]> git.proxmox.com Git - rustc.git/blob - src/llvm/lib/Target/Hexagon/HexagonVLIWPacketizer.cpp
Imported Upstream version 1.0.0~0alpha
[rustc.git] / src / llvm / lib / Target / Hexagon / HexagonVLIWPacketizer.cpp
1 //===----- HexagonPacketizer.cpp - vliw packetizer ---------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This implements a simple VLIW packetizer using DFA. The packetizer works on
11 // machine basic blocks. For each instruction I in BB, the packetizer consults
12 // the DFA to see if machine resources are available to execute I. If so, the
13 // packetizer checks if I depends on any instruction J in the current packet.
14 // If no dependency is found, I is added to current packet and machine resource
15 // is marked as taken. If any dependency is found, a target API call is made to
16 // prune the dependence.
17 //
18 //===----------------------------------------------------------------------===//
19 #include "llvm/CodeGen/DFAPacketizer.h"
20 #include "Hexagon.h"
21 #include "HexagonMachineFunctionInfo.h"
22 #include "HexagonRegisterInfo.h"
23 #include "HexagonSubtarget.h"
24 #include "HexagonTargetMachine.h"
25 #include "llvm/ADT/DenseMap.h"
26 #include "llvm/ADT/Statistic.h"
27 #include "llvm/CodeGen/LatencyPriorityQueue.h"
28 #include "llvm/CodeGen/MachineDominators.h"
29 #include "llvm/CodeGen/MachineFrameInfo.h"
30 #include "llvm/CodeGen/MachineFunctionAnalysis.h"
31 #include "llvm/CodeGen/MachineFunctionPass.h"
32 #include "llvm/CodeGen/MachineInstrBuilder.h"
33 #include "llvm/CodeGen/MachineLoopInfo.h"
34 #include "llvm/CodeGen/MachineRegisterInfo.h"
35 #include "llvm/CodeGen/Passes.h"
36 #include "llvm/CodeGen/ScheduleDAG.h"
37 #include "llvm/CodeGen/ScheduleDAGInstrs.h"
38 #include "llvm/CodeGen/ScheduleHazardRecognizer.h"
39 #include "llvm/CodeGen/SchedulerRegistry.h"
40 #include "llvm/MC/MCInstrItineraries.h"
41 #include "llvm/Support/CommandLine.h"
42 #include "llvm/Support/Compiler.h"
43 #include "llvm/Support/Debug.h"
44 #include "llvm/Support/MathExtras.h"
45 #include "llvm/Target/TargetInstrInfo.h"
46 #include "llvm/Target/TargetMachine.h"
47 #include "llvm/Target/TargetRegisterInfo.h"
48 #include <map>
49 #include <vector>
50
51 using namespace llvm;
52
53 #define DEBUG_TYPE "packets"
54
55 static cl::opt<bool> PacketizeVolatiles("hexagon-packetize-volatiles",
56 cl::ZeroOrMore, cl::Hidden, cl::init(true),
57 cl::desc("Allow non-solo packetization of volatile memory references"));
58
59 namespace llvm {
60 void initializeHexagonPacketizerPass(PassRegistry&);
61 }
62
63
64 namespace {
65 class HexagonPacketizer : public MachineFunctionPass {
66
67 public:
68 static char ID;
69 HexagonPacketizer() : MachineFunctionPass(ID) {
70 initializeHexagonPacketizerPass(*PassRegistry::getPassRegistry());
71 }
72
73 void getAnalysisUsage(AnalysisUsage &AU) const override {
74 AU.setPreservesCFG();
75 AU.addRequired<MachineDominatorTree>();
76 AU.addRequired<MachineBranchProbabilityInfo>();
77 AU.addPreserved<MachineDominatorTree>();
78 AU.addRequired<MachineLoopInfo>();
79 AU.addPreserved<MachineLoopInfo>();
80 MachineFunctionPass::getAnalysisUsage(AU);
81 }
82
83 const char *getPassName() const override {
84 return "Hexagon Packetizer";
85 }
86
87 bool runOnMachineFunction(MachineFunction &Fn) override;
88 };
89 char HexagonPacketizer::ID = 0;
90
91 class HexagonPacketizerList : public VLIWPacketizerList {
92
93 private:
94
95 // Has the instruction been promoted to a dot-new instruction.
96 bool PromotedToDotNew;
97
98 // Has the instruction been glued to allocframe.
99 bool GlueAllocframeStore;
100
101 // Has the feeder instruction been glued to new value jump.
102 bool GlueToNewValueJump;
103
104 // Check if there is a dependence between some instruction already in this
105 // packet and this instruction.
106 bool Dependence;
107
108 // Only check for dependence if there are resources available to
109 // schedule this instruction.
110 bool FoundSequentialDependence;
111
112 /// \brief A handle to the branch probability pass.
113 const MachineBranchProbabilityInfo *MBPI;
114
115 // Track MIs with ignored dependece.
116 std::vector<MachineInstr*> IgnoreDepMIs;
117
118 public:
119 // Ctor.
120 HexagonPacketizerList(MachineFunction &MF, MachineLoopInfo &MLI,
121 const MachineBranchProbabilityInfo *MBPI);
122
123 // initPacketizerState - initialize some internal flags.
124 void initPacketizerState() override;
125
126 // ignorePseudoInstruction - Ignore bundling of pseudo instructions.
127 bool ignorePseudoInstruction(MachineInstr *MI,
128 MachineBasicBlock *MBB) override;
129
130 // isSoloInstruction - return true if instruction MI can not be packetized
131 // with any other instruction, which means that MI itself is a packet.
132 bool isSoloInstruction(MachineInstr *MI) override;
133
134 // isLegalToPacketizeTogether - Is it legal to packetize SUI and SUJ
135 // together.
136 bool isLegalToPacketizeTogether(SUnit *SUI, SUnit *SUJ) override;
137
138 // isLegalToPruneDependencies - Is it legal to prune dependece between SUI
139 // and SUJ.
140 bool isLegalToPruneDependencies(SUnit *SUI, SUnit *SUJ) override;
141
142 MachineBasicBlock::iterator addToPacket(MachineInstr *MI) override;
143 private:
144 bool IsCallDependent(MachineInstr* MI, SDep::Kind DepType, unsigned DepReg);
145 bool PromoteToDotNew(MachineInstr* MI, SDep::Kind DepType,
146 MachineBasicBlock::iterator &MII,
147 const TargetRegisterClass* RC);
148 bool CanPromoteToDotNew(MachineInstr* MI, SUnit* PacketSU,
149 unsigned DepReg,
150 std::map <MachineInstr*, SUnit*> MIToSUnit,
151 MachineBasicBlock::iterator &MII,
152 const TargetRegisterClass* RC);
153 bool CanPromoteToNewValue(MachineInstr* MI, SUnit* PacketSU,
154 unsigned DepReg,
155 std::map <MachineInstr*, SUnit*> MIToSUnit,
156 MachineBasicBlock::iterator &MII);
157 bool CanPromoteToNewValueStore(MachineInstr* MI, MachineInstr* PacketMI,
158 unsigned DepReg,
159 std::map <MachineInstr*, SUnit*> MIToSUnit);
160 bool DemoteToDotOld(MachineInstr* MI);
161 bool ArePredicatesComplements(MachineInstr* MI1, MachineInstr* MI2,
162 std::map <MachineInstr*, SUnit*> MIToSUnit);
163 bool RestrictingDepExistInPacket(MachineInstr*,
164 unsigned, std::map <MachineInstr*, SUnit*>);
165 bool isNewifiable(MachineInstr* MI);
166 bool isCondInst(MachineInstr* MI);
167 bool tryAllocateResourcesForConstExt(MachineInstr* MI);
168 bool canReserveResourcesForConstExt(MachineInstr *MI);
169 void reserveResourcesForConstExt(MachineInstr* MI);
170 bool isNewValueInst(MachineInstr* MI);
171 };
172 }
173
174 INITIALIZE_PASS_BEGIN(HexagonPacketizer, "packets", "Hexagon Packetizer",
175 false, false)
176 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
177 INITIALIZE_PASS_DEPENDENCY(MachineBranchProbabilityInfo)
178 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo)
179 INITIALIZE_AG_DEPENDENCY(AliasAnalysis)
180 INITIALIZE_PASS_END(HexagonPacketizer, "packets", "Hexagon Packetizer",
181 false, false)
182
183
184 // HexagonPacketizerList Ctor.
185 HexagonPacketizerList::HexagonPacketizerList(
186 MachineFunction &MF, MachineLoopInfo &MLI,
187 const MachineBranchProbabilityInfo *MBPI)
188 : VLIWPacketizerList(MF, MLI, true) {
189 this->MBPI = MBPI;
190 }
191
192 bool HexagonPacketizer::runOnMachineFunction(MachineFunction &Fn) {
193 const TargetInstrInfo *TII = Fn.getSubtarget().getInstrInfo();
194 MachineLoopInfo &MLI = getAnalysis<MachineLoopInfo>();
195 const MachineBranchProbabilityInfo *MBPI =
196 &getAnalysis<MachineBranchProbabilityInfo>();
197 // Instantiate the packetizer.
198 HexagonPacketizerList Packetizer(Fn, MLI, MBPI);
199
200 // DFA state table should not be empty.
201 assert(Packetizer.getResourceTracker() && "Empty DFA table!");
202
203 //
204 // Loop over all basic blocks and remove KILL pseudo-instructions
205 // These instructions confuse the dependence analysis. Consider:
206 // D0 = ... (Insn 0)
207 // R0 = KILL R0, D0 (Insn 1)
208 // R0 = ... (Insn 2)
209 // Here, Insn 1 will result in the dependence graph not emitting an output
210 // dependence between Insn 0 and Insn 2. This can lead to incorrect
211 // packetization
212 //
213 for (MachineFunction::iterator MBB = Fn.begin(), MBBe = Fn.end();
214 MBB != MBBe; ++MBB) {
215 MachineBasicBlock::iterator End = MBB->end();
216 MachineBasicBlock::iterator MI = MBB->begin();
217 while (MI != End) {
218 if (MI->isKill()) {
219 MachineBasicBlock::iterator DeleteMI = MI;
220 ++MI;
221 MBB->erase(DeleteMI);
222 End = MBB->end();
223 continue;
224 }
225 ++MI;
226 }
227 }
228
229 // Loop over all of the basic blocks.
230 for (MachineFunction::iterator MBB = Fn.begin(), MBBe = Fn.end();
231 MBB != MBBe; ++MBB) {
232 // Find scheduling regions and schedule / packetize each region.
233 unsigned RemainingCount = MBB->size();
234 for(MachineBasicBlock::iterator RegionEnd = MBB->end();
235 RegionEnd != MBB->begin();) {
236 // The next region starts above the previous region. Look backward in the
237 // instruction stream until we find the nearest boundary.
238 MachineBasicBlock::iterator I = RegionEnd;
239 for(;I != MBB->begin(); --I, --RemainingCount) {
240 if (TII->isSchedulingBoundary(std::prev(I), MBB, Fn))
241 break;
242 }
243 I = MBB->begin();
244
245 // Skip empty scheduling regions.
246 if (I == RegionEnd) {
247 RegionEnd = std::prev(RegionEnd);
248 --RemainingCount;
249 continue;
250 }
251 // Skip regions with one instruction.
252 if (I == std::prev(RegionEnd)) {
253 RegionEnd = std::prev(RegionEnd);
254 continue;
255 }
256
257 Packetizer.PacketizeMIs(MBB, I, RegionEnd);
258 RegionEnd = I;
259 }
260 }
261
262 return true;
263 }
264
265
266 static bool IsIndirectCall(MachineInstr* MI) {
267 return ((MI->getOpcode() == Hexagon::CALLR) ||
268 (MI->getOpcode() == Hexagon::CALLRv3));
269 }
270
271 // Reserve resources for constant extender. Trigure an assertion if
272 // reservation fail.
273 void HexagonPacketizerList::reserveResourcesForConstExt(MachineInstr* MI) {
274 const HexagonInstrInfo *QII = (const HexagonInstrInfo *) TII;
275 MachineFunction *MF = MI->getParent()->getParent();
276 MachineInstr *PseudoMI = MF->CreateMachineInstr(QII->get(Hexagon::IMMEXT_i),
277 MI->getDebugLoc());
278
279 if (ResourceTracker->canReserveResources(PseudoMI)) {
280 ResourceTracker->reserveResources(PseudoMI);
281 MI->getParent()->getParent()->DeleteMachineInstr(PseudoMI);
282 } else {
283 MI->getParent()->getParent()->DeleteMachineInstr(PseudoMI);
284 llvm_unreachable("can not reserve resources for constant extender.");
285 }
286 return;
287 }
288
289 bool HexagonPacketizerList::canReserveResourcesForConstExt(MachineInstr *MI) {
290 const HexagonInstrInfo *QII = (const HexagonInstrInfo *) TII;
291 assert((QII->isExtended(MI) || QII->isConstExtended(MI)) &&
292 "Should only be called for constant extended instructions");
293 MachineFunction *MF = MI->getParent()->getParent();
294 MachineInstr *PseudoMI = MF->CreateMachineInstr(QII->get(Hexagon::IMMEXT_i),
295 MI->getDebugLoc());
296 bool CanReserve = ResourceTracker->canReserveResources(PseudoMI);
297 MF->DeleteMachineInstr(PseudoMI);
298 return CanReserve;
299 }
300
301 // Allocate resources (i.e. 4 bytes) for constant extender. If succeed, return
302 // true, otherwise, return false.
303 bool HexagonPacketizerList::tryAllocateResourcesForConstExt(MachineInstr* MI) {
304 const HexagonInstrInfo *QII = (const HexagonInstrInfo *) TII;
305 MachineFunction *MF = MI->getParent()->getParent();
306 MachineInstr *PseudoMI = MF->CreateMachineInstr(QII->get(Hexagon::IMMEXT_i),
307 MI->getDebugLoc());
308
309 if (ResourceTracker->canReserveResources(PseudoMI)) {
310 ResourceTracker->reserveResources(PseudoMI);
311 MI->getParent()->getParent()->DeleteMachineInstr(PseudoMI);
312 return true;
313 } else {
314 MI->getParent()->getParent()->DeleteMachineInstr(PseudoMI);
315 return false;
316 }
317 }
318
319
320 bool HexagonPacketizerList::IsCallDependent(MachineInstr* MI,
321 SDep::Kind DepType,
322 unsigned DepReg) {
323
324 const HexagonInstrInfo *QII = (const HexagonInstrInfo *) TII;
325 const HexagonRegisterInfo *QRI =
326 (const HexagonRegisterInfo *)TM.getSubtargetImpl()->getRegisterInfo();
327
328 // Check for lr dependence
329 if (DepReg == QRI->getRARegister()) {
330 return true;
331 }
332
333 if (QII->isDeallocRet(MI)) {
334 if (DepReg == QRI->getFrameRegister() ||
335 DepReg == QRI->getStackRegister())
336 return true;
337 }
338
339 // Check if this is a predicate dependence
340 const TargetRegisterClass* RC = QRI->getMinimalPhysRegClass(DepReg);
341 if (RC == &Hexagon::PredRegsRegClass) {
342 return true;
343 }
344
345 //
346 // Lastly check for an operand used in an indirect call
347 // If we had an attribute for checking if an instruction is an indirect call,
348 // then we could have avoided this relatively brittle implementation of
349 // IsIndirectCall()
350 //
351 // Assumes that the first operand of the CALLr is the function address
352 //
353 if (IsIndirectCall(MI) && (DepType == SDep::Data)) {
354 MachineOperand MO = MI->getOperand(0);
355 if (MO.isReg() && MO.isUse() && (MO.getReg() == DepReg)) {
356 return true;
357 }
358 }
359
360 return false;
361 }
362
363 static bool IsRegDependence(const SDep::Kind DepType) {
364 return (DepType == SDep::Data || DepType == SDep::Anti ||
365 DepType == SDep::Output);
366 }
367
368 static bool IsDirectJump(MachineInstr* MI) {
369 return (MI->getOpcode() == Hexagon::JMP);
370 }
371
372 static bool IsSchedBarrier(MachineInstr* MI) {
373 switch (MI->getOpcode()) {
374 case Hexagon::BARRIER:
375 return true;
376 }
377 return false;
378 }
379
380 static bool IsControlFlow(MachineInstr* MI) {
381 return (MI->getDesc().isTerminator() || MI->getDesc().isCall());
382 }
383
384 static bool IsLoopN(MachineInstr *MI) {
385 return (MI->getOpcode() == Hexagon::LOOP0_i ||
386 MI->getOpcode() == Hexagon::LOOP0_r);
387 }
388
389 /// DoesModifyCalleeSavedReg - Returns true if the instruction modifies a
390 /// callee-saved register.
391 static bool DoesModifyCalleeSavedReg(MachineInstr *MI,
392 const TargetRegisterInfo *TRI) {
393 for (const MCPhysReg *CSR = TRI->getCalleeSavedRegs(); *CSR; ++CSR) {
394 unsigned CalleeSavedReg = *CSR;
395 if (MI->modifiesRegister(CalleeSavedReg, TRI))
396 return true;
397 }
398 return false;
399 }
400
401 // Returns true if an instruction can be promoted to .new predicate
402 // or new-value store.
403 bool HexagonPacketizerList::isNewifiable(MachineInstr* MI) {
404 const HexagonInstrInfo *QII = (const HexagonInstrInfo *) TII;
405 if ( isCondInst(MI) || QII->mayBeNewStore(MI))
406 return true;
407 else
408 return false;
409 }
410
411 bool HexagonPacketizerList::isCondInst (MachineInstr* MI) {
412 const HexagonInstrInfo *QII = (const HexagonInstrInfo *) TII;
413 const MCInstrDesc& TID = MI->getDesc();
414 // bug 5670: until that is fixed,
415 // this portion is disabled.
416 if ( TID.isConditionalBranch() // && !IsRegisterJump(MI)) ||
417 || QII->isConditionalTransfer(MI)
418 || QII->isConditionalALU32(MI)
419 || QII->isConditionalLoad(MI)
420 || QII->isConditionalStore(MI)) {
421 return true;
422 }
423 return false;
424 }
425
426
427 // Promote an instructiont to its .new form.
428 // At this time, we have already made a call to CanPromoteToDotNew
429 // and made sure that it can *indeed* be promoted.
430 bool HexagonPacketizerList::PromoteToDotNew(MachineInstr* MI,
431 SDep::Kind DepType, MachineBasicBlock::iterator &MII,
432 const TargetRegisterClass* RC) {
433
434 assert (DepType == SDep::Data);
435 const HexagonInstrInfo *QII = (const HexagonInstrInfo *) TII;
436
437 int NewOpcode;
438 if (RC == &Hexagon::PredRegsRegClass)
439 NewOpcode = QII->GetDotNewPredOp(MI, MBPI);
440 else
441 NewOpcode = QII->GetDotNewOp(MI);
442 MI->setDesc(QII->get(NewOpcode));
443
444 return true;
445 }
446
447 bool HexagonPacketizerList::DemoteToDotOld(MachineInstr* MI) {
448 const HexagonInstrInfo *QII = (const HexagonInstrInfo *) TII;
449 int NewOpcode = QII->GetDotOldOp(MI->getOpcode());
450 MI->setDesc(QII->get(NewOpcode));
451 return true;
452 }
453
454 enum PredicateKind {
455 PK_False,
456 PK_True,
457 PK_Unknown
458 };
459
460 /// Returns true if an instruction is predicated on p0 and false if it's
461 /// predicated on !p0.
462 static PredicateKind getPredicateSense(MachineInstr* MI,
463 const HexagonInstrInfo *QII) {
464 if (!QII->isPredicated(MI))
465 return PK_Unknown;
466
467 if (QII->isPredicatedTrue(MI))
468 return PK_True;
469
470 return PK_False;
471 }
472
473 static MachineOperand& GetPostIncrementOperand(MachineInstr *MI,
474 const HexagonInstrInfo *QII) {
475 assert(QII->isPostIncrement(MI) && "Not a post increment operation.");
476 #ifndef NDEBUG
477 // Post Increment means duplicates. Use dense map to find duplicates in the
478 // list. Caution: Densemap initializes with the minimum of 64 buckets,
479 // whereas there are at most 5 operands in the post increment.
480 DenseMap<unsigned, unsigned> DefRegsSet;
481 for(unsigned opNum = 0; opNum < MI->getNumOperands(); opNum++)
482 if (MI->getOperand(opNum).isReg() &&
483 MI->getOperand(opNum).isDef()) {
484 DefRegsSet[MI->getOperand(opNum).getReg()] = 1;
485 }
486
487 for(unsigned opNum = 0; opNum < MI->getNumOperands(); opNum++)
488 if (MI->getOperand(opNum).isReg() &&
489 MI->getOperand(opNum).isUse()) {
490 if (DefRegsSet[MI->getOperand(opNum).getReg()]) {
491 return MI->getOperand(opNum);
492 }
493 }
494 #else
495 if (MI->getDesc().mayLoad()) {
496 // The 2nd operand is always the post increment operand in load.
497 assert(MI->getOperand(1).isReg() &&
498 "Post increment operand has be to a register.");
499 return (MI->getOperand(1));
500 }
501 if (MI->getDesc().mayStore()) {
502 // The 1st operand is always the post increment operand in store.
503 assert(MI->getOperand(0).isReg() &&
504 "Post increment operand has be to a register.");
505 return (MI->getOperand(0));
506 }
507 #endif
508 // we should never come here.
509 llvm_unreachable("mayLoad or mayStore not set for Post Increment operation");
510 }
511
512 // get the value being stored
513 static MachineOperand& GetStoreValueOperand(MachineInstr *MI) {
514 // value being stored is always the last operand.
515 return (MI->getOperand(MI->getNumOperands()-1));
516 }
517
518 // can be new value store?
519 // Following restrictions are to be respected in convert a store into
520 // a new value store.
521 // 1. If an instruction uses auto-increment, its address register cannot
522 // be a new-value register. Arch Spec 5.4.2.1
523 // 2. If an instruction uses absolute-set addressing mode,
524 // its address register cannot be a new-value register.
525 // Arch Spec 5.4.2.1.TODO: This is not enabled as
526 // as absolute-set address mode patters are not implemented.
527 // 3. If an instruction produces a 64-bit result, its registers cannot be used
528 // as new-value registers. Arch Spec 5.4.2.2.
529 // 4. If the instruction that sets a new-value register is conditional, then
530 // the instruction that uses the new-value register must also be conditional,
531 // and both must always have their predicates evaluate identically.
532 // Arch Spec 5.4.2.3.
533 // 5. There is an implied restriction of a packet can not have another store,
534 // if there is a new value store in the packet. Corollary, if there is
535 // already a store in a packet, there can not be a new value store.
536 // Arch Spec: 3.4.4.2
537 bool HexagonPacketizerList::CanPromoteToNewValueStore( MachineInstr *MI,
538 MachineInstr *PacketMI, unsigned DepReg,
539 std::map <MachineInstr*, SUnit*> MIToSUnit) {
540 const HexagonInstrInfo *QII = (const HexagonInstrInfo *) TII;
541 // Make sure we are looking at the store, that can be promoted.
542 if (!QII->mayBeNewStore(MI))
543 return false;
544
545 // Make sure there is dependency and can be new value'ed
546 if (GetStoreValueOperand(MI).isReg() &&
547 GetStoreValueOperand(MI).getReg() != DepReg)
548 return false;
549
550 const HexagonRegisterInfo *QRI =
551 (const HexagonRegisterInfo *)TM.getSubtargetImpl()->getRegisterInfo();
552 const MCInstrDesc& MCID = PacketMI->getDesc();
553 // first operand is always the result
554
555 const TargetRegisterClass* PacketRC = QII->getRegClass(MCID, 0, QRI, MF);
556
557 // if there is already an store in the packet, no can do new value store
558 // Arch Spec 3.4.4.2.
559 for (std::vector<MachineInstr*>::iterator VI = CurrentPacketMIs.begin(),
560 VE = CurrentPacketMIs.end();
561 (VI != VE); ++VI) {
562 SUnit* PacketSU = MIToSUnit[*VI];
563 if (PacketSU->getInstr()->getDesc().mayStore() ||
564 // if we have mayStore = 1 set on ALLOCFRAME and DEALLOCFRAME,
565 // then we don't need this
566 PacketSU->getInstr()->getOpcode() == Hexagon::ALLOCFRAME ||
567 PacketSU->getInstr()->getOpcode() == Hexagon::DEALLOCFRAME)
568 return false;
569 }
570
571 if (PacketRC == &Hexagon::DoubleRegsRegClass) {
572 // new value store constraint: double regs can not feed into new value store
573 // arch spec section: 5.4.2.2
574 return false;
575 }
576
577 // Make sure it's NOT the post increment register that we are going to
578 // new value.
579 if (QII->isPostIncrement(MI) &&
580 MI->getDesc().mayStore() &&
581 GetPostIncrementOperand(MI, QII).getReg() == DepReg) {
582 return false;
583 }
584
585 if (QII->isPostIncrement(PacketMI) &&
586 PacketMI->getDesc().mayLoad() &&
587 GetPostIncrementOperand(PacketMI, QII).getReg() == DepReg) {
588 // if source is post_inc, or absolute-set addressing,
589 // it can not feed into new value store
590 // r3 = memw(r2++#4)
591 // memw(r30 + #-1404) = r2.new -> can not be new value store
592 // arch spec section: 5.4.2.1
593 return false;
594 }
595
596 // If the source that feeds the store is predicated, new value store must
597 // also be predicated.
598 if (QII->isPredicated(PacketMI)) {
599 if (!QII->isPredicated(MI))
600 return false;
601
602 // Check to make sure that they both will have their predicates
603 // evaluate identically
604 unsigned predRegNumSrc = 0;
605 unsigned predRegNumDst = 0;
606 const TargetRegisterClass* predRegClass = nullptr;
607
608 // Get predicate register used in the source instruction
609 for(unsigned opNum = 0; opNum < PacketMI->getNumOperands(); opNum++) {
610 if ( PacketMI->getOperand(opNum).isReg())
611 predRegNumSrc = PacketMI->getOperand(opNum).getReg();
612 predRegClass = QRI->getMinimalPhysRegClass(predRegNumSrc);
613 if (predRegClass == &Hexagon::PredRegsRegClass) {
614 break;
615 }
616 }
617 assert ((predRegClass == &Hexagon::PredRegsRegClass ) &&
618 ("predicate register not found in a predicated PacketMI instruction"));
619
620 // Get predicate register used in new-value store instruction
621 for(unsigned opNum = 0; opNum < MI->getNumOperands(); opNum++) {
622 if ( MI->getOperand(opNum).isReg())
623 predRegNumDst = MI->getOperand(opNum).getReg();
624 predRegClass = QRI->getMinimalPhysRegClass(predRegNumDst);
625 if (predRegClass == &Hexagon::PredRegsRegClass) {
626 break;
627 }
628 }
629 assert ((predRegClass == &Hexagon::PredRegsRegClass ) &&
630 ("predicate register not found in a predicated MI instruction"));
631
632 // New-value register producer and user (store) need to satisfy these
633 // constraints:
634 // 1) Both instructions should be predicated on the same register.
635 // 2) If producer of the new-value register is .new predicated then store
636 // should also be .new predicated and if producer is not .new predicated
637 // then store should not be .new predicated.
638 // 3) Both new-value register producer and user should have same predicate
639 // sense, i.e, either both should be negated or both should be none negated.
640
641 if (( predRegNumDst != predRegNumSrc) ||
642 QII->isDotNewInst(PacketMI) != QII->isDotNewInst(MI) ||
643 getPredicateSense(MI, QII) != getPredicateSense(PacketMI, QII)) {
644 return false;
645 }
646 }
647
648 // Make sure that other than the new-value register no other store instruction
649 // register has been modified in the same packet. Predicate registers can be
650 // modified by they should not be modified between the producer and the store
651 // instruction as it will make them both conditional on different values.
652 // We already know this to be true for all the instructions before and
653 // including PacketMI. Howerver, we need to perform the check for the
654 // remaining instructions in the packet.
655
656 std::vector<MachineInstr*>::iterator VI;
657 std::vector<MachineInstr*>::iterator VE;
658 unsigned StartCheck = 0;
659
660 for (VI=CurrentPacketMIs.begin(), VE = CurrentPacketMIs.end();
661 (VI != VE); ++VI) {
662 SUnit* TempSU = MIToSUnit[*VI];
663 MachineInstr* TempMI = TempSU->getInstr();
664
665 // Following condition is true for all the instructions until PacketMI is
666 // reached (StartCheck is set to 0 before the for loop).
667 // StartCheck flag is 1 for all the instructions after PacketMI.
668 if (TempMI != PacketMI && !StartCheck) // start processing only after
669 continue; // encountering PacketMI
670
671 StartCheck = 1;
672 if (TempMI == PacketMI) // We don't want to check PacketMI for dependence
673 continue;
674
675 for(unsigned opNum = 0; opNum < MI->getNumOperands(); opNum++) {
676 if (MI->getOperand(opNum).isReg() &&
677 TempSU->getInstr()->modifiesRegister(MI->getOperand(opNum).getReg(),
678 QRI))
679 return false;
680 }
681 }
682
683 // Make sure that for non-POST_INC stores:
684 // 1. The only use of reg is DepReg and no other registers.
685 // This handles V4 base+index registers.
686 // The following store can not be dot new.
687 // Eg. r0 = add(r0, #3)a
688 // memw(r1+r0<<#2) = r0
689 if (!QII->isPostIncrement(MI) &&
690 GetStoreValueOperand(MI).isReg() &&
691 GetStoreValueOperand(MI).getReg() == DepReg) {
692 for(unsigned opNum = 0; opNum < MI->getNumOperands()-1; opNum++) {
693 if (MI->getOperand(opNum).isReg() &&
694 MI->getOperand(opNum).getReg() == DepReg) {
695 return false;
696 }
697 }
698 // 2. If data definition is because of implicit definition of the register,
699 // do not newify the store. Eg.
700 // %R9<def> = ZXTH %R12, %D6<imp-use>, %R12<imp-def>
701 // STrih_indexed %R8, 2, %R12<kill>; mem:ST2[%scevgep343]
702 for(unsigned opNum = 0; opNum < PacketMI->getNumOperands(); opNum++) {
703 if (PacketMI->getOperand(opNum).isReg() &&
704 PacketMI->getOperand(opNum).getReg() == DepReg &&
705 PacketMI->getOperand(opNum).isDef() &&
706 PacketMI->getOperand(opNum).isImplicit()) {
707 return false;
708 }
709 }
710 }
711
712 // Can be dot new store.
713 return true;
714 }
715
716 // can this MI to promoted to either
717 // new value store or new value jump
718 bool HexagonPacketizerList::CanPromoteToNewValue( MachineInstr *MI,
719 SUnit *PacketSU, unsigned DepReg,
720 std::map <MachineInstr*, SUnit*> MIToSUnit,
721 MachineBasicBlock::iterator &MII)
722 {
723
724 const HexagonInstrInfo *QII = (const HexagonInstrInfo *) TII;
725 const HexagonRegisterInfo *QRI =
726 (const HexagonRegisterInfo *)TM.getSubtargetImpl()->getRegisterInfo();
727 if (!QRI->Subtarget.hasV4TOps() ||
728 !QII->mayBeNewStore(MI))
729 return false;
730
731 MachineInstr *PacketMI = PacketSU->getInstr();
732
733 // Check to see the store can be new value'ed.
734 if (CanPromoteToNewValueStore(MI, PacketMI, DepReg, MIToSUnit))
735 return true;
736
737 // Check to see the compare/jump can be new value'ed.
738 // This is done as a pass on its own. Don't need to check it here.
739 return false;
740 }
741
742 // Check to see if an instruction can be dot new
743 // There are three kinds.
744 // 1. dot new on predicate - V2/V3/V4
745 // 2. dot new on stores NV/ST - V4
746 // 3. dot new on jump NV/J - V4 -- This is generated in a pass.
747 bool HexagonPacketizerList::CanPromoteToDotNew( MachineInstr *MI,
748 SUnit *PacketSU, unsigned DepReg,
749 std::map <MachineInstr*, SUnit*> MIToSUnit,
750 MachineBasicBlock::iterator &MII,
751 const TargetRegisterClass* RC )
752 {
753 const HexagonInstrInfo *QII = (const HexagonInstrInfo *) TII;
754 // Already a dot new instruction.
755 if (QII->isDotNewInst(MI) && !QII->mayBeNewStore(MI))
756 return false;
757
758 if (!isNewifiable(MI))
759 return false;
760
761 // predicate .new
762 if (RC == &Hexagon::PredRegsRegClass && isCondInst(MI))
763 return true;
764 else if (RC != &Hexagon::PredRegsRegClass &&
765 !QII->mayBeNewStore(MI)) // MI is not a new-value store
766 return false;
767 else {
768 // Create a dot new machine instruction to see if resources can be
769 // allocated. If not, bail out now.
770 int NewOpcode = QII->GetDotNewOp(MI);
771 const MCInstrDesc &desc = QII->get(NewOpcode);
772 DebugLoc dl;
773 MachineInstr *NewMI =
774 MI->getParent()->getParent()->CreateMachineInstr(desc, dl);
775 bool ResourcesAvailable = ResourceTracker->canReserveResources(NewMI);
776 MI->getParent()->getParent()->DeleteMachineInstr(NewMI);
777
778 if (!ResourcesAvailable)
779 return false;
780
781 // new value store only
782 // new new value jump generated as a passes
783 if (!CanPromoteToNewValue(MI, PacketSU, DepReg, MIToSUnit, MII)) {
784 return false;
785 }
786 }
787 return true;
788 }
789
790 // Go through the packet instructions and search for anti dependency
791 // between them and DepReg from MI
792 // Consider this case:
793 // Trying to add
794 // a) %R1<def> = TFRI_cdNotPt %P3, 2
795 // to this packet:
796 // {
797 // b) %P0<def> = OR_pp %P3<kill>, %P0<kill>
798 // c) %P3<def> = TFR_PdRs %R23
799 // d) %R1<def> = TFRI_cdnPt %P3, 4
800 // }
801 // The P3 from a) and d) will be complements after
802 // a)'s P3 is converted to .new form
803 // Anti Dep between c) and b) is irrelevant for this case
804 bool HexagonPacketizerList::RestrictingDepExistInPacket (MachineInstr* MI,
805 unsigned DepReg,
806 std::map <MachineInstr*, SUnit*> MIToSUnit) {
807
808 const HexagonInstrInfo *QII = (const HexagonInstrInfo *) TII;
809 SUnit* PacketSUDep = MIToSUnit[MI];
810
811 for (std::vector<MachineInstr*>::iterator VIN = CurrentPacketMIs.begin(),
812 VEN = CurrentPacketMIs.end(); (VIN != VEN); ++VIN) {
813
814 // We only care for dependencies to predicated instructions
815 if(!QII->isPredicated(*VIN)) continue;
816
817 // Scheduling Unit for current insn in the packet
818 SUnit* PacketSU = MIToSUnit[*VIN];
819
820 // Look at dependencies between current members of the packet
821 // and predicate defining instruction MI.
822 // Make sure that dependency is on the exact register
823 // we care about.
824 if (PacketSU->isSucc(PacketSUDep)) {
825 for (unsigned i = 0; i < PacketSU->Succs.size(); ++i) {
826 if ((PacketSU->Succs[i].getSUnit() == PacketSUDep) &&
827 (PacketSU->Succs[i].getKind() == SDep::Anti) &&
828 (PacketSU->Succs[i].getReg() == DepReg)) {
829 return true;
830 }
831 }
832 }
833 }
834
835 return false;
836 }
837
838
839 /// Gets the predicate register of a predicated instruction.
840 static unsigned getPredicatedRegister(MachineInstr *MI,
841 const HexagonInstrInfo *QII) {
842 /// We use the following rule: The first predicate register that is a use is
843 /// the predicate register of a predicated instruction.
844
845 assert(QII->isPredicated(MI) && "Must be predicated instruction");
846
847 for (MachineInstr::mop_iterator OI = MI->operands_begin(),
848 OE = MI->operands_end(); OI != OE; ++OI) {
849 MachineOperand &Op = *OI;
850 if (Op.isReg() && Op.getReg() && Op.isUse() &&
851 Hexagon::PredRegsRegClass.contains(Op.getReg()))
852 return Op.getReg();
853 }
854
855 llvm_unreachable("Unknown instruction operand layout");
856
857 return 0;
858 }
859
860 // Given two predicated instructions, this function detects whether
861 // the predicates are complements
862 bool HexagonPacketizerList::ArePredicatesComplements (MachineInstr* MI1,
863 MachineInstr* MI2, std::map <MachineInstr*, SUnit*> MIToSUnit) {
864
865 const HexagonInstrInfo *QII = (const HexagonInstrInfo *) TII;
866
867 // If we don't know the predicate sense of the instructions bail out early, we
868 // need it later.
869 if (getPredicateSense(MI1, QII) == PK_Unknown ||
870 getPredicateSense(MI2, QII) == PK_Unknown)
871 return false;
872
873 // Scheduling unit for candidate
874 SUnit* SU = MIToSUnit[MI1];
875
876 // One corner case deals with the following scenario:
877 // Trying to add
878 // a) %R24<def> = TFR_cPt %P0, %R25
879 // to this packet:
880 //
881 // {
882 // b) %R25<def> = TFR_cNotPt %P0, %R24
883 // c) %P0<def> = CMPEQri %R26, 1
884 // }
885 //
886 // On general check a) and b) are complements, but
887 // presence of c) will convert a) to .new form, and
888 // then it is not a complement
889 // We attempt to detect it by analyzing existing
890 // dependencies in the packet
891
892 // Analyze relationships between all existing members of the packet.
893 // Look for Anti dependecy on the same predicate reg
894 // as used in the candidate
895 for (std::vector<MachineInstr*>::iterator VIN = CurrentPacketMIs.begin(),
896 VEN = CurrentPacketMIs.end(); (VIN != VEN); ++VIN) {
897
898 // Scheduling Unit for current insn in the packet
899 SUnit* PacketSU = MIToSUnit[*VIN];
900
901 // If this instruction in the packet is succeeded by the candidate...
902 if (PacketSU->isSucc(SU)) {
903 for (unsigned i = 0; i < PacketSU->Succs.size(); ++i) {
904 // The corner case exist when there is true data
905 // dependency between candidate and one of current
906 // packet members, this dep is on predicate reg, and
907 // there already exist anti dep on the same pred in
908 // the packet.
909 if (PacketSU->Succs[i].getSUnit() == SU &&
910 PacketSU->Succs[i].getKind() == SDep::Data &&
911 Hexagon::PredRegsRegClass.contains(
912 PacketSU->Succs[i].getReg()) &&
913 // Here I know that *VIN is predicate setting instruction
914 // with true data dep to candidate on the register
915 // we care about - c) in the above example.
916 // Now I need to see if there is an anti dependency
917 // from c) to any other instruction in the
918 // same packet on the pred reg of interest
919 RestrictingDepExistInPacket(*VIN,PacketSU->Succs[i].getReg(),
920 MIToSUnit)) {
921 return false;
922 }
923 }
924 }
925 }
926
927 // If the above case does not apply, check regular
928 // complement condition.
929 // Check that the predicate register is the same and
930 // that the predicate sense is different
931 // We also need to differentiate .old vs. .new:
932 // !p0 is not complimentary to p0.new
933 unsigned PReg1 = getPredicatedRegister(MI1, QII);
934 unsigned PReg2 = getPredicatedRegister(MI2, QII);
935 return ((PReg1 == PReg2) &&
936 Hexagon::PredRegsRegClass.contains(PReg1) &&
937 Hexagon::PredRegsRegClass.contains(PReg2) &&
938 (getPredicateSense(MI1, QII) != getPredicateSense(MI2, QII)) &&
939 (QII->isDotNewInst(MI1) == QII->isDotNewInst(MI2)));
940 }
941
942 // initPacketizerState - Initialize packetizer flags
943 void HexagonPacketizerList::initPacketizerState() {
944
945 Dependence = false;
946 PromotedToDotNew = false;
947 GlueToNewValueJump = false;
948 GlueAllocframeStore = false;
949 FoundSequentialDependence = false;
950
951 return;
952 }
953
954 // ignorePseudoInstruction - Ignore bundling of pseudo instructions.
955 bool HexagonPacketizerList::ignorePseudoInstruction(MachineInstr *MI,
956 MachineBasicBlock *MBB) {
957 if (MI->isDebugValue())
958 return true;
959
960 // We must print out inline assembly
961 if (MI->isInlineAsm())
962 return false;
963
964 // We check if MI has any functional units mapped to it.
965 // If it doesn't, we ignore the instruction.
966 const MCInstrDesc& TID = MI->getDesc();
967 unsigned SchedClass = TID.getSchedClass();
968 const InstrStage* IS =
969 ResourceTracker->getInstrItins()->beginStage(SchedClass);
970 unsigned FuncUnits = IS->getUnits();
971 return !FuncUnits;
972 }
973
974 // isSoloInstruction: - Returns true for instructions that must be
975 // scheduled in their own packet.
976 bool HexagonPacketizerList::isSoloInstruction(MachineInstr *MI) {
977
978 if (MI->isInlineAsm())
979 return true;
980
981 if (MI->isEHLabel())
982 return true;
983
984 // From Hexagon V4 Programmer's Reference Manual 3.4.4 Grouping constraints:
985 // trap, pause, barrier, icinva, isync, and syncht are solo instructions.
986 // They must not be grouped with other instructions in a packet.
987 if (IsSchedBarrier(MI))
988 return true;
989
990 return false;
991 }
992
993 // isLegalToPacketizeTogether:
994 // SUI is the current instruction that is out side of the current packet.
995 // SUJ is the current instruction inside the current packet against which that
996 // SUI will be packetized.
997 bool HexagonPacketizerList::isLegalToPacketizeTogether(SUnit *SUI, SUnit *SUJ) {
998 MachineInstr *I = SUI->getInstr();
999 MachineInstr *J = SUJ->getInstr();
1000 assert(I && J && "Unable to packetize null instruction!");
1001
1002 const MCInstrDesc &MCIDI = I->getDesc();
1003 const MCInstrDesc &MCIDJ = J->getDesc();
1004
1005 MachineBasicBlock::iterator II = I;
1006
1007 const unsigned FrameSize = MF.getFrameInfo()->getStackSize();
1008 const HexagonRegisterInfo *QRI =
1009 (const HexagonRegisterInfo *)TM.getSubtargetImpl()->getRegisterInfo();
1010 const HexagonInstrInfo *QII = (const HexagonInstrInfo *) TII;
1011
1012 // Inline asm cannot go in the packet.
1013 if (I->getOpcode() == Hexagon::INLINEASM)
1014 llvm_unreachable("Should not meet inline asm here!");
1015
1016 if (isSoloInstruction(I))
1017 llvm_unreachable("Should not meet solo instr here!");
1018
1019 // A save callee-save register function call can only be in a packet
1020 // with instructions that don't write to the callee-save registers.
1021 if ((QII->isSaveCalleeSavedRegsCall(I) &&
1022 DoesModifyCalleeSavedReg(J, QRI)) ||
1023 (QII->isSaveCalleeSavedRegsCall(J) &&
1024 DoesModifyCalleeSavedReg(I, QRI))) {
1025 Dependence = true;
1026 return false;
1027 }
1028
1029 // Two control flow instructions cannot go in the same packet.
1030 if (IsControlFlow(I) && IsControlFlow(J)) {
1031 Dependence = true;
1032 return false;
1033 }
1034
1035 // A LoopN instruction cannot appear in the same packet as a jump or call.
1036 if (IsLoopN(I) &&
1037 (IsDirectJump(J) || MCIDJ.isCall() || QII->isDeallocRet(J))) {
1038 Dependence = true;
1039 return false;
1040 }
1041 if (IsLoopN(J) &&
1042 (IsDirectJump(I) || MCIDI.isCall() || QII->isDeallocRet(I))) {
1043 Dependence = true;
1044 return false;
1045 }
1046
1047 // dealloc_return cannot appear in the same packet as a conditional or
1048 // unconditional jump.
1049 if (QII->isDeallocRet(I) &&
1050 (MCIDJ.isBranch() || MCIDJ.isCall() || MCIDJ.isBarrier())) {
1051 Dependence = true;
1052 return false;
1053 }
1054
1055
1056 // V4 allows dual store. But does not allow second store, if the
1057 // first store is not in SLOT0. New value store, new value jump,
1058 // dealloc_return and memop always take SLOT0.
1059 // Arch spec 3.4.4.2
1060 if (QRI->Subtarget.hasV4TOps()) {
1061 if (MCIDI.mayStore() && MCIDJ.mayStore() &&
1062 (QII->isNewValueInst(J) || QII->isMemOp(J) || QII->isMemOp(I))) {
1063 Dependence = true;
1064 return false;
1065 }
1066
1067 if ((QII->isMemOp(J) && MCIDI.mayStore())
1068 || (MCIDJ.mayStore() && QII->isMemOp(I))
1069 || (QII->isMemOp(J) && QII->isMemOp(I))) {
1070 Dependence = true;
1071 return false;
1072 }
1073
1074 //if dealloc_return
1075 if (MCIDJ.mayStore() && QII->isDeallocRet(I)) {
1076 Dependence = true;
1077 return false;
1078 }
1079
1080 // If an instruction feeds new value jump, glue it.
1081 MachineBasicBlock::iterator NextMII = I;
1082 ++NextMII;
1083 if (NextMII != I->getParent()->end() && QII->isNewValueJump(NextMII)) {
1084 MachineInstr *NextMI = NextMII;
1085
1086 bool secondRegMatch = false;
1087 bool maintainNewValueJump = false;
1088
1089 if (NextMI->getOperand(1).isReg() &&
1090 I->getOperand(0).getReg() == NextMI->getOperand(1).getReg()) {
1091 secondRegMatch = true;
1092 maintainNewValueJump = true;
1093 }
1094
1095 if (!secondRegMatch &&
1096 I->getOperand(0).getReg() == NextMI->getOperand(0).getReg()) {
1097 maintainNewValueJump = true;
1098 }
1099
1100 for (std::vector<MachineInstr*>::iterator
1101 VI = CurrentPacketMIs.begin(),
1102 VE = CurrentPacketMIs.end();
1103 (VI != VE && maintainNewValueJump); ++VI) {
1104 SUnit* PacketSU = MIToSUnit[*VI];
1105
1106 // NVJ can not be part of the dual jump - Arch Spec: section 7.8
1107 if (PacketSU->getInstr()->getDesc().isCall()) {
1108 Dependence = true;
1109 break;
1110 }
1111 // Validate
1112 // 1. Packet does not have a store in it.
1113 // 2. If the first operand of the nvj is newified, and the second
1114 // operand is also a reg, it (second reg) is not defined in
1115 // the same packet.
1116 // 3. If the second operand of the nvj is newified, (which means
1117 // first operand is also a reg), first reg is not defined in
1118 // the same packet.
1119 if (PacketSU->getInstr()->getDesc().mayStore() ||
1120 PacketSU->getInstr()->getOpcode() == Hexagon::ALLOCFRAME ||
1121 // Check #2.
1122 (!secondRegMatch && NextMI->getOperand(1).isReg() &&
1123 PacketSU->getInstr()->modifiesRegister(
1124 NextMI->getOperand(1).getReg(), QRI)) ||
1125 // Check #3.
1126 (secondRegMatch &&
1127 PacketSU->getInstr()->modifiesRegister(
1128 NextMI->getOperand(0).getReg(), QRI))) {
1129 Dependence = true;
1130 break;
1131 }
1132 }
1133 if (!Dependence)
1134 GlueToNewValueJump = true;
1135 else
1136 return false;
1137 }
1138 }
1139
1140 if (SUJ->isSucc(SUI)) {
1141 for (unsigned i = 0;
1142 (i < SUJ->Succs.size()) && !FoundSequentialDependence;
1143 ++i) {
1144
1145 if (SUJ->Succs[i].getSUnit() != SUI) {
1146 continue;
1147 }
1148
1149 SDep::Kind DepType = SUJ->Succs[i].getKind();
1150
1151 // For direct calls:
1152 // Ignore register dependences for call instructions for
1153 // packetization purposes except for those due to r31 and
1154 // predicate registers.
1155 //
1156 // For indirect calls:
1157 // Same as direct calls + check for true dependences to the register
1158 // used in the indirect call.
1159 //
1160 // We completely ignore Order dependences for call instructions
1161 //
1162 // For returns:
1163 // Ignore register dependences for return instructions like jumpr,
1164 // dealloc return unless we have dependencies on the explicit uses
1165 // of the registers used by jumpr (like r31) or dealloc return
1166 // (like r29 or r30).
1167 //
1168 // TODO: Currently, jumpr is handling only return of r31. So, the
1169 // following logic (specificaly IsCallDependent) is working fine.
1170 // We need to enable jumpr for register other than r31 and then,
1171 // we need to rework the last part, where it handles indirect call
1172 // of that (IsCallDependent) function. Bug 6216 is opened for this.
1173 //
1174 unsigned DepReg = 0;
1175 const TargetRegisterClass* RC = nullptr;
1176 if (DepType == SDep::Data) {
1177 DepReg = SUJ->Succs[i].getReg();
1178 RC = QRI->getMinimalPhysRegClass(DepReg);
1179 }
1180 if ((MCIDI.isCall() || MCIDI.isReturn()) &&
1181 (!IsRegDependence(DepType) ||
1182 !IsCallDependent(I, DepType, SUJ->Succs[i].getReg()))) {
1183 /* do nothing */
1184 }
1185
1186 // For instructions that can be promoted to dot-new, try to promote.
1187 else if ((DepType == SDep::Data) &&
1188 CanPromoteToDotNew(I, SUJ, DepReg, MIToSUnit, II, RC) &&
1189 PromoteToDotNew(I, DepType, II, RC)) {
1190 PromotedToDotNew = true;
1191 /* do nothing */
1192 }
1193
1194 else if ((DepType == SDep::Data) &&
1195 (QII->isNewValueJump(I))) {
1196 /* do nothing */
1197 }
1198
1199 // For predicated instructions, if the predicates are complements
1200 // then there can be no dependence.
1201 else if (QII->isPredicated(I) &&
1202 QII->isPredicated(J) &&
1203 ArePredicatesComplements(I, J, MIToSUnit)) {
1204 /* do nothing */
1205
1206 }
1207 else if (IsDirectJump(I) &&
1208 !MCIDJ.isBranch() &&
1209 !MCIDJ.isCall() &&
1210 (DepType == SDep::Order)) {
1211 // Ignore Order dependences between unconditional direct branches
1212 // and non-control-flow instructions
1213 /* do nothing */
1214 }
1215 else if (MCIDI.isConditionalBranch() && (DepType != SDep::Data) &&
1216 (DepType != SDep::Output)) {
1217 // Ignore all dependences for jumps except for true and output
1218 // dependences
1219 /* do nothing */
1220 }
1221
1222 // Ignore output dependences due to superregs. We can
1223 // write to two different subregisters of R1:0 for instance
1224 // in the same cycle
1225 //
1226
1227 //
1228 // Let the
1229 // If neither I nor J defines DepReg, then this is a
1230 // superfluous output dependence. The dependence must be of the
1231 // form:
1232 // R0 = ...
1233 // R1 = ...
1234 // and there is an output dependence between the two instructions
1235 // with
1236 // DepReg = D0
1237 // We want to ignore these dependences.
1238 // Ideally, the dependence constructor should annotate such
1239 // dependences. We can then avoid this relatively expensive check.
1240 //
1241 else if (DepType == SDep::Output) {
1242 // DepReg is the register that's responsible for the dependence.
1243 unsigned DepReg = SUJ->Succs[i].getReg();
1244
1245 // Check if I and J really defines DepReg.
1246 if (I->definesRegister(DepReg) ||
1247 J->definesRegister(DepReg)) {
1248 FoundSequentialDependence = true;
1249 break;
1250 }
1251 }
1252
1253 // We ignore Order dependences for
1254 // 1. Two loads unless they are volatile.
1255 // 2. Two stores in V4 unless they are volatile.
1256 else if ((DepType == SDep::Order) &&
1257 !I->hasOrderedMemoryRef() &&
1258 !J->hasOrderedMemoryRef()) {
1259 if (QRI->Subtarget.hasV4TOps() &&
1260 // hexagonv4 allows dual store.
1261 MCIDI.mayStore() && MCIDJ.mayStore()) {
1262 /* do nothing */
1263 }
1264 // store followed by store-- not OK on V2
1265 // store followed by load -- not OK on all (OK if addresses
1266 // are not aliased)
1267 // load followed by store -- OK on all
1268 // load followed by load -- OK on all
1269 else if ( !MCIDJ.mayStore()) {
1270 /* do nothing */
1271 }
1272 else {
1273 FoundSequentialDependence = true;
1274 break;
1275 }
1276 }
1277
1278 // For V4, special case ALLOCFRAME. Even though there is dependency
1279 // between ALLOCFRAME and subsequent store, allow it to be
1280 // packetized in a same packet. This implies that the store is using
1281 // caller's SP. Hence, offset needs to be updated accordingly.
1282 else if (DepType == SDep::Data
1283 && QRI->Subtarget.hasV4TOps()
1284 && J->getOpcode() == Hexagon::ALLOCFRAME
1285 && (I->getOpcode() == Hexagon::STrid
1286 || I->getOpcode() == Hexagon::STriw
1287 || I->getOpcode() == Hexagon::STrib)
1288 && I->getOperand(0).getReg() == QRI->getStackRegister()
1289 && QII->isValidOffset(I->getOpcode(),
1290 I->getOperand(1).getImm() -
1291 (FrameSize + HEXAGON_LRFP_SIZE)))
1292 {
1293 GlueAllocframeStore = true;
1294 // Since this store is to be glued with allocframe in the same
1295 // packet, it will use SP of the previous stack frame, i.e
1296 // caller's SP. Therefore, we need to recalculate offset according
1297 // to this change.
1298 I->getOperand(1).setImm(I->getOperand(1).getImm() -
1299 (FrameSize + HEXAGON_LRFP_SIZE));
1300 }
1301
1302 //
1303 // Skip over anti-dependences. Two instructions that are
1304 // anti-dependent can share a packet
1305 //
1306 else if (DepType != SDep::Anti) {
1307 FoundSequentialDependence = true;
1308 break;
1309 }
1310 }
1311
1312 if (FoundSequentialDependence) {
1313 Dependence = true;
1314 return false;
1315 }
1316 }
1317
1318 return true;
1319 }
1320
1321 // isLegalToPruneDependencies
1322 bool HexagonPacketizerList::isLegalToPruneDependencies(SUnit *SUI, SUnit *SUJ) {
1323 MachineInstr *I = SUI->getInstr();
1324 assert(I && SUJ->getInstr() && "Unable to packetize null instruction!");
1325
1326 const unsigned FrameSize = MF.getFrameInfo()->getStackSize();
1327
1328 if (Dependence) {
1329
1330 // Check if the instruction was promoted to a dot-new. If so, demote it
1331 // back into a dot-old.
1332 if (PromotedToDotNew) {
1333 DemoteToDotOld(I);
1334 }
1335
1336 // Check if the instruction (must be a store) was glued with an Allocframe
1337 // instruction. If so, restore its offset to its original value, i.e. use
1338 // curent SP instead of caller's SP.
1339 if (GlueAllocframeStore) {
1340 I->getOperand(1).setImm(I->getOperand(1).getImm() +
1341 FrameSize + HEXAGON_LRFP_SIZE);
1342 }
1343
1344 return false;
1345 }
1346 return true;
1347 }
1348
1349 MachineBasicBlock::iterator
1350 HexagonPacketizerList::addToPacket(MachineInstr *MI) {
1351
1352 MachineBasicBlock::iterator MII = MI;
1353 MachineBasicBlock *MBB = MI->getParent();
1354
1355 const HexagonInstrInfo *QII = (const HexagonInstrInfo *) TII;
1356
1357 if (GlueToNewValueJump) {
1358
1359 ++MII;
1360 MachineInstr *nvjMI = MII;
1361 assert(ResourceTracker->canReserveResources(MI));
1362 ResourceTracker->reserveResources(MI);
1363 if ((QII->isExtended(MI) || QII->isConstExtended(MI)) &&
1364 !tryAllocateResourcesForConstExt(MI)) {
1365 endPacket(MBB, MI);
1366 ResourceTracker->reserveResources(MI);
1367 assert(canReserveResourcesForConstExt(MI) &&
1368 "Ensure that there is a slot");
1369 reserveResourcesForConstExt(MI);
1370 // Reserve resources for new value jump constant extender.
1371 assert(canReserveResourcesForConstExt(MI) &&
1372 "Ensure that there is a slot");
1373 reserveResourcesForConstExt(nvjMI);
1374 assert(ResourceTracker->canReserveResources(nvjMI) &&
1375 "Ensure that there is a slot");
1376
1377 } else if ( // Extended instruction takes two slots in the packet.
1378 // Try reserve and allocate 4-byte in the current packet first.
1379 (QII->isExtended(nvjMI)
1380 && (!tryAllocateResourcesForConstExt(nvjMI)
1381 || !ResourceTracker->canReserveResources(nvjMI)))
1382 || // For non-extended instruction, no need to allocate extra 4 bytes.
1383 (!QII->isExtended(nvjMI) &&
1384 !ResourceTracker->canReserveResources(nvjMI)))
1385 {
1386 endPacket(MBB, MI);
1387 // A new and empty packet starts.
1388 // We are sure that the resources requirements can be satisfied.
1389 // Therefore, do not need to call "canReserveResources" anymore.
1390 ResourceTracker->reserveResources(MI);
1391 if (QII->isExtended(nvjMI))
1392 reserveResourcesForConstExt(nvjMI);
1393 }
1394 // Here, we are sure that "reserveResources" would succeed.
1395 ResourceTracker->reserveResources(nvjMI);
1396 CurrentPacketMIs.push_back(MI);
1397 CurrentPacketMIs.push_back(nvjMI);
1398 } else {
1399 if ( (QII->isExtended(MI) || QII->isConstExtended(MI))
1400 && ( !tryAllocateResourcesForConstExt(MI)
1401 || !ResourceTracker->canReserveResources(MI)))
1402 {
1403 endPacket(MBB, MI);
1404 // Check if the instruction was promoted to a dot-new. If so, demote it
1405 // back into a dot-old
1406 if (PromotedToDotNew) {
1407 DemoteToDotOld(MI);
1408 }
1409 reserveResourcesForConstExt(MI);
1410 }
1411 // In case that "MI" is not an extended insn,
1412 // the resource availability has already been checked.
1413 ResourceTracker->reserveResources(MI);
1414 CurrentPacketMIs.push_back(MI);
1415 }
1416 return MII;
1417 }
1418
1419 //===----------------------------------------------------------------------===//
1420 // Public Constructor Functions
1421 //===----------------------------------------------------------------------===//
1422
1423 FunctionPass *llvm::createHexagonPacketizer() {
1424 return new HexagonPacketizer();
1425 }
1426