]> git.proxmox.com Git - rustc.git/blob - src/llvm/tools/llvm-stress/llvm-stress.cpp
Imported Upstream version 0.6
[rustc.git] / src / llvm / tools / llvm-stress / llvm-stress.cpp
1 //===-- llvm-stress.cpp - Generate random LL files to stress-test LLVM ----===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This program is a utility that generates random .ll files to stress-test
11 // different components in LLVM.
12 //
13 //===----------------------------------------------------------------------===//
14 #include "llvm/LLVMContext.h"
15 #include "llvm/Module.h"
16 #include "llvm/PassManager.h"
17 #include "llvm/Constants.h"
18 #include "llvm/Instruction.h"
19 #include "llvm/CallGraphSCCPass.h"
20 #include "llvm/Assembly/PrintModulePass.h"
21 #include "llvm/Analysis/Verifier.h"
22 #include "llvm/Support/PassNameParser.h"
23 #include "llvm/Support/Debug.h"
24 #include "llvm/Support/ManagedStatic.h"
25 #include "llvm/Support/PluginLoader.h"
26 #include "llvm/Support/PrettyStackTrace.h"
27 #include "llvm/Support/ToolOutputFile.h"
28 #include <memory>
29 #include <sstream>
30 #include <set>
31 #include <vector>
32 #include <algorithm>
33 using namespace llvm;
34
35 static cl::opt<unsigned> SeedCL("seed",
36 cl::desc("Seed used for randomness"), cl::init(0));
37 static cl::opt<unsigned> SizeCL("size",
38 cl::desc("The estimated size of the generated function (# of instrs)"),
39 cl::init(100));
40 static cl::opt<std::string>
41 OutputFilename("o", cl::desc("Override output filename"),
42 cl::value_desc("filename"));
43
44 static cl::opt<bool> GenHalfFloat("generate-half-float",
45 cl::desc("Generate half-length floating-point values"), cl::init(false));
46 static cl::opt<bool> GenX86FP80("generate-x86-fp80",
47 cl::desc("Generate 80-bit X86 floating-point values"), cl::init(false));
48 static cl::opt<bool> GenFP128("generate-fp128",
49 cl::desc("Generate 128-bit floating-point values"), cl::init(false));
50 static cl::opt<bool> GenPPCFP128("generate-ppc-fp128",
51 cl::desc("Generate 128-bit PPC floating-point values"), cl::init(false));
52 static cl::opt<bool> GenX86MMX("generate-x86-mmx",
53 cl::desc("Generate X86 MMX floating-point values"), cl::init(false));
54
55 /// A utility class to provide a pseudo-random number generator which is
56 /// the same across all platforms. This is somewhat close to the libc
57 /// implementation. Note: This is not a cryptographically secure pseudorandom
58 /// number generator.
59 class Random {
60 public:
61 /// C'tor
62 Random(unsigned _seed):Seed(_seed) {}
63
64 /// Return a random integer, up to a
65 /// maximum of 2**19 - 1.
66 uint32_t Rand() {
67 uint32_t Val = Seed + 0x000b07a1;
68 Seed = (Val * 0x3c7c0ac1);
69 // Only lowest 19 bits are random-ish.
70 return Seed & 0x7ffff;
71 }
72
73 /// Return a random 32 bit integer.
74 uint32_t Rand32() {
75 uint32_t Val = Rand();
76 Val &= 0xffff;
77 return Val | (Rand() << 16);
78 }
79
80 /// Return a random 64 bit integer.
81 uint64_t Rand64() {
82 uint64_t Val = Rand32();
83 return Val | (uint64_t(Rand32()) << 32);
84 }
85
86 /// Rand operator for STL algorithms.
87 ptrdiff_t operator()(ptrdiff_t y) {
88 return Rand64() % y;
89 }
90
91 private:
92 unsigned Seed;
93 };
94
95 /// Generate an empty function with a default argument list.
96 Function *GenEmptyFunction(Module *M) {
97 // Type Definitions
98 std::vector<Type*> ArgsTy;
99 // Define a few arguments
100 LLVMContext &Context = M->getContext();
101 ArgsTy.push_back(PointerType::get(IntegerType::getInt8Ty(Context), 0));
102 ArgsTy.push_back(PointerType::get(IntegerType::getInt32Ty(Context), 0));
103 ArgsTy.push_back(PointerType::get(IntegerType::getInt64Ty(Context), 0));
104 ArgsTy.push_back(IntegerType::getInt32Ty(Context));
105 ArgsTy.push_back(IntegerType::getInt64Ty(Context));
106 ArgsTy.push_back(IntegerType::getInt8Ty(Context));
107
108 FunctionType *FuncTy = FunctionType::get(Type::getVoidTy(Context), ArgsTy, 0);
109 // Pick a unique name to describe the input parameters
110 std::stringstream ss;
111 ss<<"autogen_SD"<<SeedCL;
112 Function *Func = Function::Create(FuncTy, GlobalValue::ExternalLinkage,
113 ss.str(), M);
114
115 Func->setCallingConv(CallingConv::C);
116 return Func;
117 }
118
119 /// A base class, implementing utilities needed for
120 /// modifying and adding new random instructions.
121 struct Modifier {
122 /// Used to store the randomly generated values.
123 typedef std::vector<Value*> PieceTable;
124
125 public:
126 /// C'tor
127 Modifier(BasicBlock *Block, PieceTable *PT, Random *R):
128 BB(Block),PT(PT),Ran(R),Context(BB->getContext()) {}
129
130 /// virtual D'tor to silence warnings.
131 virtual ~Modifier() {}
132
133 /// Add a new instruction.
134 virtual void Act() = 0;
135 /// Add N new instructions,
136 virtual void ActN(unsigned n) {
137 for (unsigned i=0; i<n; ++i)
138 Act();
139 }
140
141 protected:
142 /// Return a random value from the list of known values.
143 Value *getRandomVal() {
144 assert(PT->size());
145 return PT->at(Ran->Rand() % PT->size());
146 }
147
148 Constant *getRandomConstant(Type *Tp) {
149 if (Tp->isIntegerTy()) {
150 if (Ran->Rand() & 1)
151 return ConstantInt::getAllOnesValue(Tp);
152 return ConstantInt::getNullValue(Tp);
153 } else if (Tp->isFloatingPointTy()) {
154 if (Ran->Rand() & 1)
155 return ConstantFP::getAllOnesValue(Tp);
156 return ConstantFP::getNullValue(Tp);
157 }
158 return UndefValue::get(Tp);
159 }
160
161 /// Return a random value with a known type.
162 Value *getRandomValue(Type *Tp) {
163 unsigned index = Ran->Rand();
164 for (unsigned i=0; i<PT->size(); ++i) {
165 Value *V = PT->at((index + i) % PT->size());
166 if (V->getType() == Tp)
167 return V;
168 }
169
170 // If the requested type was not found, generate a constant value.
171 if (Tp->isIntegerTy()) {
172 if (Ran->Rand() & 1)
173 return ConstantInt::getAllOnesValue(Tp);
174 return ConstantInt::getNullValue(Tp);
175 } else if (Tp->isFloatingPointTy()) {
176 if (Ran->Rand() & 1)
177 return ConstantFP::getAllOnesValue(Tp);
178 return ConstantFP::getNullValue(Tp);
179 } else if (Tp->isVectorTy()) {
180 VectorType *VTp = cast<VectorType>(Tp);
181
182 std::vector<Constant*> TempValues;
183 TempValues.reserve(VTp->getNumElements());
184 for (unsigned i = 0; i < VTp->getNumElements(); ++i)
185 TempValues.push_back(getRandomConstant(VTp->getScalarType()));
186
187 ArrayRef<Constant*> VectorValue(TempValues);
188 return ConstantVector::get(VectorValue);
189 }
190
191 return UndefValue::get(Tp);
192 }
193
194 /// Return a random value of any pointer type.
195 Value *getRandomPointerValue() {
196 unsigned index = Ran->Rand();
197 for (unsigned i=0; i<PT->size(); ++i) {
198 Value *V = PT->at((index + i) % PT->size());
199 if (V->getType()->isPointerTy())
200 return V;
201 }
202 return UndefValue::get(pickPointerType());
203 }
204
205 /// Return a random value of any vector type.
206 Value *getRandomVectorValue() {
207 unsigned index = Ran->Rand();
208 for (unsigned i=0; i<PT->size(); ++i) {
209 Value *V = PT->at((index + i) % PT->size());
210 if (V->getType()->isVectorTy())
211 return V;
212 }
213 return UndefValue::get(pickVectorType());
214 }
215
216 /// Pick a random type.
217 Type *pickType() {
218 return (Ran->Rand() & 1 ? pickVectorType() : pickScalarType());
219 }
220
221 /// Pick a random pointer type.
222 Type *pickPointerType() {
223 Type *Ty = pickType();
224 return PointerType::get(Ty, 0);
225 }
226
227 /// Pick a random vector type.
228 Type *pickVectorType(unsigned len = (unsigned)-1) {
229 // Pick a random vector width in the range 2**0 to 2**4.
230 // by adding two randoms we are generating a normal-like distribution
231 // around 2**3.
232 unsigned width = 1<<((Ran->Rand() % 3) + (Ran->Rand() % 3));
233 Type *Ty;
234
235 // Vectors of x86mmx are illegal; keep trying till we get something else.
236 do {
237 Ty = pickScalarType();
238 } while (Ty->isX86_MMXTy());
239
240 if (len != (unsigned)-1)
241 width = len;
242 return VectorType::get(Ty, width);
243 }
244
245 /// Pick a random scalar type.
246 Type *pickScalarType() {
247 Type *t = 0;
248 do {
249 switch (Ran->Rand() % 30) {
250 case 0: t = Type::getInt1Ty(Context); break;
251 case 1: t = Type::getInt8Ty(Context); break;
252 case 2: t = Type::getInt16Ty(Context); break;
253 case 3: case 4:
254 case 5: t = Type::getFloatTy(Context); break;
255 case 6: case 7:
256 case 8: t = Type::getDoubleTy(Context); break;
257 case 9: case 10:
258 case 11: t = Type::getInt32Ty(Context); break;
259 case 12: case 13:
260 case 14: t = Type::getInt64Ty(Context); break;
261 case 15: case 16:
262 case 17: if (GenHalfFloat) t = Type::getHalfTy(Context); break;
263 case 18: case 19:
264 case 20: if (GenX86FP80) t = Type::getX86_FP80Ty(Context); break;
265 case 21: case 22:
266 case 23: if (GenFP128) t = Type::getFP128Ty(Context); break;
267 case 24: case 25:
268 case 26: if (GenPPCFP128) t = Type::getPPC_FP128Ty(Context); break;
269 case 27: case 28:
270 case 29: if (GenX86MMX) t = Type::getX86_MMXTy(Context); break;
271 default: llvm_unreachable("Invalid scalar value");
272 }
273 } while (t == 0);
274
275 return t;
276 }
277
278 /// Basic block to populate
279 BasicBlock *BB;
280 /// Value table
281 PieceTable *PT;
282 /// Random number generator
283 Random *Ran;
284 /// Context
285 LLVMContext &Context;
286 };
287
288 struct LoadModifier: public Modifier {
289 LoadModifier(BasicBlock *BB, PieceTable *PT, Random *R):Modifier(BB, PT, R) {}
290 virtual void Act() {
291 // Try to use predefined pointers. If non exist, use undef pointer value;
292 Value *Ptr = getRandomPointerValue();
293 Value *V = new LoadInst(Ptr, "L", BB->getTerminator());
294 PT->push_back(V);
295 }
296 };
297
298 struct StoreModifier: public Modifier {
299 StoreModifier(BasicBlock *BB, PieceTable *PT, Random *R):Modifier(BB, PT, R) {}
300 virtual void Act() {
301 // Try to use predefined pointers. If non exist, use undef pointer value;
302 Value *Ptr = getRandomPointerValue();
303 Type *Tp = Ptr->getType();
304 Value *Val = getRandomValue(Tp->getContainedType(0));
305 Type *ValTy = Val->getType();
306
307 // Do not store vectors of i1s because they are unsupported
308 // by the codegen.
309 if (ValTy->isVectorTy() && ValTy->getScalarSizeInBits() == 1)
310 return;
311
312 new StoreInst(Val, Ptr, BB->getTerminator());
313 }
314 };
315
316 struct BinModifier: public Modifier {
317 BinModifier(BasicBlock *BB, PieceTable *PT, Random *R):Modifier(BB, PT, R) {}
318
319 virtual void Act() {
320 Value *Val0 = getRandomVal();
321 Value *Val1 = getRandomValue(Val0->getType());
322
323 // Don't handle pointer types.
324 if (Val0->getType()->isPointerTy() ||
325 Val1->getType()->isPointerTy())
326 return;
327
328 // Don't handle i1 types.
329 if (Val0->getType()->getScalarSizeInBits() == 1)
330 return;
331
332
333 bool isFloat = Val0->getType()->getScalarType()->isFloatingPointTy();
334 Instruction* Term = BB->getTerminator();
335 unsigned R = Ran->Rand() % (isFloat ? 7 : 13);
336 Instruction::BinaryOps Op;
337
338 switch (R) {
339 default: llvm_unreachable("Invalid BinOp");
340 case 0:{Op = (isFloat?Instruction::FAdd : Instruction::Add); break; }
341 case 1:{Op = (isFloat?Instruction::FSub : Instruction::Sub); break; }
342 case 2:{Op = (isFloat?Instruction::FMul : Instruction::Mul); break; }
343 case 3:{Op = (isFloat?Instruction::FDiv : Instruction::SDiv); break; }
344 case 4:{Op = (isFloat?Instruction::FDiv : Instruction::UDiv); break; }
345 case 5:{Op = (isFloat?Instruction::FRem : Instruction::SRem); break; }
346 case 6:{Op = (isFloat?Instruction::FRem : Instruction::URem); break; }
347 case 7: {Op = Instruction::Shl; break; }
348 case 8: {Op = Instruction::LShr; break; }
349 case 9: {Op = Instruction::AShr; break; }
350 case 10:{Op = Instruction::And; break; }
351 case 11:{Op = Instruction::Or; break; }
352 case 12:{Op = Instruction::Xor; break; }
353 }
354
355 PT->push_back(BinaryOperator::Create(Op, Val0, Val1, "B", Term));
356 }
357 };
358
359 /// Generate constant values.
360 struct ConstModifier: public Modifier {
361 ConstModifier(BasicBlock *BB, PieceTable *PT, Random *R):Modifier(BB, PT, R) {}
362 virtual void Act() {
363 Type *Ty = pickType();
364
365 if (Ty->isVectorTy()) {
366 switch (Ran->Rand() % 2) {
367 case 0: if (Ty->getScalarType()->isIntegerTy())
368 return PT->push_back(ConstantVector::getAllOnesValue(Ty));
369 case 1: if (Ty->getScalarType()->isIntegerTy())
370 return PT->push_back(ConstantVector::getNullValue(Ty));
371 }
372 }
373
374 if (Ty->isFloatingPointTy()) {
375 // Generate 128 random bits, the size of the (currently)
376 // largest floating-point types.
377 uint64_t RandomBits[2];
378 for (unsigned i = 0; i < 2; ++i)
379 RandomBits[i] = Ran->Rand64();
380
381 APInt RandomInt(Ty->getPrimitiveSizeInBits(), makeArrayRef(RandomBits));
382
383 bool isIEEE = !Ty->isX86_FP80Ty() && !Ty->isPPC_FP128Ty();
384 APFloat RandomFloat(RandomInt, isIEEE);
385
386 if (Ran->Rand() & 1)
387 return PT->push_back(ConstantFP::getNullValue(Ty));
388 return PT->push_back(ConstantFP::get(Ty->getContext(), RandomFloat));
389 }
390
391 if (Ty->isIntegerTy()) {
392 switch (Ran->Rand() % 7) {
393 case 0: if (Ty->isIntegerTy())
394 return PT->push_back(ConstantInt::get(Ty,
395 APInt::getAllOnesValue(Ty->getPrimitiveSizeInBits())));
396 case 1: if (Ty->isIntegerTy())
397 return PT->push_back(ConstantInt::get(Ty,
398 APInt::getNullValue(Ty->getPrimitiveSizeInBits())));
399 case 2: case 3: case 4: case 5:
400 case 6: if (Ty->isIntegerTy())
401 PT->push_back(ConstantInt::get(Ty, Ran->Rand()));
402 }
403 }
404
405 }
406 };
407
408 struct AllocaModifier: public Modifier {
409 AllocaModifier(BasicBlock *BB, PieceTable *PT, Random *R):Modifier(BB, PT, R){}
410
411 virtual void Act() {
412 Type *Tp = pickType();
413 PT->push_back(new AllocaInst(Tp, "A", BB->getFirstNonPHI()));
414 }
415 };
416
417 struct ExtractElementModifier: public Modifier {
418 ExtractElementModifier(BasicBlock *BB, PieceTable *PT, Random *R):
419 Modifier(BB, PT, R) {}
420
421 virtual void Act() {
422 Value *Val0 = getRandomVectorValue();
423 Value *V = ExtractElementInst::Create(Val0,
424 ConstantInt::get(Type::getInt32Ty(BB->getContext()),
425 Ran->Rand() % cast<VectorType>(Val0->getType())->getNumElements()),
426 "E", BB->getTerminator());
427 return PT->push_back(V);
428 }
429 };
430
431 struct ShuffModifier: public Modifier {
432 ShuffModifier(BasicBlock *BB, PieceTable *PT, Random *R):Modifier(BB, PT, R) {}
433 virtual void Act() {
434
435 Value *Val0 = getRandomVectorValue();
436 Value *Val1 = getRandomValue(Val0->getType());
437
438 unsigned Width = cast<VectorType>(Val0->getType())->getNumElements();
439 std::vector<Constant*> Idxs;
440
441 Type *I32 = Type::getInt32Ty(BB->getContext());
442 for (unsigned i=0; i<Width; ++i) {
443 Constant *CI = ConstantInt::get(I32, Ran->Rand() % (Width*2));
444 // Pick some undef values.
445 if (!(Ran->Rand() % 5))
446 CI = UndefValue::get(I32);
447 Idxs.push_back(CI);
448 }
449
450 Constant *Mask = ConstantVector::get(Idxs);
451
452 Value *V = new ShuffleVectorInst(Val0, Val1, Mask, "Shuff",
453 BB->getTerminator());
454 PT->push_back(V);
455 }
456 };
457
458 struct InsertElementModifier: public Modifier {
459 InsertElementModifier(BasicBlock *BB, PieceTable *PT, Random *R):
460 Modifier(BB, PT, R) {}
461
462 virtual void Act() {
463 Value *Val0 = getRandomVectorValue();
464 Value *Val1 = getRandomValue(Val0->getType()->getScalarType());
465
466 Value *V = InsertElementInst::Create(Val0, Val1,
467 ConstantInt::get(Type::getInt32Ty(BB->getContext()),
468 Ran->Rand() % cast<VectorType>(Val0->getType())->getNumElements()),
469 "I", BB->getTerminator());
470 return PT->push_back(V);
471 }
472
473 };
474
475 struct CastModifier: public Modifier {
476 CastModifier(BasicBlock *BB, PieceTable *PT, Random *R):Modifier(BB, PT, R) {}
477 virtual void Act() {
478
479 Value *V = getRandomVal();
480 Type *VTy = V->getType();
481 Type *DestTy = pickScalarType();
482
483 // Handle vector casts vectors.
484 if (VTy->isVectorTy()) {
485 VectorType *VecTy = cast<VectorType>(VTy);
486 DestTy = pickVectorType(VecTy->getNumElements());
487 }
488
489 // no need to cast.
490 if (VTy == DestTy) return;
491
492 // Pointers:
493 if (VTy->isPointerTy()) {
494 if (!DestTy->isPointerTy())
495 DestTy = PointerType::get(DestTy, 0);
496 return PT->push_back(
497 new BitCastInst(V, DestTy, "PC", BB->getTerminator()));
498 }
499
500 unsigned VSize = VTy->getScalarType()->getPrimitiveSizeInBits();
501 unsigned DestSize = DestTy->getScalarType()->getPrimitiveSizeInBits();
502
503 // Generate lots of bitcasts.
504 if ((Ran->Rand() & 1) && VSize == DestSize) {
505 return PT->push_back(
506 new BitCastInst(V, DestTy, "BC", BB->getTerminator()));
507 }
508
509 // Both types are integers:
510 if (VTy->getScalarType()->isIntegerTy() &&
511 DestTy->getScalarType()->isIntegerTy()) {
512 if (VSize > DestSize) {
513 return PT->push_back(
514 new TruncInst(V, DestTy, "Tr", BB->getTerminator()));
515 } else {
516 assert(VSize < DestSize && "Different int types with the same size?");
517 if (Ran->Rand() & 1)
518 return PT->push_back(
519 new ZExtInst(V, DestTy, "ZE", BB->getTerminator()));
520 return PT->push_back(new SExtInst(V, DestTy, "Se", BB->getTerminator()));
521 }
522 }
523
524 // Fp to int.
525 if (VTy->getScalarType()->isFloatingPointTy() &&
526 DestTy->getScalarType()->isIntegerTy()) {
527 if (Ran->Rand() & 1)
528 return PT->push_back(
529 new FPToSIInst(V, DestTy, "FC", BB->getTerminator()));
530 return PT->push_back(new FPToUIInst(V, DestTy, "FC", BB->getTerminator()));
531 }
532
533 // Int to fp.
534 if (VTy->getScalarType()->isIntegerTy() &&
535 DestTy->getScalarType()->isFloatingPointTy()) {
536 if (Ran->Rand() & 1)
537 return PT->push_back(
538 new SIToFPInst(V, DestTy, "FC", BB->getTerminator()));
539 return PT->push_back(new UIToFPInst(V, DestTy, "FC", BB->getTerminator()));
540
541 }
542
543 // Both floats.
544 if (VTy->getScalarType()->isFloatingPointTy() &&
545 DestTy->getScalarType()->isFloatingPointTy()) {
546 if (VSize > DestSize) {
547 return PT->push_back(
548 new FPTruncInst(V, DestTy, "Tr", BB->getTerminator()));
549 } else if (VSize < DestSize) {
550 return PT->push_back(
551 new FPExtInst(V, DestTy, "ZE", BB->getTerminator()));
552 }
553 // If VSize == DestSize, then the two types must be fp128 and ppc_fp128,
554 // for which there is no defined conversion. So do nothing.
555 }
556 }
557
558 };
559
560 struct SelectModifier: public Modifier {
561 SelectModifier(BasicBlock *BB, PieceTable *PT, Random *R):
562 Modifier(BB, PT, R) {}
563
564 virtual void Act() {
565 // Try a bunch of different select configuration until a valid one is found.
566 Value *Val0 = getRandomVal();
567 Value *Val1 = getRandomValue(Val0->getType());
568
569 Type *CondTy = Type::getInt1Ty(Context);
570
571 // If the value type is a vector, and we allow vector select, then in 50%
572 // of the cases generate a vector select.
573 if (Val0->getType()->isVectorTy() && (Ran->Rand() % 1)) {
574 unsigned NumElem = cast<VectorType>(Val0->getType())->getNumElements();
575 CondTy = VectorType::get(CondTy, NumElem);
576 }
577
578 Value *Cond = getRandomValue(CondTy);
579 Value *V = SelectInst::Create(Cond, Val0, Val1, "Sl", BB->getTerminator());
580 return PT->push_back(V);
581 }
582 };
583
584
585 struct CmpModifier: public Modifier {
586 CmpModifier(BasicBlock *BB, PieceTable *PT, Random *R):Modifier(BB, PT, R) {}
587 virtual void Act() {
588
589 Value *Val0 = getRandomVal();
590 Value *Val1 = getRandomValue(Val0->getType());
591
592 if (Val0->getType()->isPointerTy()) return;
593 bool fp = Val0->getType()->getScalarType()->isFloatingPointTy();
594
595 int op;
596 if (fp) {
597 op = Ran->Rand() %
598 (CmpInst::LAST_FCMP_PREDICATE - CmpInst::FIRST_FCMP_PREDICATE) +
599 CmpInst::FIRST_FCMP_PREDICATE;
600 } else {
601 op = Ran->Rand() %
602 (CmpInst::LAST_ICMP_PREDICATE - CmpInst::FIRST_ICMP_PREDICATE) +
603 CmpInst::FIRST_ICMP_PREDICATE;
604 }
605
606 Value *V = CmpInst::Create(fp ? Instruction::FCmp : Instruction::ICmp,
607 op, Val0, Val1, "Cmp", BB->getTerminator());
608 return PT->push_back(V);
609 }
610 };
611
612 void FillFunction(Function *F, Random &R) {
613 // Create a legal entry block.
614 BasicBlock *BB = BasicBlock::Create(F->getContext(), "BB", F);
615 ReturnInst::Create(F->getContext(), BB);
616
617 // Create the value table.
618 Modifier::PieceTable PT;
619
620 // Consider arguments as legal values.
621 for (Function::arg_iterator it = F->arg_begin(), e = F->arg_end();
622 it != e; ++it)
623 PT.push_back(it);
624
625 // List of modifiers which add new random instructions.
626 std::vector<Modifier*> Modifiers;
627 std::auto_ptr<Modifier> LM(new LoadModifier(BB, &PT, &R));
628 std::auto_ptr<Modifier> SM(new StoreModifier(BB, &PT, &R));
629 std::auto_ptr<Modifier> EE(new ExtractElementModifier(BB, &PT, &R));
630 std::auto_ptr<Modifier> SHM(new ShuffModifier(BB, &PT, &R));
631 std::auto_ptr<Modifier> IE(new InsertElementModifier(BB, &PT, &R));
632 std::auto_ptr<Modifier> BM(new BinModifier(BB, &PT, &R));
633 std::auto_ptr<Modifier> CM(new CastModifier(BB, &PT, &R));
634 std::auto_ptr<Modifier> SLM(new SelectModifier(BB, &PT, &R));
635 std::auto_ptr<Modifier> PM(new CmpModifier(BB, &PT, &R));
636 Modifiers.push_back(LM.get());
637 Modifiers.push_back(SM.get());
638 Modifiers.push_back(EE.get());
639 Modifiers.push_back(SHM.get());
640 Modifiers.push_back(IE.get());
641 Modifiers.push_back(BM.get());
642 Modifiers.push_back(CM.get());
643 Modifiers.push_back(SLM.get());
644 Modifiers.push_back(PM.get());
645
646 // Generate the random instructions
647 AllocaModifier AM(BB, &PT, &R); AM.ActN(5); // Throw in a few allocas
648 ConstModifier COM(BB, &PT, &R); COM.ActN(40); // Throw in a few constants
649
650 for (unsigned i=0; i< SizeCL / Modifiers.size(); ++i)
651 for (std::vector<Modifier*>::iterator it = Modifiers.begin(),
652 e = Modifiers.end(); it != e; ++it) {
653 (*it)->Act();
654 }
655
656 SM->ActN(5); // Throw in a few stores.
657 }
658
659 void IntroduceControlFlow(Function *F, Random &R) {
660 std::vector<Instruction*> BoolInst;
661 for (BasicBlock::iterator it = F->begin()->begin(),
662 e = F->begin()->end(); it != e; ++it) {
663 if (it->getType() == IntegerType::getInt1Ty(F->getContext()))
664 BoolInst.push_back(it);
665 }
666
667 std::random_shuffle(BoolInst.begin(), BoolInst.end(), R);
668
669 for (std::vector<Instruction*>::iterator it = BoolInst.begin(),
670 e = BoolInst.end(); it != e; ++it) {
671 Instruction *Instr = *it;
672 BasicBlock *Curr = Instr->getParent();
673 BasicBlock::iterator Loc= Instr;
674 BasicBlock *Next = Curr->splitBasicBlock(Loc, "CF");
675 Instr->moveBefore(Curr->getTerminator());
676 if (Curr != &F->getEntryBlock()) {
677 BranchInst::Create(Curr, Next, Instr, Curr->getTerminator());
678 Curr->getTerminator()->eraseFromParent();
679 }
680 }
681 }
682
683 int main(int argc, char **argv) {
684 // Init LLVM, call llvm_shutdown() on exit, parse args, etc.
685 llvm::PrettyStackTraceProgram X(argc, argv);
686 cl::ParseCommandLineOptions(argc, argv, "llvm codegen stress-tester\n");
687 llvm_shutdown_obj Y;
688
689 std::auto_ptr<Module> M(new Module("/tmp/autogen.bc", getGlobalContext()));
690 Function *F = GenEmptyFunction(M.get());
691
692 // Pick an initial seed value
693 Random R(SeedCL);
694 // Generate lots of random instructions inside a single basic block.
695 FillFunction(F, R);
696 // Break the basic block into many loops.
697 IntroduceControlFlow(F, R);
698
699 // Figure out what stream we are supposed to write to...
700 OwningPtr<tool_output_file> Out;
701 // Default to standard output.
702 if (OutputFilename.empty())
703 OutputFilename = "-";
704
705 std::string ErrorInfo;
706 Out.reset(new tool_output_file(OutputFilename.c_str(), ErrorInfo,
707 raw_fd_ostream::F_Binary));
708 if (!ErrorInfo.empty()) {
709 errs() << ErrorInfo << '\n';
710 return 1;
711 }
712
713 PassManager Passes;
714 Passes.add(createVerifierPass());
715 Passes.add(createPrintModulePass(&Out->os()));
716 Passes.run(*M.get());
717 Out->keep();
718
719 return 0;
720 }