]> git.proxmox.com Git - rustc.git/blob - src/llvm/tools/clang/lib/StaticAnalyzer/Core/BugReporter.cpp
Imported Upstream version 0.6
[rustc.git] / src / llvm / tools / clang / lib / StaticAnalyzer / Core / BugReporter.cpp
1 // BugReporter.cpp - Generate PathDiagnostics for Bugs ------------*- C++ -*--//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file defines BugReporter, a utility class for generating
11 // PathDiagnostics.
12 //
13 //===----------------------------------------------------------------------===//
14
15 #include "clang/StaticAnalyzer/Core/BugReporter/BugReporter.h"
16 #include "clang/StaticAnalyzer/Core/BugReporter/BugType.h"
17 #include "clang/StaticAnalyzer/Core/PathSensitive/ExprEngine.h"
18 #include "clang/AST/ASTContext.h"
19 #include "clang/Analysis/CFG.h"
20 #include "clang/AST/DeclObjC.h"
21 #include "clang/AST/Expr.h"
22 #include "clang/AST/ParentMap.h"
23 #include "clang/AST/StmtObjC.h"
24 #include "clang/Basic/SourceManager.h"
25 #include "clang/Analysis/ProgramPoint.h"
26 #include "clang/StaticAnalyzer/Core/BugReporter/PathDiagnostic.h"
27 #include "llvm/Support/raw_ostream.h"
28 #include "llvm/ADT/DenseMap.h"
29 #include "llvm/ADT/SmallString.h"
30 #include "llvm/ADT/STLExtras.h"
31 #include "llvm/ADT/OwningPtr.h"
32 #include "llvm/ADT/IntrusiveRefCntPtr.h"
33 #include <queue>
34
35 using namespace clang;
36 using namespace ento;
37
38 BugReporterVisitor::~BugReporterVisitor() {}
39
40 void BugReporterContext::anchor() {}
41
42 //===----------------------------------------------------------------------===//
43 // Helper routines for walking the ExplodedGraph and fetching statements.
44 //===----------------------------------------------------------------------===//
45
46 static inline const Stmt *GetStmt(const ProgramPoint &P) {
47 if (const StmtPoint* SP = dyn_cast<StmtPoint>(&P))
48 return SP->getStmt();
49 else if (const BlockEdge *BE = dyn_cast<BlockEdge>(&P))
50 return BE->getSrc()->getTerminator();
51 else if (const CallEnter *CE = dyn_cast<CallEnter>(&P))
52 return CE->getCallExpr();
53 else if (const CallExitEnd *CEE = dyn_cast<CallExitEnd>(&P))
54 return CEE->getCalleeContext()->getCallSite();
55
56 return 0;
57 }
58
59 static inline const ExplodedNode*
60 GetPredecessorNode(const ExplodedNode *N) {
61 return N->pred_empty() ? NULL : *(N->pred_begin());
62 }
63
64 static inline const ExplodedNode*
65 GetSuccessorNode(const ExplodedNode *N) {
66 return N->succ_empty() ? NULL : *(N->succ_begin());
67 }
68
69 static const Stmt *GetPreviousStmt(const ExplodedNode *N) {
70 for (N = GetPredecessorNode(N); N; N = GetPredecessorNode(N))
71 if (const Stmt *S = GetStmt(N->getLocation()))
72 return S;
73
74 return 0;
75 }
76
77 static const Stmt *GetNextStmt(const ExplodedNode *N) {
78 for (N = GetSuccessorNode(N); N; N = GetSuccessorNode(N))
79 if (const Stmt *S = GetStmt(N->getLocation())) {
80 // Check if the statement is '?' or '&&'/'||'. These are "merges",
81 // not actual statement points.
82 switch (S->getStmtClass()) {
83 case Stmt::ChooseExprClass:
84 case Stmt::BinaryConditionalOperatorClass: continue;
85 case Stmt::ConditionalOperatorClass: continue;
86 case Stmt::BinaryOperatorClass: {
87 BinaryOperatorKind Op = cast<BinaryOperator>(S)->getOpcode();
88 if (Op == BO_LAnd || Op == BO_LOr)
89 continue;
90 break;
91 }
92 default:
93 break;
94 }
95 return S;
96 }
97
98 return 0;
99 }
100
101 static inline const Stmt*
102 GetCurrentOrPreviousStmt(const ExplodedNode *N) {
103 if (const Stmt *S = GetStmt(N->getLocation()))
104 return S;
105
106 return GetPreviousStmt(N);
107 }
108
109 static inline const Stmt*
110 GetCurrentOrNextStmt(const ExplodedNode *N) {
111 if (const Stmt *S = GetStmt(N->getLocation()))
112 return S;
113
114 return GetNextStmt(N);
115 }
116
117 //===----------------------------------------------------------------------===//
118 // Diagnostic cleanup.
119 //===----------------------------------------------------------------------===//
120
121 /// Recursively scan through a path and prune out calls and macros pieces
122 /// that aren't needed. Return true if afterwards the path contains
123 /// "interesting stuff" which means it should be pruned from the parent path.
124 bool BugReporter::RemoveUneededCalls(PathPieces &pieces, BugReport *R,
125 PathDiagnosticCallPiece *CallWithLoc) {
126 bool containsSomethingInteresting = false;
127 const unsigned N = pieces.size();
128
129 for (unsigned i = 0 ; i < N ; ++i) {
130 // Remove the front piece from the path. If it is still something we
131 // want to keep once we are done, we will push it back on the end.
132 IntrusiveRefCntPtr<PathDiagnosticPiece> piece(pieces.front());
133 pieces.pop_front();
134
135 // Throw away pieces with invalid locations.
136 if (piece->getKind() != PathDiagnosticPiece::Call &&
137 piece->getLocation().asLocation().isInvalid())
138 continue;
139
140 switch (piece->getKind()) {
141 case PathDiagnosticPiece::Call: {
142 PathDiagnosticCallPiece *call = cast<PathDiagnosticCallPiece>(piece);
143 // Check if the location context is interesting.
144 assert(LocationContextMap.count(call));
145 if (R->isInteresting(LocationContextMap[call])) {
146 containsSomethingInteresting = true;
147 break;
148 }
149 // Recursively clean out the subclass. Keep this call around if
150 // it contains any informative diagnostics.
151 PathDiagnosticCallPiece *NewCallWithLoc =
152 call->getLocation().asLocation().isValid()
153 ? call : CallWithLoc;
154
155 if (!RemoveUneededCalls(call->path, R, NewCallWithLoc))
156 continue;
157
158 if (NewCallWithLoc == CallWithLoc && CallWithLoc) {
159 call->callEnter = CallWithLoc->callEnter;
160 }
161
162 containsSomethingInteresting = true;
163 break;
164 }
165 case PathDiagnosticPiece::Macro: {
166 PathDiagnosticMacroPiece *macro = cast<PathDiagnosticMacroPiece>(piece);
167 if (!RemoveUneededCalls(macro->subPieces, R))
168 continue;
169 containsSomethingInteresting = true;
170 break;
171 }
172 case PathDiagnosticPiece::Event: {
173 PathDiagnosticEventPiece *event = cast<PathDiagnosticEventPiece>(piece);
174
175 // We never throw away an event, but we do throw it away wholesale
176 // as part of a path if we throw the entire path away.
177 containsSomethingInteresting |= !event->isPrunable();
178 break;
179 }
180 case PathDiagnosticPiece::ControlFlow:
181 break;
182 }
183
184 pieces.push_back(piece);
185 }
186
187 return containsSomethingInteresting;
188 }
189
190 //===----------------------------------------------------------------------===//
191 // PathDiagnosticBuilder and its associated routines and helper objects.
192 //===----------------------------------------------------------------------===//
193
194 typedef llvm::DenseMap<const ExplodedNode*,
195 const ExplodedNode*> NodeBackMap;
196
197 namespace {
198 class NodeMapClosure : public BugReport::NodeResolver {
199 NodeBackMap& M;
200 public:
201 NodeMapClosure(NodeBackMap *m) : M(*m) {}
202 ~NodeMapClosure() {}
203
204 const ExplodedNode *getOriginalNode(const ExplodedNode *N) {
205 NodeBackMap::iterator I = M.find(N);
206 return I == M.end() ? 0 : I->second;
207 }
208 };
209
210 class PathDiagnosticBuilder : public BugReporterContext {
211 BugReport *R;
212 PathDiagnosticConsumer *PDC;
213 OwningPtr<ParentMap> PM;
214 NodeMapClosure NMC;
215 public:
216 const LocationContext *LC;
217
218 PathDiagnosticBuilder(GRBugReporter &br,
219 BugReport *r, NodeBackMap *Backmap,
220 PathDiagnosticConsumer *pdc)
221 : BugReporterContext(br),
222 R(r), PDC(pdc), NMC(Backmap), LC(r->getErrorNode()->getLocationContext())
223 {}
224
225 PathDiagnosticLocation ExecutionContinues(const ExplodedNode *N);
226
227 PathDiagnosticLocation ExecutionContinues(llvm::raw_string_ostream &os,
228 const ExplodedNode *N);
229
230 BugReport *getBugReport() { return R; }
231
232 Decl const &getCodeDecl() { return R->getErrorNode()->getCodeDecl(); }
233
234 ParentMap& getParentMap() { return LC->getParentMap(); }
235
236 const Stmt *getParent(const Stmt *S) {
237 return getParentMap().getParent(S);
238 }
239
240 virtual NodeMapClosure& getNodeResolver() { return NMC; }
241
242 PathDiagnosticLocation getEnclosingStmtLocation(const Stmt *S);
243
244 PathDiagnosticConsumer::PathGenerationScheme getGenerationScheme() const {
245 return PDC ? PDC->getGenerationScheme() : PathDiagnosticConsumer::Extensive;
246 }
247
248 bool supportsLogicalOpControlFlow() const {
249 return PDC ? PDC->supportsLogicalOpControlFlow() : true;
250 }
251 };
252 } // end anonymous namespace
253
254 PathDiagnosticLocation
255 PathDiagnosticBuilder::ExecutionContinues(const ExplodedNode *N) {
256 if (const Stmt *S = GetNextStmt(N))
257 return PathDiagnosticLocation(S, getSourceManager(), LC);
258
259 return PathDiagnosticLocation::createDeclEnd(N->getLocationContext(),
260 getSourceManager());
261 }
262
263 PathDiagnosticLocation
264 PathDiagnosticBuilder::ExecutionContinues(llvm::raw_string_ostream &os,
265 const ExplodedNode *N) {
266
267 // Slow, but probably doesn't matter.
268 if (os.str().empty())
269 os << ' ';
270
271 const PathDiagnosticLocation &Loc = ExecutionContinues(N);
272
273 if (Loc.asStmt())
274 os << "Execution continues on line "
275 << getSourceManager().getExpansionLineNumber(Loc.asLocation())
276 << '.';
277 else {
278 os << "Execution jumps to the end of the ";
279 const Decl *D = N->getLocationContext()->getDecl();
280 if (isa<ObjCMethodDecl>(D))
281 os << "method";
282 else if (isa<FunctionDecl>(D))
283 os << "function";
284 else {
285 assert(isa<BlockDecl>(D));
286 os << "anonymous block";
287 }
288 os << '.';
289 }
290
291 return Loc;
292 }
293
294 static bool IsNested(const Stmt *S, ParentMap &PM) {
295 if (isa<Expr>(S) && PM.isConsumedExpr(cast<Expr>(S)))
296 return true;
297
298 const Stmt *Parent = PM.getParentIgnoreParens(S);
299
300 if (Parent)
301 switch (Parent->getStmtClass()) {
302 case Stmt::ForStmtClass:
303 case Stmt::DoStmtClass:
304 case Stmt::WhileStmtClass:
305 return true;
306 default:
307 break;
308 }
309
310 return false;
311 }
312
313 PathDiagnosticLocation
314 PathDiagnosticBuilder::getEnclosingStmtLocation(const Stmt *S) {
315 assert(S && "Null Stmt *passed to getEnclosingStmtLocation");
316 ParentMap &P = getParentMap();
317 SourceManager &SMgr = getSourceManager();
318
319 while (IsNested(S, P)) {
320 const Stmt *Parent = P.getParentIgnoreParens(S);
321
322 if (!Parent)
323 break;
324
325 switch (Parent->getStmtClass()) {
326 case Stmt::BinaryOperatorClass: {
327 const BinaryOperator *B = cast<BinaryOperator>(Parent);
328 if (B->isLogicalOp())
329 return PathDiagnosticLocation(S, SMgr, LC);
330 break;
331 }
332 case Stmt::CompoundStmtClass:
333 case Stmt::StmtExprClass:
334 return PathDiagnosticLocation(S, SMgr, LC);
335 case Stmt::ChooseExprClass:
336 // Similar to '?' if we are referring to condition, just have the edge
337 // point to the entire choose expression.
338 if (cast<ChooseExpr>(Parent)->getCond() == S)
339 return PathDiagnosticLocation(Parent, SMgr, LC);
340 else
341 return PathDiagnosticLocation(S, SMgr, LC);
342 case Stmt::BinaryConditionalOperatorClass:
343 case Stmt::ConditionalOperatorClass:
344 // For '?', if we are referring to condition, just have the edge point
345 // to the entire '?' expression.
346 if (cast<AbstractConditionalOperator>(Parent)->getCond() == S)
347 return PathDiagnosticLocation(Parent, SMgr, LC);
348 else
349 return PathDiagnosticLocation(S, SMgr, LC);
350 case Stmt::DoStmtClass:
351 return PathDiagnosticLocation(S, SMgr, LC);
352 case Stmt::ForStmtClass:
353 if (cast<ForStmt>(Parent)->getBody() == S)
354 return PathDiagnosticLocation(S, SMgr, LC);
355 break;
356 case Stmt::IfStmtClass:
357 if (cast<IfStmt>(Parent)->getCond() != S)
358 return PathDiagnosticLocation(S, SMgr, LC);
359 break;
360 case Stmt::ObjCForCollectionStmtClass:
361 if (cast<ObjCForCollectionStmt>(Parent)->getBody() == S)
362 return PathDiagnosticLocation(S, SMgr, LC);
363 break;
364 case Stmt::WhileStmtClass:
365 if (cast<WhileStmt>(Parent)->getCond() != S)
366 return PathDiagnosticLocation(S, SMgr, LC);
367 break;
368 default:
369 break;
370 }
371
372 S = Parent;
373 }
374
375 assert(S && "Cannot have null Stmt for PathDiagnosticLocation");
376
377 // Special case: DeclStmts can appear in for statement declarations, in which
378 // case the ForStmt is the context.
379 if (isa<DeclStmt>(S)) {
380 if (const Stmt *Parent = P.getParent(S)) {
381 switch (Parent->getStmtClass()) {
382 case Stmt::ForStmtClass:
383 case Stmt::ObjCForCollectionStmtClass:
384 return PathDiagnosticLocation(Parent, SMgr, LC);
385 default:
386 break;
387 }
388 }
389 }
390 else if (isa<BinaryOperator>(S)) {
391 // Special case: the binary operator represents the initialization
392 // code in a for statement (this can happen when the variable being
393 // initialized is an old variable.
394 if (const ForStmt *FS =
395 dyn_cast_or_null<ForStmt>(P.getParentIgnoreParens(S))) {
396 if (FS->getInit() == S)
397 return PathDiagnosticLocation(FS, SMgr, LC);
398 }
399 }
400
401 return PathDiagnosticLocation(S, SMgr, LC);
402 }
403
404 //===----------------------------------------------------------------------===//
405 // "Visitors only" path diagnostic generation algorithm.
406 //===----------------------------------------------------------------------===//
407 static bool GenerateVisitorsOnlyPathDiagnostic(PathDiagnostic &PD,
408 PathDiagnosticBuilder &PDB,
409 const ExplodedNode *N,
410 ArrayRef<BugReporterVisitor *> visitors) {
411 // All path generation skips the very first node (the error node).
412 // This is because there is special handling for the end-of-path note.
413 N = N->getFirstPred();
414 if (!N)
415 return true;
416
417 BugReport *R = PDB.getBugReport();
418 while (const ExplodedNode *Pred = N->getFirstPred()) {
419 for (ArrayRef<BugReporterVisitor *>::iterator I = visitors.begin(),
420 E = visitors.end();
421 I != E; ++I) {
422 // Visit all the node pairs, but throw the path pieces away.
423 PathDiagnosticPiece *Piece = (*I)->VisitNode(N, Pred, PDB, *R);
424 delete Piece;
425 }
426
427 N = Pred;
428 }
429
430 return R->isValid();
431 }
432
433 //===----------------------------------------------------------------------===//
434 // "Minimal" path diagnostic generation algorithm.
435 //===----------------------------------------------------------------------===//
436 typedef std::pair<PathDiagnosticCallPiece*, const ExplodedNode*> StackDiagPair;
437 typedef SmallVector<StackDiagPair, 6> StackDiagVector;
438
439 static void updateStackPiecesWithMessage(PathDiagnosticPiece *P,
440 StackDiagVector &CallStack) {
441 // If the piece contains a special message, add it to all the call
442 // pieces on the active stack.
443 if (PathDiagnosticEventPiece *ep =
444 dyn_cast<PathDiagnosticEventPiece>(P)) {
445
446 if (ep->hasCallStackHint())
447 for (StackDiagVector::iterator I = CallStack.begin(),
448 E = CallStack.end(); I != E; ++I) {
449 PathDiagnosticCallPiece *CP = I->first;
450 const ExplodedNode *N = I->second;
451 std::string stackMsg = ep->getCallStackMessage(N);
452
453 // The last message on the path to final bug is the most important
454 // one. Since we traverse the path backwards, do not add the message
455 // if one has been previously added.
456 if (!CP->hasCallStackMessage())
457 CP->setCallStackMessage(stackMsg);
458 }
459 }
460 }
461
462 static void CompactPathDiagnostic(PathPieces &path, const SourceManager& SM);
463
464 static bool GenerateMinimalPathDiagnostic(PathDiagnostic& PD,
465 PathDiagnosticBuilder &PDB,
466 const ExplodedNode *N,
467 ArrayRef<BugReporterVisitor *> visitors) {
468
469 SourceManager& SMgr = PDB.getSourceManager();
470 const LocationContext *LC = PDB.LC;
471 const ExplodedNode *NextNode = N->pred_empty()
472 ? NULL : *(N->pred_begin());
473
474 StackDiagVector CallStack;
475
476 while (NextNode) {
477 N = NextNode;
478 PDB.LC = N->getLocationContext();
479 NextNode = GetPredecessorNode(N);
480
481 ProgramPoint P = N->getLocation();
482
483 do {
484 if (const CallExitEnd *CE = dyn_cast<CallExitEnd>(&P)) {
485 PathDiagnosticCallPiece *C =
486 PathDiagnosticCallPiece::construct(N, *CE, SMgr);
487 GRBugReporter& BR = PDB.getBugReporter();
488 BR.addCallPieceLocationContextPair(C, CE->getCalleeContext());
489 PD.getActivePath().push_front(C);
490 PD.pushActivePath(&C->path);
491 CallStack.push_back(StackDiagPair(C, N));
492 break;
493 }
494
495 if (const CallEnter *CE = dyn_cast<CallEnter>(&P)) {
496 // Flush all locations, and pop the active path.
497 bool VisitedEntireCall = PD.isWithinCall();
498 PD.popActivePath();
499
500 // Either we just added a bunch of stuff to the top-level path, or
501 // we have a previous CallExitEnd. If the former, it means that the
502 // path terminated within a function call. We must then take the
503 // current contents of the active path and place it within
504 // a new PathDiagnosticCallPiece.
505 PathDiagnosticCallPiece *C;
506 if (VisitedEntireCall) {
507 C = cast<PathDiagnosticCallPiece>(PD.getActivePath().front());
508 } else {
509 const Decl *Caller = CE->getLocationContext()->getDecl();
510 C = PathDiagnosticCallPiece::construct(PD.getActivePath(), Caller);
511 GRBugReporter& BR = PDB.getBugReporter();
512 BR.addCallPieceLocationContextPair(C, CE->getCalleeContext());
513 }
514
515 C->setCallee(*CE, SMgr);
516 if (!CallStack.empty()) {
517 assert(CallStack.back().first == C);
518 CallStack.pop_back();
519 }
520 break;
521 }
522
523 if (const BlockEdge *BE = dyn_cast<BlockEdge>(&P)) {
524 const CFGBlock *Src = BE->getSrc();
525 const CFGBlock *Dst = BE->getDst();
526 const Stmt *T = Src->getTerminator();
527
528 if (!T)
529 break;
530
531 PathDiagnosticLocation Start =
532 PathDiagnosticLocation::createBegin(T, SMgr,
533 N->getLocationContext());
534
535 switch (T->getStmtClass()) {
536 default:
537 break;
538
539 case Stmt::GotoStmtClass:
540 case Stmt::IndirectGotoStmtClass: {
541 const Stmt *S = GetNextStmt(N);
542
543 if (!S)
544 break;
545
546 std::string sbuf;
547 llvm::raw_string_ostream os(sbuf);
548 const PathDiagnosticLocation &End = PDB.getEnclosingStmtLocation(S);
549
550 os << "Control jumps to line "
551 << End.asLocation().getExpansionLineNumber();
552 PD.getActivePath().push_front(new PathDiagnosticControlFlowPiece(
553 Start, End, os.str()));
554 break;
555 }
556
557 case Stmt::SwitchStmtClass: {
558 // Figure out what case arm we took.
559 std::string sbuf;
560 llvm::raw_string_ostream os(sbuf);
561
562 if (const Stmt *S = Dst->getLabel()) {
563 PathDiagnosticLocation End(S, SMgr, LC);
564
565 switch (S->getStmtClass()) {
566 default:
567 os << "No cases match in the switch statement. "
568 "Control jumps to line "
569 << End.asLocation().getExpansionLineNumber();
570 break;
571 case Stmt::DefaultStmtClass:
572 os << "Control jumps to the 'default' case at line "
573 << End.asLocation().getExpansionLineNumber();
574 break;
575
576 case Stmt::CaseStmtClass: {
577 os << "Control jumps to 'case ";
578 const CaseStmt *Case = cast<CaseStmt>(S);
579 const Expr *LHS = Case->getLHS()->IgnoreParenCasts();
580
581 // Determine if it is an enum.
582 bool GetRawInt = true;
583
584 if (const DeclRefExpr *DR = dyn_cast<DeclRefExpr>(LHS)) {
585 // FIXME: Maybe this should be an assertion. Are there cases
586 // were it is not an EnumConstantDecl?
587 const EnumConstantDecl *D =
588 dyn_cast<EnumConstantDecl>(DR->getDecl());
589
590 if (D) {
591 GetRawInt = false;
592 os << *D;
593 }
594 }
595
596 if (GetRawInt)
597 os << LHS->EvaluateKnownConstInt(PDB.getASTContext());
598
599 os << ":' at line "
600 << End.asLocation().getExpansionLineNumber();
601 break;
602 }
603 }
604 PD.getActivePath().push_front(new PathDiagnosticControlFlowPiece(
605 Start, End, os.str()));
606 }
607 else {
608 os << "'Default' branch taken. ";
609 const PathDiagnosticLocation &End = PDB.ExecutionContinues(os, N);
610 PD.getActivePath().push_front(new PathDiagnosticControlFlowPiece(
611 Start, End, os.str()));
612 }
613
614 break;
615 }
616
617 case Stmt::BreakStmtClass:
618 case Stmt::ContinueStmtClass: {
619 std::string sbuf;
620 llvm::raw_string_ostream os(sbuf);
621 PathDiagnosticLocation End = PDB.ExecutionContinues(os, N);
622 PD.getActivePath().push_front(new PathDiagnosticControlFlowPiece(
623 Start, End, os.str()));
624 break;
625 }
626
627 // Determine control-flow for ternary '?'.
628 case Stmt::BinaryConditionalOperatorClass:
629 case Stmt::ConditionalOperatorClass: {
630 std::string sbuf;
631 llvm::raw_string_ostream os(sbuf);
632 os << "'?' condition is ";
633
634 if (*(Src->succ_begin()+1) == Dst)
635 os << "false";
636 else
637 os << "true";
638
639 PathDiagnosticLocation End = PDB.ExecutionContinues(N);
640
641 if (const Stmt *S = End.asStmt())
642 End = PDB.getEnclosingStmtLocation(S);
643
644 PD.getActivePath().push_front(new PathDiagnosticControlFlowPiece(
645 Start, End, os.str()));
646 break;
647 }
648
649 // Determine control-flow for short-circuited '&&' and '||'.
650 case Stmt::BinaryOperatorClass: {
651 if (!PDB.supportsLogicalOpControlFlow())
652 break;
653
654 const BinaryOperator *B = cast<BinaryOperator>(T);
655 std::string sbuf;
656 llvm::raw_string_ostream os(sbuf);
657 os << "Left side of '";
658
659 if (B->getOpcode() == BO_LAnd) {
660 os << "&&" << "' is ";
661
662 if (*(Src->succ_begin()+1) == Dst) {
663 os << "false";
664 PathDiagnosticLocation End(B->getLHS(), SMgr, LC);
665 PathDiagnosticLocation Start =
666 PathDiagnosticLocation::createOperatorLoc(B, SMgr);
667 PD.getActivePath().push_front(new PathDiagnosticControlFlowPiece(
668 Start, End, os.str()));
669 }
670 else {
671 os << "true";
672 PathDiagnosticLocation Start(B->getLHS(), SMgr, LC);
673 PathDiagnosticLocation End = PDB.ExecutionContinues(N);
674 PD.getActivePath().push_front(new PathDiagnosticControlFlowPiece(
675 Start, End, os.str()));
676 }
677 }
678 else {
679 assert(B->getOpcode() == BO_LOr);
680 os << "||" << "' is ";
681
682 if (*(Src->succ_begin()+1) == Dst) {
683 os << "false";
684 PathDiagnosticLocation Start(B->getLHS(), SMgr, LC);
685 PathDiagnosticLocation End = PDB.ExecutionContinues(N);
686 PD.getActivePath().push_front(new PathDiagnosticControlFlowPiece(
687 Start, End, os.str()));
688 }
689 else {
690 os << "true";
691 PathDiagnosticLocation End(B->getLHS(), SMgr, LC);
692 PathDiagnosticLocation Start =
693 PathDiagnosticLocation::createOperatorLoc(B, SMgr);
694 PD.getActivePath().push_front(new PathDiagnosticControlFlowPiece(
695 Start, End, os.str()));
696 }
697 }
698
699 break;
700 }
701
702 case Stmt::DoStmtClass: {
703 if (*(Src->succ_begin()) == Dst) {
704 std::string sbuf;
705 llvm::raw_string_ostream os(sbuf);
706
707 os << "Loop condition is true. ";
708 PathDiagnosticLocation End = PDB.ExecutionContinues(os, N);
709
710 if (const Stmt *S = End.asStmt())
711 End = PDB.getEnclosingStmtLocation(S);
712
713 PD.getActivePath().push_front(new PathDiagnosticControlFlowPiece(
714 Start, End, os.str()));
715 }
716 else {
717 PathDiagnosticLocation End = PDB.ExecutionContinues(N);
718
719 if (const Stmt *S = End.asStmt())
720 End = PDB.getEnclosingStmtLocation(S);
721
722 PD.getActivePath().push_front(new PathDiagnosticControlFlowPiece(
723 Start, End, "Loop condition is false. Exiting loop"));
724 }
725
726 break;
727 }
728
729 case Stmt::WhileStmtClass:
730 case Stmt::ForStmtClass: {
731 if (*(Src->succ_begin()+1) == Dst) {
732 std::string sbuf;
733 llvm::raw_string_ostream os(sbuf);
734
735 os << "Loop condition is false. ";
736 PathDiagnosticLocation End = PDB.ExecutionContinues(os, N);
737 if (const Stmt *S = End.asStmt())
738 End = PDB.getEnclosingStmtLocation(S);
739
740 PD.getActivePath().push_front(new PathDiagnosticControlFlowPiece(
741 Start, End, os.str()));
742 }
743 else {
744 PathDiagnosticLocation End = PDB.ExecutionContinues(N);
745 if (const Stmt *S = End.asStmt())
746 End = PDB.getEnclosingStmtLocation(S);
747
748 PD.getActivePath().push_front(new PathDiagnosticControlFlowPiece(
749 Start, End, "Loop condition is true. Entering loop body"));
750 }
751
752 break;
753 }
754
755 case Stmt::IfStmtClass: {
756 PathDiagnosticLocation End = PDB.ExecutionContinues(N);
757
758 if (const Stmt *S = End.asStmt())
759 End = PDB.getEnclosingStmtLocation(S);
760
761 if (*(Src->succ_begin()+1) == Dst)
762 PD.getActivePath().push_front(new PathDiagnosticControlFlowPiece(
763 Start, End, "Taking false branch"));
764 else
765 PD.getActivePath().push_front(new PathDiagnosticControlFlowPiece(
766 Start, End, "Taking true branch"));
767
768 break;
769 }
770 }
771 }
772 } while(0);
773
774 if (NextNode) {
775 // Add diagnostic pieces from custom visitors.
776 BugReport *R = PDB.getBugReport();
777 for (ArrayRef<BugReporterVisitor *>::iterator I = visitors.begin(),
778 E = visitors.end();
779 I != E; ++I) {
780 if (PathDiagnosticPiece *p = (*I)->VisitNode(N, NextNode, PDB, *R)) {
781 PD.getActivePath().push_front(p);
782 updateStackPiecesWithMessage(p, CallStack);
783 }
784 }
785 }
786 }
787
788 if (!PDB.getBugReport()->isValid())
789 return false;
790
791 // After constructing the full PathDiagnostic, do a pass over it to compact
792 // PathDiagnosticPieces that occur within a macro.
793 CompactPathDiagnostic(PD.getMutablePieces(), PDB.getSourceManager());
794 return true;
795 }
796
797 //===----------------------------------------------------------------------===//
798 // "Extensive" PathDiagnostic generation.
799 //===----------------------------------------------------------------------===//
800
801 static bool IsControlFlowExpr(const Stmt *S) {
802 const Expr *E = dyn_cast<Expr>(S);
803
804 if (!E)
805 return false;
806
807 E = E->IgnoreParenCasts();
808
809 if (isa<AbstractConditionalOperator>(E))
810 return true;
811
812 if (const BinaryOperator *B = dyn_cast<BinaryOperator>(E))
813 if (B->isLogicalOp())
814 return true;
815
816 return false;
817 }
818
819 namespace {
820 class ContextLocation : public PathDiagnosticLocation {
821 bool IsDead;
822 public:
823 ContextLocation(const PathDiagnosticLocation &L, bool isdead = false)
824 : PathDiagnosticLocation(L), IsDead(isdead) {}
825
826 void markDead() { IsDead = true; }
827 bool isDead() const { return IsDead; }
828 };
829
830 class EdgeBuilder {
831 std::vector<ContextLocation> CLocs;
832 typedef std::vector<ContextLocation>::iterator iterator;
833 PathDiagnostic &PD;
834 PathDiagnosticBuilder &PDB;
835 PathDiagnosticLocation PrevLoc;
836
837 bool IsConsumedExpr(const PathDiagnosticLocation &L);
838
839 bool containsLocation(const PathDiagnosticLocation &Container,
840 const PathDiagnosticLocation &Containee);
841
842 PathDiagnosticLocation getContextLocation(const PathDiagnosticLocation &L);
843
844 PathDiagnosticLocation cleanUpLocation(PathDiagnosticLocation L,
845 bool firstCharOnly = false) {
846 if (const Stmt *S = L.asStmt()) {
847 const Stmt *Original = S;
848 while (1) {
849 // Adjust the location for some expressions that are best referenced
850 // by one of their subexpressions.
851 switch (S->getStmtClass()) {
852 default:
853 break;
854 case Stmt::ParenExprClass:
855 case Stmt::GenericSelectionExprClass:
856 S = cast<Expr>(S)->IgnoreParens();
857 firstCharOnly = true;
858 continue;
859 case Stmt::BinaryConditionalOperatorClass:
860 case Stmt::ConditionalOperatorClass:
861 S = cast<AbstractConditionalOperator>(S)->getCond();
862 firstCharOnly = true;
863 continue;
864 case Stmt::ChooseExprClass:
865 S = cast<ChooseExpr>(S)->getCond();
866 firstCharOnly = true;
867 continue;
868 case Stmt::BinaryOperatorClass:
869 S = cast<BinaryOperator>(S)->getLHS();
870 firstCharOnly = true;
871 continue;
872 }
873
874 break;
875 }
876
877 if (S != Original)
878 L = PathDiagnosticLocation(S, L.getManager(), PDB.LC);
879 }
880
881 if (firstCharOnly)
882 L = PathDiagnosticLocation::createSingleLocation(L);
883
884 return L;
885 }
886
887 void popLocation() {
888 if (!CLocs.back().isDead() && CLocs.back().asLocation().isFileID()) {
889 // For contexts, we only one the first character as the range.
890 rawAddEdge(cleanUpLocation(CLocs.back(), true));
891 }
892 CLocs.pop_back();
893 }
894
895 public:
896 EdgeBuilder(PathDiagnostic &pd, PathDiagnosticBuilder &pdb)
897 : PD(pd), PDB(pdb) {
898
899 // If the PathDiagnostic already has pieces, add the enclosing statement
900 // of the first piece as a context as well.
901 if (!PD.path.empty()) {
902 PrevLoc = (*PD.path.begin())->getLocation();
903
904 if (const Stmt *S = PrevLoc.asStmt())
905 addExtendedContext(PDB.getEnclosingStmtLocation(S).asStmt());
906 }
907 }
908
909 ~EdgeBuilder() {
910 while (!CLocs.empty()) popLocation();
911
912 // Finally, add an initial edge from the start location of the first
913 // statement (if it doesn't already exist).
914 PathDiagnosticLocation L = PathDiagnosticLocation::createDeclBegin(
915 PDB.LC,
916 PDB.getSourceManager());
917 if (L.isValid())
918 rawAddEdge(L);
919 }
920
921 void flushLocations() {
922 while (!CLocs.empty())
923 popLocation();
924 PrevLoc = PathDiagnosticLocation();
925 }
926
927 void addEdge(PathDiagnosticLocation NewLoc, bool alwaysAdd = false);
928
929 void rawAddEdge(PathDiagnosticLocation NewLoc);
930
931 void addContext(const Stmt *S);
932 void addContext(const PathDiagnosticLocation &L);
933 void addExtendedContext(const Stmt *S);
934 };
935 } // end anonymous namespace
936
937
938 PathDiagnosticLocation
939 EdgeBuilder::getContextLocation(const PathDiagnosticLocation &L) {
940 if (const Stmt *S = L.asStmt()) {
941 if (IsControlFlowExpr(S))
942 return L;
943
944 return PDB.getEnclosingStmtLocation(S);
945 }
946
947 return L;
948 }
949
950 bool EdgeBuilder::containsLocation(const PathDiagnosticLocation &Container,
951 const PathDiagnosticLocation &Containee) {
952
953 if (Container == Containee)
954 return true;
955
956 if (Container.asDecl())
957 return true;
958
959 if (const Stmt *S = Containee.asStmt())
960 if (const Stmt *ContainerS = Container.asStmt()) {
961 while (S) {
962 if (S == ContainerS)
963 return true;
964 S = PDB.getParent(S);
965 }
966 return false;
967 }
968
969 // Less accurate: compare using source ranges.
970 SourceRange ContainerR = Container.asRange();
971 SourceRange ContaineeR = Containee.asRange();
972
973 SourceManager &SM = PDB.getSourceManager();
974 SourceLocation ContainerRBeg = SM.getExpansionLoc(ContainerR.getBegin());
975 SourceLocation ContainerREnd = SM.getExpansionLoc(ContainerR.getEnd());
976 SourceLocation ContaineeRBeg = SM.getExpansionLoc(ContaineeR.getBegin());
977 SourceLocation ContaineeREnd = SM.getExpansionLoc(ContaineeR.getEnd());
978
979 unsigned ContainerBegLine = SM.getExpansionLineNumber(ContainerRBeg);
980 unsigned ContainerEndLine = SM.getExpansionLineNumber(ContainerREnd);
981 unsigned ContaineeBegLine = SM.getExpansionLineNumber(ContaineeRBeg);
982 unsigned ContaineeEndLine = SM.getExpansionLineNumber(ContaineeREnd);
983
984 assert(ContainerBegLine <= ContainerEndLine);
985 assert(ContaineeBegLine <= ContaineeEndLine);
986
987 return (ContainerBegLine <= ContaineeBegLine &&
988 ContainerEndLine >= ContaineeEndLine &&
989 (ContainerBegLine != ContaineeBegLine ||
990 SM.getExpansionColumnNumber(ContainerRBeg) <=
991 SM.getExpansionColumnNumber(ContaineeRBeg)) &&
992 (ContainerEndLine != ContaineeEndLine ||
993 SM.getExpansionColumnNumber(ContainerREnd) >=
994 SM.getExpansionColumnNumber(ContaineeREnd)));
995 }
996
997 void EdgeBuilder::rawAddEdge(PathDiagnosticLocation NewLoc) {
998 if (!PrevLoc.isValid()) {
999 PrevLoc = NewLoc;
1000 return;
1001 }
1002
1003 const PathDiagnosticLocation &NewLocClean = cleanUpLocation(NewLoc);
1004 const PathDiagnosticLocation &PrevLocClean = cleanUpLocation(PrevLoc);
1005
1006 if (PrevLocClean.asLocation().isInvalid()) {
1007 PrevLoc = NewLoc;
1008 return;
1009 }
1010
1011 if (NewLocClean.asLocation() == PrevLocClean.asLocation())
1012 return;
1013
1014 // FIXME: Ignore intra-macro edges for now.
1015 if (NewLocClean.asLocation().getExpansionLoc() ==
1016 PrevLocClean.asLocation().getExpansionLoc())
1017 return;
1018
1019 PD.getActivePath().push_front(new PathDiagnosticControlFlowPiece(NewLocClean, PrevLocClean));
1020 PrevLoc = NewLoc;
1021 }
1022
1023 void EdgeBuilder::addEdge(PathDiagnosticLocation NewLoc, bool alwaysAdd) {
1024
1025 if (!alwaysAdd && NewLoc.asLocation().isMacroID())
1026 return;
1027
1028 const PathDiagnosticLocation &CLoc = getContextLocation(NewLoc);
1029
1030 while (!CLocs.empty()) {
1031 ContextLocation &TopContextLoc = CLocs.back();
1032
1033 // Is the top location context the same as the one for the new location?
1034 if (TopContextLoc == CLoc) {
1035 if (alwaysAdd) {
1036 if (IsConsumedExpr(TopContextLoc) &&
1037 !IsControlFlowExpr(TopContextLoc.asStmt()))
1038 TopContextLoc.markDead();
1039
1040 rawAddEdge(NewLoc);
1041 }
1042
1043 return;
1044 }
1045
1046 if (containsLocation(TopContextLoc, CLoc)) {
1047 if (alwaysAdd) {
1048 rawAddEdge(NewLoc);
1049
1050 if (IsConsumedExpr(CLoc) && !IsControlFlowExpr(CLoc.asStmt())) {
1051 CLocs.push_back(ContextLocation(CLoc, true));
1052 return;
1053 }
1054 }
1055
1056 CLocs.push_back(CLoc);
1057 return;
1058 }
1059
1060 // Context does not contain the location. Flush it.
1061 popLocation();
1062 }
1063
1064 // If we reach here, there is no enclosing context. Just add the edge.
1065 rawAddEdge(NewLoc);
1066 }
1067
1068 bool EdgeBuilder::IsConsumedExpr(const PathDiagnosticLocation &L) {
1069 if (const Expr *X = dyn_cast_or_null<Expr>(L.asStmt()))
1070 return PDB.getParentMap().isConsumedExpr(X) && !IsControlFlowExpr(X);
1071
1072 return false;
1073 }
1074
1075 void EdgeBuilder::addExtendedContext(const Stmt *S) {
1076 if (!S)
1077 return;
1078
1079 const Stmt *Parent = PDB.getParent(S);
1080 while (Parent) {
1081 if (isa<CompoundStmt>(Parent))
1082 Parent = PDB.getParent(Parent);
1083 else
1084 break;
1085 }
1086
1087 if (Parent) {
1088 switch (Parent->getStmtClass()) {
1089 case Stmt::DoStmtClass:
1090 case Stmt::ObjCAtSynchronizedStmtClass:
1091 addContext(Parent);
1092 default:
1093 break;
1094 }
1095 }
1096
1097 addContext(S);
1098 }
1099
1100 void EdgeBuilder::addContext(const Stmt *S) {
1101 if (!S)
1102 return;
1103
1104 PathDiagnosticLocation L(S, PDB.getSourceManager(), PDB.LC);
1105 addContext(L);
1106 }
1107
1108 void EdgeBuilder::addContext(const PathDiagnosticLocation &L) {
1109 while (!CLocs.empty()) {
1110 const PathDiagnosticLocation &TopContextLoc = CLocs.back();
1111
1112 // Is the top location context the same as the one for the new location?
1113 if (TopContextLoc == L)
1114 return;
1115
1116 if (containsLocation(TopContextLoc, L)) {
1117 CLocs.push_back(L);
1118 return;
1119 }
1120
1121 // Context does not contain the location. Flush it.
1122 popLocation();
1123 }
1124
1125 CLocs.push_back(L);
1126 }
1127
1128 // Cone-of-influence: support the reverse propagation of "interesting" symbols
1129 // and values by tracing interesting calculations backwards through evaluated
1130 // expressions along a path. This is probably overly complicated, but the idea
1131 // is that if an expression computed an "interesting" value, the child
1132 // expressions are are also likely to be "interesting" as well (which then
1133 // propagates to the values they in turn compute). This reverse propagation
1134 // is needed to track interesting correlations across function call boundaries,
1135 // where formal arguments bind to actual arguments, etc. This is also needed
1136 // because the constraint solver sometimes simplifies certain symbolic values
1137 // into constants when appropriate, and this complicates reasoning about
1138 // interesting values.
1139 typedef llvm::DenseSet<const Expr *> InterestingExprs;
1140
1141 static void reversePropagateIntererstingSymbols(BugReport &R,
1142 InterestingExprs &IE,
1143 const ProgramState *State,
1144 const Expr *Ex,
1145 const LocationContext *LCtx) {
1146 SVal V = State->getSVal(Ex, LCtx);
1147 if (!(R.isInteresting(V) || IE.count(Ex)))
1148 return;
1149
1150 switch (Ex->getStmtClass()) {
1151 default:
1152 if (!isa<CastExpr>(Ex))
1153 break;
1154 // Fall through.
1155 case Stmt::BinaryOperatorClass:
1156 case Stmt::UnaryOperatorClass: {
1157 for (Stmt::const_child_iterator CI = Ex->child_begin(),
1158 CE = Ex->child_end();
1159 CI != CE; ++CI) {
1160 if (const Expr *child = dyn_cast_or_null<Expr>(*CI)) {
1161 IE.insert(child);
1162 SVal ChildV = State->getSVal(child, LCtx);
1163 R.markInteresting(ChildV);
1164 }
1165 break;
1166 }
1167 }
1168 }
1169
1170 R.markInteresting(V);
1171 }
1172
1173 static void reversePropagateInterestingSymbols(BugReport &R,
1174 InterestingExprs &IE,
1175 const ProgramState *State,
1176 const LocationContext *CalleeCtx,
1177 const LocationContext *CallerCtx)
1178 {
1179 // FIXME: Handle non-CallExpr-based CallEvents.
1180 const StackFrameContext *Callee = CalleeCtx->getCurrentStackFrame();
1181 const Stmt *CallSite = Callee->getCallSite();
1182 if (const CallExpr *CE = dyn_cast_or_null<CallExpr>(CallSite)) {
1183 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(CalleeCtx->getDecl())) {
1184 FunctionDecl::param_const_iterator PI = FD->param_begin(),
1185 PE = FD->param_end();
1186 CallExpr::const_arg_iterator AI = CE->arg_begin(), AE = CE->arg_end();
1187 for (; AI != AE && PI != PE; ++AI, ++PI) {
1188 if (const Expr *ArgE = *AI) {
1189 if (const ParmVarDecl *PD = *PI) {
1190 Loc LV = State->getLValue(PD, CalleeCtx);
1191 if (R.isInteresting(LV) || R.isInteresting(State->getRawSVal(LV)))
1192 IE.insert(ArgE);
1193 }
1194 }
1195 }
1196 }
1197 }
1198 }
1199
1200 static bool GenerateExtensivePathDiagnostic(PathDiagnostic& PD,
1201 PathDiagnosticBuilder &PDB,
1202 const ExplodedNode *N,
1203 ArrayRef<BugReporterVisitor *> visitors) {
1204 EdgeBuilder EB(PD, PDB);
1205 const SourceManager& SM = PDB.getSourceManager();
1206 StackDiagVector CallStack;
1207 InterestingExprs IE;
1208
1209 const ExplodedNode *NextNode = N->pred_empty() ? NULL : *(N->pred_begin());
1210 while (NextNode) {
1211 N = NextNode;
1212 NextNode = GetPredecessorNode(N);
1213 ProgramPoint P = N->getLocation();
1214
1215 do {
1216 if (const PostStmt *PS = dyn_cast<PostStmt>(&P)) {
1217 if (const Expr *Ex = PS->getStmtAs<Expr>())
1218 reversePropagateIntererstingSymbols(*PDB.getBugReport(), IE,
1219 N->getState().getPtr(), Ex,
1220 N->getLocationContext());
1221 }
1222
1223 if (const CallExitEnd *CE = dyn_cast<CallExitEnd>(&P)) {
1224 const Stmt *S = CE->getCalleeContext()->getCallSite();
1225 if (const Expr *Ex = dyn_cast_or_null<Expr>(S)) {
1226 reversePropagateIntererstingSymbols(*PDB.getBugReport(), IE,
1227 N->getState().getPtr(), Ex,
1228 N->getLocationContext());
1229 }
1230
1231 PathDiagnosticCallPiece *C =
1232 PathDiagnosticCallPiece::construct(N, *CE, SM);
1233 GRBugReporter& BR = PDB.getBugReporter();
1234 BR.addCallPieceLocationContextPair(C, CE->getCalleeContext());
1235
1236 EB.addEdge(C->callReturn, true);
1237 EB.flushLocations();
1238
1239 PD.getActivePath().push_front(C);
1240 PD.pushActivePath(&C->path);
1241 CallStack.push_back(StackDiagPair(C, N));
1242 break;
1243 }
1244
1245 // Pop the call hierarchy if we are done walking the contents
1246 // of a function call.
1247 if (const CallEnter *CE = dyn_cast<CallEnter>(&P)) {
1248 // Add an edge to the start of the function.
1249 const Decl *D = CE->getCalleeContext()->getDecl();
1250 PathDiagnosticLocation pos =
1251 PathDiagnosticLocation::createBegin(D, SM);
1252 EB.addEdge(pos);
1253
1254 // Flush all locations, and pop the active path.
1255 bool VisitedEntireCall = PD.isWithinCall();
1256 EB.flushLocations();
1257 PD.popActivePath();
1258 PDB.LC = N->getLocationContext();
1259
1260 // Either we just added a bunch of stuff to the top-level path, or
1261 // we have a previous CallExitEnd. If the former, it means that the
1262 // path terminated within a function call. We must then take the
1263 // current contents of the active path and place it within
1264 // a new PathDiagnosticCallPiece.
1265 PathDiagnosticCallPiece *C;
1266 if (VisitedEntireCall) {
1267 C = cast<PathDiagnosticCallPiece>(PD.getActivePath().front());
1268 } else {
1269 const Decl *Caller = CE->getLocationContext()->getDecl();
1270 C = PathDiagnosticCallPiece::construct(PD.getActivePath(), Caller);
1271 GRBugReporter& BR = PDB.getBugReporter();
1272 BR.addCallPieceLocationContextPair(C, CE->getCalleeContext());
1273 }
1274
1275 C->setCallee(*CE, SM);
1276 EB.addContext(C->getLocation());
1277
1278 if (!CallStack.empty()) {
1279 assert(CallStack.back().first == C);
1280 CallStack.pop_back();
1281 }
1282 break;
1283 }
1284
1285 // Note that is important that we update the LocationContext
1286 // after looking at CallExits. CallExit basically adds an
1287 // edge in the *caller*, so we don't want to update the LocationContext
1288 // too soon.
1289 PDB.LC = N->getLocationContext();
1290
1291 // Block edges.
1292 if (const BlockEdge *BE = dyn_cast<BlockEdge>(&P)) {
1293 // Does this represent entering a call? If so, look at propagating
1294 // interesting symbols across call boundaries.
1295 if (NextNode) {
1296 const LocationContext *CallerCtx = NextNode->getLocationContext();
1297 const LocationContext *CalleeCtx = PDB.LC;
1298 if (CallerCtx != CalleeCtx) {
1299 reversePropagateInterestingSymbols(*PDB.getBugReport(), IE,
1300 N->getState().getPtr(),
1301 CalleeCtx, CallerCtx);
1302 }
1303 }
1304
1305 // Are we jumping to the head of a loop? Add a special diagnostic.
1306 if (const Stmt *Loop = BE->getSrc()->getLoopTarget()) {
1307 PathDiagnosticLocation L(Loop, SM, PDB.LC);
1308 const CompoundStmt *CS = NULL;
1309
1310 if (const ForStmt *FS = dyn_cast<ForStmt>(Loop))
1311 CS = dyn_cast<CompoundStmt>(FS->getBody());
1312 else if (const WhileStmt *WS = dyn_cast<WhileStmt>(Loop))
1313 CS = dyn_cast<CompoundStmt>(WS->getBody());
1314
1315 PathDiagnosticEventPiece *p =
1316 new PathDiagnosticEventPiece(L,
1317 "Looping back to the head of the loop");
1318 p->setPrunable(true);
1319
1320 EB.addEdge(p->getLocation(), true);
1321 PD.getActivePath().push_front(p);
1322
1323 if (CS) {
1324 PathDiagnosticLocation BL =
1325 PathDiagnosticLocation::createEndBrace(CS, SM);
1326 EB.addEdge(BL);
1327 }
1328 }
1329
1330 if (const Stmt *Term = BE->getSrc()->getTerminator())
1331 EB.addContext(Term);
1332
1333 break;
1334 }
1335
1336 if (const BlockEntrance *BE = dyn_cast<BlockEntrance>(&P)) {
1337 CFGElement First = BE->getFirstElement();
1338 if (const CFGStmt *S = First.getAs<CFGStmt>()) {
1339 const Stmt *stmt = S->getStmt();
1340 if (IsControlFlowExpr(stmt)) {
1341 // Add the proper context for '&&', '||', and '?'.
1342 EB.addContext(stmt);
1343 }
1344 else
1345 EB.addExtendedContext(PDB.getEnclosingStmtLocation(stmt).asStmt());
1346 }
1347
1348 break;
1349 }
1350
1351
1352 } while (0);
1353
1354 if (!NextNode)
1355 continue;
1356
1357 // Add pieces from custom visitors.
1358 BugReport *R = PDB.getBugReport();
1359 for (ArrayRef<BugReporterVisitor *>::iterator I = visitors.begin(),
1360 E = visitors.end();
1361 I != E; ++I) {
1362 if (PathDiagnosticPiece *p = (*I)->VisitNode(N, NextNode, PDB, *R)) {
1363 const PathDiagnosticLocation &Loc = p->getLocation();
1364 EB.addEdge(Loc, true);
1365 PD.getActivePath().push_front(p);
1366 updateStackPiecesWithMessage(p, CallStack);
1367
1368 if (const Stmt *S = Loc.asStmt())
1369 EB.addExtendedContext(PDB.getEnclosingStmtLocation(S).asStmt());
1370 }
1371 }
1372 }
1373
1374 return PDB.getBugReport()->isValid();
1375 }
1376
1377 //===----------------------------------------------------------------------===//
1378 // Methods for BugType and subclasses.
1379 //===----------------------------------------------------------------------===//
1380 BugType::~BugType() { }
1381
1382 void BugType::FlushReports(BugReporter &BR) {}
1383
1384 void BuiltinBug::anchor() {}
1385
1386 //===----------------------------------------------------------------------===//
1387 // Methods for BugReport and subclasses.
1388 //===----------------------------------------------------------------------===//
1389
1390 void BugReport::NodeResolver::anchor() {}
1391
1392 void BugReport::addVisitor(BugReporterVisitor* visitor) {
1393 if (!visitor)
1394 return;
1395
1396 llvm::FoldingSetNodeID ID;
1397 visitor->Profile(ID);
1398 void *InsertPos;
1399
1400 if (CallbacksSet.FindNodeOrInsertPos(ID, InsertPos)) {
1401 delete visitor;
1402 return;
1403 }
1404
1405 CallbacksSet.InsertNode(visitor, InsertPos);
1406 Callbacks.push_back(visitor);
1407 ++ConfigurationChangeToken;
1408 }
1409
1410 BugReport::~BugReport() {
1411 for (visitor_iterator I = visitor_begin(), E = visitor_end(); I != E; ++I) {
1412 delete *I;
1413 }
1414 while (!interestingSymbols.empty()) {
1415 popInterestingSymbolsAndRegions();
1416 }
1417 }
1418
1419 const Decl *BugReport::getDeclWithIssue() const {
1420 if (DeclWithIssue)
1421 return DeclWithIssue;
1422
1423 const ExplodedNode *N = getErrorNode();
1424 if (!N)
1425 return 0;
1426
1427 const LocationContext *LC = N->getLocationContext();
1428 return LC->getCurrentStackFrame()->getDecl();
1429 }
1430
1431 void BugReport::Profile(llvm::FoldingSetNodeID& hash) const {
1432 hash.AddPointer(&BT);
1433 hash.AddString(Description);
1434 if (UniqueingLocation.isValid()) {
1435 UniqueingLocation.Profile(hash);
1436 } else if (Location.isValid()) {
1437 Location.Profile(hash);
1438 } else {
1439 assert(ErrorNode);
1440 hash.AddPointer(GetCurrentOrPreviousStmt(ErrorNode));
1441 }
1442
1443 for (SmallVectorImpl<SourceRange>::const_iterator I =
1444 Ranges.begin(), E = Ranges.end(); I != E; ++I) {
1445 const SourceRange range = *I;
1446 if (!range.isValid())
1447 continue;
1448 hash.AddInteger(range.getBegin().getRawEncoding());
1449 hash.AddInteger(range.getEnd().getRawEncoding());
1450 }
1451 }
1452
1453 void BugReport::markInteresting(SymbolRef sym) {
1454 if (!sym)
1455 return;
1456
1457 // If the symbol wasn't already in our set, note a configuration change.
1458 if (getInterestingSymbols().insert(sym).second)
1459 ++ConfigurationChangeToken;
1460
1461 if (const SymbolMetadata *meta = dyn_cast<SymbolMetadata>(sym))
1462 getInterestingRegions().insert(meta->getRegion());
1463 }
1464
1465 void BugReport::markInteresting(const MemRegion *R) {
1466 if (!R)
1467 return;
1468
1469 // If the base region wasn't already in our set, note a configuration change.
1470 R = R->getBaseRegion();
1471 if (getInterestingRegions().insert(R).second)
1472 ++ConfigurationChangeToken;
1473
1474 if (const SymbolicRegion *SR = dyn_cast<SymbolicRegion>(R))
1475 getInterestingSymbols().insert(SR->getSymbol());
1476 }
1477
1478 void BugReport::markInteresting(SVal V) {
1479 markInteresting(V.getAsRegion());
1480 markInteresting(V.getAsSymbol());
1481 }
1482
1483 void BugReport::markInteresting(const LocationContext *LC) {
1484 if (!LC)
1485 return;
1486 InterestingLocationContexts.insert(LC);
1487 }
1488
1489 bool BugReport::isInteresting(SVal V) {
1490 return isInteresting(V.getAsRegion()) || isInteresting(V.getAsSymbol());
1491 }
1492
1493 bool BugReport::isInteresting(SymbolRef sym) {
1494 if (!sym)
1495 return false;
1496 // We don't currently consider metadata symbols to be interesting
1497 // even if we know their region is interesting. Is that correct behavior?
1498 return getInterestingSymbols().count(sym);
1499 }
1500
1501 bool BugReport::isInteresting(const MemRegion *R) {
1502 if (!R)
1503 return false;
1504 R = R->getBaseRegion();
1505 bool b = getInterestingRegions().count(R);
1506 if (b)
1507 return true;
1508 if (const SymbolicRegion *SR = dyn_cast<SymbolicRegion>(R))
1509 return getInterestingSymbols().count(SR->getSymbol());
1510 return false;
1511 }
1512
1513 bool BugReport::isInteresting(const LocationContext *LC) {
1514 if (!LC)
1515 return false;
1516 return InterestingLocationContexts.count(LC);
1517 }
1518
1519 void BugReport::lazyInitializeInterestingSets() {
1520 if (interestingSymbols.empty()) {
1521 interestingSymbols.push_back(new Symbols());
1522 interestingRegions.push_back(new Regions());
1523 }
1524 }
1525
1526 BugReport::Symbols &BugReport::getInterestingSymbols() {
1527 lazyInitializeInterestingSets();
1528 return *interestingSymbols.back();
1529 }
1530
1531 BugReport::Regions &BugReport::getInterestingRegions() {
1532 lazyInitializeInterestingSets();
1533 return *interestingRegions.back();
1534 }
1535
1536 void BugReport::pushInterestingSymbolsAndRegions() {
1537 interestingSymbols.push_back(new Symbols(getInterestingSymbols()));
1538 interestingRegions.push_back(new Regions(getInterestingRegions()));
1539 }
1540
1541 void BugReport::popInterestingSymbolsAndRegions() {
1542 delete interestingSymbols.back();
1543 interestingSymbols.pop_back();
1544 delete interestingRegions.back();
1545 interestingRegions.pop_back();
1546 }
1547
1548 const Stmt *BugReport::getStmt() const {
1549 if (!ErrorNode)
1550 return 0;
1551
1552 ProgramPoint ProgP = ErrorNode->getLocation();
1553 const Stmt *S = NULL;
1554
1555 if (BlockEntrance *BE = dyn_cast<BlockEntrance>(&ProgP)) {
1556 CFGBlock &Exit = ProgP.getLocationContext()->getCFG()->getExit();
1557 if (BE->getBlock() == &Exit)
1558 S = GetPreviousStmt(ErrorNode);
1559 }
1560 if (!S)
1561 S = GetStmt(ProgP);
1562
1563 return S;
1564 }
1565
1566 std::pair<BugReport::ranges_iterator, BugReport::ranges_iterator>
1567 BugReport::getRanges() {
1568 // If no custom ranges, add the range of the statement corresponding to
1569 // the error node.
1570 if (Ranges.empty()) {
1571 if (const Expr *E = dyn_cast_or_null<Expr>(getStmt()))
1572 addRange(E->getSourceRange());
1573 else
1574 return std::make_pair(ranges_iterator(), ranges_iterator());
1575 }
1576
1577 // User-specified absence of range info.
1578 if (Ranges.size() == 1 && !Ranges.begin()->isValid())
1579 return std::make_pair(ranges_iterator(), ranges_iterator());
1580
1581 return std::make_pair(Ranges.begin(), Ranges.end());
1582 }
1583
1584 PathDiagnosticLocation BugReport::getLocation(const SourceManager &SM) const {
1585 if (ErrorNode) {
1586 assert(!Location.isValid() &&
1587 "Either Location or ErrorNode should be specified but not both.");
1588
1589 if (const Stmt *S = GetCurrentOrPreviousStmt(ErrorNode)) {
1590 const LocationContext *LC = ErrorNode->getLocationContext();
1591
1592 // For member expressions, return the location of the '.' or '->'.
1593 if (const MemberExpr *ME = dyn_cast<MemberExpr>(S))
1594 return PathDiagnosticLocation::createMemberLoc(ME, SM);
1595 // For binary operators, return the location of the operator.
1596 if (const BinaryOperator *B = dyn_cast<BinaryOperator>(S))
1597 return PathDiagnosticLocation::createOperatorLoc(B, SM);
1598
1599 return PathDiagnosticLocation::createBegin(S, SM, LC);
1600 }
1601 } else {
1602 assert(Location.isValid());
1603 return Location;
1604 }
1605
1606 return PathDiagnosticLocation();
1607 }
1608
1609 //===----------------------------------------------------------------------===//
1610 // Methods for BugReporter and subclasses.
1611 //===----------------------------------------------------------------------===//
1612
1613 BugReportEquivClass::~BugReportEquivClass() { }
1614 GRBugReporter::~GRBugReporter() { }
1615 BugReporterData::~BugReporterData() {}
1616
1617 ExplodedGraph &GRBugReporter::getGraph() { return Eng.getGraph(); }
1618
1619 ProgramStateManager&
1620 GRBugReporter::getStateManager() { return Eng.getStateManager(); }
1621
1622 BugReporter::~BugReporter() {
1623 FlushReports();
1624
1625 // Free the bug reports we are tracking.
1626 typedef std::vector<BugReportEquivClass *> ContTy;
1627 for (ContTy::iterator I = EQClassesVector.begin(), E = EQClassesVector.end();
1628 I != E; ++I) {
1629 delete *I;
1630 }
1631 }
1632
1633 void BugReporter::FlushReports() {
1634 if (BugTypes.isEmpty())
1635 return;
1636
1637 // First flush the warnings for each BugType. This may end up creating new
1638 // warnings and new BugTypes.
1639 // FIXME: Only NSErrorChecker needs BugType's FlushReports.
1640 // Turn NSErrorChecker into a proper checker and remove this.
1641 SmallVector<const BugType*, 16> bugTypes;
1642 for (BugTypesTy::iterator I=BugTypes.begin(), E=BugTypes.end(); I!=E; ++I)
1643 bugTypes.push_back(*I);
1644 for (SmallVector<const BugType*, 16>::iterator
1645 I = bugTypes.begin(), E = bugTypes.end(); I != E; ++I)
1646 const_cast<BugType*>(*I)->FlushReports(*this);
1647
1648 // We need to flush reports in deterministic order to ensure the order
1649 // of the reports is consistent between runs.
1650 typedef std::vector<BugReportEquivClass *> ContVecTy;
1651 for (ContVecTy::iterator EI=EQClassesVector.begin(), EE=EQClassesVector.end();
1652 EI != EE; ++EI){
1653 BugReportEquivClass& EQ = **EI;
1654 FlushReport(EQ);
1655 }
1656
1657 // BugReporter owns and deletes only BugTypes created implicitly through
1658 // EmitBasicReport.
1659 // FIXME: There are leaks from checkers that assume that the BugTypes they
1660 // create will be destroyed by the BugReporter.
1661 for (llvm::StringMap<BugType*>::iterator
1662 I = StrBugTypes.begin(), E = StrBugTypes.end(); I != E; ++I)
1663 delete I->second;
1664
1665 // Remove all references to the BugType objects.
1666 BugTypes = F.getEmptySet();
1667 }
1668
1669 //===----------------------------------------------------------------------===//
1670 // PathDiagnostics generation.
1671 //===----------------------------------------------------------------------===//
1672
1673 static std::pair<std::pair<ExplodedGraph*, NodeBackMap*>,
1674 std::pair<ExplodedNode*, unsigned> >
1675 MakeReportGraph(const ExplodedGraph* G,
1676 SmallVectorImpl<const ExplodedNode*> &nodes) {
1677
1678 // Create the trimmed graph. It will contain the shortest paths from the
1679 // error nodes to the root. In the new graph we should only have one
1680 // error node unless there are two or more error nodes with the same minimum
1681 // path length.
1682 ExplodedGraph* GTrim;
1683 InterExplodedGraphMap* NMap;
1684
1685 llvm::DenseMap<const void*, const void*> InverseMap;
1686 llvm::tie(GTrim, NMap) = G->Trim(nodes.data(), nodes.data() + nodes.size(),
1687 &InverseMap);
1688
1689 // Create owning pointers for GTrim and NMap just to ensure that they are
1690 // released when this function exists.
1691 OwningPtr<ExplodedGraph> AutoReleaseGTrim(GTrim);
1692 OwningPtr<InterExplodedGraphMap> AutoReleaseNMap(NMap);
1693
1694 // Find the (first) error node in the trimmed graph. We just need to consult
1695 // the node map (NMap) which maps from nodes in the original graph to nodes
1696 // in the new graph.
1697
1698 std::queue<const ExplodedNode*> WS;
1699 typedef llvm::DenseMap<const ExplodedNode*, unsigned> IndexMapTy;
1700 IndexMapTy IndexMap;
1701
1702 for (unsigned nodeIndex = 0 ; nodeIndex < nodes.size(); ++nodeIndex) {
1703 const ExplodedNode *originalNode = nodes[nodeIndex];
1704 if (const ExplodedNode *N = NMap->getMappedNode(originalNode)) {
1705 WS.push(N);
1706 IndexMap[originalNode] = nodeIndex;
1707 }
1708 }
1709
1710 assert(!WS.empty() && "No error node found in the trimmed graph.");
1711
1712 // Create a new (third!) graph with a single path. This is the graph
1713 // that will be returned to the caller.
1714 ExplodedGraph *GNew = new ExplodedGraph();
1715
1716 // Sometimes the trimmed graph can contain a cycle. Perform a reverse BFS
1717 // to the root node, and then construct a new graph that contains only
1718 // a single path.
1719 llvm::DenseMap<const void*,unsigned> Visited;
1720
1721 unsigned cnt = 0;
1722 const ExplodedNode *Root = 0;
1723
1724 while (!WS.empty()) {
1725 const ExplodedNode *Node = WS.front();
1726 WS.pop();
1727
1728 if (Visited.find(Node) != Visited.end())
1729 continue;
1730
1731 Visited[Node] = cnt++;
1732
1733 if (Node->pred_empty()) {
1734 Root = Node;
1735 break;
1736 }
1737
1738 for (ExplodedNode::const_pred_iterator I=Node->pred_begin(),
1739 E=Node->pred_end(); I!=E; ++I)
1740 WS.push(*I);
1741 }
1742
1743 assert(Root);
1744
1745 // Now walk from the root down the BFS path, always taking the successor
1746 // with the lowest number.
1747 ExplodedNode *Last = 0, *First = 0;
1748 NodeBackMap *BM = new NodeBackMap();
1749 unsigned NodeIndex = 0;
1750
1751 for ( const ExplodedNode *N = Root ;;) {
1752 // Lookup the number associated with the current node.
1753 llvm::DenseMap<const void*,unsigned>::iterator I = Visited.find(N);
1754 assert(I != Visited.end());
1755
1756 // Create the equivalent node in the new graph with the same state
1757 // and location.
1758 ExplodedNode *NewN = GNew->getNode(N->getLocation(), N->getState());
1759
1760 // Store the mapping to the original node.
1761 llvm::DenseMap<const void*, const void*>::iterator IMitr=InverseMap.find(N);
1762 assert(IMitr != InverseMap.end() && "No mapping to original node.");
1763 (*BM)[NewN] = (const ExplodedNode*) IMitr->second;
1764
1765 // Link up the new node with the previous node.
1766 if (Last)
1767 NewN->addPredecessor(Last, *GNew);
1768
1769 Last = NewN;
1770
1771 // Are we at the final node?
1772 IndexMapTy::iterator IMI =
1773 IndexMap.find((const ExplodedNode*)(IMitr->second));
1774 if (IMI != IndexMap.end()) {
1775 First = NewN;
1776 NodeIndex = IMI->second;
1777 break;
1778 }
1779
1780 // Find the next successor node. We choose the node that is marked
1781 // with the lowest DFS number.
1782 ExplodedNode::const_succ_iterator SI = N->succ_begin();
1783 ExplodedNode::const_succ_iterator SE = N->succ_end();
1784 N = 0;
1785
1786 for (unsigned MinVal = 0; SI != SE; ++SI) {
1787
1788 I = Visited.find(*SI);
1789
1790 if (I == Visited.end())
1791 continue;
1792
1793 if (!N || I->second < MinVal) {
1794 N = *SI;
1795 MinVal = I->second;
1796 }
1797 }
1798
1799 assert(N);
1800 }
1801
1802 assert(First);
1803
1804 return std::make_pair(std::make_pair(GNew, BM),
1805 std::make_pair(First, NodeIndex));
1806 }
1807
1808 /// CompactPathDiagnostic - This function postprocesses a PathDiagnostic object
1809 /// and collapses PathDiagosticPieces that are expanded by macros.
1810 static void CompactPathDiagnostic(PathPieces &path, const SourceManager& SM) {
1811 typedef std::vector<std::pair<IntrusiveRefCntPtr<PathDiagnosticMacroPiece>,
1812 SourceLocation> > MacroStackTy;
1813
1814 typedef std::vector<IntrusiveRefCntPtr<PathDiagnosticPiece> >
1815 PiecesTy;
1816
1817 MacroStackTy MacroStack;
1818 PiecesTy Pieces;
1819
1820 for (PathPieces::const_iterator I = path.begin(), E = path.end();
1821 I!=E; ++I) {
1822
1823 PathDiagnosticPiece *piece = I->getPtr();
1824
1825 // Recursively compact calls.
1826 if (PathDiagnosticCallPiece *call=dyn_cast<PathDiagnosticCallPiece>(piece)){
1827 CompactPathDiagnostic(call->path, SM);
1828 }
1829
1830 // Get the location of the PathDiagnosticPiece.
1831 const FullSourceLoc Loc = piece->getLocation().asLocation();
1832
1833 // Determine the instantiation location, which is the location we group
1834 // related PathDiagnosticPieces.
1835 SourceLocation InstantiationLoc = Loc.isMacroID() ?
1836 SM.getExpansionLoc(Loc) :
1837 SourceLocation();
1838
1839 if (Loc.isFileID()) {
1840 MacroStack.clear();
1841 Pieces.push_back(piece);
1842 continue;
1843 }
1844
1845 assert(Loc.isMacroID());
1846
1847 // Is the PathDiagnosticPiece within the same macro group?
1848 if (!MacroStack.empty() && InstantiationLoc == MacroStack.back().second) {
1849 MacroStack.back().first->subPieces.push_back(piece);
1850 continue;
1851 }
1852
1853 // We aren't in the same group. Are we descending into a new macro
1854 // or are part of an old one?
1855 IntrusiveRefCntPtr<PathDiagnosticMacroPiece> MacroGroup;
1856
1857 SourceLocation ParentInstantiationLoc = InstantiationLoc.isMacroID() ?
1858 SM.getExpansionLoc(Loc) :
1859 SourceLocation();
1860
1861 // Walk the entire macro stack.
1862 while (!MacroStack.empty()) {
1863 if (InstantiationLoc == MacroStack.back().second) {
1864 MacroGroup = MacroStack.back().first;
1865 break;
1866 }
1867
1868 if (ParentInstantiationLoc == MacroStack.back().second) {
1869 MacroGroup = MacroStack.back().first;
1870 break;
1871 }
1872
1873 MacroStack.pop_back();
1874 }
1875
1876 if (!MacroGroup || ParentInstantiationLoc == MacroStack.back().second) {
1877 // Create a new macro group and add it to the stack.
1878 PathDiagnosticMacroPiece *NewGroup =
1879 new PathDiagnosticMacroPiece(
1880 PathDiagnosticLocation::createSingleLocation(piece->getLocation()));
1881
1882 if (MacroGroup)
1883 MacroGroup->subPieces.push_back(NewGroup);
1884 else {
1885 assert(InstantiationLoc.isFileID());
1886 Pieces.push_back(NewGroup);
1887 }
1888
1889 MacroGroup = NewGroup;
1890 MacroStack.push_back(std::make_pair(MacroGroup, InstantiationLoc));
1891 }
1892
1893 // Finally, add the PathDiagnosticPiece to the group.
1894 MacroGroup->subPieces.push_back(piece);
1895 }
1896
1897 // Now take the pieces and construct a new PathDiagnostic.
1898 path.clear();
1899
1900 for (PiecesTy::iterator I=Pieces.begin(), E=Pieces.end(); I!=E; ++I)
1901 path.push_back(*I);
1902 }
1903
1904 bool GRBugReporter::generatePathDiagnostic(PathDiagnostic& PD,
1905 PathDiagnosticConsumer &PC,
1906 ArrayRef<BugReport *> &bugReports) {
1907 assert(!bugReports.empty());
1908
1909 bool HasValid = false;
1910 SmallVector<const ExplodedNode *, 10> errorNodes;
1911 for (ArrayRef<BugReport*>::iterator I = bugReports.begin(),
1912 E = bugReports.end(); I != E; ++I) {
1913 if ((*I)->isValid()) {
1914 HasValid = true;
1915 errorNodes.push_back((*I)->getErrorNode());
1916 } else {
1917 errorNodes.push_back(0);
1918 }
1919 }
1920
1921 // If all the reports have been marked invalid, we're done.
1922 if (!HasValid)
1923 return false;
1924
1925 // Construct a new graph that contains only a single path from the error
1926 // node to a root.
1927 const std::pair<std::pair<ExplodedGraph*, NodeBackMap*>,
1928 std::pair<ExplodedNode*, unsigned> >&
1929 GPair = MakeReportGraph(&getGraph(), errorNodes);
1930
1931 // Find the BugReport with the original location.
1932 assert(GPair.second.second < bugReports.size());
1933 BugReport *R = bugReports[GPair.second.second];
1934 assert(R && "No original report found for sliced graph.");
1935 assert(R->isValid() && "Report selected from trimmed graph marked invalid.");
1936
1937 OwningPtr<ExplodedGraph> ReportGraph(GPair.first.first);
1938 OwningPtr<NodeBackMap> BackMap(GPair.first.second);
1939 const ExplodedNode *N = GPair.second.first;
1940
1941 // Start building the path diagnostic...
1942 PathDiagnosticBuilder PDB(*this, R, BackMap.get(), &PC);
1943
1944 // Register additional node visitors.
1945 R->addVisitor(new NilReceiverBRVisitor());
1946 R->addVisitor(new ConditionBRVisitor());
1947
1948 BugReport::VisitorList visitors;
1949 unsigned originalReportConfigToken, finalReportConfigToken;
1950
1951 // While generating diagnostics, it's possible the visitors will decide
1952 // new symbols and regions are interesting, or add other visitors based on
1953 // the information they find. If they do, we need to regenerate the path
1954 // based on our new report configuration.
1955 do {
1956 // Get a clean copy of all the visitors.
1957 for (BugReport::visitor_iterator I = R->visitor_begin(),
1958 E = R->visitor_end(); I != E; ++I)
1959 visitors.push_back((*I)->clone());
1960
1961 // Clear out the active path from any previous work.
1962 PD.resetPath();
1963 originalReportConfigToken = R->getConfigurationChangeToken();
1964
1965 // Generate the very last diagnostic piece - the piece is visible before
1966 // the trace is expanded.
1967 if (PDB.getGenerationScheme() != PathDiagnosticConsumer::None) {
1968 PathDiagnosticPiece *LastPiece = 0;
1969 for (BugReport::visitor_iterator I = visitors.begin(), E = visitors.end();
1970 I != E; ++I) {
1971 if (PathDiagnosticPiece *Piece = (*I)->getEndPath(PDB, N, *R)) {
1972 assert (!LastPiece &&
1973 "There can only be one final piece in a diagnostic.");
1974 LastPiece = Piece;
1975 }
1976 }
1977 if (!LastPiece)
1978 LastPiece = BugReporterVisitor::getDefaultEndPath(PDB, N, *R);
1979 if (LastPiece)
1980 PD.setEndOfPath(LastPiece);
1981 else
1982 return false;
1983 }
1984
1985 switch (PDB.getGenerationScheme()) {
1986 case PathDiagnosticConsumer::Extensive:
1987 if (!GenerateExtensivePathDiagnostic(PD, PDB, N, visitors)) {
1988 assert(!R->isValid() && "Failed on valid report");
1989 // Try again. We'll filter out the bad report when we trim the graph.
1990 // FIXME: It would be more efficient to use the same intermediate
1991 // trimmed graph, and just repeat the shortest-path search.
1992 return generatePathDiagnostic(PD, PC, bugReports);
1993 }
1994 break;
1995 case PathDiagnosticConsumer::Minimal:
1996 if (!GenerateMinimalPathDiagnostic(PD, PDB, N, visitors)) {
1997 assert(!R->isValid() && "Failed on valid report");
1998 // Try again. We'll filter out the bad report when we trim the graph.
1999 return generatePathDiagnostic(PD, PC, bugReports);
2000 }
2001 break;
2002 case PathDiagnosticConsumer::None:
2003 if (!GenerateVisitorsOnlyPathDiagnostic(PD, PDB, N, visitors)) {
2004 assert(!R->isValid() && "Failed on valid report");
2005 // Try again. We'll filter out the bad report when we trim the graph.
2006 return generatePathDiagnostic(PD, PC, bugReports);
2007 }
2008 break;
2009 }
2010
2011 // Clean up the visitors we used.
2012 llvm::DeleteContainerPointers(visitors);
2013
2014 // Did anything change while generating this path?
2015 finalReportConfigToken = R->getConfigurationChangeToken();
2016 } while(finalReportConfigToken != originalReportConfigToken);
2017
2018 // Finally, prune the diagnostic path of uninteresting stuff.
2019 if (!PD.path.empty() && R->shouldPrunePath()) {
2020 bool hasSomethingInteresting = RemoveUneededCalls(PD.getMutablePieces(), R);
2021 assert(hasSomethingInteresting);
2022 (void) hasSomethingInteresting;
2023 }
2024
2025 return true;
2026 }
2027
2028 void BugReporter::Register(BugType *BT) {
2029 BugTypes = F.add(BugTypes, BT);
2030 }
2031
2032 void BugReporter::EmitReport(BugReport* R) {
2033 // Compute the bug report's hash to determine its equivalence class.
2034 llvm::FoldingSetNodeID ID;
2035 R->Profile(ID);
2036
2037 // Lookup the equivance class. If there isn't one, create it.
2038 BugType& BT = R->getBugType();
2039 Register(&BT);
2040 void *InsertPos;
2041 BugReportEquivClass* EQ = EQClasses.FindNodeOrInsertPos(ID, InsertPos);
2042
2043 if (!EQ) {
2044 EQ = new BugReportEquivClass(R);
2045 EQClasses.InsertNode(EQ, InsertPos);
2046 EQClassesVector.push_back(EQ);
2047 }
2048 else
2049 EQ->AddReport(R);
2050 }
2051
2052
2053 //===----------------------------------------------------------------------===//
2054 // Emitting reports in equivalence classes.
2055 //===----------------------------------------------------------------------===//
2056
2057 namespace {
2058 struct FRIEC_WLItem {
2059 const ExplodedNode *N;
2060 ExplodedNode::const_succ_iterator I, E;
2061
2062 FRIEC_WLItem(const ExplodedNode *n)
2063 : N(n), I(N->succ_begin()), E(N->succ_end()) {}
2064 };
2065 }
2066
2067 static BugReport *
2068 FindReportInEquivalenceClass(BugReportEquivClass& EQ,
2069 SmallVectorImpl<BugReport*> &bugReports) {
2070
2071 BugReportEquivClass::iterator I = EQ.begin(), E = EQ.end();
2072 assert(I != E);
2073 BugType& BT = I->getBugType();
2074
2075 // If we don't need to suppress any of the nodes because they are
2076 // post-dominated by a sink, simply add all the nodes in the equivalence class
2077 // to 'Nodes'. Any of the reports will serve as a "representative" report.
2078 if (!BT.isSuppressOnSink()) {
2079 BugReport *R = I;
2080 for (BugReportEquivClass::iterator I=EQ.begin(), E=EQ.end(); I!=E; ++I) {
2081 const ExplodedNode *N = I->getErrorNode();
2082 if (N) {
2083 R = I;
2084 bugReports.push_back(R);
2085 }
2086 }
2087 return R;
2088 }
2089
2090 // For bug reports that should be suppressed when all paths are post-dominated
2091 // by a sink node, iterate through the reports in the equivalence class
2092 // until we find one that isn't post-dominated (if one exists). We use a
2093 // DFS traversal of the ExplodedGraph to find a non-sink node. We could write
2094 // this as a recursive function, but we don't want to risk blowing out the
2095 // stack for very long paths.
2096 BugReport *exampleReport = 0;
2097
2098 for (; I != E; ++I) {
2099 const ExplodedNode *errorNode = I->getErrorNode();
2100
2101 if (!errorNode)
2102 continue;
2103 if (errorNode->isSink()) {
2104 llvm_unreachable(
2105 "BugType::isSuppressSink() should not be 'true' for sink end nodes");
2106 }
2107 // No successors? By definition this nodes isn't post-dominated by a sink.
2108 if (errorNode->succ_empty()) {
2109 bugReports.push_back(I);
2110 if (!exampleReport)
2111 exampleReport = I;
2112 continue;
2113 }
2114
2115 // At this point we know that 'N' is not a sink and it has at least one
2116 // successor. Use a DFS worklist to find a non-sink end-of-path node.
2117 typedef FRIEC_WLItem WLItem;
2118 typedef SmallVector<WLItem, 10> DFSWorkList;
2119 llvm::DenseMap<const ExplodedNode *, unsigned> Visited;
2120
2121 DFSWorkList WL;
2122 WL.push_back(errorNode);
2123 Visited[errorNode] = 1;
2124
2125 while (!WL.empty()) {
2126 WLItem &WI = WL.back();
2127 assert(!WI.N->succ_empty());
2128
2129 for (; WI.I != WI.E; ++WI.I) {
2130 const ExplodedNode *Succ = *WI.I;
2131 // End-of-path node?
2132 if (Succ->succ_empty()) {
2133 // If we found an end-of-path node that is not a sink.
2134 if (!Succ->isSink()) {
2135 bugReports.push_back(I);
2136 if (!exampleReport)
2137 exampleReport = I;
2138 WL.clear();
2139 break;
2140 }
2141 // Found a sink? Continue on to the next successor.
2142 continue;
2143 }
2144 // Mark the successor as visited. If it hasn't been explored,
2145 // enqueue it to the DFS worklist.
2146 unsigned &mark = Visited[Succ];
2147 if (!mark) {
2148 mark = 1;
2149 WL.push_back(Succ);
2150 break;
2151 }
2152 }
2153
2154 // The worklist may have been cleared at this point. First
2155 // check if it is empty before checking the last item.
2156 if (!WL.empty() && &WL.back() == &WI)
2157 WL.pop_back();
2158 }
2159 }
2160
2161 // ExampleReport will be NULL if all the nodes in the equivalence class
2162 // were post-dominated by sinks.
2163 return exampleReport;
2164 }
2165
2166 void BugReporter::FlushReport(BugReportEquivClass& EQ) {
2167 SmallVector<BugReport*, 10> bugReports;
2168 BugReport *exampleReport = FindReportInEquivalenceClass(EQ, bugReports);
2169 if (exampleReport) {
2170 const PathDiagnosticConsumers &C = getPathDiagnosticConsumers();
2171 for (PathDiagnosticConsumers::const_iterator I=C.begin(),
2172 E=C.end(); I != E; ++I) {
2173 FlushReport(exampleReport, **I, bugReports);
2174 }
2175 }
2176 }
2177
2178 void BugReporter::FlushReport(BugReport *exampleReport,
2179 PathDiagnosticConsumer &PD,
2180 ArrayRef<BugReport*> bugReports) {
2181
2182 // FIXME: Make sure we use the 'R' for the path that was actually used.
2183 // Probably doesn't make a difference in practice.
2184 BugType& BT = exampleReport->getBugType();
2185
2186 OwningPtr<PathDiagnostic>
2187 D(new PathDiagnostic(exampleReport->getDeclWithIssue(),
2188 exampleReport->getBugType().getName(),
2189 exampleReport->getDescription(),
2190 exampleReport->getShortDescription(/*Fallback=*/false),
2191 BT.getCategory()));
2192
2193 // Generate the full path diagnostic, using the generation scheme
2194 // specified by the PathDiagnosticConsumer. Note that we have to generate
2195 // path diagnostics even for consumers which do not support paths, because
2196 // the BugReporterVisitors may mark this bug as a false positive.
2197 if (!bugReports.empty())
2198 if (!generatePathDiagnostic(*D.get(), PD, bugReports))
2199 return;
2200
2201 // If the path is empty, generate a single step path with the location
2202 // of the issue.
2203 if (D->path.empty()) {
2204 PathDiagnosticLocation L = exampleReport->getLocation(getSourceManager());
2205 PathDiagnosticPiece *piece =
2206 new PathDiagnosticEventPiece(L, exampleReport->getDescription());
2207 BugReport::ranges_iterator Beg, End;
2208 llvm::tie(Beg, End) = exampleReport->getRanges();
2209 for ( ; Beg != End; ++Beg)
2210 piece->addRange(*Beg);
2211 D->setEndOfPath(piece);
2212 }
2213
2214 // Get the meta data.
2215 const BugReport::ExtraTextList &Meta = exampleReport->getExtraText();
2216 for (BugReport::ExtraTextList::const_iterator i = Meta.begin(),
2217 e = Meta.end(); i != e; ++i) {
2218 D->addMeta(*i);
2219 }
2220
2221 PD.HandlePathDiagnostic(D.take());
2222 }
2223
2224 void BugReporter::EmitBasicReport(const Decl *DeclWithIssue,
2225 StringRef name,
2226 StringRef category,
2227 StringRef str, PathDiagnosticLocation Loc,
2228 SourceRange* RBeg, unsigned NumRanges) {
2229
2230 // 'BT' is owned by BugReporter.
2231 BugType *BT = getBugTypeForName(name, category);
2232 BugReport *R = new BugReport(*BT, str, Loc);
2233 R->setDeclWithIssue(DeclWithIssue);
2234 for ( ; NumRanges > 0 ; --NumRanges, ++RBeg) R->addRange(*RBeg);
2235 EmitReport(R);
2236 }
2237
2238 BugType *BugReporter::getBugTypeForName(StringRef name,
2239 StringRef category) {
2240 SmallString<136> fullDesc;
2241 llvm::raw_svector_ostream(fullDesc) << name << ":" << category;
2242 llvm::StringMapEntry<BugType *> &
2243 entry = StrBugTypes.GetOrCreateValue(fullDesc);
2244 BugType *BT = entry.getValue();
2245 if (!BT) {
2246 BT = new BugType(name, category);
2247 entry.setValue(BT);
2248 }
2249 return BT;
2250 }