]> git.proxmox.com Git - rustc.git/blob - src/llvm/lib/Transforms/Utils/LCSSA.cpp
Imported Upstream version 0.6
[rustc.git] / src / llvm / lib / Transforms / Utils / LCSSA.cpp
1 //===-- LCSSA.cpp - Convert loops into loop-closed SSA form ---------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This pass transforms loops by placing phi nodes at the end of the loops for
11 // all values that are live across the loop boundary. For example, it turns
12 // the left into the right code:
13 //
14 // for (...) for (...)
15 // if (c) if (c)
16 // X1 = ... X1 = ...
17 // else else
18 // X2 = ... X2 = ...
19 // X3 = phi(X1, X2) X3 = phi(X1, X2)
20 // ... = X3 + 4 X4 = phi(X3)
21 // ... = X4 + 4
22 //
23 // This is still valid LLVM; the extra phi nodes are purely redundant, and will
24 // be trivially eliminated by InstCombine. The major benefit of this
25 // transformation is that it makes many other loop optimizations, such as
26 // LoopUnswitching, simpler.
27 //
28 //===----------------------------------------------------------------------===//
29
30 #define DEBUG_TYPE "lcssa"
31 #include "llvm/Transforms/Scalar.h"
32 #include "llvm/Constants.h"
33 #include "llvm/Pass.h"
34 #include "llvm/Function.h"
35 #include "llvm/Instructions.h"
36 #include "llvm/Analysis/Dominators.h"
37 #include "llvm/Analysis/LoopPass.h"
38 #include "llvm/Analysis/ScalarEvolution.h"
39 #include "llvm/Transforms/Utils/SSAUpdater.h"
40 #include "llvm/ADT/Statistic.h"
41 #include "llvm/ADT/STLExtras.h"
42 #include "llvm/Support/PredIteratorCache.h"
43 using namespace llvm;
44
45 STATISTIC(NumLCSSA, "Number of live out of a loop variables");
46
47 namespace {
48 struct LCSSA : public LoopPass {
49 static char ID; // Pass identification, replacement for typeid
50 LCSSA() : LoopPass(ID) {
51 initializeLCSSAPass(*PassRegistry::getPassRegistry());
52 }
53
54 // Cached analysis information for the current function.
55 DominatorTree *DT;
56 std::vector<BasicBlock*> LoopBlocks;
57 PredIteratorCache PredCache;
58 Loop *L;
59
60 virtual bool runOnLoop(Loop *L, LPPassManager &LPM);
61
62 /// This transformation requires natural loop information & requires that
63 /// loop preheaders be inserted into the CFG. It maintains both of these,
64 /// as well as the CFG. It also requires dominator information.
65 ///
66 virtual void getAnalysisUsage(AnalysisUsage &AU) const {
67 AU.setPreservesCFG();
68
69 AU.addRequired<DominatorTree>();
70 AU.addRequired<LoopInfo>();
71 AU.addPreservedID(LoopSimplifyID);
72 AU.addPreserved<ScalarEvolution>();
73 }
74 private:
75 bool ProcessInstruction(Instruction *Inst,
76 const SmallVectorImpl<BasicBlock*> &ExitBlocks);
77
78 /// verifyAnalysis() - Verify loop nest.
79 virtual void verifyAnalysis() const {
80 // Check the special guarantees that LCSSA makes.
81 assert(L->isLCSSAForm(*DT) && "LCSSA form not preserved!");
82 }
83
84 /// inLoop - returns true if the given block is within the current loop
85 bool inLoop(BasicBlock *B) const {
86 return std::binary_search(LoopBlocks.begin(), LoopBlocks.end(), B);
87 }
88 };
89 }
90
91 char LCSSA::ID = 0;
92 INITIALIZE_PASS_BEGIN(LCSSA, "lcssa", "Loop-Closed SSA Form Pass", false, false)
93 INITIALIZE_PASS_DEPENDENCY(DominatorTree)
94 INITIALIZE_PASS_DEPENDENCY(LoopInfo)
95 INITIALIZE_PASS_END(LCSSA, "lcssa", "Loop-Closed SSA Form Pass", false, false)
96
97 Pass *llvm::createLCSSAPass() { return new LCSSA(); }
98 char &llvm::LCSSAID = LCSSA::ID;
99
100
101 /// BlockDominatesAnExit - Return true if the specified block dominates at least
102 /// one of the blocks in the specified list.
103 static bool BlockDominatesAnExit(BasicBlock *BB,
104 const SmallVectorImpl<BasicBlock*> &ExitBlocks,
105 DominatorTree *DT) {
106 DomTreeNode *DomNode = DT->getNode(BB);
107 for (unsigned i = 0, e = ExitBlocks.size(); i != e; ++i)
108 if (DT->dominates(DomNode, DT->getNode(ExitBlocks[i])))
109 return true;
110
111 return false;
112 }
113
114
115 /// runOnFunction - Process all loops in the function, inner-most out.
116 bool LCSSA::runOnLoop(Loop *TheLoop, LPPassManager &LPM) {
117 L = TheLoop;
118
119 DT = &getAnalysis<DominatorTree>();
120
121 // Get the set of exiting blocks.
122 SmallVector<BasicBlock*, 8> ExitBlocks;
123 L->getExitBlocks(ExitBlocks);
124
125 if (ExitBlocks.empty())
126 return false;
127
128 // Speed up queries by creating a sorted vector of blocks.
129 LoopBlocks.clear();
130 LoopBlocks.insert(LoopBlocks.end(), L->block_begin(), L->block_end());
131 array_pod_sort(LoopBlocks.begin(), LoopBlocks.end());
132
133 // Look at all the instructions in the loop, checking to see if they have uses
134 // outside the loop. If so, rewrite those uses.
135 bool MadeChange = false;
136
137 for (Loop::block_iterator BBI = L->block_begin(), E = L->block_end();
138 BBI != E; ++BBI) {
139 BasicBlock *BB = *BBI;
140
141 // For large loops, avoid use-scanning by using dominance information: In
142 // particular, if a block does not dominate any of the loop exits, then none
143 // of the values defined in the block could be used outside the loop.
144 if (!BlockDominatesAnExit(BB, ExitBlocks, DT))
145 continue;
146
147 for (BasicBlock::iterator I = BB->begin(), E = BB->end();
148 I != E; ++I) {
149 // Reject two common cases fast: instructions with no uses (like stores)
150 // and instructions with one use that is in the same block as this.
151 if (I->use_empty() ||
152 (I->hasOneUse() && I->use_back()->getParent() == BB &&
153 !isa<PHINode>(I->use_back())))
154 continue;
155
156 MadeChange |= ProcessInstruction(I, ExitBlocks);
157 }
158 }
159
160 assert(L->isLCSSAForm(*DT));
161 PredCache.clear();
162
163 return MadeChange;
164 }
165
166 /// isExitBlock - Return true if the specified block is in the list.
167 static bool isExitBlock(BasicBlock *BB,
168 const SmallVectorImpl<BasicBlock*> &ExitBlocks) {
169 for (unsigned i = 0, e = ExitBlocks.size(); i != e; ++i)
170 if (ExitBlocks[i] == BB)
171 return true;
172 return false;
173 }
174
175 /// ProcessInstruction - Given an instruction in the loop, check to see if it
176 /// has any uses that are outside the current loop. If so, insert LCSSA PHI
177 /// nodes and rewrite the uses.
178 bool LCSSA::ProcessInstruction(Instruction *Inst,
179 const SmallVectorImpl<BasicBlock*> &ExitBlocks) {
180 SmallVector<Use*, 16> UsesToRewrite;
181
182 BasicBlock *InstBB = Inst->getParent();
183
184 for (Value::use_iterator UI = Inst->use_begin(), E = Inst->use_end();
185 UI != E; ++UI) {
186 User *U = *UI;
187 BasicBlock *UserBB = cast<Instruction>(U)->getParent();
188 if (PHINode *PN = dyn_cast<PHINode>(U))
189 UserBB = PN->getIncomingBlock(UI);
190
191 if (InstBB != UserBB && !inLoop(UserBB))
192 UsesToRewrite.push_back(&UI.getUse());
193 }
194
195 // If there are no uses outside the loop, exit with no change.
196 if (UsesToRewrite.empty()) return false;
197
198 ++NumLCSSA; // We are applying the transformation
199
200 // Invoke instructions are special in that their result value is not available
201 // along their unwind edge. The code below tests to see whether DomBB dominates
202 // the value, so adjust DomBB to the normal destination block, which is
203 // effectively where the value is first usable.
204 BasicBlock *DomBB = Inst->getParent();
205 if (InvokeInst *Inv = dyn_cast<InvokeInst>(Inst))
206 DomBB = Inv->getNormalDest();
207
208 DomTreeNode *DomNode = DT->getNode(DomBB);
209
210 SmallVector<PHINode*, 16> AddedPHIs;
211
212 SSAUpdater SSAUpdate;
213 SSAUpdate.Initialize(Inst->getType(), Inst->getName());
214
215 // Insert the LCSSA phi's into all of the exit blocks dominated by the
216 // value, and add them to the Phi's map.
217 for (SmallVectorImpl<BasicBlock*>::const_iterator BBI = ExitBlocks.begin(),
218 BBE = ExitBlocks.end(); BBI != BBE; ++BBI) {
219 BasicBlock *ExitBB = *BBI;
220 if (!DT->dominates(DomNode, DT->getNode(ExitBB))) continue;
221
222 // If we already inserted something for this BB, don't reprocess it.
223 if (SSAUpdate.HasValueForBlock(ExitBB)) continue;
224
225 PHINode *PN = PHINode::Create(Inst->getType(),
226 PredCache.GetNumPreds(ExitBB),
227 Inst->getName()+".lcssa",
228 ExitBB->begin());
229
230 // Add inputs from inside the loop for this PHI.
231 for (BasicBlock **PI = PredCache.GetPreds(ExitBB); *PI; ++PI) {
232 PN->addIncoming(Inst, *PI);
233
234 // If the exit block has a predecessor not within the loop, arrange for
235 // the incoming value use corresponding to that predecessor to be
236 // rewritten in terms of a different LCSSA PHI.
237 if (!inLoop(*PI))
238 UsesToRewrite.push_back(
239 &PN->getOperandUse(
240 PN->getOperandNumForIncomingValue(PN->getNumIncomingValues()-1)));
241 }
242
243 AddedPHIs.push_back(PN);
244
245 // Remember that this phi makes the value alive in this block.
246 SSAUpdate.AddAvailableValue(ExitBB, PN);
247 }
248
249 // Rewrite all uses outside the loop in terms of the new PHIs we just
250 // inserted.
251 for (unsigned i = 0, e = UsesToRewrite.size(); i != e; ++i) {
252 // If this use is in an exit block, rewrite to use the newly inserted PHI.
253 // This is required for correctness because SSAUpdate doesn't handle uses in
254 // the same block. It assumes the PHI we inserted is at the end of the
255 // block.
256 Instruction *User = cast<Instruction>(UsesToRewrite[i]->getUser());
257 BasicBlock *UserBB = User->getParent();
258 if (PHINode *PN = dyn_cast<PHINode>(User))
259 UserBB = PN->getIncomingBlock(*UsesToRewrite[i]);
260
261 if (isa<PHINode>(UserBB->begin()) &&
262 isExitBlock(UserBB, ExitBlocks)) {
263 UsesToRewrite[i]->set(UserBB->begin());
264 continue;
265 }
266
267 // Otherwise, do full PHI insertion.
268 SSAUpdate.RewriteUse(*UsesToRewrite[i]);
269 }
270
271 // Remove PHI nodes that did not have any uses rewritten.
272 for (unsigned i = 0, e = AddedPHIs.size(); i != e; ++i) {
273 if (AddedPHIs[i]->use_empty())
274 AddedPHIs[i]->eraseFromParent();
275 }
276
277 return true;
278 }
279