]> git.proxmox.com Git - rustc.git/blob - src/llvm/lib/Target/X86/X86InstrCompiler.td
Merge tag 'debian/0.6-0_exp1'
[rustc.git] / src / llvm / lib / Target / X86 / X86InstrCompiler.td
1 //===- X86InstrCompiler.td - Compiler Pseudos and Patterns -*- tablegen -*-===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file describes the various pseudo instructions used by the compiler,
11 // as well as Pat patterns used during instruction selection.
12 //
13 //===----------------------------------------------------------------------===//
14
15 //===----------------------------------------------------------------------===//
16 // Pattern Matching Support
17
18 def GetLo32XForm : SDNodeXForm<imm, [{
19 // Transformation function: get the low 32 bits.
20 return getI32Imm((unsigned)N->getZExtValue());
21 }]>;
22
23 def GetLo8XForm : SDNodeXForm<imm, [{
24 // Transformation function: get the low 8 bits.
25 return getI8Imm((uint8_t)N->getZExtValue());
26 }]>;
27
28
29 //===----------------------------------------------------------------------===//
30 // Random Pseudo Instructions.
31
32 // PIC base construction. This expands to code that looks like this:
33 // call $next_inst
34 // popl %destreg"
35 let neverHasSideEffects = 1, isNotDuplicable = 1, Uses = [ESP] in
36 def MOVPC32r : Ii32<0xE8, Pseudo, (outs GR32:$reg), (ins i32imm:$label),
37 "", []>;
38
39
40 // ADJCALLSTACKDOWN/UP implicitly use/def ESP because they may be expanded into
41 // a stack adjustment and the codegen must know that they may modify the stack
42 // pointer before prolog-epilog rewriting occurs.
43 // Pessimistically assume ADJCALLSTACKDOWN / ADJCALLSTACKUP will become
44 // sub / add which can clobber EFLAGS.
45 let Defs = [ESP, EFLAGS], Uses = [ESP] in {
46 def ADJCALLSTACKDOWN32 : I<0, Pseudo, (outs), (ins i32imm:$amt),
47 "#ADJCALLSTACKDOWN",
48 [(X86callseq_start timm:$amt)]>,
49 Requires<[In32BitMode]>;
50 def ADJCALLSTACKUP32 : I<0, Pseudo, (outs), (ins i32imm:$amt1, i32imm:$amt2),
51 "#ADJCALLSTACKUP",
52 [(X86callseq_end timm:$amt1, timm:$amt2)]>,
53 Requires<[In32BitMode]>;
54 }
55
56 // ADJCALLSTACKDOWN/UP implicitly use/def RSP because they may be expanded into
57 // a stack adjustment and the codegen must know that they may modify the stack
58 // pointer before prolog-epilog rewriting occurs.
59 // Pessimistically assume ADJCALLSTACKDOWN / ADJCALLSTACKUP will become
60 // sub / add which can clobber EFLAGS.
61 let Defs = [RSP, EFLAGS], Uses = [RSP] in {
62 def ADJCALLSTACKDOWN64 : I<0, Pseudo, (outs), (ins i32imm:$amt),
63 "#ADJCALLSTACKDOWN",
64 [(X86callseq_start timm:$amt)]>,
65 Requires<[In64BitMode]>;
66 def ADJCALLSTACKUP64 : I<0, Pseudo, (outs), (ins i32imm:$amt1, i32imm:$amt2),
67 "#ADJCALLSTACKUP",
68 [(X86callseq_end timm:$amt1, timm:$amt2)]>,
69 Requires<[In64BitMode]>;
70 }
71
72
73
74 // x86-64 va_start lowering magic.
75 let usesCustomInserter = 1 in {
76 def VASTART_SAVE_XMM_REGS : I<0, Pseudo,
77 (outs),
78 (ins GR8:$al,
79 i64imm:$regsavefi, i64imm:$offset,
80 variable_ops),
81 "#VASTART_SAVE_XMM_REGS $al, $regsavefi, $offset",
82 [(X86vastart_save_xmm_regs GR8:$al,
83 imm:$regsavefi,
84 imm:$offset)]>;
85
86 // The VAARG_64 pseudo-instruction takes the address of the va_list,
87 // and places the address of the next argument into a register.
88 let Defs = [EFLAGS] in
89 def VAARG_64 : I<0, Pseudo,
90 (outs GR64:$dst),
91 (ins i8mem:$ap, i32imm:$size, i8imm:$mode, i32imm:$align),
92 "#VAARG_64 $dst, $ap, $size, $mode, $align",
93 [(set GR64:$dst,
94 (X86vaarg64 addr:$ap, imm:$size, imm:$mode, imm:$align)),
95 (implicit EFLAGS)]>;
96
97 // Dynamic stack allocation yields a _chkstk or _alloca call for all Windows
98 // targets. These calls are needed to probe the stack when allocating more than
99 // 4k bytes in one go. Touching the stack at 4K increments is necessary to
100 // ensure that the guard pages used by the OS virtual memory manager are
101 // allocated in correct sequence.
102 // The main point of having separate instruction are extra unmodelled effects
103 // (compared to ordinary calls) like stack pointer change.
104
105 let Defs = [EAX, ESP, EFLAGS], Uses = [ESP] in
106 def WIN_ALLOCA : I<0, Pseudo, (outs), (ins),
107 "# dynamic stack allocation",
108 [(X86WinAlloca)]>;
109
110 // When using segmented stacks these are lowered into instructions which first
111 // check if the current stacklet has enough free memory. If it does, memory is
112 // allocated by bumping the stack pointer. Otherwise memory is allocated from
113 // the heap.
114
115 let Defs = [EAX, ESP, EFLAGS], Uses = [ESP] in
116 def SEG_ALLOCA_32 : I<0, Pseudo, (outs GR32:$dst), (ins GR32:$size),
117 "# variable sized alloca for segmented stacks",
118 [(set GR32:$dst,
119 (X86SegAlloca GR32:$size))]>,
120 Requires<[In32BitMode]>;
121
122 let Defs = [RAX, RSP, EFLAGS], Uses = [RSP] in
123 def SEG_ALLOCA_64 : I<0, Pseudo, (outs GR64:$dst), (ins GR64:$size),
124 "# variable sized alloca for segmented stacks",
125 [(set GR64:$dst,
126 (X86SegAlloca GR64:$size))]>,
127 Requires<[In64BitMode]>;
128 }
129
130 // The MSVC runtime contains an _ftol2 routine for converting floating-point
131 // to integer values. It has a strange calling convention: the input is
132 // popped from the x87 stack, and the return value is given in EDX:EAX. No
133 // other registers (aside from flags) are touched.
134 // Microsoft toolchains do not support 80-bit precision, so a WIN_FTOL_80
135 // variant is unnecessary.
136
137 let Defs = [EAX, EDX, EFLAGS], FPForm = SpecialFP in {
138 def WIN_FTOL_32 : I<0, Pseudo, (outs), (ins RFP32:$src),
139 "# win32 fptoui",
140 [(X86WinFTOL RFP32:$src)]>,
141 Requires<[In32BitMode]>;
142
143 def WIN_FTOL_64 : I<0, Pseudo, (outs), (ins RFP64:$src),
144 "# win32 fptoui",
145 [(X86WinFTOL RFP64:$src)]>,
146 Requires<[In32BitMode]>;
147 }
148
149 //===----------------------------------------------------------------------===//
150 // EH Pseudo Instructions
151 //
152 let isTerminator = 1, isReturn = 1, isBarrier = 1,
153 hasCtrlDep = 1, isCodeGenOnly = 1 in {
154 def EH_RETURN : I<0xC3, RawFrm, (outs), (ins GR32:$addr),
155 "ret\t#eh_return, addr: $addr",
156 [(X86ehret GR32:$addr)], IIC_RET>;
157
158 }
159
160 let isTerminator = 1, isReturn = 1, isBarrier = 1,
161 hasCtrlDep = 1, isCodeGenOnly = 1 in {
162 def EH_RETURN64 : I<0xC3, RawFrm, (outs), (ins GR64:$addr),
163 "ret\t#eh_return, addr: $addr",
164 [(X86ehret GR64:$addr)], IIC_RET>;
165
166 }
167
168 //===----------------------------------------------------------------------===//
169 // Pseudo instructions used by segmented stacks.
170 //
171
172 // This is lowered into a RET instruction by MCInstLower. We need
173 // this so that we don't have to have a MachineBasicBlock which ends
174 // with a RET and also has successors.
175 let isPseudo = 1 in {
176 def MORESTACK_RET: I<0, Pseudo, (outs), (ins),
177 "", []>;
178
179 // This instruction is lowered to a RET followed by a MOV. The two
180 // instructions are not generated on a higher level since then the
181 // verifier sees a MachineBasicBlock ending with a non-terminator.
182 def MORESTACK_RET_RESTORE_R10 : I<0, Pseudo, (outs), (ins),
183 "", []>;
184 }
185
186 //===----------------------------------------------------------------------===//
187 // Alias Instructions
188 //===----------------------------------------------------------------------===//
189
190 // Alias instructions that map movr0 to xor.
191 // FIXME: remove when we can teach regalloc that xor reg, reg is ok.
192 // FIXME: Set encoding to pseudo.
193 let Defs = [EFLAGS], isReMaterializable = 1, isAsCheapAsAMove = 1,
194 isCodeGenOnly = 1 in {
195 def MOV8r0 : I<0x30, MRMInitReg, (outs GR8 :$dst), (ins), "",
196 [(set GR8:$dst, 0)], IIC_ALU_NONMEM>;
197
198 // We want to rewrite MOV16r0 in terms of MOV32r0, because it's a smaller
199 // encoding and avoids a partial-register update sometimes, but doing so
200 // at isel time interferes with rematerialization in the current register
201 // allocator. For now, this is rewritten when the instruction is lowered
202 // to an MCInst.
203 def MOV16r0 : I<0x31, MRMInitReg, (outs GR16:$dst), (ins),
204 "",
205 [(set GR16:$dst, 0)], IIC_ALU_NONMEM>, OpSize;
206
207 // FIXME: Set encoding to pseudo.
208 def MOV32r0 : I<0x31, MRMInitReg, (outs GR32:$dst), (ins), "",
209 [(set GR32:$dst, 0)], IIC_ALU_NONMEM>;
210 }
211
212 // We want to rewrite MOV64r0 in terms of MOV32r0, because it's sometimes a
213 // smaller encoding, but doing so at isel time interferes with rematerialization
214 // in the current register allocator. For now, this is rewritten when the
215 // instruction is lowered to an MCInst.
216 // FIXME: AddedComplexity gives this a higher priority than MOV64ri32. Remove
217 // when we have a better way to specify isel priority.
218 let Defs = [EFLAGS], isCodeGenOnly=1,
219 AddedComplexity = 1, isReMaterializable = 1, isAsCheapAsAMove = 1 in
220 def MOV64r0 : I<0x31, MRMInitReg, (outs GR64:$dst), (ins), "",
221 [(set GR64:$dst, 0)], IIC_ALU_NONMEM>;
222
223 // Materialize i64 constant where top 32-bits are zero. This could theoretically
224 // use MOV32ri with a SUBREG_TO_REG to represent the zero-extension, however
225 // that would make it more difficult to rematerialize.
226 let AddedComplexity = 1, isReMaterializable = 1, isAsCheapAsAMove = 1,
227 isCodeGenOnly = 1 in
228 def MOV64ri64i32 : Ii32<0xB8, AddRegFrm, (outs GR64:$dst), (ins i64i32imm:$src),
229 "", [(set GR64:$dst, i64immZExt32:$src)],
230 IIC_ALU_NONMEM>;
231
232 // Use sbb to materialize carry bit.
233 let Uses = [EFLAGS], Defs = [EFLAGS], isCodeGenOnly = 1 in {
234 // FIXME: These are pseudo ops that should be replaced with Pat<> patterns.
235 // However, Pat<> can't replicate the destination reg into the inputs of the
236 // result.
237 // FIXME: Change these to have encoding Pseudo when X86MCCodeEmitter replaces
238 // X86CodeEmitter.
239 def SETB_C8r : I<0x18, MRMInitReg, (outs GR8:$dst), (ins), "",
240 [(set GR8:$dst, (X86setcc_c X86_COND_B, EFLAGS))],
241 IIC_ALU_NONMEM>;
242 def SETB_C16r : I<0x19, MRMInitReg, (outs GR16:$dst), (ins), "",
243 [(set GR16:$dst, (X86setcc_c X86_COND_B, EFLAGS))],
244 IIC_ALU_NONMEM>,
245 OpSize;
246 def SETB_C32r : I<0x19, MRMInitReg, (outs GR32:$dst), (ins), "",
247 [(set GR32:$dst, (X86setcc_c X86_COND_B, EFLAGS))],
248 IIC_ALU_NONMEM>;
249 def SETB_C64r : RI<0x19, MRMInitReg, (outs GR64:$dst), (ins), "",
250 [(set GR64:$dst, (X86setcc_c X86_COND_B, EFLAGS))],
251 IIC_ALU_NONMEM>;
252 } // isCodeGenOnly
253
254
255 def : Pat<(i16 (anyext (i8 (X86setcc_c X86_COND_B, EFLAGS)))),
256 (SETB_C16r)>;
257 def : Pat<(i32 (anyext (i8 (X86setcc_c X86_COND_B, EFLAGS)))),
258 (SETB_C32r)>;
259 def : Pat<(i64 (anyext (i8 (X86setcc_c X86_COND_B, EFLAGS)))),
260 (SETB_C64r)>;
261
262 def : Pat<(i16 (sext (i8 (X86setcc_c X86_COND_B, EFLAGS)))),
263 (SETB_C16r)>;
264 def : Pat<(i32 (sext (i8 (X86setcc_c X86_COND_B, EFLAGS)))),
265 (SETB_C32r)>;
266 def : Pat<(i64 (sext (i8 (X86setcc_c X86_COND_B, EFLAGS)))),
267 (SETB_C64r)>;
268
269 // We canonicalize 'setb' to "(and (sbb reg,reg), 1)" on the hope that the and
270 // will be eliminated and that the sbb can be extended up to a wider type. When
271 // this happens, it is great. However, if we are left with an 8-bit sbb and an
272 // and, we might as well just match it as a setb.
273 def : Pat<(and (i8 (X86setcc_c X86_COND_B, EFLAGS)), 1),
274 (SETBr)>;
275
276 // (add OP, SETB) -> (adc OP, 0)
277 def : Pat<(add (and (i8 (X86setcc_c X86_COND_B, EFLAGS)), 1), GR8:$op),
278 (ADC8ri GR8:$op, 0)>;
279 def : Pat<(add (and (i32 (X86setcc_c X86_COND_B, EFLAGS)), 1), GR32:$op),
280 (ADC32ri8 GR32:$op, 0)>;
281 def : Pat<(add (and (i64 (X86setcc_c X86_COND_B, EFLAGS)), 1), GR64:$op),
282 (ADC64ri8 GR64:$op, 0)>;
283
284 // (sub OP, SETB) -> (sbb OP, 0)
285 def : Pat<(sub GR8:$op, (and (i8 (X86setcc_c X86_COND_B, EFLAGS)), 1)),
286 (SBB8ri GR8:$op, 0)>;
287 def : Pat<(sub GR32:$op, (and (i32 (X86setcc_c X86_COND_B, EFLAGS)), 1)),
288 (SBB32ri8 GR32:$op, 0)>;
289 def : Pat<(sub GR64:$op, (and (i64 (X86setcc_c X86_COND_B, EFLAGS)), 1)),
290 (SBB64ri8 GR64:$op, 0)>;
291
292 // (sub OP, SETCC_CARRY) -> (adc OP, 0)
293 def : Pat<(sub GR8:$op, (i8 (X86setcc_c X86_COND_B, EFLAGS))),
294 (ADC8ri GR8:$op, 0)>;
295 def : Pat<(sub GR32:$op, (i32 (X86setcc_c X86_COND_B, EFLAGS))),
296 (ADC32ri8 GR32:$op, 0)>;
297 def : Pat<(sub GR64:$op, (i64 (X86setcc_c X86_COND_B, EFLAGS))),
298 (ADC64ri8 GR64:$op, 0)>;
299
300 //===----------------------------------------------------------------------===//
301 // String Pseudo Instructions
302 //
303 let Defs = [ECX,EDI,ESI], Uses = [ECX,EDI,ESI], isCodeGenOnly = 1 in {
304 def REP_MOVSB_32 : I<0xA4, RawFrm, (outs), (ins), "{rep;movsb|rep movsb}",
305 [(X86rep_movs i8)], IIC_REP_MOVS>, REP,
306 Requires<[In32BitMode]>;
307 def REP_MOVSW_32 : I<0xA5, RawFrm, (outs), (ins), "{rep;movsw|rep movsw}",
308 [(X86rep_movs i16)], IIC_REP_MOVS>, REP, OpSize,
309 Requires<[In32BitMode]>;
310 def REP_MOVSD_32 : I<0xA5, RawFrm, (outs), (ins), "{rep;movsl|rep movsd}",
311 [(X86rep_movs i32)], IIC_REP_MOVS>, REP,
312 Requires<[In32BitMode]>;
313 }
314
315 let Defs = [RCX,RDI,RSI], Uses = [RCX,RDI,RSI], isCodeGenOnly = 1 in {
316 def REP_MOVSB_64 : I<0xA4, RawFrm, (outs), (ins), "{rep;movsb|rep movsb}",
317 [(X86rep_movs i8)], IIC_REP_MOVS>, REP,
318 Requires<[In64BitMode]>;
319 def REP_MOVSW_64 : I<0xA5, RawFrm, (outs), (ins), "{rep;movsw|rep movsw}",
320 [(X86rep_movs i16)], IIC_REP_MOVS>, REP, OpSize,
321 Requires<[In64BitMode]>;
322 def REP_MOVSD_64 : I<0xA5, RawFrm, (outs), (ins), "{rep;movsl|rep movsd}",
323 [(X86rep_movs i32)], IIC_REP_MOVS>, REP,
324 Requires<[In64BitMode]>;
325 def REP_MOVSQ_64 : RI<0xA5, RawFrm, (outs), (ins), "{rep;movsq|rep movsq}",
326 [(X86rep_movs i64)], IIC_REP_MOVS>, REP,
327 Requires<[In64BitMode]>;
328 }
329
330 // FIXME: Should use "(X86rep_stos AL)" as the pattern.
331 let Defs = [ECX,EDI], isCodeGenOnly = 1 in {
332 let Uses = [AL,ECX,EDI] in
333 def REP_STOSB_32 : I<0xAA, RawFrm, (outs), (ins), "{rep;stosb|rep stosb}",
334 [(X86rep_stos i8)], IIC_REP_STOS>, REP,
335 Requires<[In32BitMode]>;
336 let Uses = [AX,ECX,EDI] in
337 def REP_STOSW_32 : I<0xAB, RawFrm, (outs), (ins), "{rep;stosw|rep stosw}",
338 [(X86rep_stos i16)], IIC_REP_STOS>, REP, OpSize,
339 Requires<[In32BitMode]>;
340 let Uses = [EAX,ECX,EDI] in
341 def REP_STOSD_32 : I<0xAB, RawFrm, (outs), (ins), "{rep;stosl|rep stosd}",
342 [(X86rep_stos i32)], IIC_REP_STOS>, REP,
343 Requires<[In32BitMode]>;
344 }
345
346 let Defs = [RCX,RDI], isCodeGenOnly = 1 in {
347 let Uses = [AL,RCX,RDI] in
348 def REP_STOSB_64 : I<0xAA, RawFrm, (outs), (ins), "{rep;stosb|rep stosb}",
349 [(X86rep_stos i8)], IIC_REP_STOS>, REP,
350 Requires<[In64BitMode]>;
351 let Uses = [AX,RCX,RDI] in
352 def REP_STOSW_64 : I<0xAB, RawFrm, (outs), (ins), "{rep;stosw|rep stosw}",
353 [(X86rep_stos i16)], IIC_REP_STOS>, REP, OpSize,
354 Requires<[In64BitMode]>;
355 let Uses = [RAX,RCX,RDI] in
356 def REP_STOSD_64 : I<0xAB, RawFrm, (outs), (ins), "{rep;stosl|rep stosd}",
357 [(X86rep_stos i32)], IIC_REP_STOS>, REP,
358 Requires<[In64BitMode]>;
359
360 let Uses = [RAX,RCX,RDI] in
361 def REP_STOSQ_64 : RI<0xAB, RawFrm, (outs), (ins), "{rep;stosq|rep stosq}",
362 [(X86rep_stos i64)], IIC_REP_STOS>, REP,
363 Requires<[In64BitMode]>;
364 }
365
366 //===----------------------------------------------------------------------===//
367 // Thread Local Storage Instructions
368 //
369
370 // ELF TLS Support
371 // All calls clobber the non-callee saved registers. ESP is marked as
372 // a use to prevent stack-pointer assignments that appear immediately
373 // before calls from potentially appearing dead.
374 let Defs = [EAX, ECX, EDX, FP0, FP1, FP2, FP3, FP4, FP5, FP6, ST0,
375 MM0, MM1, MM2, MM3, MM4, MM5, MM6, MM7,
376 XMM0, XMM1, XMM2, XMM3, XMM4, XMM5, XMM6, XMM7,
377 XMM8, XMM9, XMM10, XMM11, XMM12, XMM13, XMM14, XMM15, EFLAGS],
378 Uses = [ESP] in {
379 def TLS_addr32 : I<0, Pseudo, (outs), (ins i32mem:$sym),
380 "# TLS_addr32",
381 [(X86tlsaddr tls32addr:$sym)]>,
382 Requires<[In32BitMode]>;
383 def TLS_base_addr32 : I<0, Pseudo, (outs), (ins i32mem:$sym),
384 "# TLS_base_addr32",
385 [(X86tlsbaseaddr tls32baseaddr:$sym)]>,
386 Requires<[In32BitMode]>;
387 }
388
389 // All calls clobber the non-callee saved registers. RSP is marked as
390 // a use to prevent stack-pointer assignments that appear immediately
391 // before calls from potentially appearing dead.
392 let Defs = [RAX, RCX, RDX, RSI, RDI, R8, R9, R10, R11,
393 FP0, FP1, FP2, FP3, FP4, FP5, FP6, ST0, ST1,
394 MM0, MM1, MM2, MM3, MM4, MM5, MM6, MM7,
395 XMM0, XMM1, XMM2, XMM3, XMM4, XMM5, XMM6, XMM7,
396 XMM8, XMM9, XMM10, XMM11, XMM12, XMM13, XMM14, XMM15, EFLAGS],
397 Uses = [RSP] in {
398 def TLS_addr64 : I<0, Pseudo, (outs), (ins i64mem:$sym),
399 "# TLS_addr64",
400 [(X86tlsaddr tls64addr:$sym)]>,
401 Requires<[In64BitMode]>;
402 def TLS_base_addr64 : I<0, Pseudo, (outs), (ins i64mem:$sym),
403 "# TLS_base_addr64",
404 [(X86tlsbaseaddr tls64baseaddr:$sym)]>,
405 Requires<[In64BitMode]>;
406 }
407
408 // Darwin TLS Support
409 // For i386, the address of the thunk is passed on the stack, on return the
410 // address of the variable is in %eax. %ecx is trashed during the function
411 // call. All other registers are preserved.
412 let Defs = [EAX, ECX, EFLAGS],
413 Uses = [ESP],
414 usesCustomInserter = 1 in
415 def TLSCall_32 : I<0, Pseudo, (outs), (ins i32mem:$sym),
416 "# TLSCall_32",
417 [(X86TLSCall addr:$sym)]>,
418 Requires<[In32BitMode]>;
419
420 // For x86_64, the address of the thunk is passed in %rdi, on return
421 // the address of the variable is in %rax. All other registers are preserved.
422 let Defs = [RAX, EFLAGS],
423 Uses = [RSP, RDI],
424 usesCustomInserter = 1 in
425 def TLSCall_64 : I<0, Pseudo, (outs), (ins i64mem:$sym),
426 "# TLSCall_64",
427 [(X86TLSCall addr:$sym)]>,
428 Requires<[In64BitMode]>;
429
430
431 //===----------------------------------------------------------------------===//
432 // Conditional Move Pseudo Instructions
433
434 // X86 doesn't have 8-bit conditional moves. Use a customInserter to
435 // emit control flow. An alternative to this is to mark i8 SELECT as Promote,
436 // however that requires promoting the operands, and can induce additional
437 // i8 register pressure.
438 let usesCustomInserter = 1, Uses = [EFLAGS] in {
439 def CMOV_GR8 : I<0, Pseudo,
440 (outs GR8:$dst), (ins GR8:$src1, GR8:$src2, i8imm:$cond),
441 "#CMOV_GR8 PSEUDO!",
442 [(set GR8:$dst, (X86cmov GR8:$src1, GR8:$src2,
443 imm:$cond, EFLAGS))]>;
444
445 let Predicates = [NoCMov] in {
446 def CMOV_GR32 : I<0, Pseudo,
447 (outs GR32:$dst), (ins GR32:$src1, GR32:$src2, i8imm:$cond),
448 "#CMOV_GR32* PSEUDO!",
449 [(set GR32:$dst,
450 (X86cmov GR32:$src1, GR32:$src2, imm:$cond, EFLAGS))]>;
451 def CMOV_GR16 : I<0, Pseudo,
452 (outs GR16:$dst), (ins GR16:$src1, GR16:$src2, i8imm:$cond),
453 "#CMOV_GR16* PSEUDO!",
454 [(set GR16:$dst,
455 (X86cmov GR16:$src1, GR16:$src2, imm:$cond, EFLAGS))]>;
456 def CMOV_RFP32 : I<0, Pseudo,
457 (outs RFP32:$dst),
458 (ins RFP32:$src1, RFP32:$src2, i8imm:$cond),
459 "#CMOV_RFP32 PSEUDO!",
460 [(set RFP32:$dst,
461 (X86cmov RFP32:$src1, RFP32:$src2, imm:$cond,
462 EFLAGS))]>;
463 def CMOV_RFP64 : I<0, Pseudo,
464 (outs RFP64:$dst),
465 (ins RFP64:$src1, RFP64:$src2, i8imm:$cond),
466 "#CMOV_RFP64 PSEUDO!",
467 [(set RFP64:$dst,
468 (X86cmov RFP64:$src1, RFP64:$src2, imm:$cond,
469 EFLAGS))]>;
470 def CMOV_RFP80 : I<0, Pseudo,
471 (outs RFP80:$dst),
472 (ins RFP80:$src1, RFP80:$src2, i8imm:$cond),
473 "#CMOV_RFP80 PSEUDO!",
474 [(set RFP80:$dst,
475 (X86cmov RFP80:$src1, RFP80:$src2, imm:$cond,
476 EFLAGS))]>;
477 } // Predicates = [NoCMov]
478 } // UsesCustomInserter = 1, Uses = [EFLAGS]
479
480
481 //===----------------------------------------------------------------------===//
482 // Atomic Instruction Pseudo Instructions
483 //===----------------------------------------------------------------------===//
484
485 // Pseudo atomic instructions
486
487 multiclass PSEUDO_ATOMIC_LOAD_BINOP<string mnemonic> {
488 let usesCustomInserter = 1, mayLoad = 1, mayStore = 1 in {
489 def #NAME#8 : I<0, Pseudo, (outs GR8:$dst),
490 (ins i8mem:$ptr, GR8:$val),
491 !strconcat(mnemonic, "8 PSEUDO!"), []>;
492 def #NAME#16 : I<0, Pseudo,(outs GR16:$dst),
493 (ins i16mem:$ptr, GR16:$val),
494 !strconcat(mnemonic, "16 PSEUDO!"), []>;
495 def #NAME#32 : I<0, Pseudo, (outs GR32:$dst),
496 (ins i32mem:$ptr, GR32:$val),
497 !strconcat(mnemonic, "32 PSEUDO!"), []>;
498 def #NAME#64 : I<0, Pseudo, (outs GR64:$dst),
499 (ins i64mem:$ptr, GR64:$val),
500 !strconcat(mnemonic, "64 PSEUDO!"), []>;
501 }
502 }
503
504 multiclass PSEUDO_ATOMIC_LOAD_BINOP_PATS<string name, string frag> {
505 def : Pat<(!cast<PatFrag>(frag # "_8") addr:$ptr, GR8:$val),
506 (!cast<Instruction>(name # "8") addr:$ptr, GR8:$val)>;
507 def : Pat<(!cast<PatFrag>(frag # "_16") addr:$ptr, GR16:$val),
508 (!cast<Instruction>(name # "16") addr:$ptr, GR16:$val)>;
509 def : Pat<(!cast<PatFrag>(frag # "_32") addr:$ptr, GR32:$val),
510 (!cast<Instruction>(name # "32") addr:$ptr, GR32:$val)>;
511 def : Pat<(!cast<PatFrag>(frag # "_64") addr:$ptr, GR64:$val),
512 (!cast<Instruction>(name # "64") addr:$ptr, GR64:$val)>;
513 }
514
515 // Atomic exchange, and, or, xor
516 defm ATOMAND : PSEUDO_ATOMIC_LOAD_BINOP<"#ATOMAND">;
517 defm ATOMOR : PSEUDO_ATOMIC_LOAD_BINOP<"#ATOMOR">;
518 defm ATOMXOR : PSEUDO_ATOMIC_LOAD_BINOP<"#ATOMXOR">;
519 defm ATOMNAND : PSEUDO_ATOMIC_LOAD_BINOP<"#ATOMNAND">;
520 defm ATOMMAX : PSEUDO_ATOMIC_LOAD_BINOP<"#ATOMMAX">;
521 defm ATOMMIN : PSEUDO_ATOMIC_LOAD_BINOP<"#ATOMMIN">;
522 defm ATOMUMAX : PSEUDO_ATOMIC_LOAD_BINOP<"#ATOMUMAX">;
523 defm ATOMUMIN : PSEUDO_ATOMIC_LOAD_BINOP<"#ATOMUMIN">;
524
525 defm : PSEUDO_ATOMIC_LOAD_BINOP_PATS<"ATOMAND", "atomic_load_and">;
526 defm : PSEUDO_ATOMIC_LOAD_BINOP_PATS<"ATOMOR", "atomic_load_or">;
527 defm : PSEUDO_ATOMIC_LOAD_BINOP_PATS<"ATOMXOR", "atomic_load_xor">;
528 defm : PSEUDO_ATOMIC_LOAD_BINOP_PATS<"ATOMNAND", "atomic_load_nand">;
529 defm : PSEUDO_ATOMIC_LOAD_BINOP_PATS<"ATOMMAX", "atomic_load_max">;
530 defm : PSEUDO_ATOMIC_LOAD_BINOP_PATS<"ATOMMIN", "atomic_load_min">;
531 defm : PSEUDO_ATOMIC_LOAD_BINOP_PATS<"ATOMUMAX", "atomic_load_umax">;
532 defm : PSEUDO_ATOMIC_LOAD_BINOP_PATS<"ATOMUMIN", "atomic_load_umin">;
533
534 multiclass PSEUDO_ATOMIC_LOAD_BINOP6432<string mnemonic> {
535 let usesCustomInserter = 1, mayLoad = 1, mayStore = 1 in
536 def #NAME#6432 : I<0, Pseudo, (outs GR32:$dst1, GR32:$dst2),
537 (ins i64mem:$ptr, GR32:$val1, GR32:$val2),
538 !strconcat(mnemonic, "6432 PSEUDO!"), []>;
539 }
540
541 defm ATOMAND : PSEUDO_ATOMIC_LOAD_BINOP6432<"#ATOMAND">;
542 defm ATOMOR : PSEUDO_ATOMIC_LOAD_BINOP6432<"#ATOMOR">;
543 defm ATOMXOR : PSEUDO_ATOMIC_LOAD_BINOP6432<"#ATOMXOR">;
544 defm ATOMNAND : PSEUDO_ATOMIC_LOAD_BINOP6432<"#ATOMNAND">;
545 defm ATOMADD : PSEUDO_ATOMIC_LOAD_BINOP6432<"#ATOMADD">;
546 defm ATOMSUB : PSEUDO_ATOMIC_LOAD_BINOP6432<"#ATOMSUB">;
547 defm ATOMMAX : PSEUDO_ATOMIC_LOAD_BINOP6432<"#ATOMMAX">;
548 defm ATOMMIN : PSEUDO_ATOMIC_LOAD_BINOP6432<"#ATOMMIN">;
549 defm ATOMUMAX : PSEUDO_ATOMIC_LOAD_BINOP6432<"#ATOMUMAX">;
550 defm ATOMUMIN : PSEUDO_ATOMIC_LOAD_BINOP6432<"#ATOMUMIN">;
551 defm ATOMSWAP : PSEUDO_ATOMIC_LOAD_BINOP6432<"#ATOMSWAP">;
552
553 //===----------------------------------------------------------------------===//
554 // Normal-Instructions-With-Lock-Prefix Pseudo Instructions
555 //===----------------------------------------------------------------------===//
556
557 // FIXME: Use normal instructions and add lock prefix dynamically.
558
559 // Memory barriers
560
561 // TODO: Get this to fold the constant into the instruction.
562 let isCodeGenOnly = 1, Defs = [EFLAGS] in
563 def OR32mrLocked : I<0x09, MRMDestMem, (outs), (ins i32mem:$dst, GR32:$zero),
564 "or{l}\t{$zero, $dst|$dst, $zero}",
565 [], IIC_ALU_MEM>, Requires<[In32BitMode]>, LOCK;
566
567 let hasSideEffects = 1 in
568 def Int_MemBarrier : I<0, Pseudo, (outs), (ins),
569 "#MEMBARRIER",
570 [(X86MemBarrier)]>;
571
572 // RegOpc corresponds to the mr version of the instruction
573 // ImmOpc corresponds to the mi version of the instruction
574 // ImmOpc8 corresponds to the mi8 version of the instruction
575 // ImmMod corresponds to the instruction format of the mi and mi8 versions
576 multiclass LOCK_ArithBinOp<bits<8> RegOpc, bits<8> ImmOpc, bits<8> ImmOpc8,
577 Format ImmMod, string mnemonic> {
578 let Defs = [EFLAGS], mayLoad = 1, mayStore = 1, isCodeGenOnly = 1 in {
579
580 def #NAME#8mr : I<{RegOpc{7}, RegOpc{6}, RegOpc{5}, RegOpc{4},
581 RegOpc{3}, RegOpc{2}, RegOpc{1}, 0 },
582 MRMDestMem, (outs), (ins i8mem:$dst, GR8:$src2),
583 !strconcat(mnemonic, "{b}\t",
584 "{$src2, $dst|$dst, $src2}"),
585 [], IIC_ALU_NONMEM>, LOCK;
586 def #NAME#16mr : I<{RegOpc{7}, RegOpc{6}, RegOpc{5}, RegOpc{4},
587 RegOpc{3}, RegOpc{2}, RegOpc{1}, 1 },
588 MRMDestMem, (outs), (ins i16mem:$dst, GR16:$src2),
589 !strconcat(mnemonic, "{w}\t",
590 "{$src2, $dst|$dst, $src2}"),
591 [], IIC_ALU_NONMEM>, OpSize, LOCK;
592 def #NAME#32mr : I<{RegOpc{7}, RegOpc{6}, RegOpc{5}, RegOpc{4},
593 RegOpc{3}, RegOpc{2}, RegOpc{1}, 1 },
594 MRMDestMem, (outs), (ins i32mem:$dst, GR32:$src2),
595 !strconcat(mnemonic, "{l}\t",
596 "{$src2, $dst|$dst, $src2}"),
597 [], IIC_ALU_NONMEM>, LOCK;
598 def #NAME#64mr : RI<{RegOpc{7}, RegOpc{6}, RegOpc{5}, RegOpc{4},
599 RegOpc{3}, RegOpc{2}, RegOpc{1}, 1 },
600 MRMDestMem, (outs), (ins i64mem:$dst, GR64:$src2),
601 !strconcat(mnemonic, "{q}\t",
602 "{$src2, $dst|$dst, $src2}"),
603 [], IIC_ALU_NONMEM>, LOCK;
604
605 def #NAME#8mi : Ii8<{ImmOpc{7}, ImmOpc{6}, ImmOpc{5}, ImmOpc{4},
606 ImmOpc{3}, ImmOpc{2}, ImmOpc{1}, 0 },
607 ImmMod, (outs), (ins i8mem :$dst, i8imm :$src2),
608 !strconcat(mnemonic, "{b}\t",
609 "{$src2, $dst|$dst, $src2}"),
610 [], IIC_ALU_MEM>, LOCK;
611
612 def #NAME#16mi : Ii16<{ImmOpc{7}, ImmOpc{6}, ImmOpc{5}, ImmOpc{4},
613 ImmOpc{3}, ImmOpc{2}, ImmOpc{1}, 1 },
614 ImmMod, (outs), (ins i16mem :$dst, i16imm :$src2),
615 !strconcat(mnemonic, "{w}\t",
616 "{$src2, $dst|$dst, $src2}"),
617 [], IIC_ALU_MEM>, OpSize, LOCK;
618
619 def #NAME#32mi : Ii32<{ImmOpc{7}, ImmOpc{6}, ImmOpc{5}, ImmOpc{4},
620 ImmOpc{3}, ImmOpc{2}, ImmOpc{1}, 1 },
621 ImmMod, (outs), (ins i32mem :$dst, i32imm :$src2),
622 !strconcat(mnemonic, "{l}\t",
623 "{$src2, $dst|$dst, $src2}"),
624 [], IIC_ALU_MEM>, LOCK;
625
626 def #NAME#64mi32 : RIi32<{ImmOpc{7}, ImmOpc{6}, ImmOpc{5}, ImmOpc{4},
627 ImmOpc{3}, ImmOpc{2}, ImmOpc{1}, 1 },
628 ImmMod, (outs), (ins i64mem :$dst, i64i32imm :$src2),
629 !strconcat(mnemonic, "{q}\t",
630 "{$src2, $dst|$dst, $src2}"),
631 [], IIC_ALU_MEM>, LOCK;
632
633 def #NAME#16mi8 : Ii8<{ImmOpc8{7}, ImmOpc8{6}, ImmOpc8{5}, ImmOpc8{4},
634 ImmOpc8{3}, ImmOpc8{2}, ImmOpc8{1}, 1 },
635 ImmMod, (outs), (ins i16mem :$dst, i16i8imm :$src2),
636 !strconcat(mnemonic, "{w}\t",
637 "{$src2, $dst|$dst, $src2}"),
638 [], IIC_ALU_MEM>, OpSize, LOCK;
639 def #NAME#32mi8 : Ii8<{ImmOpc8{7}, ImmOpc8{6}, ImmOpc8{5}, ImmOpc8{4},
640 ImmOpc8{3}, ImmOpc8{2}, ImmOpc8{1}, 1 },
641 ImmMod, (outs), (ins i32mem :$dst, i32i8imm :$src2),
642 !strconcat(mnemonic, "{l}\t",
643 "{$src2, $dst|$dst, $src2}"),
644 [], IIC_ALU_MEM>, LOCK;
645 def #NAME#64mi8 : RIi8<{ImmOpc8{7}, ImmOpc8{6}, ImmOpc8{5}, ImmOpc8{4},
646 ImmOpc8{3}, ImmOpc8{2}, ImmOpc8{1}, 1 },
647 ImmMod, (outs), (ins i64mem :$dst, i64i8imm :$src2),
648 !strconcat(mnemonic, "{q}\t",
649 "{$src2, $dst|$dst, $src2}"),
650 [], IIC_ALU_MEM>, LOCK;
651
652 }
653
654 }
655
656 defm LOCK_ADD : LOCK_ArithBinOp<0x00, 0x80, 0x83, MRM0m, "add">;
657 defm LOCK_SUB : LOCK_ArithBinOp<0x28, 0x80, 0x83, MRM5m, "sub">;
658 defm LOCK_OR : LOCK_ArithBinOp<0x08, 0x80, 0x83, MRM1m, "or">;
659 defm LOCK_AND : LOCK_ArithBinOp<0x20, 0x80, 0x83, MRM4m, "and">;
660 defm LOCK_XOR : LOCK_ArithBinOp<0x30, 0x80, 0x83, MRM6m, "xor">;
661
662 // Optimized codegen when the non-memory output is not used.
663 multiclass LOCK_ArithUnOp<bits<8> Opc8, bits<8> Opc, Format Form,
664 string mnemonic> {
665 let Defs = [EFLAGS], mayLoad = 1, mayStore = 1, isCodeGenOnly = 1 in {
666
667 def #NAME#8m : I<Opc8, Form, (outs), (ins i8mem :$dst),
668 !strconcat(mnemonic, "{b}\t$dst"),
669 [], IIC_UNARY_MEM>, LOCK;
670 def #NAME#16m : I<Opc, Form, (outs), (ins i16mem:$dst),
671 !strconcat(mnemonic, "{w}\t$dst"),
672 [], IIC_UNARY_MEM>, OpSize, LOCK;
673 def #NAME#32m : I<Opc, Form, (outs), (ins i32mem:$dst),
674 !strconcat(mnemonic, "{l}\t$dst"),
675 [], IIC_UNARY_MEM>, LOCK;
676 def #NAME#64m : RI<Opc, Form, (outs), (ins i64mem:$dst),
677 !strconcat(mnemonic, "{q}\t$dst"),
678 [], IIC_UNARY_MEM>, LOCK;
679 }
680 }
681
682 defm LOCK_INC : LOCK_ArithUnOp<0xFE, 0xFF, MRM0m, "inc">;
683 defm LOCK_DEC : LOCK_ArithUnOp<0xFE, 0xFF, MRM1m, "dec">;
684
685 // Atomic compare and swap.
686 multiclass LCMPXCHG_UnOp<bits<8> Opc, Format Form, string mnemonic,
687 SDPatternOperator frag, X86MemOperand x86memop,
688 InstrItinClass itin> {
689 let isCodeGenOnly = 1 in {
690 def #NAME# : I<Opc, Form, (outs), (ins x86memop:$ptr),
691 !strconcat(mnemonic, "\t$ptr"),
692 [(frag addr:$ptr)], itin>, TB, LOCK;
693 }
694 }
695
696 multiclass LCMPXCHG_BinOp<bits<8> Opc8, bits<8> Opc, Format Form,
697 string mnemonic, SDPatternOperator frag,
698 InstrItinClass itin8, InstrItinClass itin> {
699 let isCodeGenOnly = 1 in {
700 let Defs = [AL, EFLAGS], Uses = [AL] in
701 def #NAME#8 : I<Opc8, Form, (outs), (ins i8mem:$ptr, GR8:$swap),
702 !strconcat(mnemonic, "{b}\t{$swap, $ptr|$ptr, $swap}"),
703 [(frag addr:$ptr, GR8:$swap, 1)], itin8>, TB, LOCK;
704 let Defs = [AX, EFLAGS], Uses = [AX] in
705 def #NAME#16 : I<Opc, Form, (outs), (ins i16mem:$ptr, GR16:$swap),
706 !strconcat(mnemonic, "{w}\t{$swap, $ptr|$ptr, $swap}"),
707 [(frag addr:$ptr, GR16:$swap, 2)], itin>, TB, OpSize, LOCK;
708 let Defs = [EAX, EFLAGS], Uses = [EAX] in
709 def #NAME#32 : I<Opc, Form, (outs), (ins i32mem:$ptr, GR32:$swap),
710 !strconcat(mnemonic, "{l}\t{$swap, $ptr|$ptr, $swap}"),
711 [(frag addr:$ptr, GR32:$swap, 4)], itin>, TB, LOCK;
712 let Defs = [RAX, EFLAGS], Uses = [RAX] in
713 def #NAME#64 : RI<Opc, Form, (outs), (ins i64mem:$ptr, GR64:$swap),
714 !strconcat(mnemonic, "{q}\t{$swap, $ptr|$ptr, $swap}"),
715 [(frag addr:$ptr, GR64:$swap, 8)], itin>, TB, LOCK;
716 }
717 }
718
719 let Defs = [EAX, EDX, EFLAGS], Uses = [EAX, EBX, ECX, EDX] in {
720 defm LCMPXCHG8B : LCMPXCHG_UnOp<0xC7, MRM1m, "cmpxchg8b",
721 X86cas8, i64mem,
722 IIC_CMPX_LOCK_8B>;
723 }
724
725 let Defs = [RAX, RDX, EFLAGS], Uses = [RAX, RBX, RCX, RDX],
726 Predicates = [HasCmpxchg16b] in {
727 defm LCMPXCHG16B : LCMPXCHG_UnOp<0xC7, MRM1m, "cmpxchg16b",
728 X86cas16, i128mem,
729 IIC_CMPX_LOCK_16B>, REX_W;
730 }
731
732 defm LCMPXCHG : LCMPXCHG_BinOp<0xB0, 0xB1, MRMDestMem, "cmpxchg",
733 X86cas, IIC_CMPX_LOCK_8, IIC_CMPX_LOCK>;
734
735 // Atomic exchange and add
736 multiclass ATOMIC_LOAD_BINOP<bits<8> opc8, bits<8> opc, string mnemonic,
737 string frag,
738 InstrItinClass itin8, InstrItinClass itin> {
739 let Constraints = "$val = $dst", Defs = [EFLAGS], isCodeGenOnly = 1 in {
740 def #NAME#8 : I<opc8, MRMSrcMem, (outs GR8:$dst),
741 (ins GR8:$val, i8mem:$ptr),
742 !strconcat(mnemonic, "{b}\t{$val, $ptr|$ptr, $val}"),
743 [(set GR8:$dst,
744 (!cast<PatFrag>(frag # "_8") addr:$ptr, GR8:$val))],
745 itin8>;
746 def #NAME#16 : I<opc, MRMSrcMem, (outs GR16:$dst),
747 (ins GR16:$val, i16mem:$ptr),
748 !strconcat(mnemonic, "{w}\t{$val, $ptr|$ptr, $val}"),
749 [(set
750 GR16:$dst,
751 (!cast<PatFrag>(frag # "_16") addr:$ptr, GR16:$val))],
752 itin>, OpSize;
753 def #NAME#32 : I<opc, MRMSrcMem, (outs GR32:$dst),
754 (ins GR32:$val, i32mem:$ptr),
755 !strconcat(mnemonic, "{l}\t{$val, $ptr|$ptr, $val}"),
756 [(set
757 GR32:$dst,
758 (!cast<PatFrag>(frag # "_32") addr:$ptr, GR32:$val))],
759 itin>;
760 def #NAME#64 : RI<opc, MRMSrcMem, (outs GR64:$dst),
761 (ins GR64:$val, i64mem:$ptr),
762 !strconcat(mnemonic, "{q}\t{$val, $ptr|$ptr, $val}"),
763 [(set
764 GR64:$dst,
765 (!cast<PatFrag>(frag # "_64") addr:$ptr, GR64:$val))],
766 itin>;
767 }
768 }
769
770 defm LXADD : ATOMIC_LOAD_BINOP<0xc0, 0xc1, "xadd", "atomic_load_add",
771 IIC_XADD_LOCK_MEM8, IIC_XADD_LOCK_MEM>,
772 TB, LOCK;
773
774 def ACQUIRE_MOV8rm : I<0, Pseudo, (outs GR8 :$dst), (ins i8mem :$src),
775 "#ACQUIRE_MOV PSEUDO!",
776 [(set GR8:$dst, (atomic_load_8 addr:$src))]>;
777 def ACQUIRE_MOV16rm : I<0, Pseudo, (outs GR16:$dst), (ins i16mem:$src),
778 "#ACQUIRE_MOV PSEUDO!",
779 [(set GR16:$dst, (atomic_load_16 addr:$src))]>;
780 def ACQUIRE_MOV32rm : I<0, Pseudo, (outs GR32:$dst), (ins i32mem:$src),
781 "#ACQUIRE_MOV PSEUDO!",
782 [(set GR32:$dst, (atomic_load_32 addr:$src))]>;
783 def ACQUIRE_MOV64rm : I<0, Pseudo, (outs GR64:$dst), (ins i64mem:$src),
784 "#ACQUIRE_MOV PSEUDO!",
785 [(set GR64:$dst, (atomic_load_64 addr:$src))]>;
786
787 def RELEASE_MOV8mr : I<0, Pseudo, (outs), (ins i8mem :$dst, GR8 :$src),
788 "#RELEASE_MOV PSEUDO!",
789 [(atomic_store_8 addr:$dst, GR8 :$src)]>;
790 def RELEASE_MOV16mr : I<0, Pseudo, (outs), (ins i16mem:$dst, GR16:$src),
791 "#RELEASE_MOV PSEUDO!",
792 [(atomic_store_16 addr:$dst, GR16:$src)]>;
793 def RELEASE_MOV32mr : I<0, Pseudo, (outs), (ins i32mem:$dst, GR32:$src),
794 "#RELEASE_MOV PSEUDO!",
795 [(atomic_store_32 addr:$dst, GR32:$src)]>;
796 def RELEASE_MOV64mr : I<0, Pseudo, (outs), (ins i64mem:$dst, GR64:$src),
797 "#RELEASE_MOV PSEUDO!",
798 [(atomic_store_64 addr:$dst, GR64:$src)]>;
799
800 //===----------------------------------------------------------------------===//
801 // Conditional Move Pseudo Instructions.
802 //===----------------------------------------------------------------------===//
803
804
805 // CMOV* - Used to implement the SSE SELECT DAG operation. Expanded after
806 // instruction selection into a branch sequence.
807 let Uses = [EFLAGS], usesCustomInserter = 1 in {
808 def CMOV_FR32 : I<0, Pseudo,
809 (outs FR32:$dst), (ins FR32:$t, FR32:$f, i8imm:$cond),
810 "#CMOV_FR32 PSEUDO!",
811 [(set FR32:$dst, (X86cmov FR32:$t, FR32:$f, imm:$cond,
812 EFLAGS))]>;
813 def CMOV_FR64 : I<0, Pseudo,
814 (outs FR64:$dst), (ins FR64:$t, FR64:$f, i8imm:$cond),
815 "#CMOV_FR64 PSEUDO!",
816 [(set FR64:$dst, (X86cmov FR64:$t, FR64:$f, imm:$cond,
817 EFLAGS))]>;
818 def CMOV_V4F32 : I<0, Pseudo,
819 (outs VR128:$dst), (ins VR128:$t, VR128:$f, i8imm:$cond),
820 "#CMOV_V4F32 PSEUDO!",
821 [(set VR128:$dst,
822 (v4f32 (X86cmov VR128:$t, VR128:$f, imm:$cond,
823 EFLAGS)))]>;
824 def CMOV_V2F64 : I<0, Pseudo,
825 (outs VR128:$dst), (ins VR128:$t, VR128:$f, i8imm:$cond),
826 "#CMOV_V2F64 PSEUDO!",
827 [(set VR128:$dst,
828 (v2f64 (X86cmov VR128:$t, VR128:$f, imm:$cond,
829 EFLAGS)))]>;
830 def CMOV_V2I64 : I<0, Pseudo,
831 (outs VR128:$dst), (ins VR128:$t, VR128:$f, i8imm:$cond),
832 "#CMOV_V2I64 PSEUDO!",
833 [(set VR128:$dst,
834 (v2i64 (X86cmov VR128:$t, VR128:$f, imm:$cond,
835 EFLAGS)))]>;
836 def CMOV_V8F32 : I<0, Pseudo,
837 (outs VR256:$dst), (ins VR256:$t, VR256:$f, i8imm:$cond),
838 "#CMOV_V8F32 PSEUDO!",
839 [(set VR256:$dst,
840 (v8f32 (X86cmov VR256:$t, VR256:$f, imm:$cond,
841 EFLAGS)))]>;
842 def CMOV_V4F64 : I<0, Pseudo,
843 (outs VR256:$dst), (ins VR256:$t, VR256:$f, i8imm:$cond),
844 "#CMOV_V4F64 PSEUDO!",
845 [(set VR256:$dst,
846 (v4f64 (X86cmov VR256:$t, VR256:$f, imm:$cond,
847 EFLAGS)))]>;
848 def CMOV_V4I64 : I<0, Pseudo,
849 (outs VR256:$dst), (ins VR256:$t, VR256:$f, i8imm:$cond),
850 "#CMOV_V4I64 PSEUDO!",
851 [(set VR256:$dst,
852 (v4i64 (X86cmov VR256:$t, VR256:$f, imm:$cond,
853 EFLAGS)))]>;
854 }
855
856
857 //===----------------------------------------------------------------------===//
858 // DAG Pattern Matching Rules
859 //===----------------------------------------------------------------------===//
860
861 // ConstantPool GlobalAddress, ExternalSymbol, and JumpTable
862 def : Pat<(i32 (X86Wrapper tconstpool :$dst)), (MOV32ri tconstpool :$dst)>;
863 def : Pat<(i32 (X86Wrapper tjumptable :$dst)), (MOV32ri tjumptable :$dst)>;
864 def : Pat<(i32 (X86Wrapper tglobaltlsaddr:$dst)),(MOV32ri tglobaltlsaddr:$dst)>;
865 def : Pat<(i32 (X86Wrapper tglobaladdr :$dst)), (MOV32ri tglobaladdr :$dst)>;
866 def : Pat<(i32 (X86Wrapper texternalsym:$dst)), (MOV32ri texternalsym:$dst)>;
867 def : Pat<(i32 (X86Wrapper tblockaddress:$dst)), (MOV32ri tblockaddress:$dst)>;
868
869 def : Pat<(add GR32:$src1, (X86Wrapper tconstpool:$src2)),
870 (ADD32ri GR32:$src1, tconstpool:$src2)>;
871 def : Pat<(add GR32:$src1, (X86Wrapper tjumptable:$src2)),
872 (ADD32ri GR32:$src1, tjumptable:$src2)>;
873 def : Pat<(add GR32:$src1, (X86Wrapper tglobaladdr :$src2)),
874 (ADD32ri GR32:$src1, tglobaladdr:$src2)>;
875 def : Pat<(add GR32:$src1, (X86Wrapper texternalsym:$src2)),
876 (ADD32ri GR32:$src1, texternalsym:$src2)>;
877 def : Pat<(add GR32:$src1, (X86Wrapper tblockaddress:$src2)),
878 (ADD32ri GR32:$src1, tblockaddress:$src2)>;
879
880 def : Pat<(store (i32 (X86Wrapper tglobaladdr:$src)), addr:$dst),
881 (MOV32mi addr:$dst, tglobaladdr:$src)>;
882 def : Pat<(store (i32 (X86Wrapper texternalsym:$src)), addr:$dst),
883 (MOV32mi addr:$dst, texternalsym:$src)>;
884 def : Pat<(store (i32 (X86Wrapper tblockaddress:$src)), addr:$dst),
885 (MOV32mi addr:$dst, tblockaddress:$src)>;
886
887
888
889 // ConstantPool GlobalAddress, ExternalSymbol, and JumpTable when not in small
890 // code model mode, should use 'movabs'. FIXME: This is really a hack, the
891 // 'movabs' predicate should handle this sort of thing.
892 def : Pat<(i64 (X86Wrapper tconstpool :$dst)),
893 (MOV64ri tconstpool :$dst)>, Requires<[FarData]>;
894 def : Pat<(i64 (X86Wrapper tjumptable :$dst)),
895 (MOV64ri tjumptable :$dst)>, Requires<[FarData]>;
896 def : Pat<(i64 (X86Wrapper tglobaladdr :$dst)),
897 (MOV64ri tglobaladdr :$dst)>, Requires<[FarData]>;
898 def : Pat<(i64 (X86Wrapper texternalsym:$dst)),
899 (MOV64ri texternalsym:$dst)>, Requires<[FarData]>;
900 def : Pat<(i64 (X86Wrapper tblockaddress:$dst)),
901 (MOV64ri tblockaddress:$dst)>, Requires<[FarData]>;
902
903 // In static codegen with small code model, we can get the address of a label
904 // into a register with 'movl'. FIXME: This is a hack, the 'imm' predicate of
905 // the MOV64ri64i32 should accept these.
906 def : Pat<(i64 (X86Wrapper tconstpool :$dst)),
907 (MOV64ri64i32 tconstpool :$dst)>, Requires<[SmallCode]>;
908 def : Pat<(i64 (X86Wrapper tjumptable :$dst)),
909 (MOV64ri64i32 tjumptable :$dst)>, Requires<[SmallCode]>;
910 def : Pat<(i64 (X86Wrapper tglobaladdr :$dst)),
911 (MOV64ri64i32 tglobaladdr :$dst)>, Requires<[SmallCode]>;
912 def : Pat<(i64 (X86Wrapper texternalsym:$dst)),
913 (MOV64ri64i32 texternalsym:$dst)>, Requires<[SmallCode]>;
914 def : Pat<(i64 (X86Wrapper tblockaddress:$dst)),
915 (MOV64ri64i32 tblockaddress:$dst)>, Requires<[SmallCode]>;
916
917 // In kernel code model, we can get the address of a label
918 // into a register with 'movq'. FIXME: This is a hack, the 'imm' predicate of
919 // the MOV64ri32 should accept these.
920 def : Pat<(i64 (X86Wrapper tconstpool :$dst)),
921 (MOV64ri32 tconstpool :$dst)>, Requires<[KernelCode]>;
922 def : Pat<(i64 (X86Wrapper tjumptable :$dst)),
923 (MOV64ri32 tjumptable :$dst)>, Requires<[KernelCode]>;
924 def : Pat<(i64 (X86Wrapper tglobaladdr :$dst)),
925 (MOV64ri32 tglobaladdr :$dst)>, Requires<[KernelCode]>;
926 def : Pat<(i64 (X86Wrapper texternalsym:$dst)),
927 (MOV64ri32 texternalsym:$dst)>, Requires<[KernelCode]>;
928 def : Pat<(i64 (X86Wrapper tblockaddress:$dst)),
929 (MOV64ri32 tblockaddress:$dst)>, Requires<[KernelCode]>;
930
931 // If we have small model and -static mode, it is safe to store global addresses
932 // directly as immediates. FIXME: This is really a hack, the 'imm' predicate
933 // for MOV64mi32 should handle this sort of thing.
934 def : Pat<(store (i64 (X86Wrapper tconstpool:$src)), addr:$dst),
935 (MOV64mi32 addr:$dst, tconstpool:$src)>,
936 Requires<[NearData, IsStatic]>;
937 def : Pat<(store (i64 (X86Wrapper tjumptable:$src)), addr:$dst),
938 (MOV64mi32 addr:$dst, tjumptable:$src)>,
939 Requires<[NearData, IsStatic]>;
940 def : Pat<(store (i64 (X86Wrapper tglobaladdr:$src)), addr:$dst),
941 (MOV64mi32 addr:$dst, tglobaladdr:$src)>,
942 Requires<[NearData, IsStatic]>;
943 def : Pat<(store (i64 (X86Wrapper texternalsym:$src)), addr:$dst),
944 (MOV64mi32 addr:$dst, texternalsym:$src)>,
945 Requires<[NearData, IsStatic]>;
946 def : Pat<(store (i64 (X86Wrapper tblockaddress:$src)), addr:$dst),
947 (MOV64mi32 addr:$dst, tblockaddress:$src)>,
948 Requires<[NearData, IsStatic]>;
949
950
951
952 // Calls
953
954 // tls has some funny stuff here...
955 // This corresponds to movabs $foo@tpoff, %rax
956 def : Pat<(i64 (X86Wrapper tglobaltlsaddr :$dst)),
957 (MOV64ri tglobaltlsaddr :$dst)>;
958 // This corresponds to add $foo@tpoff, %rax
959 def : Pat<(add GR64:$src1, (X86Wrapper tglobaltlsaddr :$dst)),
960 (ADD64ri32 GR64:$src1, tglobaltlsaddr :$dst)>;
961 // This corresponds to mov foo@tpoff(%rbx), %eax
962 def : Pat<(load (i64 (X86Wrapper tglobaltlsaddr :$dst))),
963 (MOV64rm tglobaltlsaddr :$dst)>;
964
965
966 // Direct PC relative function call for small code model. 32-bit displacement
967 // sign extended to 64-bit.
968 def : Pat<(X86call (i64 tglobaladdr:$dst)),
969 (CALL64pcrel32 tglobaladdr:$dst)>;
970 def : Pat<(X86call (i64 texternalsym:$dst)),
971 (CALL64pcrel32 texternalsym:$dst)>;
972
973 // Tailcall stuff. The TCRETURN instructions execute after the epilog, so they
974 // can never use callee-saved registers. That is the purpose of the GR64_TC
975 // register classes.
976 //
977 // The only volatile register that is never used by the calling convention is
978 // %r11. This happens when calling a vararg function with 6 arguments.
979 //
980 // Match an X86tcret that uses less than 7 volatile registers.
981 def X86tcret_6regs : PatFrag<(ops node:$ptr, node:$off),
982 (X86tcret node:$ptr, node:$off), [{
983 // X86tcret args: (*chain, ptr, imm, regs..., glue)
984 unsigned NumRegs = 0;
985 for (unsigned i = 3, e = N->getNumOperands(); i != e; ++i)
986 if (isa<RegisterSDNode>(N->getOperand(i)) && ++NumRegs > 6)
987 return false;
988 return true;
989 }]>;
990
991 def : Pat<(X86tcret ptr_rc_tailcall:$dst, imm:$off),
992 (TCRETURNri ptr_rc_tailcall:$dst, imm:$off)>,
993 Requires<[In32BitMode]>;
994
995 // FIXME: This is disabled for 32-bit PIC mode because the global base
996 // register which is part of the address mode may be assigned a
997 // callee-saved register.
998 def : Pat<(X86tcret (load addr:$dst), imm:$off),
999 (TCRETURNmi addr:$dst, imm:$off)>,
1000 Requires<[In32BitMode, IsNotPIC]>;
1001
1002 def : Pat<(X86tcret (i32 tglobaladdr:$dst), imm:$off),
1003 (TCRETURNdi texternalsym:$dst, imm:$off)>,
1004 Requires<[In32BitMode]>;
1005
1006 def : Pat<(X86tcret (i32 texternalsym:$dst), imm:$off),
1007 (TCRETURNdi texternalsym:$dst, imm:$off)>,
1008 Requires<[In32BitMode]>;
1009
1010 def : Pat<(X86tcret ptr_rc_tailcall:$dst, imm:$off),
1011 (TCRETURNri64 ptr_rc_tailcall:$dst, imm:$off)>,
1012 Requires<[In64BitMode]>;
1013
1014 // Don't fold loads into X86tcret requiring more than 6 regs.
1015 // There wouldn't be enough scratch registers for base+index.
1016 def : Pat<(X86tcret_6regs (load addr:$dst), imm:$off),
1017 (TCRETURNmi64 addr:$dst, imm:$off)>,
1018 Requires<[In64BitMode]>;
1019
1020 def : Pat<(X86tcret (i64 tglobaladdr:$dst), imm:$off),
1021 (TCRETURNdi64 tglobaladdr:$dst, imm:$off)>,
1022 Requires<[In64BitMode]>;
1023
1024 def : Pat<(X86tcret (i64 texternalsym:$dst), imm:$off),
1025 (TCRETURNdi64 texternalsym:$dst, imm:$off)>,
1026 Requires<[In64BitMode]>;
1027
1028 // Normal calls, with various flavors of addresses.
1029 def : Pat<(X86call (i32 tglobaladdr:$dst)),
1030 (CALLpcrel32 tglobaladdr:$dst)>;
1031 def : Pat<(X86call (i32 texternalsym:$dst)),
1032 (CALLpcrel32 texternalsym:$dst)>;
1033 def : Pat<(X86call (i32 imm:$dst)),
1034 (CALLpcrel32 imm:$dst)>, Requires<[CallImmAddr]>;
1035
1036 // Comparisons.
1037
1038 // TEST R,R is smaller than CMP R,0
1039 def : Pat<(X86cmp GR8:$src1, 0),
1040 (TEST8rr GR8:$src1, GR8:$src1)>;
1041 def : Pat<(X86cmp GR16:$src1, 0),
1042 (TEST16rr GR16:$src1, GR16:$src1)>;
1043 def : Pat<(X86cmp GR32:$src1, 0),
1044 (TEST32rr GR32:$src1, GR32:$src1)>;
1045 def : Pat<(X86cmp GR64:$src1, 0),
1046 (TEST64rr GR64:$src1, GR64:$src1)>;
1047
1048 // Conditional moves with folded loads with operands swapped and conditions
1049 // inverted.
1050 multiclass CMOVmr<PatLeaf InvertedCond, Instruction Inst16, Instruction Inst32,
1051 Instruction Inst64> {
1052 def : Pat<(X86cmov (loadi16 addr:$src1), GR16:$src2, InvertedCond, EFLAGS),
1053 (Inst16 GR16:$src2, addr:$src1)>;
1054 def : Pat<(X86cmov (loadi32 addr:$src1), GR32:$src2, InvertedCond, EFLAGS),
1055 (Inst32 GR32:$src2, addr:$src1)>;
1056 def : Pat<(X86cmov (loadi64 addr:$src1), GR64:$src2, InvertedCond, EFLAGS),
1057 (Inst64 GR64:$src2, addr:$src1)>;
1058 }
1059
1060 defm : CMOVmr<X86_COND_B , CMOVAE16rm, CMOVAE32rm, CMOVAE64rm>;
1061 defm : CMOVmr<X86_COND_AE, CMOVB16rm , CMOVB32rm , CMOVB64rm>;
1062 defm : CMOVmr<X86_COND_E , CMOVNE16rm, CMOVNE32rm, CMOVNE64rm>;
1063 defm : CMOVmr<X86_COND_NE, CMOVE16rm , CMOVE32rm , CMOVE64rm>;
1064 defm : CMOVmr<X86_COND_BE, CMOVA16rm , CMOVA32rm , CMOVA64rm>;
1065 defm : CMOVmr<X86_COND_A , CMOVBE16rm, CMOVBE32rm, CMOVBE64rm>;
1066 defm : CMOVmr<X86_COND_L , CMOVGE16rm, CMOVGE32rm, CMOVGE64rm>;
1067 defm : CMOVmr<X86_COND_GE, CMOVL16rm , CMOVL32rm , CMOVL64rm>;
1068 defm : CMOVmr<X86_COND_LE, CMOVG16rm , CMOVG32rm , CMOVG64rm>;
1069 defm : CMOVmr<X86_COND_G , CMOVLE16rm, CMOVLE32rm, CMOVLE64rm>;
1070 defm : CMOVmr<X86_COND_P , CMOVNP16rm, CMOVNP32rm, CMOVNP64rm>;
1071 defm : CMOVmr<X86_COND_NP, CMOVP16rm , CMOVP32rm , CMOVP64rm>;
1072 defm : CMOVmr<X86_COND_S , CMOVNS16rm, CMOVNS32rm, CMOVNS64rm>;
1073 defm : CMOVmr<X86_COND_NS, CMOVS16rm , CMOVS32rm , CMOVS64rm>;
1074 defm : CMOVmr<X86_COND_O , CMOVNO16rm, CMOVNO32rm, CMOVNO64rm>;
1075 defm : CMOVmr<X86_COND_NO, CMOVO16rm , CMOVO32rm , CMOVO64rm>;
1076
1077 // zextload bool -> zextload byte
1078 def : Pat<(zextloadi8i1 addr:$src), (MOV8rm addr:$src)>;
1079 def : Pat<(zextloadi16i1 addr:$src), (MOVZX16rm8 addr:$src)>;
1080 def : Pat<(zextloadi32i1 addr:$src), (MOVZX32rm8 addr:$src)>;
1081 def : Pat<(zextloadi64i1 addr:$src), (MOVZX64rm8 addr:$src)>;
1082
1083 // extload bool -> extload byte
1084 // When extloading from 16-bit and smaller memory locations into 64-bit
1085 // registers, use zero-extending loads so that the entire 64-bit register is
1086 // defined, avoiding partial-register updates.
1087
1088 def : Pat<(extloadi8i1 addr:$src), (MOV8rm addr:$src)>;
1089 def : Pat<(extloadi16i1 addr:$src), (MOVZX16rm8 addr:$src)>;
1090 def : Pat<(extloadi32i1 addr:$src), (MOVZX32rm8 addr:$src)>;
1091 def : Pat<(extloadi16i8 addr:$src), (MOVZX16rm8 addr:$src)>;
1092 def : Pat<(extloadi32i8 addr:$src), (MOVZX32rm8 addr:$src)>;
1093 def : Pat<(extloadi32i16 addr:$src), (MOVZX32rm16 addr:$src)>;
1094
1095 def : Pat<(extloadi64i1 addr:$src), (MOVZX64rm8 addr:$src)>;
1096 def : Pat<(extloadi64i8 addr:$src), (MOVZX64rm8 addr:$src)>;
1097 def : Pat<(extloadi64i16 addr:$src), (MOVZX64rm16 addr:$src)>;
1098 // For other extloads, use subregs, since the high contents of the register are
1099 // defined after an extload.
1100 def : Pat<(extloadi64i32 addr:$src),
1101 (SUBREG_TO_REG (i64 0), (MOV32rm addr:$src),
1102 sub_32bit)>;
1103
1104 // anyext. Define these to do an explicit zero-extend to
1105 // avoid partial-register updates.
1106 def : Pat<(i16 (anyext GR8 :$src)), (EXTRACT_SUBREG
1107 (MOVZX32rr8 GR8 :$src), sub_16bit)>;
1108 def : Pat<(i32 (anyext GR8 :$src)), (MOVZX32rr8 GR8 :$src)>;
1109
1110 // Except for i16 -> i32 since isel expect i16 ops to be promoted to i32.
1111 def : Pat<(i32 (anyext GR16:$src)),
1112 (INSERT_SUBREG (i32 (IMPLICIT_DEF)), GR16:$src, sub_16bit)>;
1113
1114 def : Pat<(i64 (anyext GR8 :$src)), (MOVZX64rr8 GR8 :$src)>;
1115 def : Pat<(i64 (anyext GR16:$src)), (MOVZX64rr16 GR16 :$src)>;
1116 def : Pat<(i64 (anyext GR32:$src)),
1117 (SUBREG_TO_REG (i64 0), GR32:$src, sub_32bit)>;
1118
1119
1120 // Any instruction that defines a 32-bit result leaves the high half of the
1121 // register. Truncate can be lowered to EXTRACT_SUBREG. CopyFromReg may
1122 // be copying from a truncate. And x86's cmov doesn't do anything if the
1123 // condition is false. But any other 32-bit operation will zero-extend
1124 // up to 64 bits.
1125 def def32 : PatLeaf<(i32 GR32:$src), [{
1126 return N->getOpcode() != ISD::TRUNCATE &&
1127 N->getOpcode() != TargetOpcode::EXTRACT_SUBREG &&
1128 N->getOpcode() != ISD::CopyFromReg &&
1129 N->getOpcode() != X86ISD::CMOV;
1130 }]>;
1131
1132 // In the case of a 32-bit def that is known to implicitly zero-extend,
1133 // we can use a SUBREG_TO_REG.
1134 def : Pat<(i64 (zext def32:$src)),
1135 (SUBREG_TO_REG (i64 0), GR32:$src, sub_32bit)>;
1136
1137 //===----------------------------------------------------------------------===//
1138 // Pattern match OR as ADD
1139 //===----------------------------------------------------------------------===//
1140
1141 // If safe, we prefer to pattern match OR as ADD at isel time. ADD can be
1142 // 3-addressified into an LEA instruction to avoid copies. However, we also
1143 // want to finally emit these instructions as an or at the end of the code
1144 // generator to make the generated code easier to read. To do this, we select
1145 // into "disjoint bits" pseudo ops.
1146
1147 // Treat an 'or' node is as an 'add' if the or'ed bits are known to be zero.
1148 def or_is_add : PatFrag<(ops node:$lhs, node:$rhs), (or node:$lhs, node:$rhs),[{
1149 if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N->getOperand(1)))
1150 return CurDAG->MaskedValueIsZero(N->getOperand(0), CN->getAPIntValue());
1151
1152 APInt KnownZero0, KnownOne0;
1153 CurDAG->ComputeMaskedBits(N->getOperand(0), KnownZero0, KnownOne0, 0);
1154 APInt KnownZero1, KnownOne1;
1155 CurDAG->ComputeMaskedBits(N->getOperand(1), KnownZero1, KnownOne1, 0);
1156 return (~KnownZero0 & ~KnownZero1) == 0;
1157 }]>;
1158
1159
1160 // (or x1, x2) -> (add x1, x2) if two operands are known not to share bits.
1161 let AddedComplexity = 5 in { // Try this before the selecting to OR
1162
1163 let isConvertibleToThreeAddress = 1,
1164 Constraints = "$src1 = $dst", Defs = [EFLAGS] in {
1165 let isCommutable = 1 in {
1166 def ADD16rr_DB : I<0, Pseudo, (outs GR16:$dst), (ins GR16:$src1, GR16:$src2),
1167 "", // orw/addw REG, REG
1168 [(set GR16:$dst, (or_is_add GR16:$src1, GR16:$src2))]>;
1169 def ADD32rr_DB : I<0, Pseudo, (outs GR32:$dst), (ins GR32:$src1, GR32:$src2),
1170 "", // orl/addl REG, REG
1171 [(set GR32:$dst, (or_is_add GR32:$src1, GR32:$src2))]>;
1172 def ADD64rr_DB : I<0, Pseudo, (outs GR64:$dst), (ins GR64:$src1, GR64:$src2),
1173 "", // orq/addq REG, REG
1174 [(set GR64:$dst, (or_is_add GR64:$src1, GR64:$src2))]>;
1175 } // isCommutable
1176
1177 // NOTE: These are order specific, we want the ri8 forms to be listed
1178 // first so that they are slightly preferred to the ri forms.
1179
1180 def ADD16ri8_DB : I<0, Pseudo,
1181 (outs GR16:$dst), (ins GR16:$src1, i16i8imm:$src2),
1182 "", // orw/addw REG, imm8
1183 [(set GR16:$dst,(or_is_add GR16:$src1,i16immSExt8:$src2))]>;
1184 def ADD16ri_DB : I<0, Pseudo, (outs GR16:$dst), (ins GR16:$src1, i16imm:$src2),
1185 "", // orw/addw REG, imm
1186 [(set GR16:$dst, (or_is_add GR16:$src1, imm:$src2))]>;
1187
1188 def ADD32ri8_DB : I<0, Pseudo,
1189 (outs GR32:$dst), (ins GR32:$src1, i32i8imm:$src2),
1190 "", // orl/addl REG, imm8
1191 [(set GR32:$dst,(or_is_add GR32:$src1,i32immSExt8:$src2))]>;
1192 def ADD32ri_DB : I<0, Pseudo, (outs GR32:$dst), (ins GR32:$src1, i32imm:$src2),
1193 "", // orl/addl REG, imm
1194 [(set GR32:$dst, (or_is_add GR32:$src1, imm:$src2))]>;
1195
1196
1197 def ADD64ri8_DB : I<0, Pseudo,
1198 (outs GR64:$dst), (ins GR64:$src1, i64i8imm:$src2),
1199 "", // orq/addq REG, imm8
1200 [(set GR64:$dst, (or_is_add GR64:$src1,
1201 i64immSExt8:$src2))]>;
1202 def ADD64ri32_DB : I<0, Pseudo,
1203 (outs GR64:$dst), (ins GR64:$src1, i64i32imm:$src2),
1204 "", // orq/addq REG, imm
1205 [(set GR64:$dst, (or_is_add GR64:$src1,
1206 i64immSExt32:$src2))]>;
1207 }
1208 } // AddedComplexity
1209
1210
1211 //===----------------------------------------------------------------------===//
1212 // Some peepholes
1213 //===----------------------------------------------------------------------===//
1214
1215 // Odd encoding trick: -128 fits into an 8-bit immediate field while
1216 // +128 doesn't, so in this special case use a sub instead of an add.
1217 def : Pat<(add GR16:$src1, 128),
1218 (SUB16ri8 GR16:$src1, -128)>;
1219 def : Pat<(store (add (loadi16 addr:$dst), 128), addr:$dst),
1220 (SUB16mi8 addr:$dst, -128)>;
1221
1222 def : Pat<(add GR32:$src1, 128),
1223 (SUB32ri8 GR32:$src1, -128)>;
1224 def : Pat<(store (add (loadi32 addr:$dst), 128), addr:$dst),
1225 (SUB32mi8 addr:$dst, -128)>;
1226
1227 def : Pat<(add GR64:$src1, 128),
1228 (SUB64ri8 GR64:$src1, -128)>;
1229 def : Pat<(store (add (loadi64 addr:$dst), 128), addr:$dst),
1230 (SUB64mi8 addr:$dst, -128)>;
1231
1232 // The same trick applies for 32-bit immediate fields in 64-bit
1233 // instructions.
1234 def : Pat<(add GR64:$src1, 0x0000000080000000),
1235 (SUB64ri32 GR64:$src1, 0xffffffff80000000)>;
1236 def : Pat<(store (add (loadi64 addr:$dst), 0x00000000800000000), addr:$dst),
1237 (SUB64mi32 addr:$dst, 0xffffffff80000000)>;
1238
1239 // To avoid needing to materialize an immediate in a register, use a 32-bit and
1240 // with implicit zero-extension instead of a 64-bit and if the immediate has at
1241 // least 32 bits of leading zeros. If in addition the last 32 bits can be
1242 // represented with a sign extension of a 8 bit constant, use that.
1243
1244 def : Pat<(and GR64:$src, i64immZExt32SExt8:$imm),
1245 (SUBREG_TO_REG
1246 (i64 0),
1247 (AND32ri8
1248 (EXTRACT_SUBREG GR64:$src, sub_32bit),
1249 (i32 (GetLo8XForm imm:$imm))),
1250 sub_32bit)>;
1251
1252 def : Pat<(and GR64:$src, i64immZExt32:$imm),
1253 (SUBREG_TO_REG
1254 (i64 0),
1255 (AND32ri
1256 (EXTRACT_SUBREG GR64:$src, sub_32bit),
1257 (i32 (GetLo32XForm imm:$imm))),
1258 sub_32bit)>;
1259
1260
1261 // r & (2^16-1) ==> movz
1262 def : Pat<(and GR32:$src1, 0xffff),
1263 (MOVZX32rr16 (EXTRACT_SUBREG GR32:$src1, sub_16bit))>;
1264 // r & (2^8-1) ==> movz
1265 def : Pat<(and GR32:$src1, 0xff),
1266 (MOVZX32rr8 (EXTRACT_SUBREG (i32 (COPY_TO_REGCLASS GR32:$src1,
1267 GR32_ABCD)),
1268 sub_8bit))>,
1269 Requires<[In32BitMode]>;
1270 // r & (2^8-1) ==> movz
1271 def : Pat<(and GR16:$src1, 0xff),
1272 (EXTRACT_SUBREG (MOVZX32rr8 (EXTRACT_SUBREG
1273 (i16 (COPY_TO_REGCLASS GR16:$src1, GR16_ABCD)), sub_8bit)),
1274 sub_16bit)>,
1275 Requires<[In32BitMode]>;
1276
1277 // r & (2^32-1) ==> movz
1278 def : Pat<(and GR64:$src, 0x00000000FFFFFFFF),
1279 (MOVZX64rr32 (EXTRACT_SUBREG GR64:$src, sub_32bit))>;
1280 // r & (2^16-1) ==> movz
1281 def : Pat<(and GR64:$src, 0xffff),
1282 (MOVZX64rr16 (i16 (EXTRACT_SUBREG GR64:$src, sub_16bit)))>;
1283 // r & (2^8-1) ==> movz
1284 def : Pat<(and GR64:$src, 0xff),
1285 (MOVZX64rr8 (i8 (EXTRACT_SUBREG GR64:$src, sub_8bit)))>;
1286 // r & (2^8-1) ==> movz
1287 def : Pat<(and GR32:$src1, 0xff),
1288 (MOVZX32rr8 (EXTRACT_SUBREG GR32:$src1, sub_8bit))>,
1289 Requires<[In64BitMode]>;
1290 // r & (2^8-1) ==> movz
1291 def : Pat<(and GR16:$src1, 0xff),
1292 (EXTRACT_SUBREG (MOVZX32rr8 (i8
1293 (EXTRACT_SUBREG GR16:$src1, sub_8bit))), sub_16bit)>,
1294 Requires<[In64BitMode]>;
1295
1296
1297 // sext_inreg patterns
1298 def : Pat<(sext_inreg GR32:$src, i16),
1299 (MOVSX32rr16 (EXTRACT_SUBREG GR32:$src, sub_16bit))>;
1300 def : Pat<(sext_inreg GR32:$src, i8),
1301 (MOVSX32rr8 (EXTRACT_SUBREG (i32 (COPY_TO_REGCLASS GR32:$src,
1302 GR32_ABCD)),
1303 sub_8bit))>,
1304 Requires<[In32BitMode]>;
1305
1306 def : Pat<(sext_inreg GR16:$src, i8),
1307 (EXTRACT_SUBREG (i32 (MOVSX32rr8 (EXTRACT_SUBREG
1308 (i32 (COPY_TO_REGCLASS GR16:$src, GR16_ABCD)), sub_8bit))),
1309 sub_16bit)>,
1310 Requires<[In32BitMode]>;
1311
1312 def : Pat<(sext_inreg GR64:$src, i32),
1313 (MOVSX64rr32 (EXTRACT_SUBREG GR64:$src, sub_32bit))>;
1314 def : Pat<(sext_inreg GR64:$src, i16),
1315 (MOVSX64rr16 (EXTRACT_SUBREG GR64:$src, sub_16bit))>;
1316 def : Pat<(sext_inreg GR64:$src, i8),
1317 (MOVSX64rr8 (EXTRACT_SUBREG GR64:$src, sub_8bit))>;
1318 def : Pat<(sext_inreg GR32:$src, i8),
1319 (MOVSX32rr8 (EXTRACT_SUBREG GR32:$src, sub_8bit))>,
1320 Requires<[In64BitMode]>;
1321 def : Pat<(sext_inreg GR16:$src, i8),
1322 (EXTRACT_SUBREG (MOVSX32rr8
1323 (EXTRACT_SUBREG GR16:$src, sub_8bit)), sub_16bit)>,
1324 Requires<[In64BitMode]>;
1325
1326 // sext, sext_load, zext, zext_load
1327 def: Pat<(i16 (sext GR8:$src)),
1328 (EXTRACT_SUBREG (MOVSX32rr8 GR8:$src), sub_16bit)>;
1329 def: Pat<(sextloadi16i8 addr:$src),
1330 (EXTRACT_SUBREG (MOVSX32rm8 addr:$src), sub_16bit)>;
1331 def: Pat<(i16 (zext GR8:$src)),
1332 (EXTRACT_SUBREG (MOVZX32rr8 GR8:$src), sub_16bit)>;
1333 def: Pat<(zextloadi16i8 addr:$src),
1334 (EXTRACT_SUBREG (MOVZX32rm8 addr:$src), sub_16bit)>;
1335
1336 // trunc patterns
1337 def : Pat<(i16 (trunc GR32:$src)),
1338 (EXTRACT_SUBREG GR32:$src, sub_16bit)>;
1339 def : Pat<(i8 (trunc GR32:$src)),
1340 (EXTRACT_SUBREG (i32 (COPY_TO_REGCLASS GR32:$src, GR32_ABCD)),
1341 sub_8bit)>,
1342 Requires<[In32BitMode]>;
1343 def : Pat<(i8 (trunc GR16:$src)),
1344 (EXTRACT_SUBREG (i16 (COPY_TO_REGCLASS GR16:$src, GR16_ABCD)),
1345 sub_8bit)>,
1346 Requires<[In32BitMode]>;
1347 def : Pat<(i32 (trunc GR64:$src)),
1348 (EXTRACT_SUBREG GR64:$src, sub_32bit)>;
1349 def : Pat<(i16 (trunc GR64:$src)),
1350 (EXTRACT_SUBREG GR64:$src, sub_16bit)>;
1351 def : Pat<(i8 (trunc GR64:$src)),
1352 (EXTRACT_SUBREG GR64:$src, sub_8bit)>;
1353 def : Pat<(i8 (trunc GR32:$src)),
1354 (EXTRACT_SUBREG GR32:$src, sub_8bit)>,
1355 Requires<[In64BitMode]>;
1356 def : Pat<(i8 (trunc GR16:$src)),
1357 (EXTRACT_SUBREG GR16:$src, sub_8bit)>,
1358 Requires<[In64BitMode]>;
1359
1360 // h-register tricks
1361 def : Pat<(i8 (trunc (srl_su GR16:$src, (i8 8)))),
1362 (EXTRACT_SUBREG (i16 (COPY_TO_REGCLASS GR16:$src, GR16_ABCD)),
1363 sub_8bit_hi)>,
1364 Requires<[In32BitMode]>;
1365 def : Pat<(i8 (trunc (srl_su GR32:$src, (i8 8)))),
1366 (EXTRACT_SUBREG (i32 (COPY_TO_REGCLASS GR32:$src, GR32_ABCD)),
1367 sub_8bit_hi)>,
1368 Requires<[In32BitMode]>;
1369 def : Pat<(srl GR16:$src, (i8 8)),
1370 (EXTRACT_SUBREG
1371 (MOVZX32rr8
1372 (EXTRACT_SUBREG (i16 (COPY_TO_REGCLASS GR16:$src, GR16_ABCD)),
1373 sub_8bit_hi)),
1374 sub_16bit)>,
1375 Requires<[In32BitMode]>;
1376 def : Pat<(i32 (zext (srl_su GR16:$src, (i8 8)))),
1377 (MOVZX32rr8 (EXTRACT_SUBREG (i16 (COPY_TO_REGCLASS GR16:$src,
1378 GR16_ABCD)),
1379 sub_8bit_hi))>,
1380 Requires<[In32BitMode]>;
1381 def : Pat<(i32 (anyext (srl_su GR16:$src, (i8 8)))),
1382 (MOVZX32rr8 (EXTRACT_SUBREG (i16 (COPY_TO_REGCLASS GR16:$src,
1383 GR16_ABCD)),
1384 sub_8bit_hi))>,
1385 Requires<[In32BitMode]>;
1386 def : Pat<(and (srl_su GR32:$src, (i8 8)), (i32 255)),
1387 (MOVZX32rr8 (EXTRACT_SUBREG (i32 (COPY_TO_REGCLASS GR32:$src,
1388 GR32_ABCD)),
1389 sub_8bit_hi))>,
1390 Requires<[In32BitMode]>;
1391 def : Pat<(srl (and_su GR32:$src, 0xff00), (i8 8)),
1392 (MOVZX32rr8 (EXTRACT_SUBREG (i32 (COPY_TO_REGCLASS GR32:$src,
1393 GR32_ABCD)),
1394 sub_8bit_hi))>,
1395 Requires<[In32BitMode]>;
1396
1397 // h-register tricks.
1398 // For now, be conservative on x86-64 and use an h-register extract only if the
1399 // value is immediately zero-extended or stored, which are somewhat common
1400 // cases. This uses a bunch of code to prevent a register requiring a REX prefix
1401 // from being allocated in the same instruction as the h register, as there's
1402 // currently no way to describe this requirement to the register allocator.
1403
1404 // h-register extract and zero-extend.
1405 def : Pat<(and (srl_su GR64:$src, (i8 8)), (i64 255)),
1406 (SUBREG_TO_REG
1407 (i64 0),
1408 (MOVZX32_NOREXrr8
1409 (EXTRACT_SUBREG (i64 (COPY_TO_REGCLASS GR64:$src, GR64_ABCD)),
1410 sub_8bit_hi)),
1411 sub_32bit)>;
1412 def : Pat<(and (srl_su GR32:$src, (i8 8)), (i32 255)),
1413 (MOVZX32_NOREXrr8
1414 (EXTRACT_SUBREG (i32 (COPY_TO_REGCLASS GR32:$src, GR32_ABCD)),
1415 sub_8bit_hi))>,
1416 Requires<[In64BitMode]>;
1417 def : Pat<(srl (and_su GR32:$src, 0xff00), (i8 8)),
1418 (MOVZX32_NOREXrr8 (EXTRACT_SUBREG (i32 (COPY_TO_REGCLASS GR32:$src,
1419 GR32_ABCD)),
1420 sub_8bit_hi))>,
1421 Requires<[In64BitMode]>;
1422 def : Pat<(srl GR16:$src, (i8 8)),
1423 (EXTRACT_SUBREG
1424 (MOVZX32_NOREXrr8
1425 (EXTRACT_SUBREG (i16 (COPY_TO_REGCLASS GR16:$src, GR16_ABCD)),
1426 sub_8bit_hi)),
1427 sub_16bit)>,
1428 Requires<[In64BitMode]>;
1429 def : Pat<(i32 (zext (srl_su GR16:$src, (i8 8)))),
1430 (MOVZX32_NOREXrr8
1431 (EXTRACT_SUBREG (i16 (COPY_TO_REGCLASS GR16:$src, GR16_ABCD)),
1432 sub_8bit_hi))>,
1433 Requires<[In64BitMode]>;
1434 def : Pat<(i32 (anyext (srl_su GR16:$src, (i8 8)))),
1435 (MOVZX32_NOREXrr8
1436 (EXTRACT_SUBREG (i16 (COPY_TO_REGCLASS GR16:$src, GR16_ABCD)),
1437 sub_8bit_hi))>,
1438 Requires<[In64BitMode]>;
1439 def : Pat<(i64 (zext (srl_su GR16:$src, (i8 8)))),
1440 (SUBREG_TO_REG
1441 (i64 0),
1442 (MOVZX32_NOREXrr8
1443 (EXTRACT_SUBREG (i16 (COPY_TO_REGCLASS GR16:$src, GR16_ABCD)),
1444 sub_8bit_hi)),
1445 sub_32bit)>;
1446 def : Pat<(i64 (anyext (srl_su GR16:$src, (i8 8)))),
1447 (SUBREG_TO_REG
1448 (i64 0),
1449 (MOVZX32_NOREXrr8
1450 (EXTRACT_SUBREG (i16 (COPY_TO_REGCLASS GR16:$src, GR16_ABCD)),
1451 sub_8bit_hi)),
1452 sub_32bit)>;
1453
1454 // h-register extract and store.
1455 def : Pat<(store (i8 (trunc_su (srl_su GR64:$src, (i8 8)))), addr:$dst),
1456 (MOV8mr_NOREX
1457 addr:$dst,
1458 (EXTRACT_SUBREG (i64 (COPY_TO_REGCLASS GR64:$src, GR64_ABCD)),
1459 sub_8bit_hi))>;
1460 def : Pat<(store (i8 (trunc_su (srl_su GR32:$src, (i8 8)))), addr:$dst),
1461 (MOV8mr_NOREX
1462 addr:$dst,
1463 (EXTRACT_SUBREG (i32 (COPY_TO_REGCLASS GR32:$src, GR32_ABCD)),
1464 sub_8bit_hi))>,
1465 Requires<[In64BitMode]>;
1466 def : Pat<(store (i8 (trunc_su (srl_su GR16:$src, (i8 8)))), addr:$dst),
1467 (MOV8mr_NOREX
1468 addr:$dst,
1469 (EXTRACT_SUBREG (i16 (COPY_TO_REGCLASS GR16:$src, GR16_ABCD)),
1470 sub_8bit_hi))>,
1471 Requires<[In64BitMode]>;
1472
1473
1474 // (shl x, 1) ==> (add x, x)
1475 // Note that if x is undef (immediate or otherwise), we could theoretically
1476 // end up with the two uses of x getting different values, producing a result
1477 // where the least significant bit is not 0. However, the probability of this
1478 // happening is considered low enough that this is officially not a
1479 // "real problem".
1480 def : Pat<(shl GR8 :$src1, (i8 1)), (ADD8rr GR8 :$src1, GR8 :$src1)>;
1481 def : Pat<(shl GR16:$src1, (i8 1)), (ADD16rr GR16:$src1, GR16:$src1)>;
1482 def : Pat<(shl GR32:$src1, (i8 1)), (ADD32rr GR32:$src1, GR32:$src1)>;
1483 def : Pat<(shl GR64:$src1, (i8 1)), (ADD64rr GR64:$src1, GR64:$src1)>;
1484
1485 // Helper imms that check if a mask doesn't change significant shift bits.
1486 def immShift32 : ImmLeaf<i8, [{ return CountTrailingOnes_32(Imm) >= 5; }]>;
1487 def immShift64 : ImmLeaf<i8, [{ return CountTrailingOnes_32(Imm) >= 6; }]>;
1488
1489 // (shl x (and y, 31)) ==> (shl x, y)
1490 def : Pat<(shl GR8:$src1, (and CL, immShift32)),
1491 (SHL8rCL GR8:$src1)>;
1492 def : Pat<(shl GR16:$src1, (and CL, immShift32)),
1493 (SHL16rCL GR16:$src1)>;
1494 def : Pat<(shl GR32:$src1, (and CL, immShift32)),
1495 (SHL32rCL GR32:$src1)>;
1496 def : Pat<(store (shl (loadi8 addr:$dst), (and CL, immShift32)), addr:$dst),
1497 (SHL8mCL addr:$dst)>;
1498 def : Pat<(store (shl (loadi16 addr:$dst), (and CL, immShift32)), addr:$dst),
1499 (SHL16mCL addr:$dst)>;
1500 def : Pat<(store (shl (loadi32 addr:$dst), (and CL, immShift32)), addr:$dst),
1501 (SHL32mCL addr:$dst)>;
1502
1503 def : Pat<(srl GR8:$src1, (and CL, immShift32)),
1504 (SHR8rCL GR8:$src1)>;
1505 def : Pat<(srl GR16:$src1, (and CL, immShift32)),
1506 (SHR16rCL GR16:$src1)>;
1507 def : Pat<(srl GR32:$src1, (and CL, immShift32)),
1508 (SHR32rCL GR32:$src1)>;
1509 def : Pat<(store (srl (loadi8 addr:$dst), (and CL, immShift32)), addr:$dst),
1510 (SHR8mCL addr:$dst)>;
1511 def : Pat<(store (srl (loadi16 addr:$dst), (and CL, immShift32)), addr:$dst),
1512 (SHR16mCL addr:$dst)>;
1513 def : Pat<(store (srl (loadi32 addr:$dst), (and CL, immShift32)), addr:$dst),
1514 (SHR32mCL addr:$dst)>;
1515
1516 def : Pat<(sra GR8:$src1, (and CL, immShift32)),
1517 (SAR8rCL GR8:$src1)>;
1518 def : Pat<(sra GR16:$src1, (and CL, immShift32)),
1519 (SAR16rCL GR16:$src1)>;
1520 def : Pat<(sra GR32:$src1, (and CL, immShift32)),
1521 (SAR32rCL GR32:$src1)>;
1522 def : Pat<(store (sra (loadi8 addr:$dst), (and CL, immShift32)), addr:$dst),
1523 (SAR8mCL addr:$dst)>;
1524 def : Pat<(store (sra (loadi16 addr:$dst), (and CL, immShift32)), addr:$dst),
1525 (SAR16mCL addr:$dst)>;
1526 def : Pat<(store (sra (loadi32 addr:$dst), (and CL, immShift32)), addr:$dst),
1527 (SAR32mCL addr:$dst)>;
1528
1529 // (shl x (and y, 63)) ==> (shl x, y)
1530 def : Pat<(shl GR64:$src1, (and CL, immShift64)),
1531 (SHL64rCL GR64:$src1)>;
1532 def : Pat<(store (shl (loadi64 addr:$dst), (and CL, 63)), addr:$dst),
1533 (SHL64mCL addr:$dst)>;
1534
1535 def : Pat<(srl GR64:$src1, (and CL, immShift64)),
1536 (SHR64rCL GR64:$src1)>;
1537 def : Pat<(store (srl (loadi64 addr:$dst), (and CL, 63)), addr:$dst),
1538 (SHR64mCL addr:$dst)>;
1539
1540 def : Pat<(sra GR64:$src1, (and CL, immShift64)),
1541 (SAR64rCL GR64:$src1)>;
1542 def : Pat<(store (sra (loadi64 addr:$dst), (and CL, 63)), addr:$dst),
1543 (SAR64mCL addr:$dst)>;
1544
1545
1546 // (anyext (setcc_carry)) -> (setcc_carry)
1547 def : Pat<(i16 (anyext (i8 (X86setcc_c X86_COND_B, EFLAGS)))),
1548 (SETB_C16r)>;
1549 def : Pat<(i32 (anyext (i8 (X86setcc_c X86_COND_B, EFLAGS)))),
1550 (SETB_C32r)>;
1551 def : Pat<(i32 (anyext (i16 (X86setcc_c X86_COND_B, EFLAGS)))),
1552 (SETB_C32r)>;
1553
1554
1555
1556
1557 //===----------------------------------------------------------------------===//
1558 // EFLAGS-defining Patterns
1559 //===----------------------------------------------------------------------===//
1560
1561 // add reg, reg
1562 def : Pat<(add GR8 :$src1, GR8 :$src2), (ADD8rr GR8 :$src1, GR8 :$src2)>;
1563 def : Pat<(add GR16:$src1, GR16:$src2), (ADD16rr GR16:$src1, GR16:$src2)>;
1564 def : Pat<(add GR32:$src1, GR32:$src2), (ADD32rr GR32:$src1, GR32:$src2)>;
1565
1566 // add reg, mem
1567 def : Pat<(add GR8:$src1, (loadi8 addr:$src2)),
1568 (ADD8rm GR8:$src1, addr:$src2)>;
1569 def : Pat<(add GR16:$src1, (loadi16 addr:$src2)),
1570 (ADD16rm GR16:$src1, addr:$src2)>;
1571 def : Pat<(add GR32:$src1, (loadi32 addr:$src2)),
1572 (ADD32rm GR32:$src1, addr:$src2)>;
1573
1574 // add reg, imm
1575 def : Pat<(add GR8 :$src1, imm:$src2), (ADD8ri GR8:$src1 , imm:$src2)>;
1576 def : Pat<(add GR16:$src1, imm:$src2), (ADD16ri GR16:$src1, imm:$src2)>;
1577 def : Pat<(add GR32:$src1, imm:$src2), (ADD32ri GR32:$src1, imm:$src2)>;
1578 def : Pat<(add GR16:$src1, i16immSExt8:$src2),
1579 (ADD16ri8 GR16:$src1, i16immSExt8:$src2)>;
1580 def : Pat<(add GR32:$src1, i32immSExt8:$src2),
1581 (ADD32ri8 GR32:$src1, i32immSExt8:$src2)>;
1582
1583 // sub reg, reg
1584 def : Pat<(sub GR8 :$src1, GR8 :$src2), (SUB8rr GR8 :$src1, GR8 :$src2)>;
1585 def : Pat<(sub GR16:$src1, GR16:$src2), (SUB16rr GR16:$src1, GR16:$src2)>;
1586 def : Pat<(sub GR32:$src1, GR32:$src2), (SUB32rr GR32:$src1, GR32:$src2)>;
1587
1588 // sub reg, mem
1589 def : Pat<(sub GR8:$src1, (loadi8 addr:$src2)),
1590 (SUB8rm GR8:$src1, addr:$src2)>;
1591 def : Pat<(sub GR16:$src1, (loadi16 addr:$src2)),
1592 (SUB16rm GR16:$src1, addr:$src2)>;
1593 def : Pat<(sub GR32:$src1, (loadi32 addr:$src2)),
1594 (SUB32rm GR32:$src1, addr:$src2)>;
1595
1596 // sub reg, imm
1597 def : Pat<(sub GR8:$src1, imm:$src2),
1598 (SUB8ri GR8:$src1, imm:$src2)>;
1599 def : Pat<(sub GR16:$src1, imm:$src2),
1600 (SUB16ri GR16:$src1, imm:$src2)>;
1601 def : Pat<(sub GR32:$src1, imm:$src2),
1602 (SUB32ri GR32:$src1, imm:$src2)>;
1603 def : Pat<(sub GR16:$src1, i16immSExt8:$src2),
1604 (SUB16ri8 GR16:$src1, i16immSExt8:$src2)>;
1605 def : Pat<(sub GR32:$src1, i32immSExt8:$src2),
1606 (SUB32ri8 GR32:$src1, i32immSExt8:$src2)>;
1607
1608 // sub 0, reg
1609 def : Pat<(X86sub_flag 0, GR8 :$src), (NEG8r GR8 :$src)>;
1610 def : Pat<(X86sub_flag 0, GR16:$src), (NEG16r GR16:$src)>;
1611 def : Pat<(X86sub_flag 0, GR32:$src), (NEG32r GR32:$src)>;
1612 def : Pat<(X86sub_flag 0, GR64:$src), (NEG64r GR64:$src)>;
1613
1614 // mul reg, reg
1615 def : Pat<(mul GR16:$src1, GR16:$src2),
1616 (IMUL16rr GR16:$src1, GR16:$src2)>;
1617 def : Pat<(mul GR32:$src1, GR32:$src2),
1618 (IMUL32rr GR32:$src1, GR32:$src2)>;
1619
1620 // mul reg, mem
1621 def : Pat<(mul GR16:$src1, (loadi16 addr:$src2)),
1622 (IMUL16rm GR16:$src1, addr:$src2)>;
1623 def : Pat<(mul GR32:$src1, (loadi32 addr:$src2)),
1624 (IMUL32rm GR32:$src1, addr:$src2)>;
1625
1626 // mul reg, imm
1627 def : Pat<(mul GR16:$src1, imm:$src2),
1628 (IMUL16rri GR16:$src1, imm:$src2)>;
1629 def : Pat<(mul GR32:$src1, imm:$src2),
1630 (IMUL32rri GR32:$src1, imm:$src2)>;
1631 def : Pat<(mul GR16:$src1, i16immSExt8:$src2),
1632 (IMUL16rri8 GR16:$src1, i16immSExt8:$src2)>;
1633 def : Pat<(mul GR32:$src1, i32immSExt8:$src2),
1634 (IMUL32rri8 GR32:$src1, i32immSExt8:$src2)>;
1635
1636 // reg = mul mem, imm
1637 def : Pat<(mul (loadi16 addr:$src1), imm:$src2),
1638 (IMUL16rmi addr:$src1, imm:$src2)>;
1639 def : Pat<(mul (loadi32 addr:$src1), imm:$src2),
1640 (IMUL32rmi addr:$src1, imm:$src2)>;
1641 def : Pat<(mul (loadi16 addr:$src1), i16immSExt8:$src2),
1642 (IMUL16rmi8 addr:$src1, i16immSExt8:$src2)>;
1643 def : Pat<(mul (loadi32 addr:$src1), i32immSExt8:$src2),
1644 (IMUL32rmi8 addr:$src1, i32immSExt8:$src2)>;
1645
1646 // Patterns for nodes that do not produce flags, for instructions that do.
1647
1648 // addition
1649 def : Pat<(add GR64:$src1, GR64:$src2),
1650 (ADD64rr GR64:$src1, GR64:$src2)>;
1651 def : Pat<(add GR64:$src1, i64immSExt8:$src2),
1652 (ADD64ri8 GR64:$src1, i64immSExt8:$src2)>;
1653 def : Pat<(add GR64:$src1, i64immSExt32:$src2),
1654 (ADD64ri32 GR64:$src1, i64immSExt32:$src2)>;
1655 def : Pat<(add GR64:$src1, (loadi64 addr:$src2)),
1656 (ADD64rm GR64:$src1, addr:$src2)>;
1657
1658 // subtraction
1659 def : Pat<(sub GR64:$src1, GR64:$src2),
1660 (SUB64rr GR64:$src1, GR64:$src2)>;
1661 def : Pat<(sub GR64:$src1, (loadi64 addr:$src2)),
1662 (SUB64rm GR64:$src1, addr:$src2)>;
1663 def : Pat<(sub GR64:$src1, i64immSExt8:$src2),
1664 (SUB64ri8 GR64:$src1, i64immSExt8:$src2)>;
1665 def : Pat<(sub GR64:$src1, i64immSExt32:$src2),
1666 (SUB64ri32 GR64:$src1, i64immSExt32:$src2)>;
1667
1668 // Multiply
1669 def : Pat<(mul GR64:$src1, GR64:$src2),
1670 (IMUL64rr GR64:$src1, GR64:$src2)>;
1671 def : Pat<(mul GR64:$src1, (loadi64 addr:$src2)),
1672 (IMUL64rm GR64:$src1, addr:$src2)>;
1673 def : Pat<(mul GR64:$src1, i64immSExt8:$src2),
1674 (IMUL64rri8 GR64:$src1, i64immSExt8:$src2)>;
1675 def : Pat<(mul GR64:$src1, i64immSExt32:$src2),
1676 (IMUL64rri32 GR64:$src1, i64immSExt32:$src2)>;
1677 def : Pat<(mul (loadi64 addr:$src1), i64immSExt8:$src2),
1678 (IMUL64rmi8 addr:$src1, i64immSExt8:$src2)>;
1679 def : Pat<(mul (loadi64 addr:$src1), i64immSExt32:$src2),
1680 (IMUL64rmi32 addr:$src1, i64immSExt32:$src2)>;
1681
1682 // Increment reg.
1683 def : Pat<(add GR8 :$src, 1), (INC8r GR8 :$src)>;
1684 def : Pat<(add GR16:$src, 1), (INC16r GR16:$src)>, Requires<[In32BitMode]>;
1685 def : Pat<(add GR16:$src, 1), (INC64_16r GR16:$src)>, Requires<[In64BitMode]>;
1686 def : Pat<(add GR32:$src, 1), (INC32r GR32:$src)>, Requires<[In32BitMode]>;
1687 def : Pat<(add GR32:$src, 1), (INC64_32r GR32:$src)>, Requires<[In64BitMode]>;
1688 def : Pat<(add GR64:$src, 1), (INC64r GR64:$src)>;
1689
1690 // Decrement reg.
1691 def : Pat<(add GR8 :$src, -1), (DEC8r GR8 :$src)>;
1692 def : Pat<(add GR16:$src, -1), (DEC16r GR16:$src)>, Requires<[In32BitMode]>;
1693 def : Pat<(add GR16:$src, -1), (DEC64_16r GR16:$src)>, Requires<[In64BitMode]>;
1694 def : Pat<(add GR32:$src, -1), (DEC32r GR32:$src)>, Requires<[In32BitMode]>;
1695 def : Pat<(add GR32:$src, -1), (DEC64_32r GR32:$src)>, Requires<[In64BitMode]>;
1696 def : Pat<(add GR64:$src, -1), (DEC64r GR64:$src)>;
1697
1698 // or reg/reg.
1699 def : Pat<(or GR8 :$src1, GR8 :$src2), (OR8rr GR8 :$src1, GR8 :$src2)>;
1700 def : Pat<(or GR16:$src1, GR16:$src2), (OR16rr GR16:$src1, GR16:$src2)>;
1701 def : Pat<(or GR32:$src1, GR32:$src2), (OR32rr GR32:$src1, GR32:$src2)>;
1702 def : Pat<(or GR64:$src1, GR64:$src2), (OR64rr GR64:$src1, GR64:$src2)>;
1703
1704 // or reg/mem
1705 def : Pat<(or GR8:$src1, (loadi8 addr:$src2)),
1706 (OR8rm GR8:$src1, addr:$src2)>;
1707 def : Pat<(or GR16:$src1, (loadi16 addr:$src2)),
1708 (OR16rm GR16:$src1, addr:$src2)>;
1709 def : Pat<(or GR32:$src1, (loadi32 addr:$src2)),
1710 (OR32rm GR32:$src1, addr:$src2)>;
1711 def : Pat<(or GR64:$src1, (loadi64 addr:$src2)),
1712 (OR64rm GR64:$src1, addr:$src2)>;
1713
1714 // or reg/imm
1715 def : Pat<(or GR8:$src1 , imm:$src2), (OR8ri GR8 :$src1, imm:$src2)>;
1716 def : Pat<(or GR16:$src1, imm:$src2), (OR16ri GR16:$src1, imm:$src2)>;
1717 def : Pat<(or GR32:$src1, imm:$src2), (OR32ri GR32:$src1, imm:$src2)>;
1718 def : Pat<(or GR16:$src1, i16immSExt8:$src2),
1719 (OR16ri8 GR16:$src1, i16immSExt8:$src2)>;
1720 def : Pat<(or GR32:$src1, i32immSExt8:$src2),
1721 (OR32ri8 GR32:$src1, i32immSExt8:$src2)>;
1722 def : Pat<(or GR64:$src1, i64immSExt8:$src2),
1723 (OR64ri8 GR64:$src1, i64immSExt8:$src2)>;
1724 def : Pat<(or GR64:$src1, i64immSExt32:$src2),
1725 (OR64ri32 GR64:$src1, i64immSExt32:$src2)>;
1726
1727 // xor reg/reg
1728 def : Pat<(xor GR8 :$src1, GR8 :$src2), (XOR8rr GR8 :$src1, GR8 :$src2)>;
1729 def : Pat<(xor GR16:$src1, GR16:$src2), (XOR16rr GR16:$src1, GR16:$src2)>;
1730 def : Pat<(xor GR32:$src1, GR32:$src2), (XOR32rr GR32:$src1, GR32:$src2)>;
1731 def : Pat<(xor GR64:$src1, GR64:$src2), (XOR64rr GR64:$src1, GR64:$src2)>;
1732
1733 // xor reg/mem
1734 def : Pat<(xor GR8:$src1, (loadi8 addr:$src2)),
1735 (XOR8rm GR8:$src1, addr:$src2)>;
1736 def : Pat<(xor GR16:$src1, (loadi16 addr:$src2)),
1737 (XOR16rm GR16:$src1, addr:$src2)>;
1738 def : Pat<(xor GR32:$src1, (loadi32 addr:$src2)),
1739 (XOR32rm GR32:$src1, addr:$src2)>;
1740 def : Pat<(xor GR64:$src1, (loadi64 addr:$src2)),
1741 (XOR64rm GR64:$src1, addr:$src2)>;
1742
1743 // xor reg/imm
1744 def : Pat<(xor GR8:$src1, imm:$src2),
1745 (XOR8ri GR8:$src1, imm:$src2)>;
1746 def : Pat<(xor GR16:$src1, imm:$src2),
1747 (XOR16ri GR16:$src1, imm:$src2)>;
1748 def : Pat<(xor GR32:$src1, imm:$src2),
1749 (XOR32ri GR32:$src1, imm:$src2)>;
1750 def : Pat<(xor GR16:$src1, i16immSExt8:$src2),
1751 (XOR16ri8 GR16:$src1, i16immSExt8:$src2)>;
1752 def : Pat<(xor GR32:$src1, i32immSExt8:$src2),
1753 (XOR32ri8 GR32:$src1, i32immSExt8:$src2)>;
1754 def : Pat<(xor GR64:$src1, i64immSExt8:$src2),
1755 (XOR64ri8 GR64:$src1, i64immSExt8:$src2)>;
1756 def : Pat<(xor GR64:$src1, i64immSExt32:$src2),
1757 (XOR64ri32 GR64:$src1, i64immSExt32:$src2)>;
1758
1759 // and reg/reg
1760 def : Pat<(and GR8 :$src1, GR8 :$src2), (AND8rr GR8 :$src1, GR8 :$src2)>;
1761 def : Pat<(and GR16:$src1, GR16:$src2), (AND16rr GR16:$src1, GR16:$src2)>;
1762 def : Pat<(and GR32:$src1, GR32:$src2), (AND32rr GR32:$src1, GR32:$src2)>;
1763 def : Pat<(and GR64:$src1, GR64:$src2), (AND64rr GR64:$src1, GR64:$src2)>;
1764
1765 // and reg/mem
1766 def : Pat<(and GR8:$src1, (loadi8 addr:$src2)),
1767 (AND8rm GR8:$src1, addr:$src2)>;
1768 def : Pat<(and GR16:$src1, (loadi16 addr:$src2)),
1769 (AND16rm GR16:$src1, addr:$src2)>;
1770 def : Pat<(and GR32:$src1, (loadi32 addr:$src2)),
1771 (AND32rm GR32:$src1, addr:$src2)>;
1772 def : Pat<(and GR64:$src1, (loadi64 addr:$src2)),
1773 (AND64rm GR64:$src1, addr:$src2)>;
1774
1775 // and reg/imm
1776 def : Pat<(and GR8:$src1, imm:$src2),
1777 (AND8ri GR8:$src1, imm:$src2)>;
1778 def : Pat<(and GR16:$src1, imm:$src2),
1779 (AND16ri GR16:$src1, imm:$src2)>;
1780 def : Pat<(and GR32:$src1, imm:$src2),
1781 (AND32ri GR32:$src1, imm:$src2)>;
1782 def : Pat<(and GR16:$src1, i16immSExt8:$src2),
1783 (AND16ri8 GR16:$src1, i16immSExt8:$src2)>;
1784 def : Pat<(and GR32:$src1, i32immSExt8:$src2),
1785 (AND32ri8 GR32:$src1, i32immSExt8:$src2)>;
1786 def : Pat<(and GR64:$src1, i64immSExt8:$src2),
1787 (AND64ri8 GR64:$src1, i64immSExt8:$src2)>;
1788 def : Pat<(and GR64:$src1, i64immSExt32:$src2),
1789 (AND64ri32 GR64:$src1, i64immSExt32:$src2)>;
1790
1791 // Bit scan instruction patterns to match explicit zero-undef behavior.
1792 def : Pat<(cttz_zero_undef GR16:$src), (BSF16rr GR16:$src)>;
1793 def : Pat<(cttz_zero_undef GR32:$src), (BSF32rr GR32:$src)>;
1794 def : Pat<(cttz_zero_undef GR64:$src), (BSF64rr GR64:$src)>;
1795 def : Pat<(cttz_zero_undef (loadi16 addr:$src)), (BSF16rm addr:$src)>;
1796 def : Pat<(cttz_zero_undef (loadi32 addr:$src)), (BSF32rm addr:$src)>;
1797 def : Pat<(cttz_zero_undef (loadi64 addr:$src)), (BSF64rm addr:$src)>;