMachineOpcode() &&
819 SUNode->getMachineOpcode() == (unsigned)TII->getCallFrameDestroyOpcode()) {
820 assert(NumLiveRegs > 0 && "NumLiveRegs is already zero!");
821 --NumLiveRegs;
822 LiveRegDefs[CallResource] = NULL;
823 LiveRegGens[CallResource] = NULL;
824 }
825 }
826
827 for (SUnit::succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
828 I != E; ++I) {
829 if (I->isAssignedRegDep()) {
830 if (!LiveRegDefs[I->getReg()])
831 ++NumLiveRegs;
832 // This becomes the nearest def. Note that an earlier def may still be
833 // pending if this is a two-address node.
834 LiveRegDefs[I->getReg()] = SU;
835 if (LiveRegGens[I->getReg()] == NULL ||
836 I->getSUnit()->getHeight() < LiveRegGens[I->getReg()]->getHeight())
837 LiveRegGens[I->getReg()] = I->getSUnit();
838 }
839 }
840 if (SU->getHeight() < MinAvailableCycle)
841 MinAvailableCycle = SU->getHeight();
842
843 SU->setHeightDirty();
844 SU->isScheduled = false;
845 SU->isAvailable = true;
846 if (!DisableSchedCycles && AvailableQueue->hasReadyFilter()) {
847 // Don't make available until backtracking is complete.
848 SU->isPending = true;
849 PendingQueue.push_back(SU);
850 }
851 else {
852 AvailableQueue->push(SU);
853 }
854 AvailableQueue->unscheduledNode(SU);
855 }
856
857 /// After backtracking, the hazard checker needs to be restored to a state
858 /// corresponding the current cycle.
859 void ScheduleDAGRRList::RestoreHazardCheckerBottomUp() {
860 HazardRec->Reset();
861
862 unsigned LookAhead = std::min((unsigned)Sequence.size(),
863 HazardRec->getMaxLookAhead());
864 if (LookAhead == 0)
865 return;
866
867 std::vector<SUnit*>::const_iterator I = (Sequence.end() - LookAhead);
868 unsigned HazardCycle = (*I)->getHeight();
869 for (std::vector<SUnit*>::const_iterator E = Sequence.end(); I != E; ++I) {
870 SUnit *SU = *I;
871 for (; SU->getHeight() > HazardCycle; ++HazardCycle) {
872 HazardRec->RecedeCycle();
873 }
874 EmitNode(SU);
875 }
876 }
877
878 /// BacktrackBottomUp - Backtrack scheduling to a previous cycle specified in
879 /// BTCycle in order to schedule a specific node.
880 void ScheduleDAGRRList::BacktrackBottomUp(SUnit *SU, SUnit *BtSU) {
881 SUnit *OldSU = Sequence.back();
882 while (true) {
883 Sequence.pop_back();
884 if (SU->isSucc(OldSU))
885 // Don't try to remove SU from AvailableQueue.
886 SU->isAvailable = false;
887 // FIXME: use ready cycle instead of height
888 CurCycle = OldSU->getHeight();
889 UnscheduleNodeBottomUp(OldSU);
890 AvailableQueue->setCurCycle(CurCycle);
891 if (OldSU == BtSU)
892 break;
893 OldSU = Sequence.back();
894 }
895
896 assert(!SU->isSucc(OldSU) && "Something is wrong!");
897
898 RestoreHazardCheckerBottomUp();
899
900 ReleasePending();
901
902 ++NumBacktracks;
903 }
904
905 static bool isOperandOf(const SUnit *SU, SDNode *N) {
906 for (const SDNode *SUNode = SU->getNode(); SUNode;
907 SUNode = SUNode->getGluedNode()) {
908 if (SUNode->isOperandOf(N))
909 return true;
910 }
911 return false;
912 }
913
914 /// CopyAndMoveSuccessors - Clone the specified node and move its scheduled
915 /// successors to the newly created node.
916 SUnit *ScheduleDAGRRList::CopyAndMoveSuccessors(SUnit *SU) {
917 SDNode *N = SU->getNode();
918 if (!N)
919 return NULL;
920
921 if (SU->getNode()->getGluedNode())
922 return NULL;
923
924 SUnit *NewSU;
925 bool TryUnfold = false;
926 for (unsigned i = 0, e = N->getNumValues(); i != e; ++i) {
927 EVT VT = N->getValueType(i);
928 if (VT == MVT::Glue)
929 return NULL;
930 else if (VT == MVT::Other)
931 TryUnfold = true;
932 }
933 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
934 const SDValue &Op = N->getOperand(i);
935 EVT VT = Op.getNode()->getValueType(Op.getResNo());
936 if (VT == MVT::Glue)
937 return NULL;
938 }
939
940 if (TryUnfold) {
941 SmallVector<SDNode*, 2> NewNodes;
942 if (!TII->unfoldMemoryOperand(*DAG, N, NewNodes))
943 return NULL;
944
945 // unfolding an x86 DEC64m operation results in store, dec, load which
946 // can't be handled here so quit
947 if (NewNodes.size() == 3)
948 return NULL;
949
950 DEBUG(dbgs() << "Unfolding SU #" << SU->NodeNum << "\n");
951 assert(NewNodes.size() == 2 && "Expected a load folding node!");
952
953 N = NewNodes[1];
954 SDNode *LoadNode = NewNodes[0];
955 unsigned NumVals = N->getNumValues();
956 unsigned OldNumVals = SU->getNode()->getNumValues();
957 for (unsigned i = 0; i != NumVals; ++i)
958 DAG->ReplaceAllUsesOfValueWith(SDValue(SU->getNode(), i), SDValue(N, i));
959 DAG->ReplaceAllUsesOfValueWith(SDValue(SU->getNode(), OldNumVals-1),
960 SDValue(LoadNode, 1));
961
962 // LoadNode may already exist. This can happen when there is another
963 // load from the same location and producing the same type of value
964 // but it has different alignment or volatileness.
965 bool isNewLoad = true;
966 SUnit *LoadSU;
967 if (LoadNode->getNodeId() != -1) {
968 LoadSU = &SUnits[LoadNode->getNodeId()];
969 isNewLoad = false;
970 } else {
971 LoadSU = CreateNewSUnit(LoadNode);
972 LoadNode->setNodeId(LoadSU->NodeNum);
973
974 InitNumRegDefsLeft(LoadSU);
975 computeLatency(LoadSU);
976 }
977
978 SUnit *NewSU = CreateNewSUnit(N);
979 assert(N->getNodeId() == -1 && "Node already inserted!");
980 N->setNodeId(NewSU->NodeNum);
981
982 const MCInstrDesc &MCID = TII->get(N->getMachineOpcode());
983 for (unsigned i = 0; i != MCID.getNumOperands(); ++i) {
984 if (MCID.getOperandConstraint(i, MCOI::TIED_TO) != -1) {
985 NewSU->isTwoAddress = true;
986 break;
987 }
988 }
989 if (MCID.isCommutable())
990 NewSU->isCommutable = true;
991
992 InitNumRegDefsLeft(NewSU);
993 computeLatency(NewSU);
994
995 // Record all the edges to and from the old SU, by category.
996 SmallVector<SDep, 4> ChainPreds;
997 SmallVector<SDep, 4> ChainSuccs;
998 SmallVector<SDep, 4> LoadPreds;
999 SmallVector<SDep, 4> NodePreds;
1000 SmallVector<SDep, 4> NodeSuccs;
1001 for (SUnit::pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
1002 I != E; ++I) {
1003 if (I->isCtrl())
1004 ChainPreds.push_back(*I);
1005 else if (isOperandOf(I->getSUnit(), LoadNode))
1006 LoadPreds.push_back(*I);
1007 else
1008 NodePreds.push_back(*I);
1009 }
1010 for (SUnit::succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
1011 I != E; ++I) {
1012 if (I->isCtrl())
1013 ChainSuccs.push_back(*I);
1014 else
1015 NodeSuccs.push_back(*I);
1016 }
1017
1018 // Now assign edges to the newly-created nodes.
1019 for (unsigned i = 0, e = ChainPreds.size(); i != e; ++i) {
1020 const SDep &Pred = ChainPreds[i];
1021 RemovePred(SU, Pred);
1022 if (isNewLoad)
1023 AddPred(LoadSU, Pred);
1024 }
1025 for (unsigned i = 0, e = LoadPreds.size(); i != e; ++i) {
1026 const SDep &Pred = LoadPreds[i];
1027 RemovePred(SU, Pred);
1028 if (isNewLoad)
1029 AddPred(LoadSU, Pred);
1030 }
1031 for (unsigned i = 0, e = NodePreds.size(); i != e; ++i) {
1032 const SDep &Pred = NodePreds[i];
1033 RemovePred(SU, Pred);
1034 AddPred(NewSU, Pred);
1035 }
1036 for (unsigned i = 0, e = NodeSuccs.size(); i != e; ++i) {
1037 SDep D = NodeSuccs[i];
1038 SUnit *SuccDep = D.getSUnit();
1039 D.setSUnit(SU);
1040 RemovePred(SuccDep, D);
1041 D.setSUnit(NewSU);
1042 AddPred(SuccDep, D);
1043 // Balance register pressure.
1044 if (AvailableQueue->tracksRegPressure() && SuccDep->isScheduled
1045 && !D.isCtrl() && NewSU->NumRegDefsLeft > 0)
1046 --NewSU->NumRegDefsLeft;
1047 }
1048 for (unsigned i = 0, e = ChainSuccs.size(); i != e; ++i) {
1049 SDep D = ChainSuccs[i];
1050 SUnit *SuccDep = D.getSUnit();
1051 D.setSUnit(SU);
1052 RemovePred(SuccDep, D);
1053 if (isNewLoad) {
1054 D.setSUnit(LoadSU);
1055 AddPred(SuccDep, D);
1056 }
1057 }
1058
1059 // Add a data dependency to reflect that NewSU reads the value defined
1060 // by LoadSU.
1061 AddPred(NewSU, SDep(LoadSU, SDep::Data, LoadSU->Latency));
1062
1063 if (isNewLoad)
1064 AvailableQueue->addNode(LoadSU);
1065 AvailableQueue->addNode(NewSU);
1066
1067 ++NumUnfolds;
1068
1069 if (NewSU->NumSuccsLeft == 0) {
1070 NewSU->isAvailable = true;
1071 return NewSU;
1072 }
1073 SU = NewSU;
1074 }
1075
1076 DEBUG(dbgs() << " Duplicating SU #" << SU->NodeNum << "\n");
1077 NewSU = CreateClone(SU);
1078
1079 // New SUnit has the exact same predecessors.
1080 for (SUnit::pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
1081 I != E; ++I)
1082 if (!I->isArtificial())
1083 AddPred(NewSU, *I);
1084
1085 // Only copy scheduled successors. Cut them from old node's successor
1086 // list and move them over.
1087 SmallVector<std::pair<SUnit *, SDep>, 4> DelDeps;
1088 for (SUnit::succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
1089 I != E; ++I) {
1090 if (I->isArtificial())
1091 continue;
1092 SUnit *SuccSU = I->getSUnit();
1093 if (SuccSU->isScheduled) {
1094 SDep D = *I;
1095 D.setSUnit(NewSU);
1096 AddPred(SuccSU, D);
1097 D.setSUnit(SU);
1098 DelDeps.push_back(std::make_pair(SuccSU, D));
1099 }
1100 }
1101 for (unsigned i = 0, e = DelDeps.size(); i != e; ++i)
1102 RemovePred(DelDeps[i].first, DelDeps[i].second);
1103
1104 AvailableQueue->updateNode(SU);
1105 AvailableQueue->addNode(NewSU);
1106
1107 ++NumDups;
1108 return NewSU;
1109 }
1110
1111 /// InsertCopiesAndMoveSuccs - Insert register copies and move all
1112 /// scheduled successors of the given SUnit to the last copy.
1113 void ScheduleDAGRRList::InsertCopiesAndMoveSuccs(SUnit *SU, unsigned Reg,
1114 const TargetRegisterClass *DestRC,
1115 const TargetRegisterClass *SrcRC,
1116 SmallVector<SUnit*, 2> &Copies) {
1117 SUnit *CopyFromSU = CreateNewSUnit(NULL);
1118 CopyFromSU->CopySrcRC = SrcRC;
1119 CopyFromSU->CopyDstRC = DestRC;
1120
1121 SUnit *CopyToSU = CreateNewSUnit(NULL);
1122 CopyToSU->CopySrcRC = DestRC;
1123 CopyToSU->CopyDstRC = SrcRC;
1124
1125 // Only copy scheduled successors. Cut them from old node's successor
1126 // list and move them over.
1127 SmallVector<std::pair<SUnit *, SDep>, 4> DelDeps;
1128 for (SUnit::succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
1129 I != E; ++I) {
1130 if (I->isArtificial())
1131 continue;
1132 SUnit *SuccSU = I->getSUnit();
1133 if (SuccSU->isScheduled) {
1134 SDep D = *I;
1135 D.setSUnit(CopyToSU);
1136 AddPred(SuccSU, D);
1137 DelDeps.push_back(std::make_pair(SuccSU, *I));
1138 }
1139 else {
1140 // Avoid scheduling the def-side copy before other successors. Otherwise
1141 // we could introduce another physreg interference on the copy and
1142 // continue inserting copies indefinitely.
1143 SDep D(CopyFromSU, SDep::Order, /*Latency=*/0,
1144 /*Reg=*/0, /*isNormalMemory=*/false,
1145 /*isMustAlias=*/false, /*isArtificial=*/true);
1146 AddPred(SuccSU, D);
1147 }
1148 }
1149 for (unsigned i = 0, e = DelDeps.size(); i != e; ++i)
1150 RemovePred(DelDeps[i].first, DelDeps[i].second);
1151
1152 AddPred(CopyFromSU, SDep(SU, SDep::Data, SU->Latency, Reg));
1153 AddPred(CopyToSU, SDep(CopyFromSU, SDep::Data, CopyFromSU->Latency, 0));
1154
1155 AvailableQueue->updateNode(SU);
1156 AvailableQueue->addNode(CopyFromSU);
1157 AvailableQueue->addNode(CopyToSU);
1158 Copies.push_back(CopyFromSU);
1159 Copies.push_back(CopyToSU);
1160
1161 ++NumPRCopies;
1162 }
1163
1164 /// getPhysicalRegisterVT - Returns the ValueType of the physical register
1165 /// definition of the specified node.
1166 /// FIXME: Move to SelectionDAG?
1167 static EVT getPhysicalRegisterVT(SDNode *N, unsigned Reg,
1168 const TargetInstrInfo *TII) {
1169 const MCInstrDesc &MCID = TII->get(N->getMachineOpcode());
1170 assert(MCID.ImplicitDefs && "Physical reg def must be in implicit def list!");
1171 unsigned NumRes = MCID.getNumDefs();
1172 for (const uint16_t *ImpDef = MCID.getImplicitDefs(); *ImpDef; ++ImpDef) {
1173 if (Reg == *ImpDef)
1174 break;
1175 ++NumRes;
1176 }
1177 return N->getValueType(NumRes);
1178 }
1179
1180 /// CheckForLiveRegDef - Return true and update live register vector if the
1181 /// specified register def of the specified SUnit clobbers any "live" registers.
1182 static void CheckForLiveRegDef(SUnit *SU, unsigned Reg,
1183 std::vector<SUnit*> &LiveRegDefs,
1184 SmallSet<unsigned, 4> &RegAdded,
1185 SmallVector<unsigned, 4> &LRegs,
1186 const TargetRegisterInfo *TRI) {
1187 for (MCRegAliasIterator AliasI(Reg, TRI, true); AliasI.isValid(); ++AliasI) {
1188
1189 // Check if Ref is live.
1190 if (!LiveRegDefs[*AliasI]) continue;
1191
1192 // Allow multiple uses of the same def.
1193 if (LiveRegDefs[*AliasI] == SU) continue;
1194
1195 // Add Reg to the set of interfering live regs.
1196 if (RegAdded.insert(*AliasI)) {
1197 LRegs.push_back(*AliasI);
1198 }
1199 }
1200 }
1201
1202 /// CheckForLiveRegDefMasked - Check for any live physregs that are clobbered
1203 /// by RegMask, and add them to LRegs.
1204 static void CheckForLiveRegDefMasked(SUnit *SU, const uint32_t *RegMask,
1205 std::vector<SUnit*> &LiveRegDefs,
1206 SmallSet<unsigned, 4> &RegAdded,
1207 SmallVector<unsigned, 4> &LRegs) {
1208 // Look at all live registers. Skip Reg0 and the special CallResource.
1209 for (unsigned i = 1, e = LiveRegDefs.size()-1; i != e; ++i) {
1210 if (!LiveRegDefs[i]) continue;
1211 if (LiveRegDefs[i] == SU) continue;
1212 if (!MachineOperand::clobbersPhysReg(RegMask, i)) continue;
1213 if (RegAdded.insert(i))
1214 LRegs.push_back(i);
1215 }
1216 }
1217
1218 /// getNodeRegMask - Returns the register mask attached to an SDNode, if any.
1219 static const uint32_t *getNodeRegMask(const SDNode *N) {
1220 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
1221 if (const RegisterMaskSDNode *Op =
1222 dyn_cast<RegisterMaskSDNode>(N->getOperand(i).getNode()))
1223 return Op->getRegMask();
1224 return NULL;
1225 }
1226
1227 /// DelayForLiveRegsBottomUp - Returns true if it is necessary to delay
1228 /// scheduling of the given node to satisfy live physical register dependencies.
1229 /// If the specific node is the last one that's available to schedule, do
1230 /// whatever is necessary (i.e. backtracking or cloning) to make it possible.
1231 bool ScheduleDAGRRList::
1232 DelayForLiveRegsBottomUp(SUnit *SU, SmallVector<unsigned, 4> &LRegs) {
1233 if (NumLiveRegs == 0)
1234 return false;
1235
1236 SmallSet<unsigned, 4> RegAdded;
1237 // If this node would clobber any "live" register, then it's not ready.
1238 //
1239 // If SU is the currently live definition of the same register that it uses,
1240 // then we are free to schedule it.
1241 for (SUnit::pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
1242 I != E; ++I) {
1243 if (I->isAssignedRegDep() && LiveRegDefs[I->getReg()] != SU)
1244 CheckForLiveRegDef(I->getSUnit(), I->getReg(), LiveRegDefs,
1245 RegAdded, LRegs, TRI);
1246 }
1247
1248 for (SDNode *Node = SU->getNode(); Node; Node = Node->getGluedNode()) {
1249 if (Node->getOpcode() == ISD::INLINEASM) {
1250 // Inline asm can clobber physical defs.
1251 unsigned NumOps = Node->getNumOperands();
1252 if (Node->getOperand(NumOps-1).getValueType() == MVT::Glue)
1253 --NumOps; // Ignore the glue operand.
1254
1255 for (unsigned i = InlineAsm::Op_FirstOperand; i != NumOps;) {
1256 unsigned Flags =
1257 cast<ConstantSDNode>(Node->getOperand(i))->getZExtValue();
1258 unsigned NumVals = InlineAsm::getNumOperandRegisters(Flags);
1259
1260 ++i; // Skip the ID value.
1261 if (InlineAsm::isRegDefKind(Flags) ||
1262 InlineAsm::isRegDefEarlyClobberKind(Flags) ||
1263 InlineAsm::isClobberKind(Flags)) {
1264 // Check for def of register or earlyclobber register.
1265 for (; NumVals; --NumVals, ++i) {
1266 unsigned Reg = cast<RegisterSDNode>(Node->getOperand(i))->getReg();
1267 if (TargetRegisterInfo::isPhysicalRegister(Reg))
1268 CheckForLiveRegDef(SU, Reg, LiveRegDefs, RegAdded, LRegs, TRI);
1269 }
1270 } else
1271 i += NumVals;
1272 }
1273 continue;
1274 }
1275
1276 if (!Node->isMachineOpcode())
1277 continue;
1278 // If we're in the middle of scheduling a call, don't begin scheduling
1279 // another call. Also, don't allow any physical registers to be live across
1280 // the call.
1281 if (Node->getMachineOpcode() == (unsigned)TII->getCallFrameDestroyOpcode()) {
1282 // Check the special calling-sequence resource.
1283 unsigned CallResource = TRI->getNumRegs();
1284 if (LiveRegDefs[CallResource]) {
1285 SDNode *Gen = LiveRegGens[CallResource]->getNode();
1286 while (SDNode *Glued = Gen->getGluedNode())
1287 Gen = Glued;
1288 if (!IsChainDependent(Gen, Node, 0, TII) && RegAdded.insert(CallResource))
1289 LRegs.push_back(CallResource);
1290 }
1291 }
1292 if (const uint32_t *RegMask = getNodeRegMask(Node))
1293 CheckForLiveRegDefMasked(SU, RegMask, LiveRegDefs, RegAdded, LRegs);
1294
1295 const MCInstrDesc &MCID = TII->get(Node->getMachineOpcode());
1296 if (!MCID.ImplicitDefs)
1297 continue;
1298 for (const uint16_t *Reg = MCID.getImplicitDefs(); *Reg; ++Reg)
1299 CheckForLiveRegDef(SU, *Reg, LiveRegDefs, RegAdded, LRegs, TRI);
1300 }
1301
1302 return !LRegs.empty();
1303 }
1304
1305 /// Return a node that can be scheduled in this cycle. Requirements:
1306 /// (1) Ready: latency has been satisfied
1307 /// (2) No Hazards: resources are available
1308 /// (3) No Interferences: may unschedule to break register interferences.
1309 SUnit *ScheduleDAGRRList::PickNodeToScheduleBottomUp() {
1310 SmallVector<SUnit*, 4> Interferences;
1311 DenseMap<SUnit*, SmallVector<unsigned, 4> > LRegsMap;
1312
1313 SUnit *CurSU = AvailableQueue->pop();
1314 while (CurSU) {
1315 SmallVector<unsigned, 4> LRegs;
1316 if (!DelayForLiveRegsBottomUp(CurSU, LRegs))
1317 break;
1318 LRegsMap.insert(std::make_pair(CurSU, LRegs));
1319
1320 CurSU->isPending = true; // This SU is not in AvailableQueue right now.
1321 Interferences.push_back(CurSU);
1322 CurSU = AvailableQueue->pop();
1323 }
1324 if (CurSU) {
1325 // Add the nodes that aren't ready back onto the available list.
1326 for (unsigned i = 0, e = Interferences.size(); i != e; ++i) {
1327 Interferences[i]->isPending = false;
1328 assert(Interferences[i]->isAvailable && "must still be available");
1329 AvailableQueue->push(Interferences[i]);
1330 }
1331 return CurSU;
1332 }
1333
1334 // All candidates are delayed due to live physical reg dependencies.
1335 // Try backtracking, code duplication, or inserting cross class copies
1336 // to resolve it.
1337 for (unsigned i = 0, e = Interferences.size(); i != e; ++i) {
1338 SUnit *TrySU = Interferences[i];
1339 SmallVector<unsigned, 4> &LRegs = LRegsMap[TrySU];
1340
1341 // Try unscheduling up to the point where it's safe to schedule
1342 // this node.
1343 SUnit *BtSU = NULL;
1344 unsigned LiveCycle = UINT_MAX;
1345 for (unsigned j = 0, ee = LRegs.size(); j != ee; ++j) {
1346 unsigned Reg = LRegs[j];
1347 if (LiveRegGens[Reg]->getHeight() < LiveCycle) {
1348 BtSU = LiveRegGens[Reg];
1349 LiveCycle = BtSU->getHeight();
1350 }
1351 }
1352 if (!WillCreateCycle(TrySU, BtSU)) {
1353 BacktrackBottomUp(TrySU, BtSU);
1354
1355 // Force the current node to be scheduled before the node that
1356 // requires the physical reg dep.
1357 if (BtSU->isAvailable) {
1358 BtSU->isAvailable = false;
1359 if (!BtSU->isPending)
1360 AvailableQueue->remove(BtSU);
1361 }
1362 AddPred(TrySU, SDep(BtSU, SDep::Order, /*Latency=*/1,
1363 /*Reg=*/0, /*isNormalMemory=*/false,
1364 /*isMustAlias=*/false, /*isArtificial=*/true));
1365
1366 // If one or more successors has been unscheduled, then the current
1367 // node is no longer avaialable. Schedule a successor that's now
1368 // available instead.
1369 if (!TrySU->isAvailable) {
1370 CurSU = AvailableQueue->pop();
1371 }
1372 else {
1373 CurSU = TrySU;
1374 TrySU->isPending = false;
1375 Interferences.erase(Interferences.begin()+i);
1376 }
1377 break;
1378 }
1379 }
1380
1381 if (!CurSU) {
1382 // Can't backtrack. If it's too expensive to copy the value, then try
1383 // duplicate the nodes that produces these "too expensive to copy"
1384 // values to break the dependency. In case even that doesn't work,
1385 // insert cross class copies.
1386 // If it's not too expensive, i.e. cost != -1, issue copies.
1387 SUnit *TrySU = Interferences[0];
1388 SmallVector<unsigned, 4> &LRegs = LRegsMap[TrySU];
1389 assert(LRegs.size() == 1 && "Can't handle this yet!");
1390 unsigned Reg = LRegs[0];
1391 SUnit *LRDef = LiveRegDefs[Reg];
1392 EVT VT = getPhysicalRegisterVT(LRDef->getNode(), Reg, TII);
1393 const TargetRegisterClass *RC =
1394 TRI->getMinimalPhysRegClass(Reg, VT);
1395 const TargetRegisterClass *DestRC = TRI->getCrossCopyRegClass(RC);
1396
1397 // If cross copy register class is the same as RC, then it must be possible
1398 // copy the value directly. Do not try duplicate the def.
1399 // If cross copy register class is not the same as RC, then it's possible to
1400 // copy the value but it require cross register class copies and it is
1401 // expensive.
1402 // If cross copy register class is null, then it's not possible to copy
1403 // the value at all.
1404 SUnit *NewDef = 0;
1405 if (DestRC != RC) {
1406 NewDef = CopyAndMoveSuccessors(LRDef);
1407 if (!DestRC && !NewDef)
1408 report_fatal_error("Can't handle live physical register dependency!");
1409 }
1410 if (!NewDef) {
1411 // Issue copies, these can be expensive cross register class copies.
1412 SmallVector<SUnit*, 2> Copies;
1413 InsertCopiesAndMoveSuccs(LRDef, Reg, DestRC, RC, Copies);
1414 DEBUG(dbgs() << " Adding an edge from SU #" << TrySU->NodeNum
1415 << " to SU #" << Copies.front()->NodeNum << "\n");
1416 AddPred(TrySU, SDep(Copies.front(), SDep::Order, /*Latency=*/1,
1417 /*Reg=*/0, /*isNormalMemory=*/false,
1418 /*isMustAlias=*/false,
1419 /*isArtificial=*/true));
1420 NewDef = Copies.back();
1421 }
1422
1423 DEBUG(dbgs() << " Adding an edge from SU #" << NewDef->NodeNum
1424 << " to SU #" << TrySU->NodeNum << "\n");
1425 LiveRegDefs[Reg] = NewDef;
1426 AddPred(NewDef, SDep(TrySU, SDep::Order, /*Latency=*/1,
1427 /*Reg=*/0, /*isNormalMemory=*/false,
1428 /*isMustAlias=*/false,
1429 /*isArtificial=*/true));
1430 TrySU->isAvailable = false;
1431 CurSU = NewDef;
1432 }
1433
1434 assert(CurSU && "Unable to resolve live physical register dependencies!");
1435
1436 // Add the nodes that aren't ready back onto the available list.
1437 for (unsigned i = 0, e = Interferences.size(); i != e; ++i) {
1438 Interferences[i]->isPending = false;
1439 // May no longer be available due to backtracking.
1440 if (Interferences[i]->isAvailable) {
1441 AvailableQueue->push(Interferences[i]);
1442 }
1443 }
1444 return CurSU;
1445 }
1446
1447 /// ListScheduleBottomUp - The main loop of list scheduling for bottom-up
1448 /// schedulers.
1449 void ScheduleDAGRRList::ListScheduleBottomUp() {
1450 // Release any predecessors of the special Exit node.
1451 ReleasePredecessors(&ExitSU);
1452
1453 // Add root to Available queue.
1454 if (!SUnits.empty()) {
1455 SUnit *RootSU = &SUnits[DAG->getRoot().getNode()->getNodeId()];
1456 assert(RootSU->Succs.empty() && "Graph root shouldn't have successors!");
1457 RootSU->isAvailable = true;
1458 AvailableQueue->push(RootSU);
1459 }
1460
1461 // While Available queue is not empty, grab the node with the highest
1462 // priority. If it is not ready put it back. Schedule the node.
1463 Sequence.reserve(SUnits.size());
1464 while (!AvailableQueue->empty()) {
1465 DEBUG(dbgs() << "\nExamining Available:\n";
1466 AvailableQueue->dump(this));
1467
1468 // Pick the best node to schedule taking all constraints into
1469 // consideration.
1470 SUnit *SU = PickNodeToScheduleBottomUp();
1471
1472 AdvancePastStalls(SU);
1473
1474 ScheduleNodeBottomUp(SU);
1475
1476 while (AvailableQueue->empty() && !PendingQueue.empty()) {
1477 // Advance the cycle to free resources. Skip ahead to the next ready SU.
1478 assert(MinAvailableCycle < UINT_MAX && "MinAvailableCycle uninitialized");
1479 AdvanceToCycle(std::max(CurCycle + 1, MinAvailableCycle));
1480 }
1481 }
1482
1483 // Reverse the order if it is bottom up.
1484 std::reverse(Sequence.begin(), Sequence.end());
1485
1486 #ifndef NDEBUG
1487 VerifyScheduledSequence(/*isBottomUp=*/true);
1488 #endif
1489 }
1490
1491 //===----------------------------------------------------------------------===//
1492 // RegReductionPriorityQueue Definition
1493 //===----------------------------------------------------------------------===//
1494 //
1495 // This is a SchedulingPriorityQueue that schedules using Sethi Ullman numbers
1496 // to reduce register pressure.
1497 //
1498 namespace {
1499 class RegReductionPQBase;
1500
1501 struct queue_sort : public std::binary_function<SUnit*, SUnit*, bool> {
1502 bool isReady(SUnit* SU, unsigned CurCycle) const { return true; }
1503 };
1504
1505 #ifndef NDEBUG
1506 template<class SF>
1507 struct reverse_sort : public queue_sort {
1508 SF &SortFunc;
1509 reverse_sort(SF &sf) : SortFunc(sf) {}
1510 reverse_sort(const reverse_sort &RHS) : SortFunc(RHS.SortFunc) {}
1511
1512 bool operator()(SUnit* left, SUnit* right) const {
1513 // reverse left/right rather than simply !SortFunc(left, right)
1514 // to expose different paths in the comparison logic.
1515 return SortFunc(right, left);
1516 }
1517 };
1518 #endif // NDEBUG
1519
1520 /// bu_ls_rr_sort - Priority function for bottom up register pressure
1521 // reduction scheduler.
1522 struct bu_ls_rr_sort : public queue_sort {
1523 enum {
1524 IsBottomUp = true,
1525 HasReadyFilter = false
1526 };
1527
1528 RegReductionPQBase *SPQ;
1529 bu_ls_rr_sort(RegReductionPQBase *spq) : SPQ(spq) {}
1530 bu_ls_rr_sort(const bu_ls_rr_sort &RHS) : SPQ(RHS.SPQ) {}
1531
1532 bool operator()(SUnit* left, SUnit* right) const;
1533 };
1534
1535 // src_ls_rr_sort - Priority function for source order scheduler.
1536 struct src_ls_rr_sort : public queue_sort {
1537 enum {
1538 IsBottomUp = true,
1539 HasReadyFilter = false
1540 };
1541
1542 RegReductionPQBase *SPQ;
1543 src_ls_rr_sort(RegReductionPQBase *spq)
1544 : SPQ(spq) {}
1545 src_ls_rr_sort(const src_ls_rr_sort &RHS)
1546 : SPQ(RHS.SPQ) {}
1547
1548 bool operator()(SUnit* left, SUnit* right) const;
1549 };
1550
1551 // hybrid_ls_rr_sort - Priority function for hybrid scheduler.
1552 struct hybrid_ls_rr_sort : public queue_sort {
1553 enum {
1554 IsBottomUp = true,
1555 HasReadyFilter = false
1556 };
1557
1558 RegReductionPQBase *SPQ;
1559 hybrid_ls_rr_sort(RegReductionPQBase *spq)
1560 : SPQ(spq) {}
1561 hybrid_ls_rr_sort(const hybrid_ls_rr_sort &RHS)
1562 : SPQ(RHS.SPQ) {}
1563
1564 bool isReady(SUnit *SU, unsigned CurCycle) const;
1565
1566 bool operator()(SUnit* left, SUnit* right) const;
1567 };
1568
1569 // ilp_ls_rr_sort - Priority function for ILP (instruction level parallelism)
1570 // scheduler.
1571 struct ilp_ls_rr_sort : public queue_sort {
1572 enum {
1573 IsBottomUp = true,
1574 HasReadyFilter = false
1575 };
1576
1577 RegReductionPQBase *SPQ;
1578 ilp_ls_rr_sort(RegReductionPQBase *spq)
1579 : SPQ(spq) {}
1580 ilp_ls_rr_sort(const ilp_ls_rr_sort &RHS)
1581 : SPQ(RHS.SPQ) {}
1582
1583 bool isReady(SUnit *SU, unsigned CurCycle) const;
1584
1585 bool operator()(SUnit* left, SUnit* right) const;
1586 };
1587
1588 class RegReductionPQBase : public SchedulingPriorityQueue {
1589 protected:
1590 std::vector<SUnit*> Queue;
1591 unsigned CurQueueId;
1592 bool TracksRegPressure;
1593 bool SrcOrder;
1594
1595 // SUnits - The SUnits for the current graph.
1596 std::vector<SUnit> *SUnits;
1597
1598 MachineFunction &MF;
1599 const TargetInstrInfo *TII;
1600 const TargetRegisterInfo *TRI;
1601 const TargetLowering *TLI;
1602 ScheduleDAGRRList *scheduleDAG;
1603
1604 // SethiUllmanNumbers - The SethiUllman number for each node.
1605 std::vector<unsigned> SethiUllmanNumbers;
1606
1607 /// RegPressure - Tracking current reg pressure per register class.
1608 ///
1609 std::vector<unsigned> RegPressure;
1610
1611 /// RegLimit - Tracking the number of allocatable registers per register
1612 /// class.
1613 std::vector<unsigned> RegLimit;
1614
1615 public:
1616 RegReductionPQBase(MachineFunction &mf,
1617 bool hasReadyFilter,
1618 bool tracksrp,
1619 bool srcorder,
1620 const TargetInstrInfo *tii,
1621 const TargetRegisterInfo *tri,
1622 const TargetLowering *tli)
1623 : SchedulingPriorityQueue(hasReadyFilter),
1624 CurQueueId(0), TracksRegPressure(tracksrp), SrcOrder(srcorder),
1625 MF(mf), TII(tii), TRI(tri), TLI(tli), scheduleDAG(NULL) {
1626 if (TracksRegPressure) {
1627 unsigned NumRC = TRI->getNumRegClasses();
1628 RegLimit.resize(NumRC);
1629 RegPressure.resize(NumRC);
1630 std::fill(RegLimit.begin(), RegLimit.end(), 0);
1631 std::fill(RegPressure.begin(), RegPressure.end(), 0);
1632 for (TargetRegisterInfo::regclass_iterator I = TRI->regclass_begin(),
1633 E = TRI->regclass_end(); I != E; ++I)
1634 RegLimit[(*I)->getID()] = tri->getRegPressureLimit(*I, MF);
1635 }
1636 }
1637
1638 void setScheduleDAG(ScheduleDAGRRList *scheduleDag) {
1639 scheduleDAG = scheduleDag;
1640 }
1641
1642 ScheduleHazardRecognizer* getHazardRec() {
1643 return scheduleDAG->getHazardRec();
1644 }
1645
1646 void initNodes(std::vector<SUnit> &sunits);
1647
1648 void addNode(const SUnit *SU);
1649
1650 void updateNode(const SUnit *SU);
1651
1652 void releaseState() {
1653 SUnits = 0;
1654 SethiUllmanNumbers.clear();
1655 std::fill(RegPressure.begin(), RegPressure.end(), 0);
1656 }
1657
1658 unsigned getNodePriority(const SUnit *SU) const;
1659
1660 unsigned getNodeOrdering(const SUnit *SU) const {
1661 if (!SU->getNode()) return 0;
1662
1663 return scheduleDAG->DAG->GetOrdering(SU->getNode());
1664 }
1665
1666 bool empty() const { return Queue.empty(); }
1667
1668 void push(SUnit *U) {
1669 assert(!U->NodeQueueId && "Node in the queue already");
1670 U->NodeQueueId = ++CurQueueId;
1671 Queue.push_back(U);
1672 }
1673
1674 void remove(SUnit *SU) {
1675 assert(!Queue.empty() && "Queue is empty!");
1676 assert(SU->NodeQueueId != 0 && "Not in queue!");
1677 std::vector<SUnit *>::iterator I = std::find(Queue.begin(), Queue.end(),
1678 SU);
1679 if (I != prior(Queue.end()))
1680 std::swap(*I, Queue.back());
1681 Queue.pop_back();
1682 SU->NodeQueueId = 0;
1683 }
1684
1685 bool tracksRegPressure() const { return TracksRegPressure; }
1686
1687 void dumpRegPressure() const;
1688
1689 bool HighRegPressure(const SUnit *SU) const;
1690
1691 bool MayReduceRegPressure(SUnit *SU) const;
1692
1693 int RegPressureDiff(SUnit *SU, unsigned &LiveUses) const;
1694
1695 void scheduledNode(SUnit *SU);
1696
1697 void unscheduledNode(SUnit *SU);
1698
1699 protected:
1700 bool canClobber(const SUnit *SU, const SUnit *Op);
1701 void AddPseudoTwoAddrDeps();
1702 void PrescheduleNodesWithMultipleUses();
1703 void CalculateSethiUllmanNumbers();
1704 };
1705
1706 template<class SF>
1707 static SUnit *popFromQueueImpl(std::vector<SUnit*> &Q, SF &Picker) {
1708 std::vector<SUnit *>::iterator Best = Q.begin();
1709 for (std::vector<SUnit *>::iterator I = llvm::next(Q.begin()),
1710 E = Q.end(); I != E; ++I)
1711 if (Picker(*Best, *I))
1712 Best = I;
1713 SUnit *V = *Best;
1714 if (Best != prior(Q.end()))
1715 std::swap(*Best, Q.back());
1716 Q.pop_back();
1717 return V;
1718 }
1719
1720 template<class SF>
1721 SUnit *popFromQueue(std::vector<SUnit*> &Q, SF &Picker, ScheduleDAG *DAG) {
1722 #ifndef NDEBUG
1723 if (DAG->StressSched) {
1724 reverse_sort<SF> RPicker(Picker);
1725 return popFromQueueImpl(Q, RPicker);
1726 }
1727 #endif
1728 (void)DAG;
1729 return popFromQueueImpl(Q, Picker);
1730 }
1731
1732 template<class SF>
1733 class RegReductionPriorityQueue : public RegReductionPQBase {
1734 SF Picker;
1735
1736 public:
1737 RegReductionPriorityQueue(MachineFunction &mf,
1738 bool tracksrp,
1739 bool srcorder,
1740 const TargetInstrInfo *tii,
1741 const TargetRegisterInfo *tri,
1742 const TargetLowering *tli)
1743 : RegReductionPQBase(mf, SF::HasReadyFilter, tracksrp, srcorder,
1744 tii, tri, tli),
1745 Picker(this) {}
1746
1747 bool isBottomUp() const { return SF::IsBottomUp; }
1748
1749 bool isReady(SUnit *U) const {
1750 return Picker.HasReadyFilter && Picker.isReady(U, getCurCycle());
1751 }
1752
1753 SUnit *pop() {
1754 if (Queue.empty()) return NULL;
1755
1756 SUnit *V = popFromQueue(Queue, Picker, scheduleDAG);
1757 V->NodeQueueId = 0;
1758 return V;
1759 }
1760
1761 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1762 void dump(ScheduleDAG *DAG) const {
1763 // Emulate pop() without clobbering NodeQueueIds.
1764 std::vector<SUnit*> DumpQueue = Queue;
1765 SF DumpPicker = Picker;
1766 while (!DumpQueue.empty()) {
1767 SUnit *SU = popFromQueue(DumpQueue, DumpPicker, scheduleDAG);
1768 dbgs() << "Height " << SU->getHeight() << ": ";
1769 SU->dump(DAG);
1770 }
1771 }
1772 #endif
1773 };
1774
1775 typedef RegReductionPriorityQueue<bu_ls_rr_sort>
1776 BURegReductionPriorityQueue;
1777
1778 typedef RegReductionPriorityQueue<src_ls_rr_sort>
1779 SrcRegReductionPriorityQueue;
1780
1781 typedef RegReductionPriorityQueue<hybrid_ls_rr_sort>
1782 HybridBURRPriorityQueue;
1783
1784 typedef RegReductionPriorityQueue<ilp_ls_rr_sort>
1785 ILPBURRPriorityQueue;
1786 } // end anonymous namespace
1787
1788 //===----------------------------------------------------------------------===//
1789 // Static Node Priority for Register Pressure Reduction
1790 //===----------------------------------------------------------------------===//
1791
1792 // Check for special nodes that bypass scheduling heuristics.
1793 // Currently this pushes TokenFactor nodes down, but may be used for other
1794 // pseudo-ops as well.
1795 //
1796 // Return -1 to schedule right above left, 1 for left above right.
1797 // Return 0 if no bias exists.
1798 static int checkSpecialNodes(const SUnit *left, const SUnit *right) {
1799 bool LSchedLow = left->isScheduleLow;
1800 bool RSchedLow = right->isScheduleLow;
1801 if (LSchedLow != RSchedLow)
1802 return LSchedLow < RSchedLow ? 1 : -1;
1803 return 0;
1804 }
1805
1806 /// CalcNodeSethiUllmanNumber - Compute Sethi Ullman number.
1807 /// Smaller number is the higher priority.
1808 static unsigned
1809 CalcNodeSethiUllmanNumber(const SUnit *SU, std::vector<unsigned> &SUNumbers) {
1810 unsigned &SethiUllmanNumber = SUNumbers[SU->NodeNum];
1811 if (SethiUllmanNumber != 0)
1812 return SethiUllmanNumber;
1813
1814 unsigned Extra = 0;
1815 for (SUnit::const_pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
1816 I != E; ++I) {
1817 if (I->isCtrl()) continue; // ignore chain preds
1818 SUnit *PredSU = I->getSUnit();
1819 unsigned PredSethiUllman = CalcNodeSethiUllmanNumber(PredSU, SUNumbers);
1820 if (PredSethiUllman > SethiUllmanNumber) {
1821 SethiUllmanNumber = PredSethiUllman;
1822 Extra = 0;
1823 } else if (PredSethiUllman == SethiUllmanNumber)
1824 ++Extra;
1825 }
1826
1827 SethiUllmanNumber += Extra;
1828
1829 if (SethiUllmanNumber == 0)
1830 SethiUllmanNumber = 1;
1831
1832 return SethiUllmanNumber;
1833 }
1834
1835 /// CalculateSethiUllmanNumbers - Calculate Sethi-Ullman numbers of all
1836 /// scheduling units.
1837 void RegReductionPQBase::CalculateSethiUllmanNumbers() {
1838 SethiUllmanNumbers.assign(SUnits->size(), 0);
1839
1840 for (unsigned i = 0, e = SUnits->size(); i != e; ++i)
1841 CalcNodeSethiUllmanNumber(&(*SUnits)[i], SethiUllmanNumbers);
1842 }
1843
1844 void RegReductionPQBase::addNode(const SUnit *SU) {
1845 unsigned SUSize = SethiUllmanNumbers.size();
1846 if (SUnits->size() > SUSize)
1847 SethiUllmanNumbers.resize(SUSize*2, 0);
1848 CalcNodeSethiUllmanNumber(SU, SethiUllmanNumbers);
1849 }
1850
1851 void RegReductionPQBase::updateNode(const SUnit *SU) {
1852 SethiUllmanNumbers[SU->NodeNum] = 0;
1853 CalcNodeSethiUllmanNumber(SU, SethiUllmanNumbers);
1854 }
1855
1856 // Lower priority means schedule further down. For bottom-up scheduling, lower
1857 // priority SUs are scheduled before higher priority SUs.
1858 unsigned RegReductionPQBase::getNodePriority(const SUnit *SU) const {
1859 assert(SU->NodeNum < SethiUllmanNumbers.size());
1860 unsigned Opc = SU->getNode() ? SU->getNode()->getOpcode() : 0;
1861 if (Opc == ISD::TokenFactor || Opc == ISD::CopyToReg)
1862 // CopyToReg should be close to its uses to facilitate coalescing and
1863 // avoid spilling.
1864 return 0;
1865 if (Opc == TargetOpcode::EXTRACT_SUBREG ||
1866 Opc == TargetOpcode::SUBREG_TO_REG ||
1867 Opc == TargetOpcode::INSERT_SUBREG)
1868 // EXTRACT_SUBREG, INSERT_SUBREG, and SUBREG_TO_REG nodes should be
1869 // close to their uses to facilitate coalescing.
1870 return 0;
1871 if (SU->NumSuccs == 0 && SU->NumPreds != 0)
1872 // If SU does not have a register use, i.e. it doesn't produce a value
1873 // that would be consumed (e.g. store), then it terminates a chain of
1874 // computation. Give it a large SethiUllman number so it will be
1875 // scheduled right before its predecessors that it doesn't lengthen
1876 // their live ranges.
1877 return 0xffff;
1878 if (SU->NumPreds == 0 && SU->NumSuccs != 0)
1879 // If SU does not have a register def, schedule it close to its uses
1880 // because it does not lengthen any live ranges.
1881 return 0;
1882 #if 1
1883 return SethiUllmanNumbers[SU->NodeNum];
1884 #else
1885 unsigned Priority = SethiUllmanNumbers[SU->NodeNum];
1886 if (SU->isCallOp) {
1887 // FIXME: This assumes all of the defs are used as call operands.
1888 int NP = (int)Priority - SU->getNode()->getNumValues();
1889 return (NP > 0) ? NP : 0;
1890 }
1891 return Priority;
1892 #endif
1893 }
1894
1895 //===----------------------------------------------------------------------===//
1896 // Register Pressure Tracking
1897 //===----------------------------------------------------------------------===//
1898
1899 void RegReductionPQBase::dumpRegPressure() const {
1900 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1901 for (TargetRegisterInfo::regclass_iterator I = TRI->regclass_begin(),
1902 E = TRI->regclass_end(); I != E; ++I) {
1903 const TargetRegisterClass *RC = *I;
1904 unsigned Id = RC->getID();
1905 unsigned RP = RegPressure[Id];
1906 if (!RP) continue;
1907 DEBUG(dbgs() << RC->getName() << ": " << RP << " / " << RegLimit[Id]
1908 << '\n');
1909 }
1910 #endif
1911 }
1912
1913 bool RegReductionPQBase::HighRegPressure(const SUnit *SU) const {
1914 if (!TLI)
1915 return false;
1916
1917 for (SUnit::const_pred_iterator I = SU->Preds.begin(),E = SU->Preds.end();
1918 I != E; ++I) {
1919 if (I->isCtrl())
1920 continue;
1921 SUnit *PredSU = I->getSUnit();
1922 // NumRegDefsLeft is zero when enough uses of this node have been scheduled
1923 // to cover the number of registers defined (they are all live).
1924 if (PredSU->NumRegDefsLeft == 0) {
1925 continue;
1926 }
1927 for (ScheduleDAGSDNodes::RegDefIter RegDefPos(PredSU, scheduleDAG);
1928 RegDefPos.IsValid(); RegDefPos.Advance()) {
1929 unsigned RCId, Cost;
1930 GetCostForDef(RegDefPos, TLI, TII, TRI, RCId, Cost, MF);
1931
1932 if ((RegPressure[RCId] + Cost) >= RegLimit[RCId])
1933 return true;
1934 }
1935 }
1936 return false;
1937 }
1938
1939 bool RegReductionPQBase::MayReduceRegPressure(SUnit *SU) const {
1940 const SDNode *N = SU->getNode();
1941
1942 if (!N->isMachineOpcode() || !SU->NumSuccs)
1943 return false;
1944
1945 unsigned NumDefs = TII->get(N->getMachineOpcode()).getNumDefs();
1946 for (unsigned i = 0; i != NumDefs; ++i) {
1947 EVT VT = N->getValueType(i);
1948 if (!N->hasAnyUseOfValue(i))
1949 continue;
1950 unsigned RCId = TLI->getRepRegClassFor(VT)->getID();
1951 if (RegPressure[RCId] >= RegLimit[RCId])
1952 return true;
1953 }
1954 return false;
1955 }
1956
1957 // Compute the register pressure contribution by this instruction by count up
1958 // for uses that are not live and down for defs. Only count register classes
1959 // that are already under high pressure. As a side effect, compute the number of
1960 // uses of registers that are already live.
1961 //
1962 // FIXME: This encompasses the logic in HighRegPressure and MayReduceRegPressure
1963 // so could probably be factored.
1964 int RegReductionPQBase::RegPressureDiff(SUnit *SU, unsigned &LiveUses) const {
1965 LiveUses = 0;
1966 int PDiff = 0;
1967 for (SUnit::const_pred_iterator I = SU->Preds.begin(),E = SU->Preds.end();
1968 I != E; ++I) {
1969 if (I->isCtrl())
1970 continue;
1971 SUnit *PredSU = I->getSUnit();
1972 // NumRegDefsLeft is zero when enough uses of this node have been scheduled
1973 // to cover the number of registers defined (they are all live).
1974 if (PredSU->NumRegDefsLeft == 0) {
1975 if (PredSU->getNode()->isMachineOpcode())
1976 ++LiveUses;
1977 continue;
1978 }
1979 for (ScheduleDAGSDNodes::RegDefIter RegDefPos(PredSU, scheduleDAG);
1980 RegDefPos.IsValid(); RegDefPos.Advance()) {
1981 EVT VT = RegDefPos.GetValue();
1982 unsigned RCId = TLI->getRepRegClassFor(VT)->getID();
1983 if (RegPressure[RCId] >= RegLimit[RCId])
1984 ++PDiff;
1985 }
1986 }
1987 const SDNode *N = SU->getNode();
1988
1989 if (!N || !N->isMachineOpcode() || !SU->NumSuccs)
1990 return PDiff;
1991
1992 unsigned NumDefs = TII->get(N->getMachineOpcode()).getNumDefs();
1993 for (unsigned i = 0; i != NumDefs; ++i) {
1994 EVT VT = N->getValueType(i);
1995 if (!N->hasAnyUseOfValue(i))
1996 continue;
1997 unsigned RCId = TLI->getRepRegClassFor(VT)->getID();
1998 if (RegPressure[RCId] >= RegLimit[RCId])
1999 --PDiff;
2000 }
2001 return PDiff;
2002 }
2003
2004 void RegReductionPQBase::scheduledNode(SUnit *SU) {
2005 if (!TracksRegPressure)
2006 return;
2007
2008 if (!SU->getNode())
2009 return;
2010
2011 for (SUnit::pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
2012 I != E; ++I) {
2013 if (I->isCtrl())
2014 continue;
2015 SUnit *PredSU = I->getSUnit();
2016 // NumRegDefsLeft is zero when enough uses of this node have been scheduled
2017 // to cover the number of registers defined (they are all live).
2018 if (PredSU->NumRegDefsLeft == 0) {
2019 continue;
2020 }
2021 // FIXME: The ScheduleDAG currently loses information about which of a
2022 // node's values is consumed by each dependence. Consequently, if the node
2023 // defines multiple register classes, we don't know which to pressurize
2024 // here. Instead the following loop consumes the register defs in an
2025 // arbitrary order. At least it handles the common case of clustered loads
2026 // to the same class. For precise liveness, each SDep needs to indicate the
2027 // result number. But that tightly couples the ScheduleDAG with the
2028 // SelectionDAG making updates tricky. A simpler hack would be to attach a
2029 // value type or register class to SDep.
2030 //
2031 // The most important aspect of register tracking is balancing the increase
2032 // here with the reduction further below. Note that this SU may use multiple
2033 // defs in PredSU. The can't be determined here, but we've already
2034 // compensated by reducing NumRegDefsLeft in PredSU during
2035 // ScheduleDAGSDNodes::AddSchedEdges.
2036 --PredSU->NumRegDefsLeft;
2037 unsigned SkipRegDefs = PredSU->NumRegDefsLeft;
2038 for (ScheduleDAGSDNodes::RegDefIter RegDefPos(PredSU, scheduleDAG);
2039 RegDefPos.IsValid(); RegDefPos.Advance(), --SkipRegDefs) {
2040 if (SkipRegDefs)
2041 continue;
2042
2043 unsigned RCId, Cost;
2044 GetCostForDef(RegDefPos, TLI, TII, TRI, RCId, Cost, MF);
2045 RegPressure[RCId] += Cost;
2046 break;
2047 }
2048 }
2049
2050 // We should have this assert, but there may be dead SDNodes that never
2051 // materialize as SUnits, so they don't appear to generate liveness.
2052 //assert(SU->NumRegDefsLeft == 0 && "not all regdefs have scheduled uses");
2053 int SkipRegDefs = (int)SU->NumRegDefsLeft;
2054 for (ScheduleDAGSDNodes::RegDefIter RegDefPos(SU, scheduleDAG);
2055 RegDefPos.IsValid(); RegDefPos.Advance(), --SkipRegDefs) {
2056 if (SkipRegDefs > 0)
2057 continue;
2058 unsigned RCId, Cost;
2059 GetCostForDef(RegDefPos, TLI, TII, TRI, RCId, Cost, MF);
2060 if (RegPressure[RCId] < Cost) {
2061 // Register pressure tracking is imprecise. This can happen. But we try
2062 // hard not to let it happen because it likely results in poor scheduling.
2063 DEBUG(dbgs() << " SU(" << SU->NodeNum << ") has too many regdefs\n");
2064 RegPressure[RCId] = 0;
2065 }
2066 else {
2067 RegPressure[RCId] -= Cost;
2068 }
2069 }
2070 dumpRegPressure();
2071 }
2072
2073 void RegReductionPQBase::unscheduledNode(SUnit *SU) {
2074 if (!TracksRegPressure)
2075 return;
2076
2077 const SDNode *N = SU->getNode();
2078 if (!N) return;
2079
2080 if (!N->isMachineOpcode()) {
2081 if (N->getOpcode() != ISD::CopyToReg)
2082 return;
2083 } else {
2084 unsigned Opc = N->getMachineOpcode();
2085 if (Opc == TargetOpcode::EXTRACT_SUBREG ||
2086 Opc == TargetOpcode::INSERT_SUBREG ||
2087 Opc == TargetOpcode::SUBREG_TO_REG ||
2088 Opc == TargetOpcode::REG_SEQUENCE ||
2089 Opc == TargetOpcode::IMPLICIT_DEF)
2090 return;
2091 }
2092
2093 for (SUnit::pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
2094 I != E; ++I) {
2095 if (I->isCtrl())
2096 continue;
2097 SUnit *PredSU = I->getSUnit();
2098 // NumSuccsLeft counts all deps. Don't compare it with NumSuccs which only
2099 // counts data deps.
2100 if (PredSU->NumSuccsLeft != PredSU->Succs.size())
2101 continue;
2102 const SDNode *PN = PredSU->getNode();
2103 if (!PN->isMachineOpcode()) {
2104 if (PN->getOpcode() == ISD::CopyFromReg) {
2105 EVT VT = PN->getValueType(0);
2106 unsigned RCId = TLI->getRepRegClassFor(VT)->getID();
2107 RegPressure[RCId] += TLI->getRepRegClassCostFor(VT);
2108 }
2109 continue;
2110 }
2111 unsigned POpc = PN->getMachineOpcode();
2112 if (POpc == TargetOpcode::IMPLICIT_DEF)
2113 continue;
2114 if (POpc == TargetOpcode::EXTRACT_SUBREG ||
2115 POpc == TargetOpcode::INSERT_SUBREG ||
2116 POpc == TargetOpcode::SUBREG_TO_REG) {
2117 EVT VT = PN->getValueType(0);
2118 unsigned RCId = TLI->getRepRegClassFor(VT)->getID();
2119 RegPressure[RCId] += TLI->getRepRegClassCostFor(VT);
2120 continue;
2121 }
2122 unsigned NumDefs = TII->get(PN->getMachineOpcode()).getNumDefs();
2123 for (unsigned i = 0; i != NumDefs; ++i) {
2124 EVT VT = PN->getValueType(i);
2125 if (!PN->hasAnyUseOfValue(i))
2126 continue;
2127 unsigned RCId = TLI->getRepRegClassFor(VT)->getID();
2128 if (RegPressure[RCId] < TLI->getRepRegClassCostFor(VT))
2129 // Register pressure tracking is imprecise. This can happen.
2130 RegPressure[RCId] = 0;
2131 else
2132 RegPressure[RCId] -= TLI->getRepRegClassCostFor(VT);
2133 }
2134 }
2135
2136 // Check for isMachineOpcode() as PrescheduleNodesWithMultipleUses()
2137 // may transfer data dependencies to CopyToReg.
2138 if (SU->NumSuccs && N->isMachineOpcode()) {
2139 unsigned NumDefs = TII->get(N->getMachineOpcode()).getNumDefs();
2140 for (unsigned i = NumDefs, e = N->getNumValues(); i != e; ++i) {
2141 EVT VT = N->getValueType(i);
2142 if (VT == MVT::Glue || VT == MVT::Other)
2143 continue;
2144 if (!N->hasAnyUseOfValue(i))
2145 continue;
2146 unsigned RCId = TLI->getRepRegClassFor(VT)->getID();
2147 RegPressure[RCId] += TLI->getRepRegClassCostFor(VT);
2148 }
2149 }
2150
2151 dumpRegPressure();
2152 }
2153
2154 //===----------------------------------------------------------------------===//
2155 // Dynamic Node Priority for Register Pressure Reduction
2156 //===----------------------------------------------------------------------===//
2157
2158 /// closestSucc - Returns the scheduled cycle of the successor which is
2159 /// closest to the current cycle.
2160 static unsigned closestSucc(const SUnit *SU) {
2161 unsigned MaxHeight = 0;
2162 for (SUnit::const_succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
2163 I != E; ++I) {
2164 if (I->isCtrl()) continue; // ignore chain succs
2165 unsigned Height = I->getSUnit()->getHeight();
2166 // If there are bunch of CopyToRegs stacked up, they should be considered
2167 // to be at the same position.
2168 if (I->getSUnit()->getNode() &&
2169 I->getSUnit()->getNode()->getOpcode() == ISD::CopyToReg)
2170 Height = closestSucc(I->getSUnit())+1;
2171 if (Height > MaxHeight)
2172 MaxHeight = Height;
2173 }
2174 return MaxHeight;
2175 }
2176
2177 /// calcMaxScratches - Returns an cost estimate of the worse case requirement
2178 /// for scratch registers, i.e. number of data dependencies.
2179 static unsigned calcMaxScratches(const SUnit *SU) {
2180 unsigned Scratches = 0;
2181 for (SUnit::const_pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
2182 I != E; ++I) {
2183 if (I->isCtrl()) continue; // ignore chain preds
2184 Scratches++;
2185 }
2186 return Scratches;
2187 }
2188
2189 /// hasOnlyLiveInOpers - Return true if SU has only value predecessors that are
2190 /// CopyFromReg from a virtual register.
2191 static bool hasOnlyLiveInOpers(const SUnit *SU) {
2192 bool RetVal = false;
2193 for (SUnit::const_pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
2194 I != E; ++I) {
2195 if (I->isCtrl()) continue;
2196 const SUnit *PredSU = I->getSUnit();
2197 if (PredSU->getNode() &&
2198 PredSU->getNode()->getOpcode() == ISD::CopyFromReg) {
2199 unsigned Reg =
2200 cast<RegisterSDNode>(PredSU->getNode()->getOperand(1))->getReg();
2201 if (TargetRegisterInfo::isVirtualRegister(Reg)) {
2202 RetVal = true;
2203 continue;
2204 }
2205 }
2206 return false;
2207 }
2208 return RetVal;
2209 }
2210
2211 /// hasOnlyLiveOutUses - Return true if SU has only value successors that are
2212 /// CopyToReg to a virtual register. This SU def is probably a liveout and
2213 /// it has no other use. It should be scheduled closer to the terminator.
2214 static bool hasOnlyLiveOutUses(const SUnit *SU) {
2215 bool RetVal = false;
2216 for (SUnit::const_succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
2217 I != E; ++I) {
2218 if (I->isCtrl()) continue;
2219 const SUnit *SuccSU = I->getSUnit();
2220 if (SuccSU->getNode() && SuccSU->getNode()->getOpcode() == ISD::CopyToReg) {
2221 unsigned Reg =
2222 cast<RegisterSDNode>(SuccSU->getNode()->getOperand(1))->getReg();
2223 if (TargetRegisterInfo::isVirtualRegister(Reg)) {
2224 RetVal = true;
2225 continue;
2226 }
2227 }
2228 return false;
2229 }
2230 return RetVal;
2231 }
2232
2233 // Set isVRegCycle for a node with only live in opers and live out uses. Also
2234 // set isVRegCycle for its CopyFromReg operands.
2235 //
2236 // This is only relevant for single-block loops, in which case the VRegCycle
2237 // node is likely an induction variable in which the operand and target virtual
2238 // registers should be coalesced (e.g. pre/post increment values). Setting the
2239 // isVRegCycle flag helps the scheduler prioritize other uses of the same
2240 // CopyFromReg so that this node becomes the virtual register "kill". This
2241 // avoids interference between the values live in and out of the block and
2242 // eliminates a copy inside the loop.
2243 static void initVRegCycle(SUnit *SU) {
2244 if (DisableSchedVRegCycle)
2245 return;
2246
2247 if (!hasOnlyLiveInOpers(SU) || !hasOnlyLiveOutUses(SU))
2248 return;
2249
2250 DEBUG(dbgs() << "VRegCycle: SU(" << SU->NodeNum << ")\n");
2251
2252 SU->isVRegCycle = true;
2253
2254 for (SUnit::const_pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
2255 I != E; ++I) {
2256 if (I->isCtrl()) continue;
2257 I->getSUnit()->isVRegCycle = true;
2258 }
2259 }
2260
2261 // After scheduling the definition of a VRegCycle, clear the isVRegCycle flag of
2262 // CopyFromReg operands. We should no longer penalize other uses of this VReg.
2263 static void resetVRegCycle(SUnit *SU) {
2264 if (!SU->isVRegCycle)
2265 return;
2266
2267 for (SUnit::const_pred_iterator I = SU->Preds.begin(),E = SU->Preds.end();
2268 I != E; ++I) {
2269 if (I->isCtrl()) continue; // ignore chain preds
2270 SUnit *PredSU = I->getSUnit();
2271 if (PredSU->isVRegCycle) {
2272 assert(PredSU->getNode()->getOpcode() == ISD::CopyFromReg &&
2273 "VRegCycle def must be CopyFromReg");
2274 I->getSUnit()->isVRegCycle = 0;
2275 }
2276 }
2277 }
2278
2279 // Return true if this SUnit uses a CopyFromReg node marked as a VRegCycle. This
2280 // means a node that defines the VRegCycle has not been scheduled yet.
2281 static bool hasVRegCycleUse(const SUnit *SU) {
2282 // If this SU also defines the VReg, don't hoist it as a "use".
2283 if (SU->isVRegCycle)
2284 return false;
2285
2286 for (SUnit::const_pred_iterator I = SU->Preds.begin(),E = SU->Preds.end();
2287 I != E; ++I) {
2288 if (I->isCtrl()) continue; // ignore chain preds
2289 if (I->getSUnit()->isVRegCycle &&
2290 I->getSUnit()->getNode()->getOpcode() == ISD::CopyFromReg) {
2291 DEBUG(dbgs() << " VReg cycle use: SU (" << SU->NodeNum << ")\n");
2292 return true;
2293 }
2294 }
2295 return false;
2296 }
2297
2298 // Check for either a dependence (latency) or resource (hazard) stall.
2299 //
2300 // Note: The ScheduleHazardRecognizer interface requires a non-const SU.
2301 static bool BUHasStall(SUnit *SU, int Height, RegReductionPQBase *SPQ) {
2302 if ((int)SPQ->getCurCycle() < Height) return true;
2303 if (SPQ->getHazardRec()->getHazardType(SU, 0)
2304 != ScheduleHazardRecognizer::NoHazard)
2305 return true;
2306 return false;
2307 }
2308
2309 // Return -1 if left has higher priority, 1 if right has higher priority.
2310 // Return 0 if latency-based priority is equivalent.
2311 static int BUCompareLatency(SUnit *left, SUnit *right, bool checkPref,
2312 RegReductionPQBase *SPQ) {
2313 // Scheduling an instruction that uses a VReg whose postincrement has not yet
2314 // been scheduled will induce a copy. Model this as an extra cycle of latency.
2315 int LPenalty = hasVRegCycleUse(left) ? 1 : 0;
2316 int RPenalty = hasVRegCycleUse(right) ? 1 : 0;
2317 int LHeight = (int)left->getHeight() + LPenalty;
2318 int RHeight = (int)right->getHeight() + RPenalty;
2319
2320 bool LStall = (!checkPref || left->SchedulingPref == Sched::ILP) &&
2321 BUHasStall(left, LHeight, SPQ);
2322 bool RStall = (!checkPref || right->SchedulingPref == Sched::ILP) &&
2323 BUHasStall(right, RHeight, SPQ);
2324
2325 // If scheduling one of the node will cause a pipeline stall, delay it.
2326 // If scheduling either one of the node will cause a pipeline stall, sort
2327 // them according to their height.
2328 if (LStall) {
2329 if (!RStall)
2330 return 1;
2331 if (LHeight != RHeight)
2332 return LHeight > RHeight ? 1 : -1;
2333 } else if (RStall)
2334 return -1;
2335
2336 // If either node is scheduling for latency, sort them by height/depth
2337 // and latency.
2338 if (!checkPref || (left->SchedulingPref == Sched::ILP ||
2339 right->SchedulingPref == Sched::ILP)) {
2340 // If neither instruction stalls (!LStall && !RStall) and HazardRecognizer
2341 // is enabled, grouping instructions by cycle, then its height is already
2342 // covered so only its depth matters. We also reach this point if both stall
2343 // but have the same height.
2344 if (!SPQ->getHazardRec()->isEnabled()) {
2345 if (LHeight != RHeight)
2346 return LHeight > RHeight ? 1 : -1;
2347 }
2348 int LDepth = left->getDepth() - LPenalty;
2349 int RDepth = right->getDepth() - RPenalty;
2350 if (LDepth != RDepth) {
2351 DEBUG(dbgs() << " Comparing latency of SU (" << left->NodeNum
2352 << ") depth " << LDepth << " vs SU (" << right->NodeNum
2353 << ") depth " << RDepth << "\n");
2354 return LDepth < RDepth ? 1 : -1;
2355 }
2356 if (left->Latency != right->Latency)
2357 return left->Latency > right->Latency ? 1 : -1;
2358 }
2359 return 0;
2360 }
2361
2362 static bool BURRSort(SUnit *left, SUnit *right, RegReductionPQBase *SPQ) {
2363 // Schedule physical register definitions close to their use. This is
2364 // motivated by microarchitectures that can fuse cmp+jump macro-ops. But as
2365 // long as shortening physreg live ranges is generally good, we can defer
2366 // creating a subtarget hook.
2367 if (!DisableSchedPhysRegJoin) {
2368 bool LHasPhysReg = left->hasPhysRegDefs;
2369 bool RHasPhysReg = right->hasPhysRegDefs;
2370 if (LHasPhysReg != RHasPhysReg) {
2371 #ifndef NDEBUG
2372 const char *const PhysRegMsg[] = {" has no physreg"," defines a physreg"};
2373 #endif
2374 DEBUG(dbgs() << " SU (" << left->NodeNum << ") "
2375 << PhysRegMsg[LHasPhysReg] << " SU(" << right->NodeNum << ") "
2376 << PhysRegMsg[RHasPhysReg] << "\n");
2377 return LHasPhysReg < RHasPhysReg;
2378 }
2379 }
2380
2381 // Prioritize by Sethi-Ulmann number and push CopyToReg nodes down.
2382 unsigned LPriority = SPQ->getNodePriority(left);
2383 unsigned RPriority = SPQ->getNodePriority(right);
2384
2385 // Be really careful about hoisting call operands above previous calls.
2386 // Only allows it if it would reduce register pressure.
2387 if (left->isCall && right->isCallOp) {
2388 unsigned RNumVals = right->getNode()->getNumValues();
2389 RPriority = (RPriority > RNumVals) ? (RPriority - RNumVals) : 0;
2390 }
2391 if (right->isCall && left->isCallOp) {
2392 unsigned LNumVals = left->getNode()->getNumValues();
2393 LPriority = (LPriority > LNumVals) ? (LPriority - LNumVals) : 0;
2394 }
2395
2396 if (LPriority != RPriority)
2397 return LPriority > RPriority;
2398
2399 // One or both of the nodes are calls and their sethi-ullman numbers are the
2400 // same, then keep source order.
2401 if (left->isCall || right->isCall) {
2402 unsigned LOrder = SPQ->getNodeOrdering(left);
2403 unsigned ROrder = SPQ->getNodeOrdering(right);
2404
2405 // Prefer an ordering where the lower the non-zero order number, the higher
2406 // the preference.
2407 if ((LOrder || ROrder) && LOrder != ROrder)
2408 return LOrder != 0 && (LOrder < ROrder || ROrder == 0);
2409 }
2410
2411 // Try schedule def + use closer when Sethi-Ullman numbers are the same.
2412 // e.g.
2413 // t1 = op t2, c1
2414 // t3 = op t4, c2
2415 //
2416 // and the following instructions are both ready.
2417 // t2 = op c3
2418 // t4 = op c4
2419 //
2420 // Then schedule t2 = op first.
2421 // i.e.
2422 // t4 = op c4
2423 // t2 = op c3
2424 // t1 = op t2, c1
2425 // t3 = op t4, c2
2426 //
2427 // This creates more short live intervals.
2428 unsigned LDist = closestSucc(left);
2429 unsigned RDist = closestSucc(right);
2430 if (LDist != RDist)
2431 return LDist < RDist;
2432
2433 // How many registers becomes live when the node is scheduled.
2434 unsigned LScratch = calcMaxScratches(left);
2435 unsigned RScratch = calcMaxScratches(right);
2436 if (LScratch != RScratch)
2437 return LScratch > RScratch;
2438
2439 // Comparing latency against a call makes little sense unless the node
2440 // is register pressure-neutral.
2441 if ((left->isCall && RPriority > 0) || (right->isCall && LPriority > 0))
2442 return (left->NodeQueueId > right->NodeQueueId);
2443
2444 // Do not compare latencies when one or both of the nodes are calls.
2445 if (!DisableSchedCycles &&
2446 !(left->isCall || right->isCall)) {
2447 int result = BUCompareLatency(left, right, false /*checkPref*/, SPQ);
2448 if (result != 0)
2449 return result > 0;
2450 }
2451 else {
2452 if (left->getHeight() != right->getHeight())
2453 return left->getHeight() > right->getHeight();
2454
2455 if (left->getDepth() != right->getDepth())
2456 return left->getDepth() < right->getDepth();
2457 }
2458
2459 assert(left->NodeQueueId && right->NodeQueueId &&
2460 "NodeQueueId cannot be zero");
2461 return (left->NodeQueueId > right->NodeQueueId);
2462 }
2463
2464 // Bottom up
2465 bool bu_ls_rr_sort::operator()(SUnit *left, SUnit *right) const {
2466 if (int res = checkSpecialNodes(left, right))
2467 return res > 0;
2468
2469 return BURRSort(left, right, SPQ);
2470 }
2471
2472 // Source order, otherwise bottom up.
2473 bool src_ls_rr_sort::operator()(SUnit *left, SUnit *right) const {
2474 if (int res = checkSpecialNodes(left, right))
2475 return res > 0;
2476
2477 unsigned LOrder = SPQ->getNodeOrdering(left);
2478 unsigned ROrder = SPQ->getNodeOrdering(right);
2479
2480 // Prefer an ordering where the lower the non-zero order number, the higher
2481 // the preference.
2482 if ((LOrder || ROrder) && LOrder != ROrder)
2483 return LOrder != 0 && (LOrder < ROrder || ROrder == 0);
2484
2485 return BURRSort(left, right, SPQ);
2486 }
2487
2488 // If the time between now and when the instruction will be ready can cover
2489 // the spill code, then avoid adding it to the ready queue. This gives long
2490 // stalls highest priority and allows hoisting across calls. It should also
2491 // speed up processing the available queue.
2492 bool hybrid_ls_rr_sort::isReady(SUnit *SU, unsigned CurCycle) const {
2493 static const unsigned ReadyDelay = 3;
2494
2495 if (SPQ->MayReduceRegPressure(SU)) return true;
2496
2497 if (SU->getHeight() > (CurCycle + ReadyDelay)) return false;
2498
2499 if (SPQ->getHazardRec()->getHazardType(SU, -ReadyDelay)
2500 != ScheduleHazardRecognizer::NoHazard)
2501 return false;
2502
2503 return true;
2504 }
2505
2506 // Return true if right should be scheduled with higher priority than left.
2507 bool hybrid_ls_rr_sort::operator()(SUnit *left, SUnit *right) const {
2508 if (int res = checkSpecialNodes(left, right))
2509 return res > 0;
2510
2511 if (left->isCall || right->isCall)
2512 // No way to compute latency of calls.
2513 return BURRSort(left, right, SPQ);
2514
2515 bool LHigh = SPQ->HighRegPressure(left);
2516 bool RHigh = SPQ->HighRegPressure(right);
2517 // Avoid causing spills. If register pressure is high, schedule for
2518 // register pressure reduction.
2519 if (LHigh && !RHigh) {
2520 DEBUG(dbgs() << " pressure SU(" << left->NodeNum << ") > SU("
2521 << right->NodeNum << ")\n");
2522 return true;
2523 }
2524 else if (!LHigh && RHigh) {
2525 DEBUG(dbgs() << " pressure SU(" << right->NodeNum << ") > SU("
2526 << left->NodeNum << ")\n");
2527 return false;
2528 }
2529 if (!LHigh && !RHigh) {
2530 int result = BUCompareLatency(left, right, true /*checkPref*/, SPQ);
2531 if (result != 0)
2532 return result > 0;
2533 }
2534 return BURRSort(left, right, SPQ);
2535 }
2536
2537 // Schedule as many instructions in each cycle as possible. So don't make an
2538 // instruction available unless it is ready in the current cycle.
2539 bool ilp_ls_rr_sort::isReady(SUnit *SU, unsigned CurCycle) const {
2540 if (SU->getHeight() > CurCycle) return false;
2541
2542 if (SPQ->getHazardRec()->getHazardType(SU, 0)
2543 != ScheduleHazardRecognizer::NoHazard)
2544 return false;
2545
2546 return true;
2547 }
2548
2549 static bool canEnableCoalescing(SUnit *SU) {
2550 unsigned Opc = SU->getNode() ? SU->getNode()->getOpcode() : 0;
2551 if (Opc == ISD::TokenFactor || Opc == ISD::CopyToReg)
2552 // CopyToReg should be close to its uses to facilitate coalescing and
2553 // avoid spilling.
2554 return true;
2555
2556 if (Opc == TargetOpcode::EXTRACT_SUBREG ||
2557 Opc == TargetOpcode::SUBREG_TO_REG ||
2558 Opc == TargetOpcode::INSERT_SUBREG)
2559 // EXTRACT_SUBREG, INSERT_SUBREG, and SUBREG_TO_REG nodes should be
2560 // close to their uses to facilitate coalescing.
2561 return true;
2562
2563 if (SU->NumPreds == 0 && SU->NumSuccs != 0)
2564 // If SU does not have a register def, schedule it close to its uses
2565 // because it does not lengthen any live ranges.
2566 return true;
2567
2568 return false;
2569 }
2570
2571 // list-ilp is currently an experimental scheduler that allows various
2572 // heuristics to be enabled prior to the normal register reduction logic.
2573 bool ilp_ls_rr_sort::operator()(SUnit *left, SUnit *right) const {
2574 if (int res = checkSpecialNodes(left, right))
2575 return res > 0;
2576
2577 if (left->isCall || right->isCall)
2578 // No way to compute latency of calls.
2579 return BURRSort(left, right, SPQ);
2580
2581 unsigned LLiveUses = 0, RLiveUses = 0;
2582 int LPDiff = 0, RPDiff = 0;
2583 if (!DisableSchedRegPressure || !DisableSchedLiveUses) {
2584 LPDiff = SPQ->RegPressureDiff(left, LLiveUses);
2585 RPDiff = SPQ->RegPressureDiff(right, RLiveUses);
2586 }
2587 if (!DisableSchedRegPressure && LPDiff != RPDiff) {
2588 DEBUG(dbgs() << "RegPressureDiff SU(" << left->NodeNum << "): " << LPDiff
2589 << " != SU(" << right->NodeNum << "): " << RPDiff << "\n");
2590 return LPDiff > RPDiff;
2591 }
2592
2593 if (!DisableSchedRegPressure && (LPDiff > 0 || RPDiff > 0)) {
2594 bool LReduce = canEnableCoalescing(left);
2595 bool RReduce = canEnableCoalescing(right);
2596 if (LReduce && !RReduce) return false;
2597 if (RReduce && !LReduce) return true;
2598 }
2599
2600 if (!DisableSchedLiveUses && (LLiveUses != RLiveUses)) {
2601 DEBUG(dbgs() << "Live uses SU(" << left->NodeNum << "): " << LLiveUses
2602 << " != SU(" << right->NodeNum << "): " << RLiveUses << "\n");
2603 return LLiveUses < RLiveUses;
2604 }
2605
2606 if (!DisableSchedStalls) {
2607 bool LStall = BUHasStall(left, left->getHeight(), SPQ);
2608 bool RStall = BUHasStall(right, right->getHeight(), SPQ);
2609 if (LStall != RStall)
2610 return left->getHeight() > right->getHeight();
2611 }
2612
2613 if (!DisableSchedCriticalPath) {
2614 int spread = (int)left->getDepth() - (int)right->getDepth();
2615 if (std::abs(spread) > MaxReorderWindow) {
2616 DEBUG(dbgs() << "Depth of SU(" << left->NodeNum << "): "
2617 << left->getDepth() << " != SU(" << right->NodeNum << "): "
2618 << right->getDepth() << "\n");
2619 return left->getDepth() < right->getDepth();
2620 }
2621 }
2622
2623 if (!DisableSchedHeight && left->getHeight() != right->getHeight()) {
2624 int spread = (int)left->getHeight() - (int)right->getHeight();
2625 if (std::abs(spread) > MaxReorderWindow)
2626 return left->getHeight() > right->getHeight();
2627 }
2628
2629 return BURRSort(left, right, SPQ);
2630 }
2631
2632 void RegReductionPQBase::initNodes(std::vector<SUnit> &sunits) {
2633 SUnits = &sunits;
2634 // Add pseudo dependency edges for two-address nodes.
2635 if (!Disable2AddrHack)
2636 AddPseudoTwoAddrDeps();
2637 // Reroute edges to nodes with multiple uses.
2638 if (!TracksRegPressure && !SrcOrder)
2639 PrescheduleNodesWithMultipleUses();
2640 // Calculate node priorities.
2641 CalculateSethiUllmanNumbers();
2642
2643 // For single block loops, mark nodes that look like canonical IV increments.
2644 if (scheduleDAG->BB->isSuccessor(scheduleDAG->BB)) {
2645 for (unsigned i = 0, e = sunits.size(); i != e; ++i) {
2646 initVRegCycle(&sunits[i]);
2647 }
2648 }
2649 }
2650
2651 //===----------------------------------------------------------------------===//
2652 // Preschedule for Register Pressure
2653 //===----------------------------------------------------------------------===//
2654
2655 bool RegReductionPQBase::canClobber(const SUnit *SU, const SUnit *Op) {
2656 if (SU->isTwoAddress) {
2657 unsigned Opc = SU->getNode()->getMachineOpcode();
2658 const MCInstrDesc &MCID = TII->get(Opc);
2659 unsigned NumRes = MCID.getNumDefs();
2660 unsigned NumOps = MCID.getNumOperands() - NumRes;
2661 for (unsigned i = 0; i != NumOps; ++i) {
2662 if (MCID.getOperandConstraint(i+NumRes, MCOI::TIED_TO) != -1) {
2663 SDNode *DU = SU->getNode()->getOperand(i).getNode();
2664 if (DU->getNodeId() != -1 &&
2665 Op->OrigNode == &(*SUnits)[DU->getNodeId()])
2666 return true;
2667 }
2668 }
2669 }
2670 return false;
2671 }
2672
2673 /// canClobberReachingPhysRegUse - True if SU would clobber one of it's
2674 /// successor's explicit physregs whose definition can reach DepSU.
2675 /// i.e. DepSU should not be scheduled above SU.
2676 static bool canClobberReachingPhysRegUse(const SUnit *DepSU, const SUnit *SU,
2677 ScheduleDAGRRList *scheduleDAG,
2678 const TargetInstrInfo *TII,
2679 const TargetRegisterInfo *TRI) {
2680 const uint16_t *ImpDefs
2681 = TII->get(SU->getNode()->getMachineOpcode()).getImplicitDefs();
2682 const uint32_t *RegMask = getNodeRegMask(SU->getNode());
2683 if(!ImpDefs && !RegMask)
2684 return false;
2685
2686 for (SUnit::const_succ_iterator SI = SU->Succs.begin(), SE = SU->Succs.end();
2687 SI != SE; ++SI) {
2688 SUnit *SuccSU = SI->getSUnit();
2689 for (SUnit::const_pred_iterator PI = SuccSU->Preds.begin(),
2690 PE = SuccSU->Preds.end(); PI != PE; ++PI) {
2691 if (!PI->isAssignedRegDep())
2692 continue;
2693
2694 if (RegMask && MachineOperand::clobbersPhysReg(RegMask, PI->getReg()) &&
2695 scheduleDAG->IsReachable(DepSU, PI->getSUnit()))
2696 return true;
2697
2698 if (ImpDefs)
2699 for (const uint16_t *ImpDef = ImpDefs; *ImpDef; ++ImpDef)
2700 // Return true if SU clobbers this physical register use and the
2701 // definition of the register reaches from DepSU. IsReachable queries
2702 // a topological forward sort of the DAG (following the successors).
2703 if (TRI->regsOverlap(*ImpDef, PI->getReg()) &&
2704 scheduleDAG->IsReachable(DepSU, PI->getSUnit()))
2705 return true;
2706 }
2707 }
2708 return false;
2709 }
2710
2711 /// canClobberPhysRegDefs - True if SU would clobber one of SuccSU's
2712 /// physical register defs.
2713 static bool canClobberPhysRegDefs(const SUnit *SuccSU, const SUnit *SU,
2714 const TargetInstrInfo *TII,
2715 const TargetRegisterInfo *TRI) {
2716 SDNode *N = SuccSU->getNode();
2717 unsigned NumDefs = TII->get(N->getMachineOpcode()).getNumDefs();
2718 const uint16_t *ImpDefs = TII->get(N->getMachineOpcode()).getImplicitDefs();
2719 assert(ImpDefs && "Caller should check hasPhysRegDefs");
2720 for (const SDNode *SUNode = SU->getNode(); SUNode;
2721 SUNode = SUNode->getGluedNode()) {
2722 if (!SUNode->isMachineOpcode())
2723 continue;
2724 const uint16_t *SUImpDefs =
2725 TII->get(SUNode->getMachineOpcode()).getImplicitDefs();
2726 const uint32_t *SURegMask = getNodeRegMask(SUNode);
2727 if (!SUImpDefs && !SURegMask)
2728 continue;
2729 for (unsigned i = NumDefs, e = N->getNumValues(); i != e; ++i) {
2730 EVT VT = N->getValueType(i);
2731 if (VT == MVT::Glue || VT == MVT::Other)
2732 continue;
2733 if (!N->hasAnyUseOfValue(i))
2734 continue;
2735 unsigned Reg = ImpDefs[i - NumDefs];
2736 if (SURegMask && MachineOperand::clobbersPhysReg(SURegMask, Reg))
2737 return true;
2738 if (!SUImpDefs)
2739 continue;
2740 for (;*SUImpDefs; ++SUImpDefs) {
2741 unsigned SUReg = *SUImpDefs;
2742 if (TRI->regsOverlap(Reg, SUReg))
2743 return true;
2744 }
2745 }
2746 }
2747 return false;
2748 }
2749
2750 /// PrescheduleNodesWithMultipleUses - Nodes with multiple uses
2751 /// are not handled well by the general register pressure reduction
2752 /// heuristics. When presented with code like this:
2753 ///
2754 /// N
2755 /// / |
2756 /// / |
2757 /// U store
2758 /// |
2759 /// ...
2760 ///
2761 /// the heuristics tend to push the store up, but since the
2762 /// operand of the store has another use (U), this would increase
2763 /// the length of that other use (the U->N edge).
2764 ///
2765 /// This function transforms code like the above to route U's
2766 /// dependence through the store when possible, like this:
2767 ///
2768 /// N
2769 /// ||
2770 /// ||
2771 /// store
2772 /// |
2773 /// U
2774 /// |
2775 /// ...
2776 ///
2777 /// This results in the store being scheduled immediately
2778 /// after N, which shortens the U->N live range, reducing
2779 /// register pressure.
2780 ///
2781 void RegReductionPQBase::PrescheduleNodesWithMultipleUses() {
2782 // Visit all the nodes in topological order, working top-down.
2783 for (unsigned i = 0, e = SUnits->size(); i != e; ++i) {
2784 SUnit *SU = &(*SUnits)[i];
2785 // For now, only look at nodes with no data successors, such as stores.
2786 // These are especially important, due to the heuristics in
2787 // getNodePriority for nodes with no data successors.
2788 if (SU->NumSuccs != 0)
2789 continue;
2790 // For now, only look at nodes with exactly one data predecessor.
2791 if (SU->NumPreds != 1)
2792 continue;
2793 // Avoid prescheduling copies to virtual registers, which don't behave
2794 // like other nodes from the perspective of scheduling heuristics.
2795 if (SDNode *N = SU->getNode())
2796 if (N->getOpcode() == ISD::CopyToReg &&
2797 TargetRegisterInfo::isVirtualRegister
2798 (cast<RegisterSDNode>(N->getOperand(1))->getReg()))
2799 continue;
2800
2801 // Locate the single data predecessor.
2802 SUnit *PredSU = 0;
2803 for (SUnit::const_pred_iterator II = SU->Preds.begin(),
2804 EE = SU->Preds.end(); II != EE; ++II)
2805 if (!II->isCtrl()) {
2806 PredSU = II->getSUnit();
2807 break;
2808 }
2809 assert(PredSU);
2810
2811 // Don't rewrite edges that carry physregs, because that requires additional
2812 // support infrastructure.
2813 if (PredSU->hasPhysRegDefs)
2814 continue;
2815 // Short-circuit the case where SU is PredSU's only data successor.
2816 if (PredSU->NumSuccs == 1)
2817 continue;
2818 // Avoid prescheduling to copies from virtual registers, which don't behave
2819 // like other nodes from the perspective of scheduling heuristics.
2820 if (SDNode *N = SU->getNode())
2821 if (N->getOpcode() == ISD::CopyFromReg &&
2822 TargetRegisterInfo::isVirtualRegister
2823 (cast<RegisterSDNode>(N->getOperand(1))->getReg()))
2824 continue;
2825
2826 // Perform checks on the successors of PredSU.
2827 for (SUnit::const_succ_iterator II = PredSU->Succs.begin(),
2828 EE = PredSU->Succs.end(); II != EE; ++II) {
2829 SUnit *PredSuccSU = II->getSUnit();
2830 if (PredSuccSU == SU) continue;
2831 // If PredSU has another successor with no data successors, for
2832 // now don't attempt to choose either over the other.
2833 if (PredSuccSU->NumSuccs == 0)
2834 goto outer_loop_continue;
2835 // Don't break physical register dependencies.
2836 if (SU->hasPhysRegClobbers && PredSuccSU->hasPhysRegDefs)
2837 if (canClobberPhysRegDefs(PredSuccSU, SU, TII, TRI))
2838 goto outer_loop_continue;
2839 // Don't introduce graph cycles.
2840 if (scheduleDAG->IsReachable(SU, PredSuccSU))
2841 goto outer_loop_continue;
2842 }
2843
2844 // Ok, the transformation is safe and the heuristics suggest it is
2845 // profitable. Update the graph.
2846 DEBUG(dbgs() << " Prescheduling SU #" << SU->NodeNum
2847 << " next to PredSU #" << PredSU->NodeNum
2848 << " to guide scheduling in the presence of multiple uses\n");
2849 for (unsigned i = 0; i != PredSU->Succs.size(); ++i) {
2850 SDep Edge = PredSU->Succs[i];
2851 assert(!Edge.isAssignedRegDep());
2852 SUnit *SuccSU = Edge.getSUnit();
2853 if (SuccSU != SU) {
2854 Edge.setSUnit(PredSU);
2855 scheduleDAG->RemovePred(SuccSU, Edge);
2856 scheduleDAG->AddPred(SU, Edge);
2857 Edge.setSUnit(SU);
2858 scheduleDAG->AddPred(SuccSU, Edge);
2859 --i;
2860 }
2861 }
2862 outer_loop_continue:;
2863 }
2864 }
2865
2866 /// AddPseudoTwoAddrDeps - If two nodes share an operand and one of them uses
2867 /// it as a def&use operand. Add a pseudo control edge from it to the other
2868 /// node (if it won't create a cycle) so the two-address one will be scheduled
2869 /// first (lower in the schedule). If both nodes are two-address, favor the
2870 /// one that has a CopyToReg use (more likely to be a loop induction update).
2871 /// If both are two-address, but one is commutable while the other is not
2872 /// commutable, favor the one that's not commutable.
2873 void RegReductionPQBase::AddPseudoTwoAddrDeps() {
2874 for (unsigned i = 0, e = SUnits->size(); i != e; ++i) {
2875 SUnit *SU = &(*SUnits)[i];
2876 if (!SU->isTwoAddress)
2877 continue;
2878
2879 SDNode *Node = SU->getNode();
2880 if (!Node || !Node->isMachineOpcode() || SU->getNode()->getGluedNode())
2881 continue;
2882
2883 bool isLiveOut = hasOnlyLiveOutUses(SU);
2884 unsigned Opc = Node->getMachineOpcode();
2885 const MCInstrDesc &MCID = TII->get(Opc);
2886 unsigned NumRes = MCID.getNumDefs();
2887 unsigned NumOps = MCID.getNumOperands() - NumRes;
2888 for (unsigned j = 0; j != NumOps; ++j) {
2889 if (MCID.getOperandConstraint(j+NumRes, MCOI::TIED_TO) == -1)
2890 continue;
2891 SDNode *DU = SU->getNode()->getOperand(j).getNode();
2892 if (DU->getNodeId() == -1)
2893 continue;
2894 const SUnit *DUSU = &(*SUnits)[DU->getNodeId()];
2895 if (!DUSU) continue;
2896 for (SUnit::const_succ_iterator I = DUSU->Succs.begin(),
2897 E = DUSU->Succs.end(); I != E; ++I) {
2898 if (I->isCtrl()) continue;
2899 SUnit *SuccSU = I->getSUnit();
2900 if (SuccSU == SU)
2901 continue;
2902 // Be conservative. Ignore if nodes aren't at roughly the same
2903 // depth and height.
2904 if (SuccSU->getHeight() < SU->getHeight() &&
2905 (SU->getHeight() - SuccSU->getHeight()) > 1)
2906 continue;
2907 // Skip past COPY_TO_REGCLASS nodes, so that the pseudo edge
2908 // constrains whatever is using the copy, instead of the copy
2909 // itself. In the case that the copy is coalesced, this
2910 // preserves the intent of the pseudo two-address heurietics.
2911 while (SuccSU->Succs.size() == 1 &&
2912 SuccSU->getNode()->isMachineOpcode() &&
2913 SuccSU->getNode()->getMachineOpcode() ==
2914 TargetOpcode::COPY_TO_REGCLASS)
2915 SuccSU = SuccSU->Succs.front().getSUnit();
2916 // Don't constrain non-instruction nodes.
2917 if (!SuccSU->getNode() || !SuccSU->getNode()->isMachineOpcode())
2918 continue;
2919 // Don't constrain nodes with physical register defs if the
2920 // predecessor can clobber them.
2921 if (SuccSU->hasPhysRegDefs && SU->hasPhysRegClobbers) {
2922 if (canClobberPhysRegDefs(SuccSU, SU, TII, TRI))
2923 continue;
2924 }
2925 // Don't constrain EXTRACT_SUBREG, INSERT_SUBREG, and SUBREG_TO_REG;
2926 // these may be coalesced away. We want them close to their uses.
2927 unsigned SuccOpc = SuccSU->getNode()->getMachineOpcode();
2928 if (SuccOpc == TargetOpcode::EXTRACT_SUBREG ||
2929 SuccOpc == TargetOpcode::INSERT_SUBREG ||
2930 SuccOpc == TargetOpcode::SUBREG_TO_REG)
2931 continue;
2932 if (!canClobberReachingPhysRegUse(SuccSU, SU, scheduleDAG, TII, TRI) &&
2933 (!canClobber(SuccSU, DUSU) ||
2934 (isLiveOut && !hasOnlyLiveOutUses(SuccSU)) ||
2935 (!SU->isCommutable && SuccSU->isCommutable)) &&
2936 !scheduleDAG->IsReachable(SuccSU, SU)) {
2937 DEBUG(dbgs() << " Adding a pseudo-two-addr edge from SU #"
2938 << SU->NodeNum << " to SU #" << SuccSU->NodeNum << "\n");
2939 scheduleDAG->AddPred(SU, SDep(SuccSU, SDep::Order, /*Latency=*/0,
2940 /*Reg=*/0, /*isNormalMemory=*/false,
2941 /*isMustAlias=*/false,
2942 /*isArtificial=*/true));
2943 }
2944 }
2945 }
2946 }
2947 }
2948
2949 //===----------------------------------------------------------------------===//
2950 // Public Constructor Functions
2951 //===----------------------------------------------------------------------===//
2952
2953 llvm::ScheduleDAGSDNodes *
2954 llvm::createBURRListDAGScheduler(SelectionDAGISel *IS,
2955 CodeGenOpt::Level OptLevel) {
2956 const TargetMachine &TM = IS->TM;
2957 const TargetInstrInfo *TII = TM.getInstrInfo();
2958 const TargetRegisterInfo *TRI = TM.getRegisterInfo();
2959
2960 BURegReductionPriorityQueue *PQ =
2961 new BURegReductionPriorityQueue(*IS->MF, false, false, TII, TRI, 0);
2962 ScheduleDAGRRList *SD = new ScheduleDAGRRList(*IS->MF, false, PQ, OptLevel);
2963 PQ->setScheduleDAG(SD);
2964 return SD;
2965 }
2966
2967 llvm::ScheduleDAGSDNodes *
2968 llvm::createSourceListDAGScheduler(SelectionDAGISel *IS,
2969 CodeGenOpt::Level OptLevel) {
2970 const TargetMachine &TM = IS->TM;
2971 const TargetInstrInfo *TII = TM.getInstrInfo();
2972 const TargetRegisterInfo *TRI = TM.getRegisterInfo();
2973
2974 SrcRegReductionPriorityQueue *PQ =
2975 new SrcRegReductionPriorityQueue(*IS->MF, false, true, TII, TRI, 0);
2976 ScheduleDAGRRList *SD = new ScheduleDAGRRList(*IS->MF, false, PQ, OptLevel);
2977 PQ->setScheduleDAG(SD);
2978 return SD;
2979 }
2980
2981 llvm::ScheduleDAGSDNodes *
2982 llvm::createHybridListDAGScheduler(SelectionDAGISel *IS,
2983 CodeGenOpt::Level OptLevel) {
2984 const TargetMachine &TM = IS->TM;
2985 const TargetInstrInfo *TII = TM.getInstrInfo();
2986 const TargetRegisterInfo *TRI = TM.getRegisterInfo();
2987 const TargetLowering *TLI = &IS->getTargetLowering();
2988
2989 HybridBURRPriorityQueue *PQ =
2990 new HybridBURRPriorityQueue(*IS->MF, true, false, TII, TRI, TLI);
2991
2992 ScheduleDAGRRList *SD = new ScheduleDAGRRList(*IS->MF, true, PQ, OptLevel);
2993 PQ->setScheduleDAG(SD);
2994 return SD;
2995 }
2996
2997 llvm::ScheduleDAGSDNodes *
2998 llvm::createILPListDAGScheduler(SelectionDAGISel *IS,
2999 CodeGenOpt::Level OptLevel) {
3000 const TargetMachine &TM = IS->TM;
3001 const TargetInstrInfo *TII = TM.getInstrInfo();
3002 const TargetRegisterInfo *TRI = TM.getRegisterInfo();
3003 const TargetLowering *TLI = &IS->getTargetLowering();
3004
3005 ILPBURRPriorityQueue *PQ =
3006 new ILPBURRPriorityQueue(*IS->MF, true, false, TII, TRI, TLI);
3007 ScheduleDAGRRList *SD = new ScheduleDAGRRList(*IS->MF, true, PQ, OptLevel);
3008 PQ->setScheduleDAG(SD);
3009 return SD;
3010 }