]> git.proxmox.com Git - rustc.git/blob - src/llvm/tools/clang/lib/Sema/JumpDiagnostics.cpp
Imported Upstream version 0.6
[rustc.git] / src / llvm / tools / clang / lib / Sema / JumpDiagnostics.cpp
1 //===--- JumpDiagnostics.cpp - Protected scope jump analysis ------*- C++ -*-=//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the JumpScopeChecker class, which is used to diagnose
11 // jumps that enter a protected scope in an invalid way.
12 //
13 //===----------------------------------------------------------------------===//
14
15 #include "clang/Sema/SemaInternal.h"
16 #include "clang/AST/DeclCXX.h"
17 #include "clang/AST/Expr.h"
18 #include "clang/AST/ExprCXX.h"
19 #include "clang/AST/StmtObjC.h"
20 #include "clang/AST/StmtCXX.h"
21 #include "llvm/ADT/BitVector.h"
22 using namespace clang;
23
24 namespace {
25
26 /// JumpScopeChecker - This object is used by Sema to diagnose invalid jumps
27 /// into VLA and other protected scopes. For example, this rejects:
28 /// goto L;
29 /// int a[n];
30 /// L:
31 ///
32 class JumpScopeChecker {
33 Sema &S;
34
35 /// GotoScope - This is a record that we use to keep track of all of the
36 /// scopes that are introduced by VLAs and other things that scope jumps like
37 /// gotos. This scope tree has nothing to do with the source scope tree,
38 /// because you can have multiple VLA scopes per compound statement, and most
39 /// compound statements don't introduce any scopes.
40 struct GotoScope {
41 /// ParentScope - The index in ScopeMap of the parent scope. This is 0 for
42 /// the parent scope is the function body.
43 unsigned ParentScope;
44
45 /// InDiag - The note to emit if there is a jump into this scope.
46 unsigned InDiag;
47
48 /// OutDiag - The note to emit if there is an indirect jump out
49 /// of this scope. Direct jumps always clean up their current scope
50 /// in an orderly way.
51 unsigned OutDiag;
52
53 /// Loc - Location to emit the diagnostic.
54 SourceLocation Loc;
55
56 GotoScope(unsigned parentScope, unsigned InDiag, unsigned OutDiag,
57 SourceLocation L)
58 : ParentScope(parentScope), InDiag(InDiag), OutDiag(OutDiag), Loc(L) {}
59 };
60
61 SmallVector<GotoScope, 48> Scopes;
62 llvm::DenseMap<Stmt*, unsigned> LabelAndGotoScopes;
63 SmallVector<Stmt*, 16> Jumps;
64
65 SmallVector<IndirectGotoStmt*, 4> IndirectJumps;
66 SmallVector<LabelDecl*, 4> IndirectJumpTargets;
67 public:
68 JumpScopeChecker(Stmt *Body, Sema &S);
69 private:
70 void BuildScopeInformation(Decl *D, unsigned &ParentScope);
71 void BuildScopeInformation(VarDecl *D, const BlockDecl *BDecl,
72 unsigned &ParentScope);
73 void BuildScopeInformation(Stmt *S, unsigned &origParentScope);
74
75 void VerifyJumps();
76 void VerifyIndirectJumps();
77 void NoteJumpIntoScopes(ArrayRef<unsigned> ToScopes);
78 void DiagnoseIndirectJump(IndirectGotoStmt *IG, unsigned IGScope,
79 LabelDecl *Target, unsigned TargetScope);
80 void CheckJump(Stmt *From, Stmt *To, SourceLocation DiagLoc,
81 unsigned JumpDiag, unsigned JumpDiagWarning,
82 unsigned JumpDiagCXX98Compat);
83
84 unsigned GetDeepestCommonScope(unsigned A, unsigned B);
85 };
86 } // end anonymous namespace
87
88
89 JumpScopeChecker::JumpScopeChecker(Stmt *Body, Sema &s) : S(s) {
90 // Add a scope entry for function scope.
91 Scopes.push_back(GotoScope(~0U, ~0U, ~0U, SourceLocation()));
92
93 // Build information for the top level compound statement, so that we have a
94 // defined scope record for every "goto" and label.
95 unsigned BodyParentScope = 0;
96 BuildScopeInformation(Body, BodyParentScope);
97
98 // Check that all jumps we saw are kosher.
99 VerifyJumps();
100 VerifyIndirectJumps();
101 }
102
103 /// GetDeepestCommonScope - Finds the innermost scope enclosing the
104 /// two scopes.
105 unsigned JumpScopeChecker::GetDeepestCommonScope(unsigned A, unsigned B) {
106 while (A != B) {
107 // Inner scopes are created after outer scopes and therefore have
108 // higher indices.
109 if (A < B) {
110 assert(Scopes[B].ParentScope < B);
111 B = Scopes[B].ParentScope;
112 } else {
113 assert(Scopes[A].ParentScope < A);
114 A = Scopes[A].ParentScope;
115 }
116 }
117 return A;
118 }
119
120 typedef std::pair<unsigned,unsigned> ScopePair;
121
122 /// GetDiagForGotoScopeDecl - If this decl induces a new goto scope, return a
123 /// diagnostic that should be emitted if control goes over it. If not, return 0.
124 static ScopePair GetDiagForGotoScopeDecl(ASTContext &Context, const Decl *D) {
125 if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
126 unsigned InDiag = 0, OutDiag = 0;
127 if (VD->getType()->isVariablyModifiedType())
128 InDiag = diag::note_protected_by_vla;
129
130 if (VD->hasAttr<BlocksAttr>())
131 return ScopePair(diag::note_protected_by___block,
132 diag::note_exits___block);
133
134 if (VD->hasAttr<CleanupAttr>())
135 return ScopePair(diag::note_protected_by_cleanup,
136 diag::note_exits_cleanup);
137
138 if (Context.getLangOpts().ObjCAutoRefCount && VD->hasLocalStorage()) {
139 switch (VD->getType().getObjCLifetime()) {
140 case Qualifiers::OCL_None:
141 case Qualifiers::OCL_ExplicitNone:
142 case Qualifiers::OCL_Autoreleasing:
143 break;
144
145 case Qualifiers::OCL_Strong:
146 case Qualifiers::OCL_Weak:
147 return ScopePair(diag::note_protected_by_objc_ownership,
148 diag::note_exits_objc_ownership);
149 }
150 }
151
152 if (Context.getLangOpts().CPlusPlus && VD->hasLocalStorage()) {
153 // C++11 [stmt.dcl]p3:
154 // A program that jumps from a point where a variable with automatic
155 // storage duration is not in scope to a point where it is in scope
156 // is ill-formed unless the variable has scalar type, class type with
157 // a trivial default constructor and a trivial destructor, a
158 // cv-qualified version of one of these types, or an array of one of
159 // the preceding types and is declared without an initializer.
160
161 // C++03 [stmt.dcl.p3:
162 // A program that jumps from a point where a local variable
163 // with automatic storage duration is not in scope to a point
164 // where it is in scope is ill-formed unless the variable has
165 // POD type and is declared without an initializer.
166
167 if (const Expr *init = VD->getInit()) {
168 // We actually give variables of record type (or array thereof)
169 // an initializer even if that initializer only calls a trivial
170 // ctor. Detect that case.
171 // FIXME: With generalized initializer lists, this may
172 // classify "X x{};" as having no initializer.
173 unsigned inDiagToUse = diag::note_protected_by_variable_init;
174
175 const CXXRecordDecl *record = 0;
176
177 if (const CXXConstructExpr *cce = dyn_cast<CXXConstructExpr>(init)) {
178 const CXXConstructorDecl *ctor = cce->getConstructor();
179 record = ctor->getParent();
180
181 if (ctor->isTrivial() && ctor->isDefaultConstructor()) {
182 if (!record->hasTrivialDestructor())
183 inDiagToUse = diag::note_protected_by_variable_nontriv_destructor;
184 else if (!record->isPOD())
185 inDiagToUse = diag::note_protected_by_variable_non_pod;
186 else
187 inDiagToUse = 0;
188 }
189 } else if (VD->getType()->isArrayType()) {
190 record = VD->getType()->getBaseElementTypeUnsafe()
191 ->getAsCXXRecordDecl();
192 }
193
194 if (inDiagToUse)
195 InDiag = inDiagToUse;
196
197 // Also object to indirect jumps which leave scopes with dtors.
198 if (record && !record->hasTrivialDestructor())
199 OutDiag = diag::note_exits_dtor;
200 }
201 }
202
203 return ScopePair(InDiag, OutDiag);
204 }
205
206 if (const TypedefDecl *TD = dyn_cast<TypedefDecl>(D)) {
207 if (TD->getUnderlyingType()->isVariablyModifiedType())
208 return ScopePair(diag::note_protected_by_vla_typedef, 0);
209 }
210
211 if (const TypeAliasDecl *TD = dyn_cast<TypeAliasDecl>(D)) {
212 if (TD->getUnderlyingType()->isVariablyModifiedType())
213 return ScopePair(diag::note_protected_by_vla_type_alias, 0);
214 }
215
216 return ScopePair(0U, 0U);
217 }
218
219 /// \brief Build scope information for a declaration that is part of a DeclStmt.
220 void JumpScopeChecker::BuildScopeInformation(Decl *D, unsigned &ParentScope) {
221 // If this decl causes a new scope, push and switch to it.
222 std::pair<unsigned,unsigned> Diags = GetDiagForGotoScopeDecl(S.Context, D);
223 if (Diags.first || Diags.second) {
224 Scopes.push_back(GotoScope(ParentScope, Diags.first, Diags.second,
225 D->getLocation()));
226 ParentScope = Scopes.size()-1;
227 }
228
229 // If the decl has an initializer, walk it with the potentially new
230 // scope we just installed.
231 if (VarDecl *VD = dyn_cast<VarDecl>(D))
232 if (Expr *Init = VD->getInit())
233 BuildScopeInformation(Init, ParentScope);
234 }
235
236 /// \brief Build scope information for a captured block literal variables.
237 void JumpScopeChecker::BuildScopeInformation(VarDecl *D,
238 const BlockDecl *BDecl,
239 unsigned &ParentScope) {
240 // exclude captured __block variables; there's no destructor
241 // associated with the block literal for them.
242 if (D->hasAttr<BlocksAttr>())
243 return;
244 QualType T = D->getType();
245 QualType::DestructionKind destructKind = T.isDestructedType();
246 if (destructKind != QualType::DK_none) {
247 std::pair<unsigned,unsigned> Diags;
248 switch (destructKind) {
249 case QualType::DK_cxx_destructor:
250 Diags = ScopePair(diag::note_enters_block_captures_cxx_obj,
251 diag::note_exits_block_captures_cxx_obj);
252 break;
253 case QualType::DK_objc_strong_lifetime:
254 Diags = ScopePair(diag::note_enters_block_captures_strong,
255 diag::note_exits_block_captures_strong);
256 break;
257 case QualType::DK_objc_weak_lifetime:
258 Diags = ScopePair(diag::note_enters_block_captures_weak,
259 diag::note_exits_block_captures_weak);
260 break;
261 case QualType::DK_none:
262 llvm_unreachable("non-lifetime captured variable");
263 }
264 SourceLocation Loc = D->getLocation();
265 if (Loc.isInvalid())
266 Loc = BDecl->getLocation();
267 Scopes.push_back(GotoScope(ParentScope,
268 Diags.first, Diags.second, Loc));
269 ParentScope = Scopes.size()-1;
270 }
271 }
272
273 /// BuildScopeInformation - The statements from CI to CE are known to form a
274 /// coherent VLA scope with a specified parent node. Walk through the
275 /// statements, adding any labels or gotos to LabelAndGotoScopes and recursively
276 /// walking the AST as needed.
277 void JumpScopeChecker::BuildScopeInformation(Stmt *S, unsigned &origParentScope) {
278 // If this is a statement, rather than an expression, scopes within it don't
279 // propagate out into the enclosing scope. Otherwise we have to worry
280 // about block literals, which have the lifetime of their enclosing statement.
281 unsigned independentParentScope = origParentScope;
282 unsigned &ParentScope = ((isa<Expr>(S) && !isa<StmtExpr>(S))
283 ? origParentScope : independentParentScope);
284
285 bool SkipFirstSubStmt = false;
286
287 // If we found a label, remember that it is in ParentScope scope.
288 switch (S->getStmtClass()) {
289 case Stmt::AddrLabelExprClass:
290 IndirectJumpTargets.push_back(cast<AddrLabelExpr>(S)->getLabel());
291 break;
292
293 case Stmt::IndirectGotoStmtClass:
294 // "goto *&&lbl;" is a special case which we treat as equivalent
295 // to a normal goto. In addition, we don't calculate scope in the
296 // operand (to avoid recording the address-of-label use), which
297 // works only because of the restricted set of expressions which
298 // we detect as constant targets.
299 if (cast<IndirectGotoStmt>(S)->getConstantTarget()) {
300 LabelAndGotoScopes[S] = ParentScope;
301 Jumps.push_back(S);
302 return;
303 }
304
305 LabelAndGotoScopes[S] = ParentScope;
306 IndirectJumps.push_back(cast<IndirectGotoStmt>(S));
307 break;
308
309 case Stmt::SwitchStmtClass:
310 // Evaluate the condition variable before entering the scope of the switch
311 // statement.
312 if (VarDecl *Var = cast<SwitchStmt>(S)->getConditionVariable()) {
313 BuildScopeInformation(Var, ParentScope);
314 SkipFirstSubStmt = true;
315 }
316 // Fall through
317
318 case Stmt::GotoStmtClass:
319 // Remember both what scope a goto is in as well as the fact that we have
320 // it. This makes the second scan not have to walk the AST again.
321 LabelAndGotoScopes[S] = ParentScope;
322 Jumps.push_back(S);
323 break;
324
325 default:
326 break;
327 }
328
329 for (Stmt::child_range CI = S->children(); CI; ++CI) {
330 if (SkipFirstSubStmt) {
331 SkipFirstSubStmt = false;
332 continue;
333 }
334
335 Stmt *SubStmt = *CI;
336 if (SubStmt == 0) continue;
337
338 // Cases, labels, and defaults aren't "scope parents". It's also
339 // important to handle these iteratively instead of recursively in
340 // order to avoid blowing out the stack.
341 while (true) {
342 Stmt *Next;
343 if (CaseStmt *CS = dyn_cast<CaseStmt>(SubStmt))
344 Next = CS->getSubStmt();
345 else if (DefaultStmt *DS = dyn_cast<DefaultStmt>(SubStmt))
346 Next = DS->getSubStmt();
347 else if (LabelStmt *LS = dyn_cast<LabelStmt>(SubStmt))
348 Next = LS->getSubStmt();
349 else
350 break;
351
352 LabelAndGotoScopes[SubStmt] = ParentScope;
353 SubStmt = Next;
354 }
355
356 // If this is a declstmt with a VLA definition, it defines a scope from here
357 // to the end of the containing context.
358 if (DeclStmt *DS = dyn_cast<DeclStmt>(SubStmt)) {
359 // The decl statement creates a scope if any of the decls in it are VLAs
360 // or have the cleanup attribute.
361 for (DeclStmt::decl_iterator I = DS->decl_begin(), E = DS->decl_end();
362 I != E; ++I)
363 BuildScopeInformation(*I, ParentScope);
364 continue;
365 }
366 // Disallow jumps into any part of an @try statement by pushing a scope and
367 // walking all sub-stmts in that scope.
368 if (ObjCAtTryStmt *AT = dyn_cast<ObjCAtTryStmt>(SubStmt)) {
369 unsigned newParentScope;
370 // Recursively walk the AST for the @try part.
371 Scopes.push_back(GotoScope(ParentScope,
372 diag::note_protected_by_objc_try,
373 diag::note_exits_objc_try,
374 AT->getAtTryLoc()));
375 if (Stmt *TryPart = AT->getTryBody())
376 BuildScopeInformation(TryPart, (newParentScope = Scopes.size()-1));
377
378 // Jump from the catch to the finally or try is not valid.
379 for (unsigned I = 0, N = AT->getNumCatchStmts(); I != N; ++I) {
380 ObjCAtCatchStmt *AC = AT->getCatchStmt(I);
381 Scopes.push_back(GotoScope(ParentScope,
382 diag::note_protected_by_objc_catch,
383 diag::note_exits_objc_catch,
384 AC->getAtCatchLoc()));
385 // @catches are nested and it isn't
386 BuildScopeInformation(AC->getCatchBody(),
387 (newParentScope = Scopes.size()-1));
388 }
389
390 // Jump from the finally to the try or catch is not valid.
391 if (ObjCAtFinallyStmt *AF = AT->getFinallyStmt()) {
392 Scopes.push_back(GotoScope(ParentScope,
393 diag::note_protected_by_objc_finally,
394 diag::note_exits_objc_finally,
395 AF->getAtFinallyLoc()));
396 BuildScopeInformation(AF, (newParentScope = Scopes.size()-1));
397 }
398
399 continue;
400 }
401
402 unsigned newParentScope;
403 // Disallow jumps into the protected statement of an @synchronized, but
404 // allow jumps into the object expression it protects.
405 if (ObjCAtSynchronizedStmt *AS = dyn_cast<ObjCAtSynchronizedStmt>(SubStmt)){
406 // Recursively walk the AST for the @synchronized object expr, it is
407 // evaluated in the normal scope.
408 BuildScopeInformation(AS->getSynchExpr(), ParentScope);
409
410 // Recursively walk the AST for the @synchronized part, protected by a new
411 // scope.
412 Scopes.push_back(GotoScope(ParentScope,
413 diag::note_protected_by_objc_synchronized,
414 diag::note_exits_objc_synchronized,
415 AS->getAtSynchronizedLoc()));
416 BuildScopeInformation(AS->getSynchBody(),
417 (newParentScope = Scopes.size()-1));
418 continue;
419 }
420
421 // Disallow jumps into any part of a C++ try statement. This is pretty
422 // much the same as for Obj-C.
423 if (CXXTryStmt *TS = dyn_cast<CXXTryStmt>(SubStmt)) {
424 Scopes.push_back(GotoScope(ParentScope,
425 diag::note_protected_by_cxx_try,
426 diag::note_exits_cxx_try,
427 TS->getSourceRange().getBegin()));
428 if (Stmt *TryBlock = TS->getTryBlock())
429 BuildScopeInformation(TryBlock, (newParentScope = Scopes.size()-1));
430
431 // Jump from the catch into the try is not allowed either.
432 for (unsigned I = 0, E = TS->getNumHandlers(); I != E; ++I) {
433 CXXCatchStmt *CS = TS->getHandler(I);
434 Scopes.push_back(GotoScope(ParentScope,
435 diag::note_protected_by_cxx_catch,
436 diag::note_exits_cxx_catch,
437 CS->getSourceRange().getBegin()));
438 BuildScopeInformation(CS->getHandlerBlock(),
439 (newParentScope = Scopes.size()-1));
440 }
441
442 continue;
443 }
444
445 // Disallow jumps into the protected statement of an @autoreleasepool.
446 if (ObjCAutoreleasePoolStmt *AS = dyn_cast<ObjCAutoreleasePoolStmt>(SubStmt)){
447 // Recursively walk the AST for the @autoreleasepool part, protected by a new
448 // scope.
449 Scopes.push_back(GotoScope(ParentScope,
450 diag::note_protected_by_objc_autoreleasepool,
451 diag::note_exits_objc_autoreleasepool,
452 AS->getAtLoc()));
453 BuildScopeInformation(AS->getSubStmt(), (newParentScope = Scopes.size()-1));
454 continue;
455 }
456
457 // Disallow jumps past full-expressions that use blocks with
458 // non-trivial cleanups of their captures. This is theoretically
459 // implementable but a lot of work which we haven't felt up to doing.
460 if (ExprWithCleanups *EWC = dyn_cast<ExprWithCleanups>(SubStmt)) {
461 for (unsigned i = 0, e = EWC->getNumObjects(); i != e; ++i) {
462 const BlockDecl *BDecl = EWC->getObject(i);
463 for (BlockDecl::capture_const_iterator ci = BDecl->capture_begin(),
464 ce = BDecl->capture_end(); ci != ce; ++ci) {
465 VarDecl *variable = ci->getVariable();
466 BuildScopeInformation(variable, BDecl, ParentScope);
467 }
468 }
469 }
470
471 // Recursively walk the AST.
472 BuildScopeInformation(SubStmt, ParentScope);
473 }
474 }
475
476 /// VerifyJumps - Verify each element of the Jumps array to see if they are
477 /// valid, emitting diagnostics if not.
478 void JumpScopeChecker::VerifyJumps() {
479 while (!Jumps.empty()) {
480 Stmt *Jump = Jumps.pop_back_val();
481
482 // With a goto,
483 if (GotoStmt *GS = dyn_cast<GotoStmt>(Jump)) {
484 CheckJump(GS, GS->getLabel()->getStmt(), GS->getGotoLoc(),
485 diag::err_goto_into_protected_scope,
486 diag::warn_goto_into_protected_scope,
487 diag::warn_cxx98_compat_goto_into_protected_scope);
488 continue;
489 }
490
491 // We only get indirect gotos here when they have a constant target.
492 if (IndirectGotoStmt *IGS = dyn_cast<IndirectGotoStmt>(Jump)) {
493 LabelDecl *Target = IGS->getConstantTarget();
494 CheckJump(IGS, Target->getStmt(), IGS->getGotoLoc(),
495 diag::err_goto_into_protected_scope,
496 diag::warn_goto_into_protected_scope,
497 diag::warn_cxx98_compat_goto_into_protected_scope);
498 continue;
499 }
500
501 SwitchStmt *SS = cast<SwitchStmt>(Jump);
502 for (SwitchCase *SC = SS->getSwitchCaseList(); SC;
503 SC = SC->getNextSwitchCase()) {
504 assert(LabelAndGotoScopes.count(SC) && "Case not visited?");
505 CheckJump(SS, SC, SC->getLocStart(),
506 diag::err_switch_into_protected_scope, 0,
507 diag::warn_cxx98_compat_switch_into_protected_scope);
508 }
509 }
510 }
511
512 /// VerifyIndirectJumps - Verify whether any possible indirect jump
513 /// might cross a protection boundary. Unlike direct jumps, indirect
514 /// jumps count cleanups as protection boundaries: since there's no
515 /// way to know where the jump is going, we can't implicitly run the
516 /// right cleanups the way we can with direct jumps.
517 ///
518 /// Thus, an indirect jump is "trivial" if it bypasses no
519 /// initializations and no teardowns. More formally, an indirect jump
520 /// from A to B is trivial if the path out from A to DCA(A,B) is
521 /// trivial and the path in from DCA(A,B) to B is trivial, where
522 /// DCA(A,B) is the deepest common ancestor of A and B.
523 /// Jump-triviality is transitive but asymmetric.
524 ///
525 /// A path in is trivial if none of the entered scopes have an InDiag.
526 /// A path out is trivial is none of the exited scopes have an OutDiag.
527 ///
528 /// Under these definitions, this function checks that the indirect
529 /// jump between A and B is trivial for every indirect goto statement A
530 /// and every label B whose address was taken in the function.
531 void JumpScopeChecker::VerifyIndirectJumps() {
532 if (IndirectJumps.empty()) return;
533
534 // If there aren't any address-of-label expressions in this function,
535 // complain about the first indirect goto.
536 if (IndirectJumpTargets.empty()) {
537 S.Diag(IndirectJumps[0]->getGotoLoc(),
538 diag::err_indirect_goto_without_addrlabel);
539 return;
540 }
541
542 // Collect a single representative of every scope containing an
543 // indirect goto. For most code bases, this substantially cuts
544 // down on the number of jump sites we'll have to consider later.
545 typedef std::pair<unsigned, IndirectGotoStmt*> JumpScope;
546 SmallVector<JumpScope, 32> JumpScopes;
547 {
548 llvm::DenseMap<unsigned, IndirectGotoStmt*> JumpScopesMap;
549 for (SmallVectorImpl<IndirectGotoStmt*>::iterator
550 I = IndirectJumps.begin(), E = IndirectJumps.end(); I != E; ++I) {
551 IndirectGotoStmt *IG = *I;
552 assert(LabelAndGotoScopes.count(IG) &&
553 "indirect jump didn't get added to scopes?");
554 unsigned IGScope = LabelAndGotoScopes[IG];
555 IndirectGotoStmt *&Entry = JumpScopesMap[IGScope];
556 if (!Entry) Entry = IG;
557 }
558 JumpScopes.reserve(JumpScopesMap.size());
559 for (llvm::DenseMap<unsigned, IndirectGotoStmt*>::iterator
560 I = JumpScopesMap.begin(), E = JumpScopesMap.end(); I != E; ++I)
561 JumpScopes.push_back(*I);
562 }
563
564 // Collect a single representative of every scope containing a
565 // label whose address was taken somewhere in the function.
566 // For most code bases, there will be only one such scope.
567 llvm::DenseMap<unsigned, LabelDecl*> TargetScopes;
568 for (SmallVectorImpl<LabelDecl*>::iterator
569 I = IndirectJumpTargets.begin(), E = IndirectJumpTargets.end();
570 I != E; ++I) {
571 LabelDecl *TheLabel = *I;
572 assert(LabelAndGotoScopes.count(TheLabel->getStmt()) &&
573 "Referenced label didn't get added to scopes?");
574 unsigned LabelScope = LabelAndGotoScopes[TheLabel->getStmt()];
575 LabelDecl *&Target = TargetScopes[LabelScope];
576 if (!Target) Target = TheLabel;
577 }
578
579 // For each target scope, make sure it's trivially reachable from
580 // every scope containing a jump site.
581 //
582 // A path between scopes always consists of exitting zero or more
583 // scopes, then entering zero or more scopes. We build a set of
584 // of scopes S from which the target scope can be trivially
585 // entered, then verify that every jump scope can be trivially
586 // exitted to reach a scope in S.
587 llvm::BitVector Reachable(Scopes.size(), false);
588 for (llvm::DenseMap<unsigned,LabelDecl*>::iterator
589 TI = TargetScopes.begin(), TE = TargetScopes.end(); TI != TE; ++TI) {
590 unsigned TargetScope = TI->first;
591 LabelDecl *TargetLabel = TI->second;
592
593 Reachable.reset();
594
595 // Mark all the enclosing scopes from which you can safely jump
596 // into the target scope. 'Min' will end up being the index of
597 // the shallowest such scope.
598 unsigned Min = TargetScope;
599 while (true) {
600 Reachable.set(Min);
601
602 // Don't go beyond the outermost scope.
603 if (Min == 0) break;
604
605 // Stop if we can't trivially enter the current scope.
606 if (Scopes[Min].InDiag) break;
607
608 Min = Scopes[Min].ParentScope;
609 }
610
611 // Walk through all the jump sites, checking that they can trivially
612 // reach this label scope.
613 for (SmallVectorImpl<JumpScope>::iterator
614 I = JumpScopes.begin(), E = JumpScopes.end(); I != E; ++I) {
615 unsigned Scope = I->first;
616
617 // Walk out the "scope chain" for this scope, looking for a scope
618 // we've marked reachable. For well-formed code this amortizes
619 // to O(JumpScopes.size() / Scopes.size()): we only iterate
620 // when we see something unmarked, and in well-formed code we
621 // mark everything we iterate past.
622 bool IsReachable = false;
623 while (true) {
624 if (Reachable.test(Scope)) {
625 // If we find something reachable, mark all the scopes we just
626 // walked through as reachable.
627 for (unsigned S = I->first; S != Scope; S = Scopes[S].ParentScope)
628 Reachable.set(S);
629 IsReachable = true;
630 break;
631 }
632
633 // Don't walk out if we've reached the top-level scope or we've
634 // gotten shallower than the shallowest reachable scope.
635 if (Scope == 0 || Scope < Min) break;
636
637 // Don't walk out through an out-diagnostic.
638 if (Scopes[Scope].OutDiag) break;
639
640 Scope = Scopes[Scope].ParentScope;
641 }
642
643 // Only diagnose if we didn't find something.
644 if (IsReachable) continue;
645
646 DiagnoseIndirectJump(I->second, I->first, TargetLabel, TargetScope);
647 }
648 }
649 }
650
651 /// Return true if a particular error+note combination must be downgraded to a
652 /// warning in Microsoft mode.
653 static bool IsMicrosoftJumpWarning(unsigned JumpDiag, unsigned InDiagNote) {
654 return (JumpDiag == diag::err_goto_into_protected_scope &&
655 (InDiagNote == diag::note_protected_by_variable_init ||
656 InDiagNote == diag::note_protected_by_variable_nontriv_destructor));
657 }
658
659 /// Return true if a particular note should be downgraded to a compatibility
660 /// warning in C++11 mode.
661 static bool IsCXX98CompatWarning(Sema &S, unsigned InDiagNote) {
662 return S.getLangOpts().CPlusPlus0x &&
663 InDiagNote == diag::note_protected_by_variable_non_pod;
664 }
665
666 /// Produce primary diagnostic for an indirect jump statement.
667 static void DiagnoseIndirectJumpStmt(Sema &S, IndirectGotoStmt *Jump,
668 LabelDecl *Target, bool &Diagnosed) {
669 if (Diagnosed)
670 return;
671 S.Diag(Jump->getGotoLoc(), diag::err_indirect_goto_in_protected_scope);
672 S.Diag(Target->getStmt()->getIdentLoc(), diag::note_indirect_goto_target);
673 Diagnosed = true;
674 }
675
676 /// Produce note diagnostics for a jump into a protected scope.
677 void JumpScopeChecker::NoteJumpIntoScopes(ArrayRef<unsigned> ToScopes) {
678 assert(!ToScopes.empty());
679 for (unsigned I = 0, E = ToScopes.size(); I != E; ++I)
680 if (Scopes[ToScopes[I]].InDiag)
681 S.Diag(Scopes[ToScopes[I]].Loc, Scopes[ToScopes[I]].InDiag);
682 }
683
684 /// Diagnose an indirect jump which is known to cross scopes.
685 void JumpScopeChecker::DiagnoseIndirectJump(IndirectGotoStmt *Jump,
686 unsigned JumpScope,
687 LabelDecl *Target,
688 unsigned TargetScope) {
689 assert(JumpScope != TargetScope);
690
691 unsigned Common = GetDeepestCommonScope(JumpScope, TargetScope);
692 bool Diagnosed = false;
693
694 // Walk out the scope chain until we reach the common ancestor.
695 for (unsigned I = JumpScope; I != Common; I = Scopes[I].ParentScope)
696 if (Scopes[I].OutDiag) {
697 DiagnoseIndirectJumpStmt(S, Jump, Target, Diagnosed);
698 S.Diag(Scopes[I].Loc, Scopes[I].OutDiag);
699 }
700
701 SmallVector<unsigned, 10> ToScopesCXX98Compat;
702
703 // Now walk into the scopes containing the label whose address was taken.
704 for (unsigned I = TargetScope; I != Common; I = Scopes[I].ParentScope)
705 if (IsCXX98CompatWarning(S, Scopes[I].InDiag))
706 ToScopesCXX98Compat.push_back(I);
707 else if (Scopes[I].InDiag) {
708 DiagnoseIndirectJumpStmt(S, Jump, Target, Diagnosed);
709 S.Diag(Scopes[I].Loc, Scopes[I].InDiag);
710 }
711
712 // Diagnose this jump if it would be ill-formed in C++98.
713 if (!Diagnosed && !ToScopesCXX98Compat.empty()) {
714 S.Diag(Jump->getGotoLoc(),
715 diag::warn_cxx98_compat_indirect_goto_in_protected_scope);
716 S.Diag(Target->getStmt()->getIdentLoc(), diag::note_indirect_goto_target);
717 NoteJumpIntoScopes(ToScopesCXX98Compat);
718 }
719 }
720
721 /// CheckJump - Validate that the specified jump statement is valid: that it is
722 /// jumping within or out of its current scope, not into a deeper one.
723 void JumpScopeChecker::CheckJump(Stmt *From, Stmt *To, SourceLocation DiagLoc,
724 unsigned JumpDiagError, unsigned JumpDiagWarning,
725 unsigned JumpDiagCXX98Compat) {
726 assert(LabelAndGotoScopes.count(From) && "Jump didn't get added to scopes?");
727 unsigned FromScope = LabelAndGotoScopes[From];
728
729 assert(LabelAndGotoScopes.count(To) && "Jump didn't get added to scopes?");
730 unsigned ToScope = LabelAndGotoScopes[To];
731
732 // Common case: exactly the same scope, which is fine.
733 if (FromScope == ToScope) return;
734
735 unsigned CommonScope = GetDeepestCommonScope(FromScope, ToScope);
736
737 // It's okay to jump out from a nested scope.
738 if (CommonScope == ToScope) return;
739
740 // Pull out (and reverse) any scopes we might need to diagnose skipping.
741 SmallVector<unsigned, 10> ToScopesCXX98Compat;
742 SmallVector<unsigned, 10> ToScopesError;
743 SmallVector<unsigned, 10> ToScopesWarning;
744 for (unsigned I = ToScope; I != CommonScope; I = Scopes[I].ParentScope) {
745 if (S.getLangOpts().MicrosoftMode && JumpDiagWarning != 0 &&
746 IsMicrosoftJumpWarning(JumpDiagError, Scopes[I].InDiag))
747 ToScopesWarning.push_back(I);
748 else if (IsCXX98CompatWarning(S, Scopes[I].InDiag))
749 ToScopesCXX98Compat.push_back(I);
750 else if (Scopes[I].InDiag)
751 ToScopesError.push_back(I);
752 }
753
754 // Handle warnings.
755 if (!ToScopesWarning.empty()) {
756 S.Diag(DiagLoc, JumpDiagWarning);
757 NoteJumpIntoScopes(ToScopesWarning);
758 }
759
760 // Handle errors.
761 if (!ToScopesError.empty()) {
762 S.Diag(DiagLoc, JumpDiagError);
763 NoteJumpIntoScopes(ToScopesError);
764 }
765
766 // Handle -Wc++98-compat warnings if the jump is well-formed.
767 if (ToScopesError.empty() && !ToScopesCXX98Compat.empty()) {
768 S.Diag(DiagLoc, JumpDiagCXX98Compat);
769 NoteJumpIntoScopes(ToScopesCXX98Compat);
770 }
771 }
772
773 void Sema::DiagnoseInvalidJumps(Stmt *Body) {
774 (void)JumpScopeChecker(Body, *this);
775 }